EXHIBIT P3

JSA SEWER AUTHORITY ACT 537 PLAN

East Norriton-Plymouth-Whitpain Joint Sewer Authority Act 537 Sewage Facilities Plan

:

)

)

3

Submitted January 2007

P.N. 5469.00

Prepared by:

ARRO Consulting, Inc. 649 North Lewis Road Suite 100 Limerick, PA 19468 (610) 495-0303

Table of	Contents
----------	-----------------

)

PA	DEP ENVIRONMENTAL ASSESSMENT CHECKLIST	PAGE	
EX	ECUTIVE SUMMARY	ES-1	
I.	PREVIOUS WASTEWATER PLANNING	1	
	A. East Norriton Township	1	
	B. Plymouth Township	1	
	C. Whitpain Township	1	
II.	PHYSICAL AND DEMOGRAPHIC ANALYSIS	2	
	A. East Norriton Township	2	
	B. Plymouth Township	2	
	C. Whitpain Township	2	
III.	EXISTING FACILITIES IN THE PLANNING AREA	3	
	A. Municipal Sewerage Systems in the Planning Area	3	
	 Location, Size, and Ownership of Facilities Basic Treatment Process Problems with Existing Treatment Facilities On-Going Upgrades or Expansion Operations and Maintenance Requirements Ultimate Disposal 	3 3 4 4 8 8	
	B. Individual and Community On-Lot Disposal	8	
	C. Wastewater Sludge and Septage Generation	8	
IV.	FUTURE GROWTH AND LAND DEVELOPMENT	9	
	A. Areas with Existing Development and Plotted Subdivisions	9	
	B. Land Use Designations	9	
	C. Future Growth Areas, Population, and EDU Projections for the Planning Area	9	
	D. Subdivision Regulations for Planned Development	9	

V. ALTERNATIVES TO PROVIDE NEW OR IMPROVED WASTEWATER 10 DISPOSAL FACILITIES

J

)

)

VI.

A. Identify Alternatives to Provide for Improved Sewage Facilities	10
 Regional Wastewater Treatment Concepts Extension of Existing Municipal or Non-Municipal Sewage Facilities to Areas in Need 	10 11
 Potential for Continued Use of Existing Facilities Need for New Community Sewage Systems Repair or Replacement of Collection and Conveyance System 	11 23 23
Components 6. Alternative Methods of Collection and Conveyance	25
B. Use of Individual Disposal Systems	25
C. Small Flow Sewage Treatment Facilities	26
D. Use of Community or Land Disposal	26
E. Retaining Tanks	26
F. Sewage Management Program	26
G. Non-Structural Comprehensive Planning	26
H. No-Action Alternative	27
 Water Quality and Public Health Growth Potential Community and Economic Conditions Recreational Opportunities Drinking Water Sources Other Environmental Issues 	27 27 27 28 28 28 28
EVALUATION OF ALTERNATIVES	29
A. Consistency Determination	29
 Clean Streams Law Chapter 94 Report Clean Water Act (Title II) Comprehensive Plans Antidegradation Requirements State Water Plans 	30 30 30 31 31 32
7. Pennsylvania's Prime Agricultural Land Policy	32

PAGE

	 County Stormwater Management Plan Wetland Protection Protection of Threatened, Rare, and Endangered Plant and 	32 32 32
	Animal Species (PNDI) 11. Historic and Archeological Resource Protection	33
	B. Resolution of Inconsistencies	33
	C. Alternative Evaluation With Respect to Applicable Water Quality Standards And Effluent Limitations	33
	D. Preliminary Cost Opinions	34
	E. Analysis of Available Funding Methods	35
	F. Immediate or Phased Implementation	40
	G. Ability of the Authority to Implement the Alternative	40
VII.	INSTITUTIONAL EVALUATION	41
	A. Analysis of the Authority, Past Actions, and Present Performance	41
	 Financial and Debt Status Available Staff and Administrative Resources Existing Legal Authority 	41 41 41
	B. Institutional Alternatives Necessary to Implement the Technical Alt.	42
	 Need for a New Authority Function of the Authority Cost of Administration 	42 42 42
	C. Administrative and Legal Activities	42
	 Legal Authorities of Incorporation Required Ordinances, Standards, Regulations and Intermunicipal Agreements 	42 43
	 Provisions of Rights-of-Way, Easements, and Land Transfers Other Sewage Facilities Plan Adoptions Legal Documents Dates and Time frames of 1 through 5 above 	45 45 45 45
VIII.	SELECTED WASTEWATER TREATMENT AND INSTITUTIONAL ALTERNATIVE	46
	A. Identify the chosen Technical Alternative	46

}

J

PAGE

1.	Existing Wastewater Disposal Needs	46
2.	Future Wastewater Disposal Needs	47
3.	Operations and Maintenance Considerations	47
4.	Cost Effectiveness	48
5	Availability of Management and Administrative System	48
б.	Available Financing Methods	48
7.	Environmental Soundness	49
Sel	ected Capital Financing Plan	49
	2. 3. 4. 5 6. 7.	 Existing Wastewater Disposal Needs Future Wastewater Disposal Needs Operations and Maintenance Considerations Cost Effectiveness Availability of Management and Administrative System Available Financing Methods Environmental Soundness Selected Capital Financing Plan

Appendices

)

Appendix A	Corrective Action Plan
Appendix B	Implementation Schedules
Appendix C	Excerpts From Municipal 537 Plans
Appendix D	Overall Wastewater Collection and Conveyance System Plan
Appendix E	Schematic Diagrams for the Basic Treatment Process
Appendix F	2002 Rerating Report
Appendix G	Preliminary Design Report for Replacing the Media in the West Trickling Filters
Appendix H	Excerpts of RK&K Report and ARRO Consulting Study
Appendix I	National Wetlands Inventory Map
Appendix J	PNDI Response
Appendix K	PHMC Response
Appendix L	Intermunicipal Agreement
Appendix M	County Comments and Responses
Appendix N	Municipal Comments and Responses
Appendix O	Public Advertisement
Appendix P	Public Comments and Responses
Appendix Q	Resolutions
Appendix R	Approved Plan of Study and Task Activity Report

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER SUPPLY AND WASTEWATER MANAGEMENT

Instructions for Completing Act 537 Plan Content and Environmental Assessment Checklist

Remove and recycle these instructions prior to submission

NOTE: Important information about this checklist...

• A Guide for Preparing Act 537 Update Revisions (DEP ID. 362-0300-003) dated February 1998, is currently under revision. While it is available electronically on DEP's website at <u>www.dep.state.pa.us</u>, **DO NOT** use checklist pages from the 1998 document.

Until such time that revisions to *A Guide for Preparing Act 537 Update Revisions* can be completed to more fully discuss the requirement, wastewater projects proposing funding through the following sources must prepare an "Environmental Report" as described in the Uniform Environmental Review Process (UER) and include it with the plan submission. The following funding programs use the UER process.

- The Clean Water State Revolving Loan Fund (PENNVEST, DEP, EPA)
- The RUS Water and Waste Disposal Grant and Loan Program (USDA-RD)
- The Community Development Block Grant Program (DCED, HUD)
- Other Federal Funding Efforts (EPA)
- The Uniform Environmental Review Process (UER) (DEP ID. 381-5511-111) is available electronically on DEP's website at <u>www.dep.state.pa.us</u>.

CHECKLIST INSTRUCTIONS

These instructions are designed to assist the applicant in completing the Act 537 Plan Content and Environmental Assessment Checklist.

This checklist is composed of three parts; one for "General Information"; one for "Administrative Completeness" and one for "General Plan Content". A plan must be "administratively complete" in order to be formally reviewed by DEP. The General Plan Content portion of the checklist identifies each of the issues that must be addressed in your Act 537 Plan Update based on the pre-planning meeting between you and/or your consultant and DEP.

Use the right-hand column blanks in the checklist to identify the page in the plan on which each planning issue is found or to reference a previously approved update or special study (title and page number).

If you determine a planning issue is not applicable even though it was previously thought to be needed, please explain your decision within the text of the plan (or as a footnote) and indicate the page number where this documentation is found.

When information required as part of an official plan update revision has been developed separately or in a previous update revision, incorporate the information by reference to the planning document and page.

For specific details covering the Act 537 planning requirements, refer to Chapters 71 and 73 of DEP's regulations.

After Municipal Adoption by Resolution, submit three copies of the plan, any attachments or addenda and this checklist to DEP.

A copy of this completed checklist must be included with your Act 537 plan. DEP will use the "DEP USE ONLY" column during the completeness evaluation of the plan. This column may also be used by DEP during the pre-planning meeting with the municipality to identify planning elements which are not required to be included in the plan.

-

)

PART 1 GENERAL INFORMATION	
A. Project Information (See Section A of instructions)	· · ·

1. Project Name: East Norriton-Plymouth-Whitpain Joint Sewer Authority (ENPWJSA) Act 537 Plan

2. Brief Project Description: Preparation of an Act 537 Plan for proposed upgrades to the Authority's wastewater treatment plant located at 200 Ross Street in Plymouth Township

BClient (Municipality) Inf	ormation (See Section B	of instructions)	· · ·		
Municipality Name	County	City	E	Boro	Тwp
ENPWJSA	Montgomer	у 🛛			
Municipality Contact Individual - L	ast Name First Name	MI	Suffix	Title	
Boyd	Timothy	A.		Execu	itive Director
Additional Individual Last Name	First Name	MI	Suffix	Title	
Municipality Mailing Address Line	1	Mailing Address Line 2			
200 Ross Street					
Address Last Line City		State	ZIP+4	1	
Plymouth Meeting		PA	19462	2-2740	
Phone + Ext.	FAX (optional)	Emai	l (optional)		
610-279-5759	610-279-8033				
C. Site Information (See Se	ction C of instructions)			106	
Site (or Project) Name	3.40 to 100 100 100				
ENPWJSA WWTP	ENPWJSA	(Municipa	l Name) Ac	t 537 Pla	n
Site Location Line 1 200 Ross Street Plymouth Meeting	n PA 19462	Site Location Line 2			
D. Project Consultant Infor		instructions)	,		ne Vice
Last Name	First Na	me		MI	Suffix
Bohner	William			L	Jr.
Title	Consulti	ng Firm Name	_		
Project Engineer	ARRO C	onsulting, Inc.			
Mailing Address Line 1		ailing Address Line 2			
649 N. Lewis Road	S	uite 100			
Address Last Line – City	State	ZIP+4	Co	untry	
Limerick	PA	19468-1234	US	A	
Email Pho	one 610-495-2102	Ext.	FA	X 610-49	5-5855

ļ

	PART 2 ADMINISTRATIVE COMPLETENESS CHECKLIST						
	DEP Use Only	Indicate Page #(s) in Plan	In addition to the main body of the plan, the plan must include items one through eight listed below to be accepted for formal review by the department. Incomplete Plans will be returned unless the municipality is clearly requesting an advisory review.				
		<u>Front of</u> <u>Plan</u>		Table of Contents Plan Summary			
		<u>ES-1,2,3</u>		 A. Identify the proposed service areas and major problems evaluated in the plan. (Reference - Title 25, §71.21.a.7.i). 			
		<u>ES-1,2,3</u>		B. Identify the alternative(s) chosen to solve the problems and serve the areas of need identified in the plan. Also, include any institutional arrangements necessary to implement the chosen alternative(s). (Reference Title 25 §71.21.a.7.ii).			
		<u>E§-1,2,3</u>		C. Present the estimated cost of implementing the proposed alternative (including the user fees) and the proposed funding method to be used. (Reference Title 25, §71.21.a.7.ii).			
		<u>ES-1,2,3</u>		D. Identify the municipal commitments necessary to implement the Plan. (Reference Title 25, §71.21.a.7.iii).			
		<u>ES-1,2,3</u>		E. Provide a schedule of implementation for the project which identifies the MAJOR milestones with dates necessary to accomplish the project to the point of operational status. (Reference Title 25, §71.21.a.7.iv).			
	5-00 Caracity and 2 1 0 0 0	<u>Appendix</u> <u>Q</u>	3.	<u>Original</u> , signed and sealed Resolution of Adoption by the municipality which contains, at a minimum, alternatives chosen and a commitment to implement the Plan in accordance with the implementation schedule. (Reference Title 25, §71.31.f) Section V.F. of the Planning Guide.			
)		<u>Appendix</u> <u>N and M</u>	4.	Evidence that the municipality has requested, reviewed and considered comments by appropriate official planning agencies of the municipality, planning agencies of the county, planning agencies with areawide jurisdiction (where applicable), and any existing county or joint county departments of health. (Reference-Title 25, §71.31.b) Section V.E.1 of the Planning Guide.			
		<u>Appendix</u> <u>O</u>	5.	Proof of Public Notice which documents the proposed plan adoption, plan summary, and the establishment and conduct of a 30 day comment period. (Reference-Title 25, §71.31.c) Section V.E.2 of the Planning Guide.			
		<u>Appendix</u> <u>M and N</u>	6.	Copies of ALL written comments received and municipal response to EACH comment in relation to the proposed plan. (Reference-Title 25, §71.31.c) Section V.E.2 of the Planning Guide.			
		<u>Appendix</u> <u>B</u>	7.	A complete project implementation schedule with milestone dates specific for each existing and future area of need. Other activities in the project implementation schedule should be indicated as occurring a finite number of days from a major milestone. (Reference-Title 25, §71.31.d) Section F of the Planning Guide. Include dates for the future initiation of feasibility evaluations in the project's implementation schedule for areas proposing completion of sewage facilities for planning periods in excess of five years. (Reference Title 25, §71.21.b).			
		<u>Appendix</u> J and K	8.	Documentation indicating that the appropriate agencies have received, reviewed and concurred with the method proposed to resolve identified inconsistencies within the proposed alternative and consistency requirements in 71.21.(a)(5)(i-iii). (Reference-Title 25, §71.31.e). Appendix B of the Planning Guide.			

F	ART 3	GENERAL PLA	N CC	NTENT CHECKLIST
)	DEP Use Only	Indicate Page #(s) in Plan		Item Required
		<u>1 and</u> <u>Appendix</u> <u>C</u>	I.	Previous Wastewater Planning A. Identify and briefly analyze all existing wastewater planning that:
		<u>1 and</u> Appendix <u>C</u>		 Has been previously undertaken under the Sewage Facilities Act (Act 537). (Reference-Act 537, Section 5 §d.1).
		<u>1 and</u> <u>Appendix</u> <u>C</u>		 Has not been carried out according to an approved implementation schedule contained in the plans(Reference-Title 25, §71.21.a.5.i.A-D). Section V.F of the Planning Guide.
		<u>1 and</u> <u>Appendix</u> <u>C</u>		 Is anticipated or planned by applicable sewer authorities. (Reference-Title 25, §71.21.a.5.i.A). Section V.D. of the Planning Guide.
		<u>1 and</u> <u>Appendix</u> <u>C</u>		 Has been done through planning modules for new land development, planning "exemptions" and addenda. (Reference-Title 25, §71.21.a.5.i.A).
				B. Identify and briefly summarize all municipal and county planning documents adopted pursuant to the Pennsylvania Municipalities Planning Code (Act 247) including:
	<u></u>	<u>1 and</u> Appendix <u>C</u>		 All land use plans and zoning maps which identify residential, commercial, industrial, agricultural, recreational and open space areas. (Reference-Title 25, §71.21.a.3.iv).
)		<u>1 and</u> <u>Appendix</u> <u>C</u>		 Zoning or subdivision regulations that establish lot sizes predicated on sewage disposal methods. (Reference-Title 25 §71.21.a.3.iv).
		<u>1 and</u> <u>Appendix</u> <u>C</u>		 All limitations and plans related to floodplain and stormwater management and special protection (Ch. 93) areas. (Reference-Title 25 §71.21.a.3.iv) Appendix B, Section II.F of the Planning Guide.
			n.	Physical and Demographic Analysis utilizing written description and mapping (All items listed below require maps, and all maps should show all current lots and structures and be of appropriate scale to clearly show significant information).
		<u>2 and</u> <u>Appendix</u> <u>C</u>		A. Identification of planning area(s), municipal boundaries, Sewer Authority/Management Agency service area boundaries. (Reference-Title 25, §71.21.a.1.i).
		<u>2 and</u> <u>Appendix</u> <u>C</u>		B. Identification of physical characteristics (streams, lakes, impoundments, natural conveyance, channels, drainage basins in the planning area). (Reference-Title 25, §71.21.a.1.ii).
-		<u>2 and</u> <u>Appendix</u> <u>C</u>		C. Soils - Analysis with description by soil type and soils mapping. Show areas suitable for in-ground onlot systems, elevated sand mounds, individual residential spray irrigation systems, and areas unsuitable for soil dependent systems. (Reference-Title 25, §71.21.a.1.iii). Show Prime Agricultural Soils and any locally protected agricultural soils. (Reference-Title 25, §71.21.a.1.iii).
-)		<u>2 and</u> <u>Appendix</u> <u>C</u>		D. Geologic Features - (1) Identification through analysis, (2) mapping and (3) their relation to existing or potential nitrate-nitrogen pollution and drinking water sources. Include areas where existing nitrate-nitrogen levels are in excess of five mg/l. (Reference-Title 25, §71.21.a.1.iii).

	DEP	Indicate			
Ļ	Use	Page #(s)			
)	Only	in Plan			Item Required
		<u>2 and</u> <u>Appendix</u> <u>C</u>		a	Topography - Depict slopes that are suitable for conventional systems; slopes that are suitable for elevated sand mounds; slopes that are unsuitable for on-lot systems. (Reference-Title 25, §71.21.a.1.ii).
		<u>2 and</u> <u>Appendix</u> <u>C</u>		t	Potable Water Supplies - Identification through mapping, description and analysis o include available public water supply capacity and aquifer yield for groundwater supplies. (Reference-Title 25 §71.21.a.1.vi). Section V.C. of the Planning Guide.
		<u>2 and</u> <u>Appendix</u> <u>C</u>		2 V C V	Vetlands-Identify wetlands as defined in Title 25, Chapter 105 by description, analysis and mapping. Include National Wetland Inventory mapping and potential vetland areas per USDA, SCS mapped hydric soils. Proposed collection, conveyance and treatment facilities and lines must be located and labeled, along with the identified wetlands, on the map. (Reference-Title 25, §71.21.a.1.v). Appendix B, Section II.I of the Planning Guide.
			HI.	Exist	ting Sewage Facilities in the Planning Area - Identifying the Existing Needs
					dentify, map and describe municipal and non-municipal, individual and community sewerage systems in the planning area including:
		<u>3</u>		1	. Location, size and ownership of treatment facilities, main intercepting lines, pumping stations and force mains including their size, capacity, point of discharge. Also include the name of the receiving stream, drainage basin, and the facility's effluent discharge requirements. (Reference-Title 25, §71.21a.2.i.A).
)		<u>3</u>		2	A narrative and schematic diagram of the facility's basic treatment processes including the facility's NPDES permitted capacity, and the Clean Streams Law permit number. (Reference-Title 25, §71.21.a.2.i).
-		<u>4</u>		3	A description of problems with existing facilities (collection, conveyance and/or treatment), including existing or projected overload under Title 25, Chapter 94 (relating to municipal wasteload management) or violations of the NPDES permit, Clean Streams Law permit, or other permit, rule or regulation of the department. (Reference-Title 25, §71.21.a.2.i.B).
-		<u>4</u>		4	. Details of scheduled or in-progress upgrading or expansion of treatment facilities and the anticipated completion date of the improvements. Discuss any remaining reserve capacity and the policy concerning the allocation of reserve capacity. Also discuss the compatibility of the rate of growth to existing and proposed wastewater treatment facilities. (Reference-Title 25, §71.21.a.4.i & ii).
		<u>8</u>		5	A detailed description of operation and maintenance requirements of the municipality for on-lot systems and the status of past and present compliance with these requirements and any other requirements relating to sewage management programs. (Reference-Title 25, §71.21.a.2.i.C).
		<u>8</u>		6.	Disposal areas, if other than stream discharge, and any applicable groundwater limitations. (Reference-Title 25, §71.21.a.4.i & ii).

DEP	Indicate	
-L Use) Only	Page #(s) in Plan	Item Required
· Only	111 F 1011	
		B. Using DEP's manual titled Sewage Disposal Needs Identification, identify, map and describe areas that utilize individual and community onlot sewage disposal and, unpermitted collection and disposal systems ("wildcat" sewers, borehole disposal, etc.) and retaining tank systems in the planning area including:
	<u>8 and</u> <u>Appendix</u> <u>C</u>	1. The types of systems in use. (Reference-Title 25, §71.21.a.2.ii.A).
	<u>8 and</u> <u>Appendix</u> <u>C</u>	 A sanitary survey complete with a description of documented and potential public health pollution, and operational problems (including malfunctioning systems) with the systems, including violations of local ordinances, the Sewage Facilities Act, the Clean Stream Law or regulations promulgated thereunder. (Reference-Title 25, §71.21.a.2.ii.B).
	<u>8 and</u> <u>Appendix</u> <u>C</u>	 A comparison of the types of on-lot sewage systems installed in an area with the types of systems which are appropriate for the area according to soil, geologic conditions, topographic limitations sewage flows, and Title 25 Chapter 73 (relating to standards for sewage disposal facilities). (Reference- Title 25, §71.21.a.2.ii.C).
	<u>8 and</u> <u>Appendix</u> <u>C</u>	 An individual water supply survey to identify possible contamination by malfunctioning on-lot sewage disposal systems consistent with DEP's Sewage Disposal Needs Identification manual. (Reference-Title 25 §71.21.a.2.ii.B).
)		C. Identify wastewater sludge and septage generation, transport and disposal methods. Include this information in the sewage facilities alternative analysis including:
	<u>8 and</u> <u>Appendix</u> <u>C</u>	 Location of sources of wastewater sludge or septage (Septic tanks, holding tanks, wastewater treatment facilities). (Reference-Title 25 §71.71).
	<u>8 and</u> <u>Appendix</u> <u>C</u>	 Quantities of the types of sludges or septage generated. (Reference-Title 25 §71.71).
	<u>8 and</u> <u>Appendix</u> <u>C</u>	 Present disposal methods, locations, capacities and transportation methods. (Reference-Title 25 §71.71).
	٩٧	. Future Growth and Land Development
		A. Delineate and describe the following through map, text and analysis:
	<u>9 and</u> <u>Appendix</u> <u>C</u>	 Areas with existing development or plotted subdivisions. Include the name, location, description, total number of EDU's in development, total number of EDU's currently developed and total number of EDUs remaining to be developed (include time schedule for EDU's remaining to be developed). (Reference-Title 25, §71.21.a.3.i).
	<u>9 and</u> <u>Appendix</u> <u>C</u>	 Land use designations established under the Pennsylvania Municipalities Planning Code (35 P.S. 10101-11202), including residential, commercial and industrial areas. (Reference-Title 25,§71.21.a.3.ii). Include a comparison of proposed land use as allowed by zoning and existing sewage facility planning. (Reference-Title 25, §71.21.a.3.iv).
)	<u>9 and</u>	3. Future growth areas with population and EDU projections for these areas

DEP	Indicate			
Use	Page #(s)			
-\ <u>Only</u>	in Plan Appendix	Item Required		
	<u>C</u>	using historical, current and future population figures and projections of the municipality. Discuss and evaluate discrepancies between local, county, state and federal projections as they relate to sewage facilities. (Reference-Title 25, §71.21.a.1.iv). (Reference-Title 25, §71.21.a.3.iii).		
DEP	Indicate			
Use	Page #(s) in Plan	Hans Do muland		
Only		Item Required		
	<u>9 and</u> <u>Appendix</u> <u>C</u>	 4. Zoning, and/or subdivision regulations; local, county or regional comprehensive plans; and existing plans of a Commonwealth agency relating to the development, use and protection of land and water resources with special attention to: (Reference-Title 25, §71.21.a.3.iv). public ground/surface water supplies recreational water use areas groundwater recharge areas industrial water use wetlands 		
	<u>9 and</u> <u>Appendix</u> <u>C</u>	 Sewage planning to provide adequate wastewater treatment for the municipality. This planning must be related to both the five and ten year future planning periods and be based on growth impacts on existing and proposed wastewater collection and treatment facilities. (Reference-Title 25, §71.21.a.3.v). 		
\$		V. Identify Alternatives to Provide New or Improved Wastewater Disposal Facilities		
)		A. Conventional collection, conveyance, treatment and discharge alternatives including:		
	<u>10</u>	 The potential for regional wastewater treatment. (Reference-Title 25, §71.21.a.4). 		
	<u>11</u>	 The potential for extension of existing municipal or non-municipal sewage facilities to areas in need of new or improved sewage facilities. (Reference- Title 25, §71.21.a.4.i). 		
		 The potential for the continued use of existing municipal or non-municipal sewage facilities through one or more of the following: (Reference-Title 25, §71.21.a.4.ii). 		
	<u>11-22</u>	a. Repair. (Reference-Title 25, §71.21.a.4.ii.A).		
	<u>11-22</u>	b. Upgrading. (Reference-Title 25, §71.21.a.4.ii.B).		
	<u>11-22</u>	c. Reduction of hydraulic or organic loading to existing facilities. (Reference- Title 25, §71.71).		
	<u>11-22</u>	d. Improved operation and maintenance. (Reference-Title 25, §71.21.a.4.ii.C).		
	<u>11-22</u>	 Other applicable actions that will resolve or abate the identified problems. (Reference-Title 25, §71.21.a.4.ii.D). 		
	<u>23</u>	 The need for construction of new community sewage systems including sewer systems and/or treatment facilities. (Reference-Title 25, §71.21.a.4.iii). 		
,	<u>23</u>	 Repair or replacement of collection and conveyance system components. (Reference-Title 25, §71.21.a.4.ii.A). 		

)

DEP Use Only	Indicate Page #(s) in Plan	Item Required	
·	<u>23</u>	 Use of innovative/alternative methods of collection/conveyance to serve needs areas using existing wastewater treatment facilities. (Reference-Title 25, §71.21.a.4.ii.B). 	

- 8 -

DEP Use	Indicate Page #(s)	Keen Demoired
/ Only	in Plan	Item Required
		B. The use of individual sewage disposal systems including individual residential spray irrigation systems based on:
	<u>25</u>	 Soil and slope suitability. (Reference-Title 25, 71.21.a.2.ii.C).
	<u>25</u>	2. Preliminary hydrogeologic evaluation. (Reference-Title 25, §71.21.a.2.ii.C).
	<u>25</u>	 The establishment of a sewage management program. (Reference-Title 25, §71.21.a.4.iv). See also Part "F" below.
		 The repair, replacement or upgrading of existing malfunctioning systems in areas suitable for onlot disposal considering: (Reference-Title 25, §71.21.a.4).
	<u>25</u>	 a. Existing technology and sizing requirements of Title 25 Chapter 73. (Reference-Title 25, §73.31-73.72).
	<u>25</u>	 b. Use of expanded absorption areas or alternating absorption areas. (Reference-Title 25, §73.16).
	<u>25</u>	c. Use of water conservation devices. (Reference-Title 25, §71.73.b.2.iii).
		C. The use of small flow sewage treatment facilities or package treatment facilities to serve individual homes or clusters of homes based on: (Reference-Title 25, §71.64.d).
	<u>26</u>	1. Treatment and discharge requirements. (Reference-Title 25, §71.64.d).
	<u>26</u>	2. Soil suitability. (Reference-Title 25, §71.64.c.I).
)	<u>26</u>	3. Preliminary hydrogeologic evaluation. (Reference-Title 25, §71.64.c.2).
	<u>26</u>	 Agency or other controls over operation and maintenance requirements. (Reference-Title 25, §71.64.d). See Part "F" below.
		D. The use of community land disposal alternatives including:
	<u>26</u>	1. Soil and site suitability. (Reference-Title 25, 71.21.a.2.ii.C).
*** ********** ***	<u>26</u>	2. Preliminary hydrogeologic evaluation. (Reference-Title 25, 71.21.a.2.ii.C).
	<u>26</u>	 Controls over operation and maintenance requirements through a Sewage Management Program (Reference-Title25, 71.21.a.2.ii.C). See Part "F" below.
	<u>26</u>	 The rehabilitation or replacement of existing malfunctioning community land disposal systems. (See Part V, B, 4, a, b, c above). See also Part "F" below.
		E. The use of retaining tank alternatives on a temporary or permanent basis including: (Reference- Title 25, §71.21.a.4).
	<u>26</u>	1. Commercial, residential and industrial use. (Reference-Title 25, §71.63.e).
	<u>26</u>	2 Designated conveyance facilities (pumper trucks). (Reference-Title 25, §71.63.b.2).
	<u>26</u>	 Designated treatment facilities or disposal site. (Reference-Title 25, 71.63.b.2).
	<u>26</u>	 Implementation of a retaining tank ordinance by the municipality. (Reference-Title 25, §71.63.b.2). See Part "F" below.
)		

DEP Use	Indicate Page #(s)	item Dequired
. Only	in Plan	Item Required
·	<u>26</u>	 Financial guarantees when retaining tanks are used as an interim sewage disposal measure. (Reference-Title 25, §71.63.c.2).
		F. Sewage management programs to assure the future operation and maintenance of existing and proposed sewage facilities through:
	<u>26</u>	 Municipal ownership or control over the operation and maintenance of individual onlot sewage disposal systems, small flow treatment facilities, or other traditionally non-municipal treatment facilities. (Reference-Title 25, §71.21.a.4.iv).
	<u>26</u>	 Required inspection of sewage disposal systems on a schedule established by the municipality. (Reference-Title 25, §71.73.b.1.).
	<u>26</u>	 Required maintenance of sewage disposal systems including septic and aerobic treatment tanks and other system components on a schedule established by the municipality. (Reference-Title 25, §71.73.b.2).
<u></u>	<u>26</u>	 Repair, replacement or upgrading of malfunctioning onlot sewage systems. (Reference-Title 25, §71.21.a.4.iv) through:
	<u>26</u>	a. Aggressive pro-active enforcement of ordinances which require operation and maintenance and prohibit malfunctioning systems. (Reference-Title 25, §71.73.b.5).
	<u>26</u>	 Public education programs to encourage proper operation and maintenance and repair of sewage disposal systems.
\	<u>26</u>	 Establishment of joint municipal sewage management programs. (Reference- Title 25, §71.73.b.8).
,	<u>26</u>	 Requirements for bonding, escrow accounts, management agencies or associations to assure operation and maintenance for non-municipal facilities. (Reference-Title 25, §71.71).
		G. Non-structural comprehensive planning alternatives that can be undertaken to assist in meeting existing and future sewage disposal needs including: (Reference-Title 25, §71.21.a.4).
		1. Modification of existing comprehensive plans involving:
	<u>26</u>	a. Land use designations. (Reference-Title 25, §71.21.a.4).
	<u>26</u>	b. Densities. (Reference-Title 25, §71.21.a.4).
	<u>26</u>	c. Municipal ordinances and regulations. (Reference-Title 25, §71.21.a.4).
	<u>26</u>	d. Improved enforcement. (Reference-Title 25, §71.21.a.4).
	<u>26</u>	e. Protection of drinking water sources. (Reference-Title 25, §71.21.a.4).
	<u>26</u>	 Consideration of a local comprehensive plan to assist in producing sound economic and consistent land development. (Reference-Title 25, §71.21.a.4).
<u> </u>	<u>26</u>	 Alternatives for creating or changing municipal subdivision regulations to assure long-term use of on-site sewage disposal which consider lot sizes and protection of replacement areas. (Reference-Title 25, §71.21.a.4).
	<u>26</u>	 Evaluation of existing local agency programs and the need for technical or administrative training. (Reference-Title 25, §71.21.a.4).
)		

	DEP Use	Indicate Page #(s) in Plan				Item Required
	Only				~	
		<u>27</u>		H.		no-action alternative which includes discussion of both short-term and long-term pacts on: (Reference-Title 25, §71.21.a.4).
		<u>27</u>			1.	Water Quality/Public Health. (Reference-Title 25, §71.21.a.4).
		<u>27</u>			2.	Growth potential (residential, commercial, industrial). (Reference-Title 25, 71.21.a.4).
		<u>27</u>			3.	Community economic conditions. (Reference-Title 25, 71.21.a.4).
		<u>28</u>			4.	Recreational opportunities. (Reference-Title 25, §71.21.a.4).
		28			5.	Drinking water sources. (Reference-Title 25, §71.21.a.4).
		28			6.	Other environmental concerns. (Reference-Title 25, 71.21.a.4).
			VI.	Eva		ition of Alternatives
			- ••		Te eva	chnically feasible alternatives identified in Section V of this check-list must be aluated for consistency with respect to the following: (Reference-Title 25, 1.21.a.5.i.A).
		<u>30</u>			1.	Applicable plans developed and approved under Sections 4 and 5 of the Clean Streams Law or Section 208 of the Clean Water Act (33 U.S.C.A. 1288). (Reference-Title 25, §71.21.a.5.i.A). Appendix B, Section II.A of the Planning Guide.
,		<u>30</u>			2.	Municipal wasteload management plans developed under PA Code, Title 25, Chapter 94. (Reference-Title 25, §71.21.a.5.i.B). The municipality's recent Wasteload Management (Chapter 94) Reports should be examined to determine if the proposed alternative is consistent with the recommendations and findings of the report. Appendix B, Section II.B of the Planning Guide.
		<u>30</u>			3.	Plans developed under Title II of the Clean Water Act (33 U.S.C.A. 1281- 1299) or Titles II and VI of the Water Quality Act of 1987 (33 U.S.C.A 1251-1376). (Reference-Title 25, §71.21.a.5.i.C). Appendix B, Section II.E of the Planning Guide.
		<u>31</u>			4.	Comprehensive plans developed under the Pennsylvania Municipalities Planning Code. (Reference-Title 25, §71.21.a.5.i.D). The municipality's comprehensive plan must be examined to assure that the proposed wastewater disposal alternative is consistent with land use and all other requirements stated in the comprehensive plan. Appendix B, Section II.D of the Planning Guide.
		<u>31</u>			5.	Antidegradation requirements as contained in PA Code, Title 25, Chapters 93, 95 and 102 (relating to water quality standards, wastewater treatment requirements and erosion control) and the Clean Water Act. (Reference-Title 25, §71.21.a.5.i.E). Appendix B, Section II.F of the Planning Guide.
		<u>32</u>			6.	State Water Plans developed under the Water Resources Planning Act (42 U.S.C.A. 1962-1962 d-18). (Reference-Title 25, §71.21.a.5.i.F). Appendix B, Section II.C of the Planning Guide.
		<u>32</u>			7.	Pennsylvania Prime Agricultural Land Policy contained in Title 4 of the Pennsylvania Code, Chapter 7, Subchapter W. Provide narrative on local municipal policy and an overlay map on prime agricultural soils. (Reference-Title 25, §71.21.a.5.i.G). Appendix B, Section II.G of the Planning Guide.
)						

	DEP Use Only	Indicate Page #(s) in Plan		Item Required
		<u>32</u>		 County Stormwater Management Plans approved by DEP under the Storm Water Management Act (32 P.S. 680.1-680.17). (Reference-Title 25, §71.21.a.5.i.H). Conflicts created by the implementation of the proposed wastewater alternative and the existing recommendations for the manage- ment of stormwater in the county Stormwater Management Plan must be evaluated and mitigated. If no plan exists, no conflict exists. Appendix B, Section II.H of the Planning Guide.
		<u>32</u>		 Using wetland mapping developed under Section II.A.7, identify and discuss mitigative measures including the need to obtain permits for any encroachments on wetlands from the construction or operation of any proposed wastewater facilities. Appendix B, Section II.I of the Planning Guide.
		<u>32</u>		10. Protection of rare, endangered or threatened plant and animal species as identified by the Pennsylvania Natural Diversity Inventory (PNDI). (Reference-Title 25, §71.21.a.5.i.J). Provide the department with a copy of the completed Request For PNDI Search document. Also provide a copy of the response letter from the Department of Conservation and Natural Resources' Bureau of Forestry regarding the findings of the PNDI search. Appendix B, II.J.
)		<u>33</u>		11. Historical and archaeological resource protection under P.C.S. Title 37, Section 507 relating to cooperation by public officials with the Pennsylvania Historical and Museum Commission. (Reference-Title 25, §71.21.a.5.i.K). Provide the department with a completed copy of a Cultural Resource Notice request to the Bureau of Historic Preservation (BHP) to provide a listing of known historical sites and potential impacts on known archaeological and historical sites. Also provide a copy of the response letter from the BHP. Appendix B, Section II.K of the Planning Guide.
		<u>33</u>	B.	Provide for the resolution of any inconsistencies in any of the points identified in Section VI.A. of this checklist by submitting a letter from the appropriate agency stating that the agency has received, reviewed and concurred with the resolution of identified inconsistencies. (Reference-Title 25, §71.21.a.5.ii). Appendix B of the Planning Guide.
		<u>33</u>	C.	Evaluate alternatives identified in Section V of this checklist with respect to applicable water quality standards, effluent limitations or other technical, legislative or legal requirements. (Reference-Title 25, §71.21.a.5.iii).
		<u>34</u>	D.	Provide cost estimates using present worth analysis for construction, financing, on going administration, operation and maintenance and user fees for alternatives identified in Section V of this checklist. Estimates shall be limited to areas identified in the plan as needing improved sewage facilities within five years from the date of plan submission. (Reference-Title 25, §71.21.a.5.iv).
_		<u>35</u>		Provide an analysis of the funding methods available to finance the proposed alternatives evaluated in Section V of this checklist. Also provide documentation to demonstrate which alternative and financing scheme combination is the most cost-effective; and a contingency financial plan to be used if the preferred method of financing cannot be implemented. The funding analysis shall be limited to areas identified in the plan as needing improved sewage facilities within five years from the date of the plan submission. (Reference-Title 25, §71.21.a.5.v).

	DEP Use	Indicate Page #(s)					
~ <u>_</u> '	Only	in Plan		Item Required			
,					Analyze the need for immediate or phased implementation of each alternative proposed in Section V of this checklist including: (Reference-Title 25, §71.21.a.5.vi).		
_		<u>40</u>		 A description of any activities necessary to abate critical public health hazards pending completion of sewage facilities or implementation of sewage management programs. (Reference-Title 25, §71.21.a.5.vi.A). 			
-		<u>40</u>		 A description of the advantages, if any, in phasing construction of the facilities or implementation of a sewage management program justifying time schedules for each phase. (Reference-Title 25, §71.21.a.5.vi.B). 			
-		<u>40</u>	(G. Evaluate administrative organizations and legal authority necessary for plan implementation. (Reference - Title 25, §71.21.a.5.vi.D.).		
			VII. I	nsti	tutional Evaluation		
			1		Provide an analysis of all existing wastewater treatment authorities, their past actions and present performance including:		
_		<u>41</u>			. Financial and debt status. (Reference-Title 25, §71.61.d.2).		
-		<u>41</u>		2	 Available staff and administrative resources. (Reference-Title 25, §71.61.d.2). 		
		<u>41</u>		3. Existing legal authority to:			
-		<u>41</u>			 a. Implement wastewater planning recommendations. (Reference-Title 25, §71.61.d.2). 		
) _		<u>41</u>			 Implement system-wide operation and maintenance activities. (Reference-Title 25, §71.61.d.2). 		
_		<u>41</u>			 Set user fees and take purchasing actions. (Reference-Title 25, §71.61.d.2). 		
		<u>41</u>			 d. Take enforcement actions against ordinance violators. (Reference-Title 25, §71.61.d.2). 		
		<u>41</u>			e. Negotiate agreements with other parties. (Reference-Title 25, §71.61.d.2).		
_		<u>41</u>			 Raise capital for construction and operation and maintenance of facilities. (Reference-Title 25,§71.61.d.2). 		
			B		Provide an analysis and description of the various institutional alternatives ecessary to implement the proposed technical alternatives including:		
		<u>42</u>		1	. Need for new municipal departments or municipal authorities. (Reference- Title 25, §71.61.d.2).		
		<u>42</u>		2	. Functions of existing and proposed organizations (sewer authorities, onlot maintenance agencies, etc.). (Reference-Title 25, §71.61.d.2).		
		<u>42</u>		3	3. Cost of administration, implementability, and the capability of the authority/agency to react to future needs. (Reference-Title 25, §71.61.d.2).		
			С		escribe all necessary administrative and legal activities to be completed and dopted to ensure the implementation of the recommended alternative including:		
		<u>42</u>		1	Incorporation of authorities or agencies. (Reference-Title 25, §71.61.d.2).		
) —		<u>43</u>		2	Development of all required ordinances, regulations, standards and inter- municipal agreements. (Reference-Title 25, §71.61.d.2).		

DEP Use	Indicate Page #(s)	
Only	in Plan	Item Required
·	<u>45</u>	 Description of activities to provide rights-of-way, easements and land transfers. (Reference-Title 25, §71.61.d.2).
	<u>45</u>	 Adoption of other municipal sewage facilities plans. (Reference-Title 25, §71.61.d.2).
	<u>45</u>	5. Any other legal documents. (Reference-Title 25, §71.61.d.2).
	<u>45</u>	 Dates or timeframes for items 1-5 above on the project's implementation schedule.
		D. Identify the proposed institutional alternative for implementing the chosen technical wastewater disposal alternative. Provide justification for choosing the specific institutional alternative considering administrative issues, organizational needs and enabling legal authority. (Reference-Title 25, §71.61.d.2).
		VIII. Justification for Selected Technical & Institutional Alternatives
		A. Identify the technical wastewater disposal alternative which best meets the wastewater treatment needs of each study area of the municipality. Justify the choice by providing documentation which shows that it is the best alternative based on:
	<u>46</u>	1. Existing wastewater disposal needs. (Reference-Title 25, §71.21.a.6).
	<u>47</u>	 Future wastewater disposal needs. (five and ten years growth areas). (Reference-Title 25, §71.21.a.6).
)	<u>47</u>	 Operation and maintenance considerations. (Reference-Title 25, §71.21.a.6).
	<u>48</u>	4. Cost-effectiveness. (Reference-Title 25, §71.21.a.6).
	<u>48</u>	 Available management and administrative systems. (Reference-Title 25, §71.21.a.6).
	<u>48</u>	6. Available financing methods. (Reference-Title 25, §71.21.a.6).
	<u>49</u>	 Environmental soundness and compliance with natural resource planning and preservation programs. (Reference-Title 25, §71.21.a.6).
	<u>49</u>	B. Designate and describe the capital financing plan chosen to implement the selected alternative(s). Designate and describe the chosen back-up financing plan.

1

T

ADDITIONAL REQUIREMENTS FOR PENNVEST PROJECTS

Municipalities that propose to implement their official sewage facilities plan updates with PENNVEST funds must meet six additional requirements to be eligible for such funds. See Appendix N for greater detail, contact the DEP regional office serving your county listed in Appendix J.

DEP Use Only	Indicate Page #(s) in Plan		Item Required
		1.	Environmental Impact Assessment. (Planning Phase)
			The Uniform Environment Review (UER) replaces the Environmental Impact Assessment that was a previous requirement for PENNVEST projects.
		2.	Cost Effectiveness (Planning Phase)
			The cost-effectiveness analysis should be a present-worth (or equivalent uniform annual) cost evaluation of the principle alternatives using the interest rate that is published annually by the Water Resources Council. Normally, for PENNVEST projects the applicant should select the most cost-effective alternative based upon the above analysis. Once the alternative has been selected the user fee estimates should be developed based upon interest rates and loan terms of the selected funding method.
		3.	Second Opinion Project Review. (Design Phase)
		4.	Minority Business Enterprise/Women's Business Enterprise (Construction Phase)
		5.	Civil Rights. (Construction Phase)
		6.	Initiation of Operation/Performance Certification. (Post-construction Phase)
)			

EXECUTIVE SUMMARY

This Act 537 Plan/Special Study was prepared for the East Norriton-Plymouth-Whitpain Joint Sewer Authority (ENPWJSA) at the request of the Authority and the Pennsylvania Department of Environmental Protection (PA DEP) in accordance with Act 537 entitled the Pennsylvania Sewage Facilities Act, Title 25, Chapter 71 of the Pennsylvania Code and the Pennsylvania Department of Environmental Protection Act 537 Plan Content and Environmental Assessment Checklist. This Plan/Special Study addresses the planning requirement necessary to meet the wastewater conveyance and treatment needs of the ENPWJSA participating municipalities. These municipalities include Plymouth Township, Whitpain Township, and East Norriton Township.

The Plan is comprised of the following components addressed in the Plan of Study:

I. Previous Wastewater Planning

)

)

)

- II. Physical and Demographic Analysis
- III. Existing Sewage Facilities in the Planning Area
- IV. Future Growth and Development
- V. Alternatives to provide for new or improved wastewater disposal facilities
- VI. Evaluation of Alternatives
- VII. Institutional Evaluation
- VIII. Selected Wastewater Treatment and Institutional Alternative

For this Plan, the planning area includes all of East Norriton Township, a portion of Plymouth Township, and a portion of Whitpain Township.

The treatment plant, located in Plymouth Township, Montgomery County, Pennsylvania, serves the three (3) townships referenced above. Each township submitted its projected flow requirements for average daily flow and three-month maximum daily average flow to ARRO. ARRO compiled this flow information and estimated the capital improvements needed to accommodate this flow, and the costs associated with them. Capital improvements will be needed to accommodate the annual average flow of 8.67 MGD and 3-month maximum flows of 11.29 MGD. The selected approach to accommodate these flows is to:

- a. Implement the recommendations of the Corrective Action Plan as approved by DEP. (the Plan is found in Appendix A).
- b. Increase the capacity of the activated sludge portion of the wastewater treatment plant. The improvements necessary to allow for this increase are:
 - Add one 60-foot diameter primary clarifier.
 - Add one 680,000-gallon aeration tank in parallel to the existing units.
 - Add one 70-foot diameter secondary clarifier.
 - Add one 92,000-gallon chlorine contact tank.

)

)

- Upgrades/modifications to the return activated/waste activated sludge pumping systems.
- Additional yard piping and structures for wastewater distribution.

The capital cost to implement the expansion of the activated sludge portion of the plant is \$5,625,000.

A preliminary schedule for implementing the Corrective Action Plan items as well as the proposed activated sludge process expansion is found on the graphic in Appendix B.

The selected alternative will be funded by each of the participating municipalities in accordance with the current intermunicipal agreement. The ENPWJSA will consider financing the proposed upgrades via a municipal bond issue. However, the ENPWJSA will review all financial options available to it. It should be noted that funding for the installation of a new aeration tank will be accomplished through the use of bond proceeds that the Authority currently has.

) I. PREVIOUS WASTEWATER PLANNING

Refer to the documentation found in Appendix C of this Plan. A description of Previous Wastewater Planning, for each of the participating municipalities, has been inserted in this Appendix. The participating municipalities include:

- A. East Norriton Township
- B. Plymouth Township
- C. Whitpain Township

Each of the municipalities have prepared their own 537 Plans and submitted this documentation under separate cover. The portions of these plans documenting Previous Wastewater Planning are included with the ENPWJSA 537 Plan.

Ì

II. PHYSICAL AND DEMOGRAPHIC ANALYSIS

Refer to the documentation found in Appendix C of this Plan. A description of the Physical and Demographic nature of each participating municipality has been inserted in this Appendix. The participating municipalities include:

- A. East Norriton Township
- B. Plymouth Township
- C. Whitpain Township

Each of the municipalities have prepared their own 537 Plans and submitted this documentation under separate cover. The portions of these plans documenting Physical and Demographic Analysis are included with the ENPWJSA 537 Plan.

III. EXISTING FACILITIES IN THE PLANNING AREA

- A. Describe Municipal Sewerage Systems in the Planning Area
 - 1. Location, Size and Ownership of Treatment Facility

The ENPWSJA wastewater treatment plant (WWTP) is located in Plymouth Township, Montgomery County. The plant provides advanced secondary treatment for an average annual permitted flow of 8.1 MGD. Two trickling filtration process trains and an activated sludge process provide for treatment of the wastewater. The wastewater treatment plant discharges treated effluent to the adjacent Schuylkill River. In accordance with the current NPDES Permit (Permit No. PA 0026816), the plant is permitted to discharge 9.3 MGD monthly average and 8.1 MGD annual average. Monthly effluent NPDES limits include 20 mg/l CBOD₅ from May through October and 25 mg/l from November through April. The suspended solids average limit is 30 mg/l monthly. The annual average flow for 2004 was 6.45 MGD. The highest consecutive maximum threemonth average for 2004 was 7.75 MGD.

Refer to the overall wastewater collection and conveyance system plan found in Appendix D, which identifies the location of the plant in relation to the rest of the collection and conveyance system.

2. Basic Treatment Process

)

Wastewater enters the treatment plant at the Raw Sewage Pump Station. Flow can be conveyed to one of two sets of primary clarifiers. One set of primary clarifiers serves the activated sludge process. The other set of primary clarifiers serve the trickling filter process train. From either the

-3-

activated sludge or trickling filter processes, flow is directed to the secondary clarifiers or secondary settling tanks respectively. Effluent from the clarifiers is conveyed to chlorine contact tanks for disinfection and discharged to the Schuylkill River.

Refer to the figures in Appendix E that provides schematic diagrams for the basic treatment process for both the liquid and solids.

3. Description of problems, if any, with the Authority's Facilities

)

)

)

The ENPWJSA is not projecting a hydraulic or organic overload condition at the WWTP. However, during significant rain events, both the wet well at the ENPWJSA's Sawmill Run Pump Station, the manhole immediately upstream within the East Norriton Township system and the manhole on Ross Road near the railroad overpass have experienced overflows. To address the high flows at the Sawmill Run Pump Station, within the Sawmill Run Interceptor and Forcemain, and at the WWTP, the ENPWJSA has developed a Corrective Action Plan. This Plan has been approved by PADEP and is found in Appendix A.

4. On-going Upgrading or Expansion of the Treatment Facilities

During 2004, improvements to the wastewater treatment plant's sludge handling, thickening and dewatering facilities include:

- Rebuilt a section of the upper hearth in the incinerator and replaced a cracked incinerator rabble arm.
- Modified the water feed piping for the potassium permanganate feed system to supply plant utility water to the system instead of potable

-4-

water. This modification has resulted in a savings of \$500 to \$1,000 per month in potable water costs.

- Replaced the main drive sprockets and overhauled the main belt drive shafts on the belt filter press.
- Rebuilt Sludge Feed Pump #2 for the sludge dewatering system.
- Both sludge thickeners were drained to remove accumulated rags and grit. Three (3) new plug valves were installed on the bottom sludge suction pipes for the sludge thickeners.
- Installed a new conveyor belt and replaced the lower drum shaft and bearings on the inclined conveyor for the sludge incineration system.
- Completely replaced the building heating system in the sludge dewatering building area.

Trickling Filters

)

)

During 2004, improvements to the Trickling Filters were:

- Rebuilt Trickling Filter Raw Sewage Pump #2.
- Installed electric soft starts for the two primary trickling filter feed pumps.
- New sampling pipes were installed for the chlorine residual analyzer.

 All new primary and secondary settling tanks were drained, cleaned, and inspected. In addition, all wear shoes on the sludge collector mechanism were flipped over to provide extended lift for these systems.

Activated Sludge Treatment Plant

J

During 2004, improvements to the Activated Sludge Treatment Plant were:

- Rebuilt Activated Sludge Raw Sewage Pump #3.
- Rebuilt Return Activated Sludge Pumps #1 and #2.
- Rebuilt Grinder #1 in the raw sewage pump station.
- Cleaned the air diffuser systems in both aeration tanks by removing years of accumulated rags and grit.
- Improvements to the chlorination system included replacement of the chlorine residual analyzer, replacement of the chlorine injector pipe for the chlorine contact tanks, and installation of new sampling pipes for the chlorine residual analyzer.

Currently, the ENPWJSA is implementing modifications to the existing aeration basins using a SymBio® process from Enviroquip, Inc., installation of new blowers with variable speed control, and a new finebubble diffused aeration system. The SymBio® process uses an innovative process for monitoring the activity of the biomass (sludge) and the dissolved Oxygen (DO) levels to precisely determine the biological oxygen demand. This allows aeration at very low DO levels for

-6-

simultaneous nitrification and denitrification within the same basin. The objective is to greatly optimize total nitrogen removal (to meet 10 mg/l effluent concentrations in summer months) thereby affording better quality effluent, as well as crating a significant reduction in energy costs.

Sewage Collection System

During 2004 an inflow/infiltration (I/I) study was performed on the 30inch and 36-inch diameter interceptor sewers from the intersection of Plymouth Boulevard and Fornance Street to the intersection of Ridge Pike and Ross Street. The results of the study showed that there were no significant sources of I/I entering this section of the interceptor sewer.

Plant-Wide Systems and Miscellaneous Items

During 2004, the following plant-wide system and miscellaneous items were completed:

- Regenerated the carbon filter system for odor control for the sludge dewatering building.
- A new potable water main was installed in the lower section of Ross Street up to the water meter pit of the sewer authority.
- An engineering study was performed by an engineering consulting firm to identify future capital needs and to make recommendations for upgrading or replacing many of the older processes at the wastewater treatment facility.

 All gaseous chlorine piping was replaced in the plant chlorinator room.
 A new 2-pen chlorine residual chart recorder was installed to provide for more efficient monitoring and control of the chlorine residual in both the trickling filter and activated sludge plants.

All of the treatment plant and major tributary flow meters were calibrated during 2004.

5. Description of Operations and Maintenance Requirements for OLDS

Refer to the documentation provided by each of the participating municipalities. This is found in Appendix C of this Plan.

6. Ultimate Disposal Areas

Refer to the documentation provided by each of the participating municipalities. This is found in Appendix C of this Plan.

B. Location and Condition of OLDS

Refer to the documentation provided by each of the participating municipalities. This is found in Appendix C of this Plan.

C. Identification of Wastewater Sludge and Septage Generation

Refer to the documentation provided by each of the participating municipalities. This is found in Appendix C of this Plan.

1

)

IV. FUTURE GROWTH AND LAND DEVELOPMENT

In Appendix C of this Plan, each of the participating municipalities address the following:

- A. Areas with existing development or plotted subdivisions.
- B. Land use designations.
- C. Future growth areas.

)

}

J

D. Zoning and subdivision regulations.

Given the information provided by each municipality, the needs in terms of wastewater flow were defined. Each submitted projected flow requirements for average daily flow and three-month maximum daily average flow. The results are presented in Table 1.

The current wastewater treatment plant combined facilities have a permitted annual average daily flow capacity of 8.1 MGD, and are permitted to discharge 9.3 MGD maximum monthly average flow. And, as Table 1 shows, the annual average flow anticipated is 8.67 MGD, and the 3-month maximum flow desired is 11.29 MGD.

Table 1							
Municipal	Flow	Needs					

Municipality	Projected Municipal Avg. Daily Flow(mgd)	Projected 3 Month Max. Flow (mgd)
Plymouth Township East Norriton Township Whitpain Township	3.60 2.70 2.37	4.49 3.30 3.50
Totals	8.67	11.29

- Notes: 1. Projected municipal flow provided by each municipality Refer to Appendix C for the documention verifying these flow projections.
 - 2. Whitpain Township and East Norriton Township provided 3 month maximum flows. Plymouth Township's 3 month maximum flows are based on their Average Annual Flow multiplied by the 3 mo. Maximum factor averaged over the past 6 years.

V. ALTERNATIVES TO PROVIDE NEW OR IMPROVED WASTEWATER DISPOSAL FACILITIES

A. Identify the Alternatives to Provide for Improved Sewage Facilities

1. Identification of Regional Wastewater Treatment Concepts

The East Norriton-Plymouth-Whitpain Joint Sewer Authority (Authority) is a municipal authority with members that represent the participation of East Norriton Township, Plymouth Township, and Whitpain Township in making the decisions necessary to provide wastewater collection and treatment to the residents of these municipalities. The authority was formed by East Norriton Township and Plymouth Township in 1959. The Authority's first course of action was to issue sewer treatment revenue bonds in order to finance the construction of a wastewater treatment plant to serve both townships. The facility was constructed on the bank of the Schuylkill River at the end of Ross Street in Plymouth Township. At a later time, Whitpain Township was permitted, under a contractual agreement, to discharge wastewater to the treatment plant. Over time, Whitpain Township became a voting member of the Authority. The Authority and its staff own, operate, and maintain the wastewater treatment plant.

It is the intention of the Authority to continue to provide wastewater treatment for its member municipalities at this regional facility.

٦)

2. Extension of Sewage Facilities to Needs Areas

Needs areas, as identified in the individual municipal plans, will receive public sewer service as determined by the individual municipalities. Refer to the Plan text prepared by each municipality found in Appendix C.

- Potential for Continued Use of the Existing Treatment Facility Through Upgrading of the Facility
 - a. Facility Description

}

)

The Authority's sewage treatment plant consists of three distinct wastewater treatment trains of two process types, trickling filter biological treatment and activated sludge biological treatment, connected through various wet well and pumping systems.

As is typical to many wastewater treatment plants, expansion has occurred over the years by the addition of new facilities capable of functioning separately. In 1961, the original West Trickling Filter Plant was brought on line. As flows increased, the East Trickling Filter Plant was added in 1969. Both trickling filter plants consist of primary settling, primary and secondary trickling filters, and secondary settling. Each trickling filter system is rated at 2.2 million gallons per day (MGD). In 1978, the activated sludge facility was constructed to handle the increased flows from the municipalities.

The current wastewater treatment plant combined facilities have a permitted annual average daily flow capacity of 8.1 MGD, with a maximum 3-month average flow of 9.3 MGD. The treatment plant discharges through an outfall into the Schuylkill River under National Pollution Discharge Elimination System (NPDES) Permit No.

PA0026816. Table 2 shows the current average monthly allowable effluent limits.

Influent flow metering is performed in two locations within the plant. One Parshall flume meters the combined wastewater flow from East Norriton Township and Whitpain Township and a portion of Plymouth Township. The second Parshall flume meters the wastewater flow from Plymouth Township. The flow rates are recorded in the Pump/Control Building control room.

Table 2						
ENPWJSA	EFFLUENT	LIMITS				

Discharge Parameter	Avg. Monthly Concentrations (mg/l)
CBOD ₅ (5-1 to 10-31)	20
CBOD ₅ (11-1 to 4-30)	25
Total suspended solids	30
Ammonia as N	20
Fecal coliform	200 organisms/100 ml
Dissolved oxygen	5.0 mg/l minimum
рН	6 pH units minimum, 9 maximum
Total residual chlorine	0.5

)

A Pump/Control Building was constructed to distribute flow to the three wastewater treatment facilities. Flow to the East and West trickling filter plants occurs by pump or by gravity when the flow in the plant's main wet well exceeds a given elevation. Flow to the Activated Sludge plant is pumped from three pumps in the main plant influent wet well to two primary circular clarifiers. After primary clarification the wastewater flows by gravity to two parallel aeration basins. Effluent from the aeration basins flows by gravity to two secondary circular clarifiers.

During normal operations all three facilities work in parallel to one another. All three facilities conclude treatment with disinfection using chlorination prior to discharge to the Schuylkill River.

Sludge handling consists of thickening, dewatering with belt filter presses, and incineration by multiple-hearth incinerator.

a.) Preliminary Treatment

}

The Pump/Control Building wet well receives all wastewater flow from the collection system. The flow passes through two 10.0 MGD hydraulic powered influent grinders before passing into the wetwell. A bypass screen with openings of approximately 2-inches is available when it is desired to bypass the influent grinders. This screen requires manual cleaning.

b.) Biological Treatment (East & West Trickling Filter Systems)

There are two identical Trickling Filter biological treatment systems at the plant. Each system consists of primary and secondary settling tanks and primary and secondary trickling filters, and adjacent chlorine contact tanks.

Each primary settling tank consists of four rectangular tanks, each with a surface area of 1,470 square feet and an effective volume of 115,500 gallons. Sludge in each tank is collected by chains and flights and withdrawn by computer controlled motor operated plug valves. Primary settling tank effluent flows into a dedicated Recirculation Pump Station wetwell.

-13-

Each Recirculation Pump Station has a split wetwell. Half of the wetwell receives flow from the primary settling tank. Excess water in the primary wetwell flows over a weir into the other half of the wetwell where it is pumped to the secondary trickling filter. Three Chicago vertical drive centrifugal pumps are housed in each Recirculation Pump Station. One pump sends flow to the 98-foot diameter primary trickling filter. The second pump sends flow to the 98-foot diameter secondary trickling filter. The third pump is a backup and can be valved to send flow to either trickling filter.

Butterfly valves were once in place that were used to adjust recirculation around the trickling filters to enhance treatment. They were removed years ago. Recently, new butterfly valves and flow meters were installed. Recirculation flow from each primary trickling filter flows by gravity through these valves and meters to the trickling filter raw sewage pump station.

Each secondary settling tank consists of four rectangular tanks with a surface area of 1,470 square feet and an effective volume of 115,500 gallons. Sludge in each tank is collected by chains and flights and withdrawn by motor operated telescoping valve.

c.) Biological Treatment (Activated Sludge System)

1

)

Raw wastewater is pumped from the Pump/Control Building wetwell to the primary settling tank inlet division chamber. The division chamber splits the flow to two 60 ft. diameter primary settling tanks.

-14-

Each primary settling tank is sized for a surface-settling rate of 655 gallons per day per square foot and has an effective volume of 380,700 gallons. The surface-settling rate is well below the state criteria of 1,000 gallons per day per square foot at maximum monthly flow. Two 5-horsepower pumps pump primary clarifier sludge to the sludge thickening tanks.

Wastewater flow from the primary settling tanks proceeds by gravity to the two aeration tanks. Each 24-foot by 181-foot aeration tank has an effective volume of 685,000 gallons. The wastewater is mechanically mixed with return activated sludge pumped from the secondary settling tanks before entering the aeration tanks. The wastewater is aerated through 120 coarse bubble static aeration tubes in each tank by one (1) or two (2) of three (3) 250-hp Lamson blowers rated at 4,000 cfm each. The aeration tanks are equipped with gates along the sides that allow for a step-feed mode of operation.

The aerated biological floc flows by gravity to the secondary clarifier inlet division chamber. The secondary settling tank inlet division chamber splits the flow to two 70 ft. diameter secondary settling tank. Each secondary settling tank is sized for a surface settling rate of 480 gallons per day per square foot and has an effective volume of 349,400 gallons. The secondary clarifiers provide gravity settling of the biological floc generated in the aeration tank. Most of the settled floc is pumped back to the aeration tanks to treat incoming wastewater through the use of three 10-horsepower return activated sludge pumps. Two pumps operate continuously while one remains in standby mode. A computer controlled waste activated sludge motorized plug valve is

used to waste a portion of the settled floc to the sludge thickener tanks.

d.) Chlorine Contact Tanks

Disinfection is achieved by adding chlorine and providing contact time in the chlorine contact tanks. The Trickling Filter System and the Activated Sludge System have dedicated chlorine contact tanks.

The Trickling Filter System has two chlorine contact tanks, each with an effective volume of 93,700 gallons. The Activated Sludge System has two chlorine contact tanks, each with an effective volume of 92,100 gallons. Contact time in these tanks is greater than the State-required 30 minutes and adequate for maximum monthly flow. Effluent leaving the chlorine contact tanks is combined and discharged by gravity flow through a 30-inch outfall pipe into the Schuylkill River.

e.) Chemical Feed Systems

There are three (3) chemical feed systems at the facility: Potassium Permanganate, Polymer, and Chlorine.

An odor control potassium permanganate system is in place to deliver 290 lb/day to the thickened sludge prior to its application on the belt filter press. Potassium permanganate is also fed into the trickling filter secondary sludge/truck pit wetwell for sludge odor control in the sludge thickeners.

A polymer system is in place to inject polymer into the sludge line from the sludge feed pumps prior to its application on the belt filter press. The polymer dosage is about 15 lbs. per ton of sludge solids, which is normal.

The third chemical feed is for chlorine, which is used for disinfection of the effluent prior to discharge. Chlorine gas is fed by vacuum into a chlorine eductor system into the plant effluent from 1-ton cylinders located in the Incinerator Building.

f.) Sludge Processing

1

)

In 1978 the two original trickling filter plant digesters were repiped and converted to sludge thickeners. Sludge removed from the system as well as sludge brought into the plant by tank sludge haulers for incineration is discharged into the sludge thickeners. Solids retention time within the tanks varies due to the varying amounts of sludge brought into the plant, therefore solids concentration of the sludge prior to pumping the sludge onto the belt filter press will vary.

The plant utilizes a 2.2-meter belt filter press. The belt filter press equipment operator regulates the amount of sludge pumped from the thickener to the belt filter press conditioning tank. Potassium permanganate and polymer are injected into the sludge prior to application on the press belt. The press is operated approximately 5 days each week.

Pressed sludge cake of approximately 20 percent solids and scum are transported to a multiple hearth incinerator by an inclined belt conveyor. The incinerator uses natural gas to evaporate remaining water from the dewatered sludge so that it will combust.

-17-

g.) Projected Flows

)

)

Plymouth Township, Whitpain Township, and East Norriton Township each submitted projected flow requirements for average daily flow and three-month maximum daily average flow. Refer to Table 1 in Section IV.

The current wastewater treatment plant combined facilities have a permitted annual average daily flow capacity of 8.1 MGD, and are permitted to discharge 9.3 MGD maximum monthly average flow. And, as referenced above, shows the annual average flow anticipated is 8.67 MGD, and the 3-month maximum average flow desired is 11.29 MGD.

h.) Provision to Treat Annual Average Flow of 8.67 MGD

A previous study (preliminary plant re-rating report), dated September 2002, proposed rerating the current activated sludge plant to treat 5.44 MGD annual average flow. A copy of the report is presented in Appendix F. Upon review of this report by the Authority, it was determined that some of the data utilized in the report was not correct. However, the conclusions established in the re-rating report were found to be generally acceptable.

The report indicates that the existing clarifiers are satisfactory to treat the proposed rerated flow of 5.44 MGD. And, the aeration capacity of the existing blowers is more than adequate. Furthermore, ability to treat this amount of flow has been demonstrated. For instance, in June and early July of 2002, one train of treatment adequately treated 3.0 MGD, equivalent to 6.0 MGD capacity with both trains running.

-18-

Rerating the treatment capacity of the activated sludge process to 5.44 MGD would increase the total plant capacity to 9.4 MGD. Therefore, if a rerating were approved by the Pennsylvania Department of Environmental Protection (PA DEP), it should take care of the immediate needs for average daily flow.

A possible problem with PA DEP approval of rerating the activated sludge process would be the ability to meet the 20-mg/l ammonia-nitrogen limit. PA DEP may question the adequacy of the existing processes to meet that limit in the winter months. If this is the case, then replacement of the stone media with plastic media in the trickling filters would not ensure nitrification is achieved through the flow treated by the trickling filters. The trickling filters would need to be replaced with trickling filter towers to ensure that nitrification would be achieved.

A preliminary design report for replacing the media in the West Trickling Filters with plastic media was prepared. A copy of this report is presented in Appendix G. The estimated cost in today's dollars to upgrade the trickling filters to achieve nitrification is about \$700,000. It is assumed the cost of replacing the media in the other trickling filters is also \$700,000, making the total cost \$1,400,000. If 4.4 MGD of the total 8.67 MGD were nitrified as expected with this upgrade, this would ensure compliance with the 20-mg/l ammonia-nitrogen limit.

It should be noted that the stone media and underdrains date back to the 1960's, and they have exceeded their expected useful life. Replacement of the stone media with plastic media is often

performed as a normal capital replacement and improvement project under these circumstances.

i.) Provision to Treat 3-Month Maximum Average Flow of 11.29 MGD

In order to meet the desired growth and expected capacities within the three townships, the plant must be able to treat a 3-month maximum average flow of 11.29 MGD. The current treatment facilities are permitted to treat up to 9.3 MGD for 3-month maximum average flow. Even if a rerating were approved for the activated sludge process, the capacity would not be increased enough to handle this amount of flow, and capital improvements are needed.

To meet the flow established by the municipal needs, it is recommended that the activated sludge process be expanded. It is not feasible to upgrade the hydraulic capacity of the trickling filter plant as the hydraulic capacity is limited by clarifier surface area, and there is no space for additional final clarifiers. Based on this, an additional 2.09 MGD is needed for the activated sludge plant.

Studies prepared by ARRO Consulting, Inc. and RK&K, LLP (excerpts found in Appendix H) both recommend the expansion of the activated sludge process to handle projected wastewater flows. However, each study presented a slightly different means to achieve the proposed expansion.

}

Alternative 1:

- 1. Add one 60-foot diameter primary clarifier;
- 2. Add one 680,000 gallon aeration tank in parallel to the existing units;
- 3. Add one 70-foot diameter secondary clarifier;
- 4. Add one 92,000-gallon chlorine contact tank.
- Return Activated and Waste Activated Sludge Pumping System Upgrades.
- 6. Upgrades to Piping and Structures for distribution of wastewater.

Alternative 2:

)

١

- 1. Do not add a primary clarifier;
- 2. Add one 680,000-gallon aeration tank in parallel to the existing units;
- 3. Add one 110-foot diameter secondary clarifier;
- 4. Add one 92,000-gallon chlorine contact tank.
- Return Activated and Waste Activated Pumping System Upgrades.
- Upgrades to Piping and Structures for distribution of wastewater.

Upon reviewing both options, there is a concern that Alternative 2 will have a negative impact on facility operation. There is no provision for an additional primary clarifier with the second alternative. Primary clarifiers provide a means for the initial reduction of influent BOD. Without this reduction for the additional flows, the operations staff may find it more difficult to nitrify and denitrify in the activated sludge process. Additionally, there may be the risk that more solids will settle in the secondary clarifiers creating a build-up in the sludge blanket and requiring additional maintenance concerns for the secondary clarifiers. However, the Authority has indicated that their influent BOD levels have been historically

low. But hydraulically, the addition of another primary clarifier could act as a buffer in terms of allowing the Authority to manage increased influent flows.

Given that the current treatment process employs primary and secondary clarification, it is recommended that an expansion be implemented that is consistent with the current treatment scheme. This will assist the plant staff from an operations and maintenance perspective.

In addition to the expansion of the activated sludge process, the Corrective Action Plan (found in Appendix A) identifies the following Capital Improvements that will be needed to meet existing and future needs.

Capital Improvements Necessary to Meet the Corrective Action Plan goals:

- 1. Sawmill Run Interceptor Junction Box 1
- 2. Auxiliary Pumping Facilities

ļ

J

- 3. Activated Sludge Raw Sewage Pumps
- 4. Sawmill Run Pump Station Pump Conversion
- 5. Sawmill Run Forcemain Extension
- 6. Ross Street Interceptor Improvements
- 7. Sawmill Run Interceptor Junction Box 2

Capital Improvements Not Necessary to Meet the Corrective Action Plan goals, but needed to serve the ENPWJSA future needs:

- Activated Sludge Tanks/Fine Bubble Diffusers (SymBio Process) on-going
- 2. Electrical System Rehabilitation
 - a. MCC at WWTP
 - b. Transformers at WWTP
 - c. MCC at Sawmill Run Pump Station
 - d. Substation Switchgear at Sawmill Run Pump Station

- 3. Headworks Upgrades at the WWTP
- 4. Disinfection System Replacement
- 5. Additional Belt Filter Press at the WWTP
- 4. Need for New Community Sewage Systems

}

Needs for new community sewerage in the individual municipalities, if any, are defined in the municipal Plans. Refer to the Plans prepared by each municipality found in Appendix C.

 Repair and Replacement of Collection and Conveyance System Components.

The ENPWJSA owns, operates and maintains the Sawmill Run Pumping Station (Sawmill) that serves customers within East Norriton, Plymouth, and Whitpain Townships. The Authority also owns, operates and maintains force mains and interceptors that originate at Sawmill and end at the WWTF. Sawmill is equipped with three (3) constant speed pumps rated at 2.44 MGD each and three (3) variable speed pumps rated at 7.57 MGD each. The control scheme for Sawmill is currently designed and configured such that a maximum of two (2) constant speed and two (2)variable speed pumps can be operated at one time. When all four (4) pumps are operating, the total calculated capacity of Sawmill is 17.2 MGD. The ENPWJSA has completed the installation of a Supervisory Control and Data Acquisition System (SCADA) that will provide detailed operational data with regard to Sawmill Run Pump Station and the WWTF. This tool is critical to the success of preventing future overflows by illustrating flows, wet well and tank levels during significant rain events that currently must be estimated. It will also generate a more

-23-

expedient response by ENPWJSA personnel to critical high water conditions.

Both the wet well at Sawmill and the manhole immediately upstream within the East Norriton Township sewerage system have experienced overflows during significant rain events. This became evident during calendar years of 2003 and 2004, two of the wettest years on record. ENPWJSA personnel have reported overflows at both locations to PADEP. Generally, the noted manhole will be the first to overflow. There are no documented overflows of Whitpain or Plymouth Township's sewerage in the vicinity of Sawmill. It appears as though there are hydraulic restrictions at Sawmill that may impede the ability of flow from East Norriton Township to enter the wet well as readily as flow from the other two (2) Townships.

Two (2) 24-inch diameter force mains extend from Sawmill to the gravity interceptors. One (1) force main services the three (3) constant speed pumps at Sawmill; the other the three (3) variable speed pumps. The force mains are cross-connected and valved at the station to allow flow from either group of pumps to either force main. The force main from the variable speed pumps discharges to a newer 30-inch gravity interceptor while the force main from the constant speed pumps discharges to an older 18-inch gravity interceptor before discharging into the same 30-inch gravity interceptor sewer (at the intersection of Fornance Street and Sandy Hill Road) as the variable speed pumps. The 30-inch gravity interceptor extends from the intersection of Plymouth Boulevard and Fornance Street to the intersection of Fairfield Avenue and Jefferson Street. From this point, the diameter of the interceptor increases to 36 inches until the intersection of Ridge Pike and Ross Street. The interceptor then discharges to a junction box, which splits into two (2) 24-inch parallel

-24-

)

gravity interceptors that extend the length of Ross Street to the head of the WWTF. Due to the configuration of the junction box, flow between the two (2) 24-inch interceptors is not equalized. This has resulted in one of the two (2) parallel 24-inch gravity interceptors overflowing during significant rain events. In 2003, the Authority employed a contractor to install an equalization pipe between two (2) manholes along the Ross Street parallel sewers. This resulted in a more "evening" of the flow and has reduced the number of overflow events but due to the hydraulic configuration, has not eliminated them. A diagram of the conveyance system of the Pump Station and Force Main is included with the Corrective Action Plan found in Appendix A.

The Corrective Action Plan details the necessary actions to be taken to ensure proper operation of the ENPWJSA's conveyance system. In addition, the implementation of the Corrective Action Plan will enable the ENPWJSA to meet the projected municipal needs as detailed in Section IV of this Plan.

6. Alternative methods of collection and conveyance to serve needs areas

For the service area/planning area delineated for this Plan, there are no alternative methods of collection and conveyance to serve municipal needs areas.

B. Use of Individual Disposal Systems

ì

)

The use of or implementation of individual disposal systems beyond those that are already in use is not considered an alternative for this Plan. Refer to the individual municipal plans for further information. C. Small Flow Sewage Treatment Facilities, Land Treatment, Alternatives or Package Facilities

The implementation of small flow sewage treatment facilities, land treatment, alternatives, and package facilities are not applicable to this Plan. Refer to the individual municipal plans for further information.

D. Community Land Disposal Alternatives

Community land disposal alternatives are not considered as an alternative for this Plan. Refer to the individual municipal plans for further discussions of community land disposal alternatives.

E. Retaining Tanks

)

)

There is no plan to implement retaining tanks as part of this Plan. Refer to the individual municipal Plans for information concerning the potential use of retaining tanks.

F. Sewage Management Programs

Sewage Management Programs are implemented by each of the participating municipalities. Refer to the individual municipal plans for additional information. The Authority accepts and receives septage at the wastewater treatment plant.

G. Non-Structural Comprehensive Planning Alternatives

It is not the objective of the municipalities to make changes to their comprehensive plans at this time.

H. No-Action Alternatives

A no-action alternative for this Plan would mean that there would be no implementation of any of the alternatives referenced in this Section. No collection, conveyance or treatment system modifications would be made and the Authority would be limited to maintaining their exiting facilities and treating increasing influent flows.

1. Water Quality and Public Health

From a water quality and public health standpoint, "no-action" would be an impact since the current wastewater treatment plant would not be able to manage or treat average daily flow at the projected growth conditions. This would influence the Authority's ability to meet NPDES permit requirements and would lead to restrictions being placed on growth, to keep the current system within its design capacity.

2. Growth Potential

)

)

"No-action" would require the Authority and member municipalities to restrict connections to the collection system thus limiting the projected growth in the Authority's service area.

3. Community and Economic Conditions

Restricting connections due to lack of system improvements would restrict community and economic development in the long term because continued development would not occur and industries would be unable to expand. Important commerce planned for the region and other commercial projects in the region would be affected.

4. Recreational Opportunities

Recreational opportunities would be impacted by "no-action" to improve or expand the collection, conveyance or treatment system.

5. Drinking Water Sources

"No-action" would have an impact on drinking water sources that utilize the Schuylkill River as a surface water source downstream from the WWTP. This impact would be realized when the current wastewater facility would not be able to fully treat the projected sewage flows and remain within the discharge limits set forth in the NPDES permit.

6. Other Environmental Concerns

Without implementing potential alternatives to the collection/conveyance system, as well as the wastewater treatment plant, continued growth and expansion, in the WWTP's service area, will overload the existing system, increasing the potential for sewage overflows or "backup."

VI. THE EVALUATION OF ALTERNATIVES

A. Consistency Determination for Technically Feasible Alternatives

Title 25, Chapter 71.21(a)(5) of the Pennsylvania Code requires that each alternative proposed to provide for new or improved sewage facilities for each area of need be evaluated for consistency with the objectives and policies of:

- Comprehensive Plans;
- State Water Plans;
- Plans developed under Chapter 94;
- Plans developed under the Water Quality Act;
- Antidegradation Requirements;
- Pennsylvania's prime agricultural land policy;
- Plans adopted by the County and approved by the Department (PADEP) under the Storm Water Management Act;
- Wetland protection;

}

- Protection of rare, endangered, or threatened plant and animal species as identified by the Pennsylvania Natural Diversity Inventory; and
- The Historical and Museum Commission.

The viable alternative identified to serve the sewage planning needs of East Norriton Township, Plymouth Township, and Whitpain Township, involves treatment facility upgrades and possible collection/conveyance capacity modifications. The consistency determination is as follows for these alternatives:

1. Clean Streams Law

Planned improvements to the WWTP do not conflict with the objectives of the Clean Streams Law.

2. Chapter 94 Report

A review of the Authority's 2004 Chapter 94 Wasteload Management Report indicates no anticipated hydraulic overloads or organic overloads.

3. Federal Water Quality Act

)

)

The Federal Water Quality Act of 1987 establishes specific planning requirements for wastewater facilities planning. These requirements apply only to municipalities intending to apply for financial assistance from the Federal government for the construction of sewerage facilities. Consideration of applications for financial assistance from these municipalities depends on compliance with these planning requirements, several of which are beyond the scope of the plan content requirements for sewage facilities planning under Act 537.

A significant provision of the Federal Water Quality Act of 1987 provides for the capitalization of state revolving fund programs in the states. In Pennsylvania, this fund is a separate component of the PennVest program. Communities that propose to implement their official sewage plan updates with these funds must meet several specific planning requirements in order to be eligible to receive funding. While many of these requirements may be met through the normal plan content of the Act 537 planning process, several are outside the scope of Act 537.

4. Comprehensive Planning

The Montgomery County Planning Commission (MCPC) Comprehensive Plan, titled "Vision Plan", was adopted in 2001. Within the Comprehensive Plan, there is a list of "Vision Plan" goals. Goal #24 provides for "Focus on Public Sewer and Water Improvements in Designated Growth Areas." Within this goal, the Comprehensive Plan states that this goal can be achieved through:

- Updating and amending sewage facilities plans.
- Making sewage plans consistent with regional, county, and municipal comprehensive plans, zoning ordinances, and open space plans.
- Encouraging better cooperation between all the varying agencies and groups involved in sewer and water planning, including local authorities, municipalities, the county health and planning departments, and the State of Environmental Protection.
- Creating consistent implementation of the same goals for all groups involved in sewer and water planning.
- Zoning designated growth areas at densities that will support public sewers and water.
- Optimizing the efficiency of existing sewage treatment facilities.

With this being the case, there is no conflict with the strategies set forth by the Township's comprehensive plan.

5. Antidegradation Requirements

)

)

Effluent quality limits are set by the PADEP. Under the proposed technical alternatives as presented in this Plan, the preliminary effluent requirements for an average annual flow of 8.82 MGD are contained in Section V.A.3. of this Plan.

6. State Water Plans

No known conflicts with State water plans are anticipated due to expansion or new construction.

7. Prime Agricultural Policy

The alternatives presented for expansion of the existing wastewater treatment facility or the possible upgrade of existing collection and conveyance system components will not have an impact on prime agricultural land.

8. County Stormwater Management

Montgomery County is currently preparing a Model Stormwater Management Ordinance. It is anticipated that it will be released sometime during the fall of 2005. Since the Ordinance is not yet final, no conflicts were assessed with respect to this document.

9. Wetlands

)

)

A review of potential conflicts with wetlands was completed. Existing wetlands, shown on the National Wetlands Inventory Map in Appendix I, are not extensive aside from the existing creeks and streams. Upgrades to the wastewater treatment facility are expected to be contained within the existing plant site and not encroach upon any wetlands.

10. Protection of Plant and Animal Species of Concern

A Pennsylvania Natural Diversity Inventory (PNDI) review was initiated. PNDI review staff has responded to the review request. A review of the PNDI records

indicates that there may be occurrences of species of special concern. However, the PA Fish and Boat Commission has agreed to defer the assessment of these species until the preliminary design is complete. See Appendix J.

