

THOMAS T. NIESEN Direct Dial: 717.255.7641 tniesen@tntlawfirm.com

May 6, 2020

Via Electronic Filing

Rosemary Chiavetta, Secretary Pennsylvania Public Utility Commission Commonwealth Keystone Building 400 North Street Harrisburg, PA 17105-3265

# In re: Docket No. A-2019-3015173

Application of Aqua Pennsylvania Wastewater, Inc. pursuant to Sections 1102, 1329 and 507 of the Public Utility Code for Approval of its Acquisition of the Wastewater System Assets of the Delaware County Regional Water Quality Control Authority

Dear Secretary Chiavetta:

We are counsel to Aqua Pennsylvania Wastewater, Inc. ("Aqua" or "Company") in connection with its above referenced Application, filed with the Public Utility Commission on March 3, 2020, pursuant to Sections 1102, 1329 and 507 of the Public Utility Code, for approval of the acquisition of the wastewater system assets of the Delaware County Regional Water Quality Control Authority. The Bureau of Technical Utility Services is reviewing the Application and has asked that we address certain requests for additional information. Several of the requests are addressed hereinafter. Requests not addressed in this letter will be addressed in a later submission.

# **INFORMATION REQUEST 1:**

Checklist Item No. 7 – The Application's Exhibit S1 – GF Service Agreement and Invoices contains only a copy of a service agreement and does not include copies of any invoices quantifying the total fees paid to Gannet Fleming Valuation and Rate Consultants, LLC (GF) for services rendered. Please quantify the total amount paid to GF.

# **RESPONSE:**

Please see Application Exhibit U3, p. 8, and Application Exhibit X, p. 7.

# **INFORMATION REQUEST 2:**

Checklist Item No. 7 - The Application's Exhibit S1 - GF Service Agreement and Invoices contains only a copy of the service agreement and does not provide invoices supporting the total amount paid to GF. Please provide a copy of all invoices supporting the total amount paid to GF.

# **RESPONSE:**

A copy of the Gannett Fleming invoices supporting the amount paid to Gannett Fleming are included with this letter.

# **INFORMATION REQUEST 6:**

Checklist Item No. 17.a. – The Application's Exhibit U2, Appendix A, Page 2 of 11 does not state the number of Minimum Account customers under the Western Retail Class. Please state the number of Minimum Account customers under the Western Retail Class.

# **RESPONSE:**

The number of minimum accounts included within the Western Retail Class are 3,869.

# **INFORMATION REQUEST 7:**

Checklist Item No. 17.a - The Application does not quantify the future number of connections anticipated for the Springhill Farms wastewater system in the next five years. Please identify the number of connections anticipated within the next 5 years for the Springhill Farms wastewater system.

# **RESPONSE:**

DELCORA does not have the number of customers connections anticipated for Springhill Farms for the next five years as Springhill Farms was not previously required to file Chapter 94 reports with the Pennsylvania Department of Environmental Protection ("DEP"). However, DELCORA has provided a best estimate of five additional customer connections in the next five years. More information will become available when DELCORA files the first Chapter 94 Report for the Springhill Farms system in 2021.

# **INFORMATION REQUEST 16:**

Checklist Item No. 18.d. – The Application's Exhibit H indicates that the DELCORA Western Wholesale customer class is billed \$2.87 per thousand gallons and the DELCORA EDU Wholesale customer class is billed \$2.89 per thousand gallons. The Application's Exhibit U2, Appendix A, Page 2 appears to indicate APW is proposing a new APW Western Wholesale customer class to include both the DELCORA Western Wholesale and DELCORA EDU Wholesale customer classes. Please provide an amended version of the Application's Exhibit 111 to include a copy of the notification sent, or which will be sent, to the APW Western Wholesale customer class to describe the filing and the anticipated effect on rates for both the DELCORA EDU Wholesale and DELCORA Western Wholesale subclasses.

# **RESPONSE:**

Application Exhibit U2, Appendix A, Page 2 is not proposing a new combined customer class or rate zone. Resolution 2019-21 is for the Western Wholesale Users. This is the only Resolution that was broken out into 2 Rate Zones because of "customer type". Currently the

May 6, 2020 Page 3

> Resolution covers Boeing Corporation, Harrah's Racino, Eddystone Borough, Lower Chichester Township and Southern Delaware County Authority. Boeing Corporation & Harrah's are in Rate Zone 12-C since they are Commercial/Industrial businesses. Eddystone Borough, Lower Chichester Township and Southern Delaware County Authority are in Rate Zone 12-H, Group H-2 since they are larger townships/authorities. Resolution 2019-22 is for EDU Wholesale Users which includes portions of Brookhaven Borough and portions of Nether Providence. This Resolution is covered under Rate Zone 12-H, Group H-3.

# **INFORMATION REQUEST 17:**

Checklist Item No. 20.b. - The Application's Exhibits M1 through M5 and Exhibits N1 through N3 do not contain a copy of all National Pollution Discharge Elimination System (NPDES), Water Quality Management (WQM), and Water Quality Management General (WQG) Permits listed in the Application's Exhibit B-1, Schedule 4.14. Please provide a copy of the following NPDES, WQM, and WQG permits listed in the Application's Exhibit B-1, Schedule 4.14:

- WQM Permit #2316401 a.
- b. WQG-02 Permit #WQG02231419
- WOG-02 Permit #WOG02231810 T-1 c.
- WQG-02 Permit #WQG02231310 d.
- WOM Permit #2312401 e.
- f. NPDES Permit #PA0020575
- WQM Permit #2318401 g.
- WQM Permit #2374402 h.
- WQG-02 Permit #WQG02231510 i.
- WQG-02 Permit #WQG02230908 į.
- WQM Permit #2309410 k.
- 1. WOM Permit #2374403
- WQM Permit #2372406 m.
- WQM Permit #2304406 n.
- WQM Permit #2303403 0.
- WQM Permit #2372408 p.
- WQM Permit #2390404 q.
- WOM Permit #2392403 r.
- WQM Permit #2393401 s.
- WQM Permit #2399040 t.
- WQM Permit #2305406
- u. WQM Permit #2307402 v.
- WOM Permit #2307402-A1 w.
- WQM Permit #2308402 х.
- WOM Permit #2309406 у.
- WOM Permit #WOM1505419 z.
- aa. WOM Permit #WQM2316401

## bb. WQM Permit #2316406

### **RESPONSE:**

The requested permits are included with this letter. Please note the following clarifications: (1) Item d. was a typo on Application Exhibit B1, Schedule 4.14, which should have read "WQM Permit #WQG02231301" and was included in the Application as Exhibit M1; (2) Items e. and f. relate to the Rose Valley Treatment Plant that was decommissioned and replaced with a pump station in September 2018 and are therefore no longer necessary; (3) Item t. is misstated as "WQM Permit #2399040" in the data request and should be "WQM Permit #2399404"; and (4) Item aa. is a duplicate of item a., and, therefore, will be removed.

## **INFORMATION REQUEST 21:**

Checklist Item No. 22.a – The Application's Exhibits A4 and A6 indicate DELCORA serves customers in Upper Providence Township, Woodlyn Township, Brookhaven Borough, and Upper Chichester Township. Please demonstrate compliance with the Act 537 Plans for these municipalities.

## **RESPONSE:**

Upper Providence Township, Brookhaven Borough, and Upper Chichester Township all adopt the DELCORA Western 537 Plan. Please see Application Exhibit P2, DELCORA Western Service Area Act 537 Plan - Chester Ridley Creek Update Appendix D for resolutions adopting the DELCORA 537 Plan. Woodlyn is not a Township, but a census designated area. The area of Woodlyn is part of Ridley Township. Ridley Township adopts the DELCORA Eastern Service Area Act 537 Plan. Please see Application Exhibit P1, DELCORA 2002 Eastern Plan of Study.

# **INFORMATION REQUEST 22:**

Checklist Item No. 22.b – The Application's Exhibits A4 and A6 indicate DELCORA serves customers in Upper Providence Township, Woodlyn Township, Brookhaven Borough, and Upper Chichester Township. Please provide copies of the DEP-approved Act 537 Plans that include these municipalities.

### **RESPONSE:**

Please see the response to Information Request 21, above.

### **INFORMATION REQUEST 23:**

Checklist Item No. 22.b – Please provide a copy of the report titled, Act 537: Sewage Facilities Plan, Municipal & Authority Inflow and Infiltration Study, Summary Report (March 2000, revised July 2000), incorporated in the 2002 "Delaware County Act 537 Plan Update – Eastern

Plan of Study" by reference on Page 3-19 of the Application's Exhibit P1 – Eastern Service Area Act 537 Plan.

# **RESPONSE:**

A copy of the Act 537: Sewage Facilities Plan, Municipal & Authority Inflow and Infiltration Study, Summary Report (March 2000, revised July 2000) is included with this letter.

#### **INFORMATION REQUEST 24:**

Checklist Item No. 22.b – Please provide a copy of the DELCORA Long -Term CSO Control Plan, City of Chester Combined Sewer System, April 1999, incorporated in the 2002 "Delaware County Act 537 Plan Update – Eastern Plan of Study" by reference on Page 5-11 of the Application's Exhibit P1 – Eastern Service Area Act 537 Plan.

# **RESPONSE:**

A copy of the DELCORA Long -Term CSO Control Plan, City of Chester Combined Sewer System, April 1999, is included with this letter.

# **INFORMATION REQUEST 25:**

Checklist Item No. 22.e – The Application provides web links to the Chester and Delaware County Comprehensive Plans but does not indicate whether it complies with the comprehensive plans of all affected municipalities and counties. Please provide a statement verifying the Application complies with the comprehensive plans of all the affected municipalities and counties.

## **RESPONSE:**

The Company is not requesting service territory beyond the existing plant footprint. Please see Application Paragraph 51.

# **INFORMATION REQUEST 26:**

Checklist Item No. 24.b. – The Asset Purchase Agreement (APA), provided as the Application's Exhibit B1, does not include copies of Exhibits B, C, and D identified on page one of the APA. Please provide copies of these missing exhibits.

# **RESPONSE:**

Please see Exhibits B, C, and D of Application Exhibit B1 included with this letter.

#### **INFORMATION REQUEST 29:**

Checklist Item No. 25 – The Application's Exhibit F22 does not include a copy of the agreement between the Borough of Rutledge, Central Delaware County Authority and DELCORA dated May 1, 1973. Instead, a copy of two Standard Right-to-Know Law Form

May 6, 2020 Page 6

requests to the Central Delaware County Authority and Rutledge Borough, both dated February 27, 2020, were provided Please provide a copy of the subject agreement.

## **RESPONSE:**

A copy of the agreement between the Borough of Rutledge, Central Delaware County Authority and DELCORA dated May 1, 1973, is included with this letter.

#### **INFORMATION REQUEST 30:**

Checklist Item No. 25 – The Application does not include a copy of an agreement between DELCORA and Tinicum Township in the Application's Exhibit F series as averred to in the Application's Exhibit W3, Page 6. Please provide copies of all agreements between DELCORA and Tinicum Township to be assumed by the buyer as part of the acquisition.

### **RESPONSE:**

A copy the agreement between DELCORA and Tinicum Township dated September 18, 2017 is included with this letter.

Please contact me with any questions about the foregoing.

Very truly yours,

THOMAS, NIESEN & THOMAS, LLC

a loda By

Thomas T. Niesen

cc: Certificate of Service (w/encl.) Alexander R. Stahl, Esquire (via email, w/encl.) Thomas S. Wyatt, Esquire (via email, w/encl.) **GANNETT FLEMING INVOICES** 



# INVOICE

Excellence Delivered As Promised

# Gannett Fleming Valuation and Rate Consultants, LLC

ACH/EFT Payment Information: ABA: 031312738 Account No.: 5003165655 Account Name: Gannett Fleming

Aqua Pennsylvania Wastewater, Inc. Attn: William C. Packer, Vice President - Controller 762 W. Lancaster Avenue Bryn Mawr, PA 19010-3489

**Check Payment Information:** Gannett Fleming Valuation and Rate Consultants, LLC PO Box 829160 Philadelphia, PA 19182-9160

Federal EIN: 46-4413705 Send Remit Info: AccountsReceivable@gfnet.com

Invoice No: 066640\*4986 Invoice Date: January 17, 2020

Note: TO PREVENT IMPOSTER FRAUD. If you receive any notification of a change in payment instructions, you should call our Accounts Receivable department at 717-763-7211 to verify the authenticity of the change. We cannot be held responsible for a misdirected payment as a result of your not confirming authenticity of requested changes to payment instructions or "imposter hacks" to your system.

# Invoice Period: November 23, 2019 through December 27, 2019 Valker III hwalker@gfnet.com 610 650-8101

Project Manager : Harold Walker III

Fair Market Value Appraisal - DELCORA

Project: 066640

# Summary of Current Charges

| Phase 000 | 000 - FAIR MRKT VAL APPR - DELCORA |  | 1,180.00    |
|-----------|------------------------------------|--|-------------|
|           | Total Charges                      |  | \$ 1,180.00 |
|           | Total Due This Invoice             |  | \$1,180.00  |



Excellence Delivered As Promised

# Gannett Fleming Valuation and Rate Consultants, LLC

| Phase | 000 Fa | ir Mrkt Val Appr - DELCORA          |            |         |        |    |          |             |
|-------|--------|-------------------------------------|------------|---------|--------|----|----------|-------------|
|       |        | Labor Costs<br>Labor Classification | Hours      |         | Rate   | _  | Amount   |             |
|       |        | Harold Walker                       | 4.00       | \$      | 250.00 | \$ | 1,000.00 |             |
|       |        | Support Staff                       | 1.50       |         | 120.00 |    | 180.00   |             |
|       |        |                                     | Total Labo | or Cost | 5      |    |          | \$ 1,180.00 |
|       |        |                                     | Total Phas | e 00    | )      |    |          | \$ 1,180.00 |



# INVOICE

Excellence Delivered As Promised

# Gannett Fleming Valuation and Rate Consultants, LLC

ACH/EFT Payment Information: ABA: 031312738 Account No.: 5003165655 Account Name: Gannett Fleming

Aqua Pennsylvania Wastewater, Inc. Attn: William C. Packer, Vice President - Controller 762 W. Lancaster Avenue Bryn Mawr, PA 19010-3489

**Check Payment Information:** Gannett Fleming Valuation and Rate Consultants, LLC PO Box 829160 Philadelphia, PA 19182-9160

Federal EIN: 46-4413705 Send Remit Info: AccountsReceivable@gfnet.com

610 650-8101

Note: TO PREVENT IMPOSTER FRAUD. If you receive any notification of a change in payment instructions, you should call our Accounts Receivable department at 717-763-7211 to verify the authenticity of the change. We cannot be held responsible for a misdirected payment as a result of your not confirming authenticity of requested changes to payment instructions or "imposter hacks" to your syster

# Invoice Period: December 28, 2019 through February 14, 2020

hwalker@gfnet.com

Project Manager : Harold Walker III

Fair Market Value Appraisal - DELCORA

Project: 066640 Invoice No: 066640\*5053

Invoice Date: February 25, 2020

# Summary of Current Charges

|           | Total Due This Invoice           |  | \$30,070.00  |
|-----------|----------------------------------|--|--------------|
|           | Total Charges                    |  | \$ 30,070.00 |
| Phase 000 | 0 - FAIR MRKT VAL APPR - DELCORA |  | 30,070.00    |



Excellence Delivered As Promised

# Gannett Fleming Valuation and Rate Consultants, LLC

| Labor Classification | Hours      |          | Rate   | A  | mount     |              |
|----------------------|------------|----------|--------|----|-----------|--------------|
| Analyst              | 1.00       | \$       | 180.00 | \$ | 180.00    |              |
| Associate Analyst    | 9.00       |          | 170.00 |    | 1,530.00  |              |
| Harold Walker        | 102.00     |          | 250.00 |    | 25,500.00 |              |
| John J. Spanos       | 1.00       |          | 280.00 |    | 280.00    |              |
| Support Staff        | 21.50      |          | 120.00 |    | 2,580.00  |              |
|                      | Total Labo | or Costs | 5      |    |           | \$ 30,070.00 |
|                      | Total Phas | se 000   | )      |    | _         | \$ 30,070.00 |

# PERMITS



ORIGIEB FWDIBAB DECTI UL 22200 BY: 2016-0845

June 30, 2016

CERTIFIED MAIL NO. 7015 0640 0002 3147 7698

Mr. Edwin Bothwell Director of Engineering DELCORA 100 East Fifth Street P.O. Box 999 Chester, PA 19013-4508

Re: WQM Permit - Sewage DELCORA Sewer System & STP Permit No. 2316401 Authorization ID No. 1140117 Chester City Delaware County

Dear Mr. Bothwell:

Your Water Quality Management (WQM) permit is enclosed. You must comply with all Standard and Special Conditions attached to this Permit. Construction must be done in accordance with the permit application and all supporting documentation. Please review the permit conditions and the supporting documentation before starting construction.

Please note that you are responsible for securing all other required permits, approvals and/or registrations associated with the project, if applicable, under Chapters 102 (erosion and sedimentation control), 105 (stream obstructions and encroachments) and 106 (floodplains) of DEP's regulations. Construction may not proceed until all other required permits have been obtained.

Enclosed is the "Water Quality Management Post Construction Certification" form. A Pennsylvaniaregistered Professional Engineer must sign and complete this form prior to startup of the facilities. You or your authorized representative must also sign the form. This certification and other postconstruction documentation must be submitted to DEP within 30 days of completion of the project and must be received by DEP prior to commencing operation of the facilities.

Any person aggrieved by this action may appeal, pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. Section 7514, and the Administrative Agency Law, 2 Pa.C.S. Chapter 5A, to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, P.O. Box 8457, Harrisburg, PA 17105-8457, 717.787.3483. TDD users may contact the Board through the Pennsylvania Relay Service, 800.654.5984. Appeals must be filed with the Environmental Hearing Board within 30 days of receipt of written notice of this action unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in braille or on audiotape from the Secretary to the Board at 717.787.3483. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law. IF YOU WANT TO CHALLENGE THIS ACTION, YOUR APPEAL MUST REACH THE BOARD WITHIN 30 DAYS. YOU DO NOT NEED A LAWYER TO FILE AN APPEAL WITH THE BOARD.

IMPORTANT LEGAL RIGHTS ARE AT STAKE, HOWEVER, SO YOU SHOULD SHOW THIS DOCUMENT TO A LAWYER AT ONCE. IF YOU CANNOT AFFORD A LAWYER, YOU MAY QUALIFY FOR FREE PRO BONO REPRESENTATION. CALL THE SECRETARY TO THE BOARD (717.787.3483) FOR MORE INFORMATION.

During construction or upon completing construction, please contact Mr. Keith Dudley at 484.250.5190 or kdudley@pa.gov so that an inspection of the facilities may be conducted, at DEP's discretion.

Sincerely

Jenifer Fields, P.E. Regional Manager Clean Water

Enclosures

cc: Operations Section Central Office, Operations Section (Pump Stations Only) Mr. Charles Catania – Catania Engineering Association Re 30 (GJE16CLW)182-9

| 3800-PM-WSFR0015 | 1/2011 |
|------------------|--------|
| Permit           |        |



COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF POINT AND NON-POINT SOURCE MANAGEMENT

WATER QUALITY MANAGEMENT

PERMIT

PERMIT NO. 2316401

AMENDMENT NO.

