

The Near Future of Electric Transportation

Pennsylvania Public Utility Commission
Alternative Fuel Vehicles Forum
May 31, 2012
Henry A. "Hank" Courtright
Senior Vice President

Mainstream PEV Commercialization Began December 2010

Chevrolet Volt

- Extended Range Electric Vehicle (EREV - A plug-in hybrid with a guaranteed electric range).
- 40-mile range
- Charging: 8-9 hours at 120V, 12A3 hours at 240V, 15A

Nissan Leaf

- Battery Electric Vehicle
- 100-mile range
- Charging: 20 hours at 120V, 12A

8 hours at 240V, 15A 30 min at 400V, 150A

2

Chevrolet Volt since 2010

Nissan LEAF since 2010

Tesla Roadster since 2008

> **Fisker Karma** Launch 2011

BMW ActiveE trial begins 2012

CODA Sedan Launch Early 2012

Ford Focus Electric

Launch Early 2012

Honda Fit EV Launch Late 2012

BMW i3 Launch 2013

BYD e6 Launch 2013

BYD F3DM Launch 2013

Ford C-MAX Energi **Chevrolet Spark** Launch Late 2012 Launch 2013 Hyundai BlueOn

> **Ford Fusion Energi** Launch 2013

Launch 2014

Kia Ray Launch 2014

Audi A1 E-Tron Launch

BMW i8 Launch 2014

Cadillac ELR Launch

2014

2014

2012

Mitsubishi I Launch **Early 2012**

smart fortwo electric

Scion iQ Launch

Late 2012

drive Launch 2012 Tesla Model S

Launches Mid-2012

Toyota Plug In Prius Launches Early 2012 2013

Tesla Model X Launch 2013

Toyota FT-EV Launch

Tovota RAV4 EV Launch 2013

2013

Volvo C30 Electric Launch 2013

2014

Mitsubishi Px-MiEV Launch 2014

Volkswagen E-Bugster Launch 2014

Volkswagen E-Golf Launch 2014

Volvo V70 PHEV Launch 2014

Source: EEI

Electricity Pricing for Plug-in Electric Vehicles

Electricity ~ \$1/Gallon (equiv.) ... less expensive ... relatively stable

Three Ways to Charge a Plug-in Electric Vehicle

120V - Level 1

Portable cordset Use any 120V outlet Up to 1.44 kW

Permanent charge station (EVSE) Typ. 3.3 – 6.6 kW, but up to 19.2 kW

DC Fast Charging

Up to ~ 50 – 60 kW

Fast, expensive

Standard not yet in place

Three 'Places' to Charge

Build Today's Infrastructure Today

- Infrastructure installation cost
 - ~ \$1500 home, \$2500+ public
- Focus on Residential
 - 95% of vehicles end day at home
 - Some costs can exceed \$2200 \$2500
 - Cost and lead time minimization
- Workplace
 - 2nd priority in terms of use
- Public Charging
 - Critical vs. convenience
 - Understand DC Fast Charging
 - Long-term sustaining of infrastructure

Environmental Benefits of Plug-In Vehicles

- Electricity is a low-carbon fuel
- Nationwide air quality benefits – under all generation source scenarios
- 3-4 million barrels/day petroleum reduction
- Significant increase to regional economic output, jobs, household income

Annual Reduction in GHG Emissions due to PHEV Adoption Source – 2007 EPRI-NRDC Study

EPRI PEV Distribution System Impact Study

- Detail electrical model of selected feeders that includes each customer
- Assessment of different PEV charging type and penetration mode
- Hourly analysis using 8760 hours load profile to assess localized hotspots

Provide Planning Tool to Assess Potential of Localized Hotspots in Distribution System

Solar Assisted PEV Charging Stations

 Combines vehicle charging with solar power and battery storage along with smart grid interface

First of it's kind (TVA - EPRI @ Knoxville, TN)

Provides a field laboratory for evaluation of different charging infrastructure integrated with distributed resources and smart controls

Smart Charging - Key to Reducing Grid Impacts

- 'Smart charging' is a compact between utility and vehicle owner
 - Low in cost and convenient for vehicle operator
 - Minimize system impacts
- Implement with Automated Metering (AMI), Home Area Networks (HAN), internet communications, etc.
- Vary time-of-day and charge power

Vision – By 2015, all plug-in electric vehicles can communicate to the smart grid and charging is intelligently controlled

What Does EV Readiness Mean?

- Organized and effective stakeholders
- Understanding the "local and regional" drivers of PEV adoption
- Education and outreach
- A comprehensive plan for charging infrastructure
 - Addressing residential charging first
 - Streamlining the process
 - Establish tariffs and utility role
 - A sensible plan for public infrastructure

EPRI Public Reports on Plug-In Electric Vehicles

- "Transportation Electrification A Technology Overview", Electric Power Research Institute, Palo Alto, CA: 2011. #1021344.
- "Characterizing Consumers' Interest in and Infrastructure Expectations for Electric Vehicles: Research Design and Survey Results", EPRI, Palo Alto, CA and Southern California Edison, Rosemead, CA: 2010. #1021285
- "Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions", Electric Power Research Institute, Palo Alto, CA: 2007. #1015325
- "Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 2: United States Air Quality Analysis Based on AEO-2006 Assumptions for 2030", Electric Power Research Institute, Palo Alto, CA: 2007. #1015326

Together...Shaping the Future of Electricity