11. Pennsylvania Historical and Museum Commission (PHMC)

PHMC regulations state that if a project is being funded by either State or Federal funds and/or required a PADEP permit, a Bureau of Historic Preservation Site Assessment form must be completed.

A PHMC search was initiated for this project. A PHMC review has been completed. PHMC indicated that there are no National Register eligible or listed historic or archaeological properties in the area of the proposed project. Refer to PHMC response found in Appendix K.

B. Resolutions of Inconsistencies

1

)

Upon review of the "consistency determination" broached in this section, it has been determined that there are no inconsistencies relative to the proposed treatment alternatives.

C. Alternative Evaluation with Respect to Water Quality Standards and Effluent Limitations.

The planned alternatives to upgrade the wastewater treatment facility to meet the future hydraulic loadings will meet or exceed the NPDES requirements set forth in Section V.A.3. of this Plan.

D. Cost Opinion

)

1

A conceptual level opinion of probable cost has been prepared for the alternatives to expand the activated sludge portion of the WWTP as well as for costs associated with those improvements identified in the Corrective Action Plan. Cost Opinion for Alternative 1: (with primary clarifier) - \$5,625,000 Cost Opinion for Alternative 2: (without primary clarifier) - \$5,100,000 Cost Opinions for Capital Improvements Necessary to Meet the Corrective Action Plan goals:

•	Sawmill Run Interceptor Junction Box	\$20,000
•	Auxiliary Pumping Facilities	\$75,000
•	Activated Sludge Raw Sewage Pumps	\$300,000
•	Sawmill Run Pump Station – Pump Conversion	\$900,000
•	Sawmill Run Force Main Extension	\$350,000
	Ross Street Interceptor Improvements	\$2,850,000
	Sawmill Run Interceptor Junction Box 2	\$125,000

Capital Improvements Not Necessary to Meet the Corrective Action Plan goals, but needed to serve the ENPWJSA future needs:

٠	Activated Sludge Tanks/Fine Bubble Diffusers		
	SymBio Process (on-going)		\$1,100,000
٠	Electrical System Rehabilitation		
	i.	MCC at WWTP	\$850,000
	ii.	Transformers at WWTP	\$80,000
	iii.	MCC at Sawmill Run Pump Station	\$190,000
	iv.	Substation Switchgear at Sawmill Run	\$150,000
		Pump Station	

٠	Headworks Upgrades at the WWTP	\$2,650,000
	Disinfection System Replacement	\$1,375,000
٠	Additional Belt Filter Press at the WWTP	\$625,000

Miscellaneous costs for work to be completed at the Sawmill Run Pump Station could equate to approximately \$150,000. Similarly, miscellaneous costs associated with work to be completed at the WWTP could equate to approximately \$250,000.

E. Financing Alternatives

)

1

)

This section of the plan addresses financing alternatives that could be applicable for expansion and upgrade of the wastewater collection/conveyance system and the wastewater treatment plant. Three financing alternatives exist: municipal bond financing, bank loans, and direct capital funding. The selected financing alternative is addressed in Section VIII.B.

1. Municipal Bond Issue

a. General

There are several types of bonds, both taxable and tax-exempt. However, the general classification of municipal bonds usually refers to tax-exempt bonds. There are three types of municipal bonds generally used in financing public works.

General Obligation Bonds are tax-free bonds that are secured by the pledge of the full faith, credit, and taxing power of the issuing agency. This means that this type of bond is backed by all of the taxes on real estates and personal property within the jurisdiction of the issuing

agency. It involves minimum risk to the investor and therefore requires a lower rate of interest than other types of bonds.

- Dedicated Tax Bonds are payable only from the proceeds from a special tax and are not guaranteed by the full faith, credit, and taxing power of the issuing agency. Examples of special dedicated taxes are the special assessments against property which is adjacent to and the principal beneficiary of the improvement, and gasoline taxes used to finance highway construction.
- Revenue Bonds are payable from revenues derived from the use of the improvement such as tolls, sewer bills, or rents paid by the users of the improvement and do not otherwise represent an obligation of the issuing agency. Revenue bonds are not ordinarily subject to statutory or constitutional debt limitations. They are often issued by commissions, authorities, and other public agencies created for the specific purpose of financing, constructing, and operating essential public projects.

1

)

Typically, municipal bonds are sold to an investment-banking firm which then resells the bonds to individual investors. The advantage of municipal bonds to the investor is their tax-free status. A bond discount (a percentage of the total bond issue) serves as the investment banker's commission. Before bonds are sold, they must be rated on the basis of risk to the investor by a rating agency such as Standard and Poor's or Moody's. The higher the rating, the lower the risk to the investor and, consequently, the lower the interest rate paid on the bond.

The legal instrument that sets forth the rules to be observed by the issuing agency is the Trust Indenture. The Trust Indenture is prepared by the Bond Counsel and must be printed along with the bonds. Due to specific requirements as to the

-36-

denominations of the bonds and methods and materials for printing, printing costs can be substantial. A Trustee is required to administer the bond issue and insure the terms of the Trust Indenture are observed. This results in an Annual Trustee fee.

The longer the term, the lower the annual debt service (repayment) and the higher the total amount of interest that must be paid. Investment bankers indicate that it does not pay to extend the terms beyond 25 years because the interest rate increases dramatically.

A trend in financing has been towards the use of a capitalized debt service reserve fund. This fund is capitalized at the beginning of the project by using the capital recovery factor for the interest rate and loan period associated with the project. A "cover" may also be used for this program. The cover, a percentage that is added to the annual debt service, is usually capitalized with the bond issue. The cover percentage could range from 0 to 20 percent.

b. Advantages of Municipal Bond Issue Funding

- This program affords long-term fixed rate financing.
- Tax-exempt municipal bonds are in high demand.
- There is local investment opportunity.
- Third party review is by PADEP, but its approval is not influenced by the dual role PADEP has with regard to PennVest of issuing a permit to construct and of approving the program for financing.
- Municipal Credit is established.
- It retains flexibility for future borrowing.
- Financing approval period is shorter than with PennVest.

c. Disadvantages of Municipal Bond Issue Funding

- Market interest rates are usually higher than maximum PennVest interest rates.
- A cover may be required.
- A Debt Service Reserve Fund is generally required.
- There are trustee fees and costs of preparing a Trust Indenture.
- Issuance costs are higher than with PennVest program.

2. Bank Loans

1

There are four basic categories of bank loans. These are:

- Real Estate Loans (Mortgage)
- Participations and Interbank Loans
- Installment Loans (Personal)
- Commercial and Industrial Loans

Of the four types, a commercial and industrial loan would be the most applicable to this project.

Commercial and industrial loans may be made on a demand or time basis. A demand basis loan allows the bank to call for repayment at any time, or the borrower can repay when convenient. A time basis loan provides for a specific loan maturity date.

Most commercial and industrial loans are unsecured. The credit is extended on the basis of an analysis of all available information pertaining to the customer and the bank's confidence in that customer's ability and willingness to repay.

For a wastewater treatment plant expansion, it appears that it would be prudent to seek a time basis loan. An interest rate offering would be established, and an amortization schedule set. Interest rates may range from 5% to 10%.

Advantages of the Bank Loan Financing

- > Ability to shop around for a loan structure that best fits the customer's needs.
- > Flexibility in establishing repayment schedules.
- > Working with and through a local financial institution.
- Municipal credit is established.
- > Ability to obtain fixed rate financing.

Disadvantages of Bank Loan Financing

- Interest rates are charged for loan repayment.
- > Processing fees may be required.
- Processing and issuance fees may be expensive.

3. Direct Capital Funding

)

)

Another financing option for the implementation of the chose alternatives is direct funding by the participating municipalities. This would involve capital expenditures by the participating municipalities from its on capital funds.

Advantages of Direct Financing

- Avoid third party involvement. Payment for services can be made directly to the manufacturer or contractor.
- > There is no interest charged to your expenditures.
- > Bank processing and issuance fees are avoided.

Disadvantages of Direct Financing

- Reduces the amount of construction capital in the annual budget, thus reducing the ability to fund other construction projects during the fiscal year.
- F. Need for Immediate or Phased Implementation

}

1

Phased construction of the proposed alternative will be predicated upon fiscal and intermunicipal issues. It appears, at this time, however, that phased implementation will not be necessary.

G. Ability of the Authority to Implement the Alternative

Currently, the Authority has an intermunicipal agreement in place. This agreement is with East Norriton Township, Plymouth Township, and Whitpain Township.

For reference, the current agreement is found in Appendix L.

✓ VII. INSTITUTIONAL EVALUATION

A. Analysis of Borough; Past Actions and Present Performance.

1. Financial and Debt Status.

The Authority is well established and can implement the selected planning alternative. The Operating Budget for the year ending December 31, 2004 is summarized as follows:

Estimated Revenues	\$3,483,471
Estimated Expenses	\$3,141,602
Estimated Operating Income	\$341,869
Debt Service	\$310,790
Surplus	\$31,079
Coverage	\$10%

2. Available Staff and Administrative Resources.

The Authority has the staff and the administrative resources in place to implement the chosen alternative.

3. Existing Legal Authority.

1

)

The Authority has the legal capability to implement wastewater planning activities and recommendations for the treatment plant as well as operations and maintenance activities for the plant and their collection/conveyance system. East Norriton Township, Plymouth Township, and Whitpain Township have the right to discharge sewage, of a volume within the capacities reserved, to existing sewers for conveyance to the Authority's wastewater treatment plant.

- B. Institutional Alternatives Necessary to Implement the Technical Alternatives.
 - 1. Need for New Municipal Department or Authorities.

The Authority is well established. There is no need for a new municipal department or Authority.

2. Municipal Functions.

ار

}

The Authority owns, operates, and maintains the wastewater treatment plant. The Authority also owns, operates and maintains the Sawmill Run Pump Station and the Sawmill Run Interceptor. Each of the participating municipalities has the right to discharge to the Authority's facilities a volume within their respective reserve capacities.

 Cost of Administration, Implementability, and the Capability of the Authority to React to Future Needs.

The Authority has the financial and staffing resources in place to react to future needs.

- C. Administrative and Legal Activities to be completed.
 - 1. Incorporation of Authorities or Agencies

There is no need to incorporate any additional authorities or agencies since these entities are already in place.

2. Ordinance, Regulations, and Intermunicipal

The Authority currently has an intermunicipal agreement with East Norriton, Plymouth and Whitpain Townships. This agreement addresses the use of facilities by each municipality, future facility enlargements, the sharing of capital costs, and the sharing of net operating costs.

In accordance with the existing agreement;

<u>Reserved Capacity</u>. Subject to the limitations and payment of charges set forth in this Agreement, East Norriton Township/East Norriton Township Municipal Authority, Plymouth Township/Plymouth Township Municipal Authority and Whitpain Township are granted the right during the term of this Agreement to discharge wastewater to the Treatment Plant to the extent of their respective Reserved Capacities, as determined initially and from time to time pursuant to the terms of this Agreement.

In addition;

)

- a.) Each Municipality agrees that the wastewater it discharges will not exceed certain maximum allowable discharge limits, expressed in pounds per day, which will be based upon the concentration limits attributable to domestic waste, as referenced in Article I, and the hydraulic capacity reserved for it, as determined in Article II.
- b.) Joint Sewer Authority shall issue a warning to a Municipality when its maximum 3-month average flow or attendant loading of either of the pollutants referenced above approaches 85 percent of its respective maximum limit. The maximum 3-month average flow criteria is based on current federal and state standards and may be changed from time to

-43-

time to reflect the federal and state standards in effect at any time. Within thirty (30) days after the warning, the Municipality shall initiate and within ninety (90) days thereafter complete and submit to the Joint Authority an engineering report, which at a minimum addresses the estimated time frame in which the Municipality will completely utilize its hydraulic or pollutant loading capacity.

c.) When the maximum 3-month flow or attendant loading of either of the pollutants referenced above approaches 90 percent of a Municipality's maximum limit, the Joint Sewer Authority will determine how much unused capacity is available for such Municipality and will be dividing said unused capacity by 275 gallons per day, as such amount may be amended from time to time by the Joint Sewer Authority, determine how many EDUs are available to be connected by said Municipality. This determination will be valid as of the date of the calculation and may be recalculated each year. The Municipality will not be permitted to connect any EDUs in excess of the number determined by the Joint Sewer Authority.

)

d.) In the event that a Municipality shall exceed any of the limits and restrictions on flow or pollutant loadings, as set forth herein, for a period of thirty (30) consecutive days, such Municipality shall take immediate steps to reduce such overloading to the satisfaction of the Joint Sewer Authority and shall not make any connections until such overloading has been reduced to 85 percent of the Municipality's maximum limit. Furthermore, the Municipality in addition to other payments herein provided for and in addition to any other remedies legally available to the Joint Sewer Authority from any costs, fees, expenses, damages, fines, penalties, including legal, engineering or other fees and expenses,

-44-

suffered or incurred as a result thereof, except such as are caused by negligence in operation of the Treatment Plant.

3. Provisions of Rights-of-Way, Easements, and Land Transfers

Any interceptor improvements would occur in existing rights-of-way and easements. If any improvements would require the acquisition of rights-of-way, this effort would not begin until the preliminary design phase. Improvements and upgrades to the wastewater treatment plant are expected to occur on plant property, requiring no right-of-way or easement acquisition.

4. Other Sewage Facility Plan Adoptions

East Norriton Township, Plymouth Township, and Whitpain Township will have their own Act 537 Plans in place. These plans supply the supporting documentation for the projected wastewater flows used in this Plan. Refer to copies of the main text of these municipal plans found in Appendix C.

5. Legal Documents

Refer to Section VII.C.2. of this Plan which details the intermunicipal agreements among the participating municipal entities.

6. Dates and Time Frames of 1 through 5 above

Refer to the implementation schedules detailed in the Appendix B of this Plan.

> VIII. SELECTED WASTEWATER TREATMENT AND INSTIUTIONAL ALTERNATIVE

A. Identify the Chosen Technical Alternative.

The selected alternative which best meets the immediate and future wastewater treatment needs of the planning area is the implementation of Alternative 1 which includes the following unit process upgrades:

- Add one 60-foot diameter primary clarifier;
- Add one 680,000-gallon aeration tank in parallel to the existing units;
- Add one 70-foot diameter secondary clarifier;
- Add one 92,000-gallon chlorine contact tank.

)

- Upgrades to the return activated and waste activated sludge pumping systems.
- Piping and structure additions for distribution of wastewater.

In addition, those line items detailed in the ENPWJSA Correction Action Plan should be implemented. These include all items as listed, in Section V of this Plan.

The above referenced improvements will allow for an expanded facility capacity of 8.67 MGD average daily flow and 11.29 MGD 3-month maximum flow.

These recommendations are based on the following:

1. Existing Wastewater Disposal Needs

Currently the ENPWJSA wastewater treatment plant provides advanced secondary treatment for an average permitted flow of 8.1 MGD. The plant is permitted to discharge 9.3 MGD maximum monthly flow.

The annual average flow for 2004 was 6.45 MGD and the highest consecutive maximum three-month flow for 2004 was 7.75 MGD. These are below the permitted limits.

However, of immediate concern, is the implementation of the Correction Action Plan projects to address high flows realized during significant rain events (see Appendix A). Implementation of these measures will enable the ENPWJSA to continue to meet the municipal needs as the base wastewater treatment needs increase.

2. Future Wastewater Treatment Needs.

)

)

The proposed facility improvements will enable the ENPWSJA to increase their treatment capacity. The projected design capacities will be divided among participating municipalities as follows:

	Projected	Projected 3-month
Municipality	Municipal Average	Maximum
	Daily Flow (MGD)	Flow (MGD)
Plymouth Township	3.60	4.49
East Norriton Township	2.70	3.30
Whitpain Township	2.37	3.50
Totals	8.67	11.29

Given that the participating municipalities predict that they will exceed their respective allocations, upgraded facilities will be necessary to meet future sewage disposal needs.

3. Operations and Maintenance Considerations

Implementation of Alternative 1 will provide a means for the Authority to have a buffer in place in the event of higher influent flows, given the addition of a primary clarifier among the other recommended unit process upgrades. Although influent BOD has been historically low at the WWTP, BOD reduction that the primary clarifier affords for the increased flow could assist operations staff with their ability to nitrify and denitrify in the activated sludge process.

Additionally, without the construction of the additional primary clarifier, there is the risk that more solids will settle in the secondary clarifiers creating a build-up in the sludge blanket. Also, an additional primary clarifier will allow staff to take other clarifiers out of service for maintenance.

4. Cost Effectiveness.

)

)

Upon comparing the capital cost opinions associated with Alternatives 1 and 2, Alternative 2 is the most cost effective. However, given that Alternative 1 could provide operations and maintenance advantages (since it will have another primary clarifier), Alternative 1 appears to be a better selection.

5. Available Management and Administrative Systems.

The ENPWJSA currently has the necessary operation, maintenance, and administrative staff in place to manage the existing as well as upgrade facilities.

6. Available Financing Methods.

Of the financing methods discussed in Section VI of the Plan, each method can provide the necessary funding for the selected alternative. Refer to Section VIII.B. for the selected capital financing plan. 7. Environmental Soundness.

Environmentally, the proposed upgraded wastewater treatment plant will be able to adequately treat the projected municipal needs and maintain permitted effluent limits.

B. Selected Capital Financing Plan

)

)

The selected alternative will be funded by each of the participating municipalities in accordance with the current intermunicipal agreement. The ENPWJSA will consider financing the proposed upgrades via a municipal bond issue. However, the ENPWJSA will review all financial options available to it. It should be noted that funding for installation of a new aeration tank will be accomplished through the use of bond proceeds that the Authority currently has.

APPENDICES

×,

)

)

-

APPENDIX A

CORRECTIVE ACTION PLAN

ì

)

.

L

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY

CORRECTIVE ACTION PLAN (CAP)

WASTEWATER TREATMENT FACILITY AND SAWMILL RUN PUMPING STATION

I. INTRODUCTION

1.1

The East Norriton-Plymouth-Whitpain Joint Sewer Authority (Authority) owns, operates and maintains the wastewater treatment facility (WWTF) and Sawmill Run Pumping Station (Sawmill) that serves customers within East Norriton, Plymouth and Whitpain Townships. The Authority also owns, operates and maintains force mains and interceptors that originate at Sawmill and end at the WWTF. Sawmill is equipped with three (3) constant speed pumps rated at 2.44 MGD each and three (3) variable speed pumps rated at 7.57 MGD each. The control scheme for Sawmill is currently designed and configured such that a maximum of two (2) constant speed and two (2) variable speed pumps can be operated at one time. When all four (4) pumps are operating, the total calculated capacity of Sawmill is 17.2 MGD. The Authority has completed the installation of a Supervisory Control and Data Acquisition System (SCADA) that will provide detailed operational data with regard to Sawmill Run Pump Station and the WWTF. This tool is critical to the success of preventing future overflows by illustrating flows, wet well and tank levels during significant rain events that currently must be estimated. It will also generate a more expedient response by Authority personnel to critical high water conditions.

Both the wet well at Sawmill and the manhole immediately upstream within the East Norriton Township sewerage system have experienced overflows during significant rain events. This became evident during calendar years of 2003 and 2004, two of the wettest years on record. Authority personnel have reported overflows at both locations to PADEP as overflows at Sawmill. Generally, the noted manhole will be the first to overflow. There are no documented overflows of Whitpain or Plymouth Township's sewerage in the vicinity of Sawmill. It appears as though there are hydraulic restrictions at Sawmill that may impede the ability of flow from East Norriton Township to enter the wet well as readily as flow from the other two (2) Townships.

)

Two (2) 24-inch diameter force mains extend from Sawmill to the gravity interceptors. One force main services the three (3) constant speed pumps at Sawmill; the other the three (3) variable speed pumps. The force mains are cross-connected and valved at the station to allow flow from either group of pumps to either force main. The force main from the variable speed pumps discharges to a newer 30-inch gravity interceptor while the force main from the constant speed pumps discharges to an older 18-inch gravity interceptor before discharging into the same 30-inch gravity interceptor sewer (at the intersection of Fornance Street and Sandy Hill Road) as the variable speed pumps. The 30-inch gravity interceptor extends from the intersection of Plymouth Boulevard and Fornance Street to the intersection of Fairfield Avenue and Jefferson Street. From this point, the diameter of the interceptor increases to 36 inches until the intersection of Ridge Pike and Ross Street. The interceptor then discharges to a junction box, which splits into two (2) 24-inch parallel gravity interceptors that extend the length of Ross Street to the head of the WWTF. Due to the configuration of the junction box, flow between the two (2) 24-inch interceptors is not equalized. This has resulted in one of the two parallel 24inch gravity interceptors overflowing during significant rain events. In 2003, the Authority employed a contractor to install an equalization pipe between two manholes along the Ross Street parallel sewers. This resulted in a more "evening" of the flow and has a reduced the number of overflow events but due to the hydraulic configuration, has not eliminated them. A diagram of the conveyance system of the Pump Station and Force Main is included as Exhibit A.

II. CONNECTION MANAGEMENT PLAN

In February 2005, the Authority directed its consulting engineer, prior to the receipt of any issued "Notice of Violations," to conduct a hydraulic study of Sawmill, the force mains and gravity interceptors to identify the deficiencies during high flow events and to delineate a capital improvement plan to be undertaken by the Authority to avoid further surcharges and overflows. Completion of this study and the resulting capital improvements are included as milestones to this Corrective Action Plan (CAP). Also included is a requested Connection Management Plan (CMP). This plan is sensitive to the duties of both PADEP and the municipalities to ensure that overflows are promptly corrected but considers the responsibility of the townships to continue serving their respective communities and the potential for litigation that could have a deleterious effect on the community at large. A High Flow Maintenance Plan (HFMP) is also included as Exhibit E to delineate for PADEP the steps taken during high flow conditions at the WWTF.

Enclosed as Exhibit B are copies of the proposed connection requests for each municipality with appropriate planning code numbers as requested by PADEP. They are prioritized 1, 2 and 3 and the number requested for approval are identified with each milestone in the following section of this CAP.

100

)

As a clarification, the service area of Plymouth Township that generates flow which is measured by the Chemical Road meter at the WWTF and which does not utilize Sawmill, the force mains or gravity interceptors, including the Ross Street Junction Box, previously described is not subject to a prohibition of connections and is not included in this CAP. This is primarily due to the methodology the Authority employs during high flow conditions. This is discussed within the HFMP attached to this document. A system map attached and labeled Exhibit C illustrates the approximate area. The purpose of the GIS layout is a general scheme of the contributing Townships' sanitary sewer conveyance.

TABLE 1

	East Norriton Township	Plymonth Township	Whitpain Township	TÕŢAL
Remaining Priority 1 Connections with Approved Planning Modules	214	2	97	313
Remaining Priority 1 Connections	33	23	64	120
Remaining Priority 2 Connections	267	0	265	532.1
Remaining Priority 3	440	0	520	960-
Remaining Priority 3 Connections with Approved Planning Modules	28	0	0	28
TOTALS	982	<u>7</u>	946	1953

Summary of Connection Requests by Priority

III. CORRECTIVE ACTION MILESTONES

- A. Milestone 1: -- June 1, 2005
 - 1. The Authority has completed the construction of a SCADA Project that will assist in monitoring, alarming and controlling the operation at Sawmill and the WWTF. The SCADA system went into operation on May 13, 2005, and is essentially complete except for minor software programming issues.

Ę

1

121

-

ì

- B. Milestone 2: Due August 15, 2005
 - 1. The Authority will execute a consent order and agreement with PADEP.
 - 2. The Authority proposes the correction of a hydraulic restriction within the junction box at Main and Ross Streets to provide a more suitable balance between the two 24-inch gravity interceptors that extend down Ross Street to the WWTF.
 - a. In response to the comment concerning the Ross Street Junction Box of Milestone 2 in the June 16, 2005 letter from PADEP, the Authority intends to take a two-step approach. First, the hydraulic analysis illustrates the flow balance between the two-24 inch mains under maximum pumping conditions from the Sawmill Pumping Station to be approximately 2/3 to 1/3. The main carrying 2/3 of the maximum flow has experienced an overflow at a shallow manhole immediately upstream of a "flat" area of the interceptor. The immediate resolution to comply with this Milestone will be to install a diversion baffle within the junction box to correct the flow distribution imbalance. The configuration of this baffle is presently under review. The second step involves further hydraulic analysis to determine if replacing and reconfiguring the junction box is an appropriate long-term fix in conjunction with a potential increase in the Sawmill Pumping Station capacity. A schematic of the current conditions within the junction box and the flow imbalance along with the associated hydraulic calculations are included as Exhibit D. A proposed design will become available when the analysis is complete. In response to the comment by the PADEP in the June 16, 2005 letter, reinstallation of one of the two 24-inch parallel gravity interceptors at a lower elevation will not improve the total carrying capacity of the Ross Street interceptors.
 - 3. In consideration of completion of Item Nos. 1 and 2 of this milestone, the Authority respectfully requests approval of PADEP to allow Priority 1 connections that have Department approved planning modules.
- C. Milestone 3 -- Due September 1, 2005
 - 1. The Authority engineer will complete the hydraulic analysis of Sawmill, the force mains, and gravity interceptors, which convey flow from the three (3) townships to the WWTF. This plan will delineate in detail further capital improvements necessary to accommodate flows during significant rain events.
 - a. In response to a comment concerning the hydraulic analysis in the June 16, 2005 letter from PADEP, please be advised that during 2004, the Authority undertook a six-week metering program at numerous locations along the interceptor to capture wet and dry weather flow data. This, coupled with flow data from the Sawmill Pumping Station

「ないないないないないないないないない」

waters a in

)

and a station for the state of the state

and the wastewater treatment plant, has provided sufficient information for the analysis. This hydraulic analysis considers bends within the force main and the slope of the gravity sewers.

- 2. The Authority will formally adopt a capital improvement plan and secure the necessary financing to embark on completing the delineated improvements. This will be done by formal resolution of the Board with the consensus of the participating municipalities.
- 3. In consideration of completion of Item Nos. 1 and 2 of this milestone, the Authority respectfully requests approval of PADEP to allow the remaining balance of Priority 1 connections.
- D. Milestone 4: -- Due September 15, 2005
 - 1. The Authority will modify the controls at Sawmill to operate five (5) or six (6) of the available pumps to more effectively and efficiently pass the flow downstream. Preliminary results from the hydraulic analysis indicate this may be possible following modification of the junction box at Main and Ross Streets noted in Milestone 2.
- E. Milestone 5: -- Due September 30, 2005
 - 1. The Authority will provide auxiliary pumping within the raw sewage junction box at WWTF to better evacuate the flows within the two (2) 24inch interceptors on Ross Street and assist in preventing backwater influence at the point where overflows have previously occurred. The Authority acknowledges that a Part II Construction Permit will be needed for this installation. It also should be noted that the results of the hydraulic analysis may provide an alternate solution.
 - a. In response to the Chemical Road Sewer Shed Prohibition comment in the June 16, 2005 letter from PADEP, please be advised that the raw sewage from the Chemical Road Pump Station flows through the plant in a dedicated and separate 24" diameter pipe until it combines with the flow from the Ross Street interceptors in a junction box that precedes the Building B-1 wetwell. Under significant storm flow events, the flow is diverted around the wetwell to the East Trickling Filter Plant primary clarifiers as described in the attached HFMP.
 - 2. The Authority respectfully requests with the completion of this milestone approval of planning modules by the Department for the Priority 2 projects and for the approval of their associated connections.

١

- F. Milestone 6: -- Due March 1, 2006
 - 1. The Authority recently upgraded the raw sewage pumps for the trickling filter treatment system at the WWTF. This improvement has reduced the magnitude of the sewage overflows from the Ross Street Interceptor.
 - 2. The Authority proposes to replace and upgrade the raw sewage pumps for the activated sludge treatment system to prevent any backwater influences upon entry to the WWTF.
 - a. The June 16, 2005 letter from PADEP commented that the Authority would need a Part II construction permit for the replacement and upgrade of the three (3) Activated Sludge Plant raw sewage pumps. The Authority disagrees that a permit is required as this is a maintenance project where the twenty-five year old pumps are to be replaced with newer pumps of the same pumping capacity as presently permitted. The existing pumps have aged and do not perform to their peak capability. The only upgrade will exist within the controls of the pumps, not the pumps themselves. All new pumps are to be operated by variable frequency drives.
 - 3. Upon completion of this milestone, the Authority respectfully requests the approval of planning modules for Priority 3 projects and the respective connections for all three (3) townships.
- G. Milestone 7: -- Due December 31, 2007
 - 1. The Authority will complete the work delineated in the capital improvement program noted in Milestone 3, completion of the work mentioned in the capital improvement program governing Sawmill, the force mains and gravity interceptors.
 - 2. Upon completion of the aforementioned work, and the absence of further overflows, the Authority respectfully requests release from the CAP by the Department.

IV. INFLOW/INFILTRATION MITIGATION

As noted earlier, during the years of 2003 and 2004, this area of southeastern Pennsylvania received unusually high amounts of precipitation. The East Norriton-Plymouth-Whitpain Joint Sewer Authority, as well as numerous other entities experienced significantly increased amounts of sanitary sewer flows, which ultimately challenged the capacity of the conveyance system. The Authority and associated municipalities exercised, and continue to exercise, extensive efforts to significantly reduce the amount of ground/surface water that may enter the conveyance system via inflow/infiltration. Each municipality has implemented a proactive plan to diminish the amount of ground/surface water from entering the sanitary sewer system. Attached as Exhibit F are details of the historic activities as well as those proposed. All three (3) townships will continue their aggressive approach to mitigation of I/I within their respective collection systems. As an on-going part of the Chapter 94 review process for 2006, 2007 and 2008, the Authority will provide PADEP with an update of the success of the I/I programs in each municipality.

The East Norriton-Plymouth-Whitpain Joint Sewer Authority provides this information as a courtesy to PADEP in that the Authority does not govern nor operate the collection systems of the three (3) townships and has no I/I issues of its own. The Authority also requests that if we can demonstrate additional capacity has been created by the aggressive I/I program of the three (3) townships before the date of the final milestone (December 31, 2007) described herein, that the PADEP will release the Authority and associated municipalities from any moratorium or prohibition and consider the Corrective Action Plan satisfied.

V. AUTHORITY RESPONSIBILITY

The Authority recognizes its responsibility toward proper operation of their conveyance system and the WWTF. The Authority will rigorously administer and enforce all elements of this schedule. It will be clearly communicated to each member municipality and the Authority will require each to agree to meet these milestones and accept all limitations of service. As requested by the PADEP, Quarterly reports will be supplied on by the 15th day of the month following each calendar quarter until the PADEP has lifted the sanitary sewer connection prohibition.

• •12.9

Ŧ

1. cc. . .

)

EXHIBIT A

SCHEMATIC OF

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY

CONVEYANCE FACILITIES

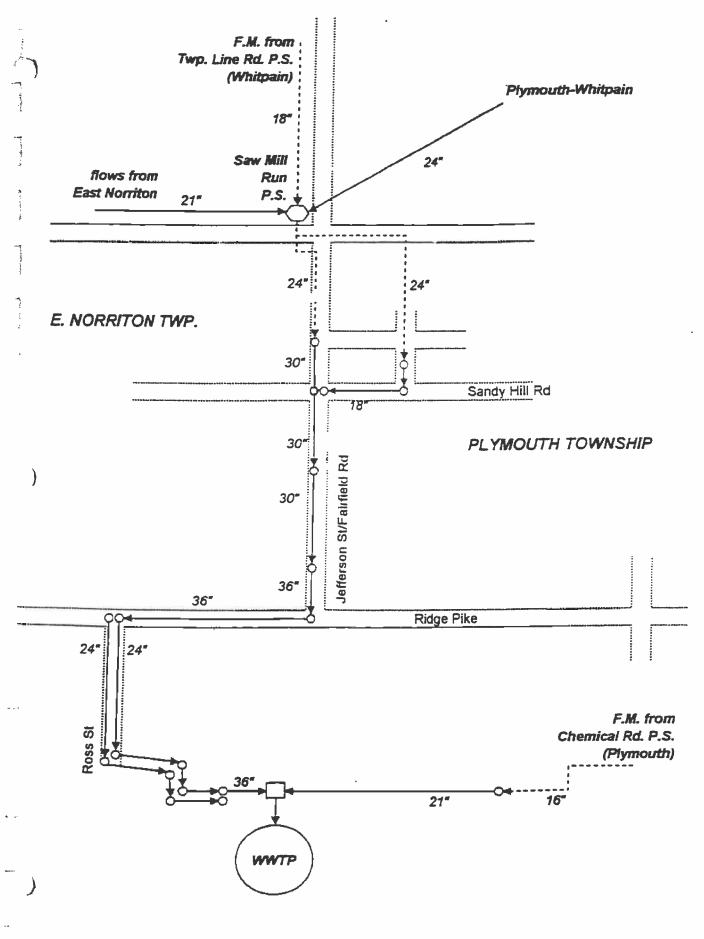


EXHIBIT A

· · · · ·

3

.

4.81

ł

ì

4

ني .

2

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY

CONNECTION MANAGEMENT PLAN

East Norriton Township Connection Management

ł

Last Revised:

1----

06/25/05

PMA - Planning Module Approved

PHR - Pump & Haul Request E - Exception Requested -Replacement Flow

bit data bit is in the intervention of the interventing of the interventing of the interventing	
Hearty Subtrah Hogsland ENH WUSA 16	Priority
Biolog Subtraction Control Contro Control Control	
Initial canadities Consisting - Philomeno/Salamone - Replacing existing 34 EDU's ENPWUSA 84 34 E Y N 34 Replacement 50 from Jefferson Crossing - Philomeno/Salamone - Replacing existing 34 EDU's ENPWUSA 84 34 E Y N 34 Replacement 50 from Jefferson Crossing - Philomeno/Salamone - Replacing existing 34 EDU's ENPWUSA 84 34 E Y N 28 P b Heatherwood - Erh/Mascio/Gambone ENPWUSA 8 N Y N 28 P b Croating - Germantown Pike / Vales Road ENPWUSA 8 N Y N 28 P g Calamia - Erh/Mascio - 3 EDU's present connection ENPWUSA 10 N N N 3 Replacement 6 g Eric Winchester - 117 Hancock Ave - Single Home on vacant tot ENPWUSA 1 N Y N - 1 10 Costefano - Britstol Ave - Single Home on vacant tot ENPWUSA 1 N Y N - 1 11 Corowley Foods - Gambone ENPWUSA 1 N Y N - 1	1
Tomardam Organization Proprieding Existing OF 2013 Crimerolysian of Programmer Stating OF 2013 Crimerolysian OF Stating OF Rest. 5 Heatherwood - Erb/Mascio/Gambone 1-46926-118-3J 28 N Y N - 28 P 6 Dr Valenza - Germantown Pike - ZEDU's Present ENPWUSA 8 N Y N - 8 P 7 MRA Carwash - Germantown Pike - ZEDU's Present ENPWUSA 8 N Y N 2 Replacement 6 8 Calarnia - Erb/Mascio - SEDU's present connection ENPWUSA 10 N N N 3 Replacement 6 9 Eric Winchester - 117 Hancock Ave - Single Home on last remaining vacant lot ENPWUSA 1 N Y N - 1 10 DeStefano - Bristol Ave - Single Home on vacant lot ENPWUSA 1 N Y N - 1 12 Crowley Foods - Gambone ENPWUSA 1 N Y N - 1 13 Kinder Care - Tornetta Bentwood - 236 EDU's Approved 1998 - 58 EDU's Paid 1998 1-46926-J04-E 4 236	R1
5 Heatherwood - Erb/Mascio/Gambone 1-46926-118-3J 28 N Y N - 28 P 6 Dr Valenza - Germantown Pike/N Wales Road ENPWUSA 8 N Y N - 8 P 7 MRA Carwash - Germantown Pike/N Wales Road ENPWUSA 8 N Y N 2 Replacement 6 D 7 MRA Carwash - Germantown Pike - 2EDU's Present ENPWUSA 8 N Y N 2 Replacement 6 D 8 Calarina - Erb/Mascio - 3 EDU's present connection ENPWUSA 1 N Y N - 1 10 DeStefano - Bristol Ave - Single Home on vacant tot ENPWUSA 1 N Y N - 1 11 Crowley Foods - Gambone ENPWUSA 1 N Y N - 1 12 Crowley - Barbar Drive - Single Home on vacant Lot ENPWUSA 1 N Y N - 1 13 Kinder Care - Tornetta Bentwood - 236 EDU's Approved 1998 - 58 EDU's Paid 1998 1-46926-J04-E 4 23	1
6 Dr Valenza - Germantown Pike/N Wales Road ENPWUSA 8 N Y N - 8 P 7 MRA Carwash - Germantown Pike - 2EDU's Present ENPWUSA 8 N Y N 2 Replacement 6 8 Calarnia - Erd/Mascio - 3 EDU's present connection ENPWUSA 10 N N 3 Replacement 8 P 9 Eric Winchester - 117 Hancock Ave - Single Home on last remaining vacant lot ENPWUSA 1 N Y N - 1 10 DeStefano - Bristol Ave - Single Home on vacant lot ENPWUSA 1 N Y N - 1 11 Crowley Foods - Gambone ENPWUSA 5 N Y N - 1 11 Crowley Foods - Gambone ENPWUSA 1 N Y N - 1 11 Crowley Foods - Gambone ENPWUSA 1 N Y N - 1 12 Pat Bradley - Barbara Drive - Single Home on Vacant Lot ENPWUSA 10 58 Permitis 4 13	
To Nature 11 Environment 11 Environment 11 N 2 Replacement 6 MRA Carwash - Germantown Pike - 2EDU's Present ENV ENV 10 N N 2 Replacement 6 Calamia - Erb/Mascio - 3 EDU's present connection ENV ENV 10 N N N 3 Replacement 6 P Eric Winchester - 117 Hancock Ave - Single Home on last remaining vacant lot ENV ENV 1 N Y N - 1 10 DeStefano - Bristol Ave - Single Home on vacant tot ENV ENV 1 N Y N - 1 11 Crowley Foods - Gambone ENV S N Y N - 1 12 Crowley Foods - Gambone ENV ENV A 1 N Y N - 1 13 Kinder Care - Tornetta Bentwood - 236 EDU's Approved 1998 - 58 EDU's Paid 1998 1-48926-J04-E 4 236 PMA Y 58 28 Permits 10 F 14 Norriton Business Campus - 56 EDU's Approved in 988 ENPWJSA 10 25 PMA Y <td>R 1</td>	R 1
a Calamia - Erb/Mascio - 3 EDU's present connection ENPWUSA 10 N N 3 Replacement 8 P g Eric Winchester - 117 Hancock Ave - Single Home on last remaining vacant lot ENPWUSA 1 N Y N - 1 10 DeStefano - Bristol Ave - Single Home on vacant lot ENPWUSA 1 N Y N - 1 11 Crowley Foods - Gambone ENPWUSA 1 N Y N - 1 12 Pat Bradley - Barbara Drive - Single Home on Vacant Lot ENPWUSA 1 N Y N - 1 12 Pat Bradley - Barbara Drive - Single Home on Vacant Lot ENPWUSA 1 N Y N - 1 12 Pat Bradley - Barbara Drive - Single Home on Vacant Lot ENPWUSA 10 58 Permits 4 14 Norriton Business Campus - 58 EDU's Approved 1998 - 58 EDU's Paid 1998 1-46926-J04-E 4 236 PMA Y N 2 Permits 10 F 15 Moreland Dev Bank - Whitehalt/Germantown - Last pad of 3 pad site ENPWUSA 10 25 PMA <td< td=""><td>IR 1</td></td<>	IR 1
9 Eric Winchester - 117 Hancock Ave - Single Home on last remaining vacant lot ENPWJSA 1 N Y N . 1 10 DeStefano - Bristol Ave - Single Home on vacant lot ENPWJSA 1 N Y N . 1 11 Crowley Foods - Gambone ENPWJSA 5 N Y N . 5 P 12 Pat Bradley - Barbara Drive - Single Home on Vacant Lot ENPWJSA 1 N Y N . 1 13 Kinder Care - Tornetta Bentwood - 236 EDU's Approved 1998 - 58 EDU's Paid 1998 1-46926-J04-E 4 236 PMA Y 58 5 P ermits 4 14 Norriton Business Campus - 58 EDU's Approved in 988 ENPWJSA 10 58 PMA Y 58 28 Permits 10 5 14 Norriton Business Campus - 58 EDU's (5 EDU's existing) of approved 58 EDU's ENPWJSA 10 25 PMA Y N 2 Permits 10 10 16 Northwood - Tornetta (request transfer 30 EDU's (5 EDU's existing) of approved 58 EDU's ENPWJSA 30 N N N 5 Replacement 25	1
10DeStefano - Bristol Ave - Single Home on vacant lotENPWJSA1NYN-111Crowley Foods - GamboneENPWJSA5NYN-5F12Pat Bradley - Barbara Drive - Single Home on Vacant LotENPWJSA1NYN-113Kinder Care - Tornetta Bentwood - 236 EDU's Approved 1998 - 58 EDU's Paid 19981-46926-J04-E4236 PMAY585 Permits414Norriton Business Campus - 58 EDU's Approved in 1988ENPWJSA1058 PMAY5828 Permits101016Northwood - Tornetta (request transfer 30 EDU's (5 EDU's existing) of approved 58 EDU'sENPWJSA30NNN5 Replacement2516Northwood - Tornetta (request transfer 30 EDU's (5 EDU's existing) of approved 58 EDU'sENPWJSA30NNN5 Replacement2517TOTAL REQUESTED PRIORITY NO. 13401Reserve @ Penn Crossing - Cutler - Remaining ConnectionENPWJSA3030 PMAY783042Pimilco Farms - Gambone - Remaining ConnectionsENPWJSA1135 PMAYN113Norriton Business Campus - 58 EDU's Approved In 1988ENPWJSA2058 PMAYY28 Permits.20144Gorman WeldingENPWJSA5NNN51.5	IR 1
11Crowley Foods - GamboneENPWJSA5NYN-5F12Pat Bradley - Barbara Drive - Single Home on Vacant LotENPWJSA1NYN-113Kinder Care - Tornetta Bentwood - 236 EDU's Approved 1998 - 58 EDU's Paid 19981-46926-J04-E4236 PMAY585 Permits414Norriton Business Campus - 58 EDU's Approved in 1988ENPWJSA1058 PMAY5828 Permits10F15Moreland Dev Bank - Whitehalt/Germantown - Last pad of 3 pad siteENPWJSA1025 PMAYN2 Permits1016Northwood - Tornetta (request transfer 30 EDU's (5 EDU's existing) of approved 58 EDU'sENPWJSA30NNN5 Replacement25paid for for in 199816Northwood - Tornetta (request transfer 30 EDU's (5 EDU's existing) of approved 58 EDU'sENPWJSA30NNN5 Replacement25paid for for in 199816Northwood - Tornetta (request transfer 30 EDU's d5 EDU's existing) of approved 58 EDU's in 1998	11
12 Pat Bradley - Barbara Drive - Single Home on Vacant Lot ENPWJSA 1 N Y N - 1 13 Kinder Care - Tornetta Bentwood - 236 EDU's Approved 1998 - 58 EDU's Paid 1998 1-46926-J04-E 4 236 PMA Y 58 5 Permits 4 14 Norriton Business Campus - 58 EDU's Approved in 1988 ENPWJSA 10 58 PMA Y 58 28 Permits 10 F 15 Moreland Dev Bank - Whitehall/Germantown - Last pad of 3 pad site ENPWJSA 10 25 PMA Y N 2 Permits 10 16 Notfhwood - Tornetta (request transfer 30 EDU's (5 EDU's existing) of approved 58 EDU's ENPWJSA 30 N N N 5 Replacement 25 paid for for in 1998. The Bentwood Project received approval for 236 EDU's in 1998 -	1
13 Kinder Care - Tornetta Bentwood - 236 EDU's Approved 1998 - 58 EDU's Paid 1998 1-46926-J04-E 4 236 PMA Y 58 5 Permits 4 14 Norriton Business Campus - 58 EDU's Approved in 1988 ENPWJSA 10 58 PMA Y 58 28 Permits 10 F 15 Moreland Dev Bank - Whitehall/Germantown - Last pad of 3 pad site ENPWJSA 10 25 PMA Y N 2 Permits 10 16 Northwood - Tornetta (request transfer 30 EDU's (5 EDU's existing) of approved 58 EDU's ENPWJSA 30 N N N 5 Replacement 25 paid for for in 1998. The Bentwood Project received approval for 236 EDU's in 1998	IR 1
Norriton Business Campus - 58 EDU's Approved in 1988 ENPWJSA 10 58 PMA Y 58 28 Permits 10 F 15 Moreland Dev Bank - Whitehall/Germantown - Last pad of 3 pad site ENPWJSA 10 25 PMA Y N 2 Permits 10 16 Northwood - Tornetta (request transfer 30 EDU's (5 EDU's existing) of approved 58 EDU's ENPWJSA 30 N N N 5 Replacement 25 paid for for in 1998. The Bentwood Project received approval for 236 EDU's in 1998 -	1
Moreland Dev Bank - Whitehall/Germantown - Last pad of 3 pad site ENPWJSA 10 25 PMA Y N 2 Permits 10 16 Northwood - Tornetta (request transfer 30 EDU's (5 EDU's existing) of approved 58 EDU's ENPWJSA 30 N N N 5 Replacement 25 paid for for in 1998. The Bentwood Project received approval for 236 EDU's in 1998 -	1
16 Northwood - Tornetta (request transfer 30 EDU's (5 EDU's existing) of approved 58 EDU's ENPWJSA 30 N N 5 Replacement 25 paid for for in 1998. The Bentwood Project received approval for 236 EDU's in 1998 30 N N N 5 Replacement 25 TOTAL REQUESTED PRIORITY NO. 1 340 30 N N 247 1 Reserve @ Penn Crossing - Cutler - Remaining Connection ENPWJSA 30 30 PMA Y 78 30 10 2 Pimlico Farms - Gambone - Remaining Connections ENPWJSA 11 35 PMA Y N 11 11 14 3 Norriton Business Campus - 58 EDU's Approved In 1988 ENPWJSA 5 N N N 5 20 14 4 Gorman Welding ENPWJSA 5 N N N 5 5 5 DeKalb Apartments - DeKalb Pike ENPWJSA 40 N N N 40	<u>IFI 1</u>
paid for for in 1998. The Bentwood Project received approval for 236 EDU's in 1998 Image: Construction of the second	1
TOTAL REQUESTED PRIORITY NO. 13402471Reserve @ Penn Crossing - Cutler - Remaining ConnectionENPWJSA3030 PMAY7830302Pimlico Farms - Gambone - Remaining ConnectionsENPWJSA1135 PMAYN1111183Norriton Business Campus - 58 EDU's Approved In 1988ENPWJSA2058 PMAYY28 Permits20144Gorman WeldingENPWJSA5NNN555DeKalb Apartments - DeKalb PikeENPWJSA40NNN40	1
Reserve @ Penn Crossing - Cutler - Remaining ConnectionENPWJSA3030 PMAY78.300Pimlico Farms - Gambone - Remaining ConnectionsENPWJSA1135 PMAYN.111Norriton Business Campus - 58 EDU's Approved In 1988ENPWJSA2058 PMAYY28 Permits201Gorman WeldingENPWJSA5NNN5DeKalb Apartments - DeKalb PikeENPWJSA40NNN40	
Reserve @ Penn Crossing - Cutler - Remaining ConnectionENPWJSA3030 PMAY78.300Pimlico Farms - Gambone - Remaining ConnectionsENPWJSA1135 PMAYN.111Norriton Business Campus - 58 EDU's Approved In 1988ENPWJSA2058 PMAYY28 Permits201Gorman WeldingENPWJSA5NNN5DeKalb Apartments - DeKalb PikeENPWJSA40NNN40	
2Pimlico Farms - Gambone - Remaining ConnectionsENPWJSA1135 PMAYN-1111113Norriton Business Campus - 58 EDU's Approved in 1988ENPWJSA2058 PMAYY28 Permits2014Gorman WeldingENPWJSA5NNN-55DeKalb Apartments - DeKalb PikeENPWJSA40NNN-40	
2Pimlico Farms - Gambone - Remaining ConnectionsENPWJSA1135 PMAYN-1111113Norriton Business Campus - 58 EDU's Approved in 1988ENPWJSA2058 PMAYY28 Permits2014Gorman WeldingENPWJSA5NNN-55DeKalb Apartments - DeKalb PikeENPWJSA40NNN-40	
2Pimlico Farms - Gambone - Remaining ConnectionsENPWJSA1135 PMAYN-1111133Norriton Business Campus - 58 EDU's Approved In 1988ENPWJSA2058 PMAYY28 Permits20144Gorman WeldingENPWJSA5NNN-55DeKalb Apartments - DeKalb PikeENPWJSA40NNN-40	-IR 2
3 Norriton Business Campus - 58 EDU's Approved in 1988 ENPWJSA 20 58 PMA Y Y 28 Permits 20 1 4 Gorman Welding ENPWJSA 5 N N N - 5 5 DeKalb Apartments - DeKalb Pike ENPWJSA 40 N N - 40	HR 2
4 Gorman Welding ENPWJSA 5 N N N - 5 5 DeKalb Apartments - DeKalb Pike ENPWJSA 40 N N N - 40	HR 2
	2
6 Waterworks - DeKalb Pike & Johnson Highway ENPWJSA 40 N N N A	2
	2
7 Northwood - Tornetta - Request to transfer from Bentwood Project approved EDU's ENPWJSA 120 N N N 120	2
8 Mobley Subdivision ENPWJSA 1 N N 1	2
TOTAL REQUESTED PRIORITY NO. 2 267 267	
1 Waterworks - DeKaib Pike & Johnson Highway ENPWJSA 26 N N N - 26	3
2 DeKalb Apartments - DeKalb Pike ENPWJSA 40 N N N - 40	3

East Norriton Township Connection Management

Last Revised:

06/25/05

PMA - Planning Module Approved PHR - Pump & Haul Request E - Exception Requested -Replacement Flow

	Development	DEP CODE	EDUs Required	Module Approved - Exception #	Subdivision or Land Development Plan Approved	EDU's Paid	Permits Issued or Existing EDU's or Replacement Flows	EDUs Needed	Pump & Haul	Priority
3	Miller Electric - End of Felton Rd	ENPWJSA	10	N	N	N	· ·	10	PHR	3
- 4	Piantone/Brance - Whitehall Road	ENPWJSA	20	N	N	N	3 Replacement	17	PHA	3
5	Del Markward - 911 W. Germantown Pk	ENPWJSA	55	N	N	N	•	55	PHR	3
6	Bentwood Flex Development - Remaining Project EDU's	ENPWJSA	28	Y	Y	N		28		3
- 7	District Court Office Building	ENPWJSA	15	N	N	N		15		3
8	Clements Meat Market - Old Arch Road	ENPWJSA	20	N	N	N	3 Replacement	17		3
9	FAILED SEPTIC SYSTEMS THROUGHOUT TWP	ENPWJSA	20	NA	NA	NA		20		3
10	NORTHWOODS - 150 CREDITED BACK TO BENTWOOD	ENPWJSA	240	N	N	N		240		З
	TOTAL REQUESTED PRIORITY NO. 3		474	<u> </u>				468		

	Priority 1	340	247
	Priority 2	267	267
	Priority 3	474	468
		1081	982
Definitions:			
Priority 1 - Connections desired ASAP		247	
Priority 2 - Connections desired between 6 months and 1 year		267	
Priority 3 - Connections desired beyond first year		468	

Plymouth Township Connection Management

Ross Street Interceptor Connections Only Last Revised:

06/28/05

Development	DEP CODE	EDUs		Subdivision or Land Development Plan Approved	Fee Paid	Permits Issued	EDUs Still Needed	Priority
500 Township Line Road (3,200 SF Commercial)	1-46944-189-E	2	Y	Y	N	N	2	1
Cusomono Tract (12 Single Famliy Lots)	ENPWJSA	12	N	N	N	N	12	2
Placitelli Tract (6 Single Family Lots)	ENPWJSA	6	N	N	N	N	6	2
Miller Tract (5 Single Family Lots)	ENPWJSA	5	N	N	N	N	5	2
		_25					25	

Priority 1 with Approved Planning Module	2	2
Remaining Priority 1	23	23
	25	25

Definitions:

: : ..

Priority 1 - Connections desired ASAP

Priority 2 - Connections desired between 6 months and 1 year

Priority 3 - Connections desired beyond first year

Revised

Whitpain Township Connection Management

Development	DEP Code #	EDUs	Planning Module Approved or Exemption	Subdivision or Land Development Plan Approved	Fee Paid	Permits Issued	EDUs Still Needed	Priorily
Latham Realty - Phase 1	1-46961-207-E	35	Y	Y	22	15	20	1
Amberley at Blue Bell (Phase I)	1-46961-228-E	88	Y	Y	Y	54	34	1
Better Living Homes	1-46961-224-3IJ	2	Y	Y	Υ	2	-	1
Breen Tract (3-Lots)	1-46961-236-E	2	Y	Y	N	-	2	1
Foxcroft 1 & II	1-46961-217-E	97	Y	Y	Υ	90	7	1
1905 - 1907 Skippack Pike	1-46961-102-4	2	Y	Y	Y	2		1
Phipps' Station	1-46961-223-E	16	Y	Conditional	N	-	16	1
630/646 Skippack Pk (Centre Sq. Assoc.)	1-46961-226-E	5	Y	Conditional	<u>N</u>	-	5	1
Penn Liberty Bank	N/A * (See Footnote 1)	2	N/A	Conditional	<u>N</u>		2	1
860 Penllyn Blue Bell Pike	N/A * (See Footnote 2)	11	Y	Conditional	N	-	11	1
Wawa - 202 & 73		24	N	Conditional	<u>N</u>	-	24	1
Tall Oaks (3 lots)	1-46961-232-3J	3	N	Conditional	N	-	3	1
MCCC Advanced Technology Center	1-46961-240-3J	27	N	Conditional	N		27	1
Miscellaneous Redevelopment / Infill		10	N	N	N	-	10	1
Amberley at Blue Bell (Phase II)	1-46961-225-3J	31	N	Conditional	N	-	31	2
Blue Bell Corp. Ctr 2004 (Unisys) Phase I		200	N	N	N	-	200	2
Kendrick Hill		9	N	N	N	-	9	2
Miscellaneous Redevelopment / Infill		25	N	N	N	-	25	2
Blue Bell Corp. Ctr 2004 (Unisys) Phase II		276	N	N	N	-	276	3
Latham Realty - Phase 2	1-46961-207-E	100	Y	Y	N	-	100	3
1950 Skippack Pike		11	N	Conditional	N	-	11	3
Kowalski - Mehr		20	N	N	N	-	20	3
1860 Skippack Pike		30	N	N	N		30	3
Anderson/Lake Tracts		33	N	N	N		33	3
Miscellaneous Redevelopment / Infill		50	N	N	N	· ·	50	3
			<u> </u>			1		Ť
		1109				163	946	

Priority 1 with Approved Planning Module **Remaining Priority 1**

EXHIBIT B.3 Revised

.

Whitpain Township Connection Management

Development	DEP Code #	Module Approved or	Subdivision or Land Development Plan Approved	Fee Paid	Permits Issued	EDUs Still Needed	Priority	
Priority 2						265		
Priority 3						520		
						946		
Priority 1 Issued Permits from DEP	Priority 1 Issued Permits from DEP 1st Release							
	Latham Realty - Phase	11						
	Better Living Homes	1						
	Foxcroft 1 & II	18	(Please See	Footnote	3)			
	1905-1907 Skippack F	2						
	Total		32					

Definitions:

Priority 1 - Connections desired ASAP

Priority 2 - Connections desired between 6 months and 1 year

Priority 3 - Connections desired beyond first year

Footnote (1) Project requires only 350 GPD of additional capacity

Footnote (2) Land development plan application approved 10/02/95 code number unavailable in file.

Footnote (3) - Please note that the original submittal was inaccurate regarding the number of permits issued for Foxcroft I & II. As of April 19, 2005, 37 units were under construction, but 35 units were already completed and occupied.

Therefore, permits issued should have been 72 and permits required should have been 25. Also, 18 EDUs were allocated from the first release, bringing the current number of required connections to 7.

EXHIBIT C

٦

)

)

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY

BASE SEWER SYSTEM MAP

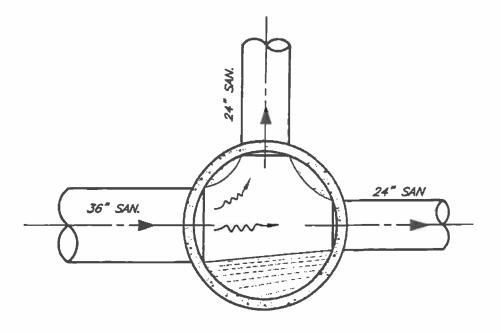
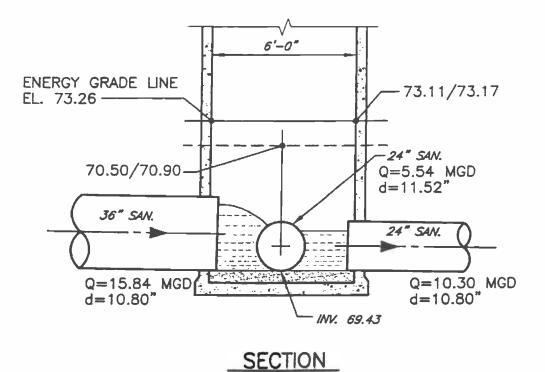

See Appendix D of this 537 Planning Document

EXHIBIT D


EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY

SAWMILL RUN INTERCEPTOR JUNCTION MANHOLE 11 AND SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

)

SECTIONAL PLAN

ARRO

ALC: No. of Concession, No.

the second se

per si neg

- Jippende

. 7

1

Suite 100, 649 North Lewie Road Umerick, Penneytvania 19468--1234 TeL 610--495--0303 EXHIBIT D

\$

SAWMILL RUN INTERCEPTOR JUNCTION MANHOLE 11

	;	1	3
			J

Computed By:	J. R. Jackson
Checked By:	
Sheet	

J

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

Sawmill Interceptor Design Flow =	Avg. Daily Flow (MGD) 7.054	Peaking Factor 2.2455	=		MGD	=	24.51			11,000 GP	
Plymouth Meter Design Flow =	1.062 8.116	2.99	= .			=	4.91	CFS	2	2,205 GP	M
A. FROM MAIN PUMP STATION WET	NELL TO MA	IN PUMP S	TATION EN	ITRANCE					T/WALL	61.42	
Description 1 Critical Depth at Channel Opening to Wetwell			"g" (fl/sec^2) 32.2	Width (feet) 3.17	Flow (MGD) 9.19	Flow/Width (cfs/ft) 4.49	Depth (feet) 0.86	inv. El. (feet) 57.37	Level, El. (feet) 58.23	EGL (feet) 58.23	
2 Backwater Calculation in Effluent Channe	Depth of Flow (feet) 0.8551 1.0095 Delta He (feet)	Width of Channel (feet) 3.17 3.17 "n" Factor	Area of Flow (ft^2) 2.71 3.20 Friction Slope, S (ft/ft)	Wetted Perimeter (feet) 4.88 5.19 Average S (ft/ft)	Hydraulic Radius, R (feet) 0.56 0.62 Exist slope of channet (ft/ft)	R^1.3333 0.457 0.525 Exist Slope - Avg. Slope (ft/ft)	Flow (MGD) 9.19 9.19 Length of Reach (feet)	Mean Velocity (fps) 5.25 4.44 Depth of Flow aU Upstream Point (feet)	Level, El. (feet)	Specific Energy, He (feet) 1.2824 1.3161 EGL (feet)	
	-0.0337	0.013 0.013	0.004609 0.002877	0.003743	0.000000	-0.003743 Reach =	9.00 9.00 Gri	1.01 nder Depth Dov		58.44 1.01 ft.	= 12.11 in.
					Flow (MGD)	Flow (gpm)		Head Upstream (in)	Channel Invert	EGL (feel) 58.44	Overflow = 2.33 in.
3 Channel Monster Headloss (MODEL NO. 4010)					9.19	6,382		39.00 Grinder Depth I	57.43 Upstream =	60.68 Ov 3.25 ft,	erflows Weir, Need To Flow Balance = 39.00 in.

May 2005

6/30/05 17:00

Date: Project No:

Proj. Name:

Date:	May 2005	
Project No:		
Proj. Name:		
	6/30/05 17:00	

Computed By:	J. R. Jackson
Checked By:	
Sheet:	

s al sa a ser a sur la la la j

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

4 Flat Weir Plate without End Contractions		Length (feet) 3.17			Flow (MGD) 0.63 0.02000	Water Height, h (in) 2.46		Top of Weir, El. (feet) 60.48	Water Level, El. (feet) 60.69	EGL (feet) 60,69
5 Backwater Calculation in Influent Channet From Grinder To Flow Intersection	Depth of Flow (feet) 3.176604 3.1777 Deita	Width of Channel (feet) 3.17 3.17 "n"	Area of Flow (ft*2) 10.07 10.07 Friction	Wetted Perimeter (feet) 9.52 9.53 Average	Hydraulic Radius, R (feet) 1.06 1.06 Exist slope	R^1.3333 1.077 1.077 Exist Slope	Flow (MGD) 9.19 9.19 Length of	Mean Velocity (fps) 1.41 1.41 Depth of Flow at	•	
	He (feet) -0.0010	Factor 0.013 0.013	Slope, S (ft/ft) 0.000142 0.000141	S (ft/ft) 0.000142	of channe! (ft/fl) 0.000000	- Avg. Slope (ft/ft) -0.000142 Reach =	Reach (feel) 7.25 7.25	Upstream Point (feet) 3,18	Levei, El. (feet) 57.50	EGL (feet) 60.68
	Depth of Flow (feet)	Width of Channel (feet)		"K" Factor	Flow (MGD)	Velocily (fps)	Kinelic Energy (fl)	Minor Head Loss (ft)		EGL (feet) 60,68
6 Flow Bend Loss	3.18	4.00		0.25	9.19	1.12	0.02	0.00		60,68
1 Performance de la companya de la c	Depth of Flow (feet)	Width of Channel (feet)	Area of Flow (fl^2)	Wetted Perimeter (feet)	Hydraulic Radius, R (feel)	R^1.3333	Flow (MGD)	Mean Velocity (fps)	Kinetic Energy (ft)	Specific Energy, He (feet)
7 Backwater Calculation in Influent Channel From Bend to Flow Intersection	3,182509 3,1832 Delta	4.00 4.00 "n"	12.73 12.73 Friction	10.37 10.37 Average	1.23 1.23 Exist slope	1.315 1.315 Exist Slope	9,19 9,19 Length of	1.12 1.12 Depth of Flow at	0.02 0.02 Jpstream Floo	3.20 3.20 r
	He (feet) -0.0006	Factor 0.013 0.013	Slope, S (ft/ft) 0.000073 0.000073	S (fl/fl) 0.000073	of channel (fl/fl) 0.000000	- Avg. Slope (ft/ft) -0.000073 Reach =	Reach (feet) 8.83 8.83	Upstream Point (feet) 3.18	Level, El. (feet) 57.50	EGL (feet) 60.68
	Depth of Flow (feet)	Width of Channel (feet)		"K" Factor	Flow (MGD)	Velocity (fps)	Kinetic Energy (fl)	Minor Head Loss (ft)		EGL (feet)
8 Flow Intersection Loss (Branch Flow)	3,18	4.00		0.90	19.01	2.31	0.08	0.07		60.68 60.76

- 1

Date:	May 2005	_
Project No:		
Proj. Name:		_
	6/30/05 17:00	

;

2

.

ومستر

Computed By:	J. R. Jackson
Checked By:	
Sheet.	

4

1

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

ARRO

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

8.	FR	OM MAIN WWTP PUMP STATION	ENTRANCE Diameter (inches)	TO DIVE Length (feel)	RSION CHA "C" Factor	MBER DS-4 "K" Factor	Flow (MGD)	Velocily (fps)	Kinetic Energy (fl)	Minor Head Loss (fi)	T/MH Friction Head Loss (fl)	74.00 EGL (feet) 60.76
	1	Manhole Exit	36			1.00	19.01	4.16	0.27	0.27		61.03
	2	Ductile Iron Pipe	36	23	100		19.01				0.05	61.08
	3	90 Deg. Bend	36			0.60	19.01	4.16	0.27	0.16		61.24
	4	Ductile fron Pipe	36	10	100		19.01				0.02	61.27
	5	Entrance	36			0.50	19.01	4,16	0.27	0.13		81.40
	6 He	adwater Calculation at Pipe Entrance	Diameter (inches) 36				Flow (MGD) 19.01	Flow (cfs) 29.42	Hw/D (from chart) 0,88	Headwater (feel) 2.64	Pipe Invert 58.08	EGL (feet) 60.72
C,	FR	COM DIVERSION CHAMBER DS-4	TO MANHO	LE MH1A					0.0230		Т/МН	75.33

		Diameter	Length	"C"	"K"	Flow	Velocity	Kinetic	Minor Head	Friction Head	EGL	
	Description	(inches)	(feet)	Factor	Factor	(MGD)	(fps)	Energy (fl)	Loss (fl)	Loss (fi)	(feet)	
											61.4	0
2	Manhole Entrance (Figure 8-11)	24			1.65	3.18	1.56	0.04	0.06		61.4	6
1	Ductile Iron Pipe	24	20	100		3,18				0.01	61.4	8
	-											Flow Full PipeFull Pipe
		n	1,486/n	Diameter	Length	Invert Down	Invert Up	Slope, S	S^0.50	Hydraulic	Rh^.667	Velocity, V Area, A Flow, Q Flow, Q
- 4	Check Full Pipe Flow			(inches)	(feet)	(feet)	(feet)	•		Radius, Rh		(fps) (f1^2) (cfs) (MGD)
	Velocity, V=(1.488/n)*(Rh)^(0.687)*(S)^(0.5)	0.013	114.308	24.00	100.00	62.21	58.08	0.0413	0.203	0,500	0.630	14.631 3.142 45.964 29.706

5	Partial Pipe Flow Depth			Diameter (inches) 24.00		Actual Flow, q (MGD) 3.18	q/Q 0.11	d/D 0. 22	Flow Depth, d (in) 5.28		
6	Pipe Partial Depth Flow Area (Down)	Headwater (feet) 0.4400	Diameter (feet) 2.00	Radius (feet) 1.00	Chord (feet) 1.66	Interior Angle (degrees) 111.89	Arc (feet) 1.95	Flow Area (fl^2) 0.51	Actual Velocity (fps) 9.59	Kinetic Energy (fl) 1.43	EGL, down (feet) 64.08
7	Pipe Partial Depth Flow Area (Up)	Headwater (feet) 0.4400	Diameter (feet) 2.00	Radius (feet) 1.00	Chord (feet) 1.66	Interior Angle (degrees) 111.89	Arc (feet) 1.95	Flow Area (ft^2) 0.51	Actual Velocity (fps) 9.59	Kinetic Energy (ft) 1.43	EGL, up (fee!) 64.08

Date:	May 2005
Project No:	
Proj. Name:	
	6/30/05 17:00

!

1

Computed By:	J. R. Jackson
Checked By:	
Sheet:	

the second transferred production of the second second second second second second second second second second

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

D.	F	ROM MANHOLE MH1A TO MANHO	DLE MH2								т/мн	75.33		Flow	Full Pine	Full Pipe
	1	Check Full Pipe Flow	n	1.486/n	Diameter (inches)	Length (feet)	Invert Down (feet)	Invert Up (feet)	Stope, S	S^0.50	Hydraulic Radius, Rh	Rh^.667	Velocity, V			
	'	Velocity, V=(1.486/n)*(Rh)^(0.667)*(S)^(0.5)	0.013	114,308	24.00	93.00	66.05	62.21	0,0413	0.203	0.500	0.630	14.629	3 142	45,958	29.703
	2	Partial Pipe Flow Depth			Diameter (inches) 24.00		Actual Flow, q (MGD) 3.18	q/Q 0.11	d/D 0.22	Flow Depth, d (in) 5.28						
	3	Pipe Partial Depth Flow Area (Down)	Headwater (feet) 0.4400	Diameter (feet) 2.00	Radius (feet) 1.00	Chord (feet) 1.66	Interior Angle (degrees) 111.89	Arc (feet) 1.95	Flow Area (ft^2) 0.51	Actual Velocity (fps) 9.59	Kinetic Energy (ft) 1,43	EGL, down (feel) 67.92				
	4	Pipe Partial Depth Flow Area (Up)	Headwater (feet) 0.4400	Diameter (feet) 2.00	Radius (feet) 1.00	Chord (feet) 1,66	Interior Angle (degrees) 111.89	Arc (feet) 1.95	Flow Area (ft^2) 0.51	Actual Velocity (fps) 9.59	Kinetic Energy (ft) 1.43	EGL, up (feet) 67.92				
Ε.	I	FROM MANHOLE MH2 TO PLYMO	UTH METERI	NG CHAME	BER						T/MH	75.76		Flow	Full Plp	eFull Pipe
	1	Check Full Pipe Flaw Velocity, V=(1.486/n)*(Rh)^(0.667)*(S)^(0.5)	n 0.013	1.486/n 114.308	Diameter (inches) 24.00	Length (feet) 189.00	Invert Down (feet) 66.86	Invert Up (feet) 66.05	Slope, S 0.0043	S^0.50 0.065	Hydraulic Radius, Rh 0.500	Rh^.667 0.630	Velocity, V (fps) 4.713	Area, A (ft^2) 3.142	(cſs)	Flow, Q (MGD) 9.569
	2	Partial Pipe Flow Depth			Diameter (inches) 24.00		Actual Flow, q (MGD) 3,18	q/Q 0.33	d/D 0. 39	Flow Depth, d (in) 9.36	Flow Depth, d (ft) 0.78	EGL (feet) 67.64	1			
	3	Pipe Partial Depth Flow Area (Down)	Headwater (feet) 0,7800	Diameter (feet) 2.00	Radius (feet) 1.00	Chord (feet) 1.95	Interior Angle (degrees) 154.58	Arc (fest) 2.70	Flow Area (ft^2) 1.13	Actual Velocity (fps) 4.33	Kinetic Energy (ft) 0.29	EGL, down (feet) 67.93	I			
	4	Pipe Partial Depth Flow Area (Up)	Headwater (feet) 0.7800	Diameter (leet) 2,00	Radius (feet) 1.00	Chord (feet) 1.95	Interior Angle (degrees) i 154.58	Arc (feet) 2.70	Flow Area (ft^2) 1.13	Actual Velocity (fps) 4.33	Kinetic Energy (ft) 0.29	EGL, up (feel) 67.93				
F.		FROM PLYMOUTH METERING CH	AMBER TO N	ANHOLE I	MH						Т/МН	74.75				
	1	Description Parshall Flume - 9" Throat	Throat Width, ft. 0.75	Constant Power, n 1.530	"K" Faclor 3.07	Flow <u>(</u> MGD) 3.18	Flume Level Floor, El. (feet) 67.20	Upstream Head, Ha (ft) 1.36	Flume Low Point, El. (feet) 66.83	Downstream Head, Hb (ft) 1.07	Submergence Ratio, Hb/Ha 0.783 Flume In Subr Use Submerg		dition			

Date:	May 2005	
Project No:		
Proj. Name:		
	6/30/05 17:00	-

Ţ

Computed By:	J. R. Jackson
Checked By:	_
Sheet:	
Silest.	

2 d da 4

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW # 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

G.	FR	COM DIVERSION CHAMBER DS-4	TO ENW ME Diameter (inches)	ETERING CI Length (feet)	HAMBER "C" Factor	"K" Factor	Flow (MGD)	Velocity (fps)	Kinetic Energy (ft)	Minor Head Loss (ft)	T/MH Friction Head Loss (ft)	72.50 EGL (feet)
	1 2	Manhole Entrance (Figure 8-11) Ductile Iron Pipe	36 36	20	100	1.85	15.84 15.84	3.47	0,19	0.35	0.03	61.40 61.75 61.78
н.	FF	ROM ENW METERING CHAMBER	TO TRANSI								т/мн	73.71
			Width (inches)	Floor, El. (feet)	Depth (feet)	"K" Factor	Flow (MGD)	Velocity (fps)		Minor Head Loss (ft)	Friction Head Loss (ît)	EGL (feet) 61.78
	1	Confusor from Parshail Flume Throat	36	58.21	3.57	0 20	15.84	2.29		0.09		61.87
	2	Description Parshall Flume - 24" Throat	Throat Width, ณ. 2.00	Constant Power, n 1,550	"K" Faclor 8.00	Flow (MGD) 15.84	Flume Level Floor, El. (feet) 58.79	Upstream Head, Ha (R) 2.06	Fiume Low Point, El. (feel) 58.04	Downstream Head, Hb (ft) 3.96		EGL (feet) 60.85 erged Condition d Discharge Table
			Width (inches)	Depth (feet)		"K" Factor	Flow (MGD)	Velocity (fps)		Minor Head Loss (fl)	Friction Head Loss (ft)	EGL (feet) 61,87
	3	Difusor into Parshall Flume Throat	24	2.06		0.39	15.84	5.95		0.18		62.06
			Diameter (inches)	Length (feat)	"C" Factor	"K" Factor	Flow (MGD)	Velocity (fps)	Kinetic Energy (ft)	Minor Head Loss (fl)	Friction Head Loss (fl)	EGL (feet) 62.06
	4	Ductile from Pipe	36	30	100		15.84				0.05	62.11
١.	F	ROM TRANSITION PIT TO INLET O									T/MH	72.54
		Description	Diameter (inches)	Length (feet)	"C" Factor	"K" Factor	Flow (MGD)	Velocity (fps)	Kinetic Energy (fl)	Minor Head Loss (fl)	Friction Head Loss (ft)	EGL (feet)
	1 2	Manhole Loss (@ Transition Pit) Ductile Iron Pipe	36 24	98	100	0.10	15.84 7.92	3.47	0.19	0.02	0.33	62.11 62.12 62.45
	4 +	leadwater Calculation at Pipe Entrance	Diameter (inches) 24				Flow (MGD) 7.92	Flow (cfs) 12.25	Hw/D (from chart) 0.97	Headwater (feet) 1,94	Pipe Invert 59.13	EGL (feet) 61.07

Date:	May 2005	
Project No:		
Proj. Name:		
	6/30/05 17:00	

Computed By: _	J. R. Jackson
Checked By:	
Sheet:	

i

· 1

1

.. ..

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

1		Diameter (inches) 24	Length (feet)	"C" Factor	"K" Factor 1.30	Flow (MGD) 10.30	Velocity (fps), 5.08	Kinetic Energy (ft) 0,40	Minor Head Loss (ft) 0.52	T/MH Friction Head Loss (ft)	78.08 EGL (feet) 62.45 62.97		
2	Ductile Iron Pipe	24	30	100		10.30				0.16	63,13		
к	FROM MANHOLE MH-1A TO MANH Description	Diameter (inches)	Length (feet)	"C" Factor	''K'' Factor	Flow (MGD)	Velocity (fps)	Kinetic Energy (fl) 0,40	Minor Head Loss (ft) 0.42	T/MH Friction Head Loss (fl)	69.86 EGL (feet) 63.13 63.55		
2	Anhole Loss @ MH-1A (Fig. 8-15; 90 dec Ductile from Pipe	24 24	145	100	1.04	10,30 10,30	5.08	0,40	0.42	0.79	64,33		
L. 1 2	FROM MANHOLE MH-2B TO MANH Description Manhole Loss @ 2B (Fig. 8-15; 90 deg) Ductile iron Pipe	IOLE MH-3A Diameter (inches) 24 24	Length (feet) 126	"C" Factor 100	۳K۳ Factor 1.04	Flow (MGD) 10.30 10.30	Velocity (fps) 5.08	Kinetic Energy (ft) 0,40	Minor Head Loss (î) 0.42	T/MH Friction Head Loss (fl) 0.68	65.00 EGL (feet) 64.33 64.75 65.43		
	FROM MANHOLE MH-3A TO MANH Description Manhole Loss @ 3A (Fig. 8-15; 65 deg) Ductile Iron Pipe	IOLE MH-4A Diameter (inches) 24 24	Length (feet) 49	"C" Factor 100	"K" Factor 0.56	Flow (MGD) 10,30 10.30	Velocity (fps) 5.08	Kinetic Energy (ft) 0.40	Minor Head Loss (ft) 0.22	T/MH Friction Head Loss (fi) 0.27	64.93 EGL (feel) 65.43 65.66 65.92	HGL (feet) 65.43	Manhole Overflows
	FROM MANHOLE MH-4A TO MANH Description 1 Manhole Loss @ 4A (Fig. 8-15; 30 deg) 2 Ductile Iron Pipe	IOLE MH-5A Diameter (inches) 24 24	Length (feet) 165	"C" Factor 100	"К" Factor 0,16	Flow (MGD) 10.30 10.30	Velocity (fps) 5.08	Kinetic Energy (ft) 0.40	Minor Head Loss (fl) 0.06	T/MH Friction Head Loss (ft) 0.89	69.16 EGL (feet) 65.92 65.99 66.88		
	FROM MANHOLE MH-5A TO MANH Description 1 Manhole Loss @ 5A (Fig. 8-15; 23 deg) 2 Ductile Iron Pipe	HOLE MH-6A Diameter (inches) 24 24	Length (feet) 186	"C" Factor 100	"K" Factor 0.10	Flow (MGD) 10.30 10.30 Prop 6 of 30	Velocity (fps) 5.08	Kinetic Energy (ft) 0.40	Minor Head Loss (fl) 0.04	T/MH Friction Head Loss (fl) 1.01	76.30 EGL (feet) 66.88 66.92 67.93		

ARRO	

Date: May 2005
Project Na;
Proj. Name:
6/30/05 17:00

1

5

Computed By:	J, R. Jackson
Checked By:	
Sheel:	

En la construction de la constru

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

Ρ.		FROM MANHOLE MH-6A TO MANH(Description Manhole Loss @ 6A (Fig. 8-15; 14 deg)	DLE MH-7A Diameter (inches) 24	Length (feet)	"C" Factor	"K" Factor 0.05	Flow (MGD) 10.30	Velocity (fps) 5.08	Kinetic Energy (ft) 0.40	Minor Head Loss (fl) 0.02	T/MH Friction Head Loss (ft)	82.00 EGL (feet) 67.93 67.95
	2		24	152	100	0.00	10.30	5.00	0.10		0.82	68,77
Q.		FROM MANHOLE MH-6A TO MANH	OLE MH-7A								т/МН	81.00
		Description	Diameter (Inches)	Length (feet)	"C" Factor	"K" Factor	Flow (MGD)	Velocity (fps)	Kinetic Energy (ft)	Minor Head Loss (R)	Friction Head Loss (ft)	EGL (feet) 68,77
	1 2	Manhole Loss @ 7A (Fig. 8-15; 30 deg) Ductile Iron Pipe	24 24 .	96	100	0.16	10,30 10.30	5.08	0.40	0.06	0.52	68,84 69,36
R.		FROM MANHOLE MH-7A TO MANH									т/мн	80.20
		Description	Diameter (inches)	Length (feet)	"C" Factor	"K" Factor	Flow (MGD)	Velocity (fps)	Kinetic Energy (ft)	Minor Head Loss (R)	Friction Head Loss (ft)	EGL (feel) 69,36
	12	G	24 24	128	100	0.05	10.30 10.30	5.08	0.40	0.02	0.69	69.38 70.07
S .		FROM MANHOLE MH-8A TO MANH	OLE MH-9A								т/мн	78.73
		Description	Dlameter (inches)	Length (feet)	"C" Factor	"K" Factor	Flow (MGD)	Velocity (fps)	Kinelic Energy (ft)	Minor Head Loss (fl)	Friction Head Loss (fl)	EGL (feet) 70.07
	1 2	(, , , , , , , , , , , , , , , , , , ,	24 24	62	100	0.08	10.30 10.30	5.08	0.40	0.03	0.34	70.10 70.44
Ŧ.		FROM MANHOLE MH-9A TO MANH	IOLE MH-10								Т/МН	78.73
		Description	Diameter (inches)	Length (feet)	"C" Factor	"K" Factor	Flow (MGD)	Velocity (fps)	Kinetic Energy (ft)	Minor Head Loss (ft)	Friction Head Loss (ft)	EGL (feet) 70.44
	1 2	45 · · · (· · · · · · · · · · · · · · · ·	24 24	26	100	0.21	10.30 10.30	5.08	0.40	0.08	0.14	70.52 70,66
U.		FROM MANHOLE MH-10 TO MANH	OLE MH-11A	4							т/МН	79.42
		Description	Diameter (Inches)	Length (feel)	"C" Factor	"K" Factor	Flow (MGD)	Velocity (fps)	Kinetic Energy (ft)	Minor Head Loss (R)	Friction Head Loss (ft)	EGL (feet) 70.66
	1 2		24 24	15	100	0.82	10.30 10.30	5.08	0.40	0.33	0.08	70.88 70.99 71.07

i. 5

Computed By:	J. R. Jackson
Checked By:	
Sheet:	

الأربان والمحافظ المحافظ المحافظ

id.