APS ID. <u>916724</u>

AUTH. ID. <u>1140117</u>

| А.            | A. PERMITTEE (Name and Address): CLIENT ID#: 42332<br>DELCORA                                                                                                                                                                           |                                                                        |                       | B. PROJECT/FACILITY (Name):<br>DELCORA Sewer System & 3                   | STP                                                 |  |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------|-----------------------------------------------------|--|
| I             | 100 East Fifth Street P O Box 999                                                                                                                                                                                                       |                                                                        |                       |                                                                           |                                                     |  |
|               | Chester, PA 19016-0999                                                                                                                                                                                                                  |                                                                        |                       |                                                                           |                                                     |  |
| U.            | <ul> <li>LOCATION (Municipality, County): SITE ID#: 454804</li> <li>Chester City, Delaware County</li> </ul>                                                                                                                            |                                                                        |                       |                                                                           |                                                     |  |
| D.            | This permit approves the constructio                                                                                                                                                                                                    | n of sewage facilities consisting of:                                  |                       |                                                                           |                                                     |  |
|               | A temporary pump station bypass to                                                                                                                                                                                                      | deal with combined sewer overflow                                      | s during v            | wet weather events.                                                       |                                                     |  |
|               |                                                                                                                                                                                                                                         |                                                                        |                       |                                                                           |                                                     |  |
|               |                                                                                                                                                                                                                                         |                                                                        |                       |                                                                           |                                                     |  |
|               |                                                                                                                                                                                                                                         |                                                                        |                       |                                                                           |                                                     |  |
|               |                                                                                                                                                                                                                                         |                                                                        |                       |                                                                           |                                                     |  |
|               |                                                                                                                                                                                                                                         |                                                                        |                       |                                                                           |                                                     |  |
|               |                                                                                                                                                                                                                                         |                                                                        |                       |                                                                           |                                                     |  |
| Pun           | np Stations: <u>1</u>                                                                                                                                                                                                                   | Manure Storage:                                                        |                       | Sewage Treatment Facility:                                                |                                                     |  |
| Des           | ign Capacity: <u>650</u> GPM                                                                                                                                                                                                            | Volume:MG                                                              |                       | Annual Average Flow:                                                      | MGD                                                 |  |
|               |                                                                                                                                                                                                                                         | Freeboard: inches                                                      |                       | Design Hydraulic Capacity:                                                | MGD                                                 |  |
|               |                                                                                                                                                                                                                                         |                                                                        |                       | Design Organic Capacity:                                                  | lb/day                                              |  |
| Ε.            | APPROVAL GRANTED BY THIS PE                                                                                                                                                                                                             | RMIT IS SUBJECT TO THE FOLLO                                           | OWING:                |                                                                           |                                                     |  |
| 1.            | New Permits: All construction, ope<br>05/10/2016, its supporting document                                                                                                                                                               | erations and procedures shall be in<br>ation and addendums dated,      | accorda<br>, which ar | nce with the Water Quality Manage<br>e hereby made a part of this permit. | ment Permit application dated                       |  |
|               | Amendments: All construction, or<br>application dated and its supp                                                                                                                                                                      | perations and procedures shall be<br>porting documentation and addendu | in accoi<br>ms dated  | dance with the Water Quality Mar                                          | nagement Permit Amendment<br>art of this amendment. |  |
|               | Except for any herein approved mo<br>Management Permit No date                                                                                                                                                                          | odifications, all terms, conditions, s<br>d shall remain in effect.    | supporting            | documentation and addendums a                                             | pproved under Water Quality                         |  |
|               | Transfers: Water Quality Management of this transfer.                                                                                                                                                                                   | nent Permit No dated                                                   | and con               | ditions, supporting documentation a                                       | nd addendums are also made                          |  |
| 2.            | Permit Conditions Relating to Sewer                                                                                                                                                                                                     | age are attached and made part of t                                    | this perm             | it.                                                                       |                                                     |  |
| 3.            | Special Conditions are attached                                                                                                                                                                                                         | ed and made part of this permit.                                       |                       |                                                                           |                                                     |  |
| F.<br>₁       | THE AUTHORITY GRANTED BY TH                                                                                                                                                                                                             | IS PERMIT IS SUBJECT TO THE                                            | FOLLOW                | ING FURTHER QUALIFICATIONS:                                               | a the attached conditions                           |  |
| ١.            | shall apply.                                                                                                                                                                                                                            |                                                                        |                       |                                                                           |                                                     |  |
| <b>2</b> .    | <ol> <li>Failure to comply with the rules and regulations of DEP or with the terms or conditions of this permit shall void the authority given to the permittee<br/>by the issuance of this permit.</li> </ol>                          |                                                                        |                       |                                                                           |                                                     |  |
| 3.            | 3. This permit is issued pursuant to the Clean Streams Law Act of June 22, 1937, P.L. 1987, as amended 35 P.S. §691.1 <i>et seq.</i> Issuance of this permit shall not relieve the permittee of any responsibility under any other law. |                                                                        |                       |                                                                           |                                                     |  |
| 4.            | This permit shall expire on<br>expiration date.                                                                                                                                                                                         | The permittee shall submit an ap                                       | pplication            | to renew the permit no later than                                         | 180 days prior to the permit                        |  |
|               | PERMIT ISSUED:                                                                                                                                                                                                                          |                                                                        | BY:                   | - Stele                                                                   | }                                                   |  |
| June 30, 2016 |                                                                                                                                                                                                                                         | 6                                                                      | TITLE:                | Jenifer L. Fields, P.E.<br>Clean Water Program Manage                     | ٠                                                   |  |
|               |                                                                                                                                                                                                                                         |                                                                        |                       | South East Regional Office                                                |                                                     |  |
|               |                                                                                                                                                                                                                                         |                                                                        |                       |                                                                           |                                                     |  |





COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF POINT AND NON-POINT SOURCE MANAGEMENT

# PERMIT CONDITIONS RELATING TO SEWERAGE

For use in Water Quality Management Permits

(Check boxes that apply)

applicability of additional permits.

| Gen         | eral  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | 1.    | The Department of Environmental Protection (DEP) considers the licensed Professional Engineer whose seal is affixed to the design documents to be fully responsible for the adequacy of all aspects of the facility design.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\boxtimes$ | 2.    | The permittee shall adopt and enforce an ordinance requiring the abandonment of privies, cesspools or similar receptacles for human waste and onlot sewage disposal systems on the premises of occupied structures accessible to public sewers. All such structures must be connected to the public sewers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 3.    | The outfall sewer or drain shall be extended to the low water mark of the receiving body of water. Where necessary to ensure proper mixing and waste assimilation, an outfall sewer or drain may be extended with appurtenances below the low water mark and into the bed of a navigable stream provided that the permittee has secured an easement, right-of-way, license or lease from DEP in accordance with Section 15 of the Dam Safety and Encroachments Act, the Act of November 26, 1978, P.L. 1375, as amended.                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | 4.    | The approval is specifically made contingent on the permittee acquiring all necessary property rights, by easement or otherwise, providing for the satisfactory construction, operation, maintenance and replacement of all sewers or sewerage structures in, along or across private property with full rights of ingress, egress and regress.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\boxtimes$ | 5.    | When construction of the approved sewerage facilities is completed and before they are placed in operation, the permittee shall notify DEP in writing so that a DEP representative may inspect the facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | 6.    | The approval of the plans, and the authority granted in this permit, if not specifically extended, shall cease<br>and be null and void 2 years from the issuance date of this permit unless construction or modification of the<br>facilities covered by this permit has begun on or before the second anniversary of the permit date.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\boxtimes$ | 7.    | If, at any time, the sewerage facilities covered by this permit create a public nuisance, including but not limited to, causing malodors or causing environmental harm to waters of the Commonwealth, DEP may require the permittee to adopt appropriate remedial measures to abate the nuisance or harm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | 8.    | If, after the issuance of this permit, DEP approves a municipal sewage facilities official plan or an amendment<br>to an official plan under Act 537 (Pennsylvania Sewage Facilities Act, the Act of January 24, 1966, P.L. 1535<br>as amended) in which sewage from the herein approved facilities will be treated and disposed of at other<br>planned facilities, the permittee shall, upon notification from the municipality or DEP, provide for the<br>conveyance of its sewage to the planned facilities, abandon use and decommission the herein approved<br>facilities including the proper disposal of solids, and notify DEP accordingly. The permittee shall adhere to<br>schedules in the approved official plan, amendments to the plan, or other agreements between the permittee<br>and municipality. This permit shall then, upon notice from DEP, terminate and become null and void and<br>shall be relinquished to DEP. |
| $\boxtimes$ | 9.    | This permit does not relieve the permittee of its obligations to comply with all federal, interstate, state or local laws, ordinances and regulations applicable to the sewerage facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\boxtimes$ | 10.   | This permit does not give any real or personal property rights or grant any exclusive privileges, nor shall it be construed to grant or confirm any right, easement or interest in, on, to or over any lands which belong to the Commonwealth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | 11.   | The authority granted by this permit is subject to all effluent requirements, monitoring requirements and other conditions as set forth in NPDES Permit No. and all subsequent amendments and renewals. No discharge is authorized from these facilities unless approved by an NPDES Permit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Con         | struc | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | 12.   | This permit is issued under the authorization of The Clean Streams Law and 25 Pa. Code Chapter 91. The permittee shall obtain all necessary permits, approvals and/or registrations under 25 Pa. Code Chapters 102, 105 and 106 prior to commencing construction of the facilities authorized by this permit, as applicable. The permittee should contact the DEP office that issued this permit if there are any questions concerning the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

- 13. The facilities shall be constructed under the supervision of a Pennsylvania licensed Professional Engineer in accordance with the approved reports, plans and specifications.
- 14. A Pennsylvania licensed Professional Engineer shall certify that construction of the permitted facilities was completed in accordance with the application and design plans submitted to DEP, using "Post Construction Certification" form (3800-PM-WSFR0179a). It is the permittee's responsibility to ensure that a Professional Engineer is on-site to provide the necessary oversight and/or inspections to certify the facilities. The certification must be submitted to DEP before the facility is placed in operation. As-built drawings, photographs (if available) and a description of all deviations from the application and design plans must be submitted to DEP within 30 days of certification.
- 15. Manhole inverts shall be formed to facilitate the flow of the sewage and to prevent the stranding of sewage solids. The manhole structure shall be built to prevent undue infiltration, entrance of street wash or grit and provide safe access to facilitate manhole maintenance activities.
- 16. The local Waterways Conservation Officer of the Pennsylvania Fish and Boat Commission (PFBC) shall be notified when the construction of any stream crossing and/or outfall is started and completed. A written permit must be secured from the PFBC if the use of explosives in any waterways is required and the permittee shall notify the local Waterways Conservation Officer when explosives are to be used.

## **Operation and Maintenance**

- 17. The permittee shall maintain records of "as-built" plans showing all the treatment facilities as actually constructed together with facility operation and maintenance (O&M) manuals and any other relevant information that may be required. Upon request, the "as-built" plans and O&M manuals shall be filed with DEP.
- 18. The sewers shall have adequate foundation support as soil conditions require. Trenches shall be back-filled to ensure that sewers will have proper structural stability, with minimum settling and adequate protection against breakage. Concrete used in connection with these sewers shall be protected from damage by water, freezing, drying or other harmful conditions until cured.
- 19. Stormwater from roofs, foundation drains, basement drains or other sources shall not be admitted directly to the sanitary sewers.
- 20. The approved sewers shall be maintained in good condition, kept free of deposits by flushing or other cleaning methods and repaired when necessary.
- 21. The sewerage facilities shall be properly operated and maintained to perform as designed.
- 22. The attention of the permittee is called to the highly explosive nature of certain gases generated by the digestion of sewage solids when these gases are mixed in proper proportions with air and to the highly toxic character of certain gases arising from such digestion or from sewage in poorly ventilated compartments or sewers. Therefore, at all places throughout the sewerage facilities where hazard of fire, explosion or danger from toxic gases may occur, the permittee shall post conspicuous permanent and legible warnings. The permittee shall instruct all employees concerning the aforesaid hazards, first aid and emergency methods of meeting such hazards and shall make all necessary equipment and material accessible.
- 23. An operator certified in accordance with the Water and Wastewater Systems Operator Certification Act of February 21, 2002, 63 P.S. §§1001, et seq. shall operate the sewage treatment plant.
- 24. The permittee shall properly control any industrial waste discharged into its sewerage system by regulating the rate and quality of such discharge, requiring necessary pretreatment and excluding industrial waste, if necessary, to protect the integrity or operation of the permittee's sewerage system.
- 25. There shall be no physical connection between a public water supply system and a sewer or appurtenance to it which would permit the passage of any sewage or polluted water into the potable water supply. No water pipe shall pass through or come in contact with any part of a sewer manhole.
- 26. All connections to the approved sanitary sewers must be in accordance with the official Act 537 Plan and, if applicable, a corrective action plan as contained in the approved Title 25 Pa. Code Chapter 94 Municipal Wasteload Management Annual Report.
- 27. Collected screenings, slurries, sludge and other solids shall be handled and disposed of in compliance with Title 25 Pa. Code Chapters 271, 273, 275, 283 and 285 (related to permits and requirements for land filling, land application, incineration and storage of sewage sludge), Federal Regulations 40 CFR 257 and the Federal Clean Water Act and its amendments.



#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF POINT AND NON-POINT SOURCE MANAGEMENT

# WATER QUALITY MANAGEMENT

# POST CONSTRUCTION CERTIFICATION

|                                                                                     | PERMI                                                                                                                      | TTEE IDENTIFIER                                                                                                                                                                                 |  |  |  |
|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Permittee                                                                           | DELCORA                                                                                                                    |                                                                                                                                                                                                 |  |  |  |
| Municipality                                                                        | Chester City                                                                                                               |                                                                                                                                                                                                 |  |  |  |
| County                                                                              | Delaware                                                                                                                   |                                                                                                                                                                                                 |  |  |  |
| WQM Permit No.                                                                      | 2316401                                                                                                                    |                                                                                                                                                                                                 |  |  |  |
| Facility Type                                                                       | Sewage                                                                                                                     |                                                                                                                                                                                                 |  |  |  |
| All of the above                                                                    | information should be taken of                                                                                             | directly from the Water Quality Management Permit.                                                                                                                                              |  |  |  |
|                                                                                     | CE                                                                                                                         | RTIFICATION                                                                                                                                                                                     |  |  |  |
| This certification r<br>WQM permit with<br>requested, as-bui<br>the design plans of | nust be completed and returned<br>nin 30 days of completion of<br>It drawings, photographs (if ava<br>during construction. | d to the permits section of the DEP's regional office issuing the<br>the project and received by DEP prior to operation, and if<br>ilable) and a discussion of any DEP-approved deviations from |  |  |  |
| I, being a Registe<br>and belief, based<br>Quality Manager<br>modifications app     | ered Professional Engineer in I<br>upon personal observation and<br>nent Permit has been const<br>roved by DEP.            | Pennsylvania, do hereby certify to the best of my knowledge<br>d interviews, that the above facility approved under the Water<br>tructed in accordance with the plans, specifications and       |  |  |  |
| Construction Corr                                                                   | pletion Date (MM/DD/YYYY):                                                                                                 |                                                                                                                                                                                                 |  |  |  |
|                                                                                     |                                                                                                                            | Professional Engineer                                                                                                                                                                           |  |  |  |
|                                                                                     |                                                                                                                            | Name                                                                                                                                                                                            |  |  |  |
|                                                                                     |                                                                                                                            | (Please Print or Type)                                                                                                                                                                          |  |  |  |
|                                                                                     |                                                                                                                            | Signature                                                                                                                                                                                       |  |  |  |
|                                                                                     |                                                                                                                            | Date                                                                                                                                                                                            |  |  |  |
|                                                                                     |                                                                                                                            | License Expiration Date                                                                                                                                                                         |  |  |  |
|                                                                                     |                                                                                                                            | Firm or Agency                                                                                                                                                                                  |  |  |  |
|                                                                                     |                                                                                                                            | Telephone                                                                                                                                                                                       |  |  |  |
|                                                                                     | Permittee or Authorized Representative                                                                                     |                                                                                                                                                                                                 |  |  |  |
|                                                                                     |                                                                                                                            | Name                                                                                                                                                                                            |  |  |  |
|                                                                                     |                                                                                                                            | (Please Print or Type)                                                                                                                                                                          |  |  |  |
|                                                                                     |                                                                                                                            | Signature                                                                                                                                                                                       |  |  |  |
|                                                                                     | Engineer's                                                                                                                 | Title                                                                                                                                                                                           |  |  |  |
|                                                                                     | Saal                                                                                                                       | Telephone                                                                                                                                                                                       |  |  |  |



January 6, 2015

# CERTIFIED MAIL NO. 7007 3020 0002 8264 7136

Joseph Salvucci DELCORA 100 East Fifth Street P O Box 999 Chester, PA 19016-0999

Re: WOM Permit - Sewage **DELCORA Sewer System & STP** Permit No. WOG02231419 Authorization ID No. 1048354 Edgemont Township, Delaware County

XXXXXXXXXX

**JAN - 9** 2015 BY: 2015-0025 CC: File Copy

#SW-1318-C

Dear Mr. Salvucci:

Your Water Quality Management (WQM) permit is enclosed. You must comply with all Standard and Special Conditions attached to this Permit. Construction must be done in accordance with the permit application and all supporting documentation. Please review the permit conditions and the supporting documentation submitted with your application before starting construction.

Please note that you are responsible for securing all other required permits, approvals and/or registrations associated with the project, if applicable, under Chapters 102 (erosion and sedimentation control), 105 (stream obstructions and encroachments) and 106 (floodplains) of DEP's regulations. Construction may not proceed until all other required permits have been obtained.

Any person aggrieved by this action may appeal, pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. Section 7514, and the Administrative Agency Law, 2 Pa.C.S. Chapter 5A, to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, P.O. Box 8457, Harrisburg, PA 17105-8457, 717.787.3483. TDD users may contact the Board through the Pennsylvania Relay Service, 800.654.5984. Appeals must be filed with the Environmental Hearing Board within 30 days of receipt of written notice of this action unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in braille or on audiotape from the Secretary to the Board at 717.787.3483. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law.

IF YOU WANT TO CHALLENGE THIS ACTION, YOUR APPEAL MUST REACH THE BOARD WITHIN 30 DAYS. YOU DO NOT NEED A LAWYER TO FILE AN APPEAL WITH THE BOARD.

IMPORTANT LEGAL RIGHTS ARE AT STAKE, HOWEVER, SO YOU SHOULD SHOW THIS DOCUMENT TO A LAWYER AT ONCE. IF YOU CANNOT AFFORD A LAWYER, YOU MAY QUALIFY FOR FREE PRO BONO REPRESENTATION. CALL THE SECRETARY TO THE BOARD (717.787.3483) FOR MORE INFORMATION.

During construction or upon completing construction, please contact Mr. Andrew Haneiko by e-mail at ahaneiko@pa.gov or by telephone at 484.250.5183 so that an inspection of the facilities may be conducted, at DEP's discretion.

Sincerely,

Jenifer Fields, P.E.

Regional Manager Clean Water

Enclosures

cc: Operations Section Mr. Fazler – Bradford Engineering Assoc. Re 30 (GJE14CLW)322-10 3800-PM-WSFR0045f 6/2005 Permit pennsylvania

DEPARTMENT OF ENVIRONMENTAL PROTECTION

Permit No. WQG02231419

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER STANDARDS AND FACILITY REGULATION



# WQG-02 WATER QUALITY MANAGEMENT GENERAL PERMIT FOR SEWER EXTENSIONS AND PUMP STATIONS

PERMIT NUMBER WQG02231419

| Α. | PERMITTEE (Name and Address):                                                                                                                                                                                                                                                                                        | B. PROJECT/FACILITY (Name):                           |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|--|--|--|
|    | DELCORA                                                                                                                                                                                                                                                                                                              |                                                       |  |  |  |
|    | 100 East Fifth Street P O Box 999                                                                                                                                                                                                                                                                                    | C. LOCATION (County, Municipality):                   |  |  |  |
|    | Chester, PA 19016-0999                                                                                                                                                                                                                                                                                               | Edgmont Township, Delaware County                     |  |  |  |
|    | CLIENT ID#: 42332                                                                                                                                                                                                                                                                                                    |                                                       |  |  |  |
| D. | This General Permit approves the construction and operation                                                                                                                                                                                                                                                          | ration of:                                            |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                      |                                                       |  |  |  |
|    | PUMP STATION                                                                                                                                                                                                                                                                                                         |                                                       |  |  |  |
| E. | APPROVAL GRANTED BY THIS GENERAL PERMIT IS S                                                                                                                                                                                                                                                                         | JBJECT TO THE FOLLOWING:                              |  |  |  |
|    | 1. All construction, operations and procedures shall be <i>Manual.</i>                                                                                                                                                                                                                                               | in accordance with the Domestic Wastewater Facilities |  |  |  |
|    | <b>Transfers:</b> In the event the permittee plans to transfer ownership of the facility to another entity, the permittee and the transferee shall submit an application for such transfer to DEP. If the transfer is approved by DEP, the transferee is subject to the terms and conditions of this General Permit. |                                                       |  |  |  |
|    | 2. The attached conditions apply to this General Permit and                                                                                                                                                                                                                                                          | d are hereby made part of same.                       |  |  |  |
| F. | F. THE AUTHORITY GRANTED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING FURTHER QUALIFICATIONS:                                                                                                                                                                                                                          |                                                       |  |  |  |
|    | <ol> <li>If there is a conflict between the NOI or its supporting documents and amendments and the attached conditions,<br/>the attached conditions shall apply.</li> </ol>                                                                                                                                          |                                                       |  |  |  |
|    | <ol><li>Failure to comply with the rules and regulations of DEP or with the terms or conditions of this General Permit shall<br/>void the authority given to the permittee by the issuance of this General Permit.</li></ol>                                                                                         |                                                       |  |  |  |
|    | <ol> <li>This General Permit is issued pursuant to the Clean Streams Law, Act of June 22, 1937, P.L. 1987, as amended<br/>35 P.S. §691.1 <i>et seq</i>. Issuance of this General Permit shall not relieve the permittee of any responsibility under<br/>any other law.</li> </ol>                                    |                                                       |  |  |  |
| DE |                                                                                                                                                                                                                                                                                                                      | PV. OF. OD                                            |  |  |  |
|    | January 6, 2015                                                                                                                                                                                                                                                                                                      | TITLE: Clean Water Program Manager                    |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                      |                                                       |  |  |  |

pennsvlvania

Permit No. WQG02231419

#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER STANDARDS AND FACILITY REGULATION

# PERMIT CONDITIONS

# General

- Consistent with DEP's technical guidance document Conducting Technical Reviews of Water Quality Management 1. Permit Wastewater Treatment Facilities, DEP ID: 362-2000-007, available on DEP's Web site, DEP considers the registered professional engineer whose seal is affixed to the design documents to be fully responsible for the adequacy of all aspects of the facility's design.
- 2. The approval is specifically made contingent on the permittee acquiring all necessary property rights, by easement or otherwise, providing for the satisfactory construction, operation, maintenance and replacement of all sewers or sewerage structures in, along or across private property with full rights of ingress, egress and regress.
- If, at any time, the sewer extension and/or pump station covered by this General Permit creates a public nuisance, 3. including but not limited to, causing malodors or causing environmental harm to waters of the Commonwealth. DEP may require the permittee to adopt appropriate remedial measures to abate the nuisance or harm.
- This permit does not relieve the permittee of its obligations to comply with all federal, interstate, state or local laws, 4. ordinances and regulations applicable to the facilities.
- 5. This General Permit does not give any real or personal property rights or grant any exclusive privileges, nor shall it be construed to grant or confirm any right, easement or interest in, on, to, or over any lands which belong to the Commonwealth.
- No discharge is authorized from these facilities unless approved by an NPDES Permit. 6.

