Forever Chemicals: PFAS

May 8, 2024

James Kennedy

Key Questions to be Answered

- What are PFAS?
- Why are PFAS dangerous?
- What are the regulations around PFAS in drinking water?
- How do you test for PFAS?
- If needed, how do you treat for PFAS?
- How much does that cost?

What are PFAS? Per- and Polyfluoroalkyl substances

And others: PFHxS, PFNA, GenX Chemicals, PFBS

Why are PFAS in our water?

- In use since the 1940s
- Widely used in a variety of industrial and commercial applications
- Does not break down (forever chemicals)

—— High certainty

Why are PFAS bad?

- Carcinogenic
- Liver toxicity
- Cardiovascular effects
- Immune system effects
- Endocrine system effects
- Reproductive system effects
- Developmental effects
- Risk of heart attack and stroke
- Forever chemicals

Environment Agency (europa.eu)

History of PFAS Usage

- Early production of PFOA and PFAS
- 1940's Production of Teflon

1950's

1970's

• Expansion of PFAS production and use

- Health concerns start to emerge
- PFAS found in the blood of exposed workers

Continued History of PFAS Usage

Prior Regulations

- 2016 EPA Health advisory levels, set at 70 ppt (non enforceable)
- 2022 update to EPA health advisories set well below 1 ppt (non enforceable)(0.002 ppt)
- Several states have established their own PFAS regulations

PFAS DRINKING WATER REGULATIONS

- States that have adopted a standard equal to 70 ppt
- States that have adopted a standard higher than 70 ppt
- 18 Individual PFAS Standards

States that have not regulated PFAS in drinking water

<u>PFAS Update: State-By-State PFAS Drinking Water Standards - February 2023 | Bryan Cave Leighton Paisner</u> (bclplahttps://www.bclplaw.com/en-US/events-insights-news/pfas-update-state-by-state-pfas-drinkingwater-standards-february-2023.htmlw.com)

The information is current as of February 13, 2023

How are MCLs and MCLGs set?

- Maximum contaminant level vs. maximum contaminant level goal
- MCLG set based on health effects only, with no practicality concerns
- MCL set with practicality in mind

MCLs and MCLGs (in ppt)

Contaminant	EPA MCL	EPA MCLG	DEP MCL	DEP MCLG
PFOS	4	0	18	14
PFOA	4	0	14	8
PFHxS	10	10		
PFNA	10	10		
HFPO-DA (GenX Chemicals)	10	10		

The EPA has also implemented a hazard index for 4 PFAS: PFHxS, PFNA, GenX Chemicals, PFBS

$$HI MCL = \left(\frac{[HFPO-DA_{water}]}{[10 ppt]}\right) + \left(\frac{[PFBS_{water}]}{[2000 ppt]}\right) + \left(\frac{[PFNA_{water}]}{[10 ppt]}\right) + \left(\frac{[PFHxS_{water}]}{[10 ppt]}\right) = 1$$

- Used to combine multiple hazards which may share similar or cumulative effects
- Hazard Index must be less than 1 to be compliant with the MCL

1 part per trillion (ppt)

IS EQUIVALENT TO A SINGLE DROP OF WATER IN

20 olympic-sized swimming pools

EPA NPDWR Schedule

- Regulation was finalized on April 10, 2024
- Primacy agencies have 2 years to submit a revised program to the EPA (2026)
- NPDWR initial monitoring requirements must be met within 3 years (2027)
- MCL compliance is required within 5 years, an additional 2 years after testing requirements (2029)

EPTDS: entry point to the distribution system

Trigger Levels and Practical Quantitation Levels

Constant	Trigger Levels (1/2 MCLs)	Practical Quantitation Levels			
Compound	Levels (in parts per trillion, ppt)				
PFOA	2.0	4.0			
PFOS	2.0	4.0			
PFHxS	5	3.0			
HFPO-DA	5	5.0			
PFNA	5	4.0			
PFBS	N/A	3.0			
Hazard Index	0.5 (unitless)	N/A			

Testing Procedure

Testing Procedure

LC-MS/MS: Liquid Chromatography with Tandem Mass Spectroscopy

Testing Procedure Difficulties

- Limited material selections, as some materials interact with PFAS, or may contain PFAS themselves
- Complicated, and requires expensive equipment.
- Requires a high level of precision.