ARRG

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

٧.	FROM MANHOLE MH-11A TO MAN	HOLE MH-11								Т/МН	79.65		-		5
1	Description Find Full Pipe Flow Velocity, V=(1.486/n)*(Rh)*(0.687)*(S)*(0.5)	n 0.013	1.486/n 114.308	Diameter (inches) 24.00	Length (feet) 15.00	Invert Down (feel) 69.02	Invert Up (feet) 69.43	Slope, S 0.0273	\$^0.50 0.165	Hydraulic Radius, Rh 0.500	Rh^.667 0.630	Velocily, V (fps) 11.902	Area, A I (fl^2)	Full Pipe Flow, Q (cfs) 37.393	(MGD)
2	Find Partial Pipe Flow Depth			Diameter (inches) 24.00	Actual Flow, (MGD) 10.300	q Actual Flow, q (cfs) 15.94	q/Q 0.43	Theoretical d/D 0.45		Flow Depth, d I (in) 10.60	Flow Depth, c (ft) 0,90	I			
3	Find Critical Depth		Diameler (feet) 2.00	Radius (leet) 1.00	Chord (feet) 1.82	Interior Angle (degrees) 131.59	Arc (feet) 2.30	Flow Area (f1^2) 2.37	Actual Flow, q (cfs) 15.94	Critical Depth, dc (in) 16.92	Critical Depth, dc (feet) 1.41 Flow Supers	criticai			
	11A-11	Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feet)	Flow Area (ft^2)	Actual Velocity (fp s)	Kinetic Energy (ft) d =	EGL, up (feet) 71.07	,			
4	EGL (Up)	0.90	2.00	1.00	1.99	168.52	2.94	1.37	11.62	2.10	73,17	MH Inver	t Needs L	owered.	
					"K" Factor	Flow (MGD)		Kinetic Energy (fl)	Minor Head Loss (ft)		EGL (feet) 73.26	5			
!	5 Manhole Loss (Fig. 8-15; 20 Deg)				0.18	0.00		0.83	0.15		73,11				
	11-11B	Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feet)	Flow Area (ft^2)	Actual Velocity (fps)	Kinetic Energy (ft) d =	EGL, up (feet) 70.33				
I	5 EGL (Down)	0.90	3.00	1.50	2.75	132.84	3.48	1.78	13.74	2.93	73.26				
W.	FROM INLET DISTRIBUTION CHA	MBER DS-5 T	O MANHO	LE MH-1						т/мн	70,08				
	Description	Diameter (inches)	Length (feet)	"C" Factor	"K" Factor	Flow (MGD)	Velocity (fps)	Kinetic Energy (ft)	Minor Head Loss (fl)	Friction Head Loss (ft)	EGL (feet) 62.45				
:	1 Manhole Loss @ DS-5 (Fig. 8-13) 2 Ductile Iron Pipe	24 24	10	100	1.12	5.54 5,54	2.73	0.12	0.13	0.02	62.58 62.60				
X .	FROM MANHOLE MH-1 TO MANH									т/мн	69.86				
	Description	Diameter (inches)	Length (feet)	"C" Factor	"K" Factor	Flow (MGD)	Velocity (fps)	Kinetic Energy (ft)	Minor Head Loss (ft)	Friction Head Loss (ft)	EGL (feet) 62,60	HGL (feet)			
	1 Manhole Loss @ 1 (Fig. 8-15; 90 deg) 2 Ductile Iron Pipe	24 24	155	100	1.04	5.54 5.54	2.73	0,12	0,12	0.27	62.72 62.99	62.60	ок		

Page 8 al 30

1

a. ..

Date: Project No:

Proj. Name:

[

May 2005

6/30/05 17:00

Date:	May 2005
Project No:	
Proj. Name:	
	6/30/05 12:00

÷

1

ARRO

Computed By:	J. R. Jackson
Checked By:	
Sheet:	

ł

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

Y. FROM MANHOLE MH-2 TO MAN Description	HOLE MH-2A Diameter (inches)	Length (feet)	"C" Factor	"K" Factor	Flow (MGD)	Velocity (fps)	Kinetic Energy (fl)	Minor Head Loss (fl)	T/MH Friction Head Loss (fl)	65.00 EGL (feet) 62.99	HGL (feet)			
1 Manhole Loss @ 2 (Fig. 8-15; 90 deg 2 Ductile Iron Pipe) 24 24	94	100	1.04	5.54 5.54	2.73	0.12	0.12	0.16	63.11 63.27	62.99	ок		
Z. FROM MANHOLE MH-2A TO MA Description	NHOLE MH-3 Diameter (Inches)	Length (feel)	"C" Factor	"K" Factor	Flow (MGD)	Velocity (fps)	Kinetic Energy (ft)	Minor Head Loss (fl)	T/MH Friction Head Loss (fl)	65.50 EGL (feei)	HGL (feel)			
1 anhole Loss @ 2A (Fig. 8-15; Straight 2 Ductile Iron Pipe	Fhi 24 24	53	100	0.02	5.54 5.54	2.73	0.12	0.00	0.09	63.27 63.27 63.36	63.27	ок		
AA. FROM MANHOLE MH-3 TO MAN Description	HOLE MH-4 Diameter (inches)	Length (feet)	"C" Factor	"K" Factor	Flow (MGD)	Velocity (fps)	Kinetic Energy (ft)	Minor Head Loss (fl)	T/MH Friction Head Loss (fl)	(feet)	HGL (feet)			
1 Manhole Loss @ 3 (Fig. 8-15; 65 deg) 24			0.56	5.54	2.73	0.12	0.06		63.36 63.43	63.36	ок		
AB. FROM MANHOLE MH-4 TO MAN	HOLE MH-5								т/мн	68.90		Flow	Full PipeFu	ull Pipe
Description 1 Find Full Pipe Flow Velocity, V=(1.488/n)*(Rh)^(0.667)*(S)^(0.	n i) 0.013	1.486/n 114.308	Diameter (inches) 24.00	Length (feet) 30.00	Invert Down (feel) 60,41	Invert Up (feet) 61.50	Slope, S 0.0363	S^0.50 0.191	Hydraulic Radius, Rh 0.500	Rh^.667 0.630	Velocity, (fps) 13,723	V Area, / (ft^2) 3.142	(cfs) (l	MGD)
2 Find Partial Pipe Flow Depth			Diameter (inches) 24.00	Actual Flow, (MGD) 5.539	q Actual Flow, q (cfs) 8,57	q/Q 0.20	Theoretical d/D 0,31		Flow Depth, d (in) 7.44	Flow Depth, (ft) (ft) 0.62	d			
3 Find Critical Depth		Diameter (feet) 2.00	Radius (feet) 1.00	Chord (feel) 2.00	Interior Angle (degrees) 177.49	Arc (feet) 3.10	Flow Area (fl^2) 1.53	Actual Flow, q (cfs) 8.57	Critical Depth, dc (in) 11.74	Critical Depth, dc (feet) 0.98 Flow Super	critical			

Date:	May 2005	
Project No;		
Proj. Name:		
	6/30/05 17:00	

1

ARRO

ا المبر خ	an end of the second		
Computed By:	J. R. Jackson		
Checked By: Sheet:			

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

	3-4	Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feet)	Flow Area (ft^2)	Actual Velocity (fps)	Kinetic Energy (ft) d =	EGL, up (feet) 63,43
4	EGL (Up)	0.62	2.00	1.00	1.85	135.33	2.36	0.83	10.33	1.66	65.08 OK
					"K" Factor	Flow (MGD)		Kinetic Energy (ft)	Minor Head Loss (R)		EGL (feel) 66.48
5	Manhole Loss (Fig. 8-15; 23 Deg)				0.10	5,54		0.26	0.03		66.45
		Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feet)	Flow Area (ft^2)	Actual Velocity (fps)	Kinetic Energy (ft)	EGL, up (feet)
6	4-5 EGL (Down)	0.66	2.00	1.00	1.88	140.25	2.45	0.90	9.48	d ≕ 1.40	65.08 66.48

AC.	FROM MANHOLE MH-5 TO MANH	OLE MH-6								T/MH	75.80				
1	Description Find Fuli Pipe Flow Velocity, V=(1.488/n)^{(Rh)^{(0.687)*(S)^(0.5)	n 0.013	1.486/n 114.308	Diameter (inches) 24.00	Length (feet) 153.00	inverl Down (feet) 61.50	Invert Up (feet) 65.72	Slope, S 0.0276	S^0.50 0.166	Hydraulic Radius, Rh 0.500	Rh^.667 0.630	Velocity, V (fps) 11.956		Flow, Q (cfs)	Full Pipe Flow, Q (MGD) 24.276
2	Find Partial Pipe Flow Depth			Diameter (inches) 24.00	Actual Flow, (MGD) 5.539	q Actual Flow, q (cfs) 8.57	q/Q 0.23	Theoretical d/D 0.33		Flow Depth, d (in) 7.92	l Flow Depth, ((ft) 0.66	ł			
3	Find Critical Depth		Diameter (feet) 2.00	Radius (feet) 1.00	Chord (feet) 2.00	Interior Angle (degrees) 177,49	Arc (fee!) 3,10	Flow Area (ft^2) 1.53	Actual Flow, q (cfs) 8.57	Critical Depth, dc (In) 11.74	Critical Depih, dc (feet) 0.98 Flow Super	critical			
4	4-5 EGL (Up)	Flow Depth, d (feet) 0.66	Diameter (feet) 2.00	Radius (feet) 1.00	Chord (feet) 1,88	Interior Angle (degrees) 140.25	Arc (feet) 2.45	Flow Area (fl^2) 0.90	Actual Velocity (fps) 9.48	Kinetic Energy (fl) d = 1.40) MH Inve	rt Needs	Lowered	
5	Manhole Loss (Fig. 8-15; 23 Deg)				"K" Factor 0.10	Flow (MGD) 5,54		Kinetic Energy (ft) 0.96	Minor Head Loss (fl) 0.10		EGL (feet) 67.18 67.09				
6	5-6 EGL (Down)	Flow Depth, d (feet) 1.02	Diameter (feet) 2.00	Radius (feet) 1.00	Chord (feet) 2.00	Interior Angle (degrees) 177,71	Arc (feet) 3.10	Flow Area (ft^2) 1,61	Actual Velocity (fps) 5.33	Kinetic Energy (ft) d = 0,44	EGL, up (feet) 66.74 67.18				
xhihit D							0.10		0.00	0.44	07.10				

Page 10 of 30

Exhibit D

Date:	May 2005	
Project No:		
Proj. Name:		
	6/30/05 17:00	

ARRU

Computed By:	J, R. Jackson
Checked By:	
Sheet:	

I a serie l'anna l'anna a serie l'anna l

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

AD.	FROM MANHOLE MH-5 TO MANHO	DLE MH-6								T/MH	82.00				
														•	Full Pipe
	Description	n	1.486/n	Diameter	Length	Invert Down	Invert Up	Slope, S	\$^0.50	Hydraulic	Rh ⁴ .667	Velocity, V			
1	Find Full Pipe Flow			(inches)	(feet)	(feel)	(feet)			Radius, Rh		(fps)	(ft^2)	(cfs)	(MGD)
	Velocity, V=(1.486/n)*(Rh)^(0.667)*(S)^(0.5)	0.013	114.308	24.00	189.00	65.72	66.68	0.0051	0.071	0.500	0.630	5.131	3.142	16,119	10,418
				Diameter	Actual Flow, o	a Actual Flow, g		Theoretical		Flow Depth, d	Flow Depth, c	t			
				(inches)	(MGD)	(cfs)	q/Q	d/D		(in)	(fl)				
2	Find Partial Pipe Flow Depth			24.00	5.539	8.57	0.53	0.51		12.24	1.02				
										Critical	Critical				
			Diameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Flow, q		Depth, dc				
			(feet)	(feet)	(feet)	(degrees)	(feet)	(11^2)	(cfs)	(in)	(feet)				
3	Find Critical Depth		2.00	1,00	2.00	177.49	3.10	1.53	8.57	11.74	0.98				
			2.00	1,00	2.00	177.45	3.10	1.55	0.01	11.74	Flow Subcri	tical			
		Flow Depth, d	Diameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Velocity	Kinetic	EGL, up				
		(feet)	(feet)	(feel)	(feet)	(degrees)	(feet)	(ft^2)	(fps)	Energy (fl)	(feet)				
	5-6	(,,	(ieei)	(icel)	(ieei)	(degrees)	(ieel)	(11 2)	(ips)	chergy (n) d ≃					
4		1.02	2.00	1.00	2.00	177.71	2.40	4.04	5.33		68.14				
		1.02	2.00	1.00	2.00	177.71	3.10	1,61	5.33	0.44	00.14	UK			
					"K"	Flow		Kinetic	Minor Head		EGL				
					Factor	(MGD)		Energy (ft)	Loss (ft)		(feet)				
						···-/					68,14	L			
5	Manhole Loss (Fig. 8-15; 14 Deg)				0.05	5.54		0.02	0.00		68.14				
		Flow Depth, d	Diameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Velocity	Kinetic	EGL, up				
		(feet)	(feet)	(feel)	(feet)	(degrees)	(feet)	(ft^2)	(fps)	Energy (ft)	(feet)				
	6-7	((1001)	(100()	(1001)	(0091603)	(1001)	(14 27	(that	d =		,			
6		1.00	2.00	1.00	2.00	180.00	2.14	4 57	E 40	_					
		1.00	2.00	1.00	2.00	180.00	3.14	1,57	5.46	0.46	68,14				
AE.	FROM MANHOLE MH-6 TO MANH	OLE MH-7								T/MH	81.00				
										17IMIT	01.00		Eleve	E.H.Dia	eFull Pipe
	Description	n	1.486/n	Diameter	Length	Invert Down	Invert Up	Slope, S	S^0.50	1.1. set-moder	DL4 007	14-1-14-1			
1			1.4000	(inches)	-			Stupe, S	5.0.50	Hydraulic	Rh^.667	Velocity, \			
	Velocity. V=(1.485/n)*(Rh)*(0.687)*(S)*(0.5)	0.013	114,308	24.00	(feet) 178.00	(feet) 66.68	(feet)	0.0050		Radius, Rh		(fps)	(fl^2)	(cfs)	
		0.015	114.500	24.00	176.00	50.00	67.72	0.0058	0.076	0.500	0.630	5.503	3.142	17.288	11.173
				Diameter	Actual Flow,	q Actual Flow, q		Theoretical		Flow Depth, c	Flow Depth.	đ			
				(inches)	(MGD)	(cfs)	q/Q	d/D		(in)	(ft)	-			
	2 Find Partial Pipe Flow Depth			24.00	5.539	8.57	0.50	0,50		12.00	1.00				
							0.00			12.00	1,00				
			Disease	D						Critical	Critical				
			Diameter	Radius	Chord	Interior Angle	Arc		Actual Flow, q	Depth, dc	Depth, dc				
3	Eind Critical Douts		(feel)	(feet)	(feet)	(degrees)	(feel)	(ft^2)	(cfs)	(in)	(feet)				
	3 Find Critical Depth		2.00	1.00	2.00	177.49	3.10	1.53	8.57	11,74	0.98				
xhibit D											Flow Subcr	itical			
V JININ															

May 2005		
6/30/05 17:00	 _	

ţ

1

Date:

Project No:

Proj. Name:

J. R. Jackson Computed By: Checked By: Sheet:

i di anna di and Della anna

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

(feet)

(feet)

(feet)

	6-7	Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feet)	Flow Area (ft^2)	Actual Velocity (fps)	Kinelic Energy (ft) d =	EGL, up (feet) 68,72	
4	EGL (Up)	1.00	2.00	1.00	2.00	180.00	3.14	1.57	5,46	0.46	69.18	MH Invert Needs Lowered
					"K" Faclor	Flow (MGD)		Kinetic Energy (fl)	Minor Head Loss (fl)		EGL (feet) 69.18	
5	Manhole Loss (Fig. 8-15; 30 Deg)				0.16	5.54		0.02	0.00		69.18	
		Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feel)	Interior Angle (degrees)	Arc (feet)	Flow Area (fl^2)	Actual Velocity (fps)	Kinetic Energy (ft)	EGL, up (feet)	
6	7-8 EGL (Down)	1.02	2.00	1.00	2.00	177.71	3.10	1.61	5.33	d = 0,44	68.74 69.18	

AF.	FROM MANHOLE MH-7 TO MANHOL	.E MH-8							тин	80.20			
1	Description Find Full Pipe Flow Velocity, V=(1.488/n)*(Rh)*(0.867)*(S)*(0.5)	n 1.486/n 0.013 114.308	Diameter (inches) 24.00	Length (feet) 109.00	Invert Down (feet) 67.72	Invert Up (feet) 68.28	Slope, S 0.0051	S^0.50 0.072	Hydraulic Radius, Rh 0.500	Rh^.667 0.630	Velocity, V (fps) \$.160	Flow, C (cfs)	EFull Pipe Flow, Q (MGD) 10,477
2	Find Partial Pipe Flow Depth		Diameter (inches) 24.00	Actual Flow, ((MGD) 5.539	q Actual Flow, q (cfs) 8.57	q/Q 0.53	Theoretical d/D 0.51		Flow Depth, d (in) 12.24	Flow Depth, (fl) 1.02	d		
		Diameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Flow, q	Critical Depth, dc	Critical Depth, dc			

(degrees)

(feet)

(ft^2)

(cfs)

(in)

(feel)

-			1	(·····)	1	(009.000)	(1001)	0.00	(0.0)	(10)	(1001)	
3	Find Critical Depth		2.00	1.00	2.00	177.49	3.10	1.53	8,57	11.74	0,98	
										1	Flow Subcrit	cal
	7-8	Flow Depth, d (feet)	Diameter (leet)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feet)	Flow Area (ft^2)	Actual Velocity (fps)	Kinetic Energy (fl) d =	EGL, up (feet) 69.30	
4	EGL (Up)	1.02	2.00	1.00	2.00	177.71	3.10	1.61	5.33	0,44		MH Invert Needs Lowered
					"K" Factor	Flow (MGD)		Kinetic Energy (fl)	Minor Head Loss (ît)		EGL (feet) 69,75	
5	Manhole Loss (Fig. 8-15; 75 Deg)				0.72	5.54		0.05	0.03		69.71	
	8-9	Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feel)	Flow Area (ft^2)	Actual Velocity (fps)	Kinetic Energy (fl)	EGL, up (feet)	
6	EGL (Down)	0,98	2.00	1.00	2 00	177.71	3.10	1.53	5.60	d = 0.49	. 69.26 69.75	
55 F. M.												

	- <u>-</u>
Dale: Project No;	May 2005
Proj. Name:	
	6/30/05 17:00

· · · · ·

L

ARRŪ

I		i and your man
Computed By: _ Checked By: _ Sheet: _	J. R. Jackson	<u> </u>

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGO (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

AG.	FROM MANHOLE MH-8 TO MANH	OLE MH-9								T/MH	78.61				
													Flow	Full Pip	€Full Pipe
	Description	n	1.486/n	Diameter	Length	Invert Down	Invert Up	Slope, S	S^0.50	Hydraulic	Rh^.667	Velocity,	v Area, A	Flow, C	Flow, Q
1	Find Full Pipe Flow			(inches)	(feet)	(feet)	(feet)			Radius, Rh		(fps)	(ft^2)	(cfs)	(MGD)
	Velocity, V=(1.486/n)*(Rh)^(0.667)*(S)^(0.5)	0.013	114.308	24.00	107.00	68.28	68.91	0.0059	0.077	0.500	0.630	5.524	3.142	17.35	5 11.216
	, , , , , , , , , , , , , , , , , , , ,														
				Diameter	Actual Flow.	q Actual Flow, q		Theoretical		Flow Depth, d	Flow Depth.	1			
				(inches)	(MGD)	(cfs)	q/Q	d/D		(in)	(ft)				
2	Find Partial Pipe Flow Depth			24.00	5.539	8.57	0.49	0.49		11.76	0.98				
	· · · · · · · · · · · · · · · · · · ·														
										Critical	Critical				
			Diameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Flow, g	Depth, dc	Depth, dc				
			(feel)	(feet)	(feet)	(degrees)	(feet)	(ft^2)	(cfs)	(in)	(feet)				
3	Find Critical Depth		2.00	1.00	2.00	177.49	3.10	1,53	8.57	11.74	0.98				
				1.00	2.00	117.40	0.10	1,00	0.01		Flow Subcr	tical			
											11011 04001	(iva)			
		Flow Depth, d	Diameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Velocity	Kinetic	EGL, up				
		(feet)	(feet)	(feet)	(feet)	(degrees)	(feet)	(f1^2)	(fps)	Energy (fi)	(feet)				
	8-9	(1)	(1004)	(1001)	(1001)	(degrees)	(1001)	(((2)	(103)	d =					
4	EGL (Up)	0.98	2.00	1.00	2.00	177.71	3.10	1.53	5,60	0.49	70,38				
					2.00		0.10		0.00	0.10	10,00	•			
					"K"	Flow		Kinetic	Minor Head		EGL				
					Factor	(MGD)		Energy (ft)	Loss (ft)		(feet)				
						(11.00)		200197 (07	2000 (14)		70.45				
	5 Manhole Loss (Fig. 8-15; 75 Deg)				0.72	5.54		0.03	0.02		70.43				
	•							0.00							
		Flow Depth, d	Diameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Velocity	Kinetic	EGL, up				
		(feet)	(feet)	(feet)	(feet)	(degrees)	(feet)	(ft^2)	(fps)	Energy (ft)	(feet)				
	9-11	. ,	,		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(9/040)	(((,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	d =					
	3 EGL (Down)	0,96	2.00	1.00	2.00	175.42	3.06	1,49	5.75	0.51	70.45				
						11.00.75	0.00		0.10	0.01	10.40				

Date:	May 2005
Project No:	
Proj. Nama:	
	6/30/05 17:00

. t.

ļ

Computed By:	J. R. Jackson
Checked By:	
Sheet:	

ł

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

ARRG

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

AH.	FROM MANHOLE MH-9 TO MANH	OLE MH-11								т/мн	79.65				5-11 Dian
1	Description Find Full Pipe Flow Velocity. V=(1.488/n)*(Rh)*(0.667)*(S)*(0.5)	n 0.013	1.486/n 114.308	Diameter (inches) 24.00	Length (feet) 70.00	Invert Down (feet) 68.98	Invert Up (feet) 69.43	Slape, S 0.q064	S^0.50 0.080	Hydraulic Radius, Rh 0.500	Rh^.667	Velocity, v (îps) 5.772		(cfs)	
2	Find Partial Pipe Flow Depth			Diameter (inches) 24.00	Actual Flow, ((MGD) 5.539	q Actual Flow, q (cfs) 8.57	q/Q 0.47	Theoretical d/D 0.48		Flow Depth, d (in) 11.52	Flow Depth, d (ft) 0.96	I			
3	Find Critical Depth		Diameter (feet) 2.00	Radius (feel) 1.00	Chord (feet) 2.00	interior Angle (degrees) 177.49	Arc (feet) 3.10	Flow Area (fl^2) 1.53	Actual Flow, q (cfs) 8.57	Critical Depth, dc (in) 11.74	Critical Depth, dc (feet) 0.98 Flow Superc	critical			
4	9-11 5 EGL (Up)	Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feel)	Interior Angle (degrees)	Arc (feet)	(ft^2)	Actual Velocity (fps)	Energy(fi) d ≠			A1		
	, EGE (UP)	0.96	2,00	1.00	2.00 "K* Factor	175.42 Flow (MGD)	3,06	1,49 Kinetic Energy (fl)	5.75 Minor Head Loss (fl)	0.51	EGL (feet)	MH Invert	M66Q2 I	Lowered	
5	Manhole Loss (Fig. 8-15; 75 Deg)				1,14	5.54		2.42	2.76		73.26 70.50				
	11-118	Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feet)	Flow Area (R^2)	Actual Velocity (fps)	Kinetic Energy (fi) d =	EGL, up (feet) 70.33	1			
6	EGL (Down)	0.90	3.00	1,50	2.75	132.84	3.48	1.78	13.74	2.93	73.26				
AI.	FROM MANHOLE MH-11 TO MAN	HOLE MH-11E	3							Т/МН	84.60				
1	Description 1 Find Full Pipe Flow Velocity, V=(1.486/n)*(Rh)*(0.667)*(S)*(0.5)	n 0.013	1.486/n 114.308	Diameter (inches) 36.00	Length (feet) 201.00	Invert Down (feet) 69.43	Invert Up (feet) 76.59	Slope, S 0.0356	S^0,50 0.189	Hydraulic Radius, Rh 0.750	Rh^.667 0.825	Velocity, V (fps) 17.807		Flow, C (cfs)	Full Pipe Flow, Q (MGD) 8 81.352
:	2 Find Partial Pipe Flow Depth			Diameter (inches) 36.00	Actual Flow, (MGD) 15,839	q Actual Flow, q (cls) 24,51	q/Q 0.19	Theoretical d/D 0.30		Flow Depth, d (in) 10.80	Flow Depth, ((ft) 0.90	d			
í	3 Find Critical Depth		Diameter (feet) 3.00	Radius (feet) 1.50	Chord (feet) 3,00	Interior Angle (degrees) 179.86	Arc (feet) 4.71	Flow Area (fl^2) 3.53	Actual Flow, q (cfs) 24,51	Cr itical Depth, dc (in) 17,98	Criticat Depth, dc (feet) 1,50				
xhibit D						Page 14 of 30			= 114 1	11.00	Flow Super	critical			

Exhibit D

Date: <u>May 2005</u> Project No: Proj Name:	ARRO	Computed By:J. R. Jackson Checked By: Sheet
6/30/05 17:00		

1 1 1

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

	11-11B	Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feet)	Flow Area (fl^2)	Actual Velocity (fps)	Kinetic Energy (ft) d =	EGL, up (feet) 77.49	
4	EGL (Up)	0.90	3.00	1.50	2.75	132.84	3.48	1.78	13.74	2.93	80.42	MH Invert Needs Lowered
					"K" Factor	Flow (MGD)		Kinelic Energy (ft)	Minor Head Loss (ft)		EGL (feet) 79.15	
5	Manhole Loss (Fig. 8-15; 75 Deg)				0.72	15.84		1,76	1.27		77.88	
	11B-12D	Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feel)	Interior Angle (degrees)	Arc (feet)	Flow Area (ft^2)	Actual Velocity (fps)	Kinetic Energy (ft) d =	EGL, up (feet) 77.97	
6	EGL (Down)	1.26	3.00	1.50	2.96	161.59	4.23	2.82	8.70	1.18	79.15	
AJ.	FROM MANHOLE MH-11B TO MA	NHOLE MH-12	D							т/мн	86.60	Flow Full PipeFull Pipe
1	Description Check Full Pipe Flow	n	1.486/n	Diameter (inches)	Length (feel)	invert Down (feet)	Invert Up (feet)	Slope, S	S^0.50	Hydraulic Radius, Rh	Rh^,667	Velocity, V Area, A Flow, Q Flow, Q (fps) (ft [*] 2) (cfs) (MGD)
	Velocity, V=(1.486/n)*(Rh)^(0.667)*(S)^(0.5)	0.013	114.308	36.00	44.00	76 71	77.12	0.0093	0.097	0.750	0.825	9.108 7.069 64.378 41.608
				Diameter		q Actual Flow, q	(2)	Theoretical		Flow Depth, d F		đ
2	Find Partial Pipe Flow Depth			(inches) 36.00	(MGD) 15.839	(cfs) 24.51	q/Q 0.38	d/D 0.42		(in) 15,12	(ft) 1.26	
										Critical	Critical	
			Diameter (feet)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feet)	Flow Area (ft^2)	Actual Flow, q (cfs)	Depth, dc (in)	Depth, dc (feet)	
3	Find Critical Depth		3.00	1,50	3.00	179.86	4.71	3.53	24.51	17.98	1.50 Flow Super	critical
		Plan Duath d	.								•	Gitucal
	118-120	Flow Depth, d (feet)	Diameter (feet)	Radius (feel).	Chord (feel)	Interior Angle (degrees)	Arc (feet)	Flow Area (ft^2)	Actual Velocity (fps)	Kinetic Energy (ft) d =	EGL, up (feet) 78,38	1
4	EGL (Up)	1.26	3.00	1.50	2.96	161,59	4.23	2.82	8.70	1,18		MH Invert Needs Lowered
					"K" Factor	Flow (MGD)		Kinetic Energy (ft)	Minor Head Loss (ft)		EGL (feet) 79.55	
5	Manhole Loss (Fig. 8-15; 75 Deg)				0.72	15.84		0.25	0.18		79.35	
	12D-13	Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feel)	Flow Area (ft^2)	Actual Velocity (fps)	Energy (ft)	EGL, up (feel)	
6	EGL (Down)	1.38	3.00	1.50	2.99	170.82	4.47	3,17	7.72	d = 0.93	78,62 79,55	

ì

Date: May 2005 Project No: Proj Name: 6/30/05 17:00	ARRO	
--	------	--

Computed By: _____J. R. Jackson _____ Checked By: _____ Sheet: _____

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

AK.	FROM MANHOLE MH-12D TO MAN	HOLE MH-13								Т/МН	87,03				
1	Description Check Full Pipe Flow	n	1.486/n	Diameter (inches)	Length (feel)	Invert Down (feet)	invert Up (feet)	Slope, S	S^0.50	Hydraulic Radius, Rh	Rh^.667	Velocity, V (fps)		Full Pipe Flow, Q (cfs)	
	Velocity, V=(1.486/n)*(Rh)^(0.667)*(S)^(0.5)	0.013	114.308	36.00	150.00	77.24	78.30	0.0071	0.084	0.750	0.825	7,931	7.069	56.064	• •
				Diameter	Actual Flow,	q Actual Flow, q		Theoretical		Flow Depth, d	Flow Depth, d	ł			
				(inches)	(MGD)	(cfs)	q/Q	d/D		(in)	(ft)				
:	2 Find Partial Pipe Flow Depth			36.00	15.839	24.51	0,44	0.46		16.56	1,38				
										Critical	Critical				
			Diameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Flow, q	Depth, dc	Depth, dc				
			(feet)	(feet)	(feet)	(degrees)	(feet)	(f1^2)	(cfs)	(in)	(feet)				
:	3 Find Critical Depth		3.00	1.50	3.00	179.86	4.71	3.53	24.51	17.9B	1.50				
											Flow Super	critical			
		Flow Depth, d	Dlameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Velocity	Kinetic	EGL, up				
		(feet)	(feet)	(feet)	(feet)	(degrees)	(feet)	(ft^2)	(fps)	Energy (ft)	(feet)				
	120-13									d =	79.68				
	4 EGL (Up)	1.38	3.00	1.50	2.99	170.82	4.47	3.17	7.72	0.93	80.61	OK			
					"K"	Flow		Kinetic	Minor Head		EGL				
					Factor	(MGD)		Energy (ft)	Loss (fl)		(feet) 80,90				
:	5 Manhole Loss (Fig. 8-15; Straight Thru)	l.			0.02	15.84		0.33	0.01		80.90				
		Flow Depth, d	Diameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Velocity	Kinetic	EGL, up				
		(feet)	(feet)	(feet)	(feet)	(degrees)	(feet)	(ft^2)	(fps)	Energy (ft)	(feet)				
	13-13A							• •		d =	79.65	i			
	6 EGL (Down)	1.23	3.00	1.50	2.95	159.26	4.17	2.73	8.98	1.25	80.90				
													Flow	Full Pip	EFull Pipe
AL.	FROM MANHOLE MH-13 TO MAN	HOLE MH-13A	4							T/MH	88.30		F 1	Cull Dia	
	Description	n	1.486/n	Diameter	Length	Invert Down	Invert Up	Slope, S	S^0.50	Hydraulic	Rh^.667	Velocity, V			EFull Pipe
	1 Check Full Pipe Flow			(inches)	(feel)	(feet)	(feet)	Slope, S	3 0.50	Radius, Rh	RIP.007	* *	•		
	Velocity, V=(1.486/n)*(Rh)^(0.667)*(S)^(0.5)	0.013	114.308	36.00	46.00	78.42	78.94	0.0113	0.106	0.750	0.825	(fps) 10.031	(ft^2) 7.069		(MGD) 45.828
				Diameter	Actual Flow	q Actual Flow, q		Theoretical		Flow Depth, d	Elow Death	a			
				(inches)	(MGD)	(cfs)	q/Q	d/D		(in)	(R)	u			
	2 Find Partial Pipe Flow Depth			36.00	15.839	24.51	0.35	0.41		14.76	1.23				
										Critical	Critical				
			Diameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Flow, q		Depth, dc				
			(feet)	(feet)	(feet)	(degrees)	(feet)	(ft^2)	(cfs)	(in)	(feet)				
	3 Find Critical Depth		3.00	1.50	3.00	179.86	4.71	3.53	24.51	17.98	1.50				
xhibit O											Flow Super	critical			
XAIDIT L						Revent of all the									

Ţ

*

Date:	May 2005	
Project No:		
Proj. Name:		
-	6/30/05 17:00	

ARRU	
------	--

Computed By:	J. R. Jackson
Checked By:	
Sheet:	

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

	13-13A	Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feet)	Flow Area (ft^2)	Actual Velocily (fps)	Kinetic Energy (ft) d =	EGL, up (feet) 80.17				
4	EGL (Up)	1.23	3.00	1.50	2.95	159.26	4.17	2.73	8.98	1.25		MH invert	Needs L	owered	
					"K" Factor	Flow (MGD)		Kinetic Energy (fi)	Minor Head Loss (fl)		EGL (feet) 82.47				
5	Manhole Loss (Fig. 8-15; 90 Deg)				1.04	15,84		1.20	1.25		B1.22				
	13A-13B	Flow Depth, d (feet)	Diameter (feet)	Radius (feel)	Chord (feet)	interior Angle (degrees)	Arc (feel)	Flow Area (ft^2)	Actual Velocity (fps)	Kinetic Energy (ft) d =	EGL, up (feet) 80.02				
6	EGL (Down)	0.96	3.00	1.50	2.80	137.80	3.61	1,95	12.57	2.45	82.47				
AM.	FROM MANHOLE MH-13A TO MA	NHOLE MH-13	в							т/МН	96.00		Flow	Full PipeFull Pipe	
1	Description Check Full Pipe Flow	n	1.486/n	Diameter (inches)	Length (feet)	invert Down (feet)	Invert Up (feet)	Slope, S	S^0.50	Hydrautic Radius, Rh		(fps)	Area, A (ft^2)	Flow, Q Flow, Q (cfs) (MGD)	
	Velocity, V=(1.486/n)*(Rh)^(0.667)*(S)^(0.5)	0.013	114.308	36.00	263.00	79.06	86.58	0.0286	0.169	0.750	0.825	15,954	7.069	112.773 72.885	
				Diameter (inches)	Actual Flow, (MGD)	q Actual Flow, q (cfs)	q/Q	Theoretical d/D		Flow Depth, d l (in)	Flow Depih, o (ft)	1			
2	Find Partial Pipe Flow Depth			36.00	15.839	24.51	0.22	0.32		11.52	0.96				
			Diameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Flow, g	Critical Depth, dc	Crilical Depth, dc				
			(feet)	(feel)	(feel)	(degrees)	(feet)	(ft^2)	(cfs)	(in)	(feet)				
3	Find Critical Depth		3.00	1.50	3.00	179.86	4.71	3.53	24,51	17.98	1.50 Flow Super	critical			
		Flow Depth, d	Diameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Velocity	Kinetic	EGL, up				
	13A-13B	(feet)	(feet)	(feel)	(feet)	(degrees)	(feet)	(†*2)	(fps)	Energy (ft) d =	(feet) 87,54	L			
4	EGL (Up)	0.96	3.00	1.50	2.80	137.80	3.61	1.95	12.57	2.45	89.99				
					"K" Factor	Flow (MGD)		Kinetic Energy (ft)	Minor Head Loss (ft)		EGL (feet)				
5	Manhole Loss (Fig. 8-15; Straight Thru)			0.02	15.84		0.77	0.02		90,79				
		Flow Depth, d	Diameter	Radius	Chord	Interior Angle	Arc		Actual Velocity	Kinelie					
	13B-16A	(feet)	(feet)	(leet)	(feet)	(degrees)	(feet)	(ft^2)	(fps)	Kinetic Energy (ft)	EGL, up (feet)				
6		0.87	3.00	1.50	2.72	130.33	3.41	1.70	14.40	d = 3.22	87.57 90.79				

Date:	May 2005	
Project No:		
Proj. Name:		
	6/30/05 17:00	

1

1

ŧ

ARRÓ

Computed By:	J. R. Jackson	_
Checked By:		
Sheet:		

i at an and the second se

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

AN.	FROM MANHOLE MH-13B TO MAI	NHOLE MH-16	A							T/MH	106.50				
1	Description Check Full Pipe Flow Velocity, V={1.488/n}*(Rh)*(0.667)*(S)*(0 5)	n 0.013	1.486/n 114.308	Diameler (inches) 36.00	Length (feet) 222.00	Invert Down (feet) 86.70	invert Up (feet) 97.44	Slope, S 0.0484	S^0.50 0.220	Hydraulic Radius, Rh 0.750	Rh^.667	Velocity, V (fps) 20,752		Full PipeF Flow, Q f (cfs) 146.690	Flow, Q (MGD)
2	Find Partial Pipe Flow Depth			Diameter (inches) 36.00	Actual Flow, (MGD) 15.839	q Actual Flow, q (cfs) 24.51	q/Q 0.17	Theoretical d/D 0.29		Flow Depth, d (in) 10.44	Flow Depth, (ft) 0.87	İ			
3	Find Critical Depth		Diameler (fest) 3.00	Radius (feet) 1.50	Chord (feet) 3.00	Interior Angle (degrees) 179.86	Arc (feel) 4.71	Flow Area (ft^2) 3.53	Actual Flow, q (cfs) 24.51	Critical Depth, dc (in) 17.98	Critical Depth, dc (feet) 1.50 Flow Super	critical			
4	13B-16A EGL (Up)	Flow Depth, d (feet) 0.87	Diameter (feet) 3.00	Radius (feet) 1.50	Chord (feet)	Interior Angle (degrees)	Arc (feet)	(ft^2)	Actual Velocity (fps)	Energy (ft) d =					
-	200(00)	0.07	3.00	1.50	2.72	130.33	3,41	1.70	14.40	3.22	101.53	MH Inver	: Needs L	Lowered	
					"K" Factor	Flow (MGD)		Kinetic Energy (ft)	Minor Head Loss (ft)		EGL (feet) 100.66				
5	Manhole Loss (Fig. 8-15; 45 Deg)				0.30	15.84		1.15	0.34		100.31				
	16A-16B	Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feet)	Flow Area (ñ^2)	Actual Velocity (fps)	Kinetic Energy (ft) d =	EGL, up (feet) 98.58	8			
6	EGL (Down)	1.02	3.00	1.50	2.84	142.67	3.74	2.12	11.56	2.08	100.66	,			
AO.	FROM MANHOLE MH-16A TO MA	NHOLE MH-1	3B							тимн	106.36		~.		
1	Description Check Full Pipe Flow Velocity, V=(1.488/n)*(Rh)^(0.687)*(S)^(0.6)	n 0.013	1.486/n 114.308	Diameter (inches) 36.00	Length (feet) 18.00	Invert Down (feet) 97,56	Invert Up (feet) 97.94	Slope, S 0.0211	S^0.50 0.145	Hydraulic Radius, Rh 0.750	Rh^.667	Velocity, \ (fps)	Area, A (ft^2)	(cfs)	Flow, Q (MGD)
2	Find Partial Pipe Flow Depth			Diameter (inches) 36.00		q Actual Flow, q (cfs) 24.51	q/Q 0.25	Theoretical d/D 0.34		0.750 Flow Depth, d (in) 12.24	0.825 Flow Depth, (ft) 1.02	13.709 d	7.069	96.901	62.627

Critical Critical Diameter Radius Chord Interior Angle Flow Area Actual Flow, q Arc Depth, dc Depth, dc (feet) (feet) (feet) (degrees) (feet) (ft^2) (cfs) (in) (feet) 3 Find Critical Depth 3.00 1.50 3.00 179.86 4.71 3,53 24.51 17.98 1.50 Flow Supercritical

Date:	May 2005	
Project No:		
Proj. Name:		
	6/30/05 17:00	

5 Manhole Loss (Fig. 8-15; Straight Thru)

18-19

EGL (Down)

6

Exhibit D

Flow Depth, d Diameter

(feet)

3.00

(feet)

1,35

!

ARRG	
------	--

Computed By:	J. R. Jackson
Checked By:	
Sheet:	

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

	16A-16B	Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feel)	Flow Area (ft^2)	Actual Velocity (fps)	Kinetic Energy (ft) d =	EGL, up (feet) 98,96				
4	EGL (Up)	1.02	3.00	1.50	2.84	142.67	3.74	2.12	11.56	2.08	101.04	ок			
					"K" Factor	Flow (MGD)		Kinetic Energy (ft)	Minor Head Loss (it)		EGL (feet) 101.67				
5	Manhole Loss (Fig. 8-15; 45 Deg)				0,30	15.84		0.60	0,18		101.49				
	168-18	Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feet)	Flow Area (ft^2)	Actual Velocity (fps)	Kinetic Energy (ft) d =	EGL, up (feet) 98.99				
6	EGL (Down)	0,93	3,00	1.50	2.77	135.33	3.54	1.87	13.13	2.68	101.67				
AP. I	FROM MANHOLE MH-16B TO MA	NHOLĖ MH-18	1							тин	117.60		Flow	Full Pipe	Full Pine
1	Description Check Full Pipe Flow	n	t.486/n	Diameter (inches)	Length (feet)	Invert Down (feet)	Invert Up (feel)	Siope, S	S^0.50	Hydraulic Radius, Rh	Rh^.667	Velocity, V (fps)		Flow, Q	
	Velocity, V=(1.486/n)*(Rh)^(0.667)*(S)^(0.5)	0.013	114,308	36.00	388.00	98.06	109.69	0.0300	0.173	0.750	0.825	16.335	7.069	115.464	74.625
				Diameter	Actual Flow,	q Actual Flow, q		Theoretical		Flow Depth, d l	Flow Depth,	d			
2	Find Partial Pipe Flow Depth			(inches) 36.00	(MGD) 15.839	(cfs) 24.51	q/Q 0.21	d/D 0.31		(in) 11.16	(ft) 0,93				
3	Find Critical Depth		Diameter (feet) 3.00	Radius (feet) 1.50	Chord (feet) 3.00	Interior Angle (degrees) 179.86	Arc (feet) 4.71	Flow Area (ft^2) 3,53	Actual Flow, q (cfs) 24.51	Critical Depth, dc (in) 17.98	Critical Depth, dc (feet) 1.50 Flow Super	critical			
	16 B- 18	Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feet)	Flow Area (f1^2)	Actual Velocity (fps)	Kinetic Energy (ft) d =	EGL, up (feet) 110,62	,			
4	EGL (Up)	0.93	3.00	1.50	2.77	135.33	3.54	1.87	13.13	2.68		MH Inver	L Needs	Lowered	
					"K"	Flow		Kinetic	Minor Head		EGL				

(MGD)

15,84

Interior Angle

(degrees)

168.52

Page 19 of 30

Arc

(feet)

4.41

Energy (ft)

1.70

(ft^2)

3.08

Loss (ft)

0.03

(fps)

7.94

Flow Area Actual Velocity

(feet) 112.14

EGL, up

(feet)

Kinetic

Energy (ft)

0.98

d =

112.11

111.16

112.14

Factor

0.02

Chord

(feet)

2.98

Radius

(feet)

1.50

Date:	May 2005	
Project No:		
Proj. Name:		
	6/30/05 12:00	

Computed By: _	J. R. Jackson
Checked By:	
Sheet:	
-	

7

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

AQ.	FROM MANHOLE MH-18 TO MANH	OLE MH-19								T/MH	126,59				
	Description	n	1.486/n	Diameter	Length	Invert Down	Invert Up	Slope, S	\$^0.50	Hydraulic	Rh^.667	Velocity, V	Area, A		
1	l Check Full Pipe Flow Velocity, V=(1.486/n)*(Rh)*(0.667)*(S)*(0.5)	0.013	114.308	(inches) 36.00	(feel) 310.00	(feet) 109.81	(feet) 112.19	0.0077	0.088	Radius, Rh 0.750	0.825	(fps) 8.267	(ft^2) 7.069	(cfs) 58.436	
				Diameter	Actual Flow,	q Actual Flow, q		Theoretical		Flow Depth, d	Flow Depth, o	I			
:	2 Find Partial Pipe Flow Depth			(inches) 36.00	(MGD) 15.839	(cfs) 24.51	q/Q 0.42	d/D 0,45		(in) 16,20	(代) 1.35				
										Critical	Critical				
			Diameter	Radius	Chord	Interior Angle	Arc		Actual Flow, q	Depth, dc	Depth, dc				
:	3 Find Critical Depth		(feet) 3.00	(feel) 1.50	(feet) 3.00	(degrees) 179.86	(feet) 4.71	(ft^2) 3,53	(cfs) 24.51	(in) 17.98	(feet) 1.50				
·			0.00	1,50	5,00	173.00	4.71	3,33	24.31		Flow Super	ritical			
		Flow Depth, d	Diameter	Radius	Chord	Interior Angle	Arc		Actual Velocity	Kinetic	EGL, up				
	18-19	(feet)	(feet)	(feet)	(feet)	(degrees)	(feet)	(ft^2)	(fps)	Energy (ft)	(feet)				
	4 EGL (Up)	1.35	3.00	1.50	2.98	168.52	4.41	3,08	7.94	d ≃ 0.98	113.54 114.52				
	(1100	0.00	1.50		100.52	4.91	3.00	7.54	0.90	114.52	UK			
					"K"	Flow		Kinetic	Minor Head		EGL				
					Factor	(MGD)		Energy (ft)	Loss (ft)		(feet)				
:	5 Manhole Loss (Flg. 8-15; Straight Thru)				0.02	15.84		0.70	0.01		114.87 114.86				
		Flow Depth, d	Diameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Velocity	Kinetic	EGL, up				
	19-20(Drop Manhole)	(feat)	(feet)	(feet)	(feet)	(degrees)	(feet)	(代^2)	(fps)	Energy (ft)	(feet)				
1	6 EGL (Down)	2.28	3.00	1.50	2.56	117.34	3.07	5,76	4.95	d =	114,59				
			0.00	1.50	2.30	111.34	3.01	5,70	4.25	0.28	114.87				
AW.	FROM MANHOLE MH-19 TO MAN	HOLE MH-20	(Drop Mani	nole)						Т/МН	128.55				
	Description	n	1.486/n	Diameter	Length	Invert Down	Invert Up	Slope, S	S^0.50	Hydraulic	Rh^.667	Velocity, v			Full Pipe
	1 Check Full Pipe Flow Velocity, V=(1.488/n)*(Rh)^(0.687)*(S)^(0.5)	0.040		(inches)	(feet)	(feet)	(feet)			Radius, Rh		(fps)	(f1^2)	(cfs)	(MGD)
	valuent, v~((.400/n) (Ril)"(0.807)"(0.5)	0.013	114.308	36.00	35.00	112.31	112.36	0.0015	0.039	0.750	0.825	3.682	7.069	• •	16.823
				Diameter		q Actual Flow, q		Theoretical		Flow Depth, d	Flow Depth,	di			
	2 Find Partial Pipe Flow Depth			(inches) 36.00	(MGD)	(cfs)	q/Q	d/D		(in)	(fi)				
				30.00	15.839	24,51	0.94	0.76		27,36	2.28				
			Diameter	Radius	Chord	Interior Arret		_		Critical	Critical				
			(feet)	(feet)	(feet)	Interior Angle (degrees)	Arc		Actual Flow, q		Depth, dc				
	3 Find Critical Depth		3.00	1.50	2.99	(degrees) 170.14	(feet) 4.45	(ft^2) 3,92	(cfs) 28.37	(in) 19.55	(feet) 1.63				
Exhibit D								0.02	20.01	19.00	Flow Subcr	tical			
						Page 20 of 30									

ARRG

Computed By:	J. R. Jackson
Checked By:	
Sheet:	

and and the summary of the second
EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

	19-20(Drop Manhole)	Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feet)	Flow Area (ft^2)	Actual Velocity (fps)	Kinetic Energy (ft) d =	EGL, up (f eel) 114.64	
4	EGL (Up)	2.28	3.00	1.50	2,56	117.34	3.07	5.76	4.25	0.28	114.92 OK	
					"K" Factor	Flow (MGD)		Kinetic Energy (fi)	Minor Head Loss (fl)		EGL (feet) 125.14	
5 M	anhole Loss (Fig. 8-15; Drop Manhol	8)			1.00	15.84		5.27	5.27		119.87	
	20 (Drop Manhole)-21	Flow Depth, d (feet)	Diameter (feet)	Radius (feel)	Chord (feet)	interior Angle (degrees)	Arc (feet)	Flow Area (ft^2)	Actual Velocity (fps)	Kinetic Energy (ft) d #	EGL, up (feet) 119.59	
6	EGL (Down)	0.78	2.50	1.25	2.31	135.33	2.95	1.30	18,91	5.55	125.14	

				Diameter	Actual Flow	a Actual Flow a		Theoretical		Flow Depth d	Flow Depth	d				
	Velocity, V={1.488/n}*(Rh}^(0.667)*(S)^(0.5)	0.013	114.308	30.00	305.00	118.81	142,44	0.0775	0.278	0.625	Q.731	23.255	4.909		1 73,776	
1	Check Full Pipe Flow			(inches)	(feet)	(feel)	(feet)	• •		Radius, Rh		(fps)	(f1^2)	(cfs)	(MGD)	
	Description	n	1.486/n	Diameter	Length	Invert Down	Invert Up	Slope, S	S^0.50	Hydraulic	Rh^.667	Velocity,				
													Flow	Full Pip	Full Pipe	
AX.	FROM MANHOLE MH-20 (Drop Man	hole) TO N	IANHOLE M	H-21						T/MH	151.88					

				Ulameter	Actual Flow, (a Actual Flow, q		Theoretical		Flow Depth, d	Flow Depth, d
				(inches)	(MGD)	(cfs)	q/Q	d/D		(in)	(fl)
2	Find Partial Pipe Flow Depth			30.00	15.839	24.51	0.21	0.31		9.30	0.78
										Critical	Critical
			Diameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Flow, q	Depth, dc	Depth, dc
			(feet)	(feet)	(feet)	(degrees)	(feet)	(ft^2)	(cfs)	(in)	(feet)
3	Find Critical Depth		2.50	1.25	2.38	144,71	3.16	3.38	24.51	19.55	1.63
											Flow Supercritical
		Flow Depth, d	Diameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Velocity	Kinetic	EGL, up
		(feet)	(feet)	(feet)	(feet)	(degrees)	(feet)	(f1^2)	(fps)	Energy (fl)	(feet)
	20 (Drop Manhole)-21				, -	,		1/	(1-1	d =	143.22
4	EGL (Up)	0.78	2.50	1.25	2.31	135.33	2.95	1.30	18.91	5.55	148.77 OK
					"K"	Flow		Kinetic	Minor Head		EGL
					Factor	(MGD)		Energy (ft)	Loss (fl)		(feet) 149.39
5 M	anhole Loss (Fig. 8-15; Straight Thru)				0.02	15.84		0.53	0.01		149.39
		Flow Depth, d	Diameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Velocity	Kinetic	EGL, up
		(feet)	(feet)	(feel)	(feet)	(degrees)	(feet)	(f1^2)	(fps)	Energy (fl)	(feet)
	21-21A					/	• •	/	· · · ·	d =	143.31
6	EGL (Down)	0,75	2.50	1.25	2.29	132.84	2.90	1.24	19.79	6.08	149.39
					. –					0.00	

........

Date:

Project No: Proj. Name: May 2005

6/30/05 17:00

a construction of the second s

Ĵ.

Computed By:	J. R. Jackson
Checked By:	
Sheet:	

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

AY.	FROM MANHOLE MH-21 TO MANH	IOLE MH-21A								T/MH	156.52				
														Full PipeFull I	
	Description	n	1.486/n	Diameter	Length	Invert Down	Invert Up	Stope, S	S^0.50	Hydraulic	Rh^.667			Flow, Q Flow	
1				(inches)	(feet)	(feet)	(feet)			Radius, Rh		(fps)	(ft^2)	(cfs) (MC	
	Velocity, V=(1.486/n)*(Rh)*(0.887)*(S)*(0.5)	0.013	114.308	30.00	57.0 0	142.56	148.44	0.1032	0.321	0.625	0.731	26.834	4.909	131.719 85.1	130
				Diameter	Actual Flow,	q Actual Flow, q		Theoretical		Flow Depth, d	Flow Depth, d	1			
				(inches)	(MGD)	(cfs)	q/Q	d/D		(in)	(fi)				
2	Find Partial Pipe Flow Depth			30.00	15.839	24.51	0.19	0.30		9.00	0.75				
										Critical	Critical				
			Diameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Flow, q	Depth, dc	Depth, dc				
			(feet)	(feet)	(feet)	(degrees)	(feet)	(ft^2)	(cfs)	(in)	(feet)				
3	Find Critical Depth		2.50	1.25	2.38	144.71	3.16	3.38	24.51	19.55	1.63				
											Flow Superc	critical			
		Flow Depth, d	Diameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Velocity	Kinetic	EGL, up				
		(feet)	(feet)	(feet)	(feet)	(degrees)	(feet)	(f1^2)	(fps)	Energy (ft)	(feet)				
	21-21A									d =	149,19				
4	EGL (Up)	0.75	2.50	1.25	2.29	132.84	2.90	1.24	19.79	6.08	155.27	MH Invert	Needs I	Lowered	
					"K"	Flow		Kinetic	Minor Head		EGL				
					Factor	(MGD)		Energy (ft)	Loss (ft)		(feet)				
											154,45				
5	5 Manhole Loss (Fig. 8-15; Straight Thru)				0.02	15.84		0,99	0.02		154,43				
		Flow Depth, d	Diameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Velocity	Kinetic	EGL, up				
		(feet)	(feet)	(feet)	(feet)	(degrees)	(feel)	(ft^2)	(fps)	Energy (ft)	(feet)				
	21A-22A								,	d =	149.36	1			
6	B EGL (Down)	0.80	2.50	1.25	2.33	137.80	3.01	1.35	18.10	5.09	154.45				
AZ.	FROM MANUOL F MU 244 TO 144														
	FROM MANHOLE MH-21A TO MA	NHULE MH-22	24							T/MH	179.33				
	Description		4.480.00	0										Full PipeFull	
	1 Check Full Pipe Flow	n	1,486/n	Diameter	Length	Invert Down	Invert Up	Slope, S	S^0.50	Hydraulic	Rh^.667			Flow, Q Flo	-
	Velocity, V=(1.486/n)*(Rh)^(0.667)*(S)^(0.5)	0.013	114,308	(inches) 30.00	(feet)	(feet)	(feel)			Radius, Rh		(fps)	(ft^2)		GD)
		0.010	114,300	30.00	276.00	148.56	168,44	0.0720	0,268	0.625	0.731	22.422	4.909	110.065 71.	.135
				Diameter		q Actual Flow, q		Theoretical		Flow Depth, c	Flow Depth,	d			
	2 Find Partial Pipe Flow Depth			(inches)	(MGD)	(cfs)	q/Q	d/D		(in)	(ft)				
•	c Find Faillai Fipe Flow Depin			30.00	15.839	24.51	0.22	0.32		9,60	08.0				
										Critical	Critical				
			Diameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Flow, q	Depth, dc	Depth, dc				
			(feet)	(feet)	(feet)	(degrees)	(feet)	(ft^2)	(cfs)	(in)	(feet)				
	3 Find Critical Depth		2.50	1.25	2,38	144.71	3.16	3.38	24.51	19.55	1.63				
xhibit D											Flow Super	critical			
						Page 27 of 30									

Date:

Project No: Proj. Name; May 2005

6/30/05 17:00

Date: May 2005	
Project No:	ARRO"
Proj. Name:	

6/30/05 17:00

Computed By:	J. R. Jackson
Checked By:	
Sheet:	

I to and here the second here the second and here a

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15,84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

4	21A-22A EGL (Up)	Flow Depth, d (feet) 0.80	Diameter (feet) 2.50	Radius (feet) 1.25	Chord (feet) 2.33	Interior Angle (degrees) 137.80	Arc (feet) 3.01	Flow Area (ft^2) 1,35	Actual Velocity (fps) 18.10	Kinetic Energy (ft) d ≈ 5.09	EGL, up (feet) 169.24 174.33	ок			
					"K" Factor	Flow (MGD)		Kinetic Energy (fl)	Minor Head Loss (ft)		EGL (feet) 174.89				
5	Manhole Loss (Fig. 8-15; 22.5 Deg)				0,10	15.84		0.47	0.05		174.84				
	22A-23A	Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feet)	Flow Area (ft^2)	Actual Velocity (fps)	Kinetic Energy (fl) d =	EGL, up (feet) 169.34				
6	EGL (Down)	0.78	2.50	1.25	2.31	135.33	2.95	1.30	18,91	5.55	174.89				
BA. F	ROM MANHOLE MH-22A TO MA	NHOLE MH-23	3A							т/мн	181.28		Flow	Full Die	€Full Pipe
1	Description Check Full Pipe Flow	n	1.486/n	Diameter (inches)	Length (feet)	Invert Down (feel)	Invert Up (feet)	Slope, S	S^0.50	Hydraulic Radius, Rh	Rh^.667	Velocity, \ (fps)			Flow, Q
	Velocity, V=(1.486/n)*(Rh)^(0.667)*(S)^(0.5)	0.013	114.308	30.00	38.00	168.56	171.96	0.0895	0.299	0.625	0.731	24.991	4,909		2 79.283
2	Find Partial Pipe Flow Depth			Diameter (inches) 30.00	Actual Flow, (MGD) 15.839	, q Actual Flow, q (cfs) 24.51	q/Q 0.20	Theoretical d/D · 0.31		Flow Depth, d (in) 9,30	Flow Depth, ((ft) 0,78	t			
3	Find Critical Depth		Diameter (feet) 2.50	Radius (fect) 1,25	Chord (feet) 2.38	Interior Angle (degrees) 144.71	Arc (feet) 3,16		Actual Flow, q (cfs) 24,51	Critical Depth, dc (in) 19.55	Critical Depth, dc (feet) 1.63				

			2.00	1.25	£.30	199.71	3.10	3.38	∡4 .31	19.55	Flow Supercritical
	22A-23A	Flow Depth, d (feet)	Diameter (feet)	Radius (feel)	Chord (feet)	Interior Angle (degrees)	Arc (feet)	Flow Area (ft^2)	Actual Velocity (fps)	Kinetic Energy (ft) d =	EGL, up (feet) 172.74
4	4 EGL (Up)	0.78	2.50	1.25	2.31	135.33	2.95	1.30	18.91	5.55	178.29 OK
					"K" Factor	Flow (MGD)		Kinetic Energy (ft)	Minor Head Loss (fl)		EGL (feel)
5	5 Manhole Loss (Fig, 8-15; 22.5 Deg)				0.10	15.84		0.00	0.00		178.41 1 78. 41
	23A-2 3	Flow Depth, d (feel)	Diameter (feet)	Radius (feel)	Chord (feet)	Interior Angle (degrees)	Arc (feet)	Flow Area (fl^2)	Actual Velocity (fps)	Kinetic Energy (fl)	EGL, up (feet)
6	EGL (Down)	0.78	2.50	1.25	2.31	135.33	2.95	1.30	18.91	di≕ 5.55	172.86 178.41

ARRO

Date:

Project No: Proj. Name: May 2005

6/30/05 17:00

Computed By:	J. R. Jackson
Checked By:	
Sheet:	

a 1 1 .

.

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW # 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

FROM MANHOLE MH-23A TO MAN	HOLE MH-23								T/MH	183.30		
Description Check Full Pipe Flow	n	1.486/n	Diameter (inches)	Length (feet)	Invert Down (feet)	•	Slope, S	S^0.50	Hydraulic Radius, Rh		city, V Area	
Velocity, V=(1.486/n)*(Rh)^(0.667)*(S)^(0.5)	0.013	114,308	30,00	21.00	172.08	173.94	0.0886	0.298	0.625			
Find Partial Pipe Flow Depth			Diameter (inches) 30.00	(MGD)	(cfs)	q/Q 0.20	Theoretical d/D 0.31		(in)	(ft)		
Find Critical Depth		Diameter (feet) 2.50	Radius (feet) 1,25	Chord (feel) 2.38	Interior Angle (degrees) 144.71	Arc (feet) 3.16	Flow Area (ft^2) 3.38	Actual Flow, q (cfs) 24.51	Critical Depth, dc (In) 19.55	Critical Depth, dc (feet) 1.63	ai	
23A-23	Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feet)	Flow Area (ft^2)	Actual Velocity (fps)	Energy (ft)	EGL, up (feet) 174,72		
EGL (Up)	0.78	2.50	1.25	2.31	135.33	2.95	1.30	18.91	5,55			
				"K" Factor	Flow (MGD)		Kinetic Energy (ft)	Minor Head Loss (ft)		EGL (feet) 180.89		
Manhole Loss (Fig. 8-15; Straight Thru)				0.02	15.84		0.53	0.01		180.88		
23-24	Flow Depth, d (feel)	Diameter (feet)	Radius (feet)	Chord (feel)	Interior Angle (degrees)	Arc (feet)	Flow Area (11^2)	Actual Velocity (fps)	Energy (ft)	EGL, up (feet) 174.81		
EGL (Down)	0.75	2.50	1.25	2.29	132.84	2.90	1.24	19.79	6.08	180.89		
FROM MANHOLE MH-23 TO MAN	HOLE MH-24								T/MH	195.23		
Description Check Full Pipe Flow	n 0.012	1.486/n	Diameter (inches)	Length (feet)	Invert Down (feet)	Invert Up (feet)	Slope, S	S^0.50	Hydraulic Radius, Rh		ocity, V Area	bw Full PipeFull Pipe a, A Flow, O Flow, Q 2) (cfs) (MGD)
(0.007) (3) (0.5)	0.013	114.308	30.00	128.00	174.06	186.94	0.1006	0.317	0.625	0.731 20	6.502 4.9	09 130.092 84.078
Find Partial Pipe Flow Depth			Diameter (inches) 30.00	Actual Flow, d (MGD) 15,839	Actual Flow, q (cfs) 24,51	q/Q 0.19	Theoretical d/D 0.30		Flow Depth, o (in) 9.00	l Flow Depth, d (ft) 0.75		
Find Critical Depth		Diameter (feet) 2.50	Radius (feet) 1.25	Chord (feet) 2.38	Interior Angle (degrees) 144.71 Page 24 of 30	Arc (feet) 3.16	Flow Area (ft^2) 3.38	Actual Flow, q (cfs) 24.51	Critical Depth, dc (in) 19.55	Critical Depth, dc (feet) 1.63 Flow Supercritic	ai	
	Description Check Full Pipe Flow Velocity, V=(1.466/n)*(Rh)*(0.667)*(S)*(0.5) Find Partial Pipe Flow Depth Find Critical Depth 23A-23 EGL (Up) Manhole Loss (Fig. 8-15; Straight Thru) 23-24 EGL (Down) FROM MANHOLE MH-23 TO MANI Description Check Full Pipe Flow Velocity, V=(1.486/n)*(Rh)*(0.667)*(S)*(0.5)	Description Check Full Pipe Flow Velocity, V=(1.486/n)*(Rh)*(0.567)*(S)*(0.5) n Find Partial Pipe Flow Depth 0.013 Find Partial Pipe Flow Depth Flow Depth, d (feet) 23A-23 EGL (Up) 0.78 Manhole Loss (Fig. 8-15; Straight Thru) Flow Depth, d (feet) 23-24 EGL (Down) 0.75 FROM MANHOLE MH-23 TO MANHOLE MH-24 Description Check Full Pipe Flow Velocity, V=(1.488/n)*(Rh)*(0.687)*(S)*(0.5) Find Partial Pipe Flow Depth n Find Partial Pipe Flow Depth 10.013	Check Full Pipe Flow 0.013 114.308 Find Partial Pipe Flow Depth Diameter Find Critical Depth Cifeet) 2.50 Flow Depth, d Diameter (feet) 0.78 2.50 Manhole Loss (Fig. 8-15; Straight Thru) 0.78 2.50 Manhole Loss (Fig. 8-15; Straight Thru) Flow Depth, d Diameter 23-24 Cifeet) 0.75 2.50 FROM MANHOLE MH-23 TO MANHOLE MH-24 Description n 1.486/n Check Full Pipe Flow n 1.486/n 114.308 Find Partial Pipe Flow 0.75 2.50 0.75 2.50	Description Check Full Pipe Flow Velocity, V=(1.486/n) (Rh)(0.887) (Sh)(0.5)n1.486/nDiameter (Inches) 30.00Find Partial Pipe Flow DepthImage: Check Full Pipe Flow DepthImage: Check Full Pipe Flow DepthDiameter (Inches) 30.00Radius (Ieet) 2.50Radius (Ieet) 1.25Find Critical DepthFlow Depth, d (Ieet)Diameter (Ieet) 2.50Radius (Ieet) 1.25Manhole Loss (Fig. 8-15; Straight Thru)Flow Depth, d (Ieet)Diameter (Ieet) 2.50Radius (Ieet) 1.25Manhole Loss (Fig. 8-15; Straight Thru)Flow Depth, d (Ieet)Diameter (Ieet) (Ieet)Radius (Ieet) (Ieet)23-24 EGL (Down)Flow Depth, d 0.75Diameter (Ieet)Radius (Ieet) (Ieet)Prove Depth, d (Ieet)Diameter (Ieet)Radius (Ieet)23-24 EGL (Down)n1.486/n 0.013Diameter (Inches) 30.00FROM MANHOLE MH-23 TO MANHOLE MH-24Diameter (Inches) 30.00Diameter (Inches) 30.00Find Partial Pipe Flow Velocity, V=(1.488/n)*(Rh)*(0.687)*(9.5)0.013114.308Diameter (Inches) 30.00Find Partial Pipe Flow DepthImage: Check Full Pipe Flow (Inches) 30.00Diameter (Inches) 30.00Diameter (Inches) 30.00	Description Check Full Pipe Flow Velocity, V=(1.486/n)*(Rh)*(0.987)*(S)*(0.5) n 1.486/n Diameter (inches) Lengih (feet) Find Partial Pipe Flow Depth I Diameter (inches) Actual Flow, of (MGD) Actual Flow, of (MGD) Find Critical Depth I Diameter (feet) Radius (feet) Chord (feet) Z3A-23 EGL (Up) I Diameter (feet) Radius (feet) Chord (feet) Z3A-23 EGL (Up) 0.78 2.50 1.25 2.31 *** *** *** *** *** Manhole Loss (Fig. 8-15; Straight Thru) 0.78 2.50 1.25 2.31 *** *** *** *** *** *** 23-24 EGL (Down) 0.75 2.50 1.25 2.29 FROM MANHOLE MH-23 TO MANHOLE MH-24 *** *** *** Description Check Full Pipe Flow Velocity, V=(1.486/m)*(Rh)*(0.667)*(50;0.5) 0.013 114.308 30.00 128.00 Find Partial Pipe Flow Depth *** *** **** **** **** Find Partial Pipe Flow Depth *** **** ****** ***** ***** <	Description Check Full Pipe Flow velocity, V=(1.486/n) (Rh)r(0.667) (S)(0.5)n1.486/n 0.013Diameter (Inches) 30.00Length (Ieet) 21.00Invert Down (Ieet) 172.08Find Partial Pipe Flow DepthIDiameter (Ieet) 30.00Actual Flow, q (Ifs) 24.51Actual Flow, q (Ifs) 24.51Find Critical DepthIDiameter (Ieet) 2.50Radius (Ieet) 2.38Chord (Ieet) 2.38Interior Angle (Ieet) (Ieet) 2.38Find Critical DepthDiameter (Ieet) 0.78Radius (Ieet) 2.50Chord (Ieet) 1.25Interior Angle (Ieet) 2.38Manhole Loss (Fig. 8-15; Straight Thru)IDiameter (Ieet) (Ieet)Radius (Ieet) (Ieet) (Ieet)Chord (Ieet) (Ieet)Manhole Loss (Fig. 8-15; Straight Thru)IDiameter (Ieet) (Ieet)Radius (Ieet) (Ieet) (Ieet)Chord (Ieet) (Ieet)FIOM MANHOLE MH-23 TO MANHOLE Velocity, V=(1.486/n) (Fight Onegry (Sylo.5)n1.488/n 0.013Diameter (Inches) 30.00Length (Inches) 128.00FInd Partial Pipe Flow Velocity, V=(1.486/n) (Fight Onegry (Sylo.5)n1.488/n 0.013Diameter (Inches) 30.00Length (Inches) 128.00Invert Down (Ieet) 128.00FInd Partial Pipe Flow Depthn1.488/n 0.013Diameter (Inches) 30.00Length (Inches) 2.53Invert Down (Inches) 30.00Find Partial Pipe Flow (Velocity, V=(1.486/n) (Fight Onegry (Sylo.2) 2.53nDiameter (Inches) 30.00Chord (Inches) <td>Description Check Full Pipe Flow Velocity, Verti-desony (Rby Cossery)(Syrops)n1.486/n 0.013Diameter (Inches)Length (Inches)Invert Down (Inches)Invert Down (Inches)<td>Description Check Full Pipe Flow Vessely, V=11.486m/(RMPQ.887)(SP(05)) n 1.436/n 0.013 Diameter (Inches) 0.013 Length (Inches) 0.000 Iver I Down (feet) 2.1.00 Inver I Up (feet) 172.06 Slope, S 0.088 Find Partial Pipe Flow Depth Vessely, V=11.486m/(RMPQ.887)(SP(05)) Diameter 0.010 Churder (feet) 0.000 Interior Angle (feet) 1.25 Actual Flow, q Actual Flow, q Actual Flow, q (cfs) 2.4.51 Arc 0.020 Flow Area (feet) 0.013 Find Critical Depth User Pipe Flow (feet) Diameter (feet) Radius (feet) Chord (feet) Interior Angle (feet) Arc (feet) Flow Area (feet) Z3A-23 EGL (Up) O.78 2.50 1.25 2.31 135.33 2.95 1.30 Manhole Loss (Fig. 8-15; Straight Thru) V Vessel (feet) Chord (feet) Interior Angle (feet) Arc (feet) Flow Vess (feet) Flow (MGD) 1.488/n Slope, S (feet) 1.2.8 2.30 1.3.8 2.90 1.2.8 Z3A-23 EGL (Down) N Diameter (feet) Radius (feet) Chord (feet) Interior Angle (degrees) Arc (feet) Flow Pres (feet) 1.2.8 2.39 1.2.8 2.30 <</td><td>Description Check Full Pipe Flow Unidency, V-(1.408/m) (Pipe Flow Diameter Find Partial Pipe Flow Depth n 1.488/m (11.4.308 Diameter (11.4.308 Length (11.4.308 Invert Dow, (11.4.308 Invert Dow, (11.3.30 Invert Dow, (11.3.30 Invert Dow, (11.3.30 Invert Dow, (11.3.33 Invert Dow, (11.3.33 Invert Dow, (11.3.33 Invert Dow, (11.3.33 Invert Dow, (11.3.33 Invert Dow, (11.3.33 Invert Dow, (11.3.33 Invert Dow, (11.3.3</br></br></br></br></br></br></br></td><td>Description Check Full Pipe Flow Velocity, v.rtl.4880/YBN/03807/169/03.01 n 1.480/n Diameter (inches) Length (inches) Invert Dow (itee) Invert Dow (itee) Stops, S (ree) Stops, S 0.0886 S*0.50 Provide insets/ (inches) Flind Partial Pipe Flow Depth Flow Actual Flow, q (itee) Grant Grant Flow Actual Flow, q (ifee) Grant Flow Area (ifee) Actual Flow, q (ifee) Flow Area (ifee) Actual Velocity (ifee) Actual Velocity (ifee) Flow Area (ifee) Actual Velocity (ifee)</td><td>Description Check Full Pipe Flow Vecody, Vet1.486w(YRH)(Ragrigs)(5.8) n 1.486/m (1.4.308 Diameter (1.4.308 Length (1.4.308 Invert Down (1.4.308 Sibpe, S (1.4.308 S'0.50 (0.0388 Hydraulic (0.0888 Hydraulic (0.0371 Hydraulic (0.0371</td><td>Description Check Full Pipe Flow Veeder, V-(I.486m/(Piny10367)r(Sr)0.5) n 1.4.86/n (inc) Diameter (inc) Length (reet) Invert Up (reet) Stope, S (reet) Sto</td></br></td>	Description Check Full Pipe Flow 	Description Check Full Pipe Flow Vessely, V=11.486m/(RMPQ.887)(SP(05)) n 1.436/n 0.013 Diameter (Inches) 0.013 Length (Inches) 0.000 Iver I Down (feet) 2.1.00 Inver I Up (feet) 172.06 Slope, S 0.088 Find Partial Pipe Flow Depth Vessely, V=11.486m/(RMPQ.887)(SP(05)) Diameter 0.010 Churder (feet) 0.000 Interior Angle (feet) 1.25 Actual Flow, q Actual Flow, q Actual Flow, q (cfs) 2.4.51 Arc 0.020 Flow Area (feet) 0.013 Find Critical Depth User Pipe Flow (feet) Diameter (feet) Radius (feet) Chord (feet) Interior Angle (feet) Arc (feet) Flow Area (feet) Z3A-23 EGL (Up) O.78 2.50 1.25 2.31 135.33 2.95 1.30 Manhole Loss (Fig. 8-15; Straight Thru) V Vessel (feet) Chord (feet) Interior Angle (feet) Arc (feet) Flow Vess (feet) Flow (MGD) 1.488/n Slope, S (feet) 1.2.8 2.30 1.3.8 2.90 1.2.8 Z3A-23 EGL (Down) N Diameter (feet) Radius (feet) Chord (feet) Interior Angle (degrees) Arc (feet) Flow Pres (feet) 1.2.8 2.39 1.2.8 2.30 <	Description Check Full Pipe Flow Unidency, V-(1.408/m) (Pipe Flow Diameter Find Partial Pipe Flow Depth n 1.488/m (11.4.308 Diameter (11.4.308 Length (11.4.308 Invert Dow, (11.4.308 Invert Dow, (11.3.30 Invert Dow, (11.3.30 Invert Dow, (11.3.30 Invert Dow, (11.3.33 Invert Dow, 	Description Check Full Pipe Flow Velocity, v.rtl.4880/YBN/03807/169/03.01 n 1.480/n Diameter (inches) Length (inches) Invert Dow (itee) Invert Dow (itee) Stops, S (ree) Stops, S 0.0886 S*0.50 Provide insets/ (inches) Flind Partial Pipe Flow Depth Flow Actual Flow, q (itee) Grant Grant Flow Actual Flow, q (ifee) Grant Flow Area (ifee) Actual Flow, q (ifee) Flow Area (ifee) Actual Velocity (ifee) Actual Velocity (ifee) Flow Area (ifee) Actual Velocity (ifee)	Description Check Full Pipe Flow Vecody, Vet1.486w(YRH)(Ragrigs)(5.8) n 1.486/m (1.4.308 Diameter (1.4.308 Length (1.4.308 Invert Down (1.4.308 Sibpe, S (1.4.308 S'0.50 (0.0388 Hydraulic (0.0888 Hydraulic (0.0371 Hydraulic (0.0371	Description Check Full Pipe Flow Veeder, V-(I.486m/(Piny10367)r(Sr)0.5) n 1.4.86/n (inc) Diameter (inc) Length (reet) Invert Up (reet) Stope, S (reet) Sto

Date:	May 2005	
Project No:		
Proj. Name;		
	6/30/05 17:00	

Computed By:	J. R. Jackson
Checked By:	
Sheet:	

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

ARRO

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

4	23-24 EGL (Up)	Flow Depth, d (feet) 0.75	Diameter (feet) 2.50	Radius (feet) 1.25	Chord (feet) 2.29 "K"	Interior Angle (degrees) 132.84 Flow	Arc (feel) 2.90	(ft^2) 1.24 Kinetic	Actual Velocity (fps) 19.79 Minor Head	Kinetic Energy (fl) d = 6.08	EGL, up (feet) 187,69 193,77 EGL	ок
					Factor	(MGD)		Energy (ft)	Loss (ft)		(feet) 194,47	
5	Manhole Loss (Fig. 8-15; Straight Thru)				0.02	15.84		0.60	0.01		194.45	
	24-24A	Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feel)	Flow Area (ft^2)	Actual Velocity (fps)	Kinetic Energy (fl) d *	EGL, up (feet) 187.79	
6	EGL (Down)	0.73	2.50	1.25	2.27	130.33	2.84	1.18	20.74	6.68	194.47	
BD.	FROM MANHOLE MH-24 TO MAN	HOLE MH-24A	L.							т/мн	205.80	Flow Full PipeFull Pipe
1	Description Check Full Pipe Flow	n	1.486/n	Diameter (inches)	Length (feel)	Invert Down (feet)	Invert Up (feet)	Slope, S	S^0.50	Hydraulic Radius, Rh	Rh^.667	Velocity, V Area, A Flow, Q Flow, Q (fps) (ft^2) (cfs) (MGD)
	Velocity, V=(1.486/n)*(Rh)*(0.687)*(S)*(0.5)	0.013	114.308	30.00	102.00	187.06	197.81	0.1054	0.325	0.625	0.731	27.123 4,909 133.138 86.047
2	Find Partial Pipe Flow Depth			Diameter (inches) 30.00	Actual Flow, (MGD) 15.839	q Aclual Flow, q (cfs) 24.51	q/Q 0.18	Theoretical d/D 0.29		Flow Depth, d f (in) 8.70	Flow Depth, ((ft) 0.73	d
3	Find Critical Depth		Diameter (feet) 2,50	Radius (feet) 1,25	Chord (feet) 2.38	Interior Angle (degrees) 144.71	Arc (feet) 3.16	Flow Area (R^2) 3.38	Actual Flow, q (cfs) 24.51	Critical Depth, dc (in) 19.55	Critical Depth, dc (feet) 1.63 Flow Super	critical
4	24-24A	Flow Depth, d (feet)	(feet)	Radius (feel)	Chord (feet)	Interior Angle (degrees)	Arc (feet)	Flow Area (ft^2)	Actual Velocity (fps)	Kinetic Energy (ft) d =	EGL, up (feet) 198.54	I
4	EGL (Up)	0.73	2.50	1.25	2.27	130.33	2.84	1.18	20.74	6.68	205.22	MH Invert Needs Lowered
					"K" Factor	Flow (MGD)		Kinetic Energy (ft)	Minor Head Loss (ft)		EGL (feet) 204.76	3
5	Manhole Loss (Fig. 8-15; 22.5 Deg)				0.10	15.84		0.60	0.06		204.70	
	24A-24B	Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feet)	Flow Area (ft^2)	Actual Velocity (fps)	Kinetic Energy (ft) d =	EGL, up (feet) 198.68	1
6	EGL (Down)	0.75	2.50	1.25	2.29	132.84	2.90	1.24	19. 79	6,08	204.76	
Exhibit D						Page 25 of 30						

Date:	May 2005	_
Project No:		
Proj. Name:		
	6/30/05 17:00	

r

ARRO

i.