# Construction

7. An Erosion and Sedimentation (E&S) Control Plan must be developed prior to construction of the permitted facility, pursuant to Title 25 Pa. Code Chapter 102, and implemented during and after the earth disturbance activity.

If the activity involves 5 or more acres of earth disturbance, or from 1 to 5 acres of earth disturbance with a point source discharge to surface waters of the Commonwealth, an NPDES Permit is required.

In addition to the state NPDES permitting requirements, some municipalities, through local ordinances, require the E&S Control Plan to be reviewed and approved by the local county conservation district office prior to construction. For specific information regarding E&S control planning approval and NPDES permitting requirements please contact your local county conservation district office.

- 8. Prior to beginning any construction or excavation, the locations of all utility lines must be identified through notification to the PA One Call system (www.paonecall.org). The notification shall not be less than three nor more than 10 working days in advance of beginning the construction or excavation.
- The local waterways conservation officer of the Pennsylvania Fish and Boat Commission (PFBC) shall be notified 9 when the construction of any stream crossing and/or outfall is started and completed. A written permit must be secured from the PFBC if there is any use of explosives in any waterways and the permittee shall notify the local waterways conservation officer when explosives are to be used.
- 10. Manhole inverts shall be formed to facilitate the flow of the sewage and to prevent the stranding of sewage solids. The whole manhole structure shall be built to prevent undue infiltration, entrance of street wash or grit and provide safe access to facilitate manhole maintenance activities.
- 11. The facilities shall be constructed under the supervision of a Pennsylvania registered Professional Engineer in accordance with the approved reports, plans and specifications.

12. A Pennsylvania registered Professional Engineer shall certify that construction of the permitted facilities was completed in accordance with the application and design plans submitted to DEP, using "Post Construction Certification" (3800-PM-WSFR0179a). It is the permittee's responsibility to ensure that a Professional Engineer is on-site to provide the necessary oversight and/or inspections to certify the facilities. The certification must be submitted to DEP before the facility is placed in operation. If requested, "as-built" drawings, photographs (if available) and a description of any DEP-approved deviations from the application and design plans must be submitted to DEP within 30 days of certification. Construction must be completed within two years of permit issue date.

# **Operation and Maintenance**

- 13. The permittee shall maintain sewer extension and/or pump station operation and maintenance (O&M) manuals at the facility and ensure proper O&M of the permitted facility. The permittee shall file the O&M manuals with DEP upon request.
- 14. Stormwater from roofs, foundation drains, basement drains or other sources shall not be admitted directly to the sewer extension or pump station.
- 15. The sewer extension shall have adequate foundation support as soil conditions require. Trenches shall be backfilled to ensure that sewers will have proper structural stability, with minimal settling and adequate protection against breakage. Concrete used in connection with these sewers shall be protected from damage by water, freezing, drying or other harmful conditions until cured.
- 16. The approved sewer extensions and/or pump stations shall be maintained in good condition, kept free of deposits by flushing or other cleaning methods and repaired when necessary.
- 17. The sewer extension and/or pump station shall be properly operated and maintained so that the facility will perform as designed.
- 18. The attention of the permittee is called to the highly explosive nature of certain gases generated by the digestion of sewage solids when these gases are mixed in proper proportions with air and to the highly toxic character of certain gases arising from such digestion or from sewage in poorly ventilated compartments or sewers. Therefore, at all places throughout the facilities where hazard of fire, explosion or danger from toxic gases may occur, the permittee shall post conspicuous permanent and legible warnings. The permittee shall instruct all employees concerning the aforesaid hazards, first aid and emergency methods of meeting such hazards and shall make all necessary equipment and material accessible.
- 19. There shall be no physical connection between a public water supply system and a sewer or appurtenance to it which would permit the passage of any sewage or polluted water into the potable water supply. No water pipe shall pass through or come in contact with any part of the sewer extension and/or pump station.
- 20. Collected screenings, slurries, sludge and other solids shall be handled and disposed of in compliance with Title 25 Pa. Code, Chapters 271, 273, 275, 283 and 285 (related to permits and requirements for land filling, land application, incineration and storage of sewage sludge), Federal Regulations 40 CFR Part 257 and the Federal Clean Water Act and its amendments.

pennsylvania

11/

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER STANDARDS AND FACILITY REGULATION DEPARTMENT OF ENVIRONMENTAL PROTECTION

# WATER QUALITY MANAGEMENT

# POST CONSTRUCTION CERTIFICATION

| PERMITTEE IDENTIFIER                                                                |                                                                                                                         |                                                                                                                                                                                                   |  |  |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Permittee                                                                           | DELCORA – Crum Creek Se                                                                                                 | DELCORA – Crum Creek Sewer Project                                                                                                                                                                |  |  |
| Municipality                                                                        | Chester City                                                                                                            | Chester City                                                                                                                                                                                      |  |  |
| County                                                                              | Delaware                                                                                                                |                                                                                                                                                                                                   |  |  |
| WQM Permit No.                                                                      | WQG02231419                                                                                                             |                                                                                                                                                                                                   |  |  |
| Facility Type                                                                       | Sewage                                                                                                                  |                                                                                                                                                                                                   |  |  |
| All of the above i                                                                  | nformation should be taken                                                                                              | directly from the Water Quality Management Permit.                                                                                                                                                |  |  |
|                                                                                     | C                                                                                                                       | ERTIFICATION                                                                                                                                                                                      |  |  |
| This certification n<br>WQM permit with<br>requested, as-buil<br>the design plans o | nust be completed and returne<br>in 30 days of completion of<br>t drawings, photographs (if ava<br>luring construction. | ed to the permits section of the DEP's regional office issuing the<br>the project and received by DEP prior to operation, and if<br>ailable) and a discussion of any DEP-approved deviations from |  |  |
| I, being a Registe<br>and belief, based<br>Quality Managen<br>modifications app     | ered Professional Engineer in<br>upon personal observation ar<br>nent Permit has been cons<br>roved by DEP.             | Pennsylvania, do hereby certify to the best of my knowledge<br>ad interviews, that the above facility approved under the Water<br>structed in accordance with the plans, specifications and       |  |  |
| Construction Com                                                                    | pletion Date (MM/DD/YYYY):                                                                                              |                                                                                                                                                                                                   |  |  |
|                                                                                     |                                                                                                                         | Professional Engineer                                                                                                                                                                             |  |  |
|                                                                                     |                                                                                                                         | Name                                                                                                                                                                                              |  |  |
|                                                                                     | an interest of a                                                                                                        | (Please Print or Type)                                                                                                                                                                            |  |  |
| 1                                                                                   | Sugnoa S                                                                                                                | Signature                                                                                                                                                                                         |  |  |
|                                                                                     | ocat                                                                                                                    | Date                                                                                                                                                                                              |  |  |
|                                                                                     |                                                                                                                         | License Expiration Date                                                                                                                                                                           |  |  |
|                                                                                     |                                                                                                                         | Firm or Agency                                                                                                                                                                                    |  |  |
|                                                                                     |                                                                                                                         | Telephone                                                                                                                                                                                         |  |  |
|                                                                                     |                                                                                                                         | Permittee or Authorized Representative                                                                                                                                                            |  |  |
|                                                                                     |                                                                                                                         | Name                                                                                                                                                                                              |  |  |
|                                                                                     |                                                                                                                         | (Please Print or Type)                                                                                                                                                                            |  |  |
|                                                                                     |                                                                                                                         | Signature                                                                                                                                                                                         |  |  |
|                                                                                     |                                                                                                                         | Title                                                                                                                                                                                             |  |  |
|                                                                                     |                                                                                                                         | Telephone                                                                                                                                                                                         |  |  |



March 13, 2019

CERTIFIED MAIL NO. 7017 1000 0000 5886 6722 9590 9402 2927 7094 0159 03

Robert Willert DELCORA 100 E 5th Street PO Box 999 Chester, PA 19016

Re: Permit Transfer- Sewage DELCORA Edgmont Country Club WQM Permit No. WQG02231810 T-1 Prior Permittee: Ag-Rw Edgmont Parent LLC Edgmont Township, Delaware County

Ce. KW MJB CNH 554 Amatha

Scanned to Server

Crum Creek-GRADYVILLE

Dear Mr. Willert:

In accordance with your request received on January 18, 2019, the Department of Environmental Protection (DEP) has transferred the above referenced permit(s). Please study the permit(s) carefully and direct any questions to this office.

Any person aggrieved by this action may appeal the action to the Environmental Hearing Board (Board), pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. § 7514, and the Administrative Agency Law, 2 Pa.C.S. Chapter 5A. The Board's address is:

Environmental Hearing Board Rachel Carson State Office Building, Second Floor 400 Market Street P.O. Box 8457 Harrisburg, PA 17105-8457

TDD users may contact the Environmental Hearing Board through the Pennsylvania Relay Service, 800-654-5984.

Appeals must be filed with the Board within 30 days of receipt of notice of this action unless the appropriate statute provides a different time. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law.

A Notice of Appeal form and the Board's rules of practice and procedure may be obtained online at <u>http://ehb.courtapps.com or</u> by contacting the Secretary to the Board at 717-787-3483. The Notice of Appeal form and the Board's rules are also available in braille and on audiotape from the Secretary to the Board.

Southeast Regional Office 2 E Main Street | Norristown, PA 19401 | 484.250.5970 | Fax 484.250.5971 www.depweb.state.pa.us IMPORTANT LEGAL RIGHTS ARE AT STAKE. YOU SHOULD SHOW THIS DOCUMENT TO A LAWYER AT ONCE. IF YOU CANNOT AFFORD A LAWYER, YOU MAY QUALIFY FOR FREE PRO BONO REPRESENTATION. CALL THE SECRETARY TO THE BOARD AT 717-787-3483 FOR MORE INFORMATION. YOU DO NOT NEED A LAWYER TO FILE A NOTICE OF APPEAL WITH THE BOARD.

# IF YOU WANT TO CHALLENGE THIS ACTION, YOUR APPEAL MUST BE FILED WITH AND RECEIVED BY THE BOARD WITHIN 30 DAYS OF RECEIPT OF NOTICE OF THIS ACTION.

If you have any questions, please contact Vasantha Palakurti at 484-250-5198.

Sincerely,

Thomas 1/2

Thomas L. Magge Environmental Program Manager Clean Water Program

Enclosures

cc: Ag-Rw Edgmont Parent LLC Edgmont Township Delaware County Operations Section Central Office Division of Operations, Monitoring and Data Systems File 3850-PM-BCW0045f Rev. 4/2018 Permit Permit No. WQG02231810 T-1

| ennsylvania<br>PARYMENT OF ENVIRONMENTAL<br>OTECTION |
|------------------------------------------------------|
|                                                      |

#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF CLEAN WATER

# WQG-02 WATER QUALITY MANAGEMENT GENERAL PERMIT FOR SEWER EXTENSIONS AND PUMP STATIONS

# PERMIT NUMBER WQG02231810 T-1

A. PERMITTEE (Name and Address): DELCORA 100 E 5th Street PO Box 999

DELCORA Edgmont Country Club C. LOCATION (County, Municipality): Edgmont Township, Delaware County

B. PROJECT/FACILITY (Name):

**CLIENT ID#** 42332

Chester, PA 19016

D. This General Permit approves the construction and operation of:

# SEWER EXTENSION

PUMP STATION Annual Average Daily Flow 44,800 gpd Design Capacity 0.175 MGD

## E. APPROVAL GRANTED BY THIS GENERAL PERMIT IS SUBJECT TO THE FOLLOWING:

1. All construction, operations and procedures shall be in accordance with the *Domestic Wastewater Facilities Manual.* 

**Transfers:** In the event the permittee plans to transfer ownership of the facility to another entity, the permittee and the transferee shall submit an application for such transfer to DEP. If the transfer is approved by DEP, the transferee is subject to the terms and conditions of this General Permit.

- 2. The attached conditions apply to this General Permit and are hereby made part of same.
- F. THE AUTHORITY GRANTED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING FURTHER QUALIFICATIONS:
  - 1. If there is a conflict between the NOI or its supporting documents and amendments and the attached conditions, the attached conditions shall apply.
  - 2. Failure to comply with the rules and regulations of DEP or with the terms or conditions of this General Permit shall void the authority given to the permittee by the issuance of this General Permit.
  - 3. This General Permit is issued pursuant to the Clean Streams Law, Act of June 22, 1937, P.L. 1987, as amended 35 P.S. §691.1 *et seq.* Issuance of this General Permit shall not relieve the permittee of any responsibility under any other law.

PERMIT ISSUED:

March 13, 2019

TITLE: Clean Water Program Manager

Permit No. WQG02231810 T-1



#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF CLEAN WATER

# WQG-02 WATER QUALITY MANAGEMENT GENERAL PERMIT FOR SEWER EXTENSIONS AND PUMP STATIONS

# **PERMIT CONDITIONS**

#### General

- 1. DEP considers the licensed professional engineer whose seal is affixed to the design documents to be fully responsible for the adequacy of all aspects of the facility's design.
- 2. The approval is specifically made contingent on the permittee acquiring all necessary property rights, by easement or otherwise, providing for the satisfactory construction, operation, maintenance and replacement of all sewers or sewerage structures in, along or across private property with full rights of ingress, egress and regress.
- 3. If, at any time, the sewer extension and/or pump station covered by this General Permit creates a public nuisance, including but not limited to, causing malodors or causing environmental harm to waters of the Commonwealth, DEP may require the permittee to adopt appropriate remedial measures to abate the nuisance or harm.
- 4. The approval of the plans, and the authority granted in this permit, if not specifically extended, shall cease and be null and void 2 years from the issuance date of this permit unless construction or modification of the facilities covered by this permit has begun on or before the second anniversary of the permit date.
- 5. This permit does not relieve the permittee of its obligations to comply with all federal, interstate, state or local laws, ordinances and regulations applicable to the facilities.
- 6. This General Permit does not give any real or personal property rights or grant any exclusive privileges, nor shall it be construed to grant or confirm any right, easement or interest in, on, to, or over any lands which belong to the Commonwealth.
- 7. No discharge is authorized from these facilities unless approved by an NPDES Permit.

### Construction

- 8. A permit or approval is required under Chapter 102 for most earth disturbance activities. A permit or registration under Chapter 105 is required for stream obstructions, crossings, etc. The permittee must secure the necessary permits, approvals or registrations under Chapters 102 and 105 prior to beginning construction.
- Prior to beginning any construction or excavation, the locations of all utility lines must be identified through notification to the PA One Call system (<u>www.paonecall.org</u>). The notification shall not be less than three nor more than 10 working days in advance of beginning the construction or excavation.
- 10. The local waterways conservation officer of the Pennsylvania Fish and Boat Commission (PFBC) shall be notified when the construction of any stream crossing and/or outfall is started and completed. A written permit\*must be secured from the PFBC if there is any use of explosives in any waterways and the permittee shall notify the local waterways conservation officer when explosives are to be used.
- 11. Manhole inverts shall be formed to facilitate the flow of the sewage and to prevent the stranding of sewage solids. The whole manhole structure shall be built to prevent undue infiltration, entrance of street wash or grit and provide safe access to facilitate manhole maintenance activities.
- 12. The facilities shall be constructed under the supervision of a Pennsylvania licensed Professional Engineer in accordance with the approved reports, plans and specifications.

3850-PM-BCW0045f Rev. 4/2018 Permit

13. A Pennsylvania licensed Professional Engineer shall certify that construction of the permitted facilities was completed in accordance with the application and design plans submitted to DEP, using "Post Construction Certification" (3800-PM-WSFR0179a). It is the permittee's responsibility to ensure that a Professional Engineer is on-site to provide the necessary oversight and/or inspections to certify the facilities. The certification must be submitted to DEP before the facility is placed in operation. If requested, "as-built" drawings, photographs (if available) and a description of any DEP-approved deviations from the application and design plans must be submitted to DEP within 30 days of certification. Construction must be completed within two years of permit issue date.

#### Operation and Maintenance

- 14. The permittee shall maintain sewer extension and/or pump station operation and maintenance (O&M) manuals at the facility and ensure proper O&M of the permitted facility. The permittee shall file the O&M manuals with DEP upon request.
- 15. Stormwater from roofs, foundation drains, basement drains or other sources shall not be admitted directly to the sewer extension or pump station.
- 16. The sewer extension shall have adequate foundation support as soil conditions require. Trenches shall be backfilled to ensure that sewers will have proper structural stability, with minimal settling and adequate protection against breakage. Concrete used in connection with these sewers shall be protected from damage by water, freezing, drying or other harmful conditions until cured.
- 17. The approved sewer extensions and/or pump stations shall be maintained in good condition, kept free of deposits by flushing or other cleaning methods and repaired when necessary.
- 18. The sewer extension and/or pump station shall be properly operated and maintained so that the facility will perform as designed.
- 19. The attention of the permittee is called to the highly explosive nature of certain gases generated by the digestion of sewage solids when these gases are mixed in proper proportions with air and to the highly toxic character of certain gases arising from such digestion or from sewage in poorly ventilated compartments or sewers. Therefore, at all places throughout the facilities where hazard of fire, explosion or danger from toxic gases may occur, the permittee shall post conspicuous permanent and legible warnings. The permittee shall instruct all employees concerning the aforesaid hazards, first aid and emergency methods of meeting such hazards and shall make all necessary equipment and material accessible.
- 20. There shall be no physical connection between a public water supply system and a sewer or appurtenance to it which would permit the passage of any sewage or polluted water into the potable water supply. No water pipe shall pass through or come in contact with any part of the sewer extension and/or pump station.
- 21. Collected screenings, slurries, sludge and other solids shall be handled and disposed of in compliance with Title 25 Pa. Code, Chapters 271, 273, 275, 283 and 285 (related to permits and requirements for land filling, land application, incineration and storage of sewage sludge), Federal Regulations 40 CFR Part 257 and the Federal Clean Water Act and its amendments.

- 3 -

3800-PM-WSFR0179a 9/2005 Post Construction Certification



Pennsylvania DEPARTMENT OF ENVIRONMENTAL PROTECTION

#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER STANDARDS AND FACILITY REGULATION

# WATER QUALITY MANAGEMENT

# POST CONSTRUCTION CERTIFICATION

| PERMITTEE IDENTIFIER                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                             |                                                  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|--|--|--|
| Permittee                                                                                                                                                                                                                                                                                                                                                       | DELCORA                                                                                                                                                                                                                                                                                                                                                                     |                                                  |  |  |  |
| Municipality                                                                                                                                                                                                                                                                                                                                                    | Edgmont Township                                                                                                                                                                                                                                                                                                                                                            |                                                  |  |  |  |
| County                                                                                                                                                                                                                                                                                                                                                          | Delaware                                                                                                                                                                                                                                                                                                                                                                    |                                                  |  |  |  |
| WQM Permit No.                                                                                                                                                                                                                                                                                                                                                  | WQG02231810 T-1                                                                                                                                                                                                                                                                                                                                                             |                                                  |  |  |  |
| Facility Type                                                                                                                                                                                                                                                                                                                                                   | Sewage                                                                                                                                                                                                                                                                                                                                                                      |                                                  |  |  |  |
| All of the above i                                                                                                                                                                                                                                                                                                                                              | nformation should be taken di                                                                                                                                                                                                                                                                                                                                               | rectly from the Water Quality Management Permit. |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                 | CER                                                                                                                                                                                                                                                                                                                                                                         | RTIFICATION                                      |  |  |  |
| This certification m<br>WQM permit with<br>requested, as-built<br>the design plans d                                                                                                                                                                                                                                                                            | This certification must be completed and returned to the permits section of the DEP's regional office issuing the WQM permit within 30 days of completion of the project and received by DEP prior to operation, and if requested, as-built drawings, photographs (if available) and a discussion of any DEP-approved deviations from the design plans during construction. |                                                  |  |  |  |
| I, being a Registered Professional Engineer in Pennsylvania, do hereby certify to the best of my knowledge<br>and belief, based upon personal observation and interviews, that the above facility approved under the Water<br>Quality Management Permit has been constructed in accordance with the plans, specifications and<br>modifications approved by DEP. |                                                                                                                                                                                                                                                                                                                                                                             |                                                  |  |  |  |
| Construction Com                                                                                                                                                                                                                                                                                                                                                | pletion Date (MM/DD/YYYY):                                                                                                                                                                                                                                                                                                                                                  |                                                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                             | Professional Engineer                            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                             | Name                                             |  |  |  |
| •                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                             | (Please Print or Type)                           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                             | Signature                                        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                             | Date                                             |  |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                             | License Expiration Date                          |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                             | Firm or Agency                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                             | Telephone                                        |  |  |  |
| Permittee or Authorized Representative                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                             |                                                  |  |  |  |
| Name                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                             |                                                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                 | an a                                                                                                                                                                                                                                                                                                                                    | (Please Print or Type)                           |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                             | Signature                                        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                             | Title                                            |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                             | Telephone                                        |  |  |  |



SOUTHEAST REGIONAL OFFICE

March 22, 2013

# CERTIFIED MAIL NO. 7007 3020 0002 8265 1591

Mr. Joseph Salvucci DELCORA 100 East Fifth Street P.O. Box 999 Chester, PA 19016-0999

Re: WQM Permit - Sewage DELCORA Sewer System and STP Permit No. WQG02231301 Authorization ID No. 964977 Chester City Delaware County

Dear Mr. Salvucci:

Your Water Quality Management (WQM) permit is enclosed. You must comply with all Standard and Special Conditions attached to this Permit. Construction must be done in accordance with the permit application and all supporting documentation. Please review the permit conditions and the supporting documentation submitted with your application before starting construction.