What does all that cost?

\$200 to \$400 per sample

Sourced from utilities and private labs

What if there's contamination?

What are the chances of contamination?

Compound	DEP Exceedance Rate	EPA Exceedance Rate
PFOS	5.1%	17.7%
PFOA	5.7%	23.0%

- Based on sampling from locations where PFAS contamination was expected, so actual rates would potentially be lower
- Only one sample was taken per location
- Several sampling locations may be in violation of the Hazard Index for other PFAS
- Sample data includes DEP defined Public Water Systems
- EPA estimates between 6 % and 10% of water systems, out of approximately 66,000 total, will need to treat for PFAS

Treatment Methods

- Granular activated carbon (GAC)
- Anion exchange
- Reverse osmosis

Granular Activated Carbon (GAC)

- Highly porous material, captures PFAS physically
- Generally cheaper than other techniques
- More effective for lower concentration of PFAS

https://www.elgalabwater.com/activated-carbon

Anion Exchange

- Captures PFAS based on negatively charged fluorine atoms
- More expensive than GAC
- Smaller footprint in a treatment plant then GAC

https://www.stantec.com/en/ideas/market/water/developingsolutions-to-handle-pfas-aka-forever-chemicals-it-s-anevolving-science

Reverse Osmosis

- Pushes water through a membrane that rejects PFAS
- Produces a brine with higher contaminant concentration

REVERSE OSMOSIS

https://advancedwaterinc.com/how-reverse-osmosis-works/

EPA Capital Cost Estimations

- \$7 million for a 10 MGD plant
- \$700,000 down to .03 MGD

EPA O&M Cost Estimates (2020 Dollars)

- \$1 million per year for 10 MGD plant
- \$30,000 per year for small systems

Total Costs and Benefits

The Final PFAS NPDWR Will Cost		Annual Quantified Costs Once Fully Implemented		
Water System Monitoring		\$ 36 million		
Water System Treatment and Disposal		\$ 1,506 million		
Water System Administrative		\$ 1 million		
Primacy Agency Implementation and Admin	istration	\$ 5 million		
The Final PFAS NPDWR Will Prevent	Annual Q Once Fully	uantified Benefits y Implemented	Number of Avoided Illnesses and Deaths Once Fully Implemented	
Developmental Effects	\$	209 million	1,300 deaths	
Cardiovascular Effects	\$607 million		3,700 deaths and 15,600 illnesses	
Kidney Cancer	\$354 million		2,000 deaths and 7,000 illnesses	
Bladder Cancer (resulting from co-removal of disinfection byproducts with PFAS)		380 million	2,600 deaths and 7,300 illnesses	

Total Costs and Benefits

- The EPA estimates that both the costs and the benefits of the NPDWR will total approximately \$1.5 billion per year
- The EPA also anticipates non-quantified benefits related to increased ability to fight disease, reductions in thyroid disease, and other non-quantified health benefits
- Non-quantified costs from compliance with the Hazard index are also anticipated.

Other Cost Considerations

- Disposal of PFAS as a hazardous waste would increase costs
- Destruction of PFAS using UV light or oxidizing agents could reduce the cost of PFAS disposal
- Potential supply chain issues for both anion exchange resin and granular activated carbon

Conclusions

- PFAS is dangerous and widespread, and efforts to reduce contamination are ongoing
- PFAS regulations for drinking water on the national level have been finalized
- PFAS testing is complicated, and will be an added expense
- Treatment costs for PFAS, where necessary, will be very expensive

Thank you. Any questions?