Computed By:	J. R. Jackson
Checked By:	
Sheet:	

Charles Control of Con

Ì

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

BE. FROM MANHOLE MH-24A TO MANHOLE MH-24B T/MH 209.81 Flow Full PipeFull Pipe Hydraulic Rh^.667 Velocity, V Area, A Flow, Q Flow, Q Description 1.486/n Invert Down Slope, S S^0.50 n Diameter Length Invert Up (cfs) (MGD) 1 **Check Full Pipe Flow** (inches) Radius, Rh (fps) (ft^2) (feet) (feel) (feet) 4,909 131,503 84,991 Velocity, V=(1.486/n)*(Rh)^{(0.667)*(S)^(0.5) 0.625 26,790 0.013 114.308 30.00 39.00 197.93 201.94 0.1028 0.321 0.731 Flow Depth, d Flow Depth, d Diameter Actual Flow, g Actual Flow, g Theoretical (inches) (MGD) (cfs) q/Q d/D (in) (ft) 2 Find Partial Pipe Flow Depth 30.00 15,839 24.51 0.19 0.30 9.00 0.75 Critical Critical Diameter Radius Chord Interior Angle Arc Flow Area Actual Flow, g Depth, dc Depth, dc (degrees) (feet) (feet) (feet) (feet) (8^2) (cfs) (in) (feet) 3 **Find Critical Depth** 2.50 1.25 2.38 144.71 3.16 3.38 24.51 19.55 1.63 **Flow Supercritical** Flow Depth, d Diameter Radius Chord Interior Angle Arc Flow Area Actual Velocity Kinetic EGL, up (feet) (feet) (feet) (feet) (degrees) (feet) (ft^2) (fps) Energy (ft) (feet) 24A-24B d≈ 202.69 4 EGL (Up) 0.75 2.50 1.25 2.29 132.84 2.90 1.24 19,79 6.08 208.77 MH Invert Needs Lowered "K" Flow Kinetic Minor Head EGL Factor (MGD) Energy (ft) Loss (ft) (feel) 208.39 5 Manhole Loss (Fig. 8-15; 22.5 Deg) 0.10 15.84 0.53 0.05 208.33 Flow Depth, d Diameter Radius Chord Interior Angle Arc Flow Area Actual Velocity Kinetic EGL, up (feet) (feet) (feet) (feet) (degrees) (feet) (ft^2) (fps) Energy (ft) (feet) 24B-25 d = 202,84 6 EGL (Down) 0.78 2.50 1.25 2.31 135.33 2.95 1.30 18.91 5.55 208.39 BE. FROM MANHOLE MH.24B TO MANHOLE MH.26

P	I TOM MANTOLE MIN-246 TO MANT	TOLE MIT-25							T/MH	226.70				
1	Description Check Full Pipe Flow Velocity, V=(1.486/n)*(Rh)^(0.687)*(S)*(0.5)	n 1.486/n 0.013 114.308	Diameter (inches) 30,00	Length (feet) 180 <u>.</u> 00	Invert Down (feet) 202.06	Invert Up (feet) 217.25	Slope, S 0.0844	S^0.50 0.290	Hydraulic Radius, Rh 0.625		Velocity, v (fps) 24.270	•	(MGD)	
2	Find Partial Pipe Flow Depth		Diameter (inches) 30.00	Actual Flow, c (MGD) 15.839	i Actual Flow, q (cfs) 24.51	q/Q 0.21	Theoretical d/D 0.31		Flow Depth, c (in) 9.30	d Flow Depth, c (ft) 0.78	1			
Exhibit D ³	Find Critical Depth	Diameter (feet) 2.50	Radius (feet) 1.25	Chord (feet) 2.38	Interior Angle (degrees) 144.71 Page 25 of 30	Arc (feet) 3.16	Flow Area (ft^2) 3.38	Actual Flow, q (cts) 24.51	Critical Depth, dc (in) 19.55	Critical Depth, dc (feet) 1.63 Flow Superc	criticai			

Date: May 2005		Computed By: J. R. Jackson	
Oate: <u>May 2005</u> Project No: Proj. Nama:	ARRO	Checked By:	

Computed By:	J. R. Jackson
Checked By:	
Sheet:	_

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW # 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

	24B-25	Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feet)	(fl^2)	Actual Velocity (fps)	Kinetic Energy (ft) d =	EGL, up (feet) 218.03	, I invert Needs Lowered
4	EGL (Up)	0.78	2,50	1.25	2.31	135.33	2,95	1.30	18.91	5.55	223.58 MP	I IVABLE MEEDS FOMALED
					"K" Factor	Flow (MGD)		Kinetic Energy (ft)	Minor Head Loss (fl)		EGL (fee!) 223.58	
5 Ma	anhole Loss (Fig. 8-15; Straight Thru)				0.02	15.84		0.00	0.00		223.58	
		Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feel)	Interior Angle (degrees)	Arc (feet)	Flow Area (ft^2)	Actual Velocity (fps)	Kinetic Energy (fi)	EGL, up (feet)	
6	25-738 EGL (Down)	0,78	2.50	1.25	2,31	135.33	2.95	1.30	18.91	d = 5.55	218.03 223.58	

8G.	FROM MANHOLE MH-25 TO MANHO	LE MH-73	8							T/MH	230.32			
														II PipeFull Pipe
	Description	n	1.486/n	Diameter	Length	Invert Down	invert Up	Slope, S	S^0.50	Hydraulic	Rh^.667	Velocity, V	Area, A FI	low, Q. Flow, Q
1	Check Full Pipe Flow			(inches)	(feet)	(feet)	(feet)			Radius, Rh		(fps)	(ft^2)	(cfs) (MGD)
	Velocity, V=(1.486/n)*(Rh)^(0.687)*(\$)^(0.5)	0.013	114.308	30.00	54.00	217.25	221.55	0.0796	0.282	0.625	0.731	23.576	4.909 11	15.727 74.794

				Diameter		q Actual Flow, q	- 10	Theoretical		Flow Depth, d F		
2	Find Partial Pipe Flow Depth			(inches) 30.00	(MGD) 15.839	(cfs) 24.51	q/Q 0.21	d/D 0.31		(in) 9,30	(ft) 0.78	
										Critical	Critical	
			Diameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Flow, q	Depth, dc	Depth, dc	
			(feet)	(feet)	(feet)	(degrees)	(feet)	(ft^2)	(cfs)	(in)	(feet)	
3	Find Critical Depth		2.50	1.25	2.38	144.71	3.16	3.38	24.51	19.55	1.63	
										-	Flow Superc	ritical
		Flow Depth, d	Diameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Velocity	Kinetic	EGL, up	
		(feet)	(feet)	(feet)	(feet)	(degrees)	(feet)	(8^2)	(fps)	Energy (ft)	(feet)	
	25-738									d =	222.33	
4	EGL (Up)	0.78	2.50	1.25	2.31	135.33	2.95	1.30	18.91	5,55	227.88	MH Invert Needs Lowered
					"K"	Flow		Kinetic	Minor Head		EGL	
					Factor	(MGD)		Energy (ft)	Loss (ft)		(feet) 227.88	
5	Manhole Loss (Fig. 8-15; 22.5 Deg)				0.10	15.84		0.00	0.00		227.88	
		Flow Depth, d	Diameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Velocity	Kinetic	EGL, up	
	738-739	(feet)	(feet)	(feet)	(feel)	(degrees)	(feet)	(ft^2)	(fps)	Energy (ft)	(feet)	
6	EGL (Down)	0.78	2.50	1.25	2.31	135,33	2.95	1.30	18.91	d =	222.33	
Exhibit D					2.01	100,00	4.30	1.30	10.91	5.55	227.88	
weathing the						Page 22 of 20						

Page 27 of 30

Oste:	May 2005	
Project No:		
Proj. Name;		
	6/30/05 17:00	

;

ł +

Ţ

Exhibit D

ARRO

Computed By:	J, R, Jackson
Checked By:	
Sheet:	

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

BH.	FROM MANHOLE MH-738 TO MAI	HOLE MH-73	9							т/мн	231.80				E.# 01= 4
1	Description Check Full Pipe Flow	n	1.486/n	Diameter (inches)	Length (feet)	Invert Down (feet)	Invert Up (feet)	Slope, S	S^0.50	Hydraulic Radius, Rh	Rh ⁴ .667	Velocity, v (fps)			•
	Velocity, V=(1.486/n)*(Rh)^(0.667)*(S)^(0 5)	0.013	114.30B	30.00	40.00	221.55	224.75	0.0800	0.283	0.625	0.731	23.630	4,909	115,996	74.968
				Diameter	Actual Flow,	q Actual Flow, q		Theoretical		Flow Depth, d l	Flow Depth, (d			
2	Find Partial Pipe Flow Depth			(inches)	(MGD)	(cfs)	q/Q	d/D		(in)	(ft)				
~	Find Fandal Filte Flow Depth			30.00	15.839	24.51	0.21	0.31		9.30	0,78				
			-		.					Critical	Critical				
			Diameter	Radius	Chord	Interior Angle	21A		Actual Flow, q	Depth, dc	Depth, dc				
3	Find Critical Depth		(feet) 2.50	(feet) 1.25	(feet) 2,38	(degrees) 144.7 t	(feet) 3.16	(ft^2) 3.38	(cfs) 24.51	(in) 19,55	(feet)				
			2.50	1.25	2.30	144.71	3.10	3.30	24.01		1.63 Flow Super	critical			
		Flow Depth, d	Diameter	Radius	Chord	Interior Angle	A	Eleve Area	Refuel Meteoliu	Musta	501				
		(feet)	(feet)	(feet)	(feet)	(degrees)	Arc (feel)	(ft^2)	Actual Velocity (fps)	Kinetic Energy (fl)	EGL, up (feet)				
	738-739			1.4-4	()	(009,000)	(1001)	(11 2)	(()==)	d =	225.53	5			
4	EGL (Up)	0.78	2.50	1.25	2.31	135.33	2.95	1,30	18.91	5.55		MH Invert	Needs I	Lowered	
					"K"	Flow		Kinetic	Minor Head		EGL				
					Factor	(MGD)		Energy (R)	Loss (it)		(feet)				
5	Manhole Loss (Fig. 8-15; 22.5 Deg)										227,50				
	Mainole Loss (Fig. 8-15; 22,5 Deg)				0.10	15.84		4.08	0.41		227.09	J			
		Flow Depth, d	Diameler	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Velocity	Kinetic	EGL, up				
	739-26	(feet)	(feet)	(feet)	(feet)	(degrees)	(feet)	(ft^2)	(fps)	Energy (ft)	(feet)	_			
e		1.28	2,50	1.25	2,50	477 74	2.00	0.64	0.75	d =	226.03				
			2,50	1.25	2.00	177.71	3.88	2.51	9.75	1.48	227.50				
Bł.	FROM MANHOLE MH-739 TO MA		•												
			•							T/MH	235.85		-	÷	
	Description	n	1.486/n	Diameter	Length	Invert Down	Invert Up	Slope, S	S^0,50	Hydraulic	Rh^.667	Malasile 1		•	EFull Pipe
1	ondok i bit i ipe i low			(inches)	(feet)	(feet)	(feet)	Sicha' 2	3.0.30	Radius, Rh	Rn",667	Velocity, V (fps)	Area, A (ft^2)	(cfs)	(MGD)
	Velocity, V={1.488/n}*(Rh)*(0.667)*(S)*(0.5)	0.013	114,308	30.00	236.00	224.75	227.85	0.0131	0.115	0.625	0.731	9.575	4,909	• •	30.378
										0.020	0.707	3.515	4,303	47.003	30.370
				Diameter		q Actual Flow, q		Theoretical		Flow Depth, d	Flow Depth,	d			
2	Find Partial Pipe Flow Depth			(inches)	(MGD)	(cfs)	q/Q	d/D		(in)	(fl)				
	the state of the s			30.00	15.839	24,51	0.52	0.51		15.30	1,28				
			Diamata							Critical	Critical				
			Diameter (feet)	Radius	Chord	Interior Angle	Arc		Actual Flow, q	Depth, dc	Depth, dc				
3	Find Critical Depth		2.50	(feet) 1.25	(feet) 2.38	(degrees)	(feet)	(f1^2)	(cfs)	(in)	(feet)				
chibit D	· ···· ·······························		2,00	1.20	2.38	144.71	3.16	3.38	24.51	19.55	1.63				

Page 28 of 30

Flow Supercritical

ARRO

ì

Ŧ

Date:

Project No:

Proj. Name:

1

May 2005

6/30/05 17:00

Computed By: J. R. Jackson Checked By: ______ Sheet: ______

man hand a second year and

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

	739-26	Flow Depth, d (feet)	Diameter (feel)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feel)	Flow Area (ft^2)	Actual Velocity (fps)	Kinetic Energy (ît) d ≠	EGL, up (feet) 229.13
4	EGL (Up)	1.28	2.50	1.25	2.50	177.71	3.88	2.51	9.75	1.48	230,60 OK
					"K" Factor	Flow (MGD)		Kinetic Energy (fl)	Minor Head Loss (II)		EGL (feet) 230.65
5 Me	anhole Loss (Fig. 8-15; Straight Thru	1)			0.02	15.84		0.08	0.00		230.65
	20-27	Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feet)	Flow Area (R^2)	Actual Velocity (fps)	Kinetic Energy (ii) d =	EGL, up (feet) 229.10
6	EGL (Down)	1.25	2.50	1.25	2.50	180.00	3.93	2.45	10.00	1.55	230.65

BJ. FRON	MANHOLE MH-26 TO MANHO	LE MH-27								T/MH	236.40			
t Veloc	Description Check Full Pipe Flow ly, V=(1.486/n)^(Rh)^(0.667)*(S)^(0.5)	n 0.013	1.486/n 114.308	Diameter (inches) 30.00	Length (feet) 66.00	invert Down (feet) 227.85	Invert Up (feel) 228.80	Slope, S 0.0144	S^0.50 0,120	Hydraulic Radius, Rh 0.625	Rh^.667 0.731	Velocity, V (fps) 10.023	Flow, Q (cfs)	Full Pipe Flow, Q (MGD) 31.800

					Diameter	Actual Flow,	q Actual Flow, q		Theoretical		Flow Depth, dl	Flow Depth, d
					(inches)	(MGD)	(cfs)	q/Q	d/D		(in)	(fi)
	2	Find Partial Pipe Flow Depth			30.00	15.839	24.51	0.50	0.50		15.00	1.25
											Critical	Critical
				Diameter	Radius	Chord	Interior Angle	Arc			Deplh, dc	Depth, dc
	3	Field Online of Online		(feet)	(feet)	(feet)	(degrees)	(feet)	(ñ^2)	(cfs)	(in)	(feet)
	3	Find Critical Depth		2.50	1.25	2.38	144.71	3,16	3.38	24.51	19.55	1.63
												Flow Supercritical
			Flow Depth, d	Diameter	Radius	Chord	Interior Angle	Arc		Actual Velocity	Kinetic	EGL, up
			(feet)	(feet)	(feet)	(feel)	-			•		•
		26-27	((1000)	(1001)	(icel)	(degrees)	(feet)	(ft^2)	(lps)	Energy (ft)	(feel)
	4	EGL (Up)	1.25	2.50	1.25	2.50	180.00	0.00	a. 45	10.00	d =	230.05
		(1,2.0	2.00	1.23	2.50	180.00	3.93	2.45	10.00	1.55	231.60 OK
						"K"	Flow		Kinetic	Minor Head		EGL
						Factor	(MGD)		Energy (ft)	Loss (fl)		(feet)
	_						. ,			- 1-7		231.90
	5 Mar	nhole Loss (Fig. 8-15; Straight Thru)				0.02	15.84		0,75	0.02 ′		231.89
												BO 1.00
			Flow Depth, d	Diameter	Radius	Chord	Interior Angle	Arc	Flow Area	Actual Velocity	Kinetic	EGL, up
			(feet)	(feet)	(feet)	(feet)	(degrees)	(feet)	(f1^2)	(fps)	Energy (ft)	(feet)
		27-29A				,	,		/		d =	229.60
	6	EGL (Down)	0.80	2.50	1.25	2.33	137.80	3.01	1.35	12.18	2.30	231.90
Exhibit ()							2.21		12.10	2.00	201.00
							Page 29 of 30					

Date:	May 2005
Project No:	
Proj. Name:	
	6/30/05 17:00

1

.

ARRO

Computed By:	J. R. Jackson
Checked By:	
Sheet:	

الله الدو السام الله ما مسلما السلم الله ال

4

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY WASTEWATER TREATMENT PLANT

SAWMILL RUN INTERCEPTOR HYDRAULIC ANALYSIS

TWO EXISTING 24" DIAMETER ROSS STREET INTERCEPTOR PIPES PRESENT MAXIMUM DAILY FLOW = 15.84 MGD (TWO CONSTANT SPEED PLUS TWO VARIABLE SPEED SAWMILL RUN PUMPS)

BK,	FROM MANHOLE MH-27 TO MAN	HOLE MH-29A								T/MH	248.95			
1	Description Check Full Pipe Flow Velocity, V=(1.468/n)*{Rh)*{0.667}*(S)*(0.5)	n 0.013	1,486/n 114,308	Diameter (inches) 30.00	Length (feet) 405.00	Invert Down (feet) 228.80	invert Up (feet) 241.94	Siope, S 0.0324	S^0.50 0.180	Hydraulic Radius, Rh 0.625	Rh^.667 0.731	Full Pipe Velocity, V (fps) 15.049	Full Pipe Flow, Q (cfs) 73.870	Flow, Q (MGD)
2	2 Find Partial Pipe Flow Depth			Diameter (inches) 30.00	Actual Flow, (MGD) 10.656	q Actual Flow, q (cfs) 16.49	q/Q 0.22	Theoretical d/D 0.32		Flow Depth, d (in) 9.60	Flow Depth, (ft) 0.80	đ		
:	B Find Critical Depth		Diameter (feet) 2.50	Radius (feet) 1.25	Chord (feet) 2.50	interior Angle (degrees) 176.16	Arc (feet) 3.84	Flow Area (ft^2) 2.56	Actual Flow, q (cfs) 16.49	Critical Depth, dc (in) 15.50	Critical Depih, dc (feet) 1.29 Flow Super	critical		
	MH-29A	Flow Depth, d (feet)	Diameter (feet)	Radius (feet)	Chord (feet)	Interior Angle (degrees)	Arc (feet)	Flow Area (ft^2)	Actual Velocity (fps)	Kinetic Energy (ft) d =	EGL, up (feet) 242.74	ł		
4	4 EGL (Up)	0.80	2.50	1.25	2.33	137.80	3.01	1.35	12.18	2.30	245.04			

EXHIBIT E

7

B G C C

)

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY

HIGH FLOW MAINTENANCE PLAN

EXHIBIT E

P

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY

HIGH FLOW MAINTENANCE PLAN

I. INTRODUCTION

The East Norriton-Plymouth-Whitpain Joint Sewer Authority (Authority) owns, operates and maintains the wastewater treatment facility (WWTF) located at 200 Ross Street, Plymouth Meeting, Pennsylvania. The WWTF consists of two parallel wastewater treatment plants. One treatment plant is a trickling filter (TF) plant and the other is an activated sludge (AS) plant.

All raw sewage into the WWTF first enters into the AS pump wetwell, located in the rear of the Pump/Control Building (Building B-1). Approximately one-third to one-half of the raw sewage is pumped from this wetwell to the AS plant. The remaining raw sewage flows by gravity from the AS plant wetwell to the TF plant wetwell, located in Building EPS-1. The on/off pump settings for the AS plant raw sewage pumps determine the wetwell levels that the pumps will operate, in turn controlling the flow of raw sewage to the TF plant wetwell.

II NORMAL OPERATION

The AS plant raw sewage pumping station contains three (3) raw sewage pumps that are located in the Pump/Control Building. All pumps are rated at 3,900 gpm. One pump is operated by a variable frequency drive, and the other two pumps are operated by constant speed motors. The TF plant raw sewage pumping station contains three (3) raw sewage pumps that are located in Building EPS-1. All three pumps are operated by variable frequency drives and are rated at 4,000 gpm. Under normal conditions, the plant's Supervisory Control and Data Acquisition (SCADA) system sequentially activates the three (3) AS plant raw sewage pumps and the three (3) TF plant raw sewage pumps at certain "trigger points" based on the influent wetwell depth as flow and water level in the Building B-1 wetwell increases.

The pump level control system for the AS plant wetwell has been installed such that the "zero" point for the sewage level in the wetwell, as measured by the level controller, is equal to an actual sewage level of 5 feet in the wetwell. All pump start elevations are, therefore, based on a wetwell level that is "x" number of feet above the 5 feet (or zero) reference point. The pump start elevations for the AS raw sewage pumps are as follows:

High Flow Maintenance Plan

4

4

)

- Lead Pump start level: 12.27 feet
- Lag Pump start level: 13.12 feet
- Lag-Lag Pump start level: 13.50 feet
- Wetwell High Level Alarm: 14.00 feet

As the AS wetwell sewage level increase in elevation, the volume of sewage flowing to the TF plant wetwell also increases. By the time that the AS wetwell level has risen to an elevation equal to the start point for the AS Lag-Lag Pump, all three TF raw sewage pumps will have gone into operation.

III HIGH FLOW OPERATION

1. Chemical Road

At the high flow "trigger point" where all six (6) of the raw sewage pumps are activated and the wetwell sewage in the AS plant wetwell has reached a level of 14.00 feet, a "Wetwell High Level Alarm" will be generated by the plant SCADA system. The level of 14.00 feet is approximately 2.0 feet below the wetwell level that will result in an overflow of sewage from a manhole on the lower end of Ross Street.

A "Wetwell High Level Alarm" will cause the SCADA system to immediately telephone a series of treatment plant operator and management personnel until the alarm is acknowledged. Immediately following the acknowledgement of the alarm, the appropriate personnel will close a manually operated slide gate in Manhole #1A (which is located adjacent to the southeast corner of Building B-1). This action will prevent the normal conveyance of raw sewage flow from the Chemical Road Pump Station to the Building B-1 wetwell, and will shunt the flow through a manually cleaned bar screen into the East Trickling Filter Plant primary settling tanks (see Figure 1). This action allows the flow from Chemical Road to be processed completely in the WWTF without overloading the raw sewage pump wetwell and keeps all flow within the plant's tanks. Even with these flows, the WWTF is hydraulically balanced.

The treatment plant operators will periodically clean the manually cleaned barscreen at the East Trickling Filter Plant primary tanks. The barscreen will be checked and cleaned on a regular basis while the Chemical Road Pump Station raw sewage flow is being shunted directly into the primary tanks.

Once the rain event has ended, the raw sewage flows into the WWTF will begin to subside. Eventually the AS plant wet well level will decrease to a point where the "Wetwell High Level Alarm" is cleared. As the level continues to decrease, the AS plant Lag-Lag raw sewage pump will stop. The pump "stop" level for the Lag-Lag pump is 12.75 feet. At this point, the treatment plant operators will reopen the manually operated slide gate in Manhole #1A and redirect the Chemical Road Pump Station raw sewage flow to the wetwell in Building B-1.

High Flow Maintenance Plan

នា

)

)

2. Activated Sludge Plant Sludge Blankets

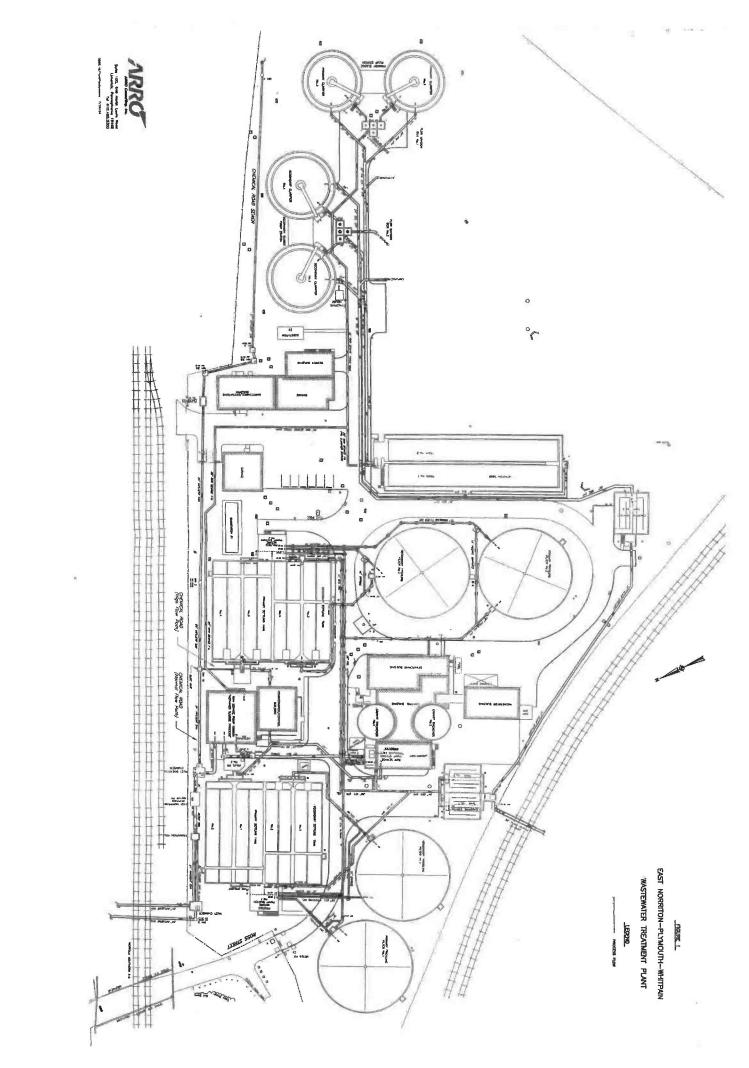
The WWTF treatment plant operators will monitor the sludge blanket levels in the AS plant secondary clarifiers to prevent solids from overflowing the clarifier weirs. Return activated sludge rates will be monitored and adjusted to control the depth of the sludge blankets in the secondary clarifiers. If the sludge blankets cannot be properly controlled through adjustment of the return activated sludge flow rates, the quantity of air to the aeration tanks will temporarily be lowered to maintain the sludge biomass in the aeration tanks and reduce the flow of activated sludge solids to the secondary clarifiers.

3. Schuylkill River Monitoring

The WWTF treatment plant operators will monitor the level of the Schuylkill River to ascertain its affect on the discharge weir of the TF plant chlorine contact tanks, and for documenting of TF plant flow and pacing of chlorine feed. (Note: The discharge weir of the AS plant chlorine contact tanks is at a much higher elevation above the weir of the TF plant chlorine contact tanks, and its discharge of effluent will not be affected by an increase in river water level.) Weirs can become submerged at high river levels and should the degree and depth of submergence be too great it could affect the flow through the WWTF.

4. Sawmill Run Pumping Station

The WWTF staff will monitor the operation of the Sawmill Pumping Station and gravity interceptor at high flows to limit any surcharging within the collection and conveyance system.


FIGURE 1

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY

WASTEWATER TREATMENT PLANT

)

)

EXHIBIT F

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY

INFILTRATION/INFLOW SUMMARY

}

)

East Norriton-Plymouth-Whitpain Joint Sewer Authority Infiltration /Inflow Summary Exhibit F

INTRODUCTION

The Authority and the three (3) member municipalities have maintained active I/I programs. However, the Authority has limited collection system facilities within which storm water can intrude. Therefore, I/I abatement must stem primarily from the contributing municipalities. Provided herein are summaries of the recent or notable activities relating to I/I abatement undertaken by the Authority and the member municipalities and the future work projected by each. Please be advised that all future efforts and the degree of their success are predicated on suitable weather to conduct the appropriate analyses and repair.

AUTHORITY ACTIVITY

As noted earlier, during the years 2003 and 2004, this area of southeastern Pennsylvania received unusually high amounts of precipitation. The Authority, as well as numerous other entities experienced significant increases in flows, which challenged the capacity of the conveyance system. The Authority's conveyance system consists primarily of the Sawmill Run Pumping Station, force mains and gravity interceptors that transmit wastewater from the three (3) municipalities to the treatment plant. During 2003, the Authority carefully monitored flow for the three (3) municipalities contributing to the Sawmill Run Pumping Station to determine peak flows and to establish a 12-month "profile" for each. This profile was an estimate of the peak contribution from each municipality and the time it took for that peak contribution to reach the pump station, which was then correlated with rainfall intensity and duration. This provided the Authority with a clearer picture as to what to expect under certain rainfall conditions and allowed for Authority personnel to prepare operationally with the weather forecast.

In 2004, the Authority undertook flow monitoring of the Sawmill Run gravity interceptor. Flow meters were installed at strategic points along the interceptor to ascertain whether or not there was significant I/I contribution from the Authority mains. Further, this allowed the Authority to monitor the contribution from Plymouth Township along the interceptor and crosscheck the flow meters at Sawmill Run Pumping Station and the treatment plant. The Authority determined that no I/I contribution of significance existed along the interceptor and the high flows were introduced upstream of the pumping station. Further, the Authority noted the discrepancy in the flow pattern between the two 24-inch interceptors on Ross Street and diagnosed the junction box as the cause. This junction box is addressed within the milestones of the CAP.

Early this year, the Authority directed its consulting engineer to develop a capital improvement program to meet future flow and treatment needs that included improvements at the treatment plant and the Sawmill Run Pumping Station, force main and gravity interceptor. To better identify the improvements necessary at the Sawmill Run Pumping Station, force main and gravity interceptor, the Authority directed its consulting engineer to initiate a hydraulic analysis of the facilities and develop recommendations for modification. This proactive authorization was given at the February 9, 2005 regular meeting of the Authority, prior to receipt of a Notification of Violation (NOV) from PADEP for system overflows.

The result of this hydraulic analysis will be a capital improvement program for the Authority conveyance system. Preliminary information from the monitoring undertaken in 2003 and 2004 allowed the Authority to identify the improvements delineated within the milestones as proper and helpful to the control of I/I, even before PADEP involvement.

EAST NORRITON TOWNSHIP

1 · · · · · · · · · · ·

)

The Township has maintained active I/I abatement and capital improvement programs within the sanitary sewer system for the past 15 years. A key date was February 25, 1991 when the Township adopted Ordinance No. 296, where through the Use and Occupancy permitting process, "...no sump pump or other storm water collection system may be connected into the sanitary sewer system." Recognizing the responsibility to I/I abatement, the Township authorized a \$600,000 contract for I/I work in 1993 and 1994 that included 263,336 L.F. of sanitary sewer televised and 54,054 joints tested of which 35,017 failed. The Township used 36,020 gallons of grout to repair these joints, which resulted in approximately 250,000 gallons per day of I/I removed. In late 1993, the Township also undertook a major capital overhaul of the Germantown, Timberlake and Norris City Pumping Stations to modify capacity to more expeditiously pass flow. A \$3.3 million bond financed this program. The pumping station rehabilitation project financed through this bond issue was substantially completed in May 1997.

Following this major undertaking, the Township continued spot sewer repairs as identified and after much review established improved Sanitary Sewer Construction Standards in 1998. In 1998, the Township also bid and purchased a sewer camera (\$85,000) and in 1999 a High Pressure Jet Cleaner (\$87,000) to assist in identifying problem areas and to eliminate blockages.

In March 2000 the Township passed Sewer Use Ordinance No. 419 which reinforced Ordinance No. 296 regarding unauthorized connections to the sanitary sewer system. This ordinance provided the Township with the "teeth" needed to deter improper storm water connections.

In 2002, engineering began on an upgrade to the Sandra Lane Pumping Station to improve capacity. This project was awarded (\$159,000) and constructed in 2003. Concurrent with the work at Sandra Lane, Township staff began a flow metering analysis and a main televising program within the pump station drainage area (2003 - 2004). This included a house-to-house search for improper connections (sump pumps and roof drains).

In 2004, the Township contracted with ARRO Consulting, Inc. to begin a comprehensive study of the western end of the collection system (upstream of the Germantown PS). This work included flow metering to establish subdrainage areas of significance, house to house inspections for sump pump and roof drain connections, dye testing and televising. To date, approximately 290,000gallons per day has been quantified from televising lateral connections within one of three (3) significant subdrainage areas in the west end. This work will continue through 2005. *

Concurrent with this work, Township staff continues to televise other areas within the western end to locate errant flows. The Township has authorized and ordered a lateral camera to work in conjunction with ARRO during 2005 and beyond. The Township has also initiated a capital improvement project to be completed during 2005 and 2006 that will replace or slip-line approximately 300 L.F. of sanitary sewer.

Within East Norriton Township, the homeowner has the responsibility to repair any leakage found in the lateral between the curb line and the structure. The Township is responsible between the main and the curb line. Under current ordinances, the Township can require the homeowners to make the repairs within a certain period of time. Otherwise, the Township has the authority to make the repairs and bill the homeowner. The Township is currently investigating the financial issues of undertaking a large number of the corrections in bulk to facilitate a lower cost to homeowners.

PLYMOUTH TOWNSHIP

the second second

···.;

)

The Township has maintained active I/I abatement and capital improvement programs within the sanitary sewer system for the past 15 years. In 1992 and 1993 the Township invested \$138,000 in a Sanitary Sewer Evaluation Study (SSES) to determine the adequacy of the collection system and to identify problem areas including those prone to I/I. From this study, the Township initiated a series of projects for repair or rehabilitation of sewers and pumping stations. In 1994, sewer main repairs and grouting were completed (\$124,000) and in 1995 – 1996 a two-phase pump station rehabilitation project (\$582,000) to improve flow capacities was completed.

In 1998, the Township completed a project to clean and televise all eight (8) major interceptors (\$121,000). This project included making repairs that were previously identified. In 2000, the Township completed rehabilitation and an upgrade of the Chemical Road Pumping Station. This project improved the capacity of the station to more expeditiously pass flow through to the treatment plant. A second project was also completed that year which included replacement of the portion of the Plymouth Creek gravity interceptor (\$464,000) under the PA Turnpike along unnamed Tributary No. 2 to Plymouth Creek. In 2000, a cured in-place repair of a 3,200 L.F. portion of the Church Road Interceptor (\$209,000) was completed.

The Township began in 2003 and finished in 2004 a cleaning, televising, joint pressure testing and grouting project in several areas of the Township. These included Plymouth Valley, Sheffield, Plymouth Hills and Plymouth Meeting Park. This project (\$168,000) improved the integrity of these areas of the collection system and reduced I/I. Also in 2004 the Township began work on the Narcissa Road Pump Station and force main. Completed in 2005, this project (\$755,000) has improved the capacity of the station, thereby assisting in the conveyance of flow to the treatment plant. It also greatly improves a facility where the wet well volumes had become stressed due to flow volume. The Township during 2005 began the planning phase for the replacement of a portion of the Diamond Run gravity interceptor along Manor Avenue. This project is a continuation of the aggressive approach to I/I taken by the Township. Currently, the extent of the replacement is being identified and will improve flow through the conveyance system while reducing I/I.

Within Plymouth Township, the homeowner has the responsibility to repair any leakage found in the lateral between the sewer main and the structure. Under current ordinances the Township can require the homeowners to make the repairs within a certain period of time. Otherwise, the Township has the authority to make the repairs and bill the homeowner. Further, the Township maintains a current ordinance (April 9, 1979) that strictly forbids the connection of a sump pump, roof drain or foundation drain or any other source of groundwater, surface water or cooling water to the sanitary sewer system. The Township can regulate this before issuance of a Use & Occupancy Permit for a new connection or if an inappropriate discharge coming from an existing connection is observed during televising.

WHITPAIN TOWNSHIP

1

)

The Township has maintained active I/I abatement and capital improvement programs within the sanitary sewer system for the past 10 years. From 1997 to 1999, Township staff televised the entire sanitary sewer system. This was performed at an average of 85,000 L. F. per year. Areas where problems were identified were repaired as staff progressed. This included pressure testing and grouting of pipe joints and repairs to manholes. From 2000 to 2004, a comprehensive flow-monitoring program was undertaken throughout the Township. This included further televising of the sewer mains at a rate of approximately 100,000 L.F. per year. Again, repairs to mains, manholes and laterals were undertaken where needed. During 2005, Township staffs are televising the primary interceptors that convey flow to the Authority system. Repairs to manholes, laterals and main sewer lines are being completed as needed.

Within Whitpain Township, the homeowner has the responsibility to repair any leakage found in the lateral between the curb line and the structure. The Township is responsible from the main to the curb line. The Township has currently drafted Ordinance No. 36 - 14 scheduled for adoption at the September 20, 2005 meeting prohibiting any introduction of storm water, surface water, groundwater, roof run-off or other subsurface drainage into the sanitary sewer system. This ordinance provides the means and methods for mitigation should such a discharge be discovered and establishes penalties. It also requires the homeowners to make the determined repairs within a certain period of time. Otherwise, the Township has the authority to make the repairs and bill the homeowner.

- 4 -

CONTINUED I/I ABATEMENT

ć

)

>

All three (3) Townships propose the continuation of sewer/lateral televising to identify problem locations. It is their intent to clean and repair sanitary sewers and laterals wherever needed. The Townships will continue to undertake pressure testing of sewers and manholes and grouting or sliplining for repair where needed.

The Townships will continue to inspect all interceptors located in or near waterways and flood prone areas. Where applicable, manhole rims will be elevated above flood stage with bolt down, watertight lids as appropriate. The Townships will continue to inspect and remediate lateral vents with missing or inappropriate (open grate) covers located in low-lying areas susceptible to inflow. Also, the Townships will continue an education program for all residents through newsletters and websites to identify and eliminate sump pumps, roof and foundation drains and other storm water cross connections.

The Townships will revisit their local sanitary sewer specifications to ensure that these parameters are current and consider all of the International Code Council's International Codes (Act 45 of 1999).

APPENDIX B

.

)

)

IMPLEMENTATION SCHEDULES

.

EAST NORRITON-PLYMOUTH-WHITPAIN JOINT SEWER AUTHORITY CAPITAL IMPROVEMENT PROGRAM

PRELIMINARY SCHEDULE

1 2	¥444	11.0	Conta -		2 A.		1	States .	2	200	B	-	1 im	and the	1		Table 1			0.00	2007	Jacobi	1	-	ALT. 7.	1 1 1		and a star	1	20	300	10.1.2	1.4	-	1	-		4. 24 8	191.62	-	2009	Territ 1	· ·····	1	14
An Al	A	10	1 How	Cett		765 .	Aper A			118 51		12 124	P P	RE 3 144	1.000			New 14	SPT.COM	V . 40		- Billion	Bep	Det /	Ht 10	i dent	Feb	100 14	* (64a)	. Julean		Rig -	Rep 1	lick Neo	-Des	Jan	Pet	, ther 1/	here . the	1 . M	R GAN	Ang .	#ep.j	Pet	*
-		-	-		-	-	-	-	-	-	-	-	-	+	-	-		-	-	-	-	+			-	-		-	-	-	+-			-	-		_	-		-	_			-	-
-		-	-		-	-	_	\rightarrow	-	+	-	-	_		-			-	-	-	-	-		-	-	_		-	_	-	+		-	_	-				_	-	-	-		-	
		1.1																																											
		1						Т					T		T																								T		Т				
				18	93					-		1		1	1															1	T				T					-	1				Π
-		+	-			20	-+	+	-	-	+	+	-	+	+				-		+-	1			1			-	+	+	T		-	-	1					+	+			-	-
+			-		-		124.0	1	+	+	+	+		+	-				-		+	-		+	+	-		-	-	-	+-			-	-		-	-		+	-			+	-
+	-		-		-	- 6	1		100	100			100	-	1000		-	-+-	+	-	-	+		-	+			-	-	+	1	$\left \right $	-	+	-		-			+	+-		-	-	-
-		_	-		-	-	_	-		191			36/64	11.	1		_	-	+	-	-	-		-	-	-		_		-	1		-	-	-		-	-	-	-			-	-	_
						_			_	_	-		-						-	-	-				_				_		1.						-		_	_	-		-	_	
																															1	·		1_											Ē
																												T			1										1				
1000						T								1											1					T										T	1				Π
1	COLUMN 1		1		-	-	-	+	-	1	1	1	+	1	t			1	-	+	1				-			+	+	1	1			1	1		-	1	-	+	-	11	-	+	-
+		-	100	and a		100	1		+	+	-	+	+-	+	-		-	-+-	+	-	+	+		-	+	-	-		+-	+	1	++	+	-		-+	\rightarrow	-+	-	+	+	+ +	+	+	-
			and the	-				-	-	+	+	+	+	+-	-			-	+	+	+	+	-	-	+	-			-	+	-	++	-	-	-	-	\rightarrow	-	-	-			-	+	-
-	1	1	-			_	+	-	-	-		+	-	-	-	$ \rightarrow $	-	-	-	-	+			-	-	-	-	-	-	-	-	\vdash	-		-		-	+	-	+	-	$ \rightarrow $	-	+	_
		1	17			_	_	-	_	+	_	-	-	-				-	_	-	1.		_	_	-		-	_	-		1.		_	-	-			_	-	-			-		
											_						1			1					1						1								1		1				
		T			T	T						T																			-										1				C
		1										1	1					1												1	1									1	1				
		-	and the second	12.0	1	-	+	+	-	+	+	+	+	-			-	+	+	+	1		-	-	-		-	+	-	1				-	-	H	+	-		+	+			+	-
	-	-		1		-	+	+	+	+	+	+	-	+	-		-+	+	+	+-	-	+			+		-	-	+	+	1	+		+-	-		+	-		+	+		-	+	-
				-	+		-			1.0			-	-	+		-	-	+	+	+	\vdash	-	-	-		-	-	+	+	1		-	-	-	\vdash	+	-	-	+	+		-+-	+	-
	-	+		-	-	+	- 1			-	- 12			-			-	-	+	+-	+	+	-	+	+		-	-	+	-	11	\vdash	-	+	-		-+	+	+	+	+		+	+	-
-	-			-		-	_	-	_	+				1				-		-	1		-	-	1		-	-	_	-	1		-	-		-	\rightarrow	-	-	1	-		-	-	_
													1	1			26	20	11.	11-			14		36																1				
T																					1							1			1														
			10.0	-	1					T			1	T					T		T				T						1.									1					
-										+	+	1	+	-			-	-	+	+	1			+	1		1	-	1	1				-			-	-	-	+	1		-	+	-
	-	-		-	+		T		10	100	-	125	1	Sec.		4.0	Contract of	Sec.	-		-		-	-	-		-	-	+	1			+	-	\square		+	-	+	-	1	-	-	+	
-	-	-	+	-+-	-	+	-	+	- 10	-			-		1000	100				-	+	++	-	+	+-		-	-	-	+	-		-	-			+	+	-	+	-	-	-	-	-
		-		-		-	+	+	+	+	+-	+	-	-	\vdash	\vdash	-	-	+	+	+		-		-	+	-+		-	-	-	\vdash	-+-			-	-+-	-+-	-	+	+	-	-	+	_
	-	-				_	1	1	1	_	+-	+	-	-			-	-	-	-	+		-	-	-		+	+	-	-			-	-			\rightarrow	-	-	+	-	-	_	+	_
						1																							_	-				-				-							
						1																																							
		1				1					T	1.0	1.4	12	PE-	1	1B	21	30	1. c	L								1				1				T			T					
-		-			-	+	-	-	-	1	1		T	T			T	T	T	T	T				-				1		-			1						1	1			1	-
-	-	1	100		100		1		1		3.00	100	8	-			+	-	+	-	-		-	+	1		+		+	-	-		-	1		-	+	-		+	-		-	-	-
-	-	- 30				100	10.00	-	-			120				-		-	+	+	-		-	-	+-		-	-	+	-	-	-	-	-		-+	-	-	+	-	+	-	-	+	-
-		-		-	+	+	-	-	+	-			-	-		-			200		-		-	-	-		-		-	-	1		-	+		-	-	+	-	+	-	-		-	-
	-	-			-	-	-	1	-	+	-	-	-	1	-							1			-		-	-	1		1		-	1		-	-	_	-	-	-		-	+	_
																						2 Inter	-	1	15		1	20	1	1				-											_
					T		T																								i														
						T		T	T	1	1	T	1					T	T	T			1.1.		4		1	1	1					T				T	T		1				1
1		+		1	+	+	-	+	+	T	1	+	1				+	+	1	1	1	-				Con B			1	1			-	1		-	-	-	1	1	1	-	-	-	-
-		-		-	-	+	-	+	+	+	-	+	1	1		+	-	-	-	-	-	-	-	+	+	-			1	1		100	No.	1		-	-	-	-	+-	+	-+	+	+	-

Description of System Additions	Testa		~	007				000				000									
or improvements	Tasks		20	007	1	-	2	008	-	+	2	009	-	-	20	010	-	-	20	11	-
																					-
/ Planning Approval	1	1	1																		I
	Derlinder er Derle	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	2
-foot diameter clarifier	Preliminary Design Address PNDI and PHMC Constraints	-	-	-	-	1993	1000	1	-	+	-	-	-	-	-	-	-	-	-	-	-
	WQM Part II Permit Application	-	-	-	-	-	Super-	ALC: N	-	-	-	+	-	-	-	-	-	-		-	÷
	Final Design	-	-	-	-	-	-	1 mar	1255	-	-	-	-	-	-	-	-	-		-	î
	Project Bid			1		-	-	1	100			1	-	1	-		-			-	Ĩ
	Project Award								The second												Ī
	Begin Construction		-	-			-	-	-	관신	1	110	14.	153	_	1	-	_		-	
	End Construction	-	-	-		-	-	-	-	No.	100.00	1000	1997	19923	-		-	-		-	-
30,000 gailon aeration tank	Preliminary Design	-	-	escur.	Contract of	and the second	-	-	-	-	-	-	-	-	-	-		-	-	-	÷
0,000 galon actaboli atik	Address PNDI and PHMC Constraints	-	-	ALC: N	1000	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	1
	WQM Part II Permit Application		1		-	Contraction of	國際的	-	-			-		-			-	-			1
	Final Design						読書で														1
	Project Bid		-	-	-		1000	-	-			-				-				_	ĺ
	Project Award	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	Begin Construction End Construction	-	-	-	-		-		1000	-	100	-	-	-	-		-		-	-	÷
	End Conselication	-	-	-	-	-	-	-	-	-	No. of Lot, No. of	-	-	-	-	-	-	-	-	-	-
-foot diameter secondary clarifier	Preliminary Design		1	-	-	State 1	202	-	-	-	-	-	-	-	-		-	-	-	-	Ť
	Address PNDI and PHMC Constraints						Tring!											1			1
	WQM Part II Permit Application							及影漫									-				1
	Final Design		-	-	-	-	_	_	1200	_	-	-			-	-		_		_	1
	Project Bid	-	-	-	-	-	-	-	1200	-	-	-	-	-	-	-	-	-	-	_	è
	Project Award Begin Construction	-	-	-	-	-	-	-	1000	10.00	1	-	100.000	1000	-	-	-	-	-	-	
	End Construction		-	-	-	-	-	-	-	22	(Trail	1000	1000	TEX	-		-	-	-	-	÷
			-	-	-		-	-	-	and the second	-	-	-	-	-	-	-	-	-	-	1
.000 chlorine contact tank	Preliminary Design		1	-	-	(and	200		-							1					1
	Address PNDI and PHMC Constraints		-																		1
	WQM Part If Permit Application	-				-		1200	_							-	_				1
	Final Design	-	-	-	-	-	-	-	1919	-	-	-	-	-	-	-	-	-	-	-	-
	Advertise Project for Bld Bid Opening	-	-	-	-	-	-	-	Course of	-	-	-	-	-	-	-	-	-	-		÷
	Start Construction	-	-	-	-	-	-	-	and the second	1.1.2	1055	1220	ALC: NO	THE OWNER	-	-	-		-	-	-
	Complete Construction							-	-	1900	1100	2011	10.00	Post i						-	Ĩ
												-						-			1
/AS system upgrades	Preliminary Design	-		-		1462	100	-	-		-	-	-	_		-	-	_	_	_	
	Address PNDI and PHMC Constraints	-	-			-	the sector	-	-	-		-	-	-	-	-	-	-		_	
	WQM Part II Permit Application Final Design		-	-	-	-	-	1000	-	-	-		-	-	-	-	-	-	-	-	4
	Project Bid	-	-	-	-	-		-	1000	-	-	-			-	-	-	-	-	-	ń
	Project Award	-	-				-	-	1	-	-			-		-			-	-	j
	Begin Construction									10.5	1.23	and the	100	100							1
	End Construction									(Int.		112	1	開た						_	1
	la nu na n						_		-		-		-		-		-		_	_	
les to pumping structures for distribution	Preliminary Design	-	-	-	-	1000	12 11	-	-		-	-	-		-	-	-	-	-	-	
	Address PNDI and PHMC Constraints WQM Part II Permit Application	-	-	-	-	-	1	100.00	-	-		-	-		-	-	-	-	-	-	4
	Final Design	-	-	-	-	-		ALC: NO.	1.000		-	-				-	-	-	-		i
	Project Bid			-	-		-	-	1.10.7	-	-						-			-	Î
	Project Award						-		11-15											-	1
	Begin Construction									ALC:	1	AND R	北京市	186							Ĵ
	End Construction					_	_		-	ALC: N	2.50	129	12.23	-	_	_				_	1
					1.1						0.0										1

APPENDIX C

EXCERPTS FROM MUNICIPAL 537 PLANS

)

EDM CONSULTANTS, INC. 1101 South Broad Street, Suite 200, P. O. Box 1545, Lansdale, PA 19446 Phone (215) 393-0670 Fax (215) 393-0652

May 13, 2005

Mr. William L. Bohner, Jr. P.E. ARRO Consulting, Inc. 649 N. Lewis Road, Suite 100 Limerick, PA 19468-1234

RE: East Norriton Township Act 537 Plan Update Revised Preliminary Sewage Needs

FILE: 158-037 (1.00)

Dear Bill:

Following the ENPWJSA Regional Act 537 Plan meeting on April 27, 2005, the sewage needs for East Norriton Township were revisited.

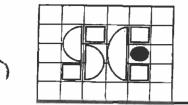
The evaluation included a review of year 2004 flows to establish existing sewage flow and projected future development based on existing Parcel zoning.

) The evaluation indicated the following sewage needs for East Norriton Township:

Projected average 3-month maximum: 3.3 mgd

Projected average annual flow: 2.7 mgd.

Please note the average annual flow need is consistent with East Norriton Township's existing capacity of 2.7 mgd at the ENPWJSA. An additional 0.2 mgd of average 3-month maximum capacity is projected to be required.

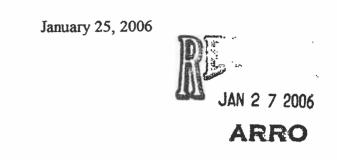

The identified sewage needs has been discussed with the Township staff but has not been reviewed or approved by the Board of Supervisors.

Very truly yours,

EDM CONSULTANTS, INC.

Stanley J. Endlich, P.E.

pc: Helmuth Baerwald, Manager, East Norriton Township Mr. Bruce Shoupe, East Norriton Township Mr. Ed White, East Norriton Township V037_arro-ENTSewageNeeds-05.doc


Mr. William L. Bohner, P.E. ARRO Consulting Inc.

Limerick, PA 19468-1234

649 North Lewis Road, Suite 100

S C Engineers, Inc.

Daniel J. Shoemaker, P.E. Alfred S. Ciottoni, P.E. Jeffrey J. Morgan, P.E.

Subject: Whitpain Township Act 537 Plan

Dear Mr. Bohner:

Ì

We are submitting, on behalf of Whitpain Township, the enclosed copy of the final Whitpain Act 537 Plan for your incorporation in the regional ENPWJSA Act 537 Plan. The projected wastewater treatment needs for Whitpain Township are presented in greater detail in the Act 537 Plan and may be summarized as follows:

Basis	Treatment Needs (mgd)
Avg. Annual	2.37
Max. 3-Month	3.50

The Whitpain Act 537 Plan has been submitted to the Montgomery County Planning Commission and the Montgomery County Health Department for their review, but has not been formally adopted yet by the Board of Supervisors.

We trust that the enclosed report provides the ENPWJSA with sufficient data to finalize the regional Act 537 planning. Should you have any questions concerning these data, please feel free to contact us.

Very truly yours,

Letton full S

Alfred S. Ciottoni, P.E.

cc: Roman M. Pronczak, Whitpain Township

Consulting Engineers and Surveyors

Chambers Associates, Inc.

831 DeKalb Pike Center Square, PA 19422-1271 610-275-1114 FAX 275-1807

November 13, 2003

405 East Lancaster Avenue Wayne, PA 19087-4202 610-688-6166 FAX 610-688-6705

Mr. William L. Bohner, Jr., P.E. The ARRO Group, Inc. 649 North Lewis Road Suite 100 Limerick, PA 19468-1234

RE: EAST NORRITON/PLYMOUTH/WHITPAIN JOINT SEWER AUTHORITY REGIONAL ACT 537 PLAN PLYMOUTH TOWNSHIP ACT 537 PLAN

Dear Bill:

As you requested in your memorandum of September 23, 2003, this letter is to present the anticipated wastewater needs for Plymouth Township within the authority service area. As a minimum Plymouth Township will need 0.5 million gallons per day of addition treatment capacity to serve the ultimate build out of Plymouth Township. We request 1.0 million gallons per day in the expanded plant which would allow for changes of zoning and redevelopment.

Very truly yours,

John O. Chambers, Jr., P.E.

JOC/at docs\joc\253080a.ltr c: Timothy Boyd

)

ALASS

EAST NORRITON TOWNSHIP ACT 537 PLAN UPDATE

17

1

)

.

EAST NORRITON TOWNSHIP

MONTGOMERY COUNTY, PA

November 2005 Final Draft January 2006

EDM CONSULTANTS, INC. 1101 South Broad Street, Suite 200 P.O. Box 1545 Lansdale, PA 19446 (215) 393-0670

East Norriton Township Act 537 Plan

TABLE OF CONTENTS

Executive Summary

1

)

SECTION 1 - INTRODUCTION

- 1.01 Purpose and Objective
- 1.02 Background
- 1.03 Municipal Planning
- 1.04 Floodplain and Special Protection Areas

SECTION 2 - PHYSICAL AND DEMOGRAPHIC CONDITIONS

- 2.01 Regional Location
- 2.02 Demographic Conditions
- 2.03 Demographic Projections
- 2.04 Potable Water Resources

SECTION 3 - EXISTING SEWAGE FACILITIES

- 3.01 Gravity Collection and Interceptors
- 3.02 On-Lot Disposal System (OLDS)
- 3.03 Septage Generation and Disposal
- 3.04 Water Well Testing
- 3.05 OLDS Management
- 3.06 Inflow & Infiltration Flow Monitoring
- SECTION 4 FUTURE GROWTH AND DEVELOPMENT
 - 4.01 Growth Areas

SECTION 5 - PLANNING AND FACILITIES ALTERNATIVES, TREATMENT FACILITIES, EVALUATION AND RECOMMENDATION

- 5.01 Collection, Conveyance and Treatment
- 5.02 Corrective Action Plan
- 5.03 Alternative Evaluation

SECTION 6 - INSTITUTIONAL EVALUATION AND RECOMMENDED ALTERNATIVE

- 6.01 Organization
- 6.02 Authority Structure
- 6.03 Institutional Alternatives
- 6.04 Chosen Alternative
- 6.05 Administrative and Legal Activities

SECTION 7 - SELECTED TREATMENT AND INSTITUTIONAL ALTERNATIVES

7.01 Institutional and Technical Alternatives

SECTION 8 - IMPLEMENTATION

8.01 Schedule of Implementation

TABLES

- 3-1 Sanitary Sewer Pump Station Flows (2002-2004)
- 4-1 Sanitary Sewer Needs for Growth Areas
- 4-2 Potential Growth of Lands Connected To Public Sanitary Sewers
- 4-3 East Norriton Township Connection Management

APPENDICES

)

)

- A PaDEP Approval Letter (1990 537 Plan Update)
- B East Norriton Township Sewage Needs Approval
- C Gannett Fleming West Norriton Township Barbadoes Plant Cost Estimates
- D MCHD OLDS Complaints
- E Plate IV Geologic Map (PSC Engineers & Consultants, Inc)
- F West End I/I Investigation
 - F1 ARRO Consulting, Inc. Correspondence (7/22/04 to 9/22/05)
 - F2 Flow Monitoring Reports and Metering Sub-Area Map
 - F3 Sewer Specialty Services Co., Inc. Lateral Televising Summary
 - F4 Commercial Vent Repair Non-complying Connections (10/19/05)
 - F5 East Norriton Township Sump Pump Inspection Summary
 - F6 East Norriton Township Non-Complying Connection Form Letter
 - F7 East Norriton Township Resale Use & Occupancy Inspection Checklist
- G Newspaper Publication Notice
- H Montgomery County Planning Commission Review Letter
- I Montgomery County Health Department Review Letter
- J East Norriton Township Planning Commission Review Letter
- K Public Comments and East Norriton Township Response
- L Adoption Resolution

FIGURES

- 1-1 Zoning Map East Norriton Township
- 1-2 Natural Features Plan
- 2-1 Potable Water System Plan
- 3-1 Existing Sanitary Sewer System
- 3-2 Act 537 Sewer Facilities & Growth Areas

END OF TABLE OF CONTENTS

)

East Norriton Township Act 537 Plan Update November 2005 Final Draft January 2006

Executive Summary

The purpose of this Act 537 Plan Update report is to update East Norriton Township's current Sewage Facilities Plan (Act 537) previously approved in 1992. The 1992 Act 537 plan provided for a revision of the planned sewer service area, expansion of collection and conveyance facilities and an increase in the Township's allocated capacity at the East Norriton Plymouth Whitpain Joint Sewer Authority (ENPWJSA) Treatment Facility. Since 1992 East Norriton Township has been allocated 2.7 mgd of Average Annual Capacity and 3.1 mgd of Maximum Three Month Capacity at the ENPWJSA Treatment Facility. The Act 537 Plan Update reviewed the sanitary sewage needs of East Norriton Township in conjunction with the ENPWJSA Sewage Facilities Plan Update. The Update included the sanitary sewer system, wastewater treatment, potential future growth and the identification of a selected alternate.

Sanitary Sewer System

)

)

The East Norriton Township sewage system, shown on Figure 3-1, includes approximately 58 miles of pipes ranging from 8 inches to 24 inches in diameter, three major pumping stations (Germantown, Timberlake and Norris City Avenue), four minor pumping stations (Sandra Lane, Burnside, Shultz Road and Whitehall Road) and two limited service area pump stations (Marion Avenue and Felton Road). The Germantown Pumping Station serves the western area of the township and discharges to the Timberlake Pumping. The central area of the township discharges to the Timberlake Pumping Station which conveys sewage to the Norris City Avenue Pumping Station. The Norris City Avenue Pumping Station serves the eastern area of the township and receives the sewage discharge from the Timberlake Pumping Station. The Norris

ES - 1

City Avenue Pumping Station also receives gravity sewage flow and pumps to the ENPWJSA Sawmill Pump Station.

A part of the Act 537 Sewage Facilities Planning Report update included an investigation of the sanitary sewer collection system to identify and prioritize drainage areas which exhibit extraneous inflow and/or infiltration. The flow monitoring study was conducted throughout the Township utilizing portable meters installed in manholes which segregated several specific drainage areas. The infiltration/inflow (I/I) investigation indicated areas tributary to the Sandra Lane and Germantown Pump Stations experience surcharge conditions.

East Norriton Township has developed a Corrective Action Plan (CAP) to address the I/l situation. The plan discusses the recent and proposed efforts of the Township to reduce I&l contributions into the sanitary sewer system. In addition to implementing the CAP, the Township will continue to monitor, investigate and remediate the sanitary collection and conveyance system to remove and prevent additional extraneous inflow/infiltration to ensure current permitted system capacities are not exceeded.

Wastewater Treatment

East Norriton Township has wastewater treatment capacity at the ENPWJSA Wastewater Treatment Facility. The facility is located in the southwestern corner of Plymouth Township adjacent to the Schuylkill River. It is owned by the ENPWJSA Authority. The ENPWJSA Wastewater Treatment Plant is authorized to discharge to the Schuylkill River under the NPDES Sewage Permit No. PA0026816. The plant presently provides advanced secondary treatment levels through the use two (2) types of treatment processes consisting of trickling filtration and activated sludge. A treatment process upgrade is being investigated to improve treatment efficiency to address more stringent stream discharge limits.

)

ī

FS - 2

The ENPWJSA Wastewater Treatment Plant has a permitted maximum monthly discharge capacity of 9.3 million gallons per day (mgd) with an annual average flow rating of 8.1 mgd. The 2004 annual average daily flow was 6.45 mgd and the maximum monthly flow was 7.75 mgd. A review of the ENPWJSA Chapter 94 (2004) report projects that the treatment plant will operate within permitted limits for the next 5 years.

Potential Future Growth

There are 209 existing parcels in East Norriton Township utilizing on-lot sewage disposal systems. The Act 537 Plan Update anticipates 170 on-lot systems being connected to the public sewer system leaving 39 on-lot systems. These remaining on-lot systems are located in the western section of the Township in the Trooper Road and Township Line Road area.

)

The growth areas proposed for this update of the East Norriton Township Act 537 Sewage Facilities Plan, as shown on Figure 3-2, include all tracts of land not currently served by public sewers in all zoning districts. Potential future growth was established based on zoning, a review of the draft Comprehensive Plan Update, areas presently identified for development and the connection of on-lot systems. It is estimated that East Norriton Township's future sewage needs will require an average annual capacity of 2.7 mgd and a maximum monthly capacity of 3.3 mgd.

East Norriton Township has sufficient annual average capacity at the ENPWJSA Wastewater Treatment Facility for the ultimate build out of the remaining land in the growth areas. Additional maximum monthly capacity is, however, needed. East Norriton Township anticipates the current planned developments to be completed within the next 10 years. Major capital expenditures by the Township are not anticipated for the future sewer system expansion as developers will generally be required to extend sewers to serve their proposed projects.

Selected Alternate

J

١

It is proposed East Norriton Township secure additional maximum monthly treatment capacity by participating, on a one-third proportionate share, in the upgrade and expansion of the ENPWJSA treatment facility. Based on a proposed annual average expansion to 8.7 mgd (11.1 mgd maximum monthly) at the ENPWJSA facility, East Norriton Township would acquire the projected needed additional maximum monthly flow capacity to accommodated projected future sewage flows. East Norriton Township's 2003 cost for their share of the 2003 conceptual upgrade/expansion scenario is estimated at \$4.8 million. This equates to a capital cost of about \$500/EDU. The selected Act 537 Plan Alternate also includes:

- 1) Continued implementation of the Corrective Action Plan (CAP) to address sewer system I/I.
- 3) Continued I/I program monitoring, investigation and remediation.
- 4) Continued investigation of alternatives to reduce the peak flows at the Germantown and Sandra Lane Pumping Stations.
- 5) Continued implementation of the Township's OLDS Management program.
- 6) Securing financing for the Township's share of the ENPWJSA upgrade/expansion costs.

1.01 Purpose and Objective

The purpose of this report is to update East Norriton Township's current Sewage Facilities Plan (Act 537) previously approved in 1992.

1.02 Background

East Norriton Township's current Act 537 Plan was approved on July 18, 1992. A copy of the approval letter from the Pennsylvania Department of Environmental Protection is provided in Appendix A. The Act 537 plan provided for a revision of the planned sewer service area, expansion of collection and conveyance facilities and an increase in the Township's allocated capacity at the East Norriton Plymouth Whitpain Joint Sewer Authority (ENPWJSA) Treatment Facility. Since 1992 East Norriton Township has been allocated 2.7 mgd of Average Annual Capacity and 3.1 mgd of Maximum Three Month Capacity at the ENPWJSA Treatment Facility. The original Sewage Facilities Plan was adopted in accordance with Act 537 and Act 247 in 1972 and updated in 1978. The sanitary sewage needs of East Norriton Township were reviewed and evaluated in conjunction with the ENPWJSA Sewage Facilities Plan Update.

1.03 Municipal Planning

East Norriton Township Zoning and Subdivision ordinances provide the guidance for the development of land and the re-development of properties with existing structures. The potential needs for sanitary sewer service for the vacant and existing developed parcels is estimated based on current zoning regulations. EDUs are estimated based on the size of the parcel and the estimated sanitary sewer generation rate per acre as regulated by each zoning

J

)

district. The current East Norriton Township Zoning Districts are shown on Figure 1-1 and described as follows:

The East Norriton Township Zoning Ordinance includes twenty two (22) districts generally segregated as: eight (8) residential districts; one (1) institutional district; five (5) commercial districts; five (5) office/professional districts; two (2) industrial districts; and one (1) floodplain district.

<u>AR & ARC Residential Districts -</u> These districts are designed to provide for controlled expansion of low—density development. Single—family detached dwellings, a municipal use or fire house, and a number of accessory uses are the only permitted uses. The minimum lot size vary between the districts. The minimum lot size is 20,000 square feet if public sewer service is provided. To estimate sewage needs, a 3.0 EDU/acre rate for the AR District and 2.5 EDU/acre for the ARC District have been developed based on an average lot size of 20,000 SF with 20% of the gross land area reserved for non-lot uses such as right-of-way and open space.

<u>BP</u> Business and Professional District — This district provides opportunity for a variety of office uses. The permitted uses include offices for administration, sales, insurance, and real estate offices; studios for music and art instruction, and financial institutions. To estimate sewage needs, a 11.0 EDU/acre rate is used for wastewater flow projections based on a minimum lot size of 30,000 SF.

<u>BR & BR1 Residential Districts</u> - These districts are similar to the AR and ARC Districts as they are designed to provide for controlled expansion of low density development. Single family detached dwellings, a municipal use or fire house, and a number of accessory uses are the only permitted uses. The minimum lot size is 10,000 square feet

if public sewer service is provided. To estimate sewage needs, a 2.5 EDU/acre rate for the BR District and 3.5 EDU/acre for the BR1 District have been developed based on an average lot size of 10,000 SF with 20% of the gross land area reserved for non-lot uses such as right-of-way and open space.

<u>C & C1 Commercial Districts</u> - These districts are designed to encourage the development of a variety of commercial uses within certain areas of the Township along major roads to minimize traffic congestion. To estimate sewage needs, a 7.0 EDU/acre rate for the C District and 8.0 EDU/acre for the C1 District have been developed.

<u>EC & EC2 Executive Campus Districts</u> - These districts are designed to encourage the development of a variety of medical, financial and communication office uses within certain areas of the Township. To estimate sewage needs, a 4.0 EDU/acre rate for the EC District and 5.0 EDU/acre for the EC2 District have been developed.

)

1

<u>HR High Rise Residential District</u> - This district was established to provide high density residential developments. This type of development shall be designed as a unified architectural unit with appropriate landscaping. The permitted uses include apartment houses, commercial and office uses, and playgrounds. All buildings within the high rise apartment development are to be served by a public sanitary sewage disposal system and public water supply. To estimate sewage needs, a 16.0 EDU/acre rate is based on multi-level structures with an average foot print of 30,000 SF, a 20% open space reserve and a 30% non-housing use.

<u>I Industrial District</u> — This district includes a variety of industrial uses that promotes the general welfare of the Township. The permitted uses include storage, warehousing, distribution and heavy commercial uses. The method of sewage and industrial waste treatment and disposal must be approved by the Board of Supervisors. To estimate sewage needs, a 2.5 EDU/acre rate is used for wastewater flow projections with a maximum building coverage of 20%.

<u>IN</u> Institutional District — The primary purpose of this district is to provide institutional uses, which may include places of worship; public and private schools; mental, medical and surgical hospitals and clinics. To estimate sewage needs a 5.0 EDU/acre is used for wastewater flow projections based on a 20% open space reserve and a 30% non-housing use.

<u>LI Limited Industrial District</u> - This district is designed to encourage non-polluting light industry, office, storage, warehousing and certain light manufacturing operations. To estimate sewage needs, a 1.5 EDU/acre rate is used for wastewater flow projections with a maximum building coverage of 20%.

}

)

<u>MR Medium Density Residential</u> – The primary purpose of this district is to provide for townhouse and duplex residential dwellings. To estimate sewage needs, a 5.5 EDU/acre rate for this district have has been developed based on an average lot size of 2,500 SF with 40% of the gross land area reserved for non-lot uses such as right-of-way and open space.

<u>RO</u><u>Residential Office District</u> - This district is designed to accommodate up-scale professional and business offices adjacent to and within residential areas. To estimate sewage needs, a 2.0 EDU/acre rate is used for wastewater flow projections based on a minimum lot size of 10,000 SF.

<u>RP</u> Residential & Professional District — This district is designed to accommodate small scale professional and business offices adjacent to and within residential areas. To estimate sewage needs a 3.5 EDU/acre rate is used for wastewater flow projections based on a maximum building coverage of 65%.

<u>RR Retirement Residential</u> -- The primary purpose of this district is to provide for age restricted retirement residential dwellings. To estimate sewage needs, an 8.5 EDU/acre rate for this district has been developed based on 40% of the gross land area reserved for non-lot uses such as right-of-way and open space.

ļ

)

<u>FP</u> Floodplain Conservation District - The primary purpose of this district is to protect the floodplain areas of the Township and to encourage the retention of open space land uses. The district is utilized as an overlay district for all applicable locations in the Township. The district boundaries as delineated on the Floodplain Overlay Map of East Norriton Township were established by the Flood Insurance Study for the Township of East Norriton, Montgomery County, Pennsylvania, as prepared by the Federal Insurance Administration.

The zoning classifications and sewer and water needs are summarized as follows:

Zoning Classification	EDU/Gross Acre		
Zoning Classification	LD0/01033 Acre		
AR	3.0		
ARC	2.5		
BP	11.0		
BR	2.5		
BR1	3.5		
с	7.0		
C1	8.0		
EC	4.0		
EC2	5.0		
HR	16.0		
1	2.5		
IN	5.0		
LI	1.5		
MR	5.5		
RO	2.0		
RP	3.5		
RR	8.5		

)

•

.

1.04 Floodplain Protection Areas

The most significant floodplain areas and wetlands in East Norriton Township are those along the Stoney Creek and the East and West branches of the Stoney Creek, as shown on Figure 1-2 - "Natural Features Plan". Smaller floodplains parallel minor tributaries to these streams. East Norriton Township participates in the National Flood Insurance Program, and has enacted a floodplain ordinance to regulate the type and extent of development in flood-prone areas. While some development that occurred prior to these ordinances exist in the floodplain, there is an awareness of the dangers in this area, and new development is controlled in flood-prone land.

)

SECTION 2 - PHYSICAL AND DEMOGRAPHC CONDITIONS

2.01 Regional Location

East Norriton was established as a Second Class Township in 1924. Located in Montgomery County, and situated adjacent to the Borough of Norristown it comprises approximately 6.1 square miles. Adjacent communities include: Borough of Norristown to the south; Plymouth Township to the east; West Norriton Township to the west, Worcester Township to the west and north and Whitpain Township to the north.

2.02 Demographic Conditions

The most detailed characteristics of population and housing have been produced by the Bureau of the Census. These figures reflect the results of the decennial census, last compiled in 2000. According to the 2000 census data there are 13,211 residents in East Norriton Township, which represents a decrease of 0.8% since the 1990 population of 13,324.

Owner occupied housing units comprise approximately 77% of all housing in East Norriton Township and renter occupied housing units comprise approximately 23%. The average owner occupied household size in East Norriton Township is 2.63 persons per household, a drop of 0.11 from the 1990 figure of 2.74 persons per household. This is slightly less than the Montgomery County average of 2.74 persons per household for owner occupied units.

2.03 Demographic Projections

The Montgomery County Planning Commission (MCPC) has projected the total Township population over the next 25 years to be as follows:

)

Y

YEAR	POPLUATION	CHANGE %
2000	13,211	
2005	13,620	+ 1.03%
2010	13,600	- 0.001%
2015	13,570	- 0.002%
2020	13,550	- 0.001%
2025	13,530	- 0.001%
2030	13,500	- 0.002%
	Overall 25 year change	- 0.009%

There are approximately 170 new single family residential units and 140 apartment or age restricted units planned in East Norriton Township. At 2.63 persons per household for owner occupied units and 1.84 persons per household for renter occupied units the total increase in the resident population is estimated at 705 persons. The number of residential units added from 1994 to 2005 is approximately 210 EDU's or 510 people. If all currently proposed development is completed by the next census in 2010, the projected increase in population would be approximately 2,400 people for a total of 15,611 people. Barring any significant slowing of the economy in the Township, the population can be expected to increase by 10% to 15% from 2000 rather than remain relatively stable as forecasted by the MCPC.

)

)

Most of the commercial areas within the Township are located along transportation corridors of Germantown Pike and DeKalb Pike. Industrial areas are located adjacent to the Stoney Creek Railway in the center of the Township and at the Southwest corner of the Township bounded by Germantown Pike, Foundry Road and Burnside Avenue.

2.04 Geologic Features

East Norriton Township is underlain by sedimentary and associated igneous rocks of Triassic Age which are part of the Newark Group. These rocks form a series of disconnected, down-faulted basins which extend from Nova Scotia to North Carolina. In southeastern Pennsylvania, the Triassic rocks have been divided into the Stockton, Lockatong and Brunswick Formations. Both the Stockton Formation and Lockatong Formation underlie portions of East Norriton Township.

The Stockton Formation is composed chiefly of very fine to course grained Arkosic sandstone and Arkosic conglomerates, inter-bedded red shale and siltstone. The Stockton Formation is divided into three (3) members which include the following: (1) Lower Arkose Member; (2) Middle Arkose Member; and (3) Upper Shale Member.

The Lockatong Formation lies beneath the Stockton Formation and consists of thick bedded argillite (very dense shale and mudstone). The Lockatong Formation is resistant to erosion and forms low ridges. Thinner beds of the Lockatong Formation are interbedded with the overlying Brunswick Formation. Plate IV from the 1992 Act 537 Sewage Facilities Plan (Appendix E) identifies the geology of East Norriton Township. The Lockatong Formation underlies the northeast and northwest portions of the Township. The Middle Arkose Member of the Stockton Formation underlies the greatest portion of the Township. The Upper Shale Member inter-beds the Arkose striking east to west across the Township.

2.05 Potable Water Resources

Surface water from the PA American Water Company is the sole source for public water supply in the East Norriton Township/ENPWJSA Area. The rural parts of the planning area are currently served by on-site wells. The source of water for the system is the Schuylkill River.

)

J

The existing potable water distribution system throughout East Norriton Township is shown on Figure 2-1.

2.06 Soils

)

The soils in East Norriton Township vary greatly in characteristics such as slope, depth, stoniness, and natural drainage. The Soil Survey of Montgomery County delineates four (4) soil associations in the Township. Each association, as a rule, contains a few major soils and several minor soils in a pattern that is characteristic but not uniform. Descriptions of these soil associations follows:

Abbottstown / Readington / Croton Association

Soils of the Abbottstown / Readington / Croton Association cover a small portion of the Township along the northeastern and northwestern boundaries. The soils of this association are formed from material weathered from shale and generally contain a moderate number of coarse fragments. The soils of the Abbottstown series are deep and somewhat poorly drained and mottling is common at a depth of 12 to 20 inches. The soils of the Readington series are deep and moderately well drained, mottling is common at a depth of 28 inches and soil permeability is moderately slow. The soils of the Croton series are deep, poorly drained with some mottling at 12 to 14 inches. Generally, the soils of this association have limitations for development because the slow permeability and shallow depth to mottling preventing onlot sewage disposal systems (OLDS) from operating efficiently.

Reaville / Penn / Klinesville Association

The soils of the Reaville / Penn / Klinesville Association occupy a small portion of the northeastern and northwestern sections of the Township. These soils are located on rolling

uplands. The soils of the Reaville series are moderately deep, moderately well drained containing 15% to 25% shale fragments in the 8" surface layer. These soils have a thin, slowly permeable subsoil restricting downward movement of water. The soils of the Penn series are moderately deep to shallow and have moderately rapid permeability with shallow depth to bedrock. The soils of the Klinesville series are located on steep slopes and on narrow ridge tops. They are well drained soils with shale fragments comprising 50% to 90% of the 10" thick surface layer and depth to bedrock is generally 12 to 18 inches.

The soils of this association have many limitations for land development. The most significant limitation is the variable nature of the soils characteristics. Their drainage ranges from good to poor; their slopes range from nearly level to steep; and the depth to bedrock ranges from 12 inches to more than 3 feet. The ability of these soils to properly treat effluent from septic tanks is limited because of the slow permeability of the subsoil or substratum in the Reaville soils, and the shallow depth to bedrock of the Penn and Klinesville soils.

Lawrenceville / Chalfont / Doylestown Association

)

The soils of the Lawrenceville / Chalfont / Doylestown Association are situated in the midsection of the Township. The principle soils in this association have formed a thick mantle of silt, deposited by wind. The soils of the Lawrenceville series are deep, moderately well drained with some mottling common in the lower part of the subsoil. The soils of the Chalfont series are located on the lower lying valleys. They are deep, somewhat poorly drained and have very slow permeability in the subsoil restricting downward movement of water. The soils of the Doylestown series are deep, poorly drained with a thick, slowly permeable subsoil restricting downward movement of water. The soils for land development since they experience severe erosion after the soils are disturbed. The low permeability of these soils represent a limitation for on-lot disposal of wastewater.

Lansdale / Penn Association

)

The soils of the Lansdale / Penn Association underlie a large part of the eastern section of the Township. The soils of the Lansdale series are moderately deep, well drained with a sandy subsoil generally 3 feet thick. The soils of the Penn series are moderately deep to shallow and moderately rapid permeability. The soils of this association have moderate limitations for land development. The main limitations are steep eroded slopes and shallow depth to bedrock. Although some of the soils have moderately slow permeability in the subsoil, these soils are moderately suitable for onlot disposal of wastewater.

Soil Suitability for On-Site Sewage Disposal

The suitability of the planning area soils for subsurface, on-site sewage disposal systems varies with location, soil type and soil characteristics. Soil geologic characteristics can change abruptly, sometimes varying within a foot. Site soil permeability and depth to the limiting zone must be determined by site investigation to determine final soil suitability because of the shale and sandstone geology of the region. Figure 1-2 indicates the areas where the soil type has limitations for on-lot disposal systems to operate efficiently.

On-Lot Disposal Systems (OLDS), which are of proven technologies, can be classified as individual or community systems:

Individual Sewage Systems

According to PA Code Title 25, Chapter 81, 7.1.1(I) individual sewage systems are defined as "...a system of piping, tanks or other facilities serving a single lot and collecting and disposing of sewage in whole or in part into the soil or waters of this Commonwealth or by means of conveyance to another site for final disposal." Under this broad definition, there are

several means of accomplishing the necessary treatment and disposal which include Individual On-Lot Sewage System(s) and Individual Sewerage System(s).

1

J

Individual On-Lot Sewage Systems - Chapter 73 of Act 537 PA Code Title 25 defines those systems which are considered for standard use permitting for individual on-lot sewage disposal.

Soil based disposal of sewage effluent requires certain criteria within the subsurface profile be met. For various technologies, certain limiting factors (zones) must not be encountered to a specified depth. These criteria vary based on the technology to be applied and are generally as follows:

- Inground systems require a minimum of 60 inches to a limiting zone, and a suitable percolation rate.
- Elevated Sand Mounds require 20 inches to a limiting condition as well as a passing rate of percolation.
- Individual Residential Spray Irrigation (IRSIS) necessitates at least 10 inches to the presence, or indications of a high water table or zone of seasonal saturation. A minimum of 16 inches to rock is necessary for IRSIS as well.
- Drip Irrigation On-Lot Disposal Systems require 20 inches to a limiting condition similar to sand mound systems, however, the Drip Irrigation System utilizes an advanced filter or aerobic treatment unit, which precludes the use of a large sand mound.
- Retaining tanks have no specified restriction based on soil conditions.

Individual Sewerage Systems - This type is a form of disposal other than methods which apply soil renovation or retaining tanks. Such methods typically apply high levels of treatment followed by direct discharge to Waters of the Commonwealth or the surface of the ground. Each residence might be equipped with an individual mechanical treatment and disinfection facility discharging to any available point, stream, swale, ditch, etc.

Community Sewage Systems

)

)

PA Code Title 25, Chapter 71, 781.1.1(ii) define a community sewage system as "a sewage facility, whether publicly or privately owned, for the collection of sewage from two or more lots... ". This differs from Individual Sewage Systems in that more than one dwelling, or equivalent dwelling unit, is serviced by one system. Final treatment and disposal can also occur on any lot(s), or in a separate location entirely. These types of systems can be distinguished as Community On-Lot Sewage System(s) and Community Sewerage System(s).

Community On-Lot Sewerage Systems, as with Individual On-Lot Systems, must comply with various soil criteria to accommodate the use of certain accepted technologies. Generally, due to the volume of sewage flows, a hydrogeologic analysis and more extensive soils testing is required by the Pennsylvania Department of Environmental Protection (PaDEP). Due to PaDEP acting as the permitting entity for these community systems which exceed 10,000 gallons per day, Chapter 73 is utilized as a guidance rather than strictly governing the testing and design processes.

Technologies that are commonly accepted for Community on-lot disposal include, inground absorption areas, elevated sand mound(s), spray irrigation of treated effluent to the surface of the ground, drip irrigation and rapid infiltration through overland flow or basin absorption.

Community Sewerage Systems - These systems can be publicly or privately owned facilities which treat and dispose of sewage other than through soil renovation or retaining tanks. These methods include large scale conveyance and treatment facilities or site specific collection and treatment facilities. Following treatment, the effluent is discharged to the Waters

of the Commonwealth. Currently there are no community on-lot disposal systems located within East Norriton Township.

()

)

Retaining tanks as a method of long term sewage disposal, either for individual lots, or on a community-wide basis, are not acceptable. Retaining tanks can accommodate the most challenging site conditions, but are maintenance intensive and prone to malfunction due to overloading or inappropriate pumping schedules. Therefore, this method is an unfeasible alternative, as a long term method.

Individual on-lot sewage disposal via elevated sand mounds or drip irrigation systems are options for the areas designated for on-lot disposal systems as shown on Figure 3-2. Based on the general soil type characteristics, land in these areas meet the minimum limiting zone requirement; however, other conditions such as slope, slowly permeable layers (fragipans), and proximity to property boundaries may inhibit successful percolation or permeability testing. An on-lot disposal system utilizing an elevated sand mound was installed at 550 North Trooper Road and a drip irrigation system was installed at 912 North Trooper Road (see the October 25, 2005 letter from the MCHD in Appendix D).

Individual Residential Spray Irrigation System (IRSIS) generally requires a lot size of at least three acres. To accommodate the Township's desire for open space preservation, and reasonably utilize the properties zoning potential, IRSIS is not a feasible approach.

Drip Irrigation On-Lot Disposal Systems have recently been approved by the PaDEP for use on individual on-lot systems. These systems require 20 inches to a limiting condition similar to sand mound systems, however, the Drip Irrigation System utilizes an advanced filter

tank of sand or peat to complete the biological stabilization of the waste. An alternative to the filter tank is the use of an aerobic treatment tank. The effluent from the filter tank or aerobic tank is collected in a hydraulic pump tank which is sized to deliver the proper rate of liquid waste to one of two drip irrigation zones, which generally consist of ½" diameter tubing placed 6" to 12" deep. The pump unit and delivery system are designed to automatically alternate the dosing between the two irrigation zones. The lateral tubing consists of emitters which deliver the waste at a rate of 0.34 gallons per lineal foot utilizing a pressurized system, which has inline filters to prevent clogging of the emitter ports. The advantage of this system compared to the elevated sand mound system is that a large volume of soil or sand is not required. However, the disadvantage is the need to replace the sand or peat in the filter unit and higher more frequent operating and maintenance inspections to maintain the pump and in-line filters.

)

)

3.01 Gravity Collection and Interceptors

)

The existing sanitary sewers in East Norriton Township consist of approximately 58 miles of pipes ranging from 8 inches to 24 inches in diameter. Figure 3-1 shows existing sanitary collection and conveyance sewers, pumping stations, drainage basins and force mains.

The Germantown Avenue Pump Station located adjacent to the West Branch of the Stony Creek at Germantown Pike collects sewage from the northwestern section of the Township up to the Worcester Township border. The station, upgraded in 1997, consists of three (3) vertically mounted, centrifugal, dry well pumps, with an existing station capacity of 2.9 mgd. The station discharges flow through a 4,900 feet 12 inch force main, which conveys sewage to the sanitary sewer system along Germantown Pike and eventually to the Timberlake Pump Station.

The Timberlake Pump Station, located adjacent to the Stony Creek and the Briar Glenn Apartments, was upgraded in 1997. The station consists of three (3) vertically mounted, centrifugal, dry well pumps, with an existing station capacity of 4.0 mgd. The station discharges flow through a 2,130 feet 12 inch force main, which conveys sewage to the sanitary sewer system in Stanbridge Street and eventually to the Norris City Avenue Pump Station.