Please note that you are responsible for securing all other required permits, approvals, and/or registrations associated with the project if applicable, under Chapters 102 (Erosion and Sedimentation Control), 105 (Stream Obstructions and Encroachments), and 106 (Floodplains) of the Department of Environmental Protection's (DEP) regulations. Construction may not proceed until all other required permits have been obtained.

Enclosed, is the "Water Quality Management Post Construction Certification" form. A Pennsylvania-registered Professional Engineer must sign and complete this form prior to startup of the facilities. You or your authorized representative must also sign the form. This certification and other post-construction documentation must be submitted to DEP within 30 days following startup of the facilities.

Any person aggrieved by this action may appeal, pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. Section 7514, and the Administrative Agency Law, 2 Pa.C.S. Chapter 5A, to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, P.O. Box 8457, Harrisburg, PA 17105-8457, 717.787.3483. TDD users may contact the Board through the Pennsylvania Relay Service, 800.654.5984. Appeals

Printed on Recycled Paper

2013-03

must be filed with the Environmental Hearing Board within 30 days of receipt of written notice of this action unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in braille or on audiotape from the Secretary to the Board at 717.787.3483. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law.

IF YOU WANT TO CHALLENGE THIS ACTION, YOUR APPEAL MUST REACH THE BOARD WITHIN 30 DAYS. YOU DO NOT NEED A LAWYER TO FILE AN APPEAL WITH THE BOARD.

IMPORTANT LEGAL RIGHTS ARE AT STAKE, HOWEVER, SO YOU SHOULD SHOW THIS DOCUMENT TO A LAWYER AT ONCE. IF YOU CANNOT AFFORD A LAWYER, YOU MAY QUALIFY FOR FREE PRO BONO REPRESENTATION. CALL THE SECRETARY TO THE BOARD (717.787.3483) FOR MORE INFORMATION.

During construction or upon completing construction, please contact Mr. Andrew Haneiko at 484.250.5183 or by e-mail at ahaneiko@pa.gov so that an inspection of the facilities may be conducted, at DEP's discretion.

Sincerely

Jenifer Fields, P.E. Regional Manager Clean Water

Enclosures

cc: Permits Chief
 Operations Section
 Mr. Rodriquez - Catania Engineering Assoc.
 Re 30 (eh13clw)077-4

3800-PM-WSFR0045f 6/2005 Permit



#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER STANDARDS AND FACILITY REGULATION

# WQG-02 WATER QUALITY MANAGEMENT GENERAL PERMIT FOR SEWER EXTENSIONS AND PUMP STATIONS

# PERMIT NUMBER WQG02231301

| <b>A</b> . | PERMITTEE (Name and Address):                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B. PROJECT/FACILITY (Name):                                                                                                        |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|
|            | DELCORA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | DELCORA Sewer System & STP                                                                                                         |  |  |
|            | 100 East Fifth Street P O Box 999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C. LOCATION (County, Municipality):                                                                                                |  |  |
|            | Chester, PA 19016-0999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Chester City, Delaware County                                                                                                      |  |  |
|            | CLIENT ID#: 42332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                    |  |  |
| D.         | This General Permit approves the construction and operation of:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |  |  |
|            | <b>PUMP STATION</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                    |  |  |
| E.         | APPROVAL GRANTED BY THIS GENERAL PERMIT IS SUBJECT TO THE FOLLOWING:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                    |  |  |
|            | 1. All construction, operations and procedures shall be in accordance with the <i>Domestic Wastewater Facilities Manual.</i>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                    |  |  |
|            | <b>Transfers:</b> In the event the permittee plans to transfer ov<br>and the transferee shall submit an application for such tra<br>transferee is subject to the terms and conditions of this Ger                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | vnership of the facility to another entity, the permittee<br>nsfer to DEP. If the transfer is approved by DEP, the<br>eral Permit. |  |  |
|            | 2. The attached conditions apply to this General Permit and an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | e hereby made part of same.                                                                                                        |  |  |
| F.         | THE AUTHORITY GRANTED BY THIS PERMIT IS QUALIFICATIONS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | SUBJECT TO THE FOLLOWING FURTHER                                                                                                   |  |  |
|            | 1. If there is a conflict between the NOI or its supporting docu<br>the attached conditions shall apply.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | uments and amendments and the attached conditions,                                                                                 |  |  |
|            | 2. Failure to comply with the rules and regulations of DEP or v void the authority given to the permittee by the issuance of the second | vith the terms or conditions of this General Permit shall<br>his General Permit.                                                   |  |  |
|            | <ol> <li>This General Permit is issued pursuant to the Clean Strear<br/>35 P.S. §691.1 <i>et seq</i>. Issuance of this General Permit sh<br/>any other law.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ns Law, Act of June 22, 1937, P.L. 1987, as amended all not relieve the permittee of any responsibility under                      |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |  |  |
| г с.       | March 22, 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TITLE: Clean Wate Program Manager                                                                                                  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    |  |  |

#### DETITISYLVATIA COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER STANDARDS AND FACILITY REGULATION

# PERMIT CONDITIONS

#### General

- 1. Consistent with DEP's technical guidance document Conducting Technical Reviews of Water Quality Management Permit Wastewater Treatment Facilities, DEP ID: 362-2000-007, available on DEP's Web site, DEP considers the registered professional engineer whose seal is affixed to the design documents to be fully responsible for the adequacy of all aspects of the facility's design.
- 2. The approval is specifically made contingent on the permittee acquiring all necessary property rights, by easement or otherwise, providing for the satisfactory construction, operation, maintenance and replacement of all sewers or sewerage structures in, along or across private property with full rights of ingress, egress and regress.
- 3. If, at any time, the sewer extension and/or pump station covered by this General Permit creates a public nuisance, including but not limited to, causing malodors or causing environmental harm to waters of the Commonwealth, DEP may require the permittee to adopt appropriate remedial measures to abate the nuisance or harm.
- 4. This permit does not relieve the permittee of its obligations to comply with all federal, interstate, state or local laws, ordinances and regulations applicable to the facilities.
- 5. This General Permit does not give any real or personal property rights or grant any exclusive privileges, nor shall it be construed to grant or confirm any right, easement or interest in, on, to, or over any lands which belong to the Commonwealth.
- 6. No discharge is authorized from these facilities unless approved by an NPDES Permit.

# Construction

7. An Erosion and Sedimentation (E&S) Control Plan must be developed prior to construction of the permitted facility, pursuant to Title 25 Pa. Code Chapter 102, and implemented during and after the earth disturbance activity.

If the activity involves 5 or more acres of earth disturbance, or from 1 to 5 acres of earth disturbance with a point source discharge to surface waters of the Commonwealth, an NPDES Permit is required.

In addition to the state NPDES permitting requirements, some municipalities, through local ordinances, require the E&S Control Plan to be reviewed and approved by the local county conservation district office prior to construction. For specific information regarding E&S control planning approval and NPDES permitting requirements please contact your local county conservation district office.

- 8. Prior to beginning any construction or excavation, the locations of all utility lines must be identified through notification to the PA One Call system (<u>www.paonecall.org</u>). The notification shall not be less than three nor more than 10 working days in advance of beginning the construction or excavation.
- 9. The local waterways conservation officer of the Pennsylvania Fish and Boat Commission (PFBC) shall be notified when the construction of any stream crossing and/or outfall is started and completed. A written permit must be secured from the PFBC if there is any use of explosives in any waterways and the permittee shall notify the local waterways conservation officer when explosives are to be used.
- 10. Manhole inverts shall be formed to facilitate the flow of the sewage and to prevent the stranding of sewage solids. The whole manhole structure shall be built to prevent undue infiltration, entrance of street wash or grit and provide safe access to facilitate manhole maintenance activities.
- 11. The facilities shall be constructed under the supervision of a Pennsylvania registered Professional Engineer in accordance with the approved reports, plans and specifications.

12. A Pennsylvania registered Professional Engineer shall certify that construction of the permitted facilities was completed in accordance with the application and design plans submitted to DEP, using "Post Construction Certification" (3800-PM-WSFR0179a). It is the permittee's responsibility to ensure that a Professional Engineer is on-site to provide the necessary oversight and/or inspections to certify the facilities. The certification must be submitted to DEP before the facility is placed in operation. If requested, "as-built" drawings, photographs (if available) and a description of any DEP-approved deviations from the application and design plans must be submitted to DEP within 30 days of certification. Construction must be completed within two years of permit issue date.

#### **Operation and Maintenance**

- 13. The permittee shall maintain sewer extension and/or pump station operation and maintenance (O&M) manuals at the facility and ensure proper O&M of the permitted facility. The permittee shall file the O&M manuals with DEP upon request.
- 14. Stormwater from roofs, foundation drains, basement drains or other sources shall not be admitted directly to the sewer extension or pump station.
- 15. The sewer extension shall have adequate foundation support as soil conditions require. Trenches shall be backfilled to ensure that sewers will have proper structural stability, with minimal settling and adequate protection against breakage. Concrete used in connection with these sewers shall be protected from damage by water, freezing, drying or other harmful conditions until cured.
- 16. The approved sewer extensions and/or pump stations shall be maintained in good condition, kept free of deposits by flushing or other cleaning methods and repaired when necessary.
- 17. The sewer extension and/or pump station shall be properly operated and maintained so that the facility will perform as designed.
- 18. The attention of the permittee is called to the highly explosive nature of certain gases generated by the digestion of sewage solids when these gases are mixed in proper proportions with air and to the highly toxic character of certain gases arising from such digestion or from sewage in poorly ventilated compartments or sewers. Therefore, at all places throughout the facilities where hazard of fire, explosion or danger from toxic gases may occur, the permittee shall post conspicuous permanent and legible warnings. The permittee shall instruct all employees concerning the aforesaid hazards, first aid and emergency methods of meeting such hazards and shall make all necessary equipment and material accessible.
- 19. There shall be no physical connection between a public water supply system and a sewer or appurtenance to it which would permit the passage of any sewage or polluted water into the potable water supply. No water pipe shall pass through or come in contact with any part of the sewer extension and/or pump station.
- 20. Collected screenings, slurries, sludge and other solids shall be handled and disposed of in compliance with Title 25 Pa. Code, Chapters 271, 273, 275, 283 and 285 (related to permits and requirements for land filling, land application, incineration and storage of sewage sludge), Federal Regulations 40 CFR Part 257 and the Federal Clean Water Act and its amendments.

Pennsylvania DEPARTMENT OF ENVIRONMENTAL PROTECTION

#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER STANDARDS AND FACILITY REGULATION

# WATER QUALITY MANAGEMENT

# POST CONSTRUCTION CERTIFICATION

| PERMITTEE IDENTIFIER                                                                                                                                                                                                                                                                                                                                                        |                              |                                                   |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|---------------------------------------------------|--|--|
| Permittee DELCORA                                                                                                                                                                                                                                                                                                                                                           |                              |                                                   |  |  |
| Municipality                                                                                                                                                                                                                                                                                                                                                                | Chester City                 |                                                   |  |  |
| County Delaware                                                                                                                                                                                                                                                                                                                                                             |                              |                                                   |  |  |
| WQM Permit No. WQG02231301                                                                                                                                                                                                                                                                                                                                                  |                              |                                                   |  |  |
| Facility Type Sewage                                                                                                                                                                                                                                                                                                                                                        |                              |                                                   |  |  |
| All of the above i                                                                                                                                                                                                                                                                                                                                                          | nformation should be taken d | irectly from the Water Quality Management Permit. |  |  |
| CERTIFICATION                                                                                                                                                                                                                                                                                                                                                               |                              |                                                   |  |  |
| This certification must be completed and returned to the permits section of the DEP's regional office issuing the WQM permit within 30 days of completion of the project and received by DEP prior to operation, and if requested, as-built drawings, photographs (if available) and a discussion of any DEP-approved deviations from the design plans during construction. |                              |                                                   |  |  |
| I, being a Registered Professional Engineer in Pennsylvania, do hereby certify to the best of my knowledge<br>and belief, based upon personal observation and interviews, that the above facility approved under the Water<br>Quality Management Permit has been constructed in accordance with the plans, specifications and<br>modifications approved by DEP.             |                              |                                                   |  |  |
| Construction Completion Date (MM/DD/YYYY):                                                                                                                                                                                                                                                                                                                                  |                              |                                                   |  |  |
| Engineer's<br>Seal                                                                                                                                                                                                                                                                                                                                                          |                              | Professional Engineer                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |                              | Name                                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |                              | (Please Print or Type)                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |                              | Signature                                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |                              | Date                                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |                              | License Expiration Date                           |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |                              | Firm or Agency                                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |                              | Telephone                                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |                              | Permittee or Authorized Representative            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |                              | Name                                              |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |                              | (Please Print or Type)                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |                              | Signature                                         |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |                              | Title                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |                              | Telephone                                         |  |  |
| 3800-PM-WSWM0015 Rev. 6/2004<br>Permit                                                                                                                                                                                                                                                                                                                                              | COMMONWEA<br>DEPARTMENT OF EN                                                                                                                                                                                                                                    | ON                                                                                       | PERMIT NO. 2312401                                                                                                  |                                                                                                             |                                                                                                                                                                 |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                     | BUREAU OF WATER SUPPL                                                                                                                                                                                                                                            | BUREAU OF WATER SUPPLY AND WASTEWATER MANAGEMENT                                         |                                                                                                                     |                                                                                                             |                                                                                                                                                                 |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                     | WATER QUALITY MANAGEMENT                                                                                                                                                                                                                                         |                                                                                          |                                                                                                                     |                                                                                                             | APS ID 772926                                                                                                                                                   |  |  |
| DEPARTMENT OF ENVIRONMENTAL PROTECTIC                                                                                                                                                                                                                                                                                                                                               | P                                                                                                                                                                                                                                                                | ERMI                                                                                     | Г                                                                                                                   |                                                                                                             | auth id <u>914744</u>                                                                                                                                           |  |  |
| <ul> <li>A. PERMITTEE (Name and Address):</li> <li>DELCORA</li> <li>P.O. Box 999</li> <li>Chester, PA 19016-0999</li> </ul>                                                                                                                                                                                                                                                         | CLIENT ID#: 4233:                                                                                                                                                                                                                                                | 2                                                                                        | B. PRIMARY<br>Rose Vall                                                                                             | FACILITY (Nam<br>ey Borough S                                                                               | e):<br>STP                                                                                                                                                      |  |  |
| C. LOCATION (Municipality, County):<br>Rose Valley Borough<br>Delaware County                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                  |                                                                                          | SITE ID#:<br>465797                                                                                                 |                                                                                                             |                                                                                                                                                                 |  |  |
| D. This permit approves the modif                                                                                                                                                                                                                                                                                                                                                   | ication of sewerage facilitie                                                                                                                                                                                                                                    | s consist                                                                                | ing of:                                                                                                             |                                                                                                             |                                                                                                                                                                 |  |  |
| Conversion of gas chlorine to se                                                                                                                                                                                                                                                                                                                                                    | dium hypochlorite solution                                                                                                                                                                                                                                       | for disi                                                                                 | nfection.                                                                                                           |                                                                                                             |                                                                                                                                                                 |  |  |
| Pump Stations:                                                                                                                                                                                                                                                                                                                                                                      | Manure Storage:                                                                                                                                                                                                                                                  |                                                                                          | Industria                                                                                                           | al Wastewater/S                                                                                             | ewage Treatment Facility:                                                                                                                                       |  |  |
| Design Capacity: GPM                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                  |                                                                                          | Annual Average                                                                                                      | Flow:                                                                                                       | 0.13 MGD                                                                                                                                                        |  |  |
| Average Annual Flow: GPD                                                                                                                                                                                                                                                                                                                                                            | Volume                                                                                                                                                                                                                                                           | MG                                                                                       | Design Hydrauli                                                                                                     | c Capacity:                                                                                                 | 0.13 MGD                                                                                                                                                        |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                     | Freeboard:                                                                                                                                                                                                                                                       | inches                                                                                   | Design Organic                                                                                                      | Capacity:                                                                                                   | Ib/day                                                                                                                                                          |  |  |
| <ul> <li>E. APPROVAL GRANTED BY THIS PEF</li> <li>1. New Permits: All construction, ope<br/><u>02/08/2012</u>, its supporting docum</li> <li>Amendments: All construction, ope<br/>application dated and its suppor</li> <li>Except for any herein approved modif<br/>Management Permit No dated</li> <li>Transfers: Water Quality Management<br/>part of this transfer.</li> </ul> | RMIT IS SUBJECT TO THE FOL<br>rations, and procedures shall be<br>rentation, and addendums dated<br>erations, and procedures shall be<br>ting documentation, and addend<br>cations, all terms, conditions, su<br>shall remain in effect.<br>rent Permit No dated | LOWING:<br>in accorda<br>, which<br>in accord<br>ums dated<br>pporting do<br>_ and conco | ance with the Wat<br>ch are hereby ma<br>ance with the Wa<br>, which are<br>ocumentation and<br>litions, supporting | er Quality Mana<br>de a part of this<br>ter Quality Man<br>hereby made a<br>I addendums ap<br>documentation | gement Permit application dated<br>permit.<br>agement Permit Amendment<br>part of this amendment.<br>pproved under Water Quality<br>and addendums are also made |  |  |
| 2. Permit Conditions Relating to s     3. Special Conditions numbered a                                                                                                                                                                                                                                                                                                             | ewerage are attached and mac<br>e attached and made part of this                                                                                                                                                                                                 | le part of t<br>s permit.                                                                | his permit.                                                                                                         |                                                                                                             |                                                                                                                                                                 |  |  |
| F. THE AUTHORITY GRANTED BY THI                                                                                                                                                                                                                                                                                                                                                     | S PERMIT IS SUBJECT TO THE                                                                                                                                                                                                                                       | E FOLLOV                                                                                 | ING FURTHER                                                                                                         | QUALIFICATIO                                                                                                | NS:                                                                                                                                                             |  |  |
| <ol> <li>If there is a conflict between the app<br/>shall apply.</li> <li>Eailure to comply with the rules and -</li> </ol>                                                                                                                                                                                                                                                         | lication or its supporting docum                                                                                                                                                                                                                                 | ents and a                                                                               | amendments and                                                                                                      | the attached c                                                                                              | onditions, the attached conditions                                                                                                                              |  |  |
| <ol> <li>a none to comply with the rules and p<br/>by the issuance of this permit.</li> <li>This permit is issued pursuant to the</li> </ol>                                                                                                                                                                                                                                        | Clean Streams Law Act of June                                                                                                                                                                                                                                    | e 22, 1937                                                                               | , P.L. 1987. as a                                                                                                   | mended 35 P.S                                                                                               | 5. §691.1 et seq. Issuance of this                                                                                                                              |  |  |
| permit shall not relieve the permittee of                                                                                                                                                                                                                                                                                                                                           | of any responsibility under any ot                                                                                                                                                                                                                               | her law.                                                                                 |                                                                                                                     | $\overline{\gamma}$                                                                                         | $\rightarrow$ $(-)$                                                                                                                                             |  |  |
| PERMIT ISSUED:                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                  |                                                                                          | BY:                                                                                                                 | 144                                                                                                         |                                                                                                                                                                 |  |  |
| March 14, 201                                                                                                                                                                                                                                                                                                                                                                       | .2                                                                                                                                                                                                                                                               |                                                                                          | TITLE:                                                                                                              | Clean Water                                                                                                 | r Program Manager                                                                                                                                               |  |  |
| Re 30 ( WP )                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                  |                                                                                          |                                                                                                                     |                                                                                                             |                                                                                                                                                                 |  |  |



March 14, 2012

Mr. Joseph Salvucci Executive Director DELCORA P.O. Box 999 Chester, PA 19016-0999

Re: Rose Valley Borough STP Application No. 2312401 File Type: Permit Rose Valley Borough Delaware County

Dear Mr. Salvucci:

Your permit is enclosed.

You must comply with all Standard and Special Conditions attached to this permit. Construction must be done in accordance with the permit application and all supporting documentation. Please review the permit conditions and the supporting documentation submitted with your application before starting construction.