The Norris City Avenue Pump Station is located adjacent to the East Branch of the Stony Creek at the southeastern section of the Township. The station consists of three (3) horizontally mounted, centrifugal, dry well pumps, with an existing station capacity of 7.5 mgd. The station discharges flow through a 3,505 feet 16 inch force main to a gravity sewer in

Hartranft Avenue. The discharge from this station along with the gravity flows from the southeastern section of the East Norriton Township, adjacent to Plymouth Township, are conveyed to the Sawmill Pump Station, which is owned and operated by the East Norriton Plymouth Whitpain Joint Sewer Authority (ENPWJSA).

The Sandra Lane Pump Station is located at Sandra Lane and Whitehall Road. The station collects sewage from the western central section of the Township generally parallel to Whitehall Road. The station was replaced in 2003 and consists of two (2) submersible wet well pumps, with an existing station capacity of 0.50 mgd. The station discharges flow through a 1,900 feet 6 inch force main, which conveys sewage to the sanitary sewer system along Germantown Pike and eventually into the Germantown Pump Station.

The Burnside Avenue Pump Station is located on Potshop Lane near Burnside Avenue. The station collects sewage from the western corner of East Norriton Township adjacent to West Norriton Township. The station consists of two (2) submersible wet well pumps, with an existing station capacity of 0.22 mgd. The station discharges flow through a 1,500 feet 6 inch force main, which conveys sewage to the sanitary sewer system along Germantown Pike and eventually into the Germantown Pump Station.

The Shultz Road Pump Station is located on Shultz Road near Singer Lane. The station collects sewage from the northwestern corner of East Norriton Township adjacent to West Norriton Township. The station consists of two (2), submersible wet well pumps, with an existing station capacity of 0.14 mgd. The station discharges flow through a 1,850 feet 4 inch force main, which conveys sewage to the sanitary sewer system along Woodland Drive and eventually into the Germantown Pump Station.

3-2

The Whitehall Road Pump Station is located on Whitehall Road at Township Line Road. The station collects sewage from the north central section of East Norriton Township adjacent to Worcester Norriton Township. The station consists of two (2) submersible wet well pumps, with an existing station capacity of 0.07 mgd. The station discharges flow through a 1,100 feet 4 inch force main, which conveys sewage to the sanitary sewer system along Township Line Road and eventually into the Timberlake Pump Station.

The Felton Road Pump Station is an ejector pumping station that serves the northern area of Felton Road. The station pumps to a gravity sewer on Felton Road via a 500 feet 4 inch diameter force main.

The Marion Avenue Pump Station serves properties located on Marion Avenue. This grinder pump station pumps to a gravity sewer on Whitehall Road via a 1,000 feet 2 inch diameter force main.

ł

Expansion of the collection system is occurring in areas of development, with new collection sewer construction by private developers and landowners.

East Norriton Township has wastewater treatment capacity at the ENPWJSA Wastewater Treatment Facility. The facility is located in the southwestern corner of Plymouth Township adjacent to the Schuylkill River. It is owned and operated by the ENPWJSA Authority. The ENPWJSA Wastewater Treatment Plant is authorized to discharge to the Schuylkill River under the NPDES Sewage Permit No. PA0026816. The plant presently provides advanced secondary treatment levels through the use two (2) types of treatment

processes consisting of trickling filtration and activated sludge. East Norriton Township's present allocated capacity at the ENPWJSA is 2.7 mgd (annual average) and 3.1 mgd (maximum monthly).

The ENPWJSA Wastewater Treatment Plant has a permitted maximum monthly discharge capacity of 9.3 million gallons per day (mgd) with an annual average flow rating of 8.1 mgd. The 2004 annual average daily flow was 6.45 mgd and the maximum monthly flow was 7.75 mgd. A review of the ENPWJSA Chapter 94 (2004) report projects that the treatment plant will operate within permitted limits for the next 5 years. The ENPWJSA is presently investigating a facility upgrade and expansion to address more stringent discharge limits and to accommodate additional sewage contributions. Various expansion scenarios are under consideration. A 2003 upgrade/expansion scenario considered a capacity increase to an annual average flow of 8.7 mgd with a maximum monthly capacity of 11.1 mgd. Based on capacity being apportioned equally between the three townships, East Norriton Township would realize an annual average capacity of 2.9 mgd and a maximum monthly capacity of 3.7 mgd. The estimated 2003 cost for the ENPWJSA conceptual upgrade/expansion is expected to range from \$10.8 million to \$12.6 million. When soft costs at 15% are included, the total project cost would approach about \$14.5 million. When shared equally by the three municipalities, East Norriton Township's share would be about \$4.8 million.

3.02 On Lot Disposal Systems (OLDS)

)

)

There are 209 existing parcels in East Norriton Township utilizing on-lot sewage disposal systems, as summarized in Table 3-1. The Act 537 Plan Update anticipates 170 on-lot systems being connected to the public sewer system leaving 39 on-lot systems in service. These

remaining on-lot systems are located in the western section of the Township in the Trooper Road and Township Line Road area.

3.03 Septage Generation and Disposal

Telephone inquiries were conducted with local septage collection and disposal companies which are located in the East Norriton Township service area. There are three companies which regularly serve properties in the Township on a weekly basis. Accurate records of septage generation in the Township were not available from septage haulers. An average quantity of septage collected from the three companies ranges from 5,000 to 10,000 gallons per quarter. All three companies indicated that they dispose of septage primarily at the Valley Forge Treatment Plant.

3.04 Water Well Testing

The Montgomery County Health Department (MCHD) was requested to research their records regarding water samples obtained from private properties located in East Norriton Township. As of the date of this plan no reports have been submitted by the MCHD.

3.05 OLDS Management

MCHD reported in their October 28, 2003 and October 25, 2005 letters (see Appendix D) that there were 8 complaints investigated for possible malfunctions of existing systems. Corrective action was competed on all noted systems. There were 7 active site investigations conducted by the MCHD. The location of these fifteen (15) sites is shown on Figure 3-1. The MCHD reported that 6 of the 7 site investigations have not been satisfactorily resolved and no further action was taken. All 6 parcels have been identified to be connected into the public sanitary sewer system in the future. In their October 25, 2005 MCHD identified 5 parcels that

J

)

have been issued permits for the repair or replacement of an existing system or the installation of a new system.

Although there are problem areas in East Norriton Township and while the MCHD is currently responsible for permitting of new systems and resolution of complaints and problems, the Township does recognize its responsibilities to prevent possible detrimental health impacts to the public by improper operation and maintenance of OLDS. To this extent, the Township will continue their OLDS inventory system and community education program which provides current best management practice information to all property owners which have an existing OLDS. Technical questions have been directed to either the MCHD or the PaDEP.

3.06 Inflow & Infiltration Flow Monitoring

)

١

A part of the Act 537 Sewage Facilities Planning Report update is the investigation of the sanitary sewer collection system to identify and prioritize drainage areas which exhibit extraneous inflow and/or infiltration. The flow monitoring study was conducted throughout the Township utilizing portable meters installed in manholes which segregated several specific drainage areas. The flow monitoring has resulted in inflow & infiltration rehabilitation, which is discussed in Section 5.

SECTION 4 - FUTURE GROWTH AND DEVELOPMENT

4.01 Growth Area

)

)

The growth areas proposed for this update of the East Norriton Township Act 537 Sewage Facilities Plan include all tracts of land not currently served by public sewers in all zoning districts. A review of the zoning and the draft Comprehensive Plan Update were used as guidance in establishing the forecast of growth.

Table 4-1 provides a tabulation of EDUs that have been purchased for proposed and existing land developments throughout the Township. The general acceptability of the major soils in the non-growth areas to OLDS was also reviewed for consistency. The existing sewered areas and the sewer growth areas are indicated on Figure 3-2 (Act 537 Sewer Facilities & Growth Areas). To determine the potential sewage flow from the growth area, the total acreage of developable land was estimated and classified by zoning district. The growth area acres for each applicable zoning district in each of the four major pump station drainage basins was multiplied by an average EDU/acre rate, based on current zoning, to determine the number of potential additional EDUs needed to serve the growth area. The total potential EDUs required to serve the growth area is estimated at 1,856 EDUs (0.510 mgd), as shown on Table 4-1. The anticipated growth for each major pump station drainage basin is as follows:

Area		EDU	Flow
Germantown Pump Station Drainage Basin Area		1,034	0.284 mgd
Timberlake Pump Station Drainage Basin Area		203	0.056 mgd
Norris City Pump Station Drainage Basin Area		324	0.089 mgd
Sawmill Pump Station Drainage Basin Area		295	0.081 mgd
	Totals	1,856	0.510 mgd

A consistency review with the Montgomery County Facilities Plan and Land Use Plan was conducted. The growth areas for public sanitary sewage within the Township are not consistent with the Montgomery County Facilities and Land Use plans. The area at the northwest corner of the Township is indicated to be connected to public sanitary sewers. This update proposes to maintain the sanitary disposal method for these properties as on-lot disposal systems in the Trooper Road and Township Line Road area.

4-2

- }

)

)

SECTION 5 - PLANNING AND FACILITIES ALTERNATIVES, TREATMENT FACILITIES, EVALUATION AND RECOMMENDATION

5.01 Collection, Conveyance and Treatment

)

}

)

Growth areas which develop are expected to connect to public sewers within the next 10 years are indicated on Figure 3-2. Parcels which are planned for ultimate connection to the public sanitary sewer system are also indicated on Figure 3-2. Areas not identified as being served by public sewers on the map are planned to be served by on-site systems. The growth areas are consistent with the Township's comprehensive plan and the Township zoning map.

The ongoing sanitary sewer collection and conveyance system maintenance program consists of several activities. The major projects include:

Sewer Line Reconstruction and Replacement

East Norriton Township has completed several I/I rehabilitation repairs to existing sewer lines utilizing remote controlled re-lining of sewers and excavated replacement. The following is a summary of recent projects:

- Performed twenty-seven (27) spot repairs of 8" sewer main from six (6) feet in length to fourteen (14') feet in length.
- > Slip lined approximately 620 LF of 8" sewer on Lawton Road.
- > Slip lined approximately 350 LF of 8" sewer on Fourth Avenue.
- > Slip lined approximately 450 LF of 8" sewer at the East Norriton Middle School.
- > Installed approximately 400 plastic inserts in manholes to capture inflow.
- Replaced approximately 480 LF of 10' interceptor at the East Norriton shopping center.
- > Replaced approximately 150 LF of 8" sewer in Butcher's Mill Road.
- > Replaced approximately 250 LF of 15" interceptor between MH Nos. 88 and 87.

- Approximately 120 LF of 8" sewer main and 100 LF of 12" interceptor was replaced during the construction of the McDonald's and MRA Carwash projects.
- > Approximately 250 LF of 8" sewer was replaced at the Mercy Suburban Hospital.

Collection Line Televising and Grouting

Work during the 1990's included the internal televising inspection of approximately 264,000 feet of sewers, testing of 54,000 joints, sealing of 35,000 joints utilizing 36,000 gallons of chemical grout. In 1998 the Township adopted more stringent standards for sanitary sewer construction. Also, the Township purchased a remotely controlled closed circuit camera system and high pressure hydraulic sewer cleaner truck to continue internal inspection of sewer mains by Township personnel.

Sewage Flow Metering

East Norriton Township utilizes flow meters at the Germantown, Timberlake, Norris City and Sandra Lane Pumping Stations which records all flows. In addition to these meters, the Township has utilized portable open channel flow meters for installation at various locations in the Township sewer system. During 2003 and 2004 the Township placed meters in several key locations in the Germantown and Sandra Lane Pump Station Drainage Areas to identify and prioritize the sections of each area exhibiting the most severe infiltration and inflow problems. Several letters from ARRO Consulting, Inc. regarding the progress of the investigation are included in Appendix F1. The Germantown Pump Station Area was subdivided into eight (8) sub-drainage basins, as shown in Appendix F2, which had open channel flow meters installed to simultaneously record flows during an eight week period. Sewer flows during dry and wet weather periods were recorded and evaluated to determine the sub-areas with the highest I/I problems. The results of the flow monitoring of these areas is included in Appendix F2. Three (3) of the sub-basin areas were identified with the highest I/I

)

)

rates, contributing an estimated two-thirds of the total I/I flows entering the Germantown Pump Station. More extensive investigation of the sanitary sewer mains within this area included manhole inspections, storm sewer cross connection investigations, smoke and dye testing and sump pump connection inspections. A comprehensive sewer main and lateral internal televising inspection work has concluded that the overall condition of sewer mains to be good, however, approximately 98% of the laterals have been observed with root intrusion, incomplete pipe connections, and cracked pipes visibly exhibiting ground water intrusion. Internal televising inspection of approximately 50% of these laterals has been completed. The locations and quantity of properties inspected are included in Appendix F3.

Unauthorized Connections to Sanitary Sewers

)

)

In March 2000 East Norriton Township adopted Ordinance No. 419 which established requirements for the control of storm water to prevent discharge from sump pumps, floor drains, roof downspouts and storm sewer pipes into the sanitary sewer system. Building sewer cleanout vents on several commercial properties were inspected and found to be located in parking areas, which allowed surface water to enter the collection system. These properties (Appendix F4 summary listing) were notified by mail to correct the deficiency.

Within the West End Investigation Area residential properties were inspected to determine the location of the discharge of sump pumps. Appendix F5 is a tabulation of 307 properties that were investigated. A form letter (sample in Appendix F6) was sent to those properties to which access to the interior of the home was not initially obtained.

Code Enforcement and Inspection

During code enforcement activities, Township inspectors have been looking for wastewater related problems such as illegally connected sump pumps and roof drains and sewer laterals in disrepair. A checklist (Appendix F7) is utilized to verify compliance with Township rules and regulations prior to the sale of a property with a structure. The question regarding illegal sump pump or down-spout connections to the sanitary sewer is included on the form for the inspector.

5.02 Corrective Action Plan

1

)

)

East Norriton Township has developed a Corrective Action Plan (CAP) to address the I/I situation. The plan discusses the recent and proposed efforts of the Township to reduce I/I contributions into the sanitary sewer system. The portion of the system located in the western side of the Township includes the Germantown Pump Station Drainage Area, which has been identified as having the highest rate of extraneous I/I flows. The Corrective Action Plan states that for every ten (10) gallons per day (gpd) of documented I/I flows removed from the system one (1) gpd of connected flow would be available for new sewer connections. The proposed activities of the Corrective Action Plan are as follows:

- 1 The Township will complete sewer lateral televising within the noted subdrainage areas upstream of the Germantown Pumping Station. Concurrent with this fieldwork, the Township will develop specifications and bid a lateral repair and replacement project for the affected area.
- 2. The Township will prepare and pass an amendment to the existing ordinances requiring that when a property within the Township is sold the sewer lateral will be televised to determine condition. If a lateral is in unacceptable condition, the lateral will need to be replace or repaired prior to the completion of the sale.
- 3. The Township wastewater engineer will undertake a hydraulic analysis in connection with removing flow from the Germantown Pumping Station drainage area by redirecting that flow from the Sandra Lane Pumping Station directly to the larger Timberlake Pumping Station. This will assist in reducing surcharges and overflows at the Germantown Pumping Station.

5.02 Alternate Evaluation

1

)

Based on the present availability of treatment capacity for East Norriton Township at the ENPWJSA Treatment Facility and the Authority's present efforts to upgrade and expand the facility, an extensive investigation of treatment alternatives was not undertaken. Three alternates were considered:

- Continued Sewage Treatment at the ENPWJSA facility and participation in the upgrade/expansion.
- Diversion of Flow to West Norriton Township and treatment at a proposed facility to be constructed.
- No Action

Continued Sewage Treatment at the ENPWJSA

East Norriton Township's current average annual capacity of 2.7 mgd provides for sufficient sewage treatment capacity for the projected ultimate build out of the Township. The maximum monthly flow is anticipated to be 3.3 mgd based on the average annual daily flow rate of 2.7 mgd and a peaking factor of 1.32. The estimated additional maximum monthly capacity required by East Norriton Township at the ENPWJSA is 0.2 mgd greater than the present 3.1 mgd allocated capacity. With the proposed ENPWJSA facility 2003 conceptual scenario upgrade/expansion to an annual average flow capacity of 8.7 mgd (East Norriton capacity 2.9 mgd) and a maximum monthly flow capacity to 11.1 mgd (East Norriton capacity 3.7 mgd) adequate annual average and maximum monthly capacity will be available to accommodate future projected sewage contributions from East Norriton Township. The 2003 cost for East Norriton Township's share of the 2003 conceptual scenario upgrade/expansion is estimated at \$4.8 million.

Diversion of Flow to West Norriton Township

West Norriton Township has inquired whether East Norriton Township would be interested in acquiring sewage capacity from West Norriton Township. This alternative would require the diversion of existing and future flows from the Sandra Lane and Burnside Avenue pump stations to West Norriton Township. An estimated average annual present and future flow of 0.2 mgd from these areas could be diverted to West Norriton Township's proposed Barbadoes Wastewater Treatment Facility. The estimated cost per gallon at the West Norriton facility is \$ 7 per gallon for a 3.0 mgd plant (Appendix C). For 0.2 mgd of treatment capacity the East Norriton Township cost would be about \$1.4 million. When the cost to construct conveyance facilities to divert sewage to West Norriton Township, estimated to be at least \$0.2 million, is considered the total expected capital cost would be at least \$1.6 million.

Presently it is proposed the ENPWJSA upgrade/expansion cost be shared equally between the three participating township's. Therefore if East Norriton Township were to divert flow to West Norriton Township to obtain an additional 0.2 mgd of capacity at the ENPWJSA facility the total cost would be \$6.4 million (\$4.8 million plus \$1.6 million = \$6.4 million). Since the proposed upgrade/expansion at the ENPWJSA facility would provide East Norriton Township adequate annual average and maximum monthly capacity to accommodate projected future sewage contributions, purchasing additional capacity from West Norriton Township is not necessary and is not economically justified.

No Action

)

The no action alternative would include East Norriton Township not participating in the ENPWJSA plant expansion to secure additional maximum monthly capacity at the facility. If East Norriton Township would be able to sufficiently reduce the I/I flows entering the collection

system, the additional 0.2 mgd of maximum monthly capacity may not be required. However, in accordance with the existing inter-municipal agreement it would still be necessary for East Norriton Township to participate in the plant upgrade associated with improving the organic treatment efficiency to meet the revised stream discharge limits.

Historically the permanent removal of I/I has been difficult. I/I removal has been documented in many municipalities only to be recorded in sewer reaches that were not rehabilitated. East Norriton Township's previous I/I rehabilitation efforts have been successful only to have I/I reappear as demonstrated by observed surcharges in the Germantown Pump Station area. Therefore since the Township will be involved with the plant upgrade the dual approach of securing additional maximum monthly treatment capacity at the ENPWJSA facility as well as aggressively pursuing I/I removal would seem to be the prudent approach to avoid the potential of a building moratorium due to the lack of maximum monthly capacity.

Recommended Alternative

J

It is recommended East Norriton Township participate in the ENPWJSA upgrade/expansion pursuant to the existing inter-municipal agreement. The 2003 cost share for East Norriton is estimated at about \$4.8 million. Based on a 2.7 mgd annual average flow and 275 gpd/EDU, the calculated capital cost per EDU is \$500/EDU (\$4.8M/2.7mgd x 275gpd/EDU = \$488.89/EDU, rounded \$500/EDU). In addition I/I rehabilitation efforts should be continued as well as the management of on-lot sewage disposal systems. An outline of the recommended alternate follows:

- 1) Participate in the ENPWJSA wastewater treatment upgrade/expansion.
- 2) Continue to implement the Corrective Action Plan (CAP).
- 3) Continue the I/I program of monitoring, investigation and remediation.

- Continue investigation of alternatives to reducing the peak flows at the Germantown and Sandra Lane Pumping Stations.
- 5) Continue to implement the Township's OLDS Management program.

.

 Secure financing for the Township's share of the ENPWJSA upgrade/expansion costs.

)

.

6.01 East Norriton Township Organization

The ENPWJSA owns and maintains the wastewater treatment plant. The collection and conveyance systems in the Township are owned and maintained by the East Norriton Township.

6.02 Township Structure

)

)

East Norriton Township is in good financial standing. The East Norriton Township has a bonded debt which includes the Series 2002 and Series 2004 Guaranteed General Obligation Bonds which were the refinancing of prior general sewer revenue bonds and a Series 2003 Sewer Revenue Note. The Series 2002 bonds issued for \$1,552,000 (of which 20.77% or \$332,350 is related to sanitary sewer expenses) will mature in 2014. The Series 2004 bonds issued for \$4,905,000 (of which 66.95% or \$3,283,898 is related to sanitary sewer expenses) will mature in 2017. The Series 2003 note issued for \$1,000,000 will mature in 2013. The proceeds of the Series 2002 bonds, the Series 2004 bonds and the Series 2003 note were invested. Annual operating expenses, exclusive of depreciation, totaled \$2,763,000 for 2004. Revenues from user charges and connection fees totaled \$2,276,000 in 2004.

The Township's public works department provides the staffing and resources for the maintenance of the conveyance and collection systems. Operation, maintenance, inspection and testing of the sanitary sewer system is conducted by East Norriton Township through the Public Works Department.

East Norriton Township has the existing legal authority to revise the Act 537 Plan. East Norriton Township has the legal authority to set rates and user fees through rules and regulations. East Norriton Township has the existing authority to take enforcement action for violations of adopted ordinances or regulations, negotiate agreement for wastewater treatment and raise capital for construction, operation and maintenance of the sewer system.

6.03 Institutional Alternatives

An update to the Township's Act 537 Plan has been prepared for East Norriton Township. Additional organizations or authorities will not be required to implement the revision. The ENPWJSA Treatment Facility provides the Township's treatment capacity through an Intermunicipal Sewage Treatment Agreement dated May 13, 1991.

6.04 Chosen Alternative

ì

)

East Norriton Township has updated their Act 537 Plan in order to delineate sewer growth areas and the areas designated to use on-lot sewage disposal, to be consistent with the Township's Comprehensive Plan and zoning ordinances.

The Township should implement the Act 537 Plan Update and continue to monitor, investigate and remediate the sanitary collection and conveyance system to remove and prevent additional extraneous inflow/infiltration to ensure current permitted system capacities are not exceeded.

6.05 Administrative and Legal Activities

East Norriton Township has the legal authority to revise the Act 537 Plan with approval of the PaDEP. Prior to submission of the Act 537 Plan to PaDEP, East Norriton Township will

convene a public meeting after publishing a notice stating the purpose of the meeting, its date, time, and location to hear comments on the proposed plan. This notice is included in Appendix G. The proposed Act 537 Plan will also be forwarded to the Montgomery County Planning Commission (Appendix H), the Montgomery County Health Department (Appendix I) and the East Norriton Township Planning Commission (Appendix J) for review and comment.

East Norriton Township will, after consideration of all comments received by Montgomery County, Pennsylvania and Township agencies and the public, provide a written response which will be included with the Act 537 Plan in Appendix K.

The final adoption of the Act 537 Sewage Facilities Plan must be approved by resolution at a public meeting of the East Norriton Township Board of Supervisors. This resolution is included as Appendix L.

7.01 Institutional and Technical Alternatives

)

1

East Norriton Township has sufficient annual average capacity at the ENPWJSA Wastewater Treatment Facility for the ultimate build out of the remaining land in the growth areas. Capacity is necessary to accommodate the projected future maximum monthly flow. Participation in the proposed ENPWJSA plant upgrade/expansion will provide East Norriton Township the necessary annual average and maximum monthly capacity to accommodate projected future sewage needs. Expansion of the sanitary collection system is anticipated by private developers for each tract of land. The existing pump stations and conveyance system have sufficient average annual flow capacity for the additional sewerage flows anticipated. Since the plan does not propose extending the existing sanitary sewer collection system by East Norriton Township, a request to review a construction area plan was not sent to the Pennsylvania Natural Diversity Inventory (PNDI) nor the Pennsylvania Historical and Museum Commission.

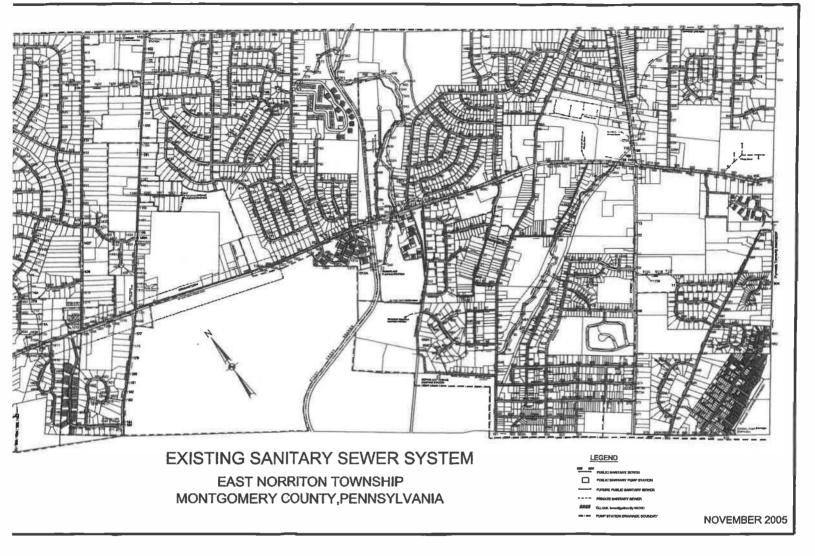
SECTION 8 - IMPLEMENTATION

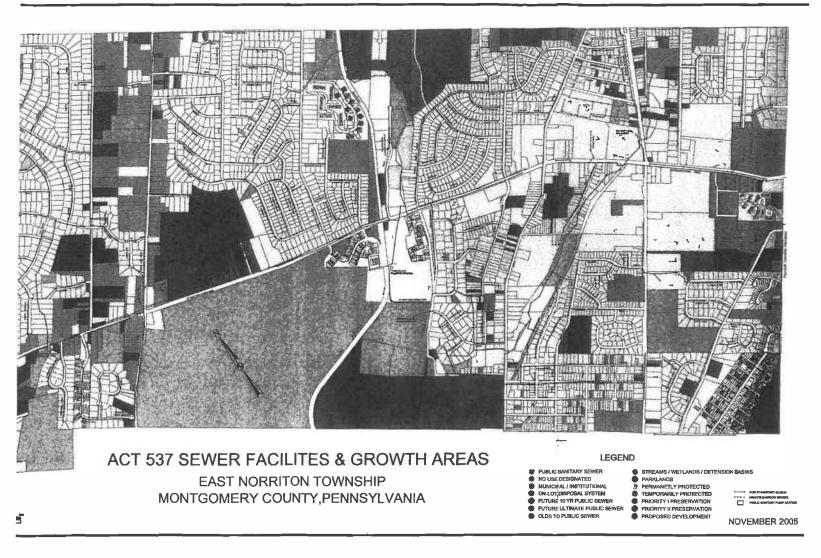
8.01 Schedule of Implementation

East Norriton Township anticipates the current planned developments to be completed within the next 10 years. Major capital expenditures by the Township are not anticipated for the future sanitary sewer system expansion as developers will generally be required to extend sewers to serve their proposed projects.

East Norriton Township will participate on a one-third proportionate share of the upgrade and expansion of the ENPWJSA treatment facility. Based on a proposed expansion to 8.7 mgd at the ENPWJSA facility, East Norriton Township would acquire an additional 0.2 mgd of capacity for a total average annual capacity of 2.9 mgd and maximum monthly capacity of 3.7 mgd. The Township will follow the implementation schedule developed by the ENPWJSA in regards to the plant upgrade/expansion.

1	ne proposed	scneaule to	or implementin	g the East	t Norriton Act 5	537 Plan Upda	ate follows:


No.	Task	Milestone
1	Submit Plan to Township for Review	December 2005
2	Finalize Draft Plan	January 2006
3	Advertise Plan for 30 day Public Comment Period	January 27, 2006
4	Forward Plan for Municipal Agency Reviews	January 27, 2006
5	Public Hearing to Review Plan and Receive Public Comments	February 28, 2006
6	60-Day Municipal/County Review Completion	March 29, 2006
7	Incorporate Public/Municipal/County Comments in Report*	April 18,2006
8	Issue Report for Municipal Adoption	April 18, 2006
9	Execute Municipal Adoption Resolution	April 18, 2006
10	Submit Act 537 Plan Update to PaDEP	April 19, 2006


)

No.	Task	Milestone
11	Forward Plan to ENPWJSA for incorporation into Authority Plan	April 2006
12	Receive PaDEP Approval	September 2006
13	Apply for Plan Preparation 50% Reimbursement	September 2006
14	Implement Plan Regarding Collection and Conveyance System	September 2006
15	Continue to participate in the ENPWJSA Act 537 Plan Update	2006-2007

*Note: If significant comments are received from municipal agencies, another 30 day public comment period would be appropriate.

FIGURE 3-1

 \cap

.

.

)

.

.

- ·

.

.

TABLES

.

271 ||

East Norriton Township Existing On-Lot Disposal Systems

	OWNER	PARCEL ADDRESS	Parcel Tax Map Identification
1	GIAIMO JOHN A & PHYLLIS S	2402 ALAN RD	Blk. 010 / Unit 012
2	FLY MARGARET T	2412 ALAN RD	Blk. 010 / Unit 027
3	MOON JAMES E. & ANN L.	322 BRISTOL ST	Blk. 031 / Unit 130
4	GRIFFIN JOSEPH F & CYNTHIA	512 BURNSIDE AVE	Blk. 003D / Unit 001
5	DETWILER WILLIAM H & HELEN D	532 BURNSIDE AVE	Blk. 003D / Unit 003
6	SIEGLE JOHN H 2ND & ESTHER V	530 BURNSIDE AVE	Bik. 003D / Unit 004
7	ROYDS RALPH W & ISABELLE A	536 BURNSIDE AVE	Blk. 003C / Unit 014
8	BEADLE HERBERT R & JEAN M	540 BURNSIDE AVE	Blk. 003C / Unit 013
9	WOLFROM ANNA R	546 BURNSIDE AVE	Blk. 003C / Unit 010
10	STRINGER HARRY & BARBARA T	548 BURNSIDE AVE	Blk. 003C / Unit 009
11	THE RAYMOND J GALULLO TRUST	550 BURNSIDE AVE	Blk. 003C / Unit 008
12	DETWILER & SIEGLE & O'NEILL & VANLA	520 BURNSIDE AVE	Blk. 003C / Unit 001
13	REIGNER RONALD	3208 BUTCHERS LN	Blk. 026 / Unit 024
14	CARBONE BRUNO M	90 CIRAK LANE	Blk. 002B / Unit 129
15	KAYNE PAUL S & LAURIE H	111 CIRAK AVE	Blk. 002B / Unit 016
16	ROBBINS JOSEPH E & JULIA M	109 CIRAK AVE	Blk. 002B / Unit 017
17	GORDON JAMES A JR & THERESA M	107 CIRAK AVE	Blk. 002B / Unit 018
18	ROBBINS BEATRICE D	105 CIRAK AVE	Blk. 002B / Unit 019
19	PETRILLO CARLO & MARIA	103 CIRAK AVE	Blk. 002B / Unit 020
20	ROACH JOHN H & KATHRYN M LIVING TRUST	101 CIRAK LN	Blk. 002B / Unit 021
21	SMITH STEVEN R & MARGARET D	108 CIRAK AVE	Bik. 002B / Unit 015
22	BARDAS RALPH F	106 CIRAK AVE	Blk. 002B / Unit 014
23	JORDAN JOHN P & GEORGEANN T	104 CIRAK AVE	Bik. 002B / Unit 013
24	CASSEL TROY	102 CIRAK LN	Blk. 002B / Unit 012
25	NUTTALL JOHN P & DORIS L	100 CIRAK AVE	Bik. 002B / Unit 011
26	BRADY WILLIAM P & DOLORES M	3200 DEKALB PK	Blk. 025 / Unit 014
27	CHOI SA H & KWUI R	2950 DEKALB PK	Blk. 026 / Unit 019
28	DELAURENTIS JOSEPH & JENNIFER	2008 DEKALB PK	Blk. 028 / Unit 003
29	GAMBONE GEORGE & JANE	2944 DEKALB PK	Blk. 026 / Unit 003
30	GAMBONE JAMES	3208 DEKALB PK	Blk. 025 / Unit 011
31	MAUL ELMER W & LEAH A	3002 DEKALB PK	Blk. 025 / Unit 022
32	DEGNAN JAMES H & MADELINE	2302 DEKALB PK	Blk. 028 / Unit 010
33	ROSS DANIEL M & PAULINE M	2231 DEKALB PK	Blk. 023 / Unit 044
34	GAMBONE SALVATORE & SUSAN	545 FOUNDRY RD	Blk. 002A / Unit 033
35	PROVIDENCE BUSINESS PARK,LLC	553 FOUNDRY RD	Bik. 002A / Unit 024
36		550 FOUNDRY RD	Blk. 002A / Unit 025
37		200 FRANCIS AVE	Blk. 021 / Unit 020
38		2927 HANNAH AVE	Blk. 026 / Unit 010
39		2931 HANNAH AVE	Blk. 026 / Unit 027
40		2935 HANNAH AVE	Blk. 026 / Unit 035
41		2957 HANNAH AVE	Blk. 026 / Unit 023
42	DIRADO RALPH C & JOAN A	2936 HANNAH AVE	Blk. 026 / Unit 142
43	STANSBERRY SYLVIA & IRMA	2933 HANNAH AVE 2951 HANNAH AVE	Blk. 026 / Unit 024
44 45	ALOIA JAMES T JR & KAREN J	549 INDUSTRY LN	Blk. 026 / Unit 025 Blk. 002 / Unit 043
45 46	WADSET LTD MAXWELL JAMES & LEIDY BARBARA	11 JEFFERSON AVE	Bik. 002 / Unit 020
40 47	LEWSI JAMES J JR. & JANET	102 LAWNTON RD	Bik. 018A / Unit 116
47 48	NESTER EDWARD & HELEN	550 N TROOPER RD	Bik. 002A / Unit 005
-10			

)

East Norriton Township Existing On-Lot Disposal Systems

GEORGE MICHAEL & JOURDS DITEODER A DITEODER ADJUST DITEODER ADJUST GEORGE MICHAEL & JODU 2020 N TROOPER RD BIL.001 / URL 033 SMITH EDWARD R & BINCOLE M 2018 N TROOPER RD BIL.001 / URL 033 SMITH TROMAS E & ROBERTA E 2018 N TROOPER RD BIL.001 / URL 033 SMITH TROMAS E & ROBERTA E 2018 N TROOPER RD BIL.001 / URL 033 SMITH TROMAS E & ROBERTA E 2018 N TROOPER RD BIL.001 / URL 033 SMITH TROMAS E & ROBERTA E 2010 N TROOPER RD BIL.001 / URL 033 SMITH TROMAS E & ROBERTA E 2010 N TROOPER RD BIL.002 / URL 031 SMITH TROMAS E & ANDALL T 1218 N TROOPER RD BIL.0023 / URL 039 SMITH TROOPER RD BIL.0023 / URL 032 CHL 039 SMITH TROSTEE 1200 N TROOPER RD BIL.0023 / URL 025 SMITH TROSTEE 1200 N TROOPER RD BIL.0023 / URL 025 SMITH TROSTEE 1200 N TROOPER RD BIL.0023 / URL 025 SMITH TROSTEE 1200 N TROOPER RD BIL.0023 / URL 025 SMITH TROSTEE 1200 N TROOPER RD BIL.0023 / URL 025 SMITH TROSTEE 1200 N TROOPER RD BIL.0023 / URL 025		OWNER	PARCEL_ADDRESS	Parcel Tax Map Identification
50 WHITE EDWARD R & BEVERLY J 2020 N TROOPER RD Bik. 001 / Unit 034 51 KRAUB ADAM R & NICOLE M 2016 N TROOPER RD Bik. 001 / Unit 033 53 BECK GARY A & SUGAN A 2014 N TROOPER RD Bik. 001 / Unit 032 54 BECK GARY A & SUGAN A 2014 N TROOPER RD Bik. 001 / Unit 032 55 DECK GARY A & SUGAN A 2014 N TROOPER RD Bik. 001 / Unit 032 56 DOGIC LAURA, JOSEPH N JR & MICHAEL A 2010 N TROOPER RD Bik. 0027 / Unit 030 56 DOGIO JEFREY A LORI 1216 N TROOPER RD Bik. 0028 / Unit 029 57 CRAVEN WJ J & RANDALL T 1216 N TROOPER RD Bik. 0028 / Unit 028 58 MURDOCK CELESTE M & JOHN & SARREY 1210 N TROOPER RD Bik. 0028 / Unit 025 59 DEFAUL JOSEPH V & ANN MARIE 1210 N TROOPER RD Bik. 0028 / Unit 025 51 TAUGRER KEWN D & DONNA R 906 N TROOPER RD Bik. 0028 / Unit 025 51 TAUGRER KEWN D & DONNA R 906 N TROOPER RD Bik. 0028 / Unit 025 53 GUSZ ELIZABETH A 904 N TROOPER RD Bik. 0028 / Unit 025 54 GUSA VE	49			
Stress Stress Stress Stress 51 MRAUS ADAM R & NICOLE M 2019 N TROOPER RD Bilk. 001 / Unit 033 52 SMITH THOMAS E & ROBERTA E 2019 N TROOPER RD Bilk. 001 / Unit 032 54 BECK GARY A S SUBAN A 2014 N TROOPER RD Bilk. 001 / Unit 033 55 DECICOS ULARA, JOSEN HI JIR & MICHAEL A 2010 N TROOPER RD Bilk. 0021 / Unit 039 56 DECICOS ULARA, JOSEN HI JIR & MICHAEL A 2010 N TROOPER RD Bilk. 0028 / Unit 029 57 CRAVEN WH JI & RANDALL T 1216 N TROOPER RD Bilk. 0028 / Unit 029 59 DEFAUL JOSEPH V & ANNA MARIE 1212 N TROOPER RD Bilk. 0028 / Unit 025 50 LESHER FRAMK M TRUSTEE 1206 N TROOPER RD Bilk. 0028 / Unit 025 51 PAESANI DANIEL JI & JANE SHARP 1200 N TROOPER RD Bilk. 0028 / Unit 025 51 PAESANI DANIEL JI & JANE SHARP 1200 N TROOPER RD Bilk. 0028 / Unit 025 52 TUGRER NICHOLAS W & WHITE MARLYN 1200 N TROOPER RD Bilk. 0028 / Unit 025 54 LUBRA JOSEPH F JIR ROSALIE C 0900 N TROOPER RD Bilk. 0028 / Unit 025 <				
52 SMITH THOMAS E & ROBERTA E 2016 N TROOPER RD Bik. 001 / Unit 043 53 BECK GARY A & SUBARA 2014 N TROOPER RD Bik. 001 / Unit 032 54 PEEPLES ADAM & BARBARA 2016 N TROOPER RD Bik. 001 / Unit 031 55 DECICCO LAURA, JOSEPH N JR & MICHAEL A 2016 N TROOPER RD Bik. 001 / Unit 030 56 GORD JERREY & LORN 1216 N TROOPER RD Bik. 0028 / Unit 039 57 CRAVEN WIM J & RANDALL T 1216 N TROOPER RD Bik. 0028 / Unit 029 58 MURDOCK CELESTE M & JOHN E SORTOR 1214 N TROOPER RD Bik. 0028 / Unit 025 59 DEFAUL JOSEPH V J. ANN MARE 1210 N TROOPER RD Bik. 0028 / Unit 025 50 DEFAUL JOSEPH V J. ANN MARE 1200 N TROOPER RD Bik. 0028 / Unit 025 51 TAUGNER NICHOLAS W & WHITE MARILYN 1200 N TROOPER RD Bik. 0028 / Unit 025 52 TAUGNER NICHOLAS W & WHITE MARILYN 1200 N TROOPER RD Bik. 0028 / Unit 025 54 HULLSNSCH KEWTN B 3 DONNA R 906 N TROOPER RD Bik. 0028 / Unit 025 54 HULLSNSCH KEWTN B 3 DONNA R 906 N TROOPER RD Bik. 0028 / Unit 031				
SI DECK GARY A & SUSAN A 2014 N TROOPER RD Bik. 001 / Unit 032 44 PEEPLES ADAM & BARBARA 2012 N TROOPER RD Bik. 001 / Unit 031 55 DECICCO.LUMA, JOSEPNIN JR & MICHAEL A 2010 N TROOPER RD Bik. 0028 / Unit 039 56 DECICCO.LUMA, JOSEPNIN JR & MICHAEL A 2010 N TROOPER RD Bik. 0028 / Unit 039 57 CRAVEN WH J & FANDALL T 1216 N TROOPER RD Bik. 0028 / Unit 029 58 MURDOCK CELESTE M & JOHN E SORTOR 1214 N TROOPER RD Bik. 0028 / Unit 025 59 DEPAUL JOSEPH V & ANNA MARIE 1210 N TROOPER RD Bik. 0028 / Unit 025 51 LESHER FRAMM IT REJORTEE 1200 N TROOPER RD Bik. 0028 / Unit 025 51 LUBRA JASON # & CLARE LOILLET TLUBAR 9120 N TROOPER RD Bik. 0028 / Unit 025 51 GUASC LLABETH A 996 N TROOPER RD Bik. 0028 / Unit 130 56 ULSTALSEET H J R ROSALIE C 900 N TROOPER RD Bik. 0028 / Unit 130 56 NTROOPER RD Bik. 0028 / Unit 130 Bik. 0028 / Unit 130 56 ULSTALSEET TH A ROSALIE C 900 N TROOPER RD Bik. 0028 / Unit 130 <				
54 PEEPLES ADAM & BARBARA 2012 N TROOPER RD Bik. 001 / Unit 031 55 DECICCO LAURA, JOSÉPH N JR & MICHAEL A 2010 N TROOPER RD Bik. 0021 / Unit 030 57 CRAVEN WM J & RANDALL T 1216 N TROOPER RD Bik. 0022 / Unit 030 58 MURDOCK CELESTE M & JOHN E SORTOR 1214 N TROOPER RD Bik. 0022 / Unit 039 59 MURDOCK CELESTE M & JOHN E SORTOR 1214 N TROOPER RD Bik. 0022 / Unit 025 51 PAESAN LUJOSEPH V & ANNA MARIE 1210 N TROOPER RD Bik. 0022 / Unit 025 51 PAESAN DAMIEL J & ANNE SHARP 1210 N TROOPER RD Bik. 0022 / Unit 025 51 TAUGINER REVIN DA DONNA R 910 N TROOPER RD Bik. 0022 / Unit 025 51 GUSZ ELIZABETH A 904 N TROOPER RD Bik. 0022 / Unit 131 52 GUSZ ELIZABETH A 904 N TROOPER RD Bik. 0022 / Unit 131 54 MULBAR MASON E & CLARE L BILLETT-LUBAR 912 N TROOPER RD Bik. 0022 / Unit 131 54 SUSZ ELIZABETH A 904 N TROOPER RD Bik. 0022 / Unit 131 56 GUSZ ELIZABETH A 904 N TROOPER RD Bik. 0022 / Unit 131 56 <td></td> <td></td> <td></td> <td></td>				
55 DeCIGCO LAURA, JOSEPH N JR & MICHAEL A 2010 N TROOPER RD Bik. 0021 / Unit 030 66 BOSIO JEFREY & LORI 1216 N TROOPER RD Bik. 0022 / Unit 030 70 CRAVEN WJ & RANDALL T 1216 N TROOPER RD Bik. 0022 / Unit 029 57 CRAVEN WJ & RANDALL T 1216 N TROOPER RD Bik. 0022 / Unit 029 58 MURDOCK CELESTE M & JOHN E SORTOR 1214 N TROOPER RD Bik. 0022 / Unit 029 59 DEFAUL JOSEPH V & ANAN MARE 1210 N TROOPER RD Bik. 0022 / Unit 025 50 LESHER FRAMK M TRUSTEE 1206 N TROOPER RD Bik. 0022 / Unit 025 50 TAUGNER NICHOLAS W & WHITE MARILYN 1200 N TROOPER RD Bik. 0022 / Unit 022 51 LUBAR NASON & & CLARE LEULET-LUUBAR 910 N TROOPER RD Bik. 0022 / Unit 022 54 AUGNER KOM DA BONNA R 906 N TROOPER RD Bik. 0022 / Unit 02 56 GUSZ ELIZABETH A 904 N TROOPER RD Bik. 0022 / Unit 03 56 DUSC EARMER A ROBERT P 540 N TROOPER RD Bik. 0022 / Unit 00 57 BUCA CARMEN A & ELEANOR 540 N TROOPER RD Bik. 0022 / Unit 008 58				
66 BOSIO JEFFREY & LORI 1218 N TROOPER RD Bik 0028 / Unit 030 77 CRAVEN WM J & RANDALL T 1216 N TROOPER RD Bik 0028 / Unit 030 79 CRAVEN WM J & RANDALL T 1216 N TROOPER RD Bik 0028 / Unit 029 70 DEPAUL JOSEPH V & ANNA MARIE 1212 N TROOPER RD Bik 0028 / Unit 027 70 LESHER FRANK M TRUSTEE 1206 N TROOPER RD Bik 0028 / Unit 025 71 TAUGNER NICHOLAS W & WHITE MARILYN 1200 N TROOPER RD Bik 0028 / Unit 025 71 JUBAR JASON E & CLARE L BILLETT-LUBAR 912 N TROOPER RD Bik 0022 / Unit 025 71 JUBAR JASON E & CLARE L BILLETT-LUBAR 904 N TROOPER RD Bik 0022 / Unit 030 76 GUSZ ELIZABETH A 904 N TROOPER RD Bik 0022 / Unit 130 76 GUSZ ELIZABETH A 904 N TROOPER RD Bik 0022 / Unit 100 76 MILLER LUKE 560 N TROOPER RD Bik 0022 / Unit 005 76 ROSENERGER ANGIE N & ROBERT P 546 N TROOPER RD Bik 0022 / Unit 005 76 ROSENERGER ANGIE N & ELEANOR 540 N TROOPER RD Bik 0022 / Unit 006 71 J J PROPE	55			
57 CRAVEN WM J & FANDALL T 1216 N TROOPER RD Bik. 0028 / Unit 029 58 MURDOCK CELESTE M & JOHN E SORTOR 1214 N TROOPER RD Bik. 0028 / Unit 028 50 DEPAUL JOSEPH V & ANNA MARIE 1212 N TROOPER RD Bik. 0028 / Unit 027 60 LESHER FRANK M TRUSTEE 1206 N TROOPER RD Bik. 0028 / Unit 025 61 PAESANI DANEL J & JANE SHARP 1210 N TROOPER RD Bik. 0028 / Unit 022 62 TAQURER NICHOLAS W WHTE MARLYN 1200 N TROOPER RD Bik. 0028 / Unit 022 63 UBAR JASON E & CLAPE L BILLETT-LUBAR 912 N TROOPER RD Bik. 0028 / Unit 021 64 HILLSINGER REVIN D & DOINA R 906 N TROOPER RD Bik. 0028 / Unit 101 66 GUSZ ELZABETH A 906 N TROOPER RD Bik. 0028 / Unit 001 70 MILLER LUKE 560 N TROOPER RD Bik. 0024 / Unit 005 70 BILC 0024 / Unit 005 Bik. 0024 / Unit 005 DELANEY WILLIMA & SUSAN 71 J J & J PROPERTIES 544 N TROOPER RD Bik. 0024 / Unit 008 71 J J & J PROPERTIES 544 N TROOPER RD Bik. 0024 / Unit 008 71 J &	56			
58 MURDOCK CELESTE M & JOHN E SORTOR 1214 N TROOPER RD Bik. 0028 / Unit 027 59 DEPAUL JOSEPH V & ANNA MARIE 1212 N TROOPER RD Bik. 0028 / Unit 027 51 DESHER, FRANK M TRUSTEE 1260 N TROOPER RD Bik. 0028 / Unit 025 51 PAESANI DANIEL J & JANE SHARP 1210 N TROOPER RD Bik. 0028 / Unit 025 52 TAUGNER NICHOLAS W & WHITE MARILYN 1200 N TROOPER RD Bik. 0028 / Unit 021 53 BUBAR, JASON E & CLANER L BILLETT-LUBAR 912 N TROOPER RD Bik. 0028 / Unit 130 54 BUBAR, JASON E & CLANER L BILLETT-LUBAR 906 N TROOPER RD Bik. 0028 / Unit 131 55 BUSZ ELIZABETH A 906 N TROOPER RD Bik. 0028 / Unit 100 66 MILLER LUKE 560 N TROOPER RD Bik. 0028 / Unit 005 67 MILLER LUKE 560 N TROOPER RD Bik. 0028 / Unit 005 68 ROSENBERGER ANGIE N & ROBERT P 546 N TROOPER RD Bik. 0028 / Unit 005 69 DELANEY WILLIMA & SUSAN 542 N TROOPER RD Bik. 0028 / Unit 007 71 J & J PROPERTIES 548 N TROOPER RD Bik. 0028 / Unit 007 72	57			
69 DEFAUL JOSEPH V & ANNA MARIE 1212 N TROOPER RD Bik. 0028 / Unit 025 60 LESHER FRAMK M TRUSTEE 1206 N TROOPER RD Bik. 0028 / Unit 026 7 AUGANET JA JANES JAAR 1210 N TROOPER RD Bik. 0028 / Unit 026 7 AUGANET MARKE JA JANES JAAR 912 N TROOPER RD Bik. 0028 / Unit 026 7 AUGANET MARKE JA JANES JAAR 912 N TROOPER RD Bik. 0028 / Unit 100 7 BIK. 0028 / Unit 021 BIK. 0028 / Unit 100 BIK. 0028 / Unit 100 7 BIK. 0028 / Unit 100 BIK. 0028 / Unit 100 BIK. 0028 / Unit 100 7 BIK. 0028 / Unit 100 BIK. 0028 / Unit 100 BIK. 0028 / Unit 100 7 MILER LUKE 566 N TROOPER RD BIK. 002A / Unit 005 8 ROSENBERGER ANGIE N & ROBERT P 546 N TROOPER RD BIK. 002A / Unit 010 7 J BUCCI CARMEN A & ELENOR 540 N TROOPER RD BIK. 002A / Unit 010 7 J J POPERTIES 546 N TROOPER RD BIK. 002A / Unit 010 7 J J BOPOPERTIES 548 N TROOPER RD BIK. 002A / Unit 010 7 PRESBYTERY OF PHILA TRUST 60	58			
60 LESHER FRANK M TRUSTEE 1206 N TROOPER RD Bik. 0028 / Unit 025 61 PAESANI DANIEL J & JANE SHARP 1210 N TROOPER RD Bik. 0028 / Unit 025 61 DAUGNER NICHOLAS W & WHITE HARRLYN 1210 N TROOPER RD Bik. 0028 / Unit 025 61 LIBAR JASON E & CLARE L BILLETT-LUBAR 912 N TROOPER RD Bik. 0028 / Unit 100 64 HILLSINGER KEVIN D & DONNA R 906 N TROOPER RD Bik. 0028 / Unit 131 65 GUSZ ELIZABETH A 906 N TROOPER RD Bik. 0022 / Unit 100 66 MILLER LUKE 550 N TROOPER RD Bik. 0022 / Unit 005 67 ROSENBERGER ANGIE N & ROBERT P 546 N TROOPER RD Bik. 0022 / Unit 008 70 BUCCI CARMEN A & ELEANOR 540 N TROOPER RD Bik. 0022 / Unit 007 71 J Å J PROPERTIES 548 N TROOPER RD Bik. 0022 / Unit 007 72 GAMBONE JOHN 538 N TROOPER RD Bik. 0022 / Unit 007 73 GAMBONE JOHN 538 N TROOPER RD Bik. 0024 / Unit 007 74 BATEMAN JOHN G & 2024 N TROOPER RD Bik. 0024 / Unit 007 75 GAMBONE JOHN 338 N	59	DEPAUL JOSEPH V & ANNA MARIE		Blk. 002B / Unit 027
62 TAUGNER NICHOLAS W & WHITE MARILYN 1200 N TROOPER RD Bik. 0028 / Unit 010 63 LUBAR JASON E & CLAPEL BILLETT-LUBAR 912 N TROOPER RD Bik. 0028 / Unit 010 64 HILLSINGER KEVIN D & DONNA R 906 N TROOPER RD Bik. 0028 / Unit 130 66 GUSZ ELIZABETH A 906 N TROOPER RD Bik. 0028 / Unit 100 67 MILLSINGER KEVIN D & DONNA R 906 N TROOPER RD Bik. 0028 / Unit 100 68 MILLER LUKE 550 N TROOPER RD Bik. 0028 / Unit 005 69 DELANEY WILLIAM & SUSAN 546 N TROOPER RD Bik. 0024 / Unit 005 70 BUCCI CARMEN A & ELEANOR 540 N TROOPER RD Bik. 0024 / Unit 007 71 J & J POPERTIES 548 N TROOPER RD Bik. 0024 / Unit 007 72 GAMBONE JOHN 538 N TROOPER RD Bik. 0024 / Unit 007 73 BATEMAN JOHN G & 2024 N TROOPER RD Bik. 0024 / Unit 007 74 BATEMAN JOHN G & 2024 N TROOPER RD Bik. 0024 / Unit 002 75 20 AMBONE JOHN 538 N TROOPER RD Bik. 0024 / Unit 002 76 BATEMAN JOHN G & 2024 N TROOPER RD Bik. 0027 / Unit 011 77 20 CHURCHR	60	LESHER FRANK M TRUSTEE		
62 TAUGNER NICHOLAS W & WHITE MARILYN 1200 N TROOPER RD Bik. 0022 / Unit 022 63 LUBAR JASON E & CLARE L BILLETT-LUBAR 912 N TROOPER RD Bik. 0022 / Unit 130 64 HILLSINGER KEVIN D & DONNA R 906 N TROOPER RD Bik. 0022 / Unit 130 65 GUSZ ELIZABETH A 904 N TROOPER RD Bik. 0022 / Unit 100 66 GUSZ ELIZABETH A 904 N TROOPER RD Bik. 0022 / Unit 005 67 MILLER LUKE 550 N TROOPER RD Bik. 0022 / Unit 005 68 ROSENBERGER ANGIE N & ROBERT P 546 N TROOPER RD Bik. 002A / Unit 005 69 DELANEY WILLIAM & SUSAN 542 N TROOPER RD Bik. 002A / Unit 006 70 BJLCCI CARMEN A & ELEANOR 540 N TROOPER RD Bik. 002A / Unit 007 72 GAMBONE JOHN 538 N TROOPER RD Bik. 002A / Unit 007 73 PAESBYTERY OF PHILA TRUST 608 N TROOPER RD Bik. 002A / Unit 002 74 BATEMAJ OCHN G & 2024 N TROOPER RD Bik. 002A / Unit 002 74 BATEMAJ OCHN G & 2024 N TROOPER RD Bik. 002A / Unit 002 75 BATEMAJ OCHN G &	61	PAESANI DANIEL J & JANE SHARP		
64 HILLSINGER KEVIN D & DONNA R 906 N TROOPER RD Bik. 0028 / Unk 130 65 GUSZ ELIZABETH A 904 N TROOPER RD Bik. 0028 / Unk 131 166 LEPO JOSEPH F JR ROSALIE C 900 N TROOPER RD Bik. 0028 / Unk 100 167 MILLER 550 N TROOPER RD Bik. 0024 / Unk 005 168 ROSENBERGER ANGIE N & ROBERT P 546 N TROOPER RD Bik. 0024 / Unk 009 170 BUCCI CARMEN A & ELEANOR 540 N TROOPER RD Bik. 0024 / Unk 009 171 J J PROPERTIES 546 N TROOPER RD Bik. 0024 / Unk 001 172 GAMBONE JOHN 538 N TROOPER RD Bik. 0024 / Unk 011 173 PRESBYTERY OF PHILA TRUST 608 N TROOPER RD Bik. 0024 / Unk 002 174 BATEMAN JOHN G & 2024 N TROOPER RD Bik. 0024 / Unk 002 175 BIERMAAS KEVIN 3114 N WHITEHALL RD Bik. 0040 / Unk 025 176 WARDELL JOHNSON & MARIAN 3025 N WHITEHALL RD Bik. 0040 / Unk 026 173 120 CHURCH ROAD, LP 3025 N WHITEHALL RD Bik. 0040 / Unk 020 174 120 CHURCH ROAD, LP 3025 N WHITEHALL RD Bik. 0040 / Unk 009 171 120 CHURCH ROAD, L	62	TAUGNER NICHOLAS W & WHITE MARILYN	1200 N TROOPER RD	Blk. 002B / Unit 022
65 GUSZ ELIZABETH A 904 N TROOPER RD Bik. 0028 / Unit 101 66 LEPO JOSEPH F JR ROSALIE C 900 N TROOPER RD Bik. 0028 / Unit 100 67 MILLER LUKE 560 N TROOPER RD Bik. 0028 / Unit 005 68 ROSENBERGER ANGIE N & ROBERT P 546 N TROOPER RD Bik. 002A / Unit 009 69 DELANEY WILLIAM & SUSAN 542 N TROOPER RD Bik. 002A / Unit 009 70 BUCCI CARMEN A & ELEANOR 540 N TROOPER RD Bik. 002A / Unit 007 71 J & J PROPERTIES 548 N TROOPER RD Bik. 002A / Unit 007 72 GAMBONE JOHN 538 N TROOPER RD Bik. 002A / Unit 002 74 BATEMAN JOHN G & 2024 N TROOPER RD Bik. 002A / Unit 002 75 BIERMAS SKEVIN 3114 N WHITEHALL RD Bik. 0040 / Unit 025 76 WARDELL JOHNSON & MARIAN 3028 N WHITEHALL RD Bik. 0040 / Unit 025 76 WARDELL JOHNSON & MARIAN 3028 N WHITEHALL RD Bik. 0040 / Unit 025 77 120 CHURCH ROAD, LP 3029 N WHITEHALL RD Bik. 0040 / Unit 020 78 EGERTER FREDERICK G & JEAN C 521 N WHITEH	63	LUBAR JASON E & CLARE L BILLETT-LUBAR		
66 LEPO JOSEPH F JR ROSALIE C 900 N TROOPER RD Bik. 0028 / Unit 100 67 MILLER LUKE 550 N TROOPER RD Bik. 0028 / Unit 005 68 ROSENBERGER ANGIE N & ROBERT P 546 N TROOPER RD Bik. 0024 / Unit 009 69 DELANK & SUSAN 542 N TROOPER RD Bik. 0024 / Unit 009 70 BUCCI CARMEN A & ELEANOR 540 N TROOPER RD Bik. 0024 / Unit 007 71 J & J PROPERTIES 548 N TROOPER RD Bik. 0024 / Unit 007 72 GAMBONE JOHN 538 N TROOPER RD Bik. 0024 / Unit 007 74 BATEMAN JOHN G & 2024 N TROOPER RD Bik. 0024 / Unit 002 75 BIERMAAS KEVIN 3114 N WHITEHALL RD Bik. 0040 / Unit 025 76 WARDELL JOHNSON & MARIAN 3028 N WHITEHALL RD Bik. 0040 / Unit 026 77 120 CHURCH ROAD, LP 3022 N WHITEHALL RD Bik. 0040 / Unit 020 78 20 CHURCH ROAD, LP 3022 N WHITEHALL RD Bik. 0040 / Unit 020 79 WHITEHALL RD Bik. 0040 / Unit 020 200 CHURCH ROAD, LP 3025 N WHITEHALL RD Bik. 0040 / Unit 010 70 <td< td=""><td>64</td><td>HILLSINGER KEVIN D & DONNA R</td><td>906 N TROOPER RD</td><td>Blk. 002B / Unit 130</td></td<>	64	HILLSINGER KEVIN D & DONNA R	906 N TROOPER RD	Blk. 002B / Unit 130
66 LEPO JOSEPH F JR ROSALIE C 900 N TROOPER RD Bik. 0028 / Unit 100 67 MILLER LUKE 550 N TROOPER RD Bik. 0028 / Unit 005 68 ROSENBERGER ANGIE N & ROBERT P 546 N TROOPER RD Bik. 0024 / Unit 009 69 DELANEY WILLIAM & SUSAN 542 N TROOPER RD Bik. 0024 / Unit 009 70 BUCCI CARMEN A & ELEANOR 540 N TROOPER RD Bik. 0024 / Unit 007 71 J & J PROPERTIES 548 N TROOPER RD Bik. 0024 / Unit 007 72 GAMBONE JOHN 538 N TROOPER RD Bik. 0024 / Unit 001 74 BATEMAN JOHN G & 2024 N TROOPER RD Bik. 0024 / Unit 002 74 BATEMAN SCEVIN 3114 N WHITEHALL RD Bik. 001 / Unit 025 76 WARDELL JOHNSON & MARIAN 3029 N WHITEHALL RD Bik. 0040 / Unit 020 78 120 CHURCH ROAD, LP 3025 N WHITEHALL RD Bik. 0040 / Unit 020 78 120 CHURCH ROAD, LP 3025 N WHITEHALL RD Bik. 0040 / Unit 020 79 WHITEHALL RD Bik. 0040 / Unit 020 120 7120 CHURCH ROAD, LP 3025 N WHITEHALL RD Bik. 0040 / Unit 010	65	GUSZ ELIZABETH A		
68 ROSENBERGER ANGIE N & ROBERT P 546 N TROOPER RD Bik. 002A / Unit 008 69 DELANEY WILLIAM & SUSAN 542 N TROOPER RD Bik. 002A / Unit 010 70 BUCCI CARMEN A & ELEANOR 540 N TROOPER RD Bik. 002A / Unit 010 71 J & J PROPERTIES 548 N TROOPER RD Bik. 002A / Unit 011 72 GAMBONE JOHN 538 N TROOPER RD Bik. 002A / Unit 011 73 PRESBYTERY OF PHILA TRUST 608 N TROOPER RD Bik. 002A / Unit 002 74 BATEMAN JOHN G & 2024 N TROOPER RD Bik. 002A / Unit 002 75 BIERMAAS KEVIN 3114 N WHITEHALL RD Bik. 004D / Unit 025 76 WARDEL JOHNSON & MARIAN 3028 N WHITEHALL RD Bik. 004D / Unit 028 77 120 CHURCH ROAD, LP 3022 N WHITEHALL RD Bik. 004D / Unit 029 78 WHITEHALL RD Bik. 004D / Unit 028 101 79 WHITEHALL RD Bik. 003A / Unit 010 101 70 WARDEN A& A 527 N WHITEHALL RD Bik. 003A / Unit 04 71 20 CHURCH ROAD, LP 3022 N W WHITEHALL RD Bik. 003A / Unit 04	66	LEPO JOSEPH F JR ROSALIE C		Blk. 002B / Unit 100
69 DELANEY WILLIAM & SUSAN 542 N TROOPER RD Bik. 002A / Unit 009 70 BUCCI CARMEN A & ELEANOR 540 N TROOPER RD Bik. 002A / Unit 010 71 J.& J PROPERTIES 548 N TROOPER RD Bik. 002A / Unit 010 72 GAMBONE JOHN 538 N TROOPER RD Bik. 002A / Unit 007 73 GRESDYTERY OF PHILA TRUST 608 N TROOPER RD Bik. 002A / Unit 002 74 BATEMAN JOHN G & 2024 N TROOPER RD Bik. 002A / Unit 002 75 BIERMAAS KEVIN 3114 N WHITEHALL RD Bik. 004D / Unit 025 76 WARDELL JOHNSON & MARIAN 3028 N WHITEHALL RD Bik. 004D / Unit 028 77 120 CHURCH ROAD, LP 3029 N WHITEHALL RD Bik. 004D / Unit 020 78 120 CHURCH ROAD, LP 3022 N WHITEHALL RD Bik. 004D / Unit 020 79 WHITEHALL RD Bik. 004D / Unit 020 202 71 20 CHURCH ROAD, LP 3022 N WHITEHALL RD Bik. 004D / Unit 010 79 WHITEHALL RD Bik. 004D / Unit 010 20 71 20 CHURCH ROAD, LP 3022 N WHITEHALL RD Bik. 004D / Unit 040	67	MILLER LUKE	550 N TROOPER RD	Blk. 002A / Unit 005
70 BUCCI CARMEN A & ELEANOR 540 N TROOPER RD Bik. 002A / Unit 010 71 J & J PROPERTIES 548 N TROOPER RD Bik. 002A / Unit 007 72 GAMBONE JOHN 538 N TROOPER RD Bik. 002A / Unit 011 73 PRESBYTERY OF PHILA TRUST 608 N TROOPER RD Bik. 002A / Unit 002 74 BATEMAN JOHN G & 2024 N TROOPER RD Bik. 002A / Unit 002 75 BIERMAAS KEVIN 3114 N WHITEHALL RD Bik. 004D / Unit 026 76 WARDELL JOHNSON & MARIAN 3028 N WHITEHALL RD Bik. 004D / Unit 028 77 120 CHURCH ROAD, LP 3029 N WHITEHALL RD Bik. 004D / Unit 020 78 120 CHURCH ROAD, LP 3021 N WHITEHALL RD Bik. 004D / Unit 020 78 120 CHURCH ROAD, LP 3022 N WHITEHALL RD Bik. 004D / Unit 020 79 WHITEHALL VEZIP, LP do GAMBONE DEV. CO 3021 N WHITEHALL RD Bik. 004D / Unit 011 80 PALLADINO DANIEL C & RUTH G 541 N WHITEHALL RD Bik. 0038 / Unit 004 81 DUFFY JAMES F & ANNA M 3104 N WHITEHALL RD Bik. 0038 / Unit 004 82 EGERTER FREDERICK G & BEVERLY ANN 2325 NEW HOPE ST Bik. 004D / Unit 026	68	ROSENBERGER ANGIE N & ROBERT P	546 N TROOPER RD	Blk. 002A / Unit 008
71 J & J PROPERTIES 548 N TROOPER RD Bik. 002A / Unit 007 72 GAMBONE JOHN 538 N TROOPER RD Bik. 002A / Unit 011 73 PRESBYTERY OF PHILA TRUST 608 N TROOPER RD Bik. 002A / Unit 002 74 BATEMAN JOHN G & 2024 N TROOPER RD Bik. 002A / Unit 002 75 BIERMAAS KEVIN 3114 N WHITEHALL RD Bik. 004D / Unit 026 76 WARDELL JOHNSON & MARIAN 3028 N WHITEHALL RD Bik. 004D / Unit 028 77 120 CHURCH ROAD, LP 3029 N WHITEHALL RD Bik. 004D / Unit 020 78 120 CHURCH ROAD, LP 3025 N WHITEHALL RD Bik. 004D / Unit 020 78 120 CHURCH ROAD, LP 3025 N WHITEHALL RD Bik. 004D / Unit 020 79 WHITEHALL VENEZIP, LP do GAMBONE DEV. CO 3021 N WHITEHALL RD Bik. 0034 / Unit 010 80 PALLADINO DANIEL C & RUTH G 541 N WHITEHALL RD Bik. 0038 / Unit 004 81 MUGLIA ORESTE & BARBARA 527 N WHITEHALL RD Bik. 0038 / Unit 004 82 EGERTER FREDERICK G & JEAN C 523 N WHITEHALL RD Bik. 0038 / Unit 004 83 DUFFY JAMES F & ANNA M 3104 N WHITEHALL RD Bik. 004D / Unit 026	69	DELANEY WILLIAM & SUSAN	542 N TROOPER RD	Blk. 002A / Unit 009
72 GAMBONE JOHN 538 N TROOPER RD Bik. 002A / Unit 011 73 PRESBYTERY OF PHILA TRUST 608 N TROOPER RD Bik. 002A / Unit 002 74 BATEMAN JOHN G & 2024 N TROOPER RD Bik. 001 / Unit 036 75 BIERMAAS KEVIN 3114 N WHITEHALL RD Bik. 004D / Unit 025 76 WARDELL JOHNSON & MARIAN 3028 N WHITEHALL RD Bik. 004D / Unit 025 77 120 CHURCH ROAD, LP 3029 N WHITEHALL RD Bik. 004D / Unit 020 78 120 CHURCH ROAD, LP 3025 N WHITEHALL RD Bik. 004D / Unit 020 79 WHITEHALL VENEZIP, LP do GAMBONE DEV. CO 3021 N WHITEHALL RD Bik. 004D / Unit 010 80 PALLADINO DANIEL C & RUTH G 541 N WHITEHALL RD Bik. 004D / Unit 011 81 MUGLIA ORESTE & BARBARA 527 N WHITEHALL RD Bik. 0038 / Unit 004 82 EGERTER FREDERICK G & JEAN C 523 N WHITEHALL RD Bik. 0038 / Unit 004 83 DUFFY JAMES F & ANNA M 3104 N WHITEHALL RD Bik. 0027 / Unit 025 84 FRANGIOSO SALVATORE G & BEVERLY ANN 2325 NEW HOPE ST Bik. 027C / Unit 027 85 TOMCZAK RAYMOND & KATHLEEN 2323 NOTTINGHAM RD Bik. 0027 / Unit 027	70	BUCCI CARMEN A & ELEANOR	540 N TROOPER RD	Blk. 002A / Unit 010
73 PRESBYTERY OF PHILA TRUST 608 N TROOPER RD Bik. 002A / Unit 002 74 BATEMAN JOHN G & 2024 N TROOPER RD Bik. 001 / Unit 036 75 BIERMAAS KEVIN 3114 N WHITEHALL RD Bik. 004D / Unit 025 76 WARDELL JOHNSON & MARIAN 3028 N WHITEHALL RD Bik. 004D / Unit 025 77 120 CHURCH ROAD, LP 3029 N WHITEHALL RD Bik. 004D / Unit 029 78 120 CHURCH ROAD, LP 3029 N WHITEHALL RD Bik. 004D / Unit 029 78 120 CHURCH ROAD, LP 3021 N WHITEHALL RD Bik. 004D / Unit 009 79 WHITEHALL VENEZIP, LP d/o GAMBONE DEV. CO 3021 N WHITEHALL RD Bik. 003A / Unit 010 80 PALLADINO DANIEL C & RUTH G 541 N WHITEHALL RD Bik. 0038 / Unit 004 81 MUGLIA ORESTE & BARBARA 527 N WHITEHALL RD Bik. 0038 / Unit 004 82 EGERTER FREDERICK G & JEAN C 523 N WHITEHALL RD Bik. 004D / Unit 026 84 FRANGIOSO SALVATORE G & BEVERLY ANN 2325 NEW HOPE ST Bik. 0027 / Unit 011 85 TOMCZAK RAYMOND & KATHLEEN 2323 NEW HOPE ST Bik. 027C / Unit 011 86 KRUSE WILLIAN F & LOIS CAROL 3222 NOTTINGHAM RD Bik. 0	71	J & J PROPERTIES	548 N TROOPER RD	Blk. 002A / Unit 007
74 BATEMAN JOHN G & 2024 N TROOPER RD Bik. 001 / Unit 036 75 BIERMAAS KEVIN 3114 N WHITEHALL RD Bik. 004D / Unit 025 76 WARDELL JOHNSON & MARIAN 3028 N WHITEHALL RD Bik. 004D / Unit 028 77 120 CHURCH ROAD, LP 3029 N WHITEHALL RD Bik. 004D / Unit 020 78 120 CHURCH ROAD, LP 3025 N WHITEHALL RD Bik. 004D / Unit 020 79 WHITEHALL VENEZIP, LP a/o GAMBONE DEV. CO 3021 N WHITEHALL RD Bik. 004D / Unit 010 80 PALLADINO DANIEL C & RUTH G 541 N WHITEHALL RD Bik. 003A / Unit 010 80 PALLADINO DANIEL C & RUTH G 541 N WHITEHALL RD Bik. 003B / Unit 004 81 EGERTER FREDERICK G & JEAN C 523 N WHITEHALL RD Bik. 003B / Unit 004 82 EGERTER FREDERICK G & JEAN C 523 N WHITEHALL RD Bik. 004D / Unit 026 80 DUFFY JAMES F & ANNA M 3104 N WHITEHALL RD Bik. 004D / Unit 026 84 FRANGIOSO SALVATORE G & BEVERLY ANN 2325 NEW HOPE ST Bik. 0027 (Unit 027 85 TOMCZAK RAYMOND & KATHLEEN 2323 NEW HOPE ST Bik. 0027 (Unit 027 86 KRUSE WILLIAM F & LOIS CAROL 3222 NOTTINGHAM RD	72	GAMBONE JOHN	538 N TROOPER RD	Blk. 002A / Unit 011
75 BIERMAAS KEVIN 3114 N WHITEHALL RD Bik. 0040 / Unit 025 76 WARDELL JOHNSON & MARIAN 3028 N WHITEHALL RD Bik. 0040 / Unit 028 77 120 CHURCH ROAD, LP 3029 N WHITEHALL RD Bik. 0040 / Unit 020 78 120 CHURCH ROAD, LP 3025 N WHITEHALL RD Bik. 0040 / Unit 020 79 WHITEHALL VENEZIP, LP do GAMBONE DEV. CO 3021 N WHITEHALL RD Bik. 0040 / Unit 010 80 PALLADINO DANIEL C & RUTH G 541 N WHITEHALL RD Bik. 003A / Unit 011 81 MUGLIA ORESTE & BARBARA 527 N WHITEHALL RD Bik. 0038 / Unit 004 82 EGERTER FREDERICK G & JEAN C 523 N WHITEHALL RD Bik. 0038 / Unit 006 80 DUFFY JAMES F & ANNA M 3104 N WHITEHALL RD Bik. 0040 / Unit 026 84 FRANGIOSO SALVATORE G & BEVERLY ANN 2325 NEW HOPE ST Bik. 027C / Unit 011 85 TOMCZAK RAYMOND & KATHLEEN 2323 NEW HOPE ST Bik. 0040 / Unit 027 86 DICIURCIO RICHARD 2219-C NEW HOPE ST Bik. 027C / Unit 019 87 MITCHELL JOHN F 3223 NOTTINGHAM RD Bik. 0040 / Unit 045 88 GOLDBLATT MARSHA W & STEVEN G 3219 NOTTINGHAM RD Bik. 004	73	PRESBYTERY OF PHILA TRUST	608 N TROOPER RD	Blk. 002A / Unit 002
76WARDELL JOHNSON & MARIAN3028 N WHITEHALL RDBik. 004D / Unit 02877120 CHURCH ROAD, LP3029 N WHITEHALL RDBik. 004D / Unit 02078120 CHURCH ROAD, LP3025 N WHITEHALL RDBik. 004D / Unit 00979WHITEHALL VENEZIP, LP d/o GAMBONE DEV. CO3021 N WHITEHALL RDBik. 004D / Unit 01080PALLADINO DANIEL C & RUTH G541 N WHITEHALL RDBik. 003A / Unit 01181MUGLIA ORESTE & BARBARA527 N WHITEHALL RDBik. 003B / Unit 00482EGERTER FREDERICK G & JEAN C523 N WHITEHALL RDBik. 003B / Unit 00683DUFFY JAMES F & ANNA M3104 N WHITEHALL RDBik. 004D / Unit 02684FRANGIOSO SALVATORE G & BEVERLY ANN2325 NEW HOPE STBik. 027C / Unit 01185TOMCZAK RAYMOND & KATHLEEN2323 NEW HOPE STBik. 027C / Unit 02786DICIURCIO RICHARD2219-C NEW HOPE STBik. 027B / Unit 01987MITCHELL JOHN F3223 NOTTINGHAM RDBik. 004D / Unit 04688KRUSE WILLIAM F & LOIS CAROL3222 NOTTINGHAM RDBik. 004D / Unit 04589GOLDBLATT MARSHA W & STEVEN G3219 NOTTINGHAM RDBik. 004D / Unit 03791HUMAY EUGENE & JANE507 OVERHILL RDBik. 001 / Unit 03492PARKER BARBARA EDELMAN & JAMES3120 POTSHOP RDBik. 001 / Unit 00393GILL QUARRIES INC3201 POTSHOP RDBik. 001 / Unit 00394MERCANTE PHILIP J3103 POTSHOP RDBik. 001 / Unit 06095CIPPERLY ALVIN R & YVONNE C3107 POTSHOP RDBik. 001	74	BATEMAN JOHN G &	2024 N TROOPER RD	Blk. 001 / Unit 036
77120 CHURCH ROAD, LP3029 N WHITEHALL RDBik. 004D / Unit 02078120 CHURCH ROAD, LP	75	BIERMAAS KEVIN	3114 N WHITEHALL RD	Blk. 004D / Unit 025
78120 CHURCH ROAD, LP3025 N WHITEHALL RDBlk. 004D / Unit 00979WHITEHALL VENEZIP, LP do GAMBONE DEV. CO3021 N WHITEHALL RDBlk. 004D / Unit 01080PALLADINO DANIEL C & RUTH G541 N WHITEHALL RDBlk. 003A / Unit 01181MUGLIA ORESTE & BARBARA527 N WHITEHALL RDBlk. 003B / Unit 00482EGERTER FREDERICK G & JEAN C523 N WHITEHALL RDBlk. 003B / Unit 00683DUFFY JAMES F & ANNA M3104 N WHITEHALL RDBlk. 004D / Unit 02684FRANGIOSO SALVATORE G & BEVERLY ANN2325 NEW HOPE STBlk. 027C / Unit 01185TOMCZAK RAYMOND & KATHLEEN2323 NEW HOPE STBlk. 027C / Unit 01186KRUSE WILLIARD2219-C NEW HOPE STBlk. 027B / Unit 01987MITCHELL JOHN F3223 NOTTINGHAM RDBlk. 004D / Unit 04688KRUSE WILLIAM F & LOIS CAROL3222 NOTTINGHAM RDBlk. 004D / Unit 04589GOLDBLATT MARSHA W & STEVEN G3219 NOTTINGHAM RDBlk. 004D / Unit 03790HUMAY EUGENE & JANE507 OVERHILL RDBlk. 001 / Unit 03491LAWRENCE CHRISTOPHER F & DIANE3105 POTSHOP RDBlk. 001 / Unit 08392PARKER BARBARA EDELMAN & JAMES3120 POTSHOP RDBlk. 001 / Unit 08393GILL QUARRIES INC3201 POTSHOP RDBlk. 001 / Unit 06094MERCANTE PHILIP J3103 POTSHOP RDBlk. 001 / Unit 06095CIPPERLY ALVIN R & YVONNE C3107 POTSHOP RDBlk. 001 / Unit 053	76	WARDELL JOHNSON & MARIAN	3028 N WHITEHALL RD	Blk. 004D / Unit 028
79WHITEHALL VENEZIP, LP c/o GAMBONE DEV. CO3021 N WHITEHALL RDBik. 0040 / Unit 01080PALLADINO DANIEL C & RUTH G541 N WHITEHALL RDBik. 003A / Unit 01181MUGLIA ORESTE & BARBARA527 N WHITEHALL RDBik. 003B / Unit 00482EGERTER FREDERICK G & JEAN C523 N WHITEHALL RDBik. 003B / Unit 00683DUFFY JAMES F & ANNA M3104 N WHITEHALL RDBik. 004D / Unit 02684FRANGIOSO SALVATORE G & BEVERLY ANN2325 NEW HOPE STBik. 027C / Unit 01185TOMCZAK RAYMOND & KATHLEEN2323 NEW HOPE STBik. 027C / Unit 02786DiCIURCIO RICHARD2219-C NEW HOPE STBik. 027B / Unit 01987MITCHELL JOHN F3223 NOTTINGHAM RDBik. 004D / Unit 04688KRUSE WILLIAM F & LOIS CAROL3222 NOTTINGHAM RDBik. 004D / Unit 04589GOLDBLATT MARSHA W & STEVEN G3219 NOTTINGHAM RDBik. 004D / Unit 03790HUMAY EUGENE & JANE507 OVERHILL RDBik. 001 / Unit 03491LAWRENCE CHRISTOPHER F & DIANE3105 POTSHOP RDBik. 001 / Unit 00892PARKER BARBARA EDELMAN & JAMES3120 POTSHOP RDBik. 001 / Unit 00393GILL QUARRIES INC3201 POTSHOP RDBik. 001 / Unit 00394MERCANTE PHILIP J3103 POTSHOP RDBik. 001 / Unit 05395CIPPERLY ALVIN R & YVONNE C3107 POTSHOP RDBik. 001 / Unit 053	77	120 CHURCH ROAD, LP	3029 N WHITEHALL RD	Blk. 004D / Unit 020
80PALLADINO DANIEL C & RUTH G541 N WHITEHALL RDBIK. 003A / Unit 01181MUGLIA ORESTE & BARBARA527 N WHITEHALL RDBIK. 003B / Unit 00482EGERTER FREDERICK G & JEAN C523 N WHITEHALL RDBIK. 003B / Unit 00683DUFFY JAMES F & ANNA M3104 N WHITEHALL RDBIK. 003D / Unit 02684FRANGIOSO SALVATORE G & BEVERLY ANN2325 NEW HOPE STBIK. 027C / Unit 01185TOMCZAK RAYMOND & KATHLEEN2323 NEW HOPE STBIK. 027C / Unit 01186DICIURCIO RICHARD2219-C NEW HOPE STBIK. 027B / Unit 01987MITCHELL JOHN F3223 NOTTINGHAM RDBIK. 004D / Unit 04688KRUSE WILLIAM F & LOIS CAROL3222 NOTTINGHAM RDBIK. 004D / Unit 04589GOLDBLATT MARSHA W & STEVEN G3219 NOTTINGHAM RDBIK. 004D / Unit 03790HUMAY EUGENE & JANE507 OVERHILL RDBIK. 001 / Unit 03491LAWRENCE CHRISTOPHER F & DIANE3105 POTSHOP RDBIK. 001 / Unit 08392PARKER BARBARA EDELMAN & JAMES3120 POTSHOP RDBIK. 001 / Unit 00394MERCANTE PHILIP J3103 POTSHOP RDBIK. 001 / Unit 06095CIPPERLY ALVIN R & YVONNE C3107 POTSHOP RDBIK. 001 / Unit 053	78	120 CHURCH ROAD, LP	3025 N WHITEHALL RD	Blk. 004D / Unit 009
81MUGLIA ORESTE & BARBARA527 N WHITEHALL RDBik. 003B / Unit 00482EGERTER FREDERICK G & JEAN C523 N WHITEHALL RDBik. 003B / Unit 00683DUFFY JAMES F & ANNA M3104 N WHITEHALL RDBik. 004D / Unit 02684FRANGIOSO SALVATORE G & BEVERLY ANN2325 NEW HOPE STBik. 027C / Unit 01185TOMCZAK RAYMOND & KATHLEEN2323 NEW HOPE STBik. 027C / Unit 02786DicluRCIO RICHARD2219-C NEW HOPE STBik. 027B / Unit 01987MITCHELL JOHN F3223 NOTTINGHAM RDBik. 004D / Unit 04688KRUSE WILLIAM F & LOIS CAROL3222 NOTTINGHAM RDBik. 004D / Unit 04589GOLDBLATT MARSHA W & STEVEN G3219 NOTTINGHAM RDBik. 004D / Unit 03790HUMAY EUGENE & JANE507 OVERHILL RDBik. 001 / Unit 03491LAWRENCE CHRISTOPHER F & DIANE3105 POTSHOP RDBik. 003M / Unit 00892PARKER BARBARA EDELMAN & JAMES3120 POTSHOP RDBik. 001 / Unit 00393GILL QUARRIES INC3201 POTSHOP RDBik. 001 / Unit 00394MERCANTE PHILIP J3103 POTSHOP RDBik. 001 / Unit 06095CIPPERLY ALVIN R & YVONNE C3107 POTSHOP RDBik. 001 / Unit 053	79	WHITEHALL VENEZIP, LP c/o GAMBONE DEV. CO	3021 N WHITEHALL RD	Blk. 004D / Unit 010
82EGERTER FREDERICK G & JEAN C523 N WHITEHALL RDBik. 003B / Unit 00683DUFFY JAMES F & ANNA M3104 N WHITEHALL RDBik. 004D / Unit 02684FRANGIOSO SALVATORE G & BEVERLY ANN2325 NEW HOPE STBik. 027C / Unit 01185TOMCZAK RAYMOND & KATHLEEN2323 NEW HOPE STBik. 027C / Unit 02786DICIURCIO RICHARD2219-C NEW HOPE STBik. 027B / Unit 01987MITCHELL JOHN F3223 NOTTINGHAM RDBik. 004D / Unit 04688KRUSE WILLIAM F & LOIS CAROL3222 NOTTINGHAM RDBik. 004D / Unit 04589GOLDBLATT MARSHA W & STEVEN G3219 NOTTINGHAM RDBik. 004D / Unit 03790HUMAY EUGENE & JANE507 OVERHILL RDBik. 001 / Unit 03491LAWRENCE CHRISTOPHER F & DIANE3105 POTSHOP RDBik. 003M / Unit 08392PARKER BARBARA EDELMAN & JAMES3120 POTSHOP RDBik. 001 / Unit 00393GILL QUARRIES INC3201 POTSHOP RDBik. 001 / Unit 00394MERCANTE PHILIP J3103 POTSHOP RDBik. 001 / Unit 06095CIPPERLY ALVIN R & YVONNE C3107 POTSHOP RDBik. 001 / Unit 053	80	PALLADINO DANIEL C & RUTH G	541 N WHITEHALL RD	Blk. 003A / Unit 011
83DUFFY JAMES F & ANNA M3104 N WHITEHALL RDBik. 004D / Unit 02684FRANGIOSO SALVATORE G & BEVERLY ANN2325 NEW HOPE STBik. 027C / Unit 01185TOMCZAK RAYMOND & KATHLEEN2323 NEW HOPE STBik. 027C / Unit 02786DICIURCIO RICHARD2219-C NEW HOPE STBik. 027B / Unit 01987MITCHELL JOHN F3223 NOTTINGHAM RDBik. 004D / Unit 04688KRUSE WILLIAM F & LOIS CAROL3222 NOTTINGHAM RDBik. 004D / Unit 04589GOLDBLATT MARSHA W & STEVEN G3219 NOTTINGHAM RDBik. 004D / Unit 03790HUMAY EUGENE & JANE507 OVERHILL RDBik. 001 / Unit 03491LAWRENCE CHRISTOPHER F & DIANE3105 POTSHOP RDBik. 001 / Unit 08392PARKER BARBARA EDELMAN & JAMES3120 POTSHOP RDBik. 001 / Unit 00393GILL QUARRIES INC3201 POTSHOP RDBik. 001 / Unit 00394MERCANTE PHILIP J3103 POTSHOP RDBik. 001 / Unit 06095CIPPERLY ALVIN R & YVONNE C3107 POTSHOP RDBik. 001 / Unit 053	81	MUGLIA ORESTE & BARBARA	527 N WHITEHALL RD	Blk. 003B / Unit 004
84FRANGIOSO SALVATORE G & BEVERLY ANN2325 NEW HOPE STBlk. 027C / Unit 01185TOMCZAK RAYMOND & KATHLEEN2323 NEW HOPE STBlk. 027C / Unit 02786DICIURCIO RICHARD2219-C NEW HOPE STBlk. 027B / Unit 01987MITCHELL JOHN F3223 NOTTINGHAM RDBlk. 004D / Unit 04688KRUSE WILLIAM F & LOIS CAROL3222 NOTTINGHAM RDBlk. 004D / Unit 04589GOLDBLATT MARSHA W & STEVEN G3219 NOTTINGHAM RDBlk. 004D / Unit 03790HUMAY EUGENE & JANE507 OVERHILL RDBlk. 001 / Unit 03491LAWRENCE CHRISTOPHER F & DIANE3105 POTSHOP RDBlk. 001 / Unit 00392PARKER BARBARA EDELMAN & JAMES3120 POTSHOP RDBlk. 001 / Unit 00393GILL QUARRIES INC3201 POTSHOP RDBlk. 001 / Unit 00394MERCANTE PHILIP J3103 POTSHOP RDBlk. 001 / Unit 06095CIPPERLY ALVIN R & YVONNE C3107 POTSHOP RDBlk. 001 / Unit 053	82	EGERTER FREDERICK G & JEAN C	523 N WHITEHALL RD	Blk. 003B / Unit 006
85TOMCZAK RAYMOND & KATHLEEN2323 NEW HOPE STBlk. 027C / Unit 02786DICIURCIO RICHARD2219-C NEW HOPE STBlk. 027B / Unit 01987MITCHELL JOHN F3223 NOTTINGHAM RDBlk. 004D / Unit 04688KRUSE WILLIAM F & LOIS CAROL3222 NOTTINGHAM RDBlk. 004D / Unit 04589GOLDBLATT MARSHA W & STEVEN G3219 NOTTINGHAM RDBlk. 004D / Unit 03790HUMAY EUGENE & JANE507 OVERHILL RDBlk. 010 / Unit 03491LAWRENCE CHRISTOPHER F & DIANE3105 POTSHOP RDBlk. 001 / Unit 08392PARKER BARBARA EDELMAN & JAMES3120 POTSHOP RDBlk. 001 / Unit 08393GILL QUARRIES INC3201 POTSHOP RDBlk. 001 / Unit 00394MERCANTE PHILIP J3103 POTSHOP RDBlk. 001 / Unit 06095CIPPERLY ALVIN R & YVONNE C3107 POTSHOP RDBlk. 001 / Unit 053	83	DUFFY JAMES F & ANNA M	3104 N WHITEHALL RD	Blk. 004D / Unit 026
86Diclurcio Richard2219-C NEW HOPE STBik. 027B / Unit 01987MITCHELL JOHN F3223 NOTTINGHAM RDBik. 004D / Unit 04688KRUSE WILLIAM F & LOIS CAROL3222 NOTTINGHAM RDBik. 004D / Unit 04589GOLDBLATT MARSHA W & STEVEN G3219 NOTTINGHAM RDBik. 004D / Unit 03790HUMAY EUGENE & JANE507 OVERHILL RDBik. 010 / Unit 03491LAWRENCE CHRISTOPHER F & DIANE3105 POTSHOP RDBik. 001 / Unit 00892PARKER BARBARA EDELMAN & JAMES3120 POTSHOP RDBik. 001 / Unit 08393GILL QUARRIES INC3201 POTSHOP RDBik. 001 / Unit 00394MERCANTE PHILIP J3103 POTSHOP RDBik. 001 / Unit 06095CIPPERLY ALVIN R & YVONNE C3107 POTSHOP RDBik. 001 / Unit 053	84	FRANGIOSO SALVATORE G & BEVERLY ANN	2325 NEW HOPE ST	Blk. 027C / Unit 011
87MITCHELL JOHN F3223 NOTTINGHAM RDBik. 004D / Unit 04688KRUSE WILLIAM F & LOIS CAROL3222 NOTTINGHAM RDBlk. 004D / Unit 04589GOLDBLATT MARSHA W & STEVEN G3219 NOTTINGHAM RDBik. 004D / Unit 03790HUMAY EUGENE & JANE507 OVERHILL RDBik. 010 / Unit 03491LAWRENCE CHRISTOPHER F & DIANE3105 POTSHOP RDBik. 001 / Unit 00892PARKER BARBARA EDELMAN & JAMES3120 POTSHOP RDBik. 001 / Unit 08393GILL QUARRIES INC3201 POTSHOP RDBik. 001 / Unit 00394MERCANTE PHILIP J3103 POTSHOP RDBik. 001 / Unit 06095CIPPERLY ALVIN R & YVONNE C3107 POTSHOP RDBik. 001 / Unit 053	85	TOMCZAK RAYMOND & KATHLEEN	2323 NEW HOPE ST	Blk. 027C / Unit 027
88KRUSE WILLIAM F & LOIS CAROL3222 NOTTINGHAM RDBik. 004D / Unit 04589GOLDBLATT MARSHA W & STEVEN G3219 NOTTINGHAM RDBik. 004D / Unit 03790HUMAY EUGENE & JANE507 OVERHILL RDBik. 010 / Unit 03491LAWRENCE CHRISTOPHER F & DIANE3105 POTSHOP RDBik. 001 / Unit 00892PARKER BARBARA EDELMAN & JAMES3120 POTSHOP RDBik. 003M / Unit 08393GILL QUARRIES INC3201 POTSHOP RDBik. 001 / Unit 00394MERCANTE PHILIP J3103 POTSHOP RDBik. 001 / Unit 06095CIPPERLY ALVIN R & YVONNE C3107 POTSHOP RDBik. 001 / Unit 053	86	DICIURCIO RICHARD	2219-C NEW HOPE ST	Blk. 027B / Unit 019
89GOLDBLATT MARSHA W & STEVEN G3219 NOTTINGHAM RDBik. 004D / Unit 03790HUMAY EUGENE & JANE507 OVERHILL RDBlk. 010 / Unit 03491LAWRENCE CHRISTOPHER F & DIANE3105 POTSHOP RDBlk. 001 / Unit 00892PARKER BARBARA EDELMAN & JAMES3120 POTSHOP RDBlk. 003M / Unit 08393GILL QUARRIES INC3201 POTSHOP RDBlk. 001 / Unit 00394MERCANTE PHILIP J3103 POTSHOP RDBlk. 001 / Unit 06095CIPPERLY ALVIN R & YVONNE C3107 POTSHOP RDBlk. 001 / Unit 053	87	MITCHELL JOHN F	3223 NOTTINGHAM RD	Blk. 004D / Unit 046
90HUMAY EUGENE & JANE507 OVERHILL RDBlk. 010 / Unit 03491LAWRENCE CHRISTOPHER F & DIANE3105 POTSHOP RDBlk. 001 / Unit 00892PARKER BARBARA EDELMAN & JAMES3120 POTSHOP RDBlk. 003M / Unit 08393GILL QUARRIES INC3201 POTSHOP RDBlk. 001 / Unit 00394MERCANTE PHILIP J3103 POTSHOP RDBlk. 001 / Unit 06095CIPPERLY ALVIN R & YVONNE C3107 POTSHOP RDBlk. 001 / Unit 053	88	KRUSE WILLIAM F & LOIS CAROL	3222 NOTTINGHAM RD	Blk. 004D / Unit 045
91LAWRENCE CHRISTOPHER F & DIANE3105 POTSHOP RDBlk. 001 / Unit 00892PARKER BARBARA EDELMAN & JAMES3120 POTSHOP RDBlk. 003M / Unit 08393GILL QUARRIES INC3201 POTSHOP RDBlk. 001 / Unit 00394MERCANTE PHILIP J3103 POTSHOP RDBlk. 001 / Unit 06095CIPPERLY ALVIN R & YVONNE C3107 POTSHOP RDBlk. 001 / Unit 053	89	GOLDBLATT MARSHA W & STEVEN G	3219 NOTTINGHAM RD	Blk. 004D / Unit 037
92PARKER BARBARA EDELMAN & JAMES3120 POTSHOP RDBlk. 003M / Unit 08393GILL QUARRIES INC3201 POTSHOP RDBlk. 001 / Unit 00394MERCANTE PHILIP J3103 POTSHOP RDBlk. 001 / Unit 06095CIPPERLY ALVIN R & YVONNE C3107 POTSHOP RDBlk. 001 / Unit 053	90	HUMAY EUGENE & JANE	507 OVERHILL RD	Blk. 010 / Unit 034
93 GILL QUARRIES INC 3201 POTSHOP RD Blk. 001 / Unit 003 94 MERCANTE PHILIP J 3103 POTSHOP RD Blk. 001 / Unit 060 95 CIPPERLY ALVIN R & YVONNE C 3107 POTSHOP RD Blk. 001 / Unit 053	91	LAWRENCE CHRISTOPHER F & DIANE	3105 POTSHOP RD	Blk. 001 / Unit 008
94 MERCANTE PHILIP J 3103 POTSHOP RD Blk. 001 / Unit 060 95 CIPPERLY ALVIN R & YVONNE C 3107 POTSHOP RD Blk. 001 / Unit 053	92	PARKER BARBARA EDELMAN & JAMES	3120 POTSHOP RD	Blk. 003M / Unit 083
95 CIPPERLY ALVIN R & YVONNE C 3107 POTSHOP RD Blk. 001 / Unit 053	93	GILL QUARRIES INC	3201 POTSHOP RD	Blk. 001 / Unit 003
	94	MERCANTE PHILIP J	3103 POTSHOP RD	Blk. 001 / Unit 060
96 PERSEO ANTHONY P & MARISA C 3111 POTSHOP RD Blk. 001 / Unit 051				
	96	PERSEO ANTHONY P & MARISA C	3111 POTSHOP RD	Bik. 001 / Unit 051

East Norriton Township Existing On-Lot Disposal Systems

	OWNER	PARCEL ADDRESS	Parcel Tax Map Identification
97	BROUSE FRANK W	2915 POTSHOP RD	Blk. 02B / Unit 008
98	BROUSE FREDERICK W & SALLY B	2917 POTSHOP RD	Blk. 02B / Unit 007
99	CORBO PETER A & HELENE M	2 RICHFIELD RD	Blk. 004 / Unit 038
100		_ 4 RICHFIELD RD	Blk. 004 / Unit 037
101	REESE ROBERT D & JOYCE N	1016 SCHULTZ RD	Blk. 001 / Unit 052
102		1018 SCHULTZ RD	Blk. 001 / Unit 011
103	TUTURICE SALVATORE F & MARY G	1017 SCHULTZ RD	Blk. 001 / Unit 042
104	CAPPARELL JAMES V & MARY T	1021 SCHULTZ RD	Blk. 001 / Unit 017
105	ZIEMBICKI PAUL B & RUTH R	1023 SCHULTZ RD	Blk. 001 / Unit 018
106	NEVE JOS A & MAUREEN	1025 SCHULTZ RD	Blk, 001 / Unit 019
107	MCCLOSKEY JOSEPH E & BRENDA J	1027 SCHULTZ RD	Blk. 001 / Unit 020
108	SZCZEPKOWICZ VICTOR S & THERESA A	1029 SCHULTZ RD	Blk. 001 / Unit 021
109	MENDELSOHN JENNIFER	319 SHAMOKIN ST	Blk. 031 / Unit 106
110	CHRISTMAN REGINALD & NORMAN	331 SHAMOKIN ST	Bik. 031 / Unit 110
111	HEUR GEORGE W & SUSAN M	2400 STANBRIDGE ST	Blk. 005D / Unit 041
112	FALLEN JOSEPH & RENA	3105 SUNSET AVE	Blk. 003G / Unit 069
113	NAVE RALPH T & TANYA	3206 SUNSET AVE	Blk. 04D / Unit 048
114	PAOLUCCI JOHN & JOANNE	2900 SUNSET AVE	_ Blk. 004 / Unit 019
115	DEAN JAMES S & FRANCES H	2943 SUNSET AVE	Blk. 003F / Unit 010
116	ORDWAY ANTHONY, CECIL, FAY &	2941 SUNSET AVE	Blk. 003F / Unit 009
117	BAIRD NELSON M JR & IRENE	2939 SUNSET AVE	Blk. 003F / Unit 008
118	BAIRD HARRY L AS TRUSTEE - H BAIRD TRUST	2937 SUNSET AVE	Blk. 003F / Unit 007
119	HSU FU-CHUN & CHE-HSIANG WANG	2935 SUNSET AVE	Blk. 003F / Unit 006
120	TESTA CHAS J JR & CHRISTINE J	2933 SUNSET AVE	Blk. 003F / Unit 005
121	SMYTH WILLIAM J & JANET L	2931 SUNSET AVE	Blk. 003F / Unit 004
122	GOTTSHALL HOMER & LOIS W	2929 SUNSET AVE	Blk. 003F / Unit 003
123	SANTANGELO JAMES B &	2921 SUNSET AVE	Blk. 003F / Unit 001
124	SIRAVO MARK & AMIE	2917 SUNSET AVE	Blk. 003E / Unit 006
125	KEN-CREST HOUSING PA	2915 SUNSET AVE	Blk. 003E / Unit 008
126	MACDONALD JOSEPH & JANET L	2913 SUNSET AVE	Blk. 003E / Unit 008
127	BUTTERFIELD AMY J & JASON L	2907 SUNSET AVE	Blk. 003E / Unit 004
128	POWER MICHAEL F & SCHMIDT KIMBERLY	2905 SUNSET AVE	Blk. 003E / Unit 003
129	CROWLE BENJAMINI & DOREEN C	2903 SUNSET AVE	Blk. 003E / Unit 002
130	GRANESE GERARDO & ROSA & LIODORO I	3226 SUNSET AVE	Blk. 004D / Unit 011
	HAND & HARMAN TUBE CO INC	SUNSET AVE	Blk. 004D / Unit 003
	CHILSON PATRICK	3216 SUNSET AVE	Blk. 004D / Unit 013
	KORKUS ANDREW J & MICHELE GALANTI	3214 SUNSET AVE	Blk. 004D / Unit 014
	KLINE JAMES BRADFORD & KRISTY P	3210 SUNSET AVE	Blk. 004D / Unit 016
	MASTROCOLA ROBERTO	3212 SUNSET AVE	Blk. 004D / Unit 015
	SHOULBERG RICHARD W & MARY LOU	3208 SUNSET AVE	Blk. 004D / Unit 049
	SCHMITZ WILLIAM J JR & JOAN M	3202 SUNSET AVE	Blk. 004D / Unit 017
	O'CONNOR THOMAS S & JULIE ANN	3200 SUNSET AVE	Blk. 004D / Unit 018
	IANACONE JOHN J & CYNTHIA D'AMBROSI	3176 SUNSET AVE	Bik. 004D / Unit 056
		3174 SUNSET AVE	Blk. 004D / Unit 057
		3170 SUNSET AVE	Blk. 004 / Unit 001
	DIGIOVANNANTONIO JAMES & MARIE	3168 SUNSET AVE	Blk. 004 / Unit 011
	ABBETT GERALD M & VIVIAN B	3154 SUNSET AVE	Blk. 004 / Unit 008
144	LAW STEVEN R	3152 SUNSET AVE	Blk. 004 / Unit 077

)

)

)

East Norriton Township Existing On-Lot Disposal Systems

	OWNER	PARCEL_ADDRESS	Parcel Tax Map Identification
		3148 SUNSET AVE	Blk. 004 / Unit 082
146		2936 SUNSET AVE	Blk. 004H / Unit 016
147		2932 SUNSET AVE	Blk. 004 / Unit 095
148		2928 SUNSET AVE	Blk. 004 / Unit 015
149		2914 SUNSET AVE	Blk. 004 / Unit 051
150	ELKO MARK M & LANCE M ECHTERNACH	2918 SUNSET AVE	Bik. 004 / Unit 045
151	HENDEL ROBERT J & PATRICIA M	2910 SUNSET AVE	Blk. 004 / Unit 043
152	GROW THOMAS PAUL	2904 SUNSET AVE	Bik. 004 / Unit 084
153		2803 SWEDE RD	Blk. 005B / Unit 027
154	DECARME WILLIAM C & JEAN R	2206 SWEDE RD	Blk. 019 / Unit 004
155	BARRINGTON SAMUEL H & DORIS H		Blk. 006 / Unit 006 (Priority I Preservation)
	BARTEK JOSEPH J & MARIETTS A	123 W TOWNSHIP LINE RD	Blk. 006 / Unit 073
157		113 W TOWNSHIP LINE RD	Blk. 006 / Unit 015
	FILORETO JOHN A	115 W TOWNSHIP LINE RD	Blk. 006 / Unit 018
159		1211 W TOWNSHIP LINE RD	Blk. 001 / Unit 057
160	KNIGHT KENNETH J	109 W TOWNSHIP LINE RD	Blk. 006 / Unit 019
		129 W TOWNSHIP LINE RD	Bik. 006 / Unit 036
		619 W TOWNSHIP LINE RD	Blk. 004D / Unit 030 (Priority I Preservation)
163	ROGERS THOMAS W & MARY ANN	121 W TOWNSHIP LINE RD	Blk. 006 / Unit 071
164	SCHULTZ BERNARD J & BELLA	117 W TOWNSHIP LINE RD	Blk. 006 / Unit 017
	SEGAL STANLEY J & ADELE	127 W TOWNSHIP LINE RD	Blk. 006 / Unit 035
166	SEIDERS THERESA F / WATERMAN SUSANNE	419 W TOWNSHIP LINE RD	Blk. 006 / Unit 004
167	SIEGLE FREDERICK C JR & T MARION	417 W TOWNSHIP LINE RD	Blk. 006 / Unit 049
168		411 W TOWNSHIP LINE RD	Blk. 006 / Unit 028
169	TRANKLE KENNETH P & PAULETTE	617 W TOWNSHIP LINE RD	Blk. 004G / Unit 039 (Priority I Preservation)
		1241 W TOWNSHIP LINE RD	Blk. 001 / Unit 037
	BOYLE HIGH W & SANDRA L	1239 W TOWNSHIP LINE RD	Blk. 001 / Unit 038
		1237 W TOWNSHIP LINE RD	Blk. 001 / Unit 039
	NEWMAN CHARLES L & SHIRLEY S	1235 W TOWNSHIP LINE RD	Bik. 001 / Unit 047
		1233 W TOWNSHIP LINE RD	Blk. 001 / Unit 040
	PUMO JOHN P & KATHLEEN D	1229 W TOWNSHIP LINE RD	Blk. 001 / Unit 0
	GILL QUARRIES INC	1215 W TOWNSHIP LINE RD	Blk. 001 / Unit 055
	BANKO RONALD C	613 W TOWNSHIP LINE RD	Blk. 004G / Unit 021
	ZUCK DALE A & RAY A	421 W TOWNSHIP LINE RD	Blk. 006 / Unit 061
	SEIDERS THERESA F / WATERMAN	111 W TOWNSHIP LINE RD	Blk. 006 / Unit 020
	BISHOP FRANK R & SUSAN C	541 W GERMANTOWN PK	Blk. 004 / Unit 040
	DAVIS WILLIAM JR & JANE E	334 W GERMANTOWN PK	Blk. 005 / Unit 012
	TURANO DANTE A & CHRISTINE N	1052 W GERMANTOWN PK	Blk. 002A / Unit 013
	MAXI GROUP & GAMBONE BROS	1044 W GERMANTOWN PK	Blk. 002A / Unit 017
-	GAMBONE BROS DEV CORP	1036 W GERMANTOWN PK	Blk. 002A / Unit 020
•	SHARON G CORP	1030 W GERMANTOWN PK	Blk. 002A / Unit 026
-	GORMAN GEORGE J JR & EVELYN C	1026 W GERMANTOWN PK	Blk. 002A / Unit 027
-		1022 W GERMANTOWN PK	Blk. 002A / Unit 028
-	BONGIOVI FRANK & JEAN	1018 W GERMANTOWN PK	Blk. 002A / Unit 029
	1010 GERMANTOWN PIKE ASSOCIATES	1012 W GERMANTOWN PK	Blk. 002A / Unit 030
-	ENIP-5, A PENNA LIMITED PARTNERSHIP		Blk. 002 / Unit 031
-	GRISAFI JOSEPH & SUSAN	834 W GERMANTOWN PK	Blk. 003C / Unit 005
192	SHEARN VICTOR F & PATRICIA MORETTI	832 W GERMANTOWN PK	Blk. 003C / Unit 004

East Norriton Township Existing On-Lot Disposal Systems

	OWNER	PARCEL_ADDRESS	Parcel Tax Map Identification
193	KRANICH RALPH & LUCINDA	824 W GERMANTOWN PK	Blk. 003C / Unit 002
194	GREATER NORRISTOWN ART LEAGUE	800 W GERMANTOWN PK	Blk. 003B / Unit 003
195	SKROLLING STONE INVESTMENTS LLC	716 W GERMANTOWN PK	Blk. 003A / Unit 038
196	ALFONSE JOHN T JR	1055 W GERMANTOWN PK	Blk. 002A / Unit 015
197	GLENN FARM, LP	1005 W GERMANTOWN PK	Bik. 002A / Unit 019
198	LFT REALTY	911 W GERMANTOWN PK	Blk. 003 / Unit 005
199	WOODS GOLF CENTER INC	549 W GERMANTOWN PK	Blk. 004 / Unit 024
200	BEYER RUTH M	117 W HARTRANFT BLVD	Blk. 023 / Unit 032
201	THOMAS CHARLES & JULIE	218 WARSAW ST	Blk. 030 / Unit 010
202	BOSLER JOHN R JR & DOROTHY	3032 N WHITEHALL RD	Blk. 004D / Unit 008
203	KEITH TORNETTA	N WHITEHALL RD	Blk. 004D / Unit 021
204	WOOD S GOLF CENTER INC	N WHITEHALL RD	Blk. 004D / Unit 020
205	KUMPF ROBERT E & ROSEANN F	1102 WOODLAND AVE	Blk. 001 / Unit 054
206	FAIRVIEW VILLAGE CONGREGATION OF	1120 WOODLAND AVE	Blk. 001 / Unit 062
207	PAULIN H DOUGLAS	1018 WOODLAND AVE	Bik. 001 / Unit 061
208	SAPOVITS STEVEN R & SUSAN	1012 WOODLAND AVE	Blk. 001 / Unit 046
209	WOLFE JAMES L & PATRICIA E	1008 WOODLAND AVE	Blk. 001 / Unit 049

)

١

L		,				TABLE 3	2				
F					East	Lauritan Ta	term or he for				
\vdash						Norriton To	wnsnip				
		·			Pump	Station Flow	vs (mad)	<u> </u>			L
			Norris C			erlake		Germantow		Sandra Lan	
1	Date	Rainfall (in.)	Totalizer	Daily Flow	Totalizer	Daily Flow	Totalizer	Daily Flow	Overflow	Totalizer	Daily Flow
┝	1/1/2002		3191054	1.172							
F	1/2/2002		3192226	1.212							
	1/3/2002		3193438	1.218							
\vdash	1/4/2002 1/5/2002		3194656 3195816	1.160 1.217							
\vdash	1/6/2002	1.10	3197033	1.802							
E	1/7/2002	0.15	3198835	1.612							
L	1/8/2002		3200447	1.378							
┝	1/9/2002 1/10/2002	0.05	3201825 3203192	1.367 1.554		<u>}</u>					
\vdash	1/11/2002	0.35	3204746	2.355				<u>├──</u>			
E	1/12/2002		3207101	1.728							
-	1/13/2002		3208829	1.476							ļ
\vdash	1/14/2002 1/15/2002		3210305 3211626	1.321						<u>+</u>	
F	1/16/2002		3212898	1.247							
	1/17/2002		3214145	1.277							
	1/18/2002		3215422	1.170							
-	1/19/2002	0.60	3216592 3218008	1.416 1.298							
⊢	1/21/2002		3219306	1.214							
	1/22/2002		3220520	1.298							
	1/23/2002		3221818	1.497							
-	1/24/2002	0.85	3223315 3226213	2.898 1.930							
	1/26/2002		3228143	1.620							<u> -</u>
	1/27/2002		3229763	1.313							
	1/28/2002		3231076	1.368							ļ
-	1/29/2002		3232444 3233753	1.309		<u> </u>					
	1/31/2002		3235365	1.815							
	2/1/2002	0.10	3237180	1.858							
	2/2/2002		3239038	1.652						[
-	2/3/2002 2/4/2002		3240690 3242149	1.459							
	2/5/2002		3243570	1.386							
	2/6/2002		3244956	1.334							
	2/7/2002	0.05	3246290	1.416						<u> </u>	
	2/8/2002		3247706 3249037	1.331							
	2/10/2002	0.10	3250436	1.459							
	2/11/2002		3251895	1.365							
	2/12/2002		3253260	1.295						┼╼───	
	2/13/2002		3254555 3255799	1.244							
	2/14/2002		3257032	1.351							<u> </u>
	2/16/2002		3258383	1.507		-					
	2/17/2002		3259890	0.954							
	2/18/2002	<u> </u>	3260844 3262199	1.355							<u> </u>
	2/20/2002	0.15	3263358	1.139							
	2/21/2002		3264638	1.362							
	2/22/2002		3266000	1.132							
	2/23/2002		3267132 3268421	1.289							
_	2/25/2002		3269647	1.202							
	2/26/2002		3270849	1.197							
	2/27/2002		3272046	1.166							
	2/28/2002		3273212 3274381	1.169							

					TABLE 3-	2	т — т			· · · · ·
				East	Norriton To	wnship			1	
				Dump	Station Flow	to (mod)				
				Fump		ws (ingu)				T
		Norris C	ity Ave.	Timb	erlake		Germantow	n	Sandra Lan	e
Date	Rainfall (in.)	Totalizer	Daily Flow	Totalizer	Daily Flow	Totalizer	Daily Flow	Overflow	Totalizer	Daily Flow
3/2/200	2	3275587	2.120		<u>├</u>					<u> </u>
3/3/200		3277707	2.001		┼───┼					+
3/4/200	2	3279708	1.586							
3/5/200		3281294	1.448							ļ
3/6/200		3282742 3284111	1.369 1.741		┼╼═╴╉					
3/8/200	2	3285852	0.957							+
3/9/200		3286809	1.490							
3/10/2002		3288299 3289591	1.292							
3/12/2002		3290903	1.258							
3/13/2002	2 0.25	3292161	1.536				++		-	
3/14/2002	2	3293697	1.397							
3/15/2002		3295094 3296401	1.307 1.375							
3/17/2002		3290401	1.819		<u>├</u>					
3/18/2002		3299595	2.552		<u>├</u>		<u> </u>			
3/19/2002		3302147	1.920							
3/20/2002	2 1.10	3304067	4.290 2.583							
3/21/2002		3308357 3310940	2.583		┝━━──┣					
3/23/2002		3312968	1.834							
3/24/2002	2	3314802	1.807							
3/25/2002		3316609	1.592 2.075							
3/26/2002		3318201 3320276	2.075							
3/28/2002		3322469	2.098						-	
3/29/2002		3324567	1.638							
3/30/2002 3/31/2002		3326205 3328003	1.798 1.688							<u> </u>
4/1/2002		3329691	1.809							
4/2/2002		3331500	1.557						-	
4/3/2002		3333057	1.654							
4/4/2002		3334711	1.508				 			
4/5/2002		3336219 3337707	1.488				<u>├ </u>			
4/7/2002		3339433	1.200							
4/8/2002		3340633	1.622							
4/9/2002		3342255 3343523	1.268 1.409							
4/10/2002		3343523	1.409		┝──── ├					
4/12/2002		3346291	2.139							
4/13/2002		3348430	1.065							
4/14/2002		3349495 3350838	1.343 1.438						+	
4/15/2002		3350838	1.438							
4/17/2002		3353695	1.312		└─── ├					
4/18/2002		3355007	1.342							
4/19/2002		3356349	1.340				┝━╸──┼			
4/20/2002		3357689 3359160	1.471		- ,					
4/22/2002		3360634	1.598							
4/23/2002		3362232	1.424							
4/24/2002		3363656	1.372							
4/25/2002 4/26/2002		3365028 3366531	1.503				├───┼			
4/27/2002		3367867	2.067				t †			
4/28/2002	1.10	3369934	2.236							
4/29/2002 4/30/2002		3372170 3374021	1.851							

		·				TABLE 3	-2			······································	
-					East	Norriton To	wnship				·
					Luot 1		monp				
					Pump S	Station Flo	ws (mgd)				
-	Date	Rainfall (in.)	Norris C Totalizer	Daily Flow	Timbe Totalizer	Daily Flow	Totalizer	Germantow Daily Flow	Overflow	Sandra Lan Totalizer	e Daily Flow
\vdash	Date	rainai (in.)	TUlalizei	Dally Flow	TOtanzer	Daily Flow	Totalizer	Dally Flow	Overnow	Totalizer	Dany Fluw
	5/1/2002		3375859	1.722							<u> </u>
	5/2/2002	0.45	3377581	2.164							
	5/3/2002	L	3379745	1.838							
\vdash	5/4/2002 5/5/2002		3381583 3383651	2.068						+	
	5/6/2002		3384930	1.556				1			
	5/7/2002		3386486	1.491							
	5/8/2002		3387977	1.470							
1	5/9/2002	0.70	3389447	1.914							
	5/10/2002 5/11/2002		3391361 3393210	1.849							
-	5/12/2002	0.65	3395190	1.089				+		+	
1	5/13/2002	0.95	3396279	2.820							
	5/14/2002		3399099	2.442							
	5/15/2002		3401541	2.030							ļ
	5/16/2002		3403571 3405367	1.796							
	5/18/2002	1.70	3407893	4.407						+	<u> </u>
	5/19/2002		3412300	2.452							
	5/20/2002		3414752	2.266							
	5/21/2002		3417018	2.031							
	5/22/2002		3419049 3420927	1.878 1.819							ļ
	5/23/2002 5/24/2002		3420927	1.819							
	5/25/2002		3424582	1.557				+			<u> </u>
	5/26/2002	0.10	3426139	1.647							
	5/27/2002	0.10	3427786	1.671							
	5/28/2002		3429457	1.619							
	5/29/2002 5/30/2002		3431076 3432636	1.560 1.497				· · · · · · · · · · · · · · · · · · ·			
	5/31/2002		3434133	1.330							
	6/1/2002		3435463	1.614				<u> </u>			
	6/2/2002		3437077	1.586							
<u> </u>	6/3/2002		3438663	1.375							ļ
	6/4/2002		3440038 3441426	1.388							<u> </u>
	6/6/2002	2.50	3442831	2.615							<u>}</u>
—	6/7/2002		3445446	2.271							
	6/8/2002		3447717	1.839							
	6/9/2002		3449556	1.396				<u>↓</u> ↓			<u></u>
	6/10/2002 6/11/2002	0.20	3450952 3452565	1.613							
	6/12/2002	0.20	3454245	1.573							<u> </u>
	6/13/2002	0.20	3455818	1.571					······		
	6/14/2002	0.50	3457389	2.051							
	6/15/2002	0.10	3459440	2.106							ļ
	6/16/2002 6/17/2002		3461546	1.551						+	
	6/18/2002	0.20	3463097	1.633							
(6/19/2002	0.25	3466364	1.672							
(6/20/2002		3468036	1.578							
	6/21/2002		3469614	1.690							
	6/22/2002		3471304	1.473							
	5/23/2002 5/24/2002	0.30	3472777 3474169	1.535							
<u></u>	6/25/2002		3475704	1.442							
	6/26/2002		3477146	1.443							
e	6/27/2002	0.80	3478589	1.764							
	6/28/2002		3480353	1.627							
6	6/29/2002		3481980	1.521							<u> </u>

					TABLE 3-	2				
				East	Norriton To	wnship			·	<u> </u>
	, Y									
				Pump	Station Flow	ws (mgd)				
		Norris C	ity Ave	Timb	erlake		Germantow	/0	Sandra Lan	e
Date	Rainfall (in.)	Totalizer	Daily Flow	Totalizer	Daily Flow	Totalizer	Daily Flow	Overflow	Totalizer	Daily Fl
6/30/20		3483501	1.552							
7/1/20		3485053	1.466							
7/2/20		3486519 3487944			<u> </u>		+		+	
7/4/20		3489381	1.438		<u>├───</u>					
7/5/20		3490819	_ 1.313							
7/6/20		3492132	1.382							
7/7/20		3493514	1.192							<u> </u>
7/8/20		3494706 3496090	1.384							
7/10/20		3497558	1.406							<u> </u>
7/11/20		3498964	1.354		<u>├ - </u>					
7/12/20	02	3500318	1.450						1	
7/13/20		3501768	1.407							
7/14/20		3503175	1.189				<u> </u>			
7/15/20		3504364 3505706	1.342							
7/17/20		3506962	1.295	<u> </u>						<u> </u>
7/18/20		3508257	1.248							
7/19/20	02 0.20	3509505	1.428							1
7/20/20		3510933	1.359							
7/21/20		3512292	1.171							
7/22/20		3513463 3514701	1.238						+	
7/24/20		3514701	1.301							
7/25/20		3517287	1.232							
7/26/20		3518519	1.228							
7/27/20		3519747	1.253							
7/28/20		3521000	1.316							<u> </u>
7/29/20		3522316	1.276		-					ļ
7/30/200		3523592 3524830	1.238						+	
8/1/200		3526211	1.058							
8/2/200		3527269	0.945				1			1
8/3/200	02 0.20	3528214	1.705							
8/4/200		3529919	1.266							
8/5/200		3531185 3532473	1.288		-					
8/6/200		3532473	0.708							
8/8/200		3534402	1.716				<u>}</u>			
8/9/200		3536118	1.197							
8/10/200		3537315	1.212							
8/11/200		3538527	1.262							
8/12/200		3539789 3540982	1.193							
8/13/200		3540982	1.188							
8/15/200		3543409	1.175							
8/16/200		3544584	1.383							<u> </u>
8/17/200		3545967	1.336							
8/18/200		3547303	0.997							
8/19/200		3548300	1.197 1.218							
8/20/200		3549497 3550715	1.177							
8/22/200		3551892	1.168							
8/23/200		3553060	1.196							
8/24/200	1.10	3554256	1.631							
8/25/200		3555887	1.038							
8/26/200		3556925	1.378							
8/27/200 8/28/200		3558303 3559324	1.021							

					TABLE 3	-2				
				East	Norriton To	wnship				
							Г			
				Pump	Station Flo	ws (mgd)				
		Nousie C							0	
Date	Rainfall (in.)	Norris C Totalizer	Daily Flow	Totalizer	erlake Daily Flow	Totalizer	Germantow Daily Flow	n Overflow	Sandra Lan Totalizer	Daily Flow
Date	Natinat (III.)	TUtalizer	Daily PIQW	TOLENZEI	Dally Flow	TOtalizei	Daily Plow	Oveniow	TUtalizer	Daily Flow
8/29/2002		3560700	1.522		· · · · · · · · · · · · · · · · · · ·					
8/30/2002	1.15	3562222	1.245							
8/31/2002		3563467	1.308							
9/1/2002 9/2/2002	0.80	3564775	1.808 1.456						+	
9/2/2002		3566583 3568039	1.450							ļ
9/4/2002		3569381	1.231				<u> </u>		+	
9/5/2002		3570612	1.268				<u>├──</u>		+	
9/6/2002		3571880	1.160				├───			
9/7/2002		3573040	1.351							
9/8/2002		3574391	1.225							
9/9/2002 9/10/2002		3575616 3576829	1.213				┝────┝			
9/10/2002		3577974	1.145				-			
9/12/2002		3579203	1.517							
9/13/2002		3580720	0.952							
9/14/2002		3581672	1.223							
9/15/2002	0.50	3582895	1.447							
9/16/2002		3584342	1.139				ļ			
9/17/2002		3585481	1.196 1.159							
9/18/2002 9/19/2002		3586677 3587836	1.159				<u> </u>		+	
9/20/2002		3588989	1.130				├ <u>-</u>			
9/21/2002		3590119	1.293				├── ──{			
9/22/2002		3591412	1.326							
9/23/2002		3592738	1.214							
9/24/2002		3593952	1.181				<u> </u>			
9/25/2002 9/26/2002	2.00	3595133 3596307	1.174						- <u> </u>	
9/27/2002	0.50	3598257	2.037						· · · · ·	
9/28/2002		3600294	1.679							
9/29/2002		3601973	1.363						-	
9/30/2002		3603336	1.309							
10/1/2002		3604645	1.258						- <u>-</u>	
10/2/2002	0.10	3605903 3607152	1.249							
10/3/2002	0.10	3608464	1.355							
10/5/2002		3609819	1.378							
10/6/2002		3611197	1.297						<u> </u>	
10/7/2002		3612494	1.239							
10/8/2002		3613733	1.239						_	
10/9/2002		3614972	1.253							
10/10/2002	1.00	3616225 3617939	1.714							
10/11/2002	0.90	3617939	1.983							
10/13/2002		3622838	1.455							
10/14/2002		3624293	1.478							
10/15/2002		3625771	1.369							
10/16/2002	1.15	3627140	2.646							
10/17/2002	0.05	3629786	1.794							
10/18/2002		3631580	1.858							
10/19/2002		3635035	1.051							
10/21/2002		3636086	1.368							
10/22/2002		3637454	1.387						1	
10/23/2002		3638841	1.256							
10/24/2002		3640097	1.323							
10/25/2002		3641420	1.962							
10/26/2002	0.90	3643382	2.047							

	r				TABLE 3	-2				
				Fact	Norriton To	wnehin				
<u> </u>	<u> </u>					wiisnip				
				Pump	Station Flo	ws (mgd)	·			·
	<u> </u>	Norris C	ity Avo	Timb	erlake		Germantow		Sandra Lan	
Date	Rainfall (in.)	Totalizer	Daily Flow	Totalizer	Daily Flow	Totalizer	Daily Flow	Overflow	Totalizer	Daily Flow
		10 tallEol	Duny 1 low	TORMED		10001201			TO WILLOW	
10/28/2002		3646911	1.520							
10/29/2002		3648431	2.188				_			
10/30/2002		3650619	3.475							
10/31/2002		3654094	2.285					,		
11/1/2002		3656379	2.059		ļ					
11/2/2002		3658438 3660263	1.825 1.737		·				<u> </u>	
11/4/2002		3662000	1.633							
11/5/2002	0.50	3663633	1.927			-	-	-		
11/6/2002		3665560	2.044							
11/7/2002		3667604	1.780						-	
11/8/2002		3669384	1.752							
1/9/2002		3671136	1.742					······		
11/10/2002		3672878	1.593							
11/11/2002		3674471	1.541							
11/12/2002	1.00	3676012	3.296		<u> </u>				_	
11/13/2002		3679308 3681826	2.518						_	
11/14/2002		3683832	2.006 2.116	-			ļ	-		
11/16/2002	1.10	3685948	4.776							
11/17/2002		3690724	4.053							
11/18/2002		3694777	3.671	-				:		
11/19/2002		3698448	2.631							
11/20/2002		3701079	2.293		· · ·					
11/21/2002	0.10	3703372	2.196							
11/22/2002	0.25	3705568	2.515						·	
11/23/2002		3708083	2.131							
11/24/2002		3710214	2.059							
11/25/2002		3712273	1.929							ļ
11/26/2002	0.40	3714202 3716125	1.923							
11/27/2002	<u> </u>	3716125	2.418 1.947						-	
11/29/2002		3720490	2.137							
11/30/2002		3722627	1.714						+	
12/1/2002		3724341	1.756		<u>├───</u> }					•
12/2/2002		3726097	1.683		Í					
12/3/2002		3727780	1.611							
12/4/2002		3729391	1.502							
12/5/2002	0.80	3730893	1.641							
12/6/2002		3732534	1.624		<u> </u>					
12/7/2002		3734158	1.612							
12/8/2002		3735770 3737476	1.706							
12/9/2002		3737476	1.568							
12/11/2002	1.70	3740579	4.491							
12/12/2002		3745070	4.603						-	
12/13/2002	0.60	3749673	4.709						1	<u> </u>
12/14/2002	0.10	3754382	5.117						1	
12/15/2002		3759499	2.676							
12/16/2002		3762175	2.687							
12/17/2002		3764862	2.317							
12/18/2002		3767179	2.168							
12/19/2002		3769347	2.108					-		
12/20/2002	0.60	3771455	3.726 3.126							
12/21/2002		3775181 3778307	1.720						-	1
12/23/2002		3780027	2.641							
12/24/2002		3782668	1.862						+	
12/25/2002	1.50	3784530	4.408							
12/26/2002		3788938	3.599							

						TABLE 3	-2				
$\left \right $					Fact	Norriton To	washin			l	
ł					Lasti		wiisnip				
ľ		·			Pump \$	Station Flor	ws (mgd)			·	· · · · · · · · · · · · · · · · · · ·
I											
ļ			Norris C		Timbe			Germantow		Sandra Lan	
ŀ	Date	Rainfall (in.)	Totalizer	Daily Flow	Totalizer	Daily Flow	Totalizer	Daily Flow	Overflow	Totalizer	Daily Flow
ł	12/27/2002		3792537	3.203							
ł	12/28/2002		3795740	2.772							
ľ	12/29/2002		3798512	2.319							
	12/30/2002		3800831	2.468							
ŀ	12/31/2002	43.55	3803299	2.503							
-	Annual Avg.	2002		1.684							
ŀ		Gravity to	Sawmill PS	0.060							
ł			annual ADF	1.744							<u> </u>
ŀ											
ľ											<u> </u>
Ľ	1/1/2003	1.10	3805802	4.659	2249564	3.529	1007834	1.835	0.2087		
ŀ	1/2/2003		3810461	3.888	2253093	2.524	1009669	1.387	0.0052		
┝	1/3/2003	0.40	3814349 3818901	4.552	2255617 2258475	2.858 2.150	1011056 1012558	1.502			
ŀ	1/4/2003	0.40	3818901	2.660	2258475	1.666	1012558	0.804			
ŀ	1/6/2003	0.40	3824920	2.984	2262291	1.969	1013819	0.882			
ŀ	1/7/2003		3827904	2.656	2264260	1.599	1015305	0.739			
E	1/8/2003		3830560	2.699	2265859	1.573	1016044	0.771			
	1/9/2003		3833259	2.501	2267432	1.585	1016815	0.697			
ĺ	1/10/2003		3835760	2.362	2269017	1.278	1017512	0.609			
ŀ	1/11/2003		3838122 3840382	2.260	2270295 2271627	1.332	1018121 1018701	0.580			
ŀ	1/13/2003		3842683	1.842	2273989	0.170	1019252	0.538			
ŀ	1/14/2003		3844525	1.904	2274159	1.037	1019790	0.440			
r	1/15/2003		3846429	1.802	2275196	0.995	1020230	0.366			
L	1/16/2003	0.10	3848231	1.759	2276191	0.986	1020596	0.373			
ŀ	1/17/2003		3849990	1.759	2277177	0.826	1020969	0.337			<u> </u>
-	1/18/2003 1/19/2003		3851749 3853706	1.957	2278003 2279080	1.077	1021306 1021727	0.421			
┝	1/20/2003		3855348	1.629	2279973	0.999	1021727	0.340			
ŀ	1/21/2003		3856977	1.605	2280972	0.868	1022438	0.326			
ŀ	1/22/2003		3858582	1.534	2281840	0.780	1022764	0.285			
	1/23/2003		3860116	1.559	2282620	0.833	1023049	0.308			
_	1/24/2003		3861675	2.118	2283453	0.984	1023357	0.369			
_	1/25/2003		3863793 3864895	1.102	2284437 2285019	0.582	1023726	0.215			
-	1/27/2003		3866417	1.488	2285908	0.763	1023941	0.332			
F	1/28/2003		3867905	1.568	2286671	0.781	1024553	0.275			
_	1/29/2003	0.20	3869473	1.261	2287452	0.712	1024828	0.272			
_	1/30/2003		3870734	1.423	2288164	0.712	1025100	0.242			
_	1/31/2003		3872157 3873701	1.544	2288876 2289642	0.766	1025342	0.284			
_	2/1/2003		3873701	1.602	2289642	0.868	1025626	0.326			
-	2/3/2003		3876683	1.495	2290310	0.808	1025952	0.320			
-	2/4/2003	0.25	3878178	1.784	2292197	1.191	1026604	0.462			
_	2/5/2003		3879962	1.479	2293388	0.677	1027066	0.294			
	2/6/2003		3881441	1.840	2294065	0.905	1027360	0.383			
_	2/7/2003	0.90	3883281	1.419	2294970	0.833	1027743	0.297			
-	2/8/2003		3884700 3886000	1.300	2295803 2296450	0.647	1028040	0.248			
-	2/10/2003	0.10	3887449	1.449	2296450	0.870	1028288	0.341			
-	2/11/2003	0.10	3888922	1.597	2298136	0.843	1028955	0.320			
-	2/12/2003		3890519	1.279	2298979	0.736	1029277	0.264			
Į	2/13/2003		3891798	1.372	2299715	0.747	1029541	0.272			
_	2/14/2003		3893170	1.371	2300462	0.688	1029813	0.253			
_	2/15/2003	1.00	3894541	1.440	2301150	0.746	1030066	0.293			
-	2/16/2003	1.00	3895981	1.479	2301896	0.846	1030359	0.351			
_	2/18/2003		3898939	1.211	2303588	0.833	1031060	0.351			t

						TABLE 3	-2				
-		ļ		۹	Fast	Norriton To	waship				
)├-		T									
					Pump	Station Flo	ws (mgd)			.l	
			Norris C			erlake		Germantow		Sandra Lan	
	Date	Rainfall (in.)	Totalizer	Daily Flow	Totalizer	Daily Flow	Totalizer	Daily Flow	Overflow	Totalizer	Daily Flo
	0/40/2002	I	3900150	1.362	2304421	0.685	1031278	0.301			
\vdash	2/19/2003 2/20/2003		3901512	1.621	2304421		1031278	0.301			
\vdash	2/21/2003	0.30	3903133	2.152	2306036		1031972	0.572		<u> </u>	
	2/22/2003	2.20	3905285	7.106	2307256	4.576	1032544	2.259	0.2413		
	2/23/2003		3912391	5.285	2311832		1034803	1.919			
	2/24/2003		3917676		2315370	2.247	1036722	1.186			
	2/25/2003		3920766		2317617	1.732	1037908	0.791			<u> </u>
	2/26/2003 2/27/2003		3923511 3925876	2.365 2.119	2319349 2320647	1.298 1.241	1038699 1039317	0.618			
	2/28/2003	0.20	3925876	2.119	2320647	1.324	1039317	0.495			
	3/1/2003	0.20	3930464	2.293	2323212	1.328	1040425	0.572			
	3/2/2003	0.70	3932757	4.418	2324540	3.600	1040997	1.708	0.2897		
	3/3/2003		3937175	3.737	2328140	1.961	1042705	1.141			
	3/4/2003		3940912	2.590	2330101	1.669	1043846	0.845			
	3/5/2003	0.30	3943502	5.227	2331770	3.354	1044691	1.723	0.0382		
	3/6/2003	0.80	3948729 3953644	4.915	2335124 2338741	3.617 2.527	1046414 1048343	1.929 1.222	0.2066		
	3/8/2003		3957876	3.773	2341268	2.527	1048545	1.222	· · · · · · · · · · · · · · · · · · ·	<u> </u>	
	3/9/2003		3961649	4.299	2343714	2.973	1050799	1.551	0.0507		1
	3/10/2003		3965948	3.252	2346687	2.044	1052350	0.932			
	3/11/2003		3969200	2.823	2348731	1.658	1053282	0.752			
	3/12/2003		3972023	3.116	2350389	2.158	1054034	0.896			0
	3/13/2003		3975139	3.209	2352547	1.737	1054930	0.952			<u> </u>
∦	3/14/2003		3978348 3981501	3.153 2.837	2354284 2356176	1.892	1055882 1056738	0.856			
-	3/15/2003 3/16/2003		3984338	2.587	2357913	1.621	1050738	0.787			
	3/17/2003		3986925	2.730	2359534	1.754	1058275	0.799			
	3/18/2003		3989655	2.422	2361288	1.503	1059074	0.655			
	3/19/2003		3992077	2.231	2362791	1.173	1059729	0.515			
	3/20/2003	1.30	3994308	4.899	2363964	3.530	1060244	1.665	0.0977		
	3/21/2003		3999207	4.400	2367494	2.621	1061909	1.459	0.1128	·	<u> </u>
\vdash	3/22/2003 3/23/2003		4003607 4006985	3.378 2.866	2370115 2372246	2.131	1063368 1064359	0.991			
	3/23/2003		4009851	2.531	2373928		1065129	0.620			
-	3/25/2003		4012382	2.311	2375458	1.315	1065749	0.557			
┢	3/26/2003	0.30	4014693	2.514	2376773	1.490	1066306	0.652			
	3/27/2003		4017207	2.306	2378263	1.327	1066958	0.569			
	3/28/2003		4019513	2.103	2379590	1.046	1067527	0.454			L
	3/29/2003	0.30	4021616	2.614	2380636	1.595	1067981	0.755			
	3/30/2003	0.30	4024230	3.025	2382231	2.196	1068736	1.108			
	4/1/2003	0.15	4027255	2.574	2386103	1.621	1069844	0.815		<u> </u>	
	4/2/2003	0.10	4032269	2.440	2387724	1.430	1070039	0.696			
-	4/3/2003		4034690	2.161	2389154	1.259	1072145	0.574			
	4/4/2003		4036851	2.013	2390413	1.191	1072719	0.511			
	4/5/2003			2.013		1.191		0.511			
	4/6/2003		10.10000	2.013	0000000	1.191	4000000	0.511			
	4/7/2003	0.50	4042891	2.491	2393985	1.632	1074251	0.781			
<u> </u>	4/8/2003	0.35	4045382 4047789	2.407	2395617	1.546	1075032 1075768	0.736			
\vdash	4/10/2003	0.00	4047789	2.772	2399459	1.856	1077029	0.918			
	4/11/2003	0.80	4053876	3.765	2401315	2.536	1077947	1.349	0.0224		
	4/12/2003			3.765		2.536		1.349			
	4/13/2003			3.765		2.536		1.349			
	4/14/2003		4065171	2.626	2408923	1.565	1081993	0.728			
	4/15/2003		4067797	2.418	2410488	1.444	1082721	0.617			
	4/16/2003		4070215 4072390	2.175	2411932 2413174	1.242	1083338	0.532			
	4/17/2003		4012380	2.016	2413174	1.140	1003070	0.458			
	4/19/2003	0.20		2.016		1.146		0.458			

					······	TABLE 3	-2		·		<u> </u>
					East	Norriton To	wnshin				
		- 1									
					Pump	Station Flo	ws (mgd)		·	<u> </u>	
			Norris C			erlake		Germantov		Sandra Lan	
	Date	Rainfall (in.)	Totalizer	Daily Flow	Totalizer	Daily Flow	Totalizer	Daily Flow	Overflow	Totalizer	Daily Flo
	20/2003			2.016		1.146		0.458			
	21/2003		4080454	1.969	2417759		1085703	0.409			
4/2	22/2003		4082423	1.903	2418813	1.100	1086112	0.434			
	23/2003		4084326	1.790	2419913		1086546	0.382			
	24/2003		4086116	1.746	2420850		1086928	0.354			
	25/2003 26/2003	0.30	4087862	1.906 1.906	2421793	1.075	1087282	0.457		<u> </u>	+
	27/2003	0.00		1.906		1.075		0.457			
	28/2003		4093581	1.738	2425019		1088652	0.397			
	29/2003		4095319	1.652	2426005	0.905	1089049	0.354			
	30/2003		4096971	1.635	2426910		1089403	0.310			
	/1/2003		4098606	1.617	2427797 2428655	0.858	1089713	0.330			<u> </u>
	/2/2003		4100223	1.592	2428000	0.843	1090043	0.324		┢━───━	+
	/4/2003			1.592		0.843		0.324			
	/5/2003	0.10	4105000	1.583	2431184	0.828	1091015	0.313			
5	/6/2003		4106583	1.541	2432012	0.870	1091328	0.324			
	/7/2003	0.50	4108124	1.668	2432882	0.894	1091652	0.352			
	/8/2003	0.05	4109792	1.707	2433776	0.889	1092004	0.382			
	/9/2003	0.05	4111499	1.611	2434665	0.873	1092386	0.345			
	11/2003			1.611		0.873		0.345			
	12/2003		4116333	1.924	2437285	0.961	1093420	0.372			+
	13/2003		4118257	1.096	2438246	0.658	1093792	0.255		1	
	14/2003		4119353	1.489	2438904	0.794	1094047	0.274			
	15/2003		4120842	1.434	2439698		1094321	0.282			
	16/2003	0.40	4122276	1.586	2440419	0.850	1094603	0.368			
	7/2003			1.586 1.586		0.850		0.368		<u> </u>	
	9/2003		4127034	1.475	2442970	0.890	1095706	0.293			
	20/2003		4128509	1.699	2443860	0.782	1095999	0.291			
5/2	21/2003		4130208	1.364	2444642	0.889	1096290	0.391			
	2/2003		4131572	1.473	2445531	0.798	1096681	0.317			
	23/2003	0.30	4133045	2.256	2446329	1.419	1096998	0.718			
	24/2003	0.20		2.256		1.419		0.718			
	26/2003	1.50		2.256		1.419		0.718	0.0392		
	7/2003		4142069	2.330	2452004	1.443	1099871	0.822	0.0002	·	
	8/2003	0.05	4144399	2.072	2453447	1.152	1100693	0.603			
	9/2003		4146471	1.976	2454599	1.132	1101296	0.483			
	0/2003	0.50	4148447	2.044	2455731	1.221	1101779	0.597			
	1/2003	0.50		2.044		1.221		0.597			
	2/2003		4154580	1.994	2459393	1.221	1103569	0.597			
	3/2003	1.00	4156574	2.846	2460605	1.732	1104143	0.904			
	4/2003	1.20	4159420	5.425	2462337	4.320	1105047	2.409	0.2142	2	
6/	5/2003		4164845	4.376	2466657	2.899	1107456	1.621	0.013		
	6/2003		4169221	3.777	2469556	2.536	1109077	1.351		ļ	
	7/2003	0.90		3.777		2.536		1.351	0.0435		
	8/2003		4180552	2.956	2477164	2.536	1113129	0.864			
	0/2003		4183508	2.606	2478939	1.533	1113993	0.724			
and the second s	1/2003		4186114	2.344	2480472	1.238	1114717	0.518		<u> </u>	1
	2/2003	0.20	4188458	2.206	2481710	1.260	1115235	0.528			
	3/2003	1.00	4190664	3.310	2482970	2.154	1115763	1.117			
	4/2003	0.30		3.310		2.154		1.117			
	5/2003		4200504	3.310	2400422	2.154	1440445	0.554		<u> </u>	
	6/2003 7/2003	0.60	4200594 4202975	2.381	2489432 2490810	1.378	<u>1119115</u> 1119669	0.554			
	8/2003		4205448	2.123	2490810	1.609	1120371	0.781			-

						TABLE 3	-2				
									[
					East	Norriton To	wnship		,		·
									[L	
					Pump	Station Flo	ws (mgd)				r
			Alexale C								
		Deinfall (in)	Norris C		Timbe		Talalina	Germantow		Sandra Lan	
Da	ite	Rainfall (in.)	Totalizer	Daily Flow	Totalizer	Daily Flow	Totalizer	Daily Flow	Overflow	Totalizer	Daily Flo
6/19	9/2003	0.30	4207571	3.286	2494023	1.508	1121152	0.649			
)/2003	2.60	4210857	5.305	2495531	3.359	1121801	1.677	0.194		
	1/2003			5.305	2100001	3.359		1.677	0.1156		
	2/2003			5.305		3.359		1.677			
	3/2003		4226773	3.645	2505607	2.064	1126833				
	1/2003		4230418		2507671	1.509	1127698				
	5/2003		4233271	2.111	2509180	1.313	1128240	0.516			
	6/2003		4235382	2.329	2510493	1.346	1128756	0.454			
	7/2003		4237711	2.084	2511839	1.164	1129210			L	
	3/2003			2.084		1.164		0.402			
	2003		4040000	2.084		1.164	4400447	0.402			
)/2003		4243962	1.951	2515332	0.799	1130417	0.257			<u> </u>
	2/2003		4245913 4247724	1.811	2516131 2517094	0.963	1130674 1130978	0.304			
	3/2003		4249497	1.735	2517094	0.884	1131282	0.304			
	/2003		4245451	1.735	2311910	0.932	1131202	0.315		<u> </u>	
	5/2003			1.735		0.932		0.315			
	6/2003	0.20		1.735		0.932		0.315			
	/2003	0.40	4256435	1.739	2521707	1.042	1132543	0.330		<u> </u>	
	/2003		4258174	1.640	2522749	0.793	1132873	0.334			
	/2003		4259814	1.592	2523542	0.768	1133207	0.260			
	/2003	0.10	4261406	1.602	2524310	0.849	1133467	0.290			
	/2003		4263008	1.726	2525159	0.903	1133757	0.332			
	/2003			1.811		0.963		0.304			
	/2003			1.811		0.963		0.304	•		
	/2003		4268186	1.101	2527867	0.616	1134752	0.201			
	/2003		4269287	1.519	2528483	0.873	1134953	0.262			<u> </u>
	/2003		4270806	1.495	2529356	0.660	1135215	0.253			
	/2003	0.30	4272301	1.492 1.519	2530016 2530903	0.887	1135468 1135739	0.271			<u> </u>
	/2003	0.00	4213133	1.519	2330303	0.758	1133733	0.295			
	/2003			1.519		0.758		0.295			
	/2003	0.90	4278351	1.655	2533177	1.144	1136625	0.369			
	/2003	0.05	4280006	1.585	2534321	0.678	1136994				
	/2003	0.20	4281591	1.549	2534999	0.911	1137357	0.367			
	/2003		4283140	1.560	2535910	0.810	1137724	0.413		-	
7/25	/2003		4284700	1.445	2536720	0.763	1138137	0.273			
	/2003			1.445		0.763		0.273			
	/2003			1.445		0.763		0.273			
	/2003		4289034	1.381	2539010	0.766	1138955	0.290			
	/2003		4290415	1.351	2539776	0.677	1139245	0.265			
	/2003		4291766	1.369	2540453	0.686	1139510	0.241			
	2003	0.20	4293135	1.356 1.462	2541139 2541853	0.714	1139751 1139986	0.235			
	2003	0.20	4294491	1.462	2041000	0.816	1139900	0.343			
	2003			1.462		0.816		0.343			
	2003	0.95	4298877	1.857	2544300	1.095	1141016	0.595			
	2003	2.40	4300734	3.403	2545395	2.383	1141611	1.349			
	2003		4304137	2.224	2547778	1.316	1142960	0.761			
	2003	0.50	4306361	2.078	2549094	1.255	1143721	0.663			
	2003		4308439	2.949	2550349	1.968	1144384	1.062			
	2003	0.50		2.949		1.968		1.062			
8/10/		1.70		2.949		1.968		1.062	0.1171		
8/11/		0.10	4317285	2.639	2556254	1.625	1147569	0.874			
8/12/			4319924	2.192	2557879	1.329	1148443	0.623			
8/13/			4322116	1.952	2559208	1.098	1149066	0.464			
8/14/			4324068	1.849	2560306	1.087	1149530	0.443		OTADTIC	
8/15/2			4325917	1.755	2561393	0.952	1149973	0.382		START-UP	
8/16/2	2003			1.755		0.952		0.382			

					TABLE 3	-2				
	<u>.</u>			East	Norriton To	wnship			<u> </u>	
				Pump	Station Flo	ws (mgd)				
				505 S A						
	Del Cell ()	Norris C			erlake		Germantow		Sandra Lane	
Date	Rainfall (in.)	Totalizer	Daily Flow	Totalizer	Daily Flow	Totalizer	Daily Flow	Overflow	Totalizer	Daily F
8/18/2003		4331182	1.599	2564250	0.841	1151118	0.327			
8/19/2003		4332781	1.507	2565091	0.848	1151445			148419	(
8/20/2003		4334288	1.520	2565939		1151767	0.257		174489	
8/21/2003		4335808	1.515	2566700		1152024	0.283			
8/22/2003		4337323	1.503	2567541	0.764	1152307	0.297		246465	
8/23/2003			1.503		0.764		0.297			
8/24/2003		4044004	1.503	0500000	0.764	4450407	0.297		240070	
8/25/2003		4341831	1.414 1.406	2569833 2570591	0.758	1153197 1153448	0.251		348676 383537	
8/26/2003 8/27/2003	0.25	4343245	2.268	2570591	0.771	1153711	0.203		417279	
8/28/2003	0.23	4346919	1.601	2572151	0.703	1154004	0.243		451709	
8/29/2003		4348520	1.239	2572864	0.829	1154247	0.318		486419	
8/30/2003	0.50		1.239		0.829		0.318			
8/31/2003			1.239		0.829		0.318			
9/1/2003	0.40		1.239		0.829		0.318			
9/2/2003		4353477	1.948	2576181	1.280	1155518	0.577		633733	
9/3/2003		4355425	1.853	2577461	0.998	1156095	0.517		697681	(
9/4/2003		4357278	2.127	2578459	1.294	1156612	0.656		761029	
9/5/2003		4359405	1.651	2579753	0.930	1157268	0.401		832791	
9/6/2003			1.651 1.651		0.930		0.401			
9/7/2003 9/8/2003		4364358	1.651	2582543	0.930	1158472	0.401		963808	
9/8/2003	0.50	4365856	1.490	2583338	0.795	1158794	0.322		1001412	
9/10/2003	0.10	4367302	1.435	2584121	0.779	1159095	0.286		1041176	
9/11/2003	0.35	4368737	1.432	2584900	0.846	1159381	0.324		1078647	
9/12/2003		4370169	1.734	2585746	1.009	1159705	0.451		1122171	-
9/13/2003	0.70		1.734		1.009		0.451			
9/14/2003	0.40		1.734		1.009		0.451			
9/15/2003	2.20	4375370	3.861	2588773	2.814	1161059	1.619	0.1434		
9/16/2003		4379231	2.737	2591587		1162678			1521359	
9/17/2003		4381968	1.976	2593399		1163766			1650946	
9/18/2003	1.00	4383944	2.688	2594609	1.779 1.499	1164357 1165637	1.280		1716714 1867299	
9/19/2003		4386632	2.391	2596388	1.499	1 100037	0.684		100/299	
9/21/2003			2.391		1.499		0.684			
9/22/2003		4393806	1.972	2600886		1167688		<u> </u>	2099648	
9/23/2003	1.30	4395778	3.994	2602396	2.568	1168195	1.687	0.0356	1	I
9/24/2003		4399772	2.490	2604964	1.374	1169882	0.686		2361358	
9/25/2003		4402262	2.147	2606338	1.274	1170568	0.582		2446668	
9/26/2003		4404409	2.650	2607612	1.729	1171150	0.865		2509023	
9/27/2003	0.25		2.650		1.729		0.865			
9/28/2003	1.25		2.650		1.729	4 4	0.865			
9/29/2003		4412359	2.346	2612798	1.453	1173746	0.717		2807338	
9/30/2003		4414705	2.121	2614251	1.264	1174463	0.615		2887380	
10/1/2003		4416826	1.944	2615515 2616624	1.109	<u>1175078</u> 1175493	0.415		2947645 2995215	
10/2/2003		4418/70	1.791	2617669	1.045	1175934	0.441		3038734	
10/3/2003	0.10	-120007	1.791	2011003	1.011		0.405			
10/5/2003			1.791		1.011		0.405			
10/6/2003		4425979	1.698	2620702	0.878	1177149	0.362		3159995	
10/7/2003		4427677	1.604	2621580	0.852	1177511	0.329		3203670	
10/8/2003		4429281	1.541	2622432	0.844	1177840	0.323		3243707	
10/9/2003		4430822	1.602	2623276	0.845	1178163	0.320		3277812	
10/10/2003		4432424	1.531	2624121	0.836	1178483	0.312		3312525	
10/11/2003			1.531		0.836		0.312			
10/12/2003			1.531		0.836		0.312			
10/13/2003		4420540	1.531	2627465	0.836	1179730	0.312		3467419	
10/14/2003	1.40	4438548 4440896	2.348	2627465	1.545	1179730	0.806		3467419	
10/15/2003		4440896	1.593	2629010	1.076	1180536	0.739		3669765	

			-		TABLE 3		1		1	
				East	Norriton To	wnship				
				Pump \$	Station Flor	ws (mgd)				
	D. L. C. B. C. A	Norris C	the second se	Timbe	the second se	77-1-1	Germantow		Sandra Lane	
Date	Rainfall (in.)	Totalizer	Daily Flow	Totalizer	Daily Flow	Totalizer	Daily Flow	Overflow	Totalizer	Daily Fl
10/17/2003	0.30	4444997	1.986	2631535	1.190	1181795	0.567	·	3729721	0
10/18/2003			1.986		1.190		0.567			0
10/19/2003			1.986		1.190		0.567			0
10/20/2003		4450956	1.698	2635104	0.993	1183497	0.432		3915439	0
10/21/2003		4452654	1.650	2636097	0.894	1183929	0.389		3956997	0
10/22/2003		4454304	1.641	.2636991	1.001	1184318	0.377		3997214	0
10/23/2003		4455945 4457695	1.750 1.892	2637992 2638843	0.851	1184695 1185088	0.393		4033450 4073157	0
10/24/2003		4457095	1.892	2030043	1.201	1100000	0.571		4073137	0
10/26/2003	1.40		1.892		1.261		0.571	0.0502		0
10/27/2003		4463371	5.78x	264926926		##1186804	2.423			
10/28/2003		1469 02	4.960	646463	3 406	1189225	1,766	0.0592	474,8977	C. C.
10/28/2003	176	417-1062	57580	2649460	4 158	1,20991	2.02			0
10/3072003		447.9742	3,57,61	2654027	2,465	1193043			5,304,590	<u>:</u> 0
10/31/2003		4483318	2.655	2656492	1.512	1194147	0.716		5428982	0
11/1/2003			2.655		1.512		0.716			0
11/2/2003 11/3/2003		4491284	2.655 2.228	2661029	1.512 1.255	1196295	0.716 0.519		5656629	0.
11/4/2003		4491204	2.065	2662284	1.233	1196295	0.486		5708367	0
11/4/2003	THE REAL PROPERTY.	4495577	4 129	2663531		1197300	0.400	0-1066	and the second se	
14/6/2003		44997.00	4 0 50	2566603		1498894	1.653		5971695	
11/1/2003		4504330	1 1463	2669440	2,060	1200547	0.0.6		6161.60	A DOWN OF THE OWNER OF
1/8/2008			3,115		2,060		0.986			0
1/9/2008-			3.115		2,060		0.936.		12 4 12 5	0.2
11/10/2003		4513680	2.470	2675590	1.547	1203356	0.651		6475608	0
11/11/2003			2.470		1.547		0.651			0
11/12/2003		4518620	2.943	2678683	1.744	1204658	0.836		6611148	0
11/13/2003		4521563	2.501	2680427	1.522	1205494	0.705		6706934	0
11/14/2003		4524064	2.200	2681949	1.289 1.289	1206199	0.534		6786492	0
11/15/2003 11/16/2003			2.200		1.289		0.534			0
11/17/2003		4530663	2.024	2685816	1.143	1207802	0.473		6951968	0
11/18/2003		4532687	1.893	2686959	1.098	1208275			7000523	0
11/19/2003		4534580	4 627	2688057	3349	1208700	1.630	A REAL PROPERTY.	- 7044205	
41/20/2008	1	45819207	1.520	2691-06	S REAL	4 10336			130219	X
11/21/2003		4543527	2.818	2694247	1.739	1211936			7518852	0
11/22/2003			2.818		1.739		0.806			0
11/23/2003		455455	2.818	0000 100	1.739	101/075	0.806		7706775	0
11/24/2003		4551981	2.524	2699463	1.533	1214353 1215023	0.670		7780778	0
11/25/2003 11/26/2003		4554505 4556866	2.361 2.902	2700996 2702402	1.406 1.853	1215023	0.605		7912424	0
11/26/2003		400000	2.902	2102402	1.853	1213020	0.906		1312424	0
11/28/2003			2.902		1.853		0.906	0.0386		0
11/29/2003			2.902		1.853		0.906	0.0064		0
11/30/2003			2.902		1.853		0.906			0
12/1/2003		4571378	2.436	2711669	1.460	1220156	0.646		8445406	* <u> </u>
12/2/2003		4573814	2.267	2713129	1.342	1220802	0.576		8512246	
12/3/2003		4576081	2.099	2714471	1.174	1221378	0.471		8569898	1
12/4/2003	0.50	4578180	2.306	2715645	1.229	1221849	0.513		8615654	0
12/5/2003	0.50	4580486	2.137	2716874	1.241	1222362	0.501		8665202	0
12/6/2003 12/7/2003	0.30		2.137		1.241		0.501			0
12/7/2003		4586897	1.696	2720596	1.241	1223865	0.383		8822262	
12/9/2003		4588593	1.922	2721607	1.262	1224248	0.468		8865956	144
12/10/2003	120	4590500	1.26	27/22869	2. 205	- 2247 10	1,55	0.04	And the second s	Ū
12/11/2003	0.30	4594773	5.583	2725923	3.675	1226261	2.021	0.2936	the second se	C
12/12/2003		4600356	3.889	2729598	2.551	1228282	1.267		9471340	0
12/13/2003			3.889		2.551		1.267	0.057	Dimeter of the second	0
12/14/2003	4 20									

					TABLE 3					
				East	Norriton To	wnship				
		1		Pump	Station Flor	ws (mgd)				
		Norris C	ity Are	Timt	erlake		Germantov		Sandra Lane	
Date	Rainfall (in.)	and the second data was not as a se	Daily Flow	Totalizer	Daily Flow	Totalizer	Daily Flow	Overflow	Totalizer	Daily Flow
Date	Rainai (m.)	TUtalizer	Daily Flow	IVIAIIZEI	Daily Flow	TUtalizei	Daily Flow	Overnow	TOLANZEI	Daily Pion
12/16/2003		4616074	3.294	2739892	2.215	1233482	0.929		10048775	
12/17/2003	0.90	4619368	5.469	2742107	3.772	1234411	2.109	0.1115	the second se	1-10.52
12/18/2003		4624837	3.827	2745879		1236520	1.048		10462866	
12/19/2003		4628664	2.931	2748064	1.812	1237568	0.769		10578829	0.0
12/20/2003			2.931		1.812		0.769			0.0
12/21/2003			2.931		1.812		0.769			0.0
12/22/2003	F	4637457	2.514	2753500		1239875	0.547	-	10820148	0.0
12/23/2003	STAND GROWING STAND	4639971	2.610	2754888		1240422	0.767	The line ' will be a sub-	10875687	0.0
12/24/2003	1 100	4642581	0 404	2736348		× 1(24411/3);			1095959580	0.1
12/25/2003			3.434		2.219		0.997			0.1
12/26/2003 12/27/2003			3.434		2.219 2.219		0.997			0.1
12/28/2003			3.434		2.219		0.997			0.1
12/29/2003		4659751	2.482	2767412	1.450	1246173	0.997		11544197	0.1
12/30/2003	0.05	4662233	2.402	2768862	1.386	1246741	0.565		11598185	1 - 00
12/31/2003	0.00	4664577	2.344	2770248	1.386	1247306	0.565		11654742	0.0
Total	56.45					1211000	0.000		1.001712	0.0
Annual Avg.			2.360		1.431		0.657			0.0
		o Sawmill PS	0.060							
		annual ADF	2,420							
						1				
1/1/2004			2.181		1.208		0.445			0.0
1/2/2004		4668939	2.157	2772663	1.248	1248195	0.483		1744436	0.0
1/3/2004			2.157		1.248		0.483			0.0
1/4/2004			2.157		1.248		0.483			0.0
1/5/2004	0.60	4675411	2.991	2776406	1.964	1249643	0.980		1894456	0.1
1/6/2004		4678402	2.436	2778370	1.511	1250623	0.724		2015092	0.0
1/7/2004		4680838	2.197	2779881	1.226	1251347	0.516		2094425	0.0
1/8/2004		4683035	2.115	2781107	1.226	1251863	0.520		2157201	0.0
1/9/2004		4685150	2.016	2782333	1.150	1252383	0.457		2210527	0.0
1/10/2004			2.016 2.016		1.150 1.150		0.457			0.0
1/11/2004		4691199	1.904	2785782	1.024	1253755	0.457 0.394		2350891	0.0
1/12/2004		4693103	1.804	2786806	1.024	1253755	0.362		2392526	0.0
1/14/2004		4694907	2.054	2787817	0.995	1254511	0.453		2433892	0.0
1/15/2004	0.20	4696961	1.513	2788812	0.918	1254964	0.304		2478252	0.04
1/16/2004		4698474	1.913	2789730	1.085	1255268	0.434		2518357	0.0
1/17/2004			1.913		1.085		0.434			0.0
1/18/2004	0.60		1.913		1.085		0.434			0.04
1/19/2004			1.913		1.085		0.434			0.04
1/20/2004		4706127	1.677	2794071	0.983	1257003	0.361		2705161	0.0
1/21/2004		4707804	1.715	2795054	0.883	1257364	0.331		2744623	0.0
1/22/2004		4709519	1.661	2795937	0.880	1257695	0.317		2779028	0.0
1/23/2004		4711180	1.738	2796817	0.924	1258012	0.341		2813467	0.0
1/24/2004			1.738		0.924		0.641			0.0
1/25/2004			1.738	0	0.924		0.341			0.0
1/26/2004	0.20	4716395	1.203	2799589	0.680	1259036	0.259		2928851	0.0
1/27/2004	0.10	4717598	1.737	2800269	0.908	1259295	0.325		2959999	0.0
1/28/2004	0.40	4719335 4720638	1.303	2801177	0.777	1259620	0.258		2999164	0.0
1/29/2004		4720638	1.531	2801954 2802720	0.766	1259878 1260174	0.296		3030120 3062424	0.0
1/30/2004		7122109	1.552	2002120	0.817	1200174	0.298		3002424	0.0
2/1/2004			1.552		0.817		0.298			0.0
2/2/2004		4726825	1.478	2805171	0.677	1261068	0.300		3172055	0.0
2/3/2004	0.60	4728303	2.712	2805848	1.894	1261368	0.940		3209325	0.0
2/4/2004		4731015	2.418	2807742	1.484	1262308	0.804		3313300	0.1
2/5/2004		4733433	1.907	2809226	1.132	1263112	0.465		3413043	0.0
2/6/2004	1.80	4735340	4.046	2810358	2.664	1263577	1.440	YES ?? Mgd	3470350	0.1
2/7/2004			4.046		2.664		1.440			0.1
2/8/2004			4.046		2.664		1.440			0.1