Enclosed is the "Sewage and Industrial Wastewater Facilities Construction Certification" form. A Pennsylvania-registered Professional Engineer must sign and complete this form prior to startup of the facilities (see Special Conditions). You or your authorized representative must also sign the form. This certification and other post construction documentation must be submitted to the Department within 30 days following startup of the facilities.

Any person aggrieved by this action may appeal, pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. Section 7514, and the Administrative Agency Law, 2 Pa.C.S. Chapter 5A, to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, P.O. Box 8457, Harrisburg, PA 17105-8457, 717.787.3483. TDD users may contact the Board through the Pennsylvania Relay Service, 800.654.5984. Appeals must be filed with the Environmental Hearing Board within 30 days of receipt of written notice of this action unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in braille or on audiotape from the Secretary to the Board at 717.787.3483. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law.

484.250.5970 | Fax 484.250.5971

Printed on Recycled Paper  $\begin{pmatrix} x \\ y \\ y \end{pmatrix}$ 

CC. CUH, Bothwell, Di Santis, Di Matteo Pending File IF YOU WANT TO CHALLENGE THIS ACTION, YOUR APPEAL MUST REACH THE BOARD WITHIN 30 DAYS. YOU DO NOT NEED A LAWYER TO FILE AN APPEAL WITH THE BOARD.

IMPORTANT LEGAL RIGHTS ARE AT STAKE, HOWEVER, SO YOU SHOULD SHOW THIS DOCUMENT TO A LAWYER AT ONCE. IF YOU CANNOT AFFORD A LAWYER, YOU MAY QUALIFY FOR FREE PRO BONO REPRESENTATION. CALL THE SECRETARY TO THE BOARD (717.787.3483) FOR MORE INFORMATION.

If you have any questions, please call Mr. Andrew Haneiko at 484.250.5183.

Sincerely.

Jenifer Fields, P.E. Regional Manager Clean Water

Enclosures

cc: Permits Chief Operations Section Ms. Lashley Re (dh12clw) 065-11



#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER SUPPLY AND WASTEWATER MANAGEMENT

# PERMIT CONDITIONS RELATING TO SEWERAGE

For use in Water Quality Management Permits

(Place a  $\sqrt{1}$  in the box that applies)

| Ger         | neral |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | 1.    | Consistent with the Department of Environmental Protection's (DEP) technical guidance document <i>Conducting Technical Reviews of Water Quality Management Permit Wastewater Treatment Facilities</i> (DEP ID: 362-2000-007) available on DEP's website at <u>www.dep.state.pa.us</u> . DEP considers the registered Professional Engineer whose seal is affixed to the design documents to be fully responsible for the adequacy of all aspects of the facility design.                                                                                                                                                                                                                                                                                                                                                    |
| $\boxtimes$ | 2.    | The permittee shall adopt and enforce an ordinance requiring the abandonment of privies, cesspools or similar receptacles for human waste and onlot sewage disposal systems on the premises of occupied structures accessible to public sewers. All such structures must be connected to the public sewers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | 3.    | The outfall sewer or drain shall be extended to the low water mark of the receiving body of water. Where necessary to ensure proper mixing and waste assimilation, an outfall sewer or drain may be extended with appurtenances below the low water mark and into the bed of a navigable stream provided that the permittee has secured an easement, right-of-way, license or lease from DEP in accordance with Section 15 of the Dam Safety and Encroachments Act, the Act of November 26, 1978, P.L. 1375, as amended.                                                                                                                                                                                                                                                                                                    |
|             | 4.    | The approval is specifically made contingent on the permittee acquiring all necessary property rights, by easement or otherwise, providing for the satisfactory construction, operation, maintenance and replacement of all sewers or sewerage structures in, along or across private property with full rights of ingress, egress and regress.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\boxtimes$ | 5.    | When construction of the approved sewerage facilities is completed and before they are placed in operation, the permittee shall notify DEP in writing so that a DEP representative may inspect the facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | 6.    | If, at any time, the sewerage facilities covered by this permit create a public nuisance, including but not limited to, causing malodors or causing environmental harm to waters of the Commonwealth, DEP may require the permittee to adopt appropriate remedial measures to abate the nuisance or harm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | 7.    | This permit authorizes the construction and operation of the proposed sewerage facilities until such time as facilities for conveyance and treatment at a more suitable location are installed and capable of receiving and treating the permittee's sewage. Such facilities must be in accordance with the applicable municipal official plan adopted pursuant to Section 5 of the Pennsylvania Sewage Facilities Act, the Act of January 24, 1966, P.L. 1535 as amended. When such municipal sewerage facilities become available, the permittee shall provide for the conveyance of the sewage to these sewerage facilities, abandon the use of these approved facilities and notify DEP accordingly. This permit shall then, upon notice from DEP, terminate and become null and void and shall be relinquished to DEP. |
| $\boxtimes$ | 8.    | This permit does not relieve the permittee of its obligations to comply with all federal, interstate, state or local laws, ordinances and regulations applicable to the sewerage facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\boxtimes$ | 9.    | This permit does not give any real or personal property rights or grant any exclusive privileges, nor shall it be construed to grant or confirm any right, easement or interest in, on, to or over any lands which belong to the Commonwealth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | 10.   | The authority granted by this permit is subject to all effluent requirements, monitoring requirements and other conditions as set forth in NPDES Permit No. PA0020575 and all subsequent amendments and renewals. No discharge is authorized from these facilities unless approved by an NPDES Permit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Con         | struc | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | 11.   | An Erosion and Sedimentation (E&S) Plan must be developed prior to construction of the permitted facility, pursuant to Title 25 Pa. Code Chapter 102, and implemented during and after the earth disturbance activity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |       | If the activity involves 5 or more acres of earth disturbance, or from 1 to 5 acres of earth disturbance with a point source discharge to surface waters of the Commonwealth, an NPDES permit for the Discharge of Stormwater Associated with Construction Activity is required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |       | In addition to the state NPDES permitting requirements, some municipalities, through local ordinances, require the E&S Control Plan to be reviewed and approved by the local County Conservation District office prior to construction. For specific information regarding E&S control planning approval and NPDES permitting requirements, please contact your local County Conservation District office.                                                                                                                                                                                                                                                                                                                                                                                                                  |

12. The facilities shall be constructed under the supervision of a Pennsylvania registered Professional Engineer in

accordance with the approved reports, plans and specifications.

- 13. A Pennsylvania registered Professional Engineer shall certify that construction of the permitted facilities was completed in accordance with the application and design plans submitted to DEP, using "Post Construction Certification" (3800-PM-WSWM0179a). It is the permittee's responsibility to ensure that a Professional Engineer is on-site to provide the necessary oversight and/or inspections to certify the facilities. The certification must be submitted to DEP before the facility is placed in operation. If requested, "as-built" drawings, photographs (if available) and a description of any DEPapproved deviations from the application and design plans must be submitted to DEP within 30 days of certification.
- 14. Manhole inverts shall be formed to facilitate the flow of the sewage and to prevent the stranding of sewage solids. The manhole structure shall be built to prevent undue infiltration, entrance of street wash or grit and provide safe access to facilitate manhole maintenance activities.
- 15. The local Waterways Conservation Officer of the Pennsylvania Fish and Boat Commission (PFBC) shall be notified when the construction of any stream crossing and/or outfall is started and completed. A written permit must be secured from the PFBC if the use of explosives in any waterways is required and the permittee shall notify the local Waterways Conservation Officer when explosives are to be used.

**Operation and Maintenance** 

- 16. The permittee shall maintain records of "as-built" plans showing all the treatment facilities as actually constructed together with facility operation and maintenance (O&M) manuals and any other relevant information that may be required. Upon request, the "as-built" plans and O&M manuals shall be filed with DEP.
- 17. The sewers shall have adequate foundation support as soil conditions require. Trenches shall be back-filled to ensure that sewers will have proper structural stability, with minimum settling and adequate protection against breakage. Concrete used in connection with these sewers shall be protected from damage by water, freezing, drying or other harmful conditions until cured.
- 18. Stormwater from roofs, foundation drains, basement drains or other sources shall not be admitted directly to the sanitary sewers.
- 19. The approved sewers shall be maintained in good condition, kept free of deposits by flushing or other cleaning methods and repaired when necessary.
- 20. The sewerage facilities shall be properly operated and maintained to perform as designed.
- 21. The attention of the permittee is called to the highly explosive nature of certain gases generated by the digestion of sewage solids when these gases are mixed in proper proportions with air and to the highly toxic character of certain gases arising from such digestion or from sewage in poorly ventilated compartments or sewers. Therefore, at all places throughout the sewerage facilities where hazard of fire, explosion or danger from toxic gases may occur, the permittee shall post conspicuous permanent and legible warnings. The permittee shall instruct all employees concerning the aforesaid hazards, first aid and emergency methods of meeting such hazards and shall make all necessary equipment and material accessible.
- 22. An operator certified in accordance with the Water and Wastewater Systems Operator Certification Act of February 21, 2002, 63 P.S. §§1001, et seq. shall operate the sewage treatment plant.
- 23. The permittee shall properly control any industrial waste discharged into its sewerage system by regulating the rate and quality of such discharge, requiring necessary pretreatment and excluding industrial waste, if necessary, to protect the integrity or operation of the permittee's sewerage system.
- 24. There shall be no physical connection between a public water supply system and a sewer or appurtenance to it which would permit the passage of any sewage or polluted water into the potable water supply. No water pipe shall pass through or come in contact with any part of a sewer manhole.
- 25. All connections to the approved sanitary sewers must be in accordance with the corrective action plan as contained in the approved Title 25 Pa. Code Chapter 94 Municipal Wasteload Management Annual Report.
- 26. Collected screenings, slurries, sludge and other solids shall be handled and disposed of in compliance with Title 25 Pa. Code Chapters 271, 273, 275, 283 and 285 (related to permits and requirements for land filling, land application, incineration and storage of sewage sludge), Federal Regulations 40 CFR 257 and the Federal Clean Water Act and its amendments.

Re 30 (WP)



Southeast Regional Office

January 13, 2015

### CERTIFIED MAIL NO. 7013 2250 0000 7504 1601

Mr. Robert J. Willert Executive Director DELCORA 100 East Fifth Street, P. O. Box 999 Chester, PA 19016

Unig: Bob Willert DECJEJIWJEN JAN 15 2015' 2015-0042 Awd: BAB

Re: Final NPDES Permit - Sewage Rose Valley Borough STP NPDES Permit No. PA0020575 Authorization ID No. 1024622 Rose Valley Borough, Delaware County

Dear Mr. Willert:

Your NPDES permit is enclosed. Please read the permit carefully. The permit expires on the date identified on page 1 of the permit. A renewal application must be submitted to this office 180 days prior to the permit expiration date, if a discharge is expected to continue past the expiration date of the permit.

Enclosed are Discharge Monitoring Report (DMR) templates and DMR instructions. It is recommended that you retain the DMR templates in the event you are unable to submit DMRs electronically through DEP's eDMR system. Routine use of the eDMR system is a requirement of the permit unless the conditions in Part A III.B of the permit are met to withdraw from the eDMR system.

Also enclosed is a Supplemental Form Inventory, which identifies the forms that are attached to the permit and must be submitted as attachments to eDMR reports, as applicable (see individual form instructions). The submission of other supplemental forms may be required in accordance with the permit. We encourage you to use the spreadsheet versions of supplemental forms that contain appropriate validation and DEP-approved calculations.

Any person aggrieved by this action may appeal, pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. Section 7514, and the Administrative Agency Law, 2 Pa.C.S. Chapter 5A, to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, P.O. Box 8457, Harrisburg, PA 17105-8457, 717.787.3483. TDD users may contact the Board through the Pennsylvania Relay Service, 800.654.5984. Appeals must be filed with the Environmental Hearing Board within 30 days of receipt of written notice of this action unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The

appeal form and the Board's rules of practice and procedure are also available in braille or on audiotape from the Secretary to the Board at 717.787.3483. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law.

- 2 -

IF YOU WANT TO CHALLENGE THIS ACTION, YOUR APPEAL MUST REACH THE BOARD WITHIN 30 DAYS. YOU DO NOT NEED A LAWYER TO FILE AN APPEAL WITH THE BOARD.

IMPORTANT LEGAL RIGHTS ARE AT STAKE, HOWEVER, SO YOU SHOULD SHOW THIS DOCUMENT TO A LAWYER AT ONCE. IF YOU CANNOT AFFORD A LAWYER, YOU MAY QUALIFY FOR FREE PRO BONO REPRESENTATION. CALL THE SECRETARY TO THE BOARD (717.787.3483) FOR MORE INFORMATION.

If you have any questions, please contact Sara Abraham at 484.250.5195.

Sincerely,

Jenifer L. Fields, P.E. Environmental Program Manager Clean Water Program

Enclosures

cc:

Rose Valley Borough (w/o enclosure) Operations Section Mr. Kovach-DRBC Ms. Lashley (w/o enclosure) Central Office, Division of Operations, Monitoring and Data Systems Re pennsylvania DEPARTMENT OF ENVIRONMENTAL PROTECTION

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF POINT AND NON-POINT SOURCE MANAGEMENT

# AUTHORIZATION TO DISCHARGE UNDER THE NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM DISCHARGE REQUIREMENTS FOR PUBLICLY OWNED TREATMENT WORKS (POTWs)

# NPDES PERMIT NO: PA0020575

In compliance with the provisions of the Clean Water Act, 33 U.S.C. Section 1251 et seq. ("the Act") and Pennsylvania's Clean Streams Law, as amended, 35 P.S. Section 691.1 et seq.,

#### Delaware County Regional Water Quality Control Authority (DELCORA) 100 East Fifth Street, P. O. Box 999 Chester, PA 19016

is authorized to discharge from a facility known as **Rose Valley Borough STP**, located at **18 S. Long Point Lane**, **Rose Valley Borough**, **Delaware County**, to **Ridley Creek** in Watershed(s) **3-G** in accordance with effluent limitations, monitoring requirements and other conditions set forth in Parts A, B and C hereof.

| THIS PERMIT SHALL BECOME EFFECTIVE ON   | FEBRUARY 1, 2015 |
|-----------------------------------------|------------------|
| THIS PERMIT SHALL EXPIRE AT MIDNIGHT ON | JANUARY 31, 2020 |

The authority granted by this permit is subject to the following further qualifications:

- 1. If there is a conflict between the application, its supporting documents and/or amendments and the terms and conditions of this permit, the terms and conditions shall apply.
- Failure to comply with the terms, conditions or effluent limitations of this permit is grounds for enforcement action; for permit termination, revocation and reissuance, or modification; or for denial of a permit renewal application. (<u>40 CFR 122.41(a)</u>)
- A complete application for renewal of this permit, or notice of intent to cease discharging by the expiration date, must be submitted to DEP at least 180 days prior to the above expiration date (unless permission has been granted by DEP for submission at a later date), using the appropriate NPDES permit application form. (<u>40 CFR</u> <u>122.41(b)</u>, <u>122.21(d)</u>)

In the event that a timely and complete application for renewal has been submitted and DEP is unable, through no fault of the permittee, to reissue the permit before the above expiration date, the terms and conditions of this permit, including submission of the Discharge Monitoring Reports (DMRs), will be automatically continued and will remain fully effective and enforceable against the discharger until DEP takes final action on the pending permit application. (<u>25 Pa. Code 92a.7(b), (c)</u>);

4. This NPDES permit does not constitute authorization to construct or make modifications to wastewater treatment facilities necessary to meet the terms and conditions of this permit.

DATE PERMIT ISSUED January 13, 2015 ISSUED BY

Jenifer L. **Fields, P.E.** Clean Water Program Manager Southeast Regional Office

#### PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS

| I. A. | For Outfall 001   | _, Latitude <u>39° 53' 27.41"</u> , Longitude <u>75° 23' 24.99"</u> , River Mile Index <u>4.8</u> , Stream Code <u>00621</u> |  |
|-------|-------------------|------------------------------------------------------------------------------------------------------------------------------|--|
|       | Receiving Waters: | Ridley Creek                                                                                                                 |  |
|       | Type of Effluent: | Treated Sewage                                                                                                               |  |

1. The permittee is authorized to discharge during the period from Permit Effective Date through January 31, 2018.

2. Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

|                         |            |               | Effluent L                              | imitations |         |          | Monitoring Re          | quirements |
|-------------------------|------------|---------------|-----------------------------------------|------------|---------|----------|------------------------|------------|
| Parameter               | Mass Units | (lbs/day) (1) | Concentrations (mg/L)                   |            |         |          | Minimum <sup>(2)</sup> | Required   |
| Falameter               | Average    | Weekly        | Instant.                                | Average    | Weekly  | Instant. | Measurement            | Sample     |
|                         | Monthly    | Average       | Minimum                                 | Monthly    | Average | Maximum  | Frequency              | Туре       |
|                         |            | Report        |                                         |            |         |          |                        |            |
| Flow (MGD)              | Report     | Daily Max     | XXX                                     | XXX        | XXX     | XXX      | Continuous             | Metered    |
| pH (S.U.)               | XXX        | xxx           | 6.0                                     | xxx        | XXX     | 9.0      | 1/day                  | Grab       |
| Dissolved Oxygen        |            |               |                                         |            |         |          |                        |            |
| (Until 3/31/2015)       | XXX        | XXX           | 2.0                                     | XXX        | XXX     | XXX      | 1/day                  | Grab       |
| Dissolved Oxygen        |            |               | _                                       |            |         |          |                        |            |
| (4/1/2015 to 1/31/2018) | XXX        | XXX           | 5.0                                     | XXX        | XXX     | XXX      | 1/day                  | Grab       |
| Total Residual Chlorine | xxx        | xxx           | xxx                                     | 0.5        | XXX     | 16       | 1/day                  | Grab       |
| [                       |            | 7001          | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | 0.0        | 7000    |          |                        | 24-Hr      |
| CBOD5                   | 27.1       | 43.4          | XXX                                     | 25         | 40      | 50       | 1/week                 | Composite  |
| CBOD5                   |            |               |                                         |            |         |          |                        | 24-Hr      |
| Raw Sewage Influent     | Report     | XXX           | XXX                                     | Report     | XXX     | XXX      | 1/week                 | Composite  |
| BOD5                    |            |               |                                         |            |         |          |                        | 24-Hr      |
| Raw Sewage Influent     | Report     | XXX           | XXX                                     | Report     | XXX     | XXX      | 1/week                 | Composite  |
| Total Suspended Solids  |            |               |                                         |            |         |          |                        | 24-Hr      |
| Raw Sewage Influent     | Report     | XXX           | XXX                                     | Report     | XXX     | XXX      | 1/week                 | Composite  |
|                         |            |               |                                         |            |         |          |                        | 24-Hr      |
| Total Suspended Solids  | 32.5       | 48.8          | XXX                                     | 30         | 45      | 60       | 1/week                 | Composite  |

## Outfall 001, Continued (from Permit Effective Date through January 31, 2018)

|                             |                          |         | Effluent L     | imitations |                        |            | Monitoring Red | quirements |
|-----------------------------|--------------------------|---------|----------------|------------|------------------------|------------|----------------|------------|
| Baramatar                   | Mass Units (lbs/day) (1) |         |                | Concentrat | Minimum <sup>(2)</sup> | Required   |                |            |
| Farameter                   | Average                  | Weekly  | Instant.       | Average    | Weekly                 | Instant.   | Measurement    | Sample     |
|                             | Monthly                  | Average | <u>Minimum</u> | Monthly    | Average                | Maximum    | Frequency      | Туре       |
|                             |                          | _       |                |            |                        | Report     |                | 24-Hr      |
| Total Dissolved Solids      | XXX                      | XXX     |                | XXX        | XXX                    | Daily Max. | 1/quarter      | Composite  |
| Fecal Coliform (CFU/100 ml) |                          |         |                | 200        |                        |            |                |            |
| May 1 - Sep 30              | XXX                      | XXX     | XXX            | Geo Mean   | XXX                    | 1,000      | 1/week         | Grab       |
| Fecal Coliform (CFU/100 ml) |                          |         |                | 200        |                        |            |                |            |
| Oct 1 - Apr 30              | XXX                      | XXX     | XXX            | Geo Mean   | XXX                    | 1,000*     | 1/week         | Grab       |
|                             |                          |         |                |            |                        |            |                | 24-Hr      |
| Total Nitrogen              | XXX                      | XXX     | XXX            | Report     | XXX                    | Report     | 1/month        | Composite  |
|                             |                          |         |                |            |                        |            |                | 24-Hr      |
| Ammonia-Nitrogen            |                          | XXX     | XXX            | Report     | XXX                    | Report     | 1/month        | Composite  |
|                             |                          |         |                |            |                        |            |                | 24-Hr      |
| Total Phosphorus            | XXX _                    |         | XXX            | Report     | XXX                    | Report     | 1/month        | Composite  |

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s): at Outfall 001

\*Shall not exceed in more than 10% of samples. See Part C.I. Other Requirement No G.

#### PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS

| I. B. | For Outfall 001   | , Latitude <u>39° 53' 27.41"</u> , Longitude <u>75° 23' 24.99"</u> , River Mile Index <u>4.8</u> , Stream Code <u>00621</u> |  |
|-------|-------------------|-----------------------------------------------------------------------------------------------------------------------------|--|
|       | Receiving Waters: | Ridley Creek                                                                                                                |  |
|       | Type of Effluent: | Treated Sewage                                                                                                              |  |

1. The permittee is authorized to discharge during the period from February 1, 2018 through Permit Expiration Date.

2. Based on the anticipated wastewater characteristics and flows described in the permit application and its supporting documents and/or amendments, the following effluent limitations and monitoring requirements apply (see also Additional Requirements and Footnotes).

|                                               |                                     |                     | Effluent L            | imitations         |                   |                     | Monitoring Red           | quirements         |
|-----------------------------------------------|-------------------------------------|---------------------|-----------------------|--------------------|-------------------|---------------------|--------------------------|--------------------|
| Parameter                                     | Mass Units (Ibs/day) <sup>(1)</sup> |                     | Concentrations (mg/L) |                    |                   |                     | Minimum <sup>(2)</sup>   | Required           |
|                                               | Average<br>Monthly                  | Weekly<br>Average   | Instant.<br>Minimum   | Average<br>Monthly | Weekly<br>Average | Instant.<br>Maximum | Measurement<br>Frequency | Sample<br>Type     |
| Flow (MGD)                                    | Report                              | Report<br>Daily Max | xxx                   | xxx                | xxx               | xxx                 | Continuous               | Metered            |
| pH <u>(</u> S.U.)                             | XXX                                 | xxx                 | 6.0                   | XXX                | XXX               | 9.0                 | 1/day                    | Grab               |
| Dissolved Oxygen                              | xxx                                 | xxx                 | 5.0                   | xxx                | xxx               | xxx                 | 1/day                    | Grab               |
| Total Residual Chlorine                       | xxx                                 | <br>XXX             | XXX                   | 0.5                | xxx               | 1.6                 | 1/day                    | Grab               |
| CBOD5                                         | 27.1                                | 43.4                | xxx                   | 25                 | 40                | 50                  | ,<br>1/week              | 24-Hr<br>Composite |
| CBOD5<br>Raw Sewage Influent                  | Report                              | xxx                 | xxx                   | Report             | XXX               | XXX                 | 1/week                   | 24-Hr<br>Composite |
| BOD5<br>Raw Sewage Influent                   | Report                              | XXX                 | xxx                   | Report             | XXX               | XXX                 | 1/week                   | 24-Hr<br>Composite |
| Total Suspended Solids<br>Raw Sewage Influent | Report                              | XXX                 | xxx                   | Report             | xxx               | XXX                 | 1/week                   | 24-Hr<br>Composite |
| Total Suspended Solids                        | 32.5                                | 48.8                | xxx                   | 30                 | 45                | 60                  | 1/week                   | 24-Hr<br>Composite |

#### Outfall 001, Continued (from February 1, 2018 through Permit Expiration Date)

|                             | Effluent Limitations                |         |          |            |                        |            | Monitoring Requirements |           |
|-----------------------------|-------------------------------------|---------|----------|------------|------------------------|------------|-------------------------|-----------|
| Parameter                   | Mass Units (lbs/day) <sup>(1)</sup> |         |          | Concentrat | Minimum <sup>(2)</sup> | Required   |                         |           |
| Falalleter                  | Average                             | Weekly  | Instant. | Average    | Weekly                 | Instant.   | Measurement             | Sample    |
|                             | Monthly                             | Average | Minimum  | Monthly    | Average                |            | <u>⊢requency</u>        | Туре      |
|                             |                                     |         |          |            |                        | Report     |                         | 24-Hr     |
| Total Dissolved Solids      | XXX                                 | XXX     | XXX      | XXX        | XXX                    | Daily Max. | 1/guarter               | Composite |
| Fecal Coliform (CFU/100 ml) | -                                   |         |          | 200        |                        |            |                         |           |
| May 1 - Sep 30              | XXX                                 | XXX     | XXX      | Geo Mean   | XXX                    | 1,000      | 1/week                  | Grab      |
| Fecal Coliform (CFU/100 ml) |                                     |         |          | 200        |                        |            |                         |           |
| Oct 1 - Apr 30              | XXX                                 | XXX     | XXX      | Geo Mean   | XXX                    | 1,000*     | 1/week                  | Grab      |
|                             |                                     |         |          |            |                        |            |                         | 24-Hr     |
| Total Nitrogen              | XXX                                 | XXX     | XXX      | Report     | XXX                    | Report     | 1/month                 | Composite |
|                             |                                     |         |          |            |                        |            |                         | 24-Hr     |
| Ammonia-Nitrogen            | XXX _                               | XXX     | XXX      | Report     | XXX                    | Report     | 1/month                 | Composite |
|                             |                                     |         |          |            |                        |            |                         | 24-Hr     |
| Total Phosphorus            | _ 2.2                               |         | XXX      | 2.0        | XXX                    | 4.0        | 1/week                  | Composite |

Samples taken in compliance with the monitoring requirements specified above shall be taken at the following location(s): at Outfall 001

\*Shall not exceed in more than 10% of samples. See Part C.I. Other Requirement No G.

# PART A - EFFLUENT LIMITATIONS, MONITORING, RECORDKEEPING AND REPORTING REQUIREMENTS (Continued)

#### Additional Requirements

- 1. The permittee may not discharge:
  - a. Floating solids, scum, sheen or substances that result in observed deposits in the receiving water. (<u>25 Pa</u> <u>Code 92a.41(c)</u>)
  - b. Oil and grease in amounts that cause a film or sheen upon or discoloration of the waters of this Commonwealth or adjoining shoreline, or that exceed 15 mg/l as a daily average or 30 mg/l at any time (or lesser amounts if specified in this permit). (<u>25 Pa. Code 92a.47(a)(7) and 95.2(2)</u>)
  - c. Substances in concentration or amounts sufficient to be inimical or harmful to the water uses to be protected or to human, animal, plant or aquatic life. (25 Pa Code 93.6(a))
  - d. Foam or substances that produce an observed change in the color, taste, odor or turbidity of the receiving water, unless those conditions are otherwise controlled through effluent limitations or other requirements in this permit. (25 Pa Code 92a.41(c))
- The monthly average percent removal of BOD<sub>5</sub> or CBOD<sub>5</sub> and TSS must be at least 85% for POTW facilities on a concentration basis except where 25 Pa. Code 92a.47(g) and (h) are applicable to facilities with combined sewer overflows (CSOs) or as otherwise specified in this permit. (<u>25 Pa. Code 92a.47(a)(3)</u>)
- 3. If the permit requires the reporting of average weekly statistical results, the maximum weekly average concentration and maximum weekly average mass loading shall be reported, regardless of whether the results are obtained for the same or different weeks.
- 4. The permittee shall monitor the sewage effluent discharge(s) for the effluent parameters identified in the Part A limitations table(s) during all bypass events at the facility, using the sample types that are specified in the limitations table(s). Where the required sample type is "composite", the permittee must commence sample collection within one hour of the start of the bypass, wherever possible. The results shall be reported on the Daily Effluent Monitoring supplemental form (3800-FM-BPNPSM0435) and be incorporated into the calculations used to report self-monitoring data on Discharge Monitoring Reports (DMRs).

#### **Footnotes**

- (1) When sampling to determine compliance with mass effluent limitations, the discharge flow at the time of sampling must be measured and recorded.
- (2) This is the minimum number of sampling events required. Permittees are encouraged, and it may be advantageous in demonstrating compliance, to perform more than the minimum number of sampling events.

#### Supplemental Information

- (1) The hydraulic design capacity of 0.13 million gallons per day for the treatment facility is used to prepare the annual Municipal Wasteload Management Report to help determine whether a "hydraulic overload" situation exists, as defined in Title 25 Pa. Code Chapter 94.
- (2) The effluent limitations for Outfall 001 were determined using an effluent discharge rate of 0.13 MGD.
- (3) The organic design capacity of 221 lbs BOD<sub>5</sub> per day for the treatment facility is used to prepare the annual Municipal Wasteload Management Report to determine whether an "organic overload" condition exists, as defined in 25 Pa. Code Chapter 94.
- (4) Total Nitrogen is the sum of Total Kjeldahl-N (TKN) plus Nitrite-Nitrate as N (NO<sub>2</sub>+NO<sub>3</sub>-N), where TKN and NO<sub>2</sub>+NO<sub>3</sub>-N are measured in the same sample.

#### II. DEFINITIONS

At Outfall (XXX) means a sampling location in outfall line XXX below the last point at which wastes are added to outfall line (XXX), or where otherwise specified.

Average refers to the use of an arithmetic mean, unless otherwise specified in this permit. (40 CFR 122.41(I)(4)(iii))

Best Management Practices (BMPs) means schedules of activities, prohibitions of practices, maintenance procedures and other management practices to prevent or reduce the pollutant loading to surface waters of the Commonwealth. The term also includes treatment requirements, operating procedures and practices to control plant site runoff, spillage or leaks, sludge or waste disposal, or drainage from raw material storage. The term includes activities, facilities, measures, planning or procedures used to minimize accelerated erosion and sedimentation and manage stormwater to protect, maintain, reclaim, and restore the quality of waters and the existing and designated uses of waters within this Commonwealth before, during and after earth disturbance activities. (25 Pa. Code 92a.2)

Bypass means the intentional diversion of waste streams from any portion of a treatment facility. (40 CFR 122.41(m)(1)(i))

*Calendar Week* is defined as the seven consecutive days from Sunday through Saturday, unless the permittee has been given permission by DEP to provide weekly data as Monday through Friday based on showing excellent performance of the facility and a history of compliance. In cases when the week falls in two separate months, the month with the most days in that week shall be the month for reporting.

Clean Water Act means the Federal Water Pollution Control Act, as amended (33 U.S.C.A. §§1251 to 1387).

Composite Sample (for all except GC/MS volatile organic analysis) means a combination of individual samples (at least eight for a 24-hour period or four for an 8-hour period) of at least 100 milliliters (mL) each obtained at spaced time intervals during the compositing period. The composite must be flow-proportional; either the volume of each individual sample is proportional to discharge flow rates, or the sampling interval is proportional to the flow rates over the time period used to produce the composite. (EPA Form 2C)

*Composite Sample* (for GC/MS volatile organic analysis) consists of at least four aliquots or grab samples collected during the sampling event (not necessarily flow proportioned). The samples must be combined in the laboratory immediately before analysis and then one analysis is performed. (EPA Form 2C)

*Daily Average Temperature* means the average of all temperature measurements made, or the mean value plot of the record of a continuous automated temperature recording instrument, either during a calendar day or during the operating day if flows are of a shorter duration.

*Daily Discharge* means the discharge of a pollutant measured during a calendar day or any 24-hour period that reasonably represents the calendar day for purposes of sampling. For pollutants with limitations expressed in units of mass, the "daily discharge" is calculated as the total mass of the pollutant discharged over the day. For pollutants with limitations expressed in other units of measurement, the "daily discharge" is calculated as the average measurement of the pollutant over the day. (<u>25 Pa. Code 92a.2, 40 CFR 122.2</u>)

Daily Maximum Discharge Limitation means the highest allowable "daily discharge."

*Discharge Monitoring Report* (DMR) means the DEP or EPA supplied form(s) for the reporting of selfmonitoring results by the permittee. (<u>25 Pa. Code 92a:2 and 40 CFR 122.2</u>)

*Estimated Flow* means any method of liquid volume measurement based on a technical evaluation of the sources contributing to the discharge including, but not limited to, pump capabilities, water meters and batch discharge volumes.

Geometric Mean means the average of a set of n sample results given by the n<sup>th</sup> root of their product.

Grab Sample means an individual sample of at least 100 mL collected at a randomly selected time over a period not to exceed 15 minutes. (EPA Form 2C)

Hauled-In Wastes means any waste that is introduced into a treatment facility through any method other than a direct connection to the sewage collection system. The term includes wastes transported to and disposed of within the treatment facility or other entry points within the collection system.

Hazardous Substance means any substance designated under 40 CFR Part 116 pursuant to Section 311 of the Clean Water Act. (40 CFR 122.2)

*Immersion Stabilization* (i-s) means a calibrated device is immersed in the wastewater until the reading is stabilized.

*Indirect Discharger* means a non-domestic discharger introducing pollutants to a Publicly Owned Treatment Works (POTW) or other treatment works. (<u>25 Pa. Code 92a.2 and 40 CFR 122.2</u>)

Industrial User means a source of Indirect Discharge. (40 CFR 403.3)

Instantaneous Maximum Effluent Limitation means the highest allowable discharge of a concentration or mass of a substance at any one time as measured by a grab sample. (25 Pa. Code 92a.2)

*Measured Flow* means any method of liquid volume measurement, the accuracy of which has been previously demonstrated in engineering practice, or for which a relationship to absolute volume has been obtained.

Monthly Average Discharge Limitation means the highest allowable average of "daily discharges" over a calendar month, calculated as the sum of all "daily discharges" measured during a calendar month divided by the number of "daily discharges" measured during that month. (25 Pa. Code 92a.2)

*Municipality* means a city, town, borough, county, township, school district, institution, authority or other public body created by or pursuant to State law and having jurisdiction over disposal of sewage, industrial wastes, or other wastes. (<u>25 Pa. Code 92a.2</u>)

*Municipal Waste* Garbage, refuse, industrial lunchroom or office waste and other material, including solid, liquid, semisolid or contained gaseous material resulting from operation of residential, municipal, commercial or institutional establishments and from community activities; and sludge not meeting the definition of residual or hazardous waste under this section from a municipal, commercial or institutional water supply treatment plant, waste water treatment plant or air pollution control facility. (<u>25 Pa. Code 271.1</u>)

*Publicly Owned Treatment Works* (POTW) means a treatment works as defined by §212 of the Clean Water Act, owned by a state or municipality. The term includes any devices and systems used in the storage, treatment, recycling and reclamation of municipal sewage or industrial wastes of a liquid nature. The term also includes sewers, pipes or other conveyances if they convey wastewater to a POTW providing treatment. The term also means the municipality as defined in section 502(4) of the Clean Water Act, which has jurisdiction over the indirect discharges to and the discharges from such a treatment works. (25 Pa Code 92a.2 and 40 CFR 122.2)

*Residual Waste* Garbage, refuse, other discarded material or other waste, including solid, liquid, semisolid or contained gaseous materials resulting from industrial, mining and agricultural operations and sludge from an industrial, mining or agricultural water supply treatment facility, wastewater treatment facility or air pollution control facility, if it is not hazardous. The term does not include coal refuse as defined in the Coal Refuse Disposal Control Act. The term does not include treatment sludges from coal mine drainage treatment plants, disposal of which is being carried on under and in compliance with a valid permit issued under the Clean Streams Law. (<u>25 Pa Code 287.1</u>)

Severe Property Damage means substantial physical damage to property, damage to the treatment facilities that causes them to become inoperable, or substantial and permanent loss of natural resources that can reasonably be expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in production. (<u>40 CFR 122.41(m)(1)(ii)</u>)

Stormwater means the runoff from precipitation, snow melt runoff, and surface runoff and drainage. (<u>25 Pa.</u> <u>Code 92a.2</u>)

Stormwater Associated With Industrial Activity means the discharge from any conveyance that is used for collecting and conveying stormwater and that is directly related to manufacturing, processing or raw materials storage areas at an industrial plant, and as defined at 40 CFR §122.26(b)(14)(i) – (ix) and (xi) and 25 Pa. Code 92a.2.

*Toxic Pollutant* means those pollutants, or combinations of pollutants, including disease-causing agents, which after discharge and upon exposure, ingestion, inhalation or assimilation into any organism, either directly from the environment or indirectly by ingestion through food chains may, on the basis of information available to DEP cause death, disease, behavioral abnormalities, cancer, genetic mutations, physiological malfunctions, including malfunctions in reproduction, or physical deformations in these organisms or their offspring. (<u>25 Pa.</u> Code <u>92a.2</u>)

Weekly Average Discharge Limitation means the highest allowable average of "daily discharges" over a calendar week, calculated as the sum of all "daily discharges" measured during a calendar week divided by the number of "daily discharges" measured during that week.

#### III. SELF-MONITORING, REPORTING AND RECORDKEEPING

- A. Representative Sampling
  - Samples and measurements taken for the purpose of monitoring shall be representative of the monitored activity (<u>40 CFR 122.41(j)(1)</u>). Representative sampling includes the collection of samples, where possible, during periods of adverse weather, changes in treatment plant performance and changes in treatment plant loading. If possible, effluent samples must be collected where the effluent is well mixed near the center of the discharge conveyance and at the approximate mid-depth point, where the turbulence is at a maximum and the settlement of solids is minimized. (<u>40 CFR 122.48</u> and <u>25 Pa. Code § 92a.61</u>)
  - 2. Records Retention (40 CFR 122.41(j)(2))

Except for records of monitoring information required by this permit related to the permittee's sludge use and disposal activities which shall be retained for a period of at least 5 years, all records of monitoring activities and results (including all original strip chart recordings for continuous monitoring instrumentation and calibration and maintenance records), copies of all reports required by this permit, and records of all data used to complete the application for this permit shall be retained by the permittee for 3 years from the date of the sample measurement, report or application, unless a longer retention period is required by the permit. The 3-year period shall be extended as requested by DEP or the EPA Regional Administrator.

3. Recording of Results (<u>40\_CFR 122.41(i)(3)</u>)

For each measurement or sample taken pursuant to the requirements of this permit, the permittee shall record the following information:

- a. The exact place, date and time of sampling or measurements.
- b. The person(s) who performed the sampling or measurements.
- c. The date(s) the analyses were performed.
- d. The person(s) who performed the analyses.
- e. The analytical techniques or methods used; and the associated detection level.
- f. The results of such analyses.
- 4. Test Procedures (<u>40 CFR 122.41(j)(4)</u>)

Facilities that test or analyze environmental samples used to demonstrate compliance with this permit shall be in compliance with laboratory accreditation requirements of Act 90 of 2002 (27 Pa. C.S. §§4101-4113) and 25 Pa. Code Chapter 252, relating to environmental laboratory accreditation. Unless otherwise specified in this permit, the test procedures for the analysis of pollutants shall be those approved under 40 CFR Part 136 (or in the case of sludge use or disposal, approved under 40 CFR Part 136, unless otherwise specified in 40 CFR Part 503 or Subpart J of 25 Pa. Code Chapter 271), or alternate test procedures approved pursuant to those parts, unless other test procedures have been specified in this permit.

5. Quality/Assurance/Control

In an effort to assure accurate self-monitoring analyses results:

- a. The permittee, or its designated laboratory, shall participate in the periodic scheduled quality assurance inspections conducted by DEP and EPA. (40 CFR 122.41(e), 122.41(i)(3))
- b. The permittee, or its designated laboratory, shall develop and implement a program to assure the quality and accurateness of the analyses performed to satisfy the requirements of this permit, in accordance with 40 CFR Part 136. (40 CFR 122.41(j)(4))

- B. Reporting of Monitoring Results
  - 1. The permittee shall effectively monitor the operation and efficiency of all wastewater treatment and control facilities, and the quantity and quality of the discharge(s) as specified in this permit. (<u>40 CFR</u> <u>122.41(e)</u>, <u>122.44(i)(1)</u>)
  - Discharge Monitoring Reports (DMRs) must be completed in accordance with DEP's published DMR Instructions (3800-FM-BPNPSM0463). DMRs are based on calendar reporting periods unless Part C of this permit requires otherwise. DMR(s) must be received by the agency(ies) specified in paragraph 3 below in accordance with the following schedule:
    - Monthly DMRs must be received within 28 days following the end of each calendar month.
    - Quarterly DMRs must be received within 28 days following the end of each calendar quarter, i.e., January 28, April 28, July 28, and October 28.
    - Semiannual DMRs must be received within 28 days following the end of each calendar semiannual period, i.e., January 28 and July 28.
    - Annual DMRs must be received by January 28, unless Part C of this permit requires otherwise.
  - 3. The permittee shall complete all Supplemental Reporting forms (Supplemental DMRs) provided by DEP in this permit (or an approved equivalent), and submit the signed, completed forms as an attachment to the DMR(s). If the permittee elects to use DEP's electronic DMR (eDMR) system, one electronic submission may be made for DMRs and Supplemental DMRs. If paper forms are used, the completed forms shall be mailed to:

Department of Environmental Protection Clean Water Program 2 East Main Street Norristown, PA 19401

- 4. If the permittee elects to begin using DEP's eDMR system to submit DMRs required by the permit, the permittee shall, to assure continuity of business operations, continue using the eDMR system to submit all DMRs and Supplemental Reports required by the permit, unless the following steps are completed to discontinue use of eDMR:
  - a. The permittee shall submit written notification to the regional office that issued the permit that it intends to discontinue use of eDMR. The notification shall be signed by a principal executive officer or authorized agent of the permittee.
  - b. The permittee shall continue using eDMR until the permittee receives written notification from DEP's Central Office that the facility has been removed from the eDMR system, and electronic report submissions are no longer expected.
- 5. The completed DMR Form shall be signed and certified by either of the following applicable persons, as defined in 25 Pa. Code § 92a.22:
  - For a corporation by a principal executive officer of at least the level of vice president, or an authorized representative, if the representative is responsible for the overall operation of the facility from which the discharge described in the NPDES form originates.
  - For a partnership or sole proprietorship by a general partner or the proprietor, respectively.
  - For a municipality, state, federal or other public agency by a principal executive officer or ranking elected official.