					TABLE 3	-2-				
				East	Norriton To	wnship	<u> </u>			
		<u> </u>		Pump	Station Flo	ws (mad)	·			L
				1	1		· · · · ·			[
		Norris C	ity Ave.	Timbo	erlake		Germantow	/n	Sandra Lan	8
Date	Rainfall (in.)	Totalizer	Daily Flow	Totalizer	Daily Flow	Totalizer	Daily Flow	Overflow	Totalizer	Daily F
2/9/2004		4747479		2818351	1.403	1267897	0.664		4042232	- (
2/10/2004		4749853		2819754		1268561	0.860		4116153	
2/11/2004		4752467	2.193	2821435		1269421	0.592		4206118	
2/12/2004		4754660		2822698		1270013			4269071	
2/13/2004		4756651	1.927	2823809		1270477	0.471		4316184	
2/14/2004			1.927		1.109		0.471			
2/15/2004			1.927		1.109		0.471			
2/16/2004		4764260	1.927 1.706	0000046	1.109	4070060	0.471		4504020	
2/17/2004 2/18/2004		4764358 4766064	1.691	2828246 2829163	0.917	1272360 1272754			4504929 4545070	
2/19/2004		4767755	1.719	2830101	0.938	1272/54	0.343		4545070	
2/20/2004		4769474	1.785	2831084	1.020	1273504	0.407		4620345	
2/21/2004		4/034/4	1.785	2031004	1.020	12/ 3304	0.428		4020040	
2/22/2004			1.785		1.020		0.428			
2/23/2004		4774828	1.662	2834143	0.876	1274789			4743929	
2/24/2004		4776490	1.714	2835019	0.871	1275234	0.342		4776676	
2/25/2004	0.10	4778204	1.651	2835890	1.030	1275576			4817359	
2/26/2004		4779855	1.594	2836920	0.868	1275947	0.345		4852610	
2/27/2004		4781449	1.638	2837788	0.898	1276292	0.392		4888852	
2/28/2004			1.638		0.898		0.392			
2/29/2004			1.638		0.898		0.392			
3/1/2004		4786364	1.590	2840482	0.887	1277467	0.333		5003381	
3/2/2004		4787954	1.594	2841369	0.894	1277800	0.377		5041013	
3/3/2004	0.10	4789548	1.620	2842263	0.920	1278177	0.432		5078545	
3/4/2004		4791168	1.683	2843183	0.942	1278609	0.398		5119054	
3/5/2004		4792851	2.302	2844125	1.489	1279007	0.752		5156761	
3/6/2004	0.40		2.302		1.489		0.752			
3/7/2004		470 0757	2.302		1.489		0.752			
3/8/2004	0.40	4799757	2.427	2848593	1.592	1281264	0.798		5408095	
3/9/2004		4802184	2.191	2850185	1.445	1282062	0.744		5502409	
3/10/2004		4804375	2.047	2851630	1.210	1282806	0.562		5587845	
3/11/2004		4806422	1.955	2852840	1.159	1283368	0.557		5651878	
3/12/2004 3/13/2004		4808377	1.846	2853999	1.070 1.070	1283925	0.472		5712405	
			1.846		1.070		0.472			
3/14/2004 3/15/2004		4813916	1.723	2857210	0.923	1285340	0.472		5858699	
3/15/2004	0.70	4815639	2.454	2858133	1.651	1285755	0.415		5897844	
3/17/2004		4818093	2.302	2859784	1.433	1286485	0.730		5974724	
3/18/2004		4820395	3.863	2861217	2.743	1287192	1.418		6053461	
3/19/2004	0.30	4824258	3.689	2863960	2.539	1288610	1.365		6257321	
3/20/2004			3.689		2.539		1.365			
3/21/2004			3.689		2.539		1.365			
3/22/2004		4835326	2.443	2871577	1.233	1292705	0.603		6769187	<u> </u>
3/23/2004		4837769	2.327	2872810	1.342	1293308	0.663		6846586	
3/24/2004		4840096	2.188	2874152	1.295	1293971	0.554		6923215	
3/25/2004		4842284	2.015	2875447	1.121	1294525	0.492	·	6967469	
3/26/2004		4844299	2.075	2876568	1.185	1295017	0.532		7013789	
3/27/2004	0.10		2.075		1.185		0.532			
3/28/2004			2.075		1.185		0.532			
3/29/2004		4850525	1.839	2880123	1.031	1296613	0.403		7167709	
3/30/2004	0.90	4852364	2.750	2881154	1.987	1297016	0.917		7207513	
3/31/2004		4855114	3.053	2883141	1.822	1297933	0.845		7308398	
4/1/2004	0.15	4858167	2.786	2884963	1.726	1298778	0.840		7425275	
4/2/2004	0.20	4860953	3.847	2886689	2.618	1299618	1.375		7531258	
4/3/2004			3.847		2.618		1.375			
4/4/2004	0.80	4070100	3.847	0004744	2.618	4000	1.375		-	
4/5/2004		4872493	3.228	2894544	2.092	1303744	1.055		8070706	
4/6/2004		4875721	2.723	2896636	1.647	1304799	0.795		8202652	
4/7/2004	0.10	4878444 4880938	2.494	2898283 2899752	1.469	1305594 1306139	0.545		8287035 8352939	

	T		r	· · · · · ·	TABLE 3					
			<u> </u>	East	Norriton To	wnship			<u> </u>	L
	1		·					<u>~</u>	r	
				Pump	Station Flo	ws (mgd)			<u> </u>	
		Norris C	ity Ave.	Timbe	erlake		Germantov	/n	Sandra Land	e
Date	Rainfall (in.)	Totalizer	Daily Flow	Totalizer	Daily Flow	Totalizer	Daily Flow	Overflow	Totalizer	Daily Flo
4/9/2004			2.254		1.298	·	0.551		· · · · · ·	0.
4/10/2004			2.254		1.298		0.551			0.
4/11/2004		4000050	2.254		1.298	4000040	0.551		0575450	0.
4/12/2004		4889953 4893604	3.651 5.483	2904942 2907680		1308343 1309717	1.374 2.367	YES ?? Mgd	8575150 8744202	
4/13/2004		4899087	6.082	2907080		1312084	2.060	YES ?? Mgd	9075826	
4/15/2004		4905169		2915482		1314144	1.582	TLO SE IVIGU	9388840	
4/16/2004		4910117	3.317	2919009		1315726	0.824		9574420	0
4/17/2004			3.317		1.932	1010120	0.824		007 1120	0
4/18/2004			3.317		1.932		0.824		·	- 0
4/19/2004		4920068	2.342	2924805		1318199	0.644		9837764	
4/20/2004		4922410		2926308		1318843			9896672	
4/21/2004		4924802	2.293	2927716		1319345			9944334	0
4/22/2004		4927095	2.180	2928932	1.220	1319825	0.399		9989816	0
4/23/2004	4 0.60	4929275	2.294	2930152	1.330	1320224	0.527		10026118	0
4/24/2004	1		2.294		1.330		0.527			0
4/25/2004	4 0.40		2.294		1.330		0.527			0
4/26/2004		4936158	4.117	2934142		1321806	1.450		10177320	
4/27/2004		4940275	3.252	2937118		1323256			10362798	
4/28/2004		4943527	2.650	2938948		1324116			10481512	
4/29/2004		4946177	2.421	2940462		1324761	0.551		10557763	
4/30/2004		4948598	2.280	2941821	1.296	1325312	0.498		10615909	
5/1/2004			2.280		1.296		0.498		ļ	0
5/2/2004			2.280		1.296		0.498			0
5/3/2004		4955437	3.364	2945709		1326807	1.016		10769922	
5/4/2004		4958801	2.229	2947702		1327823			10867459	
5/5/2004		4961030	2.464	2949268 2950739		1328540			10949202	
5/6/2004 5/7/2004		4963494 4965765	2.082	2950739	<u>1.248</u> 1.182	1329223 1329756	0.533		110772021	
5/8/2004		4905/05	2.082	2951907	1.182	1329730	0.473		11072021	0
5/9/2004			2.082		1.182		0.473			
5/10/2004		4972012	1.978	2955534	1.082	1331176	0.412		11213324	
5/11/2004		4973990	1.869	2956616	1.058	1331588	0.381		11252816	
5/12/2004		4975859	1.819	2957674		1331969			11290777	
5/13/2004		4977678	1.821	2958611		1332334	0.361		11330272	
5/14/2004		4979499	1.839	2959557	1.009	1332695	0.394		11369774	0
5/15/2004			1.839		1.009		0.940			0
5/16/2004			1.839		1.009		0.394			0
5/17/2004		4985015	1.713	2962584	0.890	1333878	0.338		11493508	
5/18/2004	0.20	4986728	1.788	2963474		1334216			11534770	
5/19/2004		4988516	1.946	2964478	1.091	1334599	0.488		11574622	
5/20/2004		4990462	1.758	2965569	0.981	1335087	0.384		11620756	
5/21/2004		4992220	1.732	2966550	0.922	1335471	0.368		11659193	
5/22/2004			1.732		0.922		0.368			0
5/23/2004		1007110	1.732	0000015	0.922	40000	0.368		1170101	0
5/24/2004		4997416	1.616	2969315	0.854	1336575	0.328		11781613	
5/25/2004		4999032	1.645	2970169	0.856	1336903	0.335	VEC 22 Mart	11817446	
5/26/2004		5000677	1.682	2971025	0.907	1337238	0.372	YES ?? Mgd	11856096	
5/27/2004 5/28/2004		5002359	1.655	2971932	0.830	1337610 1337956	0.346		11892378 11925992	
5/28/2004 5/29/2004		0004014	1.639	2312102	0.895	133/900	0.365		11920992	
5/30/2004			1.639		0.895		0.365			
5/31/2004	0.40		1.639		0.895		0.365			0
6/1/2004	0.40	5010569	1.662	2976342	0.874	1339414	0.354		12086033	
6/2/2004	0.00	5012231	1.587	2977216	0.940	1339768	0.367		12125214	
6/3/2004		5013818	1.546	2978156	0.725	1340135	0.299		12161739	
6/4/2004		5015364	1.581	2978881	0.876	1340434	0.352	YES ?? Mgd	12197561	
6/5/2004	0.10		1.581		0.876		0.352			0
6/6/2004			1.581		0.876		0.352			0
6/7/2004	0.30	5020108	1.539	2981510	0.843	1341491	0.332	YES ?? Mgd	12307471	0

 \cap

					TABLE 3	-2				
				East	Norriton To	ownship				l
				Pump \$	Station Flo	ws (mgd)				
		Norris C	the Atro	Timb			Carmontan	l	Sandra Lan	<u> </u>
Date	Rainfall (in.)	Totalizer	Daily Flow	Timbe Totalizer	Daily Flow	Totalizer	Germantov Daily Flow	Overflow	Totalizer	e Daily Fl
Date	r van den (m.)	101011201	Daily 10W	TOGINZER	Daily Flow	I Utdil2.GI	Daily 1101	Overnow	TOtelizor	Daily 11
6/8/2004		5021647	1.495	2982353	0.836	1341823	0.323		12347072	0
6/9/2004		5023142	1.515	2983189	0.776	1342146	0.301		12383234	0
6/10/2004		5024657	1.446	2983965		1342447	0.283		12418954	0
6/11/2004		5026103	1.506	2984706		1342730	0.332		12451469	Ō
6/12/2004			1.506 1.506		0.816		0.332			0
6/14/2004		5030622	1.488	2987154	0.801	1343725	0.302		12570838	- 0
6/15/2004		5032110	1.475	2987955		1344027	0.364		12609077	0
6/16/2004		5033585	1.464	2988778	0.678	1344391	0.276		12646854	0
6/17/2004		5035049	1.452	2989456	0.840	1344667	0.275		12681148	0
6/18/2004		5036501	1.434	2990296	0.762	1344942	0.296		12715644	0
6/19/2004			1.434		0.762		0.296		ļ	0
6/20/2004		5040804	1.434	2992583	0.762	1345831	0.296		12825064	0
6/22/2004		5040804	1.374	2992583	0.757	1345831	0.292		12825064	0
6/23/2004		5043693	1.432	2994196	0.030	1346495	0.303		12902100	0
6/24/2004		5045125	1.205	2994968	0.721	1346798	0.324		12939565	0
6/25/2004		5046330	1.507	2995689	0.769	1347122	0.316		12976269	0
6/26/2004			1.507		0.769		0.316			0
6/27/2004			1.507		0.769		0.316			0
6/28/2004		5050850	1.360	2997995	0.804	1348069	0.322		13081578	0
6/29/2004		5052210 5053629	1.419	2998799 2999683	0.884	1348391 1348802	0.411		13120756 13166467	0
7/1/2004		5054981	1.352	3000290	0.807	1340002	0.227		13197051	0
7/2/2004		5056368	1.332	3001050	0.743	1349337	0.304		13228107	0
7/3/2004			1.332		0.743		0.304			
7/4/2004			1.332		0.743		0.304	i		Ō
7/5/2004			1.332		0.743		0.304			0
7/6/2004		5061695	1.336	3004021	0.713	1350551	0.306		13366849	0
7/7/2004		5063031 5064437	1.406	3004734	0.797	1350857	0.328		13402357 13434424	0
7/9/2004		5065835	1.398 1.353	3005531 3006246	0.715	1351185 1351508	0.323		13434424	0
7/10/2004		3003033	1.353	3000240	0.722	1331300	0.318	· · · · · · · · · · · · · · · · · · ·	13470014	0
7/11/2004			1.353		0.722		0.318			0
7/12/2004		5069894	3.457	3008413	2.494	1352463	1.348	YES ?? Mgd	13580521	0
7/13/2004		5073351	1.866	3010907	1.097	1353811	0.578		13799353	0
7/14/2004		5075217	2.488	3012004	1.707	1354389	1.015		13876909	0
7/15/2004		5077705	2.043	3013711	2.244	1355404	0.601		14007066	
7/16/2004 7/17/2004		5079748	1.913 1.913	30159 <u>5</u> 5	0.704	1356005	0.570		14089894	0
7/18/2004	0.90		1.913		0.704		0.570			
7/19/2004	0.30	5085486	2.006	3018066	1.277	1357716	0.642		14279134	0
7/20/2004		5087492	1.690	3019343	0.883	1358358	0.451		14363323	0
7/21/2004		5089182	1.642	3020226	0.869	1358809	0.390		14408440	0
7/22/2004		5090824	1.544	3021095	0.861	1359199	0.363		14447764	0
7/23/2004	100	5092368	2.382	3021956	1.606	1359562	0.981		14489402	0
7/24/2004	1.20		2.382		1.606		0.981	YES ?? Mgd		0
7/25/2004		5099515	2.382	3026774	1.606	1362506	0.981		14765648	0
7/27/2004	2.00	5101279	3.982	30207780	2.602	1362967	1.303	YES ?? Mgd	14815153	
7/28/2004	1.10	5105261	4.473	3030382	3.487	1364270	2.161	YES ?? Mgd	15021497	0
7/29/2004		5109734	3.451	3033869	2.046	1366431	1.276		15326434	0
7/30/2004		5113185	3.723	3035915	2.575	1367707	1.334		15480508	0
7/31/2004	0.50		3.723		2.575		1.334			0
8/1/2004	3.00	FADACET	3.723	0040000	2.575	4074-00	1.334	YES ?? Mgd	400000	0
8/2/2004		5124354	3.440	3043639	2.232	1371709	1.087		16066957	0
8/3/2004		5127794	2.520	3045871	1.435	1372796	0.662		16200536	
8/4/2004 8/5/2004	0.10	5130314 5132668	2.354	3047306 3048664	1.358	1373458 1374074	0.616		16274902 16331929	0.
8/5/2004		5132008	1.869	3048664	1.173	1374074	0.492		16331929	

	<u> </u>				TABLE 3	-2.				
				Fast	Norriton To	wnshin				
						misinp	,		T	
I	,			Pump	Station Flo	ws (mad)		L	·	
		Norris C	ity Ave.	Timbo	erlake		Germantov	vn	Sandra Lan	e
Date	Rainfall (in.)	Totalizer	Daily Flow	Totalizer	Daily Flow	Totalizer	Daily Flow	Overflow	Totalizer	Daily
8/7/2004		_	1.869		1.027		0.407			
8/8/2004			1.869		1.027		0.407			
8/9/2004		5140402	1.767	3052919	0.924	1375788	0.380		16497898	
8/10/2004		5142169	1.649	3053843		1376168	0.313		16539997	
8/11/2004	0.10	5143818	1.680	3054742	0.897	1376481	0.462		16575943	
8/12/2004 8/13/2004	0.20	5145498 5147165	1.667	3055639	0.863	1376943	0.351		16612225	
8/13/2004	0.20	5147105	1.648	3056502	0.906	1377294	0.407		16648728	
8/15/2004	0.10		1.648		0.906		0.407			
8/16/2004		5152108	1.643	3059220	0.908	1378514	0.407		16763402	
8/17/2004		5153751	1.564	3060118	0.824	1378804	0.250		16799191	
8/18/2004		5155315	1.470	3060942	0.729	1379160	0.330		16836293	
8/19/2004		5156785	1.515	3061671	0.762	1379459	0.295		16869313	
8/20/2004	-	5158300	1.619	3062433	0.898	1379754	0.368		16902587	
8/21/2004	0.60		1.619		0.898		0.368			
8/22/2004			1.619		0.898		0.368			
8/23/2004		5163158	1.550	3065128	0.701	1380858	0.359		17019331	
8/24/2004		5164708	1.809	3065829	0.981	1381217	0.357		17058800	
8/25/2004		5166517	1.089	3066810	0.658	1381574	0.248		17098918	
8/26/2004		5167606	1.406	3067468	0.807	1381822	0.269		17125051	
8/27/2004		5169012	1.453	3068275		1382091	0.303	·	17155280	
8/28/2004			1.453		0.751		0.303		ļ	
8/29/2004		F 4 700 70	1.453	0.000000	0.751	4000004	0.303			
8/30/2004	1.20	5173372	1.838	3070527	2.166	1383001	0.522		17265501	
8/31/2004 9/1/2004		5175210 5176871	<u> </u>	3072693 3072693		1383523 1384036	0.513		17319572 17376078	
9/2/2004		5178404	1.535	3073444	0.751	1384036	0.316		173/60/8	
9/3/2004		5179840	1.430	3074237	0.793	1384675	0.320	ļ	17448076	
9/4/2004		3113040	1.420	0074207	0.767	1004010	0.320		17440070	
9/5/2004			1.420		0.767		0.320		-	
9/6/2004			1.420		0.767		0.320			
9/7/2004		5185521	1.386	3077305	0.750	1385955	0.323		17594914	
9/8/2004	0.30	5186907	1.562	3078055	0.871	1386278	0.361		17631194	
9/9/2004	0.05	5188469	1.482	3078926	0.810	1386639	0.344		17672354	
9/10/2004		5189951	1.429	3079736	0.765	1386983	0.371		17706117	
9/11/2004			1.429		0.765		0.371			
9/12/2004			1.429		0.765		0.371			
9/13/2004		5194238	1.386	3082031	0.764	1388097	0.296		17818360	
9/14/2004		5195624	1.353	3082795	0.730	1388393	0.309		17854475	
9/15/2004		5196977	1.365	3083525	0.727	1388702	0.290		17897847	
9/16/2004		5198342	1.357	3084252	0.717	1388992 1389293	0.301		17928036	
9/17/2004 9/18/2004	3.20	5199699	2.651 2.651	3084969	1.778	1309583	0.967		17963865	
9/19/2004			2.651		1.778		0.967	·		
9/20/2004		5207653	1.761	3090302	1.019	1392195	0.507	L	18392396	
9/21/2004		5209414	1.662	3091321	0.967	1392707	0.460		18443014	
9/22/2004		5211076	1.569	3092288	0.880	1393167	0.400		18488666	
9/23/2004		5212645	1.535	3093168	0.854	1393568	0.371		18530264	
9/24/2004		5214180	1.499	3094022	0.821	1393939	0.358		18569818	
9/25/2004			1.499		0.821		0.358			<u> </u>
9/26/2004			1.499		0.821		0.358			
9/27/2004	0.10	5218678	1.452	3096485	0.793	1395013	0.332		18683324	
9/28/2004	6.40	5220130	5.187	3097278	3.664	1395345	1.792	YES ?? Mgd	18718204	
9/29/2004		5225317	4.883	3100942	3,279	1397137	1.770		19117212	
9/30/2004	0.20	5230200	3.720	3104221	1.820	1398907	0.932		19358392	
10/1/2004		5234305	3.591	3106041	1.356	1399839	0.684		19459432	
10/2/2004			3.591		1.356		0.684			
10/3/2004			3.591		1.356		0.684			
10/4/2004		5245078	1.986	3110109	1.099	1401890	0.428		19648864	

					TABLE 3	-2		<u> </u>	- <u> </u>	
			L	East I	Norriton To	wnship		L		
	1						·			
				Pump \$	Station Flo	ws (mad)		1		
									1	
		Norris C	ity Ave,	Timbe	erlake		Germantov	vn	Sandra Lan	3
Date	Rainfall (in.)	Totalizer	Daily Flow	Totalizer	Daily Flow	Totalizer	Daily Flow	Overflow	Totalizer	Daily I
10/6/200		5248935	1.809	3112220	0.952	1402759	0.382		19731424	
10/7/200		5250744	1.694	3113172	0.842	1403141	0.337		19772068	
10/8/200		5252438	1.691	3114014	0.968	1403478			19809806	
10/9/200			1.691		0.968		0.374		<u> </u>	
10/10/200			1.691		0.968		0.374			
10/11/200		5259203	1.691 1.542	3117887	0.968	1404973			19975674	
10/13/200		5260745	1.613	3118539	0.052	1404973	0.201	 	20011919	
10/14/200		5262358	2.063	3119535	1.137	1405637	0.405		20046698	
10/15/200		5264421	1.763	3120672	0.998	1406133	0.400		20098832	
10/16/200			1.763	0.140.01.04	0.998	1.00100	0,400			
10/17/200			1.763		0.998		0.400			
10/18/200)4	5269711	1.791	3123666	1.078	1407333	0.565		20230662	
10/19/200		5271502	2.216	3124744	1.389	1407898	0.703		20275746	
10/20/200		5273718	1.883	3126133	1.023	1408601	0.469		20347542	
10/21/200		5275601	1.778	3127156	1.018	1409070	0.454		20398724	
10/22/200		5277379	1.720	3128174	0.954	1409524	0.414		20443343	
10/23/200			1.720		0.954		0.414		<u> </u>	
10/24/200	4	5282539	1.720 1.605	3131036	0.954	1410765	0.414		20571047	
10/25/200		5284144	1.557	3131924	0.877	1410765	0.366		205/104/	
10/27/200		5285701	1.537	3132801	0.847	1411487	0.341		20609893	
10/28/200		5287245	1.523	3133648	0.827	1411828	0.332		20684095	
10/29/200	0.40	5288768	1.705	3134475	0.984	1412160	0.430		20719375	
10/30/200			1.705		0.984		0.430			
10/31/200			1.705		0.984		0.430			
11/1/200	4	5293882	1.595	3137426	0.879	1413450	0.362		20848127	
11/2/200		5295477	1.525	3138305	0.873	1413812	0.364		20884502	
11/3/200		5297002	1.514	3139178	0.823	1414176	0.330		20923040	
11/4/200		5298516	3.152	3140001	2.177	1414506	1.157		20959072	
11/5/200		5301668	2.089	3142178	1.253	1415663	0.683		21105687	
11/6/200			2.089		1.253		0.683		+	
11/7/2004		5307934	2.089 1.754	3145936	1.253 1.051	1417711	0.683		21332922	
11/9/2004		5309688	1.687	3146987	0.964	1418157	0.440	<u> </u>	21380030	
11/10/2004		5311375	1,646	3147951	0.900	1418589	0.372		21422479	
11/11/2004			1.646	0141001	0.900	1410000	0.372		21422470	
11/12/2004		5314667	3.218	3149751	2.171	1419332	1.234		21504366	
11/13/2004			3.218		2.171		1.234			
11/14/2004			3.218		2.171		1.234			
11/15/2004		5324320	2.143	3156265	1.204	1423033	0.638		21967927	
11/16/2004		5326463	1.958	3157469	1.192	1423671	0.582		22034862	
11/17/2004		5328421	1.886	3158661	1.053	1424253	0.445		22092243	
11/18/2004		5330307	1.819	3159714	1.007	1424698	0.460		22135998	
11/19/2004		5332126	1.906	3160721	1.105	1425158	0.499		22179319	
11/20/2004			1.906		<u>1.105</u> 1.105		0.499			
11/21/2004		5337845	1.906	3164036	1.105	1426656	0.499		22324422	
11/23/2004		5339645	1.782	3165046	1.010	1420000	0.460		22372730	
11/23/2004		5341427	2.917	3166060	1.944	1427568	1.005		22372730	
11/25/2004			2.917	010000	1.944	1721 000	1.005		22-111031	
11/26/2004			2.917		1.944		1.005	YES ?? Mgd		
11/27/2004			2.917		1.944		1.005		1	
11/28/2004			2.917		1.944		1.005			
11/29/2004		5356010	3.428	3175782	2.189	1432595	1.337		23133482	
11/30/2004		5359438	3.172	3177971	1.802	1433932	0.850		23268370	
12/1/2004		5362610	4.345	3179773	3.270	1434782	1.701	YES ?? Mgd	23361764	
12/2/2004		5366955	3.116	3183043	1.783	1436483	0.954		23602833	
12/3/2004	l - [5370071	2.539	3184826	1.497	1437437	0.685		23714196	

					TABLE 3	-2				
			·	Fast	Norriton To	wnship				
				Pump	Station Flo	ws (mgd)				
		Norris C	ity Avo	Timb	erlake		Germantow		Sandra Lan	
Date	Rainfall (in.)	Totalizer	Daily Flow	Totalizer	Daily Flow	Totalizer	Daily Flow	Overflow	Totalizer	Daily Flow
	T Contract (1111)	TO GALLOT	Daily Tron	10001201		100011201	Donly Thom	01011011	T OTCHIZZOI	Comp 1 lour
12/5/2004			2.539		1.497		0.685			0.06
12/6/2004		5377689	2.234	3189316		1439492	0.594		23916762	0.05
12/7/2004	0.75	5379923	3.575	3190671	2.499	1440086	1.306		23969999	0.16
12/8/2004		5383498	2.874	3193170	1.767	1441392	0.940		24132817	0.11
12/9/2004	0.80	5386372	4.067	3194937	2.906	1442332	1.564	YES ?? Mgd	24245665	0.19
12/10/2004	0.35	5390439	4.055	3197843	2.647	1443896	1.420	YES ?? Mgd	24440971	0.174
12/11/2004			4.055		2.647		1.420			0.174
12/12/2004			4.055		2.647		1.420			0.174
12/13/2004		5402605	2.691	3205784	1.631	1448155	0.731		24962206	0.074
12/14/2004		5405296	2.480	3207415	1.408	1448886	0.619		25035836	0.05
12/15/2004		5407776	2.265	3208823	1.299	1449505	0.531		25093585	0.05
12/16/2004		5410041	2.220	3210122	1.277	1450036	0.557		25144487	0.05
12/17/2004		5412261	2.123	3211399	1.202	1450593	0.494		25195251	0.040
12/18/2004			2.123		1.202		0.494			0.040
12/19/2004			2.123		1.202		0.494			0.040
12/20/2004		5418630	1.939	3215006	1.088	1452076	0.400		25332268	0.042
12/21/2004		5420569	1.870	3216094	1.033	1452476	0.431		25374349	0.04
12/22/2004		5422439	1.865	3217127	1.006	1452907	0.377		25414725	0.03
12/23/2004	0.90	5424304	2.780	3218133	1.788	1453284	0.935		25453059	0.10
12/24/2004			2.780		1.788		0.935			0.10
12/25/2004			2.780		1.788		0.935			0.10
12/26/2004	0.30		2.780		1.788		0.935			0.10
12/27/2004		5435422	1.908	3225286	1.155	1457025	0.548		25883125	0.05
12/28/2004		5437330	2.034	3226441	1.180	1457573	0.450		25935975	
12/29/2004		5439364	1.979	3227621	1.107	1458023	0.470		25981639	0.04
12/30/2004		5441343	1.900	3228728	1.100	1458493	0.400		26028921	0.04
12/31/2004			1.900	0220120	1.100		0.400			0.04
Total	64.85						0.400			0.04
Annual Avg.			2.126		1.255	_	0.580			0.06
Max. Daily 20		4/14/2004	6.082	4/13/2004	4.050	4/13/2004	2.367		9/28/2004	0.39
max. Daily 20		4/14/2004	0.002	4/13/2004	4.000	4/13/2004	2.30/		5/20/2004	0.39
Peak Factor			2.861		3.226		4.079			5.98
	Average	annual ADF	2.126							
	Gravity to	Sawmill PS	0.060							
	Total ENT	annual ADF	2.186							

East Norriton Township

Sanitary Sewer Needs for Act 537 Growth Areas

		T	1 11 1 1 1 1 1 1 1 1 1		T (1)	
7		Undeveloped	Undeveloped	Public Sewered	Total	O muth A ma
Zoning	Avg. EDU/	Growth Area Gross Acres*	Growth Area Potential EDU**	Growth Area	Growth Area Total EDU**	Growth Area Potential GPD***
District	Gross Acre	Gross Acres	Potential EDU	Planned EDU	TOTALEDO	Polenial GPD
Commenter	n Pump Static					
Germantow	n rump state	n Alea:				
AR	3.0	181	543	17	560	154,000
ARC	2.5	1	343		3	825
BP	11.0	5	60	-	60	16,500
BR	2.5	5	0	- 25	35	9,625
	7.0	-	164	35 10	174	47,850
c		23				
	2.5	24	59	5	64	17,600
IN	5.0	8	39	5	44	12,100
LI	1.5	5	8	10	18	4,950
RO	2.0	3	6	-	6	1,650
RP	3.5	4	14	-	14	3,850
<u>RR</u>	8.5		0	56	56	15,400
	SUB TOTAL		896	138	1,034	284,350
Theshouldes	Dumm Chatlan	A				
Timpertake	Pump Station	Area:				
AR	3.0	28	84	1	85	23,375
ARC	2.5	20	19	28	47	12,925
BP	11.0	2	18	28	41	11,275
BR	2.5	0.4	1	25	1	275
		0.4	0	- 8	8	
BR1	3.5	- 4	11		21	2,200 5,775
1	2.5		133	<u>10</u> 70	203	
	SUB TOTAL		133	/0	203	55,825
Norris City	Pump Station	Aroa				
NOTTIS CILY	Fump Station	Muedi				,
AR	3.0	23.7	71	_	71	19,525
BP	11.0	2.5	27	_	27	7,425
BR	11.0	3.5	39	2	41	11,275
C	7.0	4.7	33	6	39	10,725
C1	8.0	0.6	5	-	5	1,375
EC	4.0	0.0	ŏ	28	28	7,700
HR	16.0		Ő	40	40	11,000
IN	5.0		0	16	16	4,400
RP	3.5	2.0	7	10	7	1,925
	8.5	2.0	0	50	50	13,750
RR	SUB TOTAL		182	142	324	89,100
	SUB TOTAL		102	142	J24	03,100
Sawmili Pun	np Station Are	a:				
oannar i an						
AR	3.0	10.7	32	-	32	8,800
BR	11.0	7.4	81	2	83	22,825
C	7.0	2.1	15	17	32	8,800
EC	4.0		0	4	4	1,100
EC2	5.0		ő	64	64	17,600
IN	5.0	1.2	6		6	1,650
MR	5.5	0.4	2	-	2	550
RO	2.0	3.0	6		6	1,650
RR	8.5		o	66	66	18,150
	SUB TOTAL		142	153	295	81,125
	SOD TOTAL				200	01,120
	TOTAL		1,353	503	1,856	
				1	,	
		TOTAL GROW	TH AREA POTENT	IAL AVERAGE AN	NUAL FLOW	510,400
		HISTORICAL A	VERAGE ANNUAL	FLOW (2002-200	4 TABLE 3-2)	2,116,700
			TOTAL PROJECT	ED AVERAGE AN	NUAL FLOW	2,627,100

NOTES:

Growth areas are indicated on the Official Act 537 Plan dated October 2005.
 Growth area potential EDU's based on respective zoning district's average EDU per gross acre.
 Growth Area Potential gpd based on 275 gpd / EDU.

TOTAL PROJECTED AVERAGE ANNUAL FLOW (ROUNDED mgd)

2.70

••••

)

1

Potential Growth of Land Connected to Public Sewer

11/7/05						Decision Arrow
Zoning	Block/Unit	Public Sanitary	Acres	EDU/Acre	Potential EDU	Drainage Area
AR	004D001	Connect -10 year	1.5	3	4.5	GERMANTOWN
AR	1046	Connect -10 year	2.3	3	6.9	GERMANTOWN
AR	1015	Connect -10 year	1.1	3	3.3	GERMANTOWN
AR	1048	Connect -10 year	2.3	3	7	GERMANTOWN
AR	004D007	Connect -10 year	0.6	3	1.8	GERMANTOWN
AR	1008	Connect -10 year	0.7	3	2.2	GERMANTOWN
AR	004D054	Connect -10 year	0.5	3	1.6	GERMANTOWN
AR	003M079	Connect -10 year	1.0	3	2.9	GERMANTOWN
AR	1007	Connect -10 year	1.1	3	3.4	GERMANTOWN
AR	004D012	Connect -10 year	1.1	3	3.3	GERMANTOWN
AR	004D022	Connect -10 year	1.3	3	3.9	GERMANTOWN
AR	004D048	Connect -10 year	0.8	3	2.5	GERMANTOWN
AR	004D019	Connect -10 year	0.4	3	1.3	GERMANTOWN
AR	4002	Connect -10 year	1.3	3	3.8	GERMANTOWN
AR	4078	Connect -10 year	3.0	3	9.1	SANDRA
AR	4003	Connect -10 year	1.5	3	4.5	GERMANTOWN
AR	4004	Connect -10 year	1.2	3	3.7	GERMANTOWN
AR	4086	Connect -10 year	1.5	3	4.3	SANDRA
AR	4005	Connect -10 year	1.2	3	3.5	GERMANTOWN
AR	4052	Connect -10 year	2.5	3	7.4	SANDRA
AR	4012	Connect -10 year	1.2	3	3.7	GERMANTOWN
AR	4006	Connect -10 year	1.2	3	3.7	GERMANTOWN
AR	4007	Connect -10 year	1.7	3	5	SANDRA
AR	4034	Connect -10 year	2.0	3	6.1	SANDRA
AR	4065	Connect -10 year	1.0	3	3	SANDRA
AR	4080	Connect -10 year	1.1	3	3.3	SANDRA
AR	4083	Connect -10 year	0.7	3	2.1	SANDRA
AR	4033	Connect -10 year	1.3	3	3.8	SANDRA
AR	4029	Connect -10 year	1.8	3 3	5.3 2.1	SANDRA
AR	4054	Connect -10 year	0.7		2.1 2.7	SANDRA SANDRA
AR	4061	Connect -10 year	0.9 0.8	3 3	2.4	SANDRA
AR	4085	Connect -10 year	0.8	3	2.4	SANDRA
AR	4028	Connect -10 year Connect -10 year	0.9	3	2.8	SANDRA
AR	4048 4027	Connect -10 year	0. 3 1.4	3	4.3	SANDRA
AR		Connect -10 year	5.8	3	17.3	SANDRA
AR	4026	Connect -10 year	0.6	3	1.7	SANDRA
AR AR	4076 003F002	Connect -10 year	1.6	3	4.7	GERMANTOWN
AR	4025	Connect -10 year	1.0	3	3	SANDRA
AR	4025	Connect -10 year	0.6	3	1.8	SANDRA
AR	4050	Connect -10 year	0.6	3	1.7	SANDRA
AR	4063	Connect -10 year	0.6	3	1.8	SANDRA
AR	4016	Connect -10 year	3.3	3	9.8	GERMANTOWN
AR	4067	Connect -10 year	0.6	3	1.7	SANDRA
AR	003E013	Connect -10 year	1.1	3	3.2	GERMANTOWN
AR	4068	Connect -10 year	0.6	3	1.7	SANDRA
AR	4017	Connect -10 year	1.7	3	5	GERMANTOWN
AR	4018	Connect -10 year	1.5	3	4.6	GERMANTOWN
AR	003E012	Connect -10 year	1.1	3	3.3	GERMANTOWN
AR	4070	Connect -10 year	0.7	3	2.2	SANDRA
AR	003E017	Connect -10 year	1.7	3	5	SANDRA
AR	4071	Connect -10 year	0.6	3	1.8	SANDRA
AR	003E005	Connect -10 year	0.3	3	1	SANDRA
AR	4072	Connect -10 year	0.4	3	1.1	SANDRA
AR	4044	Connect -10 year	1.0	3	2.9	SANDRA
AR	003E007	Connect -10 year	0.4	3	1.1	SANDRA
AR	4073	Connect -10 year	0.4	3	1.1	SANDRA

141.1400101

)

Potential Growth of Land Connected to Public Sewer

11/7/05 Zoning	Block/Unit	Public Sanitary	Acres	EDU/Acre	Potential EDU	Drainage Area
AR	4000	Connect -10 year	0.8	3	2.4	SANDRA
AR	4075	Connect -10 year	0.3	3	1	SANDRA
AR	4023	Connect -10 year	0.4	3	1.1	SANDRA
AR	4020	Connect -10 year	0.4	3	1.1	SANDRA
AR	4030	Connect -10 year	0.4	3	1.3	SANDRA
AR	003B002	Connect -10 year	0.4	3	2.7	GERMANTOWN
AR	003C012	Connect -10 year	1.6	3	4.7	GERMANTOWN
AR	003C005	Connect -10 year	0.5	3	1.4	GERMANTOWN
AR	003A007	Connect -10 year	0.5	3	2.8	SANDRA
AR	003A007	Connect -10 year	0.9	3	2.8	SANDRA
AR	003A009	Connect -10 year	0.9	3	2.6	SANDRA
AR	003A009	Connect -10 year	0.9	3	2.5	SANDRA
AR	003A010	Connect -10 year	1.0	3	2.9	SANDRA
AR	003A012	Connect ~10 year	0.4	3	1.3	SANDRA
AR	003A015	Connect -10 year	0.4 1.0	3	2.9	SANDRA
		Connect -10 year	0.5		2.9 1.6	
AR AR	003A014 003E015		2.2	3	6.7	SANDRA
		Connect -10 year		3		GERMANTOWN
AR	1000	Connect Ultimate	1.9	3	5.8	GERMANTOWN
AR	1044	Connect Ultimate	1.1	3	3.2	GERMANTOWN
AR	003C017	Connect Ultimate	3.5	3	10.5	GERMANTOWN
AR	26064	Connect Ultimate	0.2	3	1	GERMANTOWN
AR	26148	Connect Ultimate	1.1	3	3.4	GERMANTOWN
AR	1008	OLDS to Public	0.7	3	2.2	GERMANTOWN
AR	1011	OLDS to Public	2.5	3	7.5	GERMANTOWN
AR	1052	OLDS to Public	2.5	3	7.6	GERMANTOWN
AR	1021	OLDS to Public	1.1	3	3.4	GERMANTOWN
AR	1020	OLDS to Public	1.0	3	2.9	GERMANTOWN
AR	1019	OLDS to Public	1.1	3	3.4	GERMANTOWN
AR	1000	OLDS to Public	2.0	3	5.9	GERMANTOWN
AR	1018	OLDS to Public	1.1	3	3.3	GERMANTOWN
AR	1017	OLDS to Public	1.1	3	3.2	GERMANTOWN
AR	1054	OLDS to Public	3.1	3	9.2	GERMANTOWN
AR	1042	OLDS to Public	1.2	3	3.7	GERMANTOWN
AR	1051	OLDS to Public	3.0	3	8.9	GERMANTOWN
AR	1061	OLDS to Public	2.7	3	8	GERMANTOWN
AR	1053	OLDS to Public	2.4	3	7.2	GERMANTOWN
AR	1049	OLDS to Public	2.4	3	7.2	GERMANTOWN
AR	004D011	OLDS to Public	0.5	3	1.4	GERMANTOWN
AR	003M001	OLDS to Public	0.4	3	1.2	GERMANTOWN
AR	1060	OLDS to Public	1.0	3	2.9	GERMANTOWN
AR	004D013	OLDS to Public	1.1	3	3.3	GERMANTOWN
AR	004D014	OLDS to Public	1.7	3	5	GERMANTOWN
AR	004D015	OLDS to Public	1.7	3	5	GERMANTOWN
AR	004D016	OLDS to Public	1.1	3	3.2	GERMANTOWN
AR	004D048	OLDS to Public	0.8	3	2.5	GERMANTOWN
AR	004D049	OLDS to Public	0.8	3	2.5	GERMANTOWN
AR	004D017	OLDS to Public	0.4	3	1.3	GERMANTOWN
AR	004D018	OLDS to Public	0.4	3	1.2	GERMANTOWN
AR	004D056	OLDS to Public	0.4	3	1.3	GERMANTOWN
AR	004D057	OLDS to Public	0.4	3	1.2	GERMANTOWN
AR	4001	OLDS to Public	1.3	3	3.9	GERMANTOWN
AR	4011	OLDS to Public	1.9	3	5.8	GERMANTOWN
AR	4008	OLDS to Public	1.2	3	3.5	GERMANTOWN
	4077	OLDS to Public	1.2	3	3.5	GERMANTOWN
AR	4077		1 1 Aug.			
	4077	OLDS to Public	0.6		1.7	GERMANTOWN
AR AR AR				3 3		

W-/160/Ciamanatia-/0070

)

Potential Growth of Land Connected to Public Sewer

11/7/05						
Zoning	Block/Unit	Public Sanitary	Acres	EDU/Acre	Potential EDU	Drainage Area
AR	003F008	OLDS to Public	1.1	3	3.3	GERMANTOWN
AR	003F007	OLDS to Public	1.1	3	3.3	GERMANTOWN
AR	003F006	OLDS to Public	1.6	3	4.8	GERMANTOWN
AR	003F005	OLDS to Public	1.6	3	4.9	GERMANTOWN
AR	003F004	OLDS to Public	1.7	3	5.1	GERMANTOWN
AR	003F003	OLDS to Public	1.8	3	5.3	GERMANTOWN
AR	004H016	OLDS to Public	1.3	3	4	GERMANTOWN
AR	4095	OLDS to Public	1.4	3	4.3	GERMANTOWN
AR	4015	OLDS to Public	2.1	3	6.4	GERMANTOWN
AR	4019	OLDS to Public	0.5	3	1.5	SANDRA
AR	003E008	OLDS to Public	1.7	3	5.1	SANDRA
AR	003F001	OLDS to Public	0.3	3	1	GERMANTOWN
AR	4045	OLDS to Public	2.0	3	6.1	GERMANTOWN
		OLDS to Public	2.0 0.6			SANDRA
AR	003E006	OLDS to Public		3	1.8	
AR	4051		1.9	3	5.6	GERMANTOWN
AR	003E004	OLDS to Public	0.5	3	1.6	SANDRA
AR	4043	OLDS to Public	1.0	3	3	SANDRA
AR	003C005	OLDS to Public	0.3	3	1	GERMANTOWN
AR	003C004	OLDS to Public	0.4	3	1.2	GERMANTOWN
AR	3.00E+03	OLDS to Public	0.5	3	1.5	SANDRA
AR	4084	OLDS to Public	1.6	3	4.7	SANDRA
AR	003C002	OLDS to Public	1.4	3	4.2	GERMANTOWN
AR	003C008	OLDS to Public	1.0	3	3.1	GERMANTOWN
AR	003E002	OLDS to Public	0.6	3	1.7	SANDRA
AR	003C009	OLDS to Public	1.5	3	4.6	GERMANTOWN
AR	003C010	OLDS to Public	1.8	3	5.4	GERMANTOWN
AR	003C011	OLDS to Public	1.2	3	3.5	GERMANTOWN
AR	003C013	OLDS to Public	0.6	3	1.7	GERMANTOWN
AR	003C014	OLDS to Public	0.5	3	1.5	GERMANTOWN
AR	003A003	OLDS to Public	0.5	3	1.5	SANDRA
AR	003C003	OLDS to Public	1.1	3	3.4	GERMANTOWN
AR	003C004	OLDS to Public	1.5	3	4.5	GERMANTOWN
AR	003A011	OLDS to Public	1.4	3	4.1	SANDRA
AR	003B004	OLDS to Public	2.0	3	6	SANDRA
AR	003B006	OLDS to Public	0.9	3	2.8	SANDRA
				SUB TOTAL	542.7	
ARC	003G069	OLDS to Public	0.5	2.5	1.2	GERMANTOWN
ARC	003C018	OLDS to Public	0.5	2.5	1.3	GERMANTOWN
				SUB TOTAL	2.5	
00	000 4 000	Constant 40 years	2.0		00 F	CANDDA
BP	003A002	Connect -10 year	2.6	11	28.5	SANDRA
BP	002A015	OLDS to Public	2.9		31.5	GERMANTOWN
				SUB TOTAL	60	
С	4087	Connect -10 year	3.1	7	21.9	SANDRA
Ċ	002A006	Connect Ultimate	0.6	7	3.9	BURNSIDE
C	002A014	Connect Ultimate	0.7	7	5	BURNSIDE
č	4039	Connect Ultimate	0.254	7	1.8	SANDRA
c	4033	Connect Ultimate	1.48	7	10.4	SANDRA
č	4036	Connect Ultimate	1.333	7	9.3	SANDRA
C C	4030	Connect Ultimate	1.045	7	7.3	SANDRA
c	4042	Connect Ultimate	1.043	7	7.3	SANDRA
c	4088	Connect Ultimate	1.511	7	10.6	SANDRA
c	4035 4089	Connect Ultimate	0.519	7	3.6	SANDRA
C			0.519	7	3.0	
c	4040	Connect Ultimate	0.453	7	3.2 5.7	SANDRA BURNSIDE
C	002A005	OLDS to Public	0.8	1	0.7	DURINGIDE

)

11/7/05						
Zoning	Block/Unit	Public Sanitary	Acres	EDU/Acre	Potential EDU	Drainage Area
0	0004.040		1.0	7	40.0	RUDNOIDE
· C	002A013	OLDS to Public	1.6	7	10.9	BURNSIDE
С	4037	OLDS to Public	1.7	7	11.5	BURNSIDE
С	4038	OLDS to Public	0.5	7	3.3	BURNSIDE
C C	4040	OLDS to Public	0.5	7	3.2	BURNSIDE
С	002A008	OLDS to Public	2.1	7	14.7	BURNSIDE
C C	002A009	OLDS to Public	1.0	7	6.8	BURNSIDE
С	002A010	OLDS to Public	1.2	7	8.2	BURNSIDE
С	002A011	OLDS to Public	0.6	7	4.1	BURNSIDE
С	002A007	OLDS to Public	1.6	7	10.9	BURNSIDE
				SUB TOTAL	163.6	
1	002A023	Connect Ultimate	1.5	2.5	3.7	BURNSIDE
I	002A022	Connect Ultimate	1.4	2.5	3.6	BURNSIDE
1	002A034	Connect Ultimate	2.0	2.5	5	BURNSIDE
I	002A033	OLDS to Public	1.0	2.5	2.6	BURNSIDE
F	002A017	OLDS to Public	3.0	2.5	7.4	BURNSIDE
1	002A020	OLDS to Public	2.6	2.5	6.4	BURNSIDE
1	002A026	OLDS to Public	2.3	2.5	5.7	BURNSIDE
1	002A024	OLDS to Public	2.0	2.5	5.1	BURNSIDE
i	002A028	OLDS to Public	1.9	2.5	4.7	BURNSIDE
i i	002A029	OLDS to Public	1.9	2.5	4.8	BURNSIDE
	002A030	OLDS to Public	2.0	2.5	5	BURNSIDE
i I	002A031	OLDS to Public	2.1	2.5	5.4	BURNSIDE
	0021001			SUB TOTAL	59.4	Bornioide
				OUD TOTAL	55.4	
IN	003C015	Connect -10 year	1.9	5	9.4	GERMANTOWN
IN	002A003	Connect Ultimate	1.9	5	9.5	GERMANTOWN
IN	002A004	Connect Ultimate	1.0	5	5.1	GERMANTOWN
IN	1062	OLDS to Public	2.7	5	13.3	GERMANTOWN
IN	003B003	OLDS to Public	0.4	5	2	SANDRA
	0000000		0.1	SUB TOTAL	39.3	
LI	2057	Connect -10 year	2.2	1.5	3.3	BURNSIDE
LI	2056	Connect -10 year	2.8	1.5	4.2	BURNSIDE
				SUB TOTAL	7.5	
RO	003A006	Connect -10 year	2.0	2	4.1	SANDRA
RO	003A005	Connect -10 year	1.0	2	2.1	SANDRA
				SUB TOTAL	6.2	
	0005044	0	4.0	0.5	0.7	OFRIANTOWN
RP	003E011	Connect -10 year	1.9	3.5	6.5	GERMANTOWN
RP	003E010	Connect -10 year	1.6	3.5	5.8	GERMANTOWN
RP	003E001	Connect -10 year	0.6	3.5	2.1	SANDRA
				SUB TOTAL	14.4	

Potential Growth of Land Connected to Public Sewer

TOTAL GERMANTOWN

895.6

}

1

J

MLHENIO 1 10070

~ **

ntial Growth of La	nd Connected to	Public Sewer
ntial Growth of La	nd Connected to	Public Sewer

Zoning	Block/Unit	Public Sanitary	Acres	EDU/Acre	Potential EDU	Drainage Are
AR	004D025	Connect -10 year	0.451	3	1.4	WHITEHALL
AR	004D047	Connect -10 year	0.521	3	1.6	WHITEHALL
AR	004D023	Connect -10 year	0.48	3	1.4	WHITEHALL
AR	004D042	Connect -10 year	0.511	3	1.5	WHITEHALL
AR	004D040	Connect -10 year	0.484	3	1.5	WHITEHALI
AR	004D041	Connect -10 year	0.602	3	1.8	WHITEHALI
AR	004D046	Connect -10 year	0.69	3	2.1	WHITEHALI
AR	004D027	Connect -10 year	0.51	3	1.5	WHITEHALI
AR	004D028	Connect -10 year	0.876	3	2.6	WHITEHALI
AR	004D029	Connect -10 year	2.968	3	8.9	WHITEHAL
AR	6058	Connect -10 year	2.228	3	6.7	TIMBERLAK
AR	6004	Connect Ultimate	2.293	3	6.9	TIMBERLAK
AR	6082	Connect Ultimate	0.676	3	2.0	TIMBERLAK
AR	6049	Connect Ultimate	0.387	3	1.2	TIMBERLAK
AR	6036	Connect Ultimate	1.619	3	4.9	TIMBERLAK
AR	6035	Connect Ultimate	0.849	3	2.5	TIMBERLAK
AR	6016	Connect Ultimate	0.835	3	2.5	TIMBERLAK
AR	6073	Connect Ultimate	0.865	3	2.6	TIMBERLAK
AR	6071	Connect Ultimate	1.301	3	3.9	TIMBERLAK
AR	6017	Connect Ultimate	1.897	3	5.7	TIMBERLAK
AR	6018	Connect Ultimate	0.504	3	1.5	TIMBERLAK
AR	006G000	Connect Ultimate	0.442	3	1.3	TIMBERLAK
AR	6015	Connect Ultimate	0.621	3	1.9	TIMBERLAK
AR	6020	Connect Ultimate	0.771	3	2.3	TIMBERLAK
AR	6019	Connect Ultimate	0.585	3	1.8	TIMBERLAK
AR	6029	Connect Ultimate	0.966	3	2.9	TIMBERLAK
AR	6046	Connect Ultimate	0.834	3	2.5	TIMBERLAK
AR	004D045	OLDS to Public	0.663	3	2.0	WHITEHAL
AR	004D026	OLDS to Public	0.479	3	1.4	WHITEHAL
AR	004D037	OLDS to Public	1.034	3	3.1	TIMBERLAK
				SUBTOTAL	83.9	
ARC	004G039	Connect -10 year	0.548	2.5	1.4	TIMBERLAK
ARC	004D021	Connect -10 year	2.139	2.5	5.3	WHITEHAL
ARC	004D066	Connect -10 year	0.865	2.5	2.2	WHITEHAL
ARC	004D020	Connect -10 year	1.845	2.5	4.6	WHITEHAL
ARC	004D008	Connect -10 year	1.071	2.5	2.7	WHITEHAL
ARC	004D038	Connect -10 year	0.435	2.5	1.1	WHITEHAL
ARC	004G021	OLDS to Public	0.52	2.5	1.3	TIMBERLAK
				SUBTOTAL	18.6	
BP	6008	Connect -10 year	0.682	11	7.5	TIMBERLAK
BP	006D009	Connect -10 year	0.248	11	2.7	TIMBERLAK
BP	006D008	Connect -10 year	0.255	11	2.8	TIMBERLAK
BP	5012	Connect Ultimate	0.41		4.5	TIMBERLAK
				SUBTOTAL	17.5	
BR	6061	OLDS to Public	0.515	2.5	1.3	TIMBERLAK
ł	6068	Connect Ultimate	1.955	2.5	4.9	TIMBERLAK
1	004D003	OLDS to Public	2.505	2.5	6.3	WHITEHAL
				SUBTOTAL	11.2	

TOTAL TIMBERLAKE 132.5

)

Potential Growth of Land Connected to Public Sewer

Zoning	Block/Unit	Public Sanitary	Acres	EDU/Acre	Potential EDU	Drainage Are
AR	4000	Connect -10 year	0.087	3	1	NORRIS
AR	005A016	Connect -10 year	0.406	3	1.2	NORRIS
AR	26029	Connect -10 year	0.192	3	1	NORRIS
AR	26000	Connect -10 year	0.065	3	1	NORRIS
AR	005A000	Connect -10 year	0.504	3	1.5	NORRIS
AR	10039	Connect -10 year	0.399	3	1.2	NORRIS
AR	10011	Connect -10 year	0.193	3	1	NORRIS
AR	10036	Connect -10 year	0.217	3	1	NORRIS
AR	10000	Connect -10 year	0.21	3	1	NORRIS
AR	11021	Connect Ultimate	0.153	3	1	NORRIS
AR	13033	Connect Ultimate	0.206	3	1	NORRIS
AR	12022	Connect Ultimate	0.296	3	1	NORRIS
AR	12022	Connect Ultimate	0.075	3	1	NORRIS
AR	13032	Connect Ultimate	0.195	3	1	NORRIS
AR	25010	Connect Ultimate	0.133	3	1	NORRIS
AR	26064	Connect Ultimate	0.198	3	1	NORRIS
AR	25012	Connect Ultimate	0.374	3	1.1	NORRIS
AR	13037	Connect Ultimate	0.374		1	NORRIS
AR		Connect Ultimate	1.121	3	3.4	NORRIS
	26148			3		NORRIS
AR	25013	Connect Ultimate	0.252	3	1	
AR	13030	Connect Ultimate	0.613	3	1.8	NORRIS
AR	13002	Connect Ultimate	0.935	3	2.8	NORRIS
AR	25015	Connect Ultimate	0.24	3	1	NORRIS
AR	13020	Connect Ultimate	0.456	3	1.4	NORRIS
AR	26026	Connect Ultimate	0.331	3	1	NORRIS
AR	25023	Connect Ultimate	0.21	3	1	NORRIS
AR	26065	Connect Ultimate	0.176	3	1	NORRIS
AR	9049	Connect Ultimate	0.221	3	1	NORRIS
AR	005B035	Connect Ultimate	0.281	3	1	NORRIS
AR	9036	Connect Ultimate	0.166	3	1	NORRIS
AR	26043	Connect Ultimate	0.395	3	1.2	NORRIS
AR	9035	Connect Ultimate	0.242	3	1	NORRIS
AR	9039	Connect Ultimate	0.269	3	1	NORRIS
AR	9010	Connect Ultimate	0.291	3	1	NORRIS
AR	9060	Connect Ultimate	0.118	3	1	NORRIS
AR	10035	Connect Ultimate	0.279	3	1	NORRIS
AR	9004	Connect Ultimate	0.286	3	1	NORRIS
AR	10028	Connect Ultimate	0.429	3	1.3	NORRIS
AR	10026	Connect Ultimate	0.22	3	1	NORRIS
AR	12020	OLDS to Public	0.217	3	1	NORRIS
AR	003G069	OLDS to Public	0.4	3	1.2	NORRIS
AR	25011	OLDS to Public	0.29	3	1	NORRIS
AR	25014	OLDS to Public	0.25	3	1	NORRIS
AR	26019	OLDS to Public	0.16	3	1	NORRIS
AR	26023	OLDS to Public	0.991	3	3	NORRIS
AR	25022	OLDS to Public	0.233	3	1	NORRIS
AR	26025	OLDS to Public	0.588	3	1.8	NORRIS
AR	26024	OLDS to Public	0.165	3	1	NORRIS
AR	26035	OLDS to Public	0.556	3	1.7	NORRIS
AR	26033	OLDS to Public	0.346	3	1	NORRIS
AR	005B027	OLDS to Public	0.866	3	2.6	NORRIS
		OLDS to Public	0.69	3	2.0	NORRIS
AR	005D041				1.1	
AR	26142	OLDS to Public	0.383	3		NORRIS
AR	26010	OLDS to Public	0.358	3	1.1	NORRIS
AR	10034	OLDS to Public	0.275	3	1	NORRIS
AR	10027	OLDS to Public	0.264	3	1	NORRIS
AR	10012	OLDS to Public	0.153	3 SUBTOTAL	<u> </u>	NORRIS

)

Potential Growth of Land Connected to Public Sewer

1

)

Zoning	Block/Unit	Public Sanitary	Acres	EDU/Acre	Potential EDU	Drainage Ar
BP	006D007	Connect -10 year	0.238	11	2.6	NORRIS
BP	005B038	Connect Ultimate	2.218	11	24.4	NORRIS
					27	
BR	005A026	Connect -10 year	0.13	2.5	1	NORRIS
BR	9000	Connect -10 year	0.646	2.5	1.6	NORRIS
BR	10020	Connect -10 year	0.337	2.5	1	NORRIS
BR	19067	Connect -10 year	0.296	2.5	1	NORRIS
BR	027G025	Connect -10 year	0.437	2.5	1.1	NORRIS
BR	19063	Connect -10 year	0.17	2.5	1	NORRIS
BR	20056	Connect -10 year	0.332	2.5	1	NORRIS
BR	22020	Connect -10 year	0.046	2.5	1	NORRIS
BR	23062	Connect -10 year	0.182	2.5	1	NORRIS
BR	23067	Connect -10 year	0.188	2.5	1	NORRIS
BR	23069	Connect -10 year	0.364	2.5	1	NORRIS
BR	23074	Connect -10 year	0.177	2.5	1	NORRIS
BR	20032	Connect -10 year	0.128	2.5	1	NORRIS
BR	23033	Connect -10 year	0.139	2.5	1	NORRIS
BR	23034	Connect -10 year	0.135	2.5	1	NORRIS
BR	21034	Connect -10 year	0.187	2.5	1	NORRIS
BR	22023	Connect -10 year	0.038	2.5	1	NORRIS
BR	21038	Connect -10 year	0.063	2.5	1	NORRIS
BR	23027	Connect -10 year	0.283	2.5	1	NORRIS
BR	23002	Connect -10 year	0.139	2.5	1	NORRIS
BR	21024	Connect -10 year	0.077	2.5	1	NORRIS
BR	21023	Connect -10 year	0.126	2.5	1	NORRIS
BR	23003	Connect -10 year	0.139	2.5	1	NORRIS
BR	21041	Connect -10 year	0.034	2.5	1	NORRIS
BR	21051	Connect -10 year	0.255	2.5	1	NORRIS
BR	21030	Connect -10 year	0.093	2.5	1	NORRIS
BR	23007	Connect -10 year	0.07	2.5	1	NORRIS
BR	23084	Connect -10 year	0.069	2.5	1	NORRIS
BR	21021	Connect -10 year	0.141	2.5	1	NORRIS
BR	21012	Connect -10 year	0.135	2.5	1	NORRIS
BR	24010	Connect -10 year	0.193	2.5	1	NORRIS
BR	21032	Connect -10 year	0.139	2.5	1	NORRIS
BR	005A025	Connect Ultimate	0.152	2.5	1	NORRIS
BR	9026	Connect Ultimate	0.361	2.5	1	NORRIS
BR	9056	Connect Ultimate	0.456	2.5	1.1	NORRIS
BR	23032	OLDS to Public	0.14	2.5	1	NORRIS
BR	19004	OLDS to Public	0.284	2.5	1	NORRIS
BR	21020	OLDS to Public	0.127	2.5 SUBTOTAL	1	NORRIS
				SUBTOTAL	38.8	
С	26003	Connect -10 year	1.712	7	12	NORRIS
С	20060	Connect -10 year	0.144	7	1	NORRIS
С	14000	Connect Ultimate	0.319	7	2.2	NORRIS
С	14015	Connect Ultimate	0.572	7	4	NORRIS
С	26028	Connect Ultimate	0.221	7	1.5	NORRIS
с	26003	Connect Ultimate	1.7	77	12	NORRIS
		_		SUBTOTAL	32.7	
C1	20061	Connect -10 year	0.33	8	2.6	NORRIS
C1	21050	Connect -10 year	0.137	8	1.1	NORRIS
C1	21045	Connect -10 year	0.164	8	1.3	NORRIS
				SUBTOTAL	5	·· · -

Potential Growth of Land Connected to Public Sewer

١

)

)

Zoning	Block/Unit	Public Sanitary	Acres	EDU/Acre	Potential EDU	Drainage Area
RP	027C017	Connect Ultimate	0.589	3.5	2.1	NORRIS
RP	027C016	Connect Ultimate	1.26	3.5	4.4	NORRIS
				SUBTOTAL	6.5	

TOTAL NORRIS 180.5

Potential Growth of Land Connected to Public Sewer

1	1	I	7	7	(
---	---	---	---	---	---

Zoning	Block/Unit	Public Sanitary	Acres	EDU/Acre	Potential EDU	Drainage Area
AR	027C014	Connect ~10 year	0.477	3	1.4	SAWMILL
AR	027C013	Connect -10 year	0.333	3	1.0	SAWMILL
AR	027C011	Connect -10 year	1.419	3	4.3	SAWMILL
AR	027C012	Connect -10 year	0.342	3	1.0	SAWMILL
AR	027C000	Connect -10 year	0.469	3	1.4	SAWMILL
AR	027C010	Connect -10 year	0.467	3	1.4	SAWMILL
AR	027C009	Connect -10 year	0.469	3	1.4	SAWMILL
AR	027B017	Connect -10 year	0.621	3	1.9	SAWMILL
AR	027B025	Connect -10 year	0.328	3	1.0	SAWMILL
AR	027B020	Connect -10 year	0.269	3	1.0	SAWMILL
AR	027B022	Connect -10 year	0.999	3	3.0	SAWMILL
AR	027B021	Connect -10 year	0.678	3	2.0	SAWMILL
AR	027B023	Connect -10 year	1.066	3	3.2	SAWMILL
AR	02C011	OLDS to Public	1.4	3	4.3	SAWMILL
AR	027C027	OLDS to Public	0.47	3	1.4	SAWMILL
AR	027B019	OLDS to Public	0.611	3	1.8	SAWMILL
	<u> </u>			SUBTOTAL	31.5	
BR	23020	Connect -10 year	0.285	2.5	1.0	SAWMILL
BR	24016	Connect -10 year	0.200	2.5	1.0	SAWMILL
BR	24017	Connect -10 year	0.202	2.5	1.0	SAWMILL
BR	24020	Connect -10 year	0.41	2.5	1.0	SAWMILL
BR	30016	Connect -10 year	0.091	2.5	1.0	SAWMILL
BR	30078	Connect -10 year	0.091	2.5	1.0	SAWMILL
BR	31074	Connect -10 year	0.09	2.5	1.0	SAWMILL
BR	31075	Connect -10 year	0.093	2.5	1.0	SAWMILL
BR	31076	Connect -10 year	0.035	2.5	1.0	SAWMILL
BR	30101	Connect -10 year	0.091	2.5	1.0	SAWMILL
BR	30085	Connect -10 year	0.031	2.5	1.0	SAWMILL
BR	30103	Connect -10 year	0.047	2.5	1.0	SAWMILL
BR	29100	Connect Ultimate	0.048	2.5	1.0	SAWMILL
BR	29105	Connect Ultimate	0.040	2.5	1.0	SAWMILL
BR	29032	Connect Ultimate	0.003	2.5	1.0	SAWMILL
BR	29032	Connect Ultimate	0.067	2.5	1.0	SAWMILL
BR	29040	Connect Ultimate	0.056	2.5	1.0	SAWMILL
BR	29033	Connect Ultimate	0.055	2.5	1.0	SAWMILL
BR	29033	Connect Ultimate	0.055	2.5	1.0	SAWMILL
				_		
BR	29037	Connect Ultimate	0.049	2.5	1.0	SAWMILL
BR	30075	Connect Ultimate	0.091	2.5	1.0	
BR	29016	Connect Ultimate	0.096 0.048	2.5	1.0	SAWMILL
BR	29014	Connect Ultimate		2.5	1.0	SAWMILL
BR	29071	Connect Ultimate	0.075	2.5	1.0	SAWMILL
BR	30009	Connect Ultimate	0.089	2.5	1.0	SAWMILL
BR	29133	Connect Ultimate	0.065	2.5	1.0	SAWMILL
BR	29123	Connect Ultimate	0.05	2.5	1.0	SAWMILL
BR	30122	Connect Ultimate	0.095	2.5	1.0	SAWMILL
BR	30006	Connect Ultimate	0.092	2.5	1.0	SAWMILL
BR	30005	Connect Ultimate	0.091	2.5	1.0	SAWMILL
BR	29120	Connect Ultimate	0.046	2.5	1.0	SAWMILL
BR	30003	Connect Ultimate	0.136	2.5	1.0	SAWMILL
BR	30121	Connect Ultimate	0.093	2.5	1.0	SAWMILL
BR	29080	Connect Ultimate	0.048	2.5	1.0	SAWMILL
BR	29079	Connect Ultimate	0.046	2.5	1.0	SAWMILL
BR	30127	Connect Ultimate	0.092	2.5	1.0	SAWMILL
BR	29130	Connect Ultimate	0.046	2.5	1.0	SAWMILL
BR	30063	Connect Ultimate	0.092	2.5	1.0	SAWMILL
BR	29129	Connect Ultimate	0.047	2.5	1.0	SAWMILL
00	30062	Connect Ultimate	0.094	2.5	1.0	SAWMILL
BR BR	30119	Connect Ultimate	0.091	2.5	1.0	SAWMILL

)

}

11/7/05

)

)

Zonling Block/Unit Public Sanitary Acces EDU/Acre Potenial EOU Drainage Area BR 31084 Connect Ultimate 0.091 2.5 1.0 SAWMILL BR 31083 Connect Ultimate 0.092 2.5 1.0 SAWMILL BR 31017 Connect Ultimate 0.091 2.5 1.0 SAWMILL BR 31014 Connect Ultimate 0.092 2.5 1.0 SAWMILL BR 31002 Connect Ultimate 0.092 2.5 1.0 SAWMILL BR 31030 Connect Ultimate 0.092 2.5 1.0 SAWMILL BR 31080 Connect Ultimate 0.093 2.5 1.0 SAWMILL BR 31080 Connect Ultimate 0.092 2.5 1.0 SAWMILL BR 31080 Connect Ultimate 0.043 2.5 1.0 SAWMILL BR 31080 Connect Ultimate 0.048 2.5 1.0	11/7/05						
BR 31072 Connect Ultimate 0.095 2.5 1.0 SAWMILL BR 31017 Connect Ultimate 0.091 2.5 1.0 SAWMILL BR 31004 Connect Ultimate 0.092 2.5 1.0 SAWMILL BR 31001 Connect Ultimate 0.092 2.5 1.0 SAWMILL BR 31003 Connect Ultimate 0.092 2.5 1.0 SAWMILL BR 30033 Connect Ultimate 0.092 2.5 1.0 SAWMILL BR 30033 Connect Ultimate 0.032 2.5 1.0 SAWMILL BR 30061 Connect Ultimate 0.032 2.5 1.0 SAWMILL BR 30105 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 30109 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 31012 Connect Ultimate 0.042 2.5 1.0 SAWMILL <td>Zoning</td> <td>Block/Unit</td> <td>Public Sanitary</td> <td>Acres</td> <td>EDU/Acre</td> <td>Potential EDU</td> <td>Drainage Area</td>	Zoning	Block/Unit	Public Sanitary	Acres	EDU/Acre	Potential EDU	Drainage Area
BR 31072 Connect Ultimate 0.095 2.5 1.0 SAWMILL BR 31017 Connect Ultimate 0.091 2.5 1.0 SAWMILL BR 31004 Connect Ultimate 0.092 2.5 1.0 SAWMILL BR 31001 Connect Ultimate 0.092 2.5 1.0 SAWMILL BR 31003 Connect Ultimate 0.092 2.5 1.0 SAWMILL BR 30033 Connect Ultimate 0.092 2.5 1.0 SAWMILL BR 30033 Connect Ultimate 0.032 2.5 1.0 SAWMILL BR 30061 Connect Ultimate 0.032 2.5 1.0 SAWMILL BR 30105 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 30109 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 31012 Connect Ultimate 0.042 2.5 1.0 SAWMILL <td>00</td> <td>04004</td> <td>Open and Hitter at</td> <td>0.004</td> <td>0.5</td> <td>4.0</td> <td></td>	00	04004	Open and Hitter at	0.004	0.5	4.0	
BR 31083 Connect Utimate 0.092 2.5 1.0 SAWMILL BR 31004 Connect Utimate 0.154 2.5 1.0 SAWMILL BR 31002 Connect Utimate 0.09 2.5 1.0 SAWMILL BR 31001 Connect Utimate 0.093 2.5 1.0 SAWMILL BR 31003 Connect Utimate 0.092 2.5 1.0 SAWMILL BR 31003 Connect Utimate 0.047 2.5 1.0 SAWMILL BR 30061 Connect Utimate 0.042 2.5 1.0 SAWMILL BR 30061 Connect Utimate 0.043 2.5 1.0 SAWMILL BR 30062 Connect Utimate 0.048 2.5 1.0 SAWMILL BR 31005 Connect Utimate 0.043 2.5 1.0 SAWMILL BR 31012 Connect Utimate 0.043 2.5 1.0 SAWMILL							
BR 30117 Connect Ultimate 0.091 2.5 1.0 SAWMILL BR 31001 Connect Ultimate 0.09 2.5 1.0 SAWMILL BR 31014 Connect Ultimate 0.09 2.5 1.0 SAWMILL BR 31003 Connect Ultimate 0.09 2.5 1.0 SAWMILL BR 30083 Connect Ultimate 0.09 2.5 1.0 SAWMILL BR 30083 Connect Ultimate 0.09 2.5 1.0 SAWMILL BR 30061 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30651 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 30109 Connect Ultimate 0.042 2.5 1.0 SAWMILL BR 31019 Connect Ultimate 0.042 2.5 1.0 SAWMILL BR 31014 Connect Ultimate 0.047 2.5 1.0 SAWMILL							
BR 31004 Connect Ultimate 0.09 2.5 1.0 SAWMILL BR 31002 Connect Ultimate 0.089 2.5 1.0 SAWMILL BR 31014 Connect Ultimate 0.083 2.5 1.0 SAWMILL BR 30031 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30083 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30081 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30065 Connect Ultimate 0.042 2.5 1.0 SAWMILL BR 31065 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 310102 Connect Ultimate 0.043 2.5 1.0 SAWMILL BR 31012 Connect Ultimate 0.043 2.5 1.0 SAWMILL BR 31016 Connect Ultimate 0.043 2.5 1.0 SAWMILL <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
BR 31071 Connect Ultimate 0.09 2.5 1.0 SAWMILL BR 31014 Connect Ultimate 0.093 2.5 1.0 SAWMILL BR 31003 Connect Ultimate 0.092 2.5 1.0 SAWMILL BR 30063 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30061 Connect Ultimate 0.042 2.5 1.0 SAWMILL BR 30051 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 29062 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 31009 Connect Ultimate 0.042 2.5 1.0 SAWMILL BR 310102 Connect Ultimate 0.043 2.5 1.0 SAWMILL BR 31014 Connect Ultimate 0.042 2.5 1.0 SAWMILL BR 31016 Connect Ultimate 0.042 2.5 1.0 SAWMILL <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
BR 310102 Connect Utimate 0.083 2.5 1.0 SAWMILL BR 310103 Connect Utimate 0.093 2.5 1.0 SAWMILL BR 30083 Connect Utimate 0.09 2.5 1.0 SAWMILL BR 30080 Connect Utimate 0.047 2.5 1.0 SAWMILL BR 30065 Connect Utimate 0.048 2.5 1.0 SAWMILL BR 30065 Connect Utimate 0.048 2.5 1.0 SAWMILL BR 31005 Connect Utimate 0.048 2.5 1.0 SAWMILL BR 31012 Connect Utimate 0.042 2.5 1.0 SAWMILL BR 30104 Connect Utimate 0.043 2.5 1.0 SAWMILL BR 30105 Connect Utimate 0.042 2.5 1.0 SAWMILL BR 30105 Connect Utimate 0.043 2.5 1.0 SAWMILL							
BR 30114 Connect Ullimate 0.087 2.5 1.0 SAVMILL BR 30003 Connect Ullimate 0.047 2.5 1.0 SAVMILL BR 20048 Connect Ullimate 0.047 2.5 1.0 SAVMILL BR 31080 Connect Ullimate 0.032 2.5 1.0 SAVMILL BR 30061 Connect Ullimate 0.048 2.5 1.0 SAVMILL BR 29062 Connect Ullimate 0.048 2.5 1.0 SAVMILL BR 31019 Connect Ullimate 0.048 2.5 1.0 SAVMILL BR 31019 Connect Ullimate 0.043 2.5 1.0 SAVMILL BR 30104 Connect Ullimate 0.047 2.5 1.0 SAVMILL BR 30105 Connect Ullimate 0.049 2.5 1.0 SAVMILL BR 31026 Connect Ullimate 0.042 2.5 1.0 SAVMILL <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
BR 31003 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30083 Connect Ultimate 0.09 2.5 1.0 SAWMILL BR 31080 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30061 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 30065 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 29062 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 31012 Connect Ultimate 0.043 2.5 1.0 SAWMILL BR 30105 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30105 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30105 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31028 Connect Ultimate 0.047 2.5 1.0 SAWMILL							
BR 30083 Connect Ultimate 0.09 2.5 1.0 SAVMILL BR 31080 Connect Ultimate 0.047 2.5 1.0 SAVMILL BR 31085 Connect Ultimate 0.048 2.5 1.0 SAVMILL BR 31085 Connect Ultimate 0.048 2.5 1.0 SAVMILL BR 29117 Connect Ultimate 0.048 2.5 1.0 SAVMILL BR 31019 Connect Ultimate 0.048 2.5 1.0 SAVMILL BR 31012 Connect Ultimate 0.043 2.5 1.0 SAVMILL BR 30104 Connect Ultimate 0.047 2.5 1.0 SAVMILL BR 30105 Connect Ultimate 0.049 2.5 1.0 SAVMILL BR 31028 Connect Ultimate 0.049 2.5 1.0 SAVMILL BR 31026 Connect Ultimate 0.047 2.5 1.0 SAVMILL							
BR 29048 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31080 Connect Ultimate 0.093 2.5 1.0 SAWMILL BR 31065 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 29062 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 31005 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 31012 Connect Ultimate 0.042 2.5 1.0 SAWMILL BR 30105 Connect Ultimate 0.043 2.5 1.0 SAWMILL BR 30105 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 301028 Connect Ultimate 0.049 2.5 1.0 SAVMILL BR 301026 Connect Ultimate 0.049 2.5 1.0 SAVMILL BR 31026 Connect Ultimate 0.049 2.5 1.0 SAVMILL </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
BR 31080 Connect Ultimate 0.033 2.5 1.0 SAWMILL BR 30065 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 29117 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 29062 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 31009 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 31012 Connect Ultimate 0.043 2.5 1.0 SAWMILL BR 30105 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30155 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 30165 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 30167 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 31060 Connect Ultimate 0.047 2.5 1.0 SAWMILL <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
BR 30061 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 31065 Connect Ultimate 0.092 2.5 1.0 SAWMILL BR 29117 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 31005 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 31012 Connect Ultimate 0.11 2.5 1.0 SAWMILL BR 30105 Connect Ultimate 0.043 2.5 1.0 SAWMILL BR 30105 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30105 Connect Ultimate 0.032 2.5 1.0 SAWMILL BR 31026 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 31026 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31026 Connect Ultimate 0.047 2.5 1.0 SAWMILL							
BR 31065 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 29062 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 31009 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 31012 Connect Ultimate 0.043 2.5 1.0 SAWMILL BR 30104 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30059 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 31012 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 31015 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 310167 Connect Ultimate 0.033 2.5 1.0 SAWMILL BR 31016 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31016 Connect Ultimate 0.047 2.5 1.0 SAWMILL <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
BR 29117 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 29062 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 31012 Connect Ultimate 0.11 2.5 1.0 SAWMILL BR 30105 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30105 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30155 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 30128 Connect Ultimate 0.033 2.5 1.0 SAWMILL BR 31026 Connect Ultimate 0.37 2.5 1.0 SAWMILL BR 31060 Connect Ultimate 0.492 2.5 1.0 SAWMILL BR 31076 Connect Ultimate 0.497 2.5 1.0 SAWMILL BR 30160 Connect Ultimate 0.47 2.5 1.0 SAWMILL							
BR 29062 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 31009 Connect Ultimate 0.09 2.5 1.0 SAWMILL BR 30104 Connect Ultimate 0.043 2.5 1.0 SAWMILL BR 30105 Connect Ultimate 0.042 2.5 1.0 SAWMILL BR 30059 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 30157 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 31028 Connect Ultimate 0.033 2.5 1.0 SAWMILL BR 30167 Connect Ultimate 0.033 2.5 1.0 SAWMILL BR 30160 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30160 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30160 Connect Ultimate 0.047 2.5 1.0 SAWMILL							
BR 31009 Connect Ultimate 0.09 2.5 1.0 SAWMILL BR 31012 Connect Ultimate 0.041 2.5 1.0 SAWMILL BR 30105 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30105 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 30155 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 30126 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 30107 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 30107 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 30106 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30160 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30167 Connect Ultimate 0.047 2.5 1.0 SAWMILL							
BR 31012 Connect Ultimate 0.11 2.5 1.0 SAWMILL BR 30104 Connect Ultimate 0.043 2.5 1.0 SAWMILL BR 30105 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30105 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 31028 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 31026 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 31107 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 31108 Connect Ultimate 0.044 2.5 1.0 SAWMILL BR 30167 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30164 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30164 Connect Ultimate 0.047 2.5 1.0 SAWMILL							
BR 30104 Connect Ultimate 0.043 2.5 1.0 SAWMILL BR 30059 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30155 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 30167 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 30167 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 31026 Connect Ultimate 0.033 2.5 1.0 SAWMILL BR 31107 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 31108 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30167 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30164 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30165 Connect Ultimate 0.047 2.5 1.0 SAWMILL <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
BR 30105 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30155 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 31028 Connect Ultimate 0.093 2.5 1.0 SAWMILL BR 31026 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 31026 Connect Ultimate 0.137 2.5 1.0 SAWMILL BR 30167 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 30160 Connect Ultimate 0.044 2.5 1.0 SAWMILL BR 30167 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30164 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30164 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31040 Connect Ultimate 0.047 2.5 1.0 SAWMILL <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
BR 30059 Connect Ultimate 0.052 2.5 1.0 SAWMILL BR 30155 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 30167 Connect Ultimate 0.093 2.5 1.0 SAWMILL BR 30167 Connect Ultimate 0.019 2.5 1.0 SAWMILL BR 31107 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 31107 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30160 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30167 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30164 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31030 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31034 Connect Ultimate 0.047 2.5 1.0 SAWMILL <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
BR 30155 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 31028 Connect Ultimate 0.093 2.5 1.0 SAWMILL BR 31026 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 31107 Connect Ultimate 0.093 2.5 1.0 SAWMILL BR 30160 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 30167 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30167 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30164 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 301045 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31033 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31049 Connect Ultimate 0.047 2.5 1.0 SAWMILL <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
BR 31028 Connect Ultimate 0.093 2.5 1.0 SAWMILL BR 30157 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 31107 Connect Ultimate 0.033 2.5 1.0 SAWMILL BR 30160 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 30160 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30167 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30164 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30165 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30166 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31030 Connect Ultimate 0.091 2.5 1.0 SAWMILL BR 31034 Connect Ultimate 0.092 2.5 1.0 SAWMILL <td></td> <td></td> <td>Connect Ultimate</td> <td></td> <td></td> <td></td> <td></td>			Connect Ultimate				
BR 30157 Connect Ultimate 0.049 2.5 1.0 SAWMILL BR 31026 Connect Ultimate 0.137 2.5 1.0 SAWMILL BR 3107 Connect Ultimate 0.043 2.5 1.0 SAWMILL BR 30160 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 30167 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30167 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30164 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30164 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30165 Connect Ultimate 0.056 2.5 1.0 SAWMILL BR 31033 Connect Ultimate 0.091 2.5 1.0 SAWMILL BR 31034 Connect Ultimate 0.092 2.5 1.0 SAWMILL		30155					SAWMILL
BR 31026 Connect Ultimate 0.137 2.5 1.0 SAWMILL BR 31107 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 30160 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 31108 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30167 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30167 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30165 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31033 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31034 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31130 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.092 2.5 1.0 SAWMILL			Connect Ultimate				SAWMILL
BR 31107 Connect Ultimate 0.093 2.5 1.0 SAWMILL BR 30160 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 30167 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30167 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30164 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30165 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30165 Connect Ultimate 0.066 2.5 1.0 SAWMILL BR 31033 Connect Ultimate 0.091 2.5 1.0 SAWMILL BR 31049 Connect Ultimate 0.092 2.5 1.0 SAWMILL BR 31046 Connect Ultimate 0.092 2.5 1.0 SAWMILL BR 31130 OLDS to Public 0.092 2.5 1.0 SAWMILL		30157	Connect Ultimate	0.049	2.5	1.0	SAWMILL
BR 30160 Connect Ultimate 0.048 2.5 1.0 SAWMILL BR 31108 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30167 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31135 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30164 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30165 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31033 Connect Ultimate 0.091 2.5 1.0 SAWMILL BR 31049 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31046 Connect Ultimate 0.093 2.5 1.0 SAWMILL BR 31130 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 30010 OLDS to Public 0.092 2.5 1.0 SAWMILL	BR	31026	Connect Ultimate	0.137	2.5	1.0	SAWMILL
BR 31108 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30167 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31135 Connect Ultimate 0.071 2.5 1.0 SAWMILL BR 30164 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30165 Connect Ultimate 0.056 2.5 1.0 SAWMILL BR 31033 Connect Ultimate 0.091 2.5 1.0 SAWMILL BR 31049 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31034 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31046 Connect Ultimate 0.093 2.5 1.0 SAWMILL BR 31100 OLDS to Public 0.09 2.5 1.0 SAWMILL BR 31100 OLDS to Public 0.091 2.5 1.0 SAWMILL	BR	31107	Connect Ultimate	0.093	2.5	1.0	SAWMILL
BR 30167 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31135 Connect Ultimate 0.071 2.5 1.0 SAWMILL BR 30164 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30165 Connect Ultimate 0.056 2.5 1.0 SAWMILL BR 31033 Connect Ultimate 0.091 2.5 1.0 SAWMILL BR 31049 Connect Ultimate 0.093 2.5 1.0 SAWMILL BR 31046 Connect Ultimate 0.097 2.5 1.0 SAWMILL BR 31130 OLDS to Public 0.09 2.5 1.0 SAWMILL BR 30010 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.091 2.5 1.0 SAWMILL BR 31010 OLDS to Public 0.091 2.5 1.0 SAWMILL <tr< td=""><td>BR.</td><td>30160</td><td>Connect Ultimate</td><td>0.048</td><td>2.5</td><td>1.0</td><td>SAWMILL</td></tr<>	BR.	30160	Connect Ultimate	0.048	2.5	1.0	SAWMILL
BR 31135 Connect Ultimate 0.071 2.5 1.0 SAWMILL BR 30164 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30165 Connect Ultimate 0.056 2.5 1.0 SAWMILL BR 31033 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31049 Connect Ultimate 0.091 2.5 1.0 SAWMILL BR 31034 Connect Ultimate 0.093 2.5 1.0 SAWMILL BR 31046 Connect Ultimate 0.092 2.5 1.0 SAWMILL BR 31104 OLDS to Public 0.09 2.5 1.0 SAWMILL BR 30010 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.081 7 1.0 SAWMILL	BR	31108	Connect Ultimate	0.047	2.5	1.0	SAWMILL
BR 30164 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 30165 Connect Ultimate 0.056 2.5 1.0 SAWMILL BR 31033 Connect Ultimate 0.091 2.5 1.0 SAWMILL BR 31049 Connect Ultimate 0.093 2.5 1.0 SAWMILL BR 31034 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31046 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31130 OLDS to Public 0.09 2.5 1.0 SAWMILL BR 31110 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 30010 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 31010 OLDS to Public 0.091 2.5 1.0 SAWMILL	BR	30167	Connect Ultimate	0.047	2.5	1.0	SAWMILL
BR 30165 Connect Ultimate 0.056 2.5 1.0 SAWMILL BR 31033 Connect Ultimate 0.091 2.5 1.0 SAWMILL BR 31049 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31034 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31046 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31130 OLDS to Public 0.09 2.5 1.0 SAWMILL BR 31110 OLDS to Public 0.09 2.5 1.0 SAWMILL BR 30010 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.091 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.091 7 1.0 SAWMILL	BR	31135	Connect Ultimate	0.071	2.5	1.0	SAWMILL
BR 31033 Connect Ultimate 0.091 2.5 1.0 SAWMILL BR 31049 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31034 Connect Ultimate 0.093 2.5 1.0 SAWMILL BR 31046 Connect Ultimate 0.093 2.5 1.0 SAWMILL BR 31130 OLDS to Public 0.09 2.5 1.0 SAWMILL BR 31110 OLDS to Public 0.09 2.5 1.0 SAWMILL BR 30010 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.091 7 1.0 SAWMILL C 027F009 Connect Ultimate 1.996 7 14.0 SAWMILL	BR	30164	Connect Ultimate	0.047	2.5	1.0	SAWMILL
BR 31033 Connect Ultimate 0.091 2.5 1.0 SAWMILL BR 31049 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31034 Connect Ultimate 0.093 2.5 1.0 SAWMILL BR 31046 Connect Ultimate 0.093 2.5 1.0 SAWMILL BR 31130 OLDS to Public 0.09 2.5 1.0 SAWMILL BR 31110 OLDS to Public 0.09 2.5 1.0 SAWMILL BR 30010 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.091 2.5 1.0 SAWMILL BR 0.27F009 Connect Ultimate 1.996 7 14.0 SAWMILL	BR	30165	Connect Ultimate	0.056	2.5		SAWMILL
BR 31049 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31034 Connect Ultimate 0.093 2.5 1.0 SAWMILL BR 31046 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31130 OLDS to Public 0.09 2.5 1.0 SAWMILL BR 31110 OLDS to Public 0.09 2.5 1.0 SAWMILL BR 30010 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.091 2.5 1.0 SAWMILL C 027F009 Connect Ultimate 1.996 7 14.0 SAWMILL C 027H044 Connect -10 year 0.832 5 4.2 SAWMILL	BR	31033	Connect Ultimate	0.091	2.5	1.0	SAWMILL
BR 31046 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31130 OLDS to Public 0.09 2.5 1.0 SAWMILL BR 31110 OLDS to Public 0.09 2.5 1.0 SAWMILL BR 30010 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.091 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.091 2.5 1.0 SAWMILL C 027F009 Connect Ultimate 1.996 7 14.0 SAWMILL C 027H044 Connect Ultimate 0.0832 5 4.2 SAWMILL IN 24024 Connect -10 year 0.832 5 1.4 SAWMILL IN 24021 Connect -10 year 0.371 2 1.6 SAWMILL	BR	31049	Connect Ultimate	0.047	2.5	1.0	SAWMILL
BR 31046 Connect Ultimate 0.047 2.5 1.0 SAWMILL BR 31130 OLDS to Public 0.09 2.5 1.0 SAWMILL BR 31110 OLDS to Public 0.09 2.5 1.0 SAWMILL BR 30010 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.091 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.091 2.5 1.0 SAWMILL C 027F009 Connect Ultimate 1.996 7 14.0 SAWMILL C 027H044 Connect Ultimate 0.0832 5 4.2 SAWMILL IN 24024 Connect -10 year 0.832 5 1.4 SAWMILL IN 24021 Connect -10 year 0.371 2 1.6 SAWMILL	BR		Connect Ultimate	0.093			
BR 31130 OLDS to Public 0.09 2.5 1.0 SAWMILL BR 31110 OLDS to Public 0.09 2.5 1.0 SAWMILL BR 30010 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.091 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.091 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.091 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.091 2.5 1.0 SAWMILL SUBTOTAL 81.0 SUBTOTAL 81.0 SAWMILL 15.0 IN 24024 Connect -10 year 0.832 5 4.2 SAWMILL IN 24021 Connect -10 year 0.274 5 1.4 SAWMILL SUBTOTAL 5.6 Image: State interminic inte							
BR 31110 OLDS to Public 0.09 2.5 1.0 SAWMILL BR 30010 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.091 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.091 2.5 1.0 SAWMILL SUBTOTAL 81.0 C 027F009 Connect Ultimate 1.996 7 14.0 SAWMILL C 027H044 Connect Ultimate 0.081 7 1.0 SAWMILL IN 24024 Connect -10 year 0.832 5 4.2 SAWMILL SUBTOTAL 5.6 MR 027J046 Connect -10 year 0.371 2 1.0 SAWMILL RO 28011 Connect -10 year 0.371 2 1.0 SAWMILL RO 28014 Connect -10 year 0.379 2 1.0 SAWMILL RO 28							
BR 30010 OLDS to Public 0.092 2.5 1.0 SAWMILL BR 31106 OLDS to Public 0.091 2.5 1.0 SAWMILL SUBTOTAL 81.0 C 027F009 Connect Ultimate 1.996 7 14.0 SAWMILL C 027H044 Connect Ultimate 0.081 7 1.0 SAWMILL C 027H044 Connect -10 year 0.832 5 4.2 SAWMILL IS.0 IN 24024 Connect -10 year 0.274 5 1.4 SAWMILL SUBTOTAL 5.6 MR 027J046 Connect -10 year 0.371 2 1.0 SAWMILL RO 28011 Connect -10 year 0.371 2 1.0 SAWMILL RO 28014 Connect -10 year 0.379 2 1.0 SAWMILL RO 28014 Connect -10 year 0.379 2 1.0							
BR 31106 OLDS to Public 0.091 2.5 1.0 SAWMILL SUBTOTAL 81.0							
C 027F009 Connect Ultimate 1.996 7 14.0 SAWMILL C 027H044 Connect Ultimate 0.081 7 1.0 SAWMILL IN 24024 Connect -10 year 0.832 5 4.2 SAWMILL IN 24021 Connect -10 year 0.274 5 1.4 SAWMILL IN 24021 Connect -10 year 0.274 5 1.4 SAWMILL SUBTOTAL 5.6 MR 027J046 Connect Ultimate 0.292 5.5 1.6 SAWMILL RO 28011 Connect -10 year 0.371 2 1.0 SAWMILL RO 28011 Connect -10 year 0.379 2 1.0 SAWMILL RO 28014 Connect -10 year 0.379 2 1.0 SAWMILL RO 28003 OLDS to Public 0.73 2 1.5 SAWMILL RO 28010 OLDS to Public 0.369 2 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
C 027F009 027H044 Connect Ultimate 1.996 0.081 7 14.0 7 SAWMILL SAWMILL IN 24024 Connect -10 year 0.832 5 4.2 SAWMILL IN 24021 Connect -10 year 0.832 5 1.4 SAWMILL IN 24021 Connect -10 year 0.274 5 1.4 SAWMILL IN 24021 Connect -10 year 0.274 5 1.4 SAWMILL VBTOTAL 5.6 Image: Connect -10 year 0.292 5.5 1.6 SAWMILL RO 28011 Connect -10 year 0.371 2 1.0 SAWMILL RO 28014 Connect -10 year 0.379 2 1.0 SAWMILL RO 28014 Connect -10 year 0.379 2 1.0 SAWMILL RO 28014 Connect -10 year 0.143 2 1.0 SAWMILL RO 28010 OLDS to Public 0.73 2 1.0 SAWMILL<							
C 027H044 Connect Ultimate 0.081 7 1.0 SAWMILL 15.0 15.0 15.0 15.0 15.0 15.0 IN 24024 Connect -10 year 0.832 5 4.2 SAWMILL IN 24021 Connect -10 year 0.274 5 1.4 SAWMILL SUBTOTAL 5.6 MR 027J046 Connect Ultimate 0.292 5.5 1.6 SAWMILL RO 28011 Connect -10 year 0.371 2 1.0 SAWMILL RO 23045 Connect -10 year 0.379 2 1.0 SAWMILL RO 28014 Connect -10 year 0.143 2 1.0 SAWMILL RO 28003 OLDS to Public 0.73 2 1.5 SAWMILL RO 28010 OLDS to Public 0.369 2 1.0 SAWMILL RO 23044 OLDS to Public 0.36 2 1.0 S							
IN 24024 Connect -10 year 0.832 5 4.2 SAWMILL IN 24021 Connect -10 year 0.274 5 1.4 SAWMILL SUBTOTAL 5.6 MR 027J046 Connect Ultimate 0.292 5.5 1.6 SAWMILL RO 28011 Connect -10 year 0.371 2 1.0 SAWMILL RO 23045 Connect -10 year 0.379 2 1.0 SAWMILL RO 28014 Connect -10 year 0.379 2 1.0 SAWMILL RO 28014 Connect -10 year 0.143 2 1.0 SAWMILL RO 28003 OLDS to Public 0.73 2 1.5 SAWMILL RO 28010 OLDS to Public 0.369 2 1.0 SAWMILL RO 23044 OLDS to Public 0.36 2 1.0 SAWMILL				1.996		14.0	
IN 24024 Connect -10 year 0.832 5 4.2 SAWMILL IN 24021 Connect -10 year 0.274 5 1.4 SAWMILL SUBTOTAL 5.6 MR 027J046 Connect Ultimate 0.292 5.5 1.6 SAWMILL RO 28011 Connect -10 year 0.371 2 1.0 SAWMILL RO 23045 Connect -10 year 0.379 2 1.0 SAWMILL RO 28014 Connect -10 year 0.379 2 1.0 SAWMILL RO 28014 Connect -10 year 0.379 2 1.0 SAWMILL RO 28014 Connect -10 year 0.143 2 1.0 SAWMILL RO 28003 OLDS to Public 0.73 2 1.5 SAWMILL RO 28010 OLDS to Public 0.369 2 1.0 SAWMILL RO 23044 OLDS to Public 0.36 2	C	027H044	Connect Ultimate	0.081	7		SAWMILL
IN 24021 Connect -10 year 0.274 5 1.4 SAWMILL SUBTOTAL S0 SUBTOTAL 5.6 SAWMILL SUBTOTAL 5.6 SAWMILL RO 28011 Connect Ultimate 0.292 5.5 1.6 SAWMILL RO 28011 Connect -10 year 0.371 2 1.0 SAWMILL RO 23045 Connect -10 year 0.379 2 1.0 SAWMILL RO 28014 Connect -10 year 0.143 2 1.0 SAWMILL RO 28003 OLDS to Public 0.73 2 1.5 SAWMILL RO 28010 OLDS to Public 0.369 2 1.0 SAWMILL RO 23044 OLDS to Public 0.36 2 1.0 SAWMILL						15.0	
IN 24021 Connect -10 year 0.274 5 1.4 SAWMILL SUBTOTAL S0 SUBTOTAL 5.6 SAWMILL SUBTOTAL 5.6 SAWMILL RO 28011 Connect Ultimate 0.292 5.5 1.6 SAWMILL RO 28011 Connect -10 year 0.371 2 1.0 SAWMILL RO 23045 Connect -10 year 0.379 2 1.0 SAWMILL RO 28014 Connect -10 year 0.143 2 1.0 SAWMILL RO 28003 OLDS to Public 0.73 2 1.5 SAWMILL RO 28010 OLDS to Public 0.369 2 1.0 SAWMILL RO 23044 OLDS to Public 0.36 2 1.0 SAWMILL	IN	24024	Connect -10 year	0 832	5	4 2	SAWMILL
SUBTOTAL 5.6 MR 027J046 Connect Ultimate 0.292 5.5 1.6 SAWMILL RO 28011 Connect -10 year 0.371 2 1.0 SAWMILL RO 23045 Connect -10 year 0.379 2 1.0 SAWMILL RO 28014 Connect -10 year 0.143 2 1.0 SAWMILL RO 28003 OLDS to Public 0.73 2 1.5 SAWMILL RO 28010 OLDS to Public 0.369 2 1.0 SAWMILL RO 23044 OLDS to Public 0.36 2 1.0 SAWMILL			~				
MR 027J046 Connect Ultimate 0.292 5.5 1.6 SAWMILL RO 28011 Connect -10 year 0.371 2 1.0 SAWMILL RO 23045 Connect -10 year 0.379 2 1.0 SAWMILL RO 28014 Connect -10 year 0.143 2 1.0 SAWMILL RO 28003 OLDS to Public 0.73 2 1.5 SAWMILL RO 28010 OLDS to Public 0.369 2 1.0 SAWMILL RO 23044 OLDS to Public 0.36 2 1.0 SAWMILL		<u>67061</u>		V.214			
RO 28011 Connect -10 year 0.371 2 1.0 SAWMILL RO 23045 Connect -10 year 0.379 2 1.0 SAWMILL RO 28014 Connect -10 year 0.143 2 1.0 SAWMILL RO 28003 OLDS to Public 0.73 2 1.5 SAWMILL RO 28010 OLDS to Public 0.369 2 1.0 SAWMILL RO 23044 OLDS to Public 0.36 2 1.0 SAWMILL					-		
RO 23045 Connect -10 year 0.379 2 1.0 SAWMILL RO 28014 Connect -10 year 0.143 2 1.0 SAWMILL RO 28003 OLDS to Public 0.73 2 1.5 SAWMILL RO 28010 OLDS to Public 0.369 2 1.0 SAWMILL RO 23044 OLDS to Public 0.36 2 1.0 SAWMILL	MR	027J046	Connect Ultimate	0.292	5.5	1.6	SAWMILL
RO 23045 Connect -10 year 0.379 2 1.0 SAWMILL RO 28014 Connect -10 year 0.143 2 1.0 SAWMILL RO 28003 OLDS to Public 0.73 2 1.5 SAWMILL RO 28010 OLDS to Public 0.369 2 1.0 SAWMILL RO 23044 OLDS to Public 0.36 2 1.0 SAWMILL	RO	28011	Connect -10 year	0.371	2	1.0	SAWMILL
RO 28014 Connect -10 year 0.143 2 1.0 SAWMILL RO 28003 OLDS to Public 0.73 2 1.5 SAWMILL RO 28010 OLDS to Public 0.369 2 1.0 SAWMILL RO 23044 OLDS to Public 0.36 2 1.0 SAWMILL			-				
RO 28003 OLDS to Public 0.73 2 1.5 SAWMILL RO 28010 OLDS to Public 0.369 2 1.0 SAWMILL RO 23044 OLDS to Public 0.36 2 1.0 SAWMILL			•				
RO 28010 OLDS to Public 0.369 2 1.0 SAWMILL RO 23044 OLDS to Public 0.36 2 1.0 SAWMILL							
RO 23044 OLDS to Public 0.36 2 1.0 SAWMILL							
		20077		0.00	SUBTOTAL	6.5	UNYMILL

SUBTOTAL 6.5

Potential Growth of Land Connected to Public Sewer

}

)

11/7/05						
Zoning	Block/Unit	Public Sanitary	Acres	EDU/Acre	Potential EDU	Drainage Area

TOTAL SAWMILL 141.2

East Norriton Township Connection Management

Last Revised:

06/25/05

_

PMA - Planning Module Approved PHR - Pump & Haul Request E - Exception Requested -Replacement Flow

Development	DEP CODE	EDUs Required	Planning Module Approved - Exception # EDU's	Subdivision or Land Development Plan Approved	EDU's Paid	Permits Issued or Existing EDU's or Replacement Flows	EDUs Needed	Pump Station Drainage Area	Priority
Reserve @ Penn Crossing - Cutler - 78 EDU's Approved 2003 Paid in Full	ENPWJSA	78	78 PMA	Y	78	9 Permits	39	Saw Mill	1
Mercy Suburban Hospital - Requesting Exemption - Facility Public Need	ENPWJSA	16	16 E	Y	N		16	Norris City	1
Pimlico Farms - Gambone - 35 EDU's Approved 1998 Paid for 46 - 5/24/05	ENPWJSA	46	35 PMA	Y	Y	-	35	Germantown	1
Jefferson Crossing - Philomeno/Salamone - Replacing existing 34 EDU's	1-46926-130-3J	84	34 E	Y	N	34 Replacement	50	Norris City	1
from Jefferson House Rest.									
Heatherwood - Erb/Mascio/Gambone	1-46926-118-3J	28	N	Y	N	-	28	Timberlake	1
Dr Valenza - Germantown Pike/N Wales Road	ENPWJSA	8	N	Y	N	+	8	Timberlake	1
MRA Carwash - Germantown Pike - 2EDU's Present	1-46926-127-3J	8	N	Y	N	2 Replacement	6	Norris City	1
Evergreen Terrace Calamia - Erb/Mascio - 3 EDU's present connection	ENPWJSA	10	N	N	N	3 Replacement	8	Timberlake	1
Eric Winchester - 117 Hancock Ave - Single Home on last remaining vacant lot	1-46926-129-X	1	N	Y	N		1	Norris City	1
DeStefano - Bristol Ave - Single Home on vacant lot	ENPWJSA	1	N	Y	N	-	1	Saw Mill	1
Crowley Foods - Gambone	ENPWJSA	5	N	Y	N	-	5	Germantown	1
Pat Bradley - Barbara Drive - Single Home on Vacant Lot	ENPWJSA	1	N	Y	N	-	1	Timberlake	1
Kinder Care - Tornetta Bentwood - 236 EDU's Approved 1998 - 58 EDU's Paid 1998	1-46926-J04-E	4	236 PMA	Y	58	5 Permits	4	Saw Mill	1
Norriton Business Campus - 58 EDU's Approved in 1988	ENPWJSA	10	58 PMA	Y	58	28 Permits	10	Germantown	1
Moreland Dev Bank - Whitehall/Germantown - Last pad of 3 pad site	ENPWJSA	10	25 PMA	Y	N	2 Permits	10	Germantown	1
Northwood - Tornetta (request transfer 30 EDU's (5 EDU's existing) of approved 58 EDU's	ENPWJSA	30	N	N	N	5 Replacement	25	Saw Mill	1
paid for for in 1998. The Bentwood Project received approval for 236 EDU's in 1998)									
Anderson's - Rahway Ave - Single Home on vacant lot	ENPWJSA	1	N	Y	N		1	Saw Mill	
Carol Moble - Butchers Lane - Single Home on vacant lot - ejector pump	ENPWJSA	1	<u> </u>	Y	N		1	Norris City	
TOTAL REQUESTED PRIORITY NO. 1		342					249		
Reserve @ Penn Crossing - Cutler - Remaining Connection	ENPWJSA	30	30 PMA	Y	78		30	Norris City	2
Pimlico Farms - Gambone - Remaining Connections	ENPWJSA	11	35 PMA	Y	N	-	11	Germantown	2
Norriton Business Campus - 58 EDU's Approved in 1988	ENPWJSA	20	58 PMA	Y	Y	28 Permits	20	Germantown	2
Gorman Welding	ENPWJSA	5	N	N	N	-	5	Germantown	2
DeKalb Apartments - DeKalb Pike	ENPWJSA	40	N	N	N	-	_40	Norris City	2
Waterworks - DeKalb Pike & Johnson Highway	ENPWJSA	40	N	N	N		40	Saw Mill	2
Northwood - Tometta - Request to transfer from Bentwood Project approved EDU's	ENPWJSA	120	N_	N	N		120	Norris City	2
Del Markward - 911 W. Germantown Pike	ENPWJSA	56	N	N	N		56	Germantown	
						<u> </u>			

 $\mathbf{)}$

TABLE 4-3

East Norriton Township Connection Management

Last Revised:

06/25/05

~

PMA - Planning Module Approved	
PHR - Pump & Haul Request	

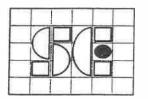
~

E - Exception Requested -Replacement Flow

Development	DEP CODE	EDUs Required	Planning Module Approved - Exception # EDU's	Subdivision or Land Development Plan Approved	EDU's Paid	Permits Issued or Existing EDU's or Replacement Flows	EDUs Needed	Pump Station Drainage Area	Priority
TOTAL REQUESTED PRIORITY NO. 2		322					322		
-									
Waterworks - DeKalb Pike & Johnson Highway	ENPWJSA	26	N	N	N	-	26	Saw Mill	3
DeKalb Apartments - DeKalb Pike	ENPWJSA	40	N	N	N	-	40	Norris City	3
Miller Electric - End of Felton Rd	ENPWJSA	10	N	N	N		10	Timberlake	3
Plantone/Brance - Whitehall Road	ENPWJSA	20	N	N	N	3 Replacement	17	Germantown	3
Del Markward - 911 W. Germantown Pk	ENPWJSA	55	N	N	N	-	55	Germantown	3
Bentwood Flex Development - Remaining Project EDU's	ENPWJSA	28	Y	Y	N		28	Norris City	3
District Court Office Building	ENPWJSA	15	N	N	N		15	Timberlake	3
Clements Meat Market - Old Arch Road	ENPWJSA	20	N	N	N	3 Replacement	17	Saw Mill	3
FAILED SEPTIC SYSTEMS THROUGHOUT TWP	ENPWJSA	20	NA	NA	NA		20		3
NORTHWOODS - 150 CREDITED BACK TO BENTWOOD	ENPWJSA	240	N	N	N		240		3
TOTAL REQUESTED PRIORITY NO. 3		474					468		

	Priority 1	342	249
	Priority 2	322	322
	Priority 3	474	468
		1138	1,039
Definitions:			
Priority 1 - Connections desired ASAP		249	
Priority 2 - Connections desired between 6 months and 1 year		322	
Priority 3 - Connections desired beyond first year		468	

)


WHITPAIN TOWNSHIP MONTGOMERY COUNTY, PENNSYLVANIA

ACT 537 PLAN REVISION

PREPARED IN ACCORDANCE WITH PA ACT 537 AND LATER REVISIONS AND PADEP CHAPTER 71

FINAL DRAFT JANUARY 2006

1

J

S C Engineers, Inc.

P.O. Box 407 Fort Washington, PA 19034 (215) 836-9912

-)

)

)

TABLE OF CONTENTS

1.0	PL/	PLAN SUMMARY			
2.0	PRI	EVIOUS WASTEWATER PLANNING	2-1		
3.0	PH	PHYSICAL AND DEMOGRAPHIC ANALYSIS			
	3.1	Planning Area	3-1		
	3.2	Physical Characteristics 3.2.1 Stream Basins 3.2.2 Soils 3.2.3 Geology 3.2.4 Public Water Supply 3.2.5 Wetlands	3-1 3-1 3-2 3-3 3-3 3-3		
	3.3	Population	3-4		
	3.4	Land Use	3-4		
4.0	EXIS	STING SEWERAGE FACILITIES			
	4.1	Sewerage Agencies	4-1		
	4.2	Wastewater Treatment Plants	4-1		
	4.3	Collection/Conveyance Sewer System 4.3.1 ENPWJSA Service Area 4.3.1.1 Downstream Intermunicipal Conveyance Facilities 4.3.2 Ambler Service Area 4.3.2.1 Downstream Intermunicipal Conveyance Facilities	4-2 4-3 4-4 4-5 4-6		
	4.4	Pumping Stations 4.4.1 ENPWJSA Service Area 4.4.2 Ambler Service Area	4-7 4-7 4-8		
	4.5	On-Lot Disposal Systems	4-9		
5.0	ASSE	ESSMENT OF CURRENT AND FUTURE FLOWS			
	5.1	Current Flows 5.1.1 Service Connections 5.1.2 Historic Flow Data 5.1.3 Temporary Flow Metering	5-1 5-1 5-2 5-3		

TABLE OF CONTENTS

(continued: page 2 of 4)

	5.2	Infiltration/Inflow	5-4
		5.2.1 Analysis	5-4
		5.2.2 Previous Efforts	5-5
		5.2.3 I/I Control Plan	5-9
	5.3	Wastewater Flow Projections	5-10
		5.3.1 Future Development Potential	5-10
		5.3.2 Flow Projections	5-11
6.0	IDEN	TIFICATION AND EVALUATION OF ALTERNATIVES	
	6.1	Capacity Analysis of Existing Sewerage Facilities	6-1
		6.1.1 WWTP Allocations	6-1
		6.1.2 Pumping Stations	6-1
		6.1.3 Conveyance Sewer System	6-2
	6.2	Identification of Facility Requirements	6-3
7.0	PLA	N DESCRIPTION	
	7.1	Plan Summary	7-1
	7.2	Consistency Determinations	7-1
	7.3	Anticipated Implementation Schedule	7-2
		Capital Financing Plan	7-3
8.0	INST	ITUTIONAL ARRANGEMENTS	8-1

APPENDICES

)

)

Appendix A	Resolution for Plan Revision
Appendix B	Temporary Flow Metering Data
Appendix C	Montgomery County Agency Reviews

Appendix D Comments and Responses

TABLE OF CONTENTS (continued: page 3 of 4)

TABLES

- Table 3-1
 Past and Projected Population Data
- Table 3-2 Existing Land Use
- Table 3-3Zoning Provisions
- Table 4-1 Summary of Sewer Lengths
- Table 4-2Summary of Current Plymouth-Whitpain TransportationAgreement Conditions
- Table 5-1
 Summary of Sewer Connections according to Sewerage Service

 Areas
- Table 5-2
 Summary of Unmetered Intermunicipal Sewer Connections
- Table 5-3 Annual Whitpain Flows to ENPWJSA Plant
- Table 5-4
 Summary of Sewer Connections to Ambler Treatment System
- Table 5-5
 Summary of Temporary Flow Metering
- Table 5-6 Vacant Land Analysis
- Table 5-7
 Determination of Wastewater Treatment Needs

FIGURES

)

- Figure 3-1 Location Map
- Figure 3-2 Physical Characteristics
- Figure 3-3 Water Service Area Map
- Figure 3-4 Demographic Data
- Figure 3-5 Zoning Map
- Figure 4-1 Sewer System Map
- Figure 4-2 Relation of Whitpain and ENPWJSA Sewer Systems
- Figure 4-3 Schematic of Plymouth (Saw Mill) Interceptor
- Figure 4-4 Schematic of ENPWJSA Conveyance Facilities
- Figure 4-2 Relation of Whitpain and ENPWJSA Sewer Systems
- Figure 5-1 Schematic of Flow Meters in ENPWJSA System
- Figure 5-2 Past Whitpain Flows to ENPWJSA System
- Figure 5-3 Probability of Maximum 3-Month Flows
- Figure 5-4 Whitpain Connections to Ambler System
- Figure 5-5 Schematic Plan of ENPWJSA Sewer District Metering
- Figure 5-6 Schematic Plan of Ambler Sewer District Metering

 \cap

TABLE OF CONTENTS (continued: page 4 of 4)

FIGURES (continued)

Figure 5-7	Comparison of Flows in Stony Creek Interceptor
Figure 5-8	Comparison of Flows in ENPWJSA System
Figure 5-9	Comparison of Flows in Mermaid Run Interceptor
Figure 5-10	Comparison of Flows in Prophecy Creek Interceptor
Figure 5-11	Open Space
Figure 6-1	Flows to Township Line and Mermaid Run Pumping Stations
Figure 6-2	Flows to North Wales Road Pumping Station
Figure 6-3	Flows to Beale Road and Butler Pike Pumping Stations

Note: Tables and Figures are located at the end of the respective Chapters.

1

ł

)

1.0 PLAN SUMMARY

Whitpain Township owns and operates a sanitary sewerage system that collects and then conveys the vast majority of the wastewater generated within the Township to two separate wastewater treatment facilities, operated by:

- 1. East Norriton-Plymouth-Whitpain Joint Sewer Authority (ENPWJSA), and
- 2. Ambler Borough.

Whitpain Township also has public sewer systems in small corners of the Township that discharge to the Upper Gwynedd Township Municipal Authority and Whitemarsh Township.

The ENPWJSA is considering a potential rerating and/or expansion of their facility and requires updated information from each of its contributing municipalities regarding projected requirements for wastewater treatment at the plant. As a result of the projections developed in this study, it has been determined that the future needs of Whitpain Township will require the following capacities in the ENPWJSA wastewater treatment plant:

Flow Parameter	Required Capacity
Average Annual Flow	2.37 mgd
Max. 3-Month Flow	3.50 mgd

The capacities of the conveyance sewers and pumping stations in the Whitpain Township sewerage system that are tributary to the ENPWJSA plant are adequate to handle future needs. Upgrading of the Township Line pumping station in 1993 and the Mermaid Run pumping station in 1997 provided sufficient capacity to meet the ultimate needs of the Township.

Whitpain's currently reserved capacity in the Ambler wastewater treatment plant is adequate for the projected future needs of the Wissahickon basin of the Township. Sewerage facilities in that district of the Township's system are also adequate for future needs.

The planning efforts described in this report were conducted under the guidelines and approval of the Pennsylvania Department of Environmental Protection (PADEP).

)

ر

2.0 PREVIOUS WASTEWATER PLANNING

Whitpain Township originally adopted the county-wide *Sewage Facilities Plan* prepared by the Montgomery County Planning Commission in March 1973 as its official Act 537 plan for wastewater facilities in the Township. Studies and engineering evaluations have been performed since then to upgrade the two major pumping stations, which provide the primary means of wastewater conveyance in the Township.

Key planning studies prepared for wastewater facilities include the following:

Mermaid Run Pumping Station, prepared by BCM Engineers, May 13, 1981

This letter-report evaluated alternatives for expanding the capacity of the Mermaid Run pumping station to meet the demands of proposed development. The report specified design criteria for upgrading the station from its original capacity of 850 gpm to 1,200 gpm. The station was subsequently upgraded in 1983.

Infiltration /Inflow Study for the Lower Township Sewer System, prepared by BCM Engineers, June 1986

As part of this study, portable meters were placed in 24 key manholes to monitor flow in 26 sewer subareas of the lower section of the Township, which included a total of 206,500 feet of collector sewers. The study recommended the construction of the Arch Road force main to divert flows from the Township Line pumping station out of the Saw Mill Run interceptor sewer in Plymouth Township.

Flow Analysis of Sheffield Drive Meter, prepared by BCM Engineers, July 25, 1988

This letter-report evaluated the impacts of the Mermaid Run pumping station discharges on the downstream Saw Mill Run interceptor sewer in Plymouth Township. The study concluded that flow rates on the order of 3,300 gpm appear to be related to sewer overloading, but only when sustained for two hours or more. The study also determined the future needs of the Mermaid Run pumping station to be 2,800 gpm.

Township Line Pumping Station, prepared by BCM Engineers, July 7, 1989

This letter-report reviewed existing flows, known development and vacant land within the service area to project an ultimate pumping need of 3,750 gpm. The station was subsequently upgraded to this capacity in 1992.

Act 537 Plan Revision, prepared by BCM Engineers, October 1996

This official Act 537 Plan revision developed projections for the full build-out of Whitpain Township and the sewerage facilities capacities required to meet the needs. The plan concluded that increased capacity would be required in the East Norriton-Plymouth-Whitpain Joint Sewer Authority and Ambler treatment plants to meet future needs. Municipal Wasteload Management Reports are also prepared annually in accordance with PADEP Chapter 94 to document past and projected wastewater flows generated within the Township. This information is included in the reports submitted to PADEP by the governing bodies of the two receiving wastewater treatment plants.

In addition to the preceding studies related to wastewater facilities, the Township has also prepared the following significant planning studies:

Build-Out Population Estimates and Vacant Residential Land Study, prepared by E. Van Rieker, November 1987

As the title implies, this study estimated the ultimate population for the Township based on full build-out of vacant land in accordance with then current zoning provisions.

The Whitpain Township Open Space Plan, prepared by E. Van Rieker, November 1995

Of interest to wastewater facilities planning, this plan inventoried existing open space and vacant land in the Township and evaluated its development potential.

Whitpain Township Comprehensive Plan Update (Draft), prepared by The Waetzman Planning Group, September 2002

This update to the 1984 Comprehensive Plan is intended to function as a guide for growth in the Township and for the development of policies and ordinances. Among the tasks involved in the update was a review of existing open space and vacant land in the Township.

The preceding studies and reports provide a basis of reference for this current planning study.

3.0 PHYSICAL AND DEMOGRAPHIC ANALYSIS

3.1 PLANNING AREA

Whitpain Township is located in Montgomery Township, Pennsylvania, between the Boroughs of Ambler and Norristown, as shown on the Location Map, Figure 3-1. The Township was established in 1701 and includes roughly 12.8 square miles. Three major highways traverse the Township: (a) the northeast extension of the Pennsylvania Turnpike (Route 476), (b) DeKalb Pike (US Route 202), and (c) Skippack Pike (PA Route 73).

The planning area for this Act 537 Plan revision includes the entire Township. As discussed later in this report, the planning area includes both of the two major drainage basins in the Township:

- 1. Schuylkill River basin in the southwestern three-quarters of the township, which is served by the East Norriton-Plymouth-Whitpain Joint Sewer Authority (ENPWJSA) wastewater treatment plant (WWTP), and
- 2. Wissahickon Creek basin in the northeastern quarter of the township, which is served by the Ambler Borough WWTP

The limits of the drainage basins and the related sewerage service areas are shown on Figure 3-2.

3.2 PHYSICAL CHARACTERISTICS

Relevant information pertaining to streams, lakes, drainage basins, topography, flood plains and wetlands has been collected into one resource, using computer mapping. This information is reproduced on Figure 3-2.

3.2.1 Stream Basins

)

As shown on Figure 3-2, there are two primary drainage basins in Whitpain Township:

Significant Tributaries
Stony Creek
Mermaid Run
Saw Mill Run
Willow Run
Prophecy Creek

The Wissahickon Creek also flows ultimately to the Schuylkill River, although not as directly as the other tributary streams do.

3.2.2 Soils

)

)

Soils within Whitpain Township are mapped based on information compiled by the Montgomery County Soils Survey. There are three general soil associations within Whitpain Township:

- ⇒ Lawrenceville-Chalfont-Doylestown association soils are deep, moderately well to poorly drained soils formed in windblown silt deposits. The soils are generally located on undulating uplands. The major soils have formed in a thick mantle of silt deposited by wind over shale, sandstone and other kinds of bedrock.
- ⇒ Abbotstown-Readington-Croton association soils are deep, moderately well drained to poorly drained soils underlain by shale and sandstone. The soils are generally located on undulating uplands. The soils are nearly level or gently sloping. The soils formed in material weathered from red, black and brown hard shale.
- ⇒ Lansdale-Penn-Readington association soils are deep and moderately deep, well and moderately well drained soils underlain by shale and sandstone. The soils are generally located on rolling uplands. The soils are gently sloping to moderately steep in most places. The soils formed in material weathered from sandstone and conglomerate.

These soils are generally located within the following drainage basins of Whitpain Township:

Soil Association	Drainage Basin
Lawrenceville-Chalfont-Doylestown	Stony Creek, Mermaid Run, Saw Mill Run, Prophecy Creek, upper Wissahickon Creek
Abbotstown-Readington-Croton	Stony Creek, upper Wissahickon Creek
Lansdale-Penn-Readington	Saw Mill Run, Prophecy Creek

Soils are generally significant based on their suitability for on-lot disposal systems (OLDS). However, as discussed later in Chapter 4, the vast majority of Whitpain Township is served by public sanitary sewers. Less than 5% of the properties in the Township rely on private OLDS.

3.2.3 Geology

Montgomery County is underlain by sedimentary and metamorphic bedrock. The southern third of the County, including Whitpain Township, has rock that is nearly the oldest in the country. The large majority of Whitpain Township is underlain by:

Stockton formation, consisting of arkosic sandstone, conglomerate and shale, although the northwestern section of the Township, generally west of the railroad tracks, is underlain by:

Lockatong formation, consisting of argillite and shale.

3.2.4 Public Water Supply

Public water is supplied in Whitpain Township primarily by two utilities, the North Wales Water Authority (NWWA) and Pennsylvania American Water Company, although Ambler Borough serves a small portion of the Township. The service areas of the three water suppliers are shown in Figure 3-3 and described as follows:

- North Wales Water Authority supplies the portion of the Township generally east of US Route 202, north of Hoover Road and Stenton Avenue, and west of Lewis Lane. The NWWA also supplies the section west of US Route 202 and north of Morris Road. Public water is supplied from surface water treated at the Forest Park filtration plant in Chalfont, PA. The raw surface water is pumped from the Delaware River at Point Pleasant, PA.
- PA-American Water Company generally supplies the remaining portion of the Township not served by the NWWA and Ambler Borough. Surface water is withdrawn from the Schuylkill River and treated at the company's filtration plant at Norristown, PA.
- Ambler Borough serves a small portion of Whitpain Township, generally east of Lewis Lane and Mount Pleasant Avenue, and north of Skippack Pike (PA Route 73). Ambler relies on groundwater wells for its water supply.

There are also a relatively small number of residents in the more rural areas of the township that rely on private wells for water supply.

3.2.5 Wetlands

)

)

Wetlands within Whitpain Township are based on the generalized delineation prepared by the US Department of Agriculture in the national inventory. These delineated wetlands are shown with other physical characteristics in Figure 3-2.

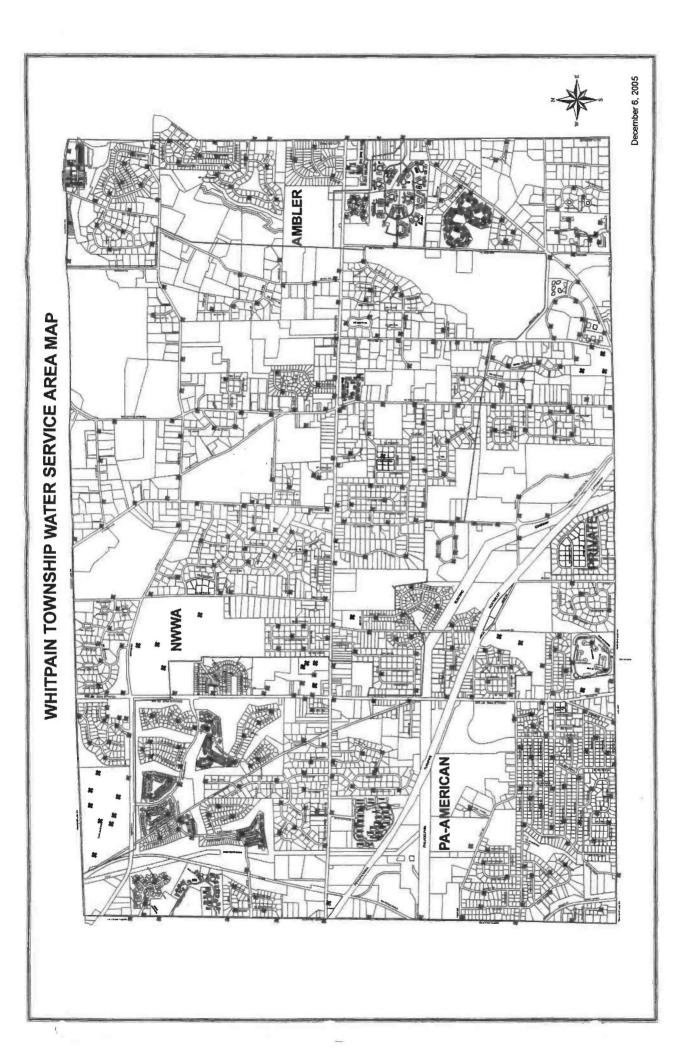
() 3.3 POPULATION

Historic and projected demographic data for Whitpain Township are shown in Table 3-1 and presented graphically in Figure 3-4. The data indicate that substantial growth has occurred in Whitpain Township during the past three decades. Population increased by 19% between 1990 and 2000, as compared to Montgomery County, as a whole, which grew approximately 11% over the same 10-year period.

Housing units increased by 28% increase in the 10-year period from 1990 to 2000. The slower rate of population increase in this period is due to a reduced household size of 2.80 persons per household, following a national trend to smaller household size.

Projections for population growth within the Township during the next three decades have been made by the Delaware Valley Regional Planning Commission, based on past U.S. Census data and land use planning studies. These data indicate that the rate of growth is expected to slow significantly. Population is projected to increase by roughly 4 percent per decade, as shown in Table 3-1.

3.4 LAND USE


)


Existing land use in Whitpain Township is regulated by the current zoning ordinance. Land use was summarized by planning consultants in 1995 and again in 2002, as shown in Table 3-2. A comparison of changes in the Township land use over that time is summarized as follows:

	1995 2002		Change	
Land Use	(acres)	(acres)	(% Total)	(%)
Residential:				
Single Family Detached	3,298		45.4%	
other Residential	617		5.9	
Commercial	642		7.4	
Industrial	195		1.4	
Institutional	616		10.8	
Open Space/Vacant:				
Protected Open Space	361		14.1	
Unprotected Open Space	1,005		12.3	
Vacant	<u>1,458</u>		<u>1.6</u>	
Township Totals	8,192		100.0%	

Current zoning in the Township is presented in Figure 3-5. The provisions of the zoning ordinance are summarized in Table 3-3.

3-4

(

		Population	Housing	Household		
		Decade Change			Size	
Year	(persons)	(persons) (%)		Units	(persons/HU)	
U.S. Census	Bureau					
1970	9,295	0 477	26.6%	2,371	3.92	
1980	11,772	2,477	26.6%	4,045	2.91	
1990	15,673	3,901	33.1%	5,703	2.75	
1992 est.	16,516			5,890		
1994 est.				6,201		
2000	18,562	2,889	18.4%	7,305	2.54	
Delaware Valley Regional Planning Commission (1)						
	1	858	4.6%			
2010	19,420	770	4.0%			
2020	20,190	810	4.0%			
2030	21,000					

TABLE 3-1 PAST AND PROJECTED POPULATION DATA

(1) DVRPC, projections bulletin, March 2005

)

SC Engineers

WHITPAIN TOWNSHIP

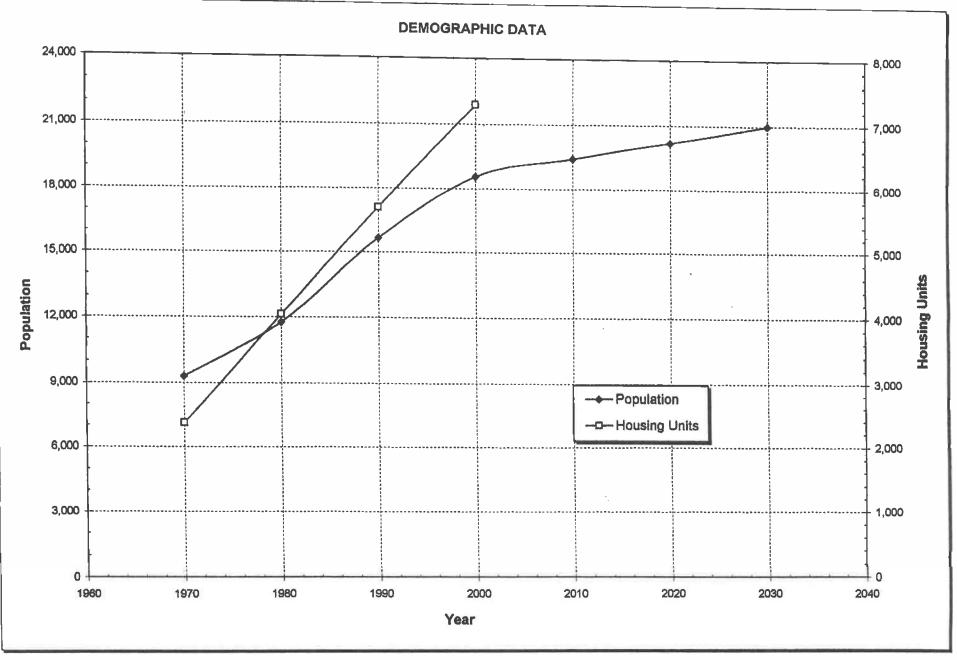
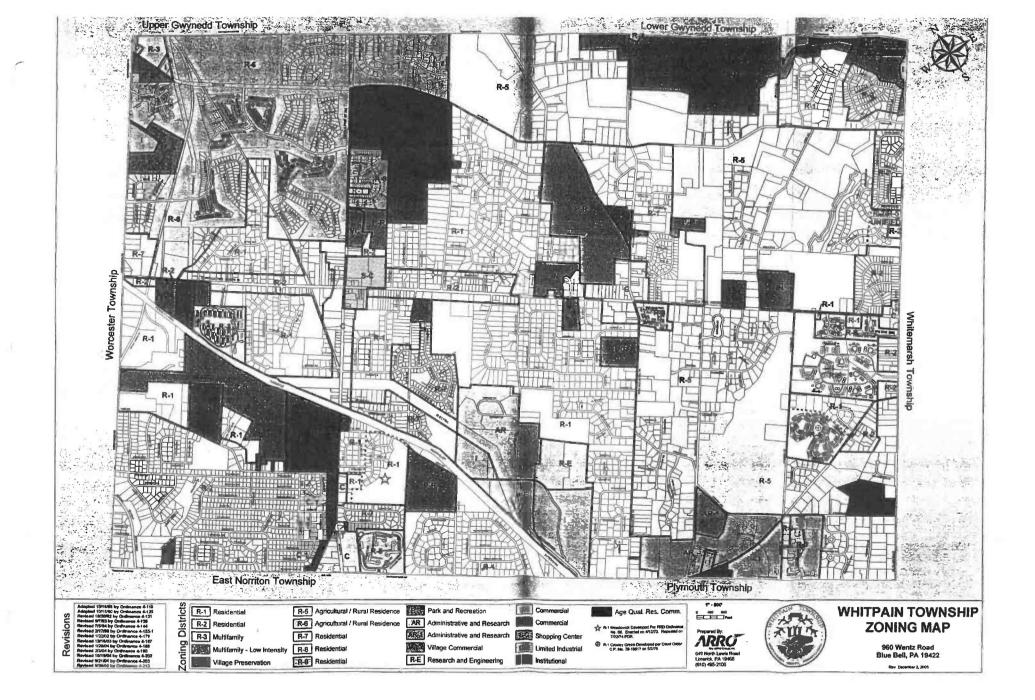


FIGURE 3-4: DEMOGRAPHIC DATA

TABL	E	3-2	
EXISTING	LA	ND	USE


	Land Use					
		1995		2002	Change:	1995-2002
Land Use Category	(acres)	(%Total)	(acres)	(%Total)	(acres)	(%)
Residential						
Single Familly Detached	3,298	40.3%	3,452	45.4%	154	4.7%
Single Familly Attached	366	4.5%				
Multi-Family Apartments	251	3.1%				
Subtotal - Other Residential	617	7.5%	449	5.9%	-168	-27.3%
Total - Residential	3,915	47.8%	3,900	51.3%	-15	-0.4%
Commercial						
Retail			160	2.1%		
Office	470	5.7%	380	5.0%	-90	-19.1%
Mixed Commercial	172	2.1%	<u>23</u>	0.3%		
Total - Commercial	642	7.8%	563	7.4%	-79	-12.4%
Industrial	195	2.4%	106	1.4%	-89	-45.4%
Institutional						
Institutional	355	4.3%	395	5.2%		
Government	8	0.1%				
Utility	<u>253</u>	3.1%	<u>426</u>	<u>5.6%</u>		
Total - Institutional	616	7.5%	821	10.8%	205	33.3%
Open Space/Vacant						
Protected Open Space	361	4.4%	1,072	14.1%	711	197.0%
Wings Field Airport	140	1.7%				
Park and Recreational	865	<u>10.6%</u>				
Unprotected Open Space	1,005	12.3%	935	12.3%		
Vacant	1.458	17.8%	<u>122</u>	<u>1.6%</u>		
Total - Open Space	2,824	34.5%	2,129	28.0%	-695	-24.6%
Miscellaneous			76	1.0%		
TOWNSHIP TOTAL	8,192		7,603	100%		
=	12.80 so	I. miles	11.88 s	q. miles		

Sources:

)

E. Van Rieker, Whitpain Township Open Space Plan, Nov. 1995

Waetzman Planning Group, Comprehensive Plan Update for Whitpain Township, Draft, Sept. 2002

R-1 R-2 R-3	Descript on Residential Cluster Residential Multi-family	Typical Use Single family detached Single family detached Single family detached Multi-family residences	Lot Size (sq. feet) 30,000 22,500	Density* (DU/Ac.) 1.1	Notes w/ 25% open space
R-1 R-2 R-3	Cluster Residential	Single family detached Single family detached		1.1	w/ 25% open space
R-2 R-3	Residential	Single family detached	22,500	1.1	w/ 25% open space
R-3					
	Multi-family	Multi-family residences			
R-4			×	8 5 4 4	Apartments Townhouses Multiplex Duplex
	Village Preservation	West Ambler	4,000		Single family
R-5	Rural Residence	Low density single family	120,000		
R-5 (Cluster	Low density single family	20,000	0.54	based on gross area w/60% open space
R-6 F	Rural Residence	Low density single family	15,000	0.54	based on gross area w/ 65% open space
R-7 F	Residential	Single family detached	15,000	2.47	
R-8 F	Residential	Low density single family atta	ached	2	
R-9 R	Residential	Mobile home parks		4	Υ.
c c	Commercial		6,000		

TABLE 3-3 ZONING PROVISIONS

* Density is based on "developable area", unless indicated otherwise

)

4.0 EXISTING SEWERAGE FACILITIES

4.1 SEWERAGE AGENCIES

Whitpain Township has sole responsibility for providing sewerage service within its municipal borders. However, wastewater treatment is provided primarily by two regional authorities:

Drainage Basin	Wastewater Treatment Authority
Schuylkill	East Norriton-Plymouth-Whitpain Joint Sewer Authority
Wissahickon	Ambler Jointure

Whitpain Township has three seats and voting rights on the East Norriton-Plymouth-Whitpain Joint Sewer Authority (ENPWJSA), which serves the three townships in the title. Whitpain Township has a seat on the Ambler Jointure. However, the Ambler Jointure serves only as an advisory group to Ambler Borough, which is responsible for the operation of the wastewater treatment plant that serves Ambler Borough and Lower Gwynedd, Montgomery, Upper Dublin, Whitemarsh and Whitpain Townships.

Although the preceding two authorities provide wastewater treatment to the vast majority of Whitpain Township, small sections of the Township receive treatment from the following agencies:

Upper Gwynedd Township Municipal Authority serves the A.C.T.S. retirement community and Wyndemere development in the northwestern corner of the Township on Morris Road, between Route 202 and North Wales Road.

Whitemarsh Township serves the 376 apartment units in the Village of Oxford and roughly 16 residences on Pemberton Road in the southeastern corner of the Township. The service area is generally located along Township Line Road between Narcissa Road and Butler Pike.

This report will concentrate on the service areas of the two primary wastewater treatment agencies: the East Norriton-Plymouth-Whitpain Joint Sewer Authority and the Ambler Jointure. There is no significant potential for growth in the Upper Gwynedd nor Whitemarsh service areas.

4.2 WASTEWATER TREATMENT PLANTS

Whitpain Township does not own or operate a wastewater treatment plant (WWTP). The wastewater generated within the Township flows, either by gravity or by pumping station and force main, to one of two separate wastewater treatment facilities, operated by the East Norriton-Plymouth-Whitpain Joint Sewer Authority (ENPWJSA) or Ambler Jointure. Both of these plants are regional facilities, serving multiple municipalities.

4-1

)

)

Treatment Plant	Capacity (mgd)					
	Total	Whitpain				
ENPWJSA	9.3	3.1 (33.3%)				
Ambler Jointure	6.5	0.7 (10.8%)				

Whitpain's reserved capacity in each plant may be summarized as follows:

The ENPWJSA WWTP is located in Plymouth Township. The plant provides advanced secondary treatment and discharges treated effluent to the Schuylkill River. In accordance with the terms of its NPDES Permit (No. 0026816), the plant is rated to handle an average annual flow of 8.1 mgd and has a hydraulic capacity of 9.3 mgd during maximum monthly conditions. The WWTP also has an organic capacity of 15,540 pounds per day (ppd) of BOD₅. The treatment process employed at the ENPWJSA plant combines an older trickling filtration plant with a newer activated sludge plant. Sludge handling facilities consist of gravity thickening, belt filter press dewatering, with final disposal by incineration. The plant serves all of East Norriton Township, the majority (about 85%) of Plymouth Township, and roughly $\frac{3}{4}$ of Whitpain Township.

The Ambler Jointure WWTP is located on Church Street in Upper Dublin Township. The plant provides tertiary treatment and discharges treated effluent to the Wissahickon Creek. The plant is rated to handle a hydraulic capacity of 6.5 mgd and an organic loading of 10,800 ppd of BOD₅, according to NPDES Permit No. 0026603. The treatment process employed consists of primary and secondary clarification, trickling filtration, attached growth nitrification, microscreening, ultraviolet disinfection and cascade aeration. Sludge handling facilities consist of anaerobic digestion and belt filter press dewatering, with final disposal by landfilling. The plant serves all of Ambler Borough and Lower Gwynedd Township, and portions of Montgomery, Upper Dublin, Whitemarsh and Whitpain Townships.

4.3 COLLECTION/CONVEYANCE SEWER SYSTEM

There are over 112 miles of sewers in the Whitpain Township system. A summary of current sewer lengths is presented in Table 4-1 and contains the following pipe:

Pipe Diameter		Length	(feet)	
(inches)	ENPWJSA	Ambler	other	Total
8	373,330	141,610	18,250	533,000
10	5,390	5,880	,	11,265
12	8,230	1,760		9,990
15	11,890	4,190		16,080
18	12,330	11,860		24,190
24	<u>640</u>			640
Total	411,810	165,300	18,250	595,360
(miles)	78.0	31.3	3.5	112.8

J

)

As shown in the preceding tabulation and in Table 4-1, roughly 70% of the Whitpain sewers discharge to the ENPWJSA system. Another 27% of the Whitpain sewers discharge to the Ambler system, with the remaining 3% discharging to the Whitemarsh or Upper Gwynedd systems. The sewerage system in Whitpain Township is presented in Figure 4-1 and described in the following sections.

4.3.1 ENPWJSA Service Area

The collector sewer system in the ENPWJSA service area of Whitpain Township was originally constructed in 1966. These original six construction contracts included:

- a. 98,900 feet of 8-inch collector sewers in the Stony Creek basin, including Whitpain Manor, Washington Square Heights, Center Square Green, Dekalb Farms, and Meadowlands Manor
- b. 11,700 feet of interceptor sewer along the Stony Creek, ranging in diameter from 12 to 24-inch and extending from the pumping station at Township Line Road to Dekalb Pike (Route 202)
- c. Township Line pumping station
- d. 47,400 feet of 8-inch collector sewers in the Mermaid Run basin, including Mermaid Estates, Dekalb Park, and Blue Bell Garden
- e. 11,200 feet of interceptor sewer along the Mermaid Run, ranging in diameter from 10 to 18-inch and extending from the Mermaid Run pumping station at Township Line Road to Skippack Pike (Route 73)
- f. Mermaid Run pumping station
- g. Stenton Avenue ejector station (decommissioned in 1990's)

Sewers have been added throughout the intervening years, generally to accommodate residential development. The Whitpain sanitary sewer system tributary to the ENPWJSA treatment plant is summarized according to the five sewer sub-basins as follows:

	Sewer Basin	. 8			(feet), by 15	Pipe Dia 18		Tetal	No. MH
A	Stony Creek	221,930	2,810	7,230	3,270	6,310	640	242,190	1,104
B	Mermaid Run	109,940	2,580	1,000	8,620	4,370	0	126,510	514
C	Sheffield Dr. Meter	5,890	0	0	0	1,650	0	7,540	26
D	Walton Rd. Meter	25,590	0	0	0	0	0	25,590	123
E	Narcissa Road PS	<u>6,980</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	6,980	<u>30</u>
	Totals	373,330	5,390	8,230	11,890	12,330	640	411,810	1,797

Flows from the collector sewer system are conveyed by two primary interceptor sewers. The Stony Creek and Mermaid Run interceptor sewers drain to the Township Line and Mermaid Run pumping stations, respectively. Descriptive data for the interceptor sewers are presented in the following tabulation:

SC Engineers

)

Name/Location	Length (feet)	Pipe. Diam	Limiting Capacity (mgd)
Stony Creek Interceptor	11,930	12"-24"	5.0
Mermaid Run Interceptor	12,985	15"-18"	4.0

There are also additional trunk sewers that convey flows from sewer system sub-areas. An 8-inch sewer in Jolly Road carries flows from an industrial/commercial zone, primarily including Unisys Corporation, to the Sheffield Drive meter chamber (sub-area C). A 10-inch sewer in Penllyn Pike conveys flows from sub-area D to the Walton Road meter chamber.

4.3.1.1 Downstream Intermunicipal Conveyance Facilities

Flows from Whitpain are conveyed to the East Norriton-Plymouth-Whitpain Joint Sewer Authority (ENPWJSA) plant by a series of sewerage facilities, including (a) the Saw Mill interceptor sewer, owned by Plymouth Township, (b) the Saw Mill Run pumping station, and (c) the Ross Street interceptor sewer, as shown in Figure 4-2. The latter two facilities are owned and operated by the ENPWJSA.

) Saw Mill interceptor sewer conveys wastewater flows from both Whitpain and Plymouth Townships from Township Line Road to the Saw Mill Run pumping station. The Saw Mill interceptor sewer was constructed circa 1960 and the upper portion includes two major branches: (1) a 10-inch branch sewer conveys flows from Whitpain's Walton Road meter chamber and (2) an 18-inch branch sewer conveys flows from Whitpain's Sheffield Drive meter chamber. The interceptor includes over 16,800 feet of 10- through 24-inch sewer, as shown in the subsequent tabulation.

The use of the interceptor is governed by the Plymouth-Whitpain Transportation Agreement dated October 5, 1959. The intermunicipal Agreement has been amended periodically, most significantly on November 24, 1980 (Amendment No. 3). The intermunicipal Agreement delineates the interceptor into five segments, as shown schematically in Figure 4-3, and contains two major provisions: (1) it establishes maximum flow limits for discharge to the interceptor segments and (2) it allocates percentages for sharing the maintenance and repair costs of the Saw Mill interceptor segments. The provisions of the original 1959 Agreement, as amended, are summarized in Table 4-2.

An analysis of connections to each segment of the Saw Mill interceptor performed in 2004 is summarized as follows:

		Pipe		Whitpain	Sewer Connections				
	Sewer Segment		Length	Agreed	Whit	tpain 🛛	Plymouth		
No	Name	(inches)	(feet)	Share	(EDU)	(%)	(EDU)	(%)	
D	Township Line Rd.	8		0%	35	14%	214	86%	
A	Walton branch (upper)	10	2,770	46.0%	561	47%	637	53%	
C	Walton branch (lower)	10	4,150	46.0%	561	40%	853	60%	
E	Sheffield branch	18-21	4,230	74.5%	2,191	84%	418	16%	
B	Saw Mill Interceptor	24	5,650	80.1%	2,752	53%	2,448	47%	

Saw Mill Run pumping station, owned by the ENPWJSA, is located on Johnson Highway, just west of Arch Road. The station receives the entire wastewater flows from Whitpain and East Norriton Townships and the major portion of flows from Plymouth Township. The station has two distinct sides: (1) the older, eastern section was constructed in 1959 and has three pumps and (2) the western section was constructed in 1978 and also has three pumps. The wetwells for the two sections are interconnected by a sluice gate, allowing the optimum use of all pumps. With five of the six pumps operating, the station is reported to have a capacity of 18.1 mgd. The station discharges flows through two 24-inch force mains from each side of the station. The force mains discharge flow to interceptor sewers primarily in Fairfield Road and Ross Street.

ENPWJSA interceptor sewers convey flows from the Saw Mill Run pumping station to the WWTP. The sewers are shown schematically in Figure 4-4 and include roughly 6,700 feet of sewer ranging in diameter from 18 to 36 inches. The interceptor sewers discharge flows to the WWTP.

4.3.2 Ambler Service Area

)

J

The collector sewer system in the Ambler service area of Whitpain Township was originally constructed in 1961 in the West Ambler section of the Township and along Butler Pike between Skippack Pike and the Wissahickon Creek. The original three construction contracts included:

- a. 27,650 feet of 8-inch and 5,945 feet of 10-inch collector sewers in West Ambler, Mercer Hill Village, Graystone Farms, and Broad Axe Village
- b. 1,910 feet of 18-inch interceptor sewer along the Prophecy Creek
- c. Skippack Pike pumping station
- d. 2,790 feet of 15-inch and 4,250 feet of 18-inch interceptor sewer along the Wissahickon Creek, jointly financed by Whitpain and Lower Gwynedd Townships

Sewers have been added throughout the intervening years, generally to accommodate residential development. One significant improvement was the construction in 1987 of the Prophecy Creek interceptor sewer from Skippack Pike to the existing interceptor near Morris Road. The construction of this interceptor allowed the abandonment of the Skippack Pike pumping station. A summary of current sanitary sewer system tributary to the Ambler treatment plant is summarized according to the three service areas as follows:

)

)

10 F.		Sewer Length (feet), by Pipe Diameter No.							
	Sewer Basin	8	10	12	15	18	Total	MH	
1	Prophecy Creek	122,170	5,880	1,760	4,190	11,860	145,860	604	
2	Willow Run	12,430	0	0	0	0	12,430	44	
3	Wissahickon Creek	7,010	0	0	0	0	7,010	<u>31</u>	
	Totals	141,610	5,880	1,760	4,190	11,860	165,300	679	

Flows from roughly 90% of the current connections in the Ambler service area of the Whitpain sewer system drain to the 18-inch Prophecy Creek interceptor sewer. The Prophecy Creek interceptor sewer discharges Whitpain flows to the joint Wissahickon Creek interceptor. An 8-inch trunk sewer in Skippack Pike (PA Route 73) conveys flows from the Willow Run basin and the Beale Road pumping station to the Prophecy Creek interceptor sewer. A 10-inch trunk sewer along Butler Pike conveys flows to the Prophecy Creek interceptor, upstream of Morris Road. Descriptive data for these trunk and interceptor sewers in the Ambler service area are presented in the following tabulation:

			Limiting Section		
Interceptor Sewer	Length (feet)	Pipe Diam.	Capacity (mgd)	Slope	
Skippack Pike trunk sewer	4,265	8"	1.0	0.016	
Butler Pike trunk sewer Prophecy Creek interceptor	3,040 5,925	8"-10" 18"	0.9 3.9	0.004 0.0012	

There is no interceptor sewer along the Willow Run stream. Existing sewers in this drainage subbasin flow to the Beale Road pumping station, which discharges the wastewater to the Prophecy Creek sewer system.

4.3.2.1 Downstream Intermunicipal Conveyance Facilities

Flows from the Whitpain collector sewer system are conveyed to the Ambler treatment plant by the joint Wissahickon Creek interceptor sewer.

The joint interceptor sewer along the Wissahickon Creek serves primarily Whitpain Township and the Lower Gwynedd Township Municipal Authority (LGTMA). The joint interceptor includes approximately 7,475 feet of 15-inch and 18-inch sewer that extends from above Mount Pleasant Avenue to the Ambler wastewater treatment plant (WWTP). The sewer was originally constructed circa 1960 by Whitpain Township. Upstream of Butler Pike, the joint interceptor receives flows from both Whitpain and the LGTMA. Upper Dublin Township discharges to the joint interceptor downstream of Butler Pike.

An intermunicipal agreement dated December 16, 1959, with subsequent amendments, governs the use of the Ambler WWTP and the joint Wissahickon Creek interceptor. According to the

intermunicipal agreement, the joint Wissahickon Creek interceptor is defined to have a capacity of 2.58 mgd, with the following municipal allocations:

Municipality	Capacity (gpd)
Whitpain Township	1,125,000
Lower Gwynedd Township	1,388,000
Upper Dublin Township	67,500
Total	2,580,500

The intermunicipal agreement also assigns maintenance responsibility to Whitpain Township, which can then assign any maintenance/repair costs to the contributing municipalities.

The intermunicipal agreements regarding the Ambler WWTP and the joint interceptor do not require the installation of flow meters. The requirement for metering of the joint interceptor flows was included in a recent agreement regarding the service of Plymouth Road and Lantern Lane in Whitpain Township by the parallel LGTMA interceptor that extends along the Wissahickon Creek from Township Line Road, west of Penllyn Pike, to the Ambler WWTP.

4.4 PUMPING STATIONS

)

J

4.4.1 ENPWJSA Service Area

There are three major pumping stations in the ENPWJSA service area:

Pumping Station	Drainage Basin	Capacity (gpm)	No. of Pumps	Year of Construction
North Wales Road	Stony Creek (A)	615	2	1994
Township Line	Stony Creek (A)	3,750	3	1967
Mermaid Run	Mermaid Run (B)	2,800	2	1967

North Wales Road pumping station is located on North Wales Road, north of Skippack Pike (PA Route 73). The station began operation in January 1995 and is a dry well/wet well type. The station serves the western portion of the Blue Bell Country Club (which drains toward Worcester Township) and the Yorkshires development. The station discharges flows through an 8-inch force main in North Wales Road to a sewer south of Yost Road, which ultimately drains to the Township Line pumping station.

Township Line pumping station is located on Township Line Road at Erbs Mill Road, east of North Wales Road. The station is a dry well/wet well type and serves the entire Stony Creek basin. The most recent upgrading of the station was substantially completed in August 1993, when the two pre-existing pumps were replaced with three new pumps. The station discharges flows through an

18-inch force main in Township Line Road and Arch Road to the Saw Mill Run pumping station, which is owned and operated by the ENPWJSA.

Mermaid Run pumping station is located on Township Line Road between Dekalb Pike (US Route 202) and Arch Road. The station is a dry well/wet well type and serves the entire Mermaid Run basin. An upgrading of the Mermaid Run station began in June 1996 and was completed in July 1997. A new 18-inch force main, paralleling the original 12-inch force main, was also completed by the end of 1996. The station discharges flows through the new force main in Township Line Road to an 18-inch gravity sewer at Sherwood Drive, which drains to the Sheffield Drive meter chamber.

The Township Line and Mermaid Run stations pump the large majority of Whitpain flows to the ENPWJSA plant as shown schematically in Figure 4-2. The Township Line pumping station discharges directly to the ENPWJSA system at the Saw Mill Run pumping station owned by them. The Mermaid Run pumping station discharges flow to the Sheffield Drive meter chamber, which includes a small gravity flow area in addition to the flows from the Mermaid Run service area. Another small gravity flow area, serving primarily commercial offices, discharges through the Walton Road meter chamber.

4.4.2 Ambler Service Area

١

J

la es			Force Main			
Pumping Station Name/Location	Capacity (gpm)	Metered (Yes/No)	Length (feet)	Diameter (inches)		
Beale Road PS	200	No *	3,920	6		
Butler Pike PS	54	No *	3,100	21/2		
Twp. Line Road PS		No *		11/2		

There are three small pumping stations in the service area tributary to the Ambler plant:

* Pump operating times are recorded daily.

Beale Road pumping station is located at the end of Beale Road, east of Penllyn Pike, in the Willow Run basin of the Township. The station had been an ejector type with a rated capacity of 80 gpm. Construction was initiated in August 2002 to replace the old ejector station with a submersible pumping station. The current submersible station has a capacity of 200 gpm and was placed in operation in March 2003. The station discharges wastewater through a 6-inch force main to a gravity to a sewer in Skippack Pike, east of Penllyn Pike. The sewer in Skippack Pike flows to the Prophecy Creek interceptor sewer. The station is not metered, but motor starts are recorded by a counter.

Butler Pike pumping station is located on Butler Pike between Stenton Avenue and Norristown Road and began operation in February 2000. The station discharges wastewater to a sewer in Norristown Road. The station serves the Devonshires development and has a capacity of 54 gpm with one of the two pumps operating. The station is not metered, but operating times are recorded.

4-8

)

)

)

Township Line Road pumping station is located on Township Line Road east of Plymouth Road and began operation in June 2001. The station is a submersible grinder pump station that discharges wastewater through a 1¹/₂-inch force main to a sewer in Lantern Lane. The station serves roughly 10 houses in both Whitpain Township and bordering Lower Gwynedd Township. The station is not metered, but operating times are recorded.

4.5 ON-LOT DISPOSAL SYSTEMS

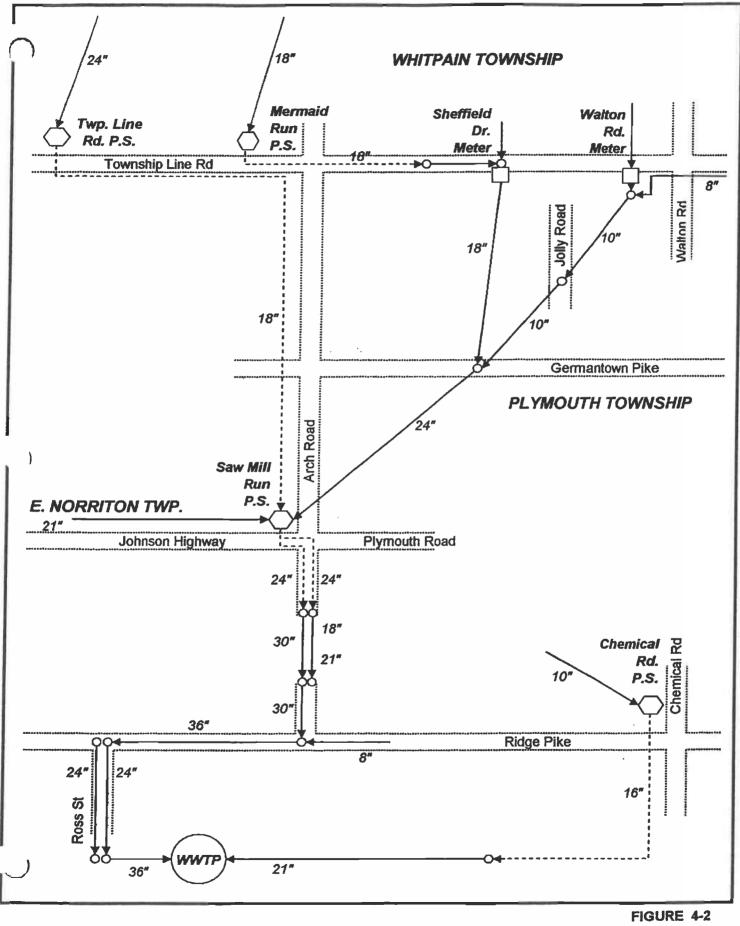
There are only a relatively few isolated residences that are served by on-lot disposal systems. The Township is almost entirely served by public sanitary sewers.

The isolated sections of the Township served by on-lot disposal systems (OLDS) include:

- a. Morris Road near North Wales Road, including roughly five residences and two commercial establishments (Continuous Farms and Reit Fuel Oil)
- b North Wales Road and Skippack Pike, including roughly ten residences and two commercial establishments (Miller Contractors and Pileggi Trucking)
- c. North Wales Road north of Township Line Road, including roughly five residences
- d. Holly, Barby and Plymouth Roads, located southwest of the intersection of Morris Road and Penllyn Pike, which include roughly twenty-five residences
- e. Morris Road and Mathers Mill Road, including roughly twenty residences
- f. Butler Pike, south of Norristown Road, which includes roughly five residences
- g. Butler Pike, between Stenton Avenue and Township Line Road, which includes roughly six residences

The first three OLDS sections are located within the ENPWJSA sewerage service area; the next four sections are located within the Ambler service area; and the last section is located within the Whitemarsh service area.


The following tabulation indicates the number of properties that continue to rely on private OLDS for service as of December 2005. The total represents less than 5 percent of the total Township properties.


	Properties
Sewer Service Area	Served by OLDS
ENPWJSA	135
Ambler	156

There have been no indications of OLDS malfunctions. However, Township policy has been to extend public sewerage service to OLDS areas as the opportunity and need present. For example, the Township extended public sewers to roughly 55 residences along Plymouth Road and Lantern Lane in 2000.

	Connections								No. of
Service Area/Basin	(parcels)	8	10	12	15	18	24	Total	Manholes
EAST NORRITON-PLYMOUTH-	WHITPAIN JOINT	SEWER AU	THORITY						
Stony Creek Basin (A)	3,080	221,936	2,809	7,230	3,270	6,310	640	242,195	1,104
Mermaid Run Basin (B)	1,567	109,946	2,580	1,000	8,619	4,366	0	126,511	514
Sheffield Drive Meter (C)	41	5,890	0	0	0	1,650	0	7,540	26
Walton Road Meter (D)	217	28,587	0	0	0	0	0	28,587	123
Narcissa Rd PS (E)	35	6,978	0	<u>0</u>	Q	0	0	6,978	30
ENPWJSA Total	4,940	373,337	5,389	8,230	11,889	12,326	640	411,811	1,797
AMBLER JOINTURE									
Prophecy Creek Basin (1)	1,519	122,170	5,877	1,758	4,190	11,861	0	145,856	604
Willow Run Basin (2)	130	12,431	0	0	0	0	0	12,431	44
Wissahlckon Creek Basin (3)	21	7,010	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	<u>0</u>	7.010	31
Ambler Total	1,670	141,611	5,877	1,758	4,190	11,861	0	165,297	679
WHITEMARSH	34	7,474	0	0	0	0	0	7,474	34
UPPER GWYNEDD	79	10,777	0	0	0	0	0	10,777	58
TOWNSHIP TOTALS	6,723	533,199	11,266	9,988	16,079	24,187	640	595,359 112.8 miles	2,568

TABLE 4-1 SUMMARY OF SEWER LENGTHS

RELATION OF WHITPAIN AND E.N.P.W.J.S.A. SEWER SYSTEMS

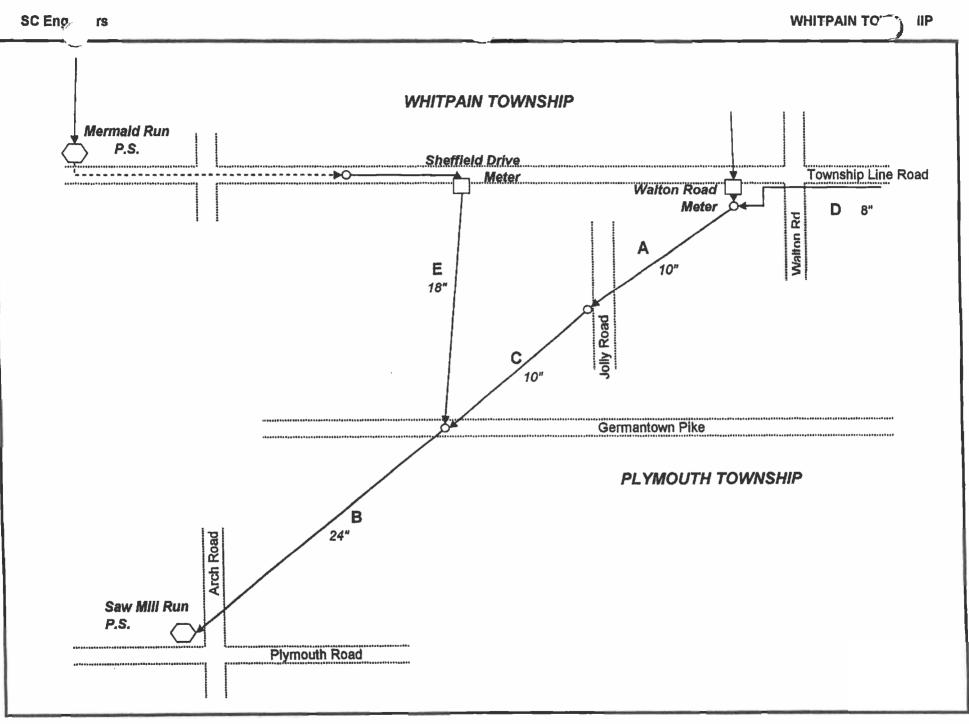


FIGURE 4-3: SCHEMATIC OF PLYMOUTH (SAW MILL) INTERCEPTOR

TABLE 4-2
SUMMARY OF CURRENT PLYMOUTH-WHITPAIN TRANSPORTATION AGREEMENT CONDITIONS
INCLUDING AMENDMENTS NO. 3 AND 5

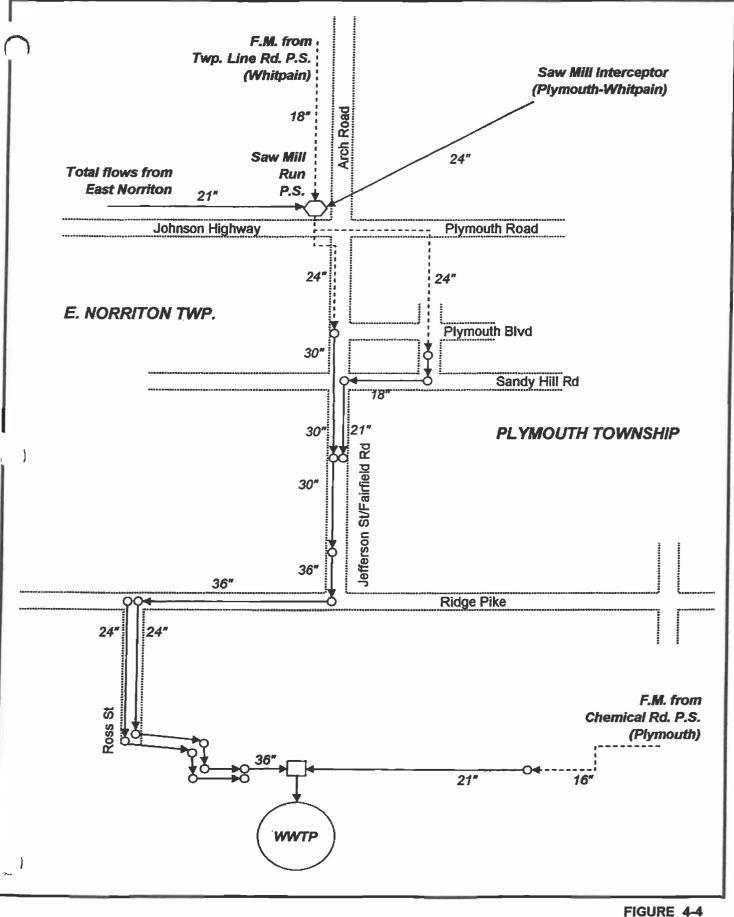
D.	Name 🔬 🤌	Ceographic A	Quant. (mgd)	Max. Rate (gpm)	(%)	Diam. (inches)	Туре		Limiting Slope	Capac (mgd)	(gpm)
		1,070' above Walte	on Rd.								
)	Township Line Rd.	Twp. Line Rd.									
Ą	Walton branch	Jolly Road	0,1	319	46.0%	10		2,770	0.003	0.776	539
C	Walton branch	Germantown Pk.	0.1	319	46.0%	10		4,150	0.003	0.776	539
-	and the second	Twp. Line Rd.				1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 - 1970 -					
E	Sheffield branch	Germantown Pk.	1.9	2,840	74.5%	,18	RCP	4,230	0.004	4.294	2,982
B	Saw Mill Interceptor	Arch Road	2.0	3,159	80.1%	24	RCP	5,650	0.003	8.009	5,562
	Pumping Station	/ ion rioda	3,1								

Max. Rates (5 days/month for 5/12 months) were specified as follows:

Walton Road segment = 319 gpm

all other sources = 2,840 gpm

2 Amendment No. 5 dated 14-Feb-89 contained the following provisions:


Peak flow rates were specified as follows: Sheffield Meter discharges:

Design Peak Flow = 2,840 gpm

(2 hrs/day for 2/30 days) 3,100 gpm → commence corrective action sewer overflow → impose moratorium on connections Walton Meter discharges: (3 hrs/day for 5/30 days) 360 gpm → prepare plans for corrective action (3 hrs/day for 5/30 days) 400 gpm → commence work on corrective action

(1 hr/day for any 1 day) 440 gpm \rightarrow impose moratorium on connections

3 Sewer Capacity is based on Manning roughness coefficient (n) = 0.013 and assumed slope of 0.003 for segments A, B, C