If signed by a person other than the above, written notification of delegation of DMR signatory authority must be submitted to DEP in advance of or along with the relevant DMR form. (40 CFR 122.22(b))

6. If the permittee monitors any pollutant at monitoring points as designated by this permit, using analytical methods described in Part A III.A.4. herein, more frequently than the permit requires, the results of this monitoring shall be incorporated, as appropriate, into the calculations used to report self-monitoring data on the DMR. (40 CFR 122.41(I)(4)(ii))

1

- C. Reporting and Notification Requirements
  - Planned Changes to Physical Facilities The permittee shall give notice to DEP as soon as possible but no later than 30 days prior to planned physical alterations or additions to the permitted facility. A permit under 25 Pa. Code Chapter 91 may be required for these situations prior to implementing the planned changes. A permit application, or other written submission to DEP, can be used to satisfy the notification requirements of this section.

Notice is required when:

- a. The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in 40 CFR §122.29(b). (40 CFR 122.41(l)(1)(i))
- b. The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants which are not subject to effluent limitations in this permit. (40 CFR 122.41(l)(1)(ii))
- c. The alteration or addition results in a significant change in the permittee's sludge use or disposal practices, and such alteration, addition, or change may justify the application of permit conditions that are different from or absent in the existing permit, including notification of additional use or disposal sites not reported during the permit application process or not reported pursuant to an approved land application plan. (40 CFR 122.41(I)(1)(iii))
- d. The planned change may result in noncompliance with permit requirements. (40 CFR 122.41(l)(2))
- 2. Planned Changes to Waste Stream Under the authority of 25 Pa. Code 92a.24(a) and 40 CFR 122.42(b), the permittee shall provide notice to DEP and EPA as soon as possible but no later than 45 days prior to any planned changes in the volume or pollutant concentration of its influent waste stream as a result of indirect discharges or hauled-in wastes, as specified in paragraphs 2.a. and 2.b., below. Notice shall be provided on the "Planned Changes to Waste Stream" Supplemental Report (3800-FM-BPNPSM0482), available on DEP's website. The permittee shall provide information on the quality and quantity of waste introduced into the POTW, and any anticipated impact of the change on the quantity or quality of effluent to be discharged from the POTW (<u>40 CFR 122.42(b)(3)</u>). The Report shall be sent via Certified Mail or other means to confirm DEP's receipt of the notification. DEP will determine if the submission of a new application and receipt of a new or amended permit is required.
  - a. Introduction of New Pollutants (25 Pa. Code 92a.24(a), 40 CFR 122.42(b)(1))

New pollutants are defined as parameters that meet one or more of the following criteria:

- (i) Any pollutants that were not detected in the facilities' influent waste stream as reported in the permit application; and have not been approved to be included in the permittee's influent waste stream by DEP in writing.
- (ii) Any new introduction of pollutants into the POTW from an indirect discharger which would be subject to Sections 301 or 306 of the Clean Water Act if it were directly discharging those pollutants (<u>40 CFR 122.42(b)(1)</u>).

The permittee shall provide notification of the introduction of new pollutants in accordance with paragraph 2 above. The permittee may not authorize the introduction of new pollutants until the permittee receives DEP's written approval.

b. Increased Loading of Approved Pollutants (25 Pa. Code 92a.24(a), 40 CFR 122.42(b)(2))

Approved pollutants are defined as parameters that meet one or more of the following criteria:

- (i) Were detected in the facilities' influent waste stream as reported in the permittee's permit application; or have been previously approved to be included in the permittee's influent waste stream by DEP in writing.
- (ii) Have an effluent limitation or monitoring requirement in this permit.

The permittee shall provide notification of the introduction of increased influent loading (lbs/day) of approved pollutants in accordance with paragraph 2 above when (1) the cumulative increase in influent loading (lbs/day) exceeds 20% of the maximum loading reported in the permit application, or a loading previously approved by DEP and/or EPA, or (2) may cause an exceedance in the effluent of Effluent Limitation Guidelines (ELGs) or limitations in Part A of this permit, or (3) may cause interference or pass through at the POTW, or (4) may cause exceedances of the applicable water quality standards in the receiving stream. Unless specified otherwise in this permit, if DEP does not respond to the notification within 30 days of its receipt, the permittee may proceed with the increase in loading. The acceptance of increased loading of approved pollutants may not result in an exceedance of ELGs or effluent limitations, may not result in a hydraulic or organic overload condition as defined in 25 Pa. Code 94.1, and may not cause exceedances of the applicable water quality standards in the receiving stream.

- 3. Reporting Requirements for Hauled-In Wastes
  - a. Receipt of Residual Waste
    - (i) The permittee shall document the receipt of all hauled-in residual wastes (including but not limited to wastewater from oil and gas wells, food processing waste, and landfill leachate), as defined at 25 Pa. Code § 287.1, that are received for processing at the treatment facility. The permittee shall report hauled-in residual wastes on a monthly basis to DEP on the "Hauled In Residual Wastes" Supplemental Report (3800-FM-BPNPSM0450) as an attachment to the DMR. If no residual wastes were received during a month, submission of the Supplemental Report is not required.

The following information is required by the Supplemental Report. The information used to develop the Report shall be retained by the permittee for five years from the date of receipt and must be made available to DEP or EPA upon request.

- (1) The dates that residual wastes were received.
- (2) The volume (gallons) of wastes received.
- (3) The license plate number of the vehicle transporting the waste to the treatment facility.
- (4) The permit number(s) of the well(s) where residual wastes were generated, if applicable.
- (5) The name and address of the generator of the residual wastes.
- (6) The type of wastewater.

The transporter of residual waste must maintain these and other records as part of the daily operational record (25 Pa. Code § 299.219). If the transporter is unable to provide this information or the permittee has not otherwise received the information from the generator, the residual wastes shall not be accepted by the permittee until such time as the permittee receives such information from the transporter or generator.

(ii) The following conditions apply to the characterization of residual wastes received by the permittee:

- (1) If the generator is required to complete a chemical analysis of residual wastes in accordance with 25 Pa. Code § 287.51, the permittee must receive and maintain on file a chemical analysis of the residual wastes it receives. The chemical analysis must conform to the Bureau of Waste Management's Form 26R except as noted in paragraph (2), below. Each load of residual waste received must be covered by a chemical analysis if the generator is required to complete it.
- (2) For wastewater generated from hydraulic fracturing operations ("frac wastewater") within the first 30 production days of a well site, the chemical analysis may be a general frac wastewater characterization approved by DEP. Thereafter, the chemical analysis must be waste-specific and be reported on the Form 26R.
- b. Receipt of Municipal Waste
  - (i) The permittee shall document the receipt of all hauled-in municipal wastes (including but not limited to septage and liquid sewage sludge), as defined at 25 Pa. Code § 271.1, that are received for processing at the treatment facility. The permittee shall report hauled-in municipal wastes on a monthly basis to DEP on the "Hauled In Municipal Wastes" Supplemental Report (3800-FM-BPNPSM0437) as an attachment to the DMR. If no municipal wastes were received during a month, submission of the Supplemental Report is not required.

The following information is required by the Supplemental Report:

- (1) The dates that municipal wastes were received.
- (2) The volume (gallons) of wastes received.
- (3) The BOD<sub>5</sub> concentration (mg/l) and load (lbs) for the wastes received.
- (4) The location(s) where wastes were disposed of within the treatment facility.
- (ii) Sampling and analysis of hauled-in municipal wastes must be completed to characterize the organic strength of the wastes, unless composite sampling of influent wastewater is performed at a location downstream of the point of entry for the wastes. The influent BOD<sub>5</sub> characterization for the treatment facility, as reported in the annual Municipal Wasteload Management Report per 25 Pa. Code Chapter 94, must be representative of the hauled-in municipal wastes received.

- 4. Unanticipated Noncompliance or Potential Pollution Reporting
  - a. Immediate Reporting The permittee shall immediately report any incident causing or threatening pollution in accordance with the requirements of 25 Pa. Code Sections 91.33 and 92a.41(b).
    - (i) If, because of an accident, other activity or incident a toxic substance or another substance which would endanger users downstream from the discharge, or would otherwise result in pollution or create a danger of pollution or would damage property, the permittee shall immediately notify DEP by telephone of the location and nature of the danger. Oral notification to the Department is required as soon as possible, but no later than 4 hours after the permittee becomes aware of the incident causing or threatening pollution.
    - (ii) If reasonably possible to do so, the permittee shall immediately notify downstream users of the waters of the Commonwealth to which the substance was discharged. Such notice shall include the location and nature of the danger.
    - (iii) The permittee shall immediately take or cause to be taken steps necessary to prevent injury to property and downstream users of the waters from pollution or a danger of pollution and, in addition, within 15 days from the incident, shall remove the residual substances contained thereon or therein from the ground and from the affected waters of this Commonwealth to the extent required by applicable law.
  - b. The permittee shall report any noncompliance which may endanger health or the environment in accordance with the requirements of 40 CFR 122.41(I)(6). These requirements include the following obligations:
    - (i) 24 Hour Reporting The permittee shall orally report any noncompliance with this permit which may endanger health or the environment within 24 hours from the time the permittee becomes aware of the circumstances. The following shall be included as information which must be reported within 24 hours under this paragraph (40 CFR 122.41(I)(6)(ii)):
      - (1) Any unanticipated bypass which exceeds any effluent limitation in the permit;
      - (2) Any upset which exceeds any effluent limitation in the permit; and
      - (3) Violation of the maximum daily discharge limitation for any of the pollutants listed in the permit as being subject to the 24-hour reporting requirement.
    - (ii) Written Report A written submission shall also be provided within 5 days of the time the permittee becomes aware of any noncompliance which may endanger health or the environment. The written submission shall contain a description of the noncompliance and its cause; the period of noncompliance, including exact dates and times, and if the noncompliance has not been corrected, the anticipated time it is expected to continue; and steps taken or planned to reduce, eliminate, and prevent reoccurrence of the noncompliance.
    - (iii) Waiver of Written Report DEP may waive the written report on a case-by-case basis if the associated oral report has been received within 24 hours from the time the permittee becomes aware of the circumstances which may endanger health or the environment. Unless such a waiver is expressly granted by DEP, the permittee shall submit a written report in accordance with this paragraph. (40 CFR 122.41(I)(6)(iii))
- 5. Other Noncompliance

The permittee shall report all instances of noncompliance not reported under paragraph C.4 of this section or specific requirements of compliance schedules, at the time DMRs are submitted, on the Non-Compliance Reporting Form (3800-FM-BPNPSM0440). The reports shall contain the information listed in paragraph C.4.b.(ii) of this section. (<u>40 CFR 122.41(l)(7)</u>)

#### PART B

#### **I. MANAGEMENT REQUIREMENTS**

- A. Compliance Schedules (25 Pa. Code 92a.51, 40 CFR 122.47(a))
  - 1. The permittee shall achieve compliance with the terms and conditions of this permit within the time frames specified in this permit.
  - The permittee shall submit reports of compliance or noncompliance, or progress reports as applicable, for any interim and final requirements contained in this permit. Such reports shall be submitted no later than 14 days following the applicable schedule date or compliance deadline. (40 CFR 122.47(a)(4))
- B. Permit Modification, Termination, or Revocation and Reissuance
  - 1. This permit may be modified, terminated, or revoked and reissued during its term in accordance with 25 Pa. Code 92a.72 and 40 CFR 122.41(f).
  - 2. The filing of a request by the permittee for a permit modification, revocation and reissuance, or termination, or a notification of planned changes or anticipated noncompliance, does not stay any permit condition. (<u>40 CFR 122.41(f)</u>)
  - In the absence of DEP action to modify or revoke and reissue this permit, the permittee shall comply with effluent standards or prohibitions established under Section 307(a) of the Clean Water Act for toxic pollutants within the time specified in the regulations that establish those standards or prohibitions. (40 CFR 122.41(a)(1))
- C. Duty to Provide Information
  - 1. The permittee shall furnish to DEP, within a reasonable time, any information which DEP may request to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit. (40 CFR 122.41(h))
  - 2. The permittee shall furnish to DEP, upon request, copies of records required to be kept by this permit. (40 CFR 122.41(h))
  - 3. Other Information Where the permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in a permit application or in any report to DEP, it shall promptly submit the correct and complete facts or information. (40 CFR 122.41(I)(8))
  - 4. The permittee shall provide the following information in the annual Municipal Wasteload Management Report, required under the provisions of Title 25 Pa. Code Chapter 94:
    - a. The requirements identified in 25 Pa. Code 94.12.
    - b. The identity of any indirect discharger(s) served by the POTW which are subject to pretreatment standards adopted under Section 307(b) of the Clean Water Act; the POTW shall also specify the total volume of discharge and estimated concentration of each pollutant discharged into the POTW by the indirect discharger.
    - c. A "Solids Management Inventory" if specified in Part C of this permit.
    - d. The total volume of hauled-in residual and municipal wastes received during the year, by source.
    - e. The Annual Report requirements for permittees required to implement an industrial pretreatment program listed in Part C, as applicable.
- D. General Pretreatment Requirements

- Any POTW (or combination of POTWs operated by the same authority) with a total design flow greater than 5 million gallons per day (MGD) and receiving from industrial users pollutants which pass through or interfere with the operation of the POTW or are otherwise subject to Pretreatment Standards will be required to establish a POTW Pretreatment Program unless specifically exempted by the Approval Authority. A POTW with a design flow of 5 MGD or less may be required to develop a POTW Pretreatment Program if the Approval Authority finds that the nature or volume of the industrial influent, treatment process upsets, violations of effluent limitations, contamination of sludge, or other circumstances warrant in order to prevent interference or pass through. (40 CFR 403.8)
- 2. Each POTW with an approved Pretreatment Program pursuant to 40 CFR 403.8 shall develop and enforce specific limits to implement the prohibitions listed in 40 CFR 403.5(a)(1) and (b), and shall continue to develop these limits as necessary and effectively enforce such limits. This condition applies, for example, when there are planned changes to the waste stream as identified in Part A III.C.2. If the permittee is required to develop or continue implementation of a Pretreatment Program, detailed requirements will be contained in Part C of this permit.
- 3. For all POTWs, where pollutants contributed by indirect dischargers result in interference or pass through, and a violation is likely to recur, the permittee shall develop and enforce specific limits for indirect dischargers and other users, as appropriate, that together with appropriate facility or operational changes, are necessary to ensure renewed or continued compliance with this permit or sludge use or disposal practices. Where POTWs do not have an approved Pretreatment Program, the permittee shall submit a copy of such limits to DEP when developed. (25 Pa. Code 92a.47(d))
- E. Proper Operation and Maintenance
  - 1. The permittee shall employ operators certified in compliance with the Water and Wastewater Systems Operators Certification Act (63 P.S. §§1001-1015.1).
  - 2. The permittee shall at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) which are installed or used by the permittee to achieve compliance with the terms and conditions of this permit. Proper operation and maintenance includes, but is not limited to, adequate laboratory controls including appropriate quality assurance procedures. This provision also includes the operation of backup or auxiliary facilities or similar systems that are installed by the permittee, only when necessary to achieve compliance with the terms and conditions of this permit. (40 CFR 122.41(e))
- F. Duty to Mitigate

The permittee shall take all reasonable steps to minimize or prevent any discharge, sludge use or disposal in violation of this permit that has a reasonable likelihood of adversely affecting human health or the environment. (40 CFR 122.41(d))

- G. Bypassing
  - Bypassing Not Exceeding Permit Limitations The permittee may allow a bypass to occur which does not cause effluent limitations to be exceeded, but only if it also is for essential maintenance to assure efficient operation. These bypasses are not subject to the provisions in paragraphs two, three and four of this section. (<u>40 CFR 122.41(m)(2)</u>)
  - 2. Other Bypassing In all other situations, bypassing is prohibited and DEP may take enforcement action against the permittee for bypass unless:
    - a. A bypass is unavoidable to prevent loss of life, personal injury or "severe property damage." (<u>40 CFR 122.41(m)(4)(i)(A)</u>)
    - b. There are no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This

condition is not satisfied if adequate backup equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass which occurred during normal periods of equipment downtime or preventive maintenance. (40 CFR 122.41(m)(4)(i)(B))

- c. The permittee submitted the necessary notice required in paragraph G.4 below. (<u>40 CFR</u> <u>122,41(m)(4)(i)(C)</u>)
- 3. DEP may approve an anticipated bypass, after considering its adverse effects, if DEP determines that it will meet the conditions listed in paragraph G.2 above. (<u>40 CFR 122.41(m)(4)(ii)</u>)
- 4. Notice
  - a. Anticipated Bypass If the permittee knows in advance of the need for a bypass, it shall submit prior notice, if possible, at least 10 days before the bypass. (<u>40 CFR 122.41(m)(3)(i)</u>)
  - b. Unanticipated Bypass The permittee shall submit oral notice of any other unanticipated bypass within 24 hours, regardless of whether the bypass may endanger health or the environment or whether the bypass exceeds effluent limitations. The notice shall be in accordance with Part A III.C.4.b.
- H. Sanitary Sewer Overflows (SSOs)

An SSO is an overflow of wastewater, or other untreated discharge from a separate sanitary sewer system (which is not a combined sewer system), which results from a flow in excess of the carrying capacity of the system or from some other cause prior to reaching the headworks of the sewage treatment facility. SSOs are not authorized under this permit. The permittee shall immediately report any SSO to DEP in accordance with Part A III.C.4 of this permit.

#### II. PENALTIES AND LIABILITY

#### A. Violations of Permit Conditions

Any person violating Sections 301, 302, 306, 307, 308, 318 or 405 of the Clean Water Act or any permit condition or limitation implementing such sections in a permit issued under Section 402 of the Act is subject to civil, administrative and/or criminal penalties as set forth in 40 CFR §122.4I(a)(2).

Any person or municipality, who violates any provision of this permit; any rule, regulation or order of DEP; or any condition or limitation of any permit issued pursuant to the Clean Streams Law, is subject to criminal and/or civil penalties as set forth in Sections 602, 603 and 605 of the Clean Streams Law.

B. Falsifying Information

Any person who does any of the following:

- Falsifies, tampers with, or knowingly renders inaccurate any monitoring device or method required to be maintained under this permit, or
- Knowingly makes any false statement, representation, or certification in any record or other document submitted or required to be maintained under this permit (including monitoring reports or reports of compliance or noncompliance)

Shall, upon conviction, be punished by a fine and/or imprisonment as set forth in *18 Pa.C.S.A* § 4904 and 40 CFR §122.41(j)(5) and (k)(2).

C. Liability

Nothing in this permit shall be construed to relieve the permittee from civil or criminal penalties for noncompliance pursuant to Section 309 of the Clean Water Act or Sections 602, 603 or 605 of the Clean Streams Law.

Nothing in this permit shall be construed to preclude the institution of any legal action or to relieve the permittee from any responsibilities, liabilities or penalties to which the permittee is or may be subject to under the Clean Water Act and the Clean Streams Law.

D. Need to Halt or Reduce Activity Not a Defense

It shall not be a defense for the permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit.  $\underline{40}$  CFR 122.41(c)

#### III. OTHER RESPONSIBILITIES

A. Right of Entry

Pursuant to Sections 5(b) and 305 of Pennsylvania's Clean Streams Law, and Title 25 Pa. Code Chapter 92a and 40 CFR §122.41(i), the permittee shall allow authorized representatives of DEP and EPA, upon the presentation of credentials and other documents as may be required by law:

- 1. To enter upon the permittee's premises where a regulated facility or activity is located or conducted, or where records must be kept under the conditions of this permit; (40 CFR 122.41(i)(1))
- 2. To have access to and copy, at reasonable times, any records that must be kept under the conditions of this permit; (40 CFR 122.41(i)(2))
- 3. To inspect at reasonable times any facilities, equipment (including monitoring and control equipment), practices or operations regulated or required under this permit; and (40 CFR 122.41(i)(3))
- 4. To sample or monitor at reasonable times, for the purposes of assuring permit compliance or as otherwise authorized by the Clean Water Act or the Clean Streams Law, any substances or parameters at any location. (40 CFR 122.41(i)(4))
- B. Transfer of Permits
  - Transfers by modification. Except as provided in paragraph 2 of this section, a permit may be transferred by the permittee to a new owner or operator only if this permit has been modified or revoked and reissued, or a minor modification made to identify the new permittee and incorporate such other requirements as may be necessary under the Clean Water Act. (40 CFR 122.61(a))
  - 2. Automatic transfers. As an alternative to transfers under paragraph 1 of this section, any NPDES permit may be automatically transferred to a new permittee if:
    - a. The current permittee notifies DEP at least 30 days in advance of the proposed transfer date in paragraph 2.b. of this section; (40 CFR 122.61(b)(1))
    - b. The notice includes the appropriate DEP transfer form signed by the existing and new permittees containing a specific date for transfer of permit responsibility, coverage and liability between them; and (<u>40 CFR 122.61(b)(2)</u>)
    - c. DEP does not notify the existing permittee and the proposed new permittee of its intent to modify or revoke and reissue this permit, the transfer is effective on the date specified in the agreement mentioned in paragraph 2.b. of this section. (<u>40 CFR 122.61(b)(3)</u>)
    - d. The new permittee is in compliance with existing DEP issued permits, regulations, orders and schedules of compliance, or has demonstrated that any noncompliance with the existing permits

has been resolved by an appropriate compliance action or by the terms and conditions of the permit (including compliance schedules set forth in the permit), consistent with 25 Pa. Code 92a.51 (relating to schedules of compliance) and other appropriate Department regulations. (25 Pa. Code 92a.71)

- 3. In the event DEP does not approve transfer of this permit, the new owner or operator must submit a new permit application.
- C. Property Rights

The issuance of this permit does not convey any property rights of any sort, or any exclusive privilege. (<u>40</u> <u>CFR 122.41(g)</u>)

D. Duty to Reapply

If the permittee wishes to continue an activity regulated by this permit after the expiration date of this permit, the permittee must apply for a new permit. (<u>40 CFR 122.41(b)</u>)

E. Other Laws

The issuance of this permit does not authorize any injury to persons or property or invasion of other private rights, or any infringement of state or local law or regulations.

#### IV. ANNUAL FEE

Permittees shall pay an annual fee in accordance with 25 Pa. Code § 92a.62. Annual fee amounts are specified in the following schedule and are due on each anniversary of the effective date of the most recent new or reissued permit. All flows identified in the schedule are annual average design flows. (25 Pa. Code 92a.62)

| Small Flow Treatment Facility (SRSTP and SFTF)             | \$0           |
|------------------------------------------------------------|---------------|
| Minor Sewage Facility < 0.05 MGD (million gallons per day) | \$250         |
| Minor Sewage Facility ≥ 0.05 and < 1 MGD                   | \$500         |
| Minor Sewage Facility with CSO (Combined Sewer Overflow)   | <b>\$</b> 750 |
| Major Sewage Facility ≥ 1 and < 5 MGD                      | \$1,250       |
| Major Sewage Facility ≥ 5 MGD                              | \$2,500       |
| Major Sewage Facility with CSO                             | \$5,000       |

As of the effective date of this permit, the facility covered by the permit is classified in the following fee category: **Minor Sewage Facility >=0.05 and <1 MGD.** 

Invoices for annual fees will be mailed to permittees approximately three months prior to the due date. In the event that an invoice is not received, the permittee is nonetheless responsible for payment. Throughout a five year permit term, permittees will pay four annual fees followed by a permit renewal application fee in the last year of permit coverage. Permittees may contact the DEP at 717-787-6744 with questions related to annual fees. The fees identified above are subject to change in accordance with 25 Pa. Code 92a.62(e).

Payment for annual fees shall be remitted to DEP at the address below by the anniversary date. Checks should be made payable to the Commonwealth of Pennsylvania.

PA Department of Environmental Protection Bureau of Point and Non-Point Source Management Re: Chapter 92a Annual Fee P.O. Box 8466 Harrisburg, PA 17105-8466

#### PART C

#### I. OTHER REQUIREMENTS

- A. No storm water from pavements, area ways, roofs, foundation drains or other sources shall be directly admitted to the sanitary sewers associated with the herein approved discharge.
- B. The approval herein given is specifically made contingent upon the permittee acquiring all necessary property rights by easement or otherwise, providing for the satisfactory construction, operation, maintenance or replacement of all sewers or sewerage structures associated with the herein approved discharge in, along, or across private property, with full rights of ingress, egress and regress.
- C. Collected screenings, slurries, sludges, and other solids shall be handled and disposed of in compliance with 25 Pa. Code, Chapters 271, 273, 275, 283, and 285 (related to permits and requirements for landfilling, land application, incineration, and storage of sewage sludge), Federal Regulation 40 CFR 257, Pennsylvania Clean Streams Law, Pennsylvania Solid Waste Management Act of 1980, and the Federal Clean Water Act and its amendments. The permittee is responsible to obtain or assure that contracted agents have all necessary permits and approvals for the handling, storage, transport, and disposal of solid waste materials generated as a result of wastewater treatment.
- D. The permittee shall optimize chlorine dosages used for disinfection or other purposes to minimize the concentration of Total Residual Chlorine (TRC) in the effluent, meet applicable effluent limitations, and reduce the possibility of adversely affecting the receiving waters. Optimization efforts may include an evaluation of wastewater characteristics, mixing characteristics, and contact times, adjustments to process controls, and maintenance of the disinfection facilities. If DEP determines that effluent TRC is causing adverse water quality impacts, DEP may reopen this permit to apply new or more stringent effluent limitations and/or require implementation of control measures or operational practices to eliminate such impacts.

Where the permittee does not use chlorine for primary or backup disinfection, but proposes the use of chlorine for cleaning or other purposes, the permittee shall notify DEP prior to initiating use of chlorine and monitor TRC concentrations in the effluent on each day in which chlorine is used. The results shall be submitted as an attachment to the DMR.

- E. Notification of the designation of the responsible operator must be submitted to the permitting agency by the permittee within 60 days after the effective date of the permit and from time to time thereafter as the operator is replaced.
- F. The DEP may identify and require certain discharge specific data to be submitted before the expiration date of this permit. Upon notification by the DEP, the permittee will have 12 months from the date of the notice to provide the required data. These data, along with any other data available to the DEP, will be used in completing the Watershed TMDL/WLA Analysis and in establishing discharge effluent limits. In the event that DEP requires the submission of data pursuant to this condition, the permittee shall have the right to appeal or otherwise contest the requirement.
- G. The seasonal effluent limitations for fecal coliform are based on Chapter 92a (§ 92a.47(4) & (5)) of DEP's regulations and Delaware River Basin Commission's (DRBC's) Water Quality Regulations at § 4.30.4.A. DEP's regulations govern the summer limits for fecal coliform while the winter limits are based on DRBC's regulations. The DRBC regulations state that during winter season from October through April, the instantaneous maximum concentration of fecal coliform organisms shall not be greater than 1,000 per 100 milliliters in more than 10 percent of the samples tested. For reporting purposes, a copy of the guidelines on the 10 percent rule is enclosed with the permit.



April 24, 2018

CERTIFIED MAIL NO. 7017 1000 0000 5886 5855

Charles Hurst DELCORA 100 East Fifth Street P O Box 999 Chester, PA 19016-0999

Re: WQM Permit - Sewage DELCORA Sewer System & STP Permit No. 2318401 Authorization ID No. 1215341 Chester City, Delaware County

Tharles Hurst

Dear Mr. Hurst:

J

Your Water Quality Management (WQM) permit is enclosed. You must comply with all Standard and Special Conditions attached to this Permit. Construction must be done in accordance with the permit application and all supporting documentation. Please review the permit conditions and the supporting documentation submitted with your application before starting construction.

Please note that you are responsible for securing all other required permits, approvals and/or registrations associated with the project, if applicable, under Chapters 102 (erosion and sedimentation control), 105 (stream obstructions and encroachments) and 106 (floodplains) of DEP's regulations. Construction may not proceed until all other required permits have been obtained.

Any person aggrieved by this action may appeal, pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. Section 7514, and the Administrative Agency Law, 2 Pa.C.S. Chapter 5A, to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, P.O. Box 8457, Harrisburg, PA 17105-8457, 717.787.3483. TDD users may contact the Board through the Pennsylvania Relay Service, 800.654.5984. Appeals must be filed with the Environmental Hearing Board within 30 days of receipt of written notice of this action unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in braille or on audiotape from the Secretary to the Board at 717.787.3483. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law.

IF YOU WANT TO CHALLENGE THIS ACTION, YOUR APPEAL MUST REACH THE BOARD WITHIN 30 DAYS. YOU DO NOT NEED A LAWYER TO FILE AN APPEAL WITH THE BOARD.

Mr. Charles Hurst

Į

IMPORTANT LEGAL RIGHTS ARE AT STAKE, HOWEVER, SO YOU SHOULD SHOW THIS DOCUMENT TO A LAWYER AT ONCE. IF YOU CANNOT AFFORD A LAWYER, YOU MAY QUALIFY FOR FREE PRO BONO REPRESENTATION. CALL THE SECRETARY TO THE BOARD (717.787.3483) FOR MORE INFORMATION.

During construction or upon completing construction, please contact Karen McDaniel at 484.250.5126 or kmcdaniel@pa.gov so that an inspection of the facilities may be conducted, at DEP's discretion.

Sincerely,

Environmental Program Manager IClean Water Program

Enclosures

1

cc: City of Chester Chester County Health Department Chester County Commissioners Mr. Elberti, P.E., Gannett Fleming, Inc. Operations, SERO Re

|          |                                                                                                                         | COMMONWEALTH OF PENNSYLVANIA<br>DEPARTMENT OF ENVIRONMENTAL PROTECTION<br>BUREAU OF POINT AND NON-POINT SOURCE MANAGEMENT                  |                                                                                                           | PERMIT NO. <u>2318401</u>                                   |  |
|----------|-------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--|
| Ĕ        |                                                                                                                         |                                                                                                                                            |                                                                                                           |                                                             |  |
| /        | PROTECTION                                                                                                              | WATER QUALITY M                                                                                                                            |                                                                                                           | APS 10. <u>3001/4</u>                                       |  |
|          |                                                                                                                         | PERMI                                                                                                                                      | Г                                                                                                         | AUTH. ID. <u>1215341</u>                                    |  |
| Α.       | PERMITTEE (Name and Address):<br>DELCORA<br>100 East Fifth Street P O Box 999<br>Chester, PA 19016-0999                 | CLIENT ID#: 42332                                                                                                                          | B. PROJECT/FACILITY (Nam<br>DELCORA Sewer System                                                          | 96):<br>& STP                                               |  |
| C. I     | LOCATION (Municipality, County):<br>Chester City, Delaware County                                                       |                                                                                                                                            | SITE ID#: 454804                                                                                          |                                                             |  |
| D.       | This permit approves the modification<br>replacement of the Return Activated<br>waste activated sludge pumps. Pump<br>1 | ns of sewage facilities consisting of: the was<br>Sludge(RAS) and the Waste Activated Slud<br>o station 4 upgrades include the replacement | stewater treatment plant's pump si<br>ge(WAS) pumps with 6 new return<br>nt of 2 pumps for utility water. | lation 3 upgrades for the<br>n activated sludge pumps and 2 |  |
| Pump     | o Station: 3                                                                                                            | Manure Storage:                                                                                                                            | Sewage Treatment Facility:                                                                                |                                                             |  |
| Desig    | n Capacity: <u>32.5</u> GPM                                                                                             | Volume: MG                                                                                                                                 | Annual Average Flow:                                                                                      | MGD                                                         |  |
|          |                                                                                                                         | Freeboard: inches                                                                                                                          | Design Hydraulic Capacity:                                                                                | MGD                                                         |  |
|          |                                                                                                                         |                                                                                                                                            | Design Organic Capacity:                                                                                  | lb/day                                                      |  |
| E. /     | APPROVAL GRANTED BY THIS PE                                                                                             | RMIT IS SUBJECT TO THE FOLLOWING:                                                                                                          |                                                                                                           |                                                             |  |
| 1.       | New Permits: All construction, ope<br>01/26/2018, its supporting document                                               | rations and procedures shall be in accordation and addendums dated, which a                                                                | ance with the Water Quality Mana<br>are hereby made a part of this per                                    | agement Permit application dated<br>mit.                    |  |
|          | Amendments: All construction, op<br>application dated and its supp                                                      | perations and procedures shall be in according documentation and addendums date                                                            | ordance with the Water Quality I<br>d, which are hereby made a                                            | Management Permit Amendment<br>a part of this amendment.    |  |
|          | Except for any herein approved mo<br>Management Permit No dated                                                         | difications, all terms, conditions, supportind<br>                                                                                         | ng documentation and addendum                                                                             | as approved under Water Quality                             |  |
|          | Transfers: Water Quality Managem<br>part of this transfer.                                                              | ent Permit No dated and co                                                                                                                 | nditions, supporting documentatic                                                                         | n and addendums are also made                               |  |
| 2.<br>3. | Permit Conditions Relating to Sewera<br>Special Conditions are attached                                                 | age are attached and made part of this perr<br>ad and made part of this permit.                                                            | nit.                                                                                                      |                                                             |  |
| F. 1     | THE AUTHORITY GRANTED BY TH                                                                                             | IS PERMIT IS SUBJECT TO THE FOLLOW                                                                                                         | VING FURTHER QUALIFICATION                                                                                | NS:                                                         |  |
| 1.       | If there is a conflict between the appli shail apply.                                                                   | ication or its supporting documents and am                                                                                                 | endments and the attached condit                                                                          | ions, the attached conditions                               |  |
| 2.       | Failure to comply with the rules and r<br>by the issuance of this permit.                                               | egulations of DEP or with the terms or cone                                                                                                | titions of this permit shall void the                                                                     | authority given to the permittee                            |  |
| 3.       | This permit is issued pursuant to the<br>shall not relieve the permittee of any                                         | Clean Streams Law Act of June 22, 1937, P responsibility under any other law.                                                              | L. 1987, as amended 35 P.S. §69                                                                           | 1.1 et seq. Issuance of this permit                         |  |
| 4.       | This permit shall expire on The date.                                                                                   | ne permittee shall submit an application to r                                                                                              | enew the permit no later than 180                                                                         | days prior to the permit expiration                         |  |
| P        | PERMIT ISSUED:<br>4 24 20 18                                                                                            | BY:<br>TITLE:                                                                                                                              | Clean Water Program Man                                                                                   | ager                                                        |  |
|          |                                                                                                                         |                                                                                                                                            | 1 Southeast Regional Office                                                                               | 1                                                           |  |

.

ан сайна 4 с Р

Permit No. 2318401



#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF POINT AND NON-POINT SOURCE MANAGEMENT

## PERMIT CONDITIONS RELATING TO SEWERAGE

For use in Water Quality Management Permits

## (Check boxes that apply)

| Ger         | eral     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\boxtimes$ | 1.<br>   | The Department of Environmental Protection (DEP) considers the licensed Professional Engineer whose seal is affixed to the design documents to be fully responsible for the adequacy of all aspects of the facility design.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 2.       | The permittee shall adopt and enforce an ordinance requiring the abandonment of privies, cesspools or similar receptacles for human waste and onlot sewage disposal systems on the premises of occupied structures accessible to public sewers. All such structures must be connected to the public sewers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 3.       | The outfall sewer or drain shall be extended to the low water mark of the receiving body of water. Where necessary to ensure proper mixing and waste assimilation, an outfall sewer or drain may be extended with appurtenances below the low water mark and into the bed of a navigable stream provided that the permittee has secured an easement, right-of-way, license or lease from DEP in accordance with Section 15 of the Dam Safety and Encroachments Act, the Act of November 26, 1978, P.L. 1375, as amended.                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | 4.       | The approval is specifically made contingent on the permittee acquiring all necessary property rights, by easement or otherwise, providing for the satisfactory construction, operation, maintenance and replacement of all sewers or sewerage structures in, along or across private property with full rights of ingress, egress and regress.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\boxtimes$ | 5.       | When construction of the approved sewerage facilities is completed and before they are placed in operation, the permittee shall notify DEP in writing so that a DEP representative may inspect the facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | 6.       | The approval of the plans, and the authority granted in this permit, if not specifically extended, shall cease<br>and be null and void 2 years from the issuance date of this permit unless construction or modification of the<br>facilities covered by this permit has begun on or before the second anniversary of the permit date.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | 7.       | If, at any time, the sewerage facilities covered by this permit create a public nuisance, including but not limited to, causing malodors or causing environmental harm to waters of the Commonwealth, DEP may require the permittee to adopt appropriate remedial measures to abate the nuisance or harm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | 8.       | If, after the issuance of this permit, DEP approves a municipal sewage facilities official plan or an amendment<br>to an official plan under Act 537 (Pennsylvania Sewage Facilities Act, the Act of January 24, 1966, P.L. 1535<br>as amended) in which sewage from the herein approved facilities will be treated and disposed of at other<br>planned facilities, the permittee shall, upon notification from the municipality or DEP, provide for the<br>conveyance of its sewage to the planned facilities, abandon use and decommission the herein approved<br>facilities including the proper disposal of solids, and notify DEP accordingly. The permittee shall adhere to<br>schedules in the approved official plan, amendments to the plan, or other agreements between the permittee<br>and municipality. This permit shall then, upon notice from DEP, terminate and become null and void and shall<br>be relinquished to DEP. |
| $\boxtimes$ | 9.       | This permit does not relieve the permittee of its obligations to comply with all federal, interstate, state or local laws, ordinances and regulations applicable to the sewerage facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | 10.      | This permit does not give any real or personal property rights or grant any exclusive privileges, nor shall it be construed to grant or confirm any right, easement or interest in, on, to or over any lands which belong to the Commonwealth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | 11.      | The authority granted by this permit is subject to all effluent requirements, monitoring requirements and other conditions as set forth in NPDES Permit No and all subsequent amendments and renewals. No discharge is authorized from these facilities unless approved by an NPDES Permit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cor         | stru     | ction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             | 12.<br>J | This permit is issued under the authorization of The Clean Streams Law and 25 Pa. Code Chapter 91. The permittee shall obtain all necessary permits, approvals and/or registrations under 25 Pa. Code Chapters 102, 105 and 106 prior to commencing construction of the facilities authorized by this permit, as applicable. The permittee should contact the DEP office that issued this permit if there are any questions concerning the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

applicability of additional permits.

- 13. The facilities shall be constructed under the supervision of a Pennsylvania licensed Professional Engineer in accordance with the approved reports, plans and specifications.
- 14. A Pennsylvania licensed Professional Engineer shall certify that construction of the permitted facilities was completed in accordance with the application and design plans submitted to DEP, using "Post Construction Certification" form (3800-PM-WSFR0179a). It is the permittee's responsibility to ensure that a Professional Engineer is on-site to provide the necessary oversight and/or inspections to certify the facilities. The certification must be submitted to DEP before the facility is placed in operation. As-built drawings, photographs (if available) and a description of all deviations from the application and design plans must be submitted to DEP within 30 days of certification.
- 15. Manhole inverts shall be formed to facilitate the flow of the sewage and to prevent the stranding of sewage solids. The manhole structure shall be built to prevent undue infiltration, entrance of street wash or grit and provide safe access to facilitate manhole maintenance activities.
- 16. The local Waterways Conservation Officer of the Pennsylvania Fish and Boat Commission (PFBC) shall be notified when the construction of any stream crossing and/or outfall is started and completed. A written permit must be secured from the PFBC if the use of explosives in any waterways is required and the permittee shall notify the local Waterways Conservation Officer when explosives are to be used.

#### **Operation and Maintenance**

- 17. The permittee shall maintain records of "as-built" plans showing all the treatment facilities as actually constructed together with facility operation and maintenance (O&M) manuals and any other relevant information that may be required. Upon request, the "as-built" plans and O&M manuals shall be filed with DEP.
- 18. The sewers shall have adequate foundation support as soil conditions require. Trenches shall be back-filled to ensure that sewers will have proper structural stability, with minimum settling and adequate protection against breakage. Concrete used in connection with these sewers shall be protected from damage by water, freezing, drying or other harmful conditions until cured.
- 19. Stormwater from roofs, foundation drains, basement drains or other sources shall not be admitted directly to the sanitary sewers.
- 20. The approved sewers shall be maintained in good condition, kept free of deposits by flushing or other cleaning methods and repaired when necessary.
- 21. The sewerage facilities shall be properly operated and maintained to perform as designed.
- 22. The attention of the permittee is called to the highly explosive nature of certain gases generated by the digestion of sewage solids when these gases are mixed in proper proportions with air and to the highly toxic character of certain gases arising from such digestion or from sewage in poorly ventilated compartments or sewers. Therefore, at all places throughout the sewerage facilities where hazard of fire, explosion or danger from toxic gases may occur, the permittee shall post conspicuous permanent and legible warnings. The permittee shall instruct all employees concerning the aforesaid hazards, first aid and emergency methods of meeting such hazards and shall make all necessary equipment and material accessible.
- 23. An operator certified in accordance with the Water and Wastewater Systems Operator Certification Act of February 21, 2002, 63 P.S. §§1001, *et seq.* shall operate the sewage treatment plant.
- 24. The permittee shall properly control any industrial waste discharged into its sewerage system by regulating the rate and quality of such discharge, requiring necessary pretreatment and excluding industrial waste, if necessary, to protect the integrity or operation of the permittee's sewerage system.
- 25. There shall be no physical connection between a public water supply system and a sewer or appurtenance to it which would permit the passage of any sewage or polluted water into the potable water supply. No water pipe shall pass through or come in contact with any part of a sewer manhole.
- 26. All connections to the approved sanitary sewers must be in accordance with the official Act 537 Plan and, if applicable, a corrective action plan as contained in the approved Title 25 Pa. Code Chapter 94 Municipal Wasteload Management Annual Report.
- 27. Collected screenings, slurries, sludge and other solids shall be handled and disposed of in compliance with Title 25 Pa. Code Chapters 271, 273, 275, 283 and 285 (related to permits and requirements for land filling, land application, incineration and storage of sewage sludge), Federal Regulations 40 CFR 257 and the Federal Clean Water Act and its amendments.

3800-PM-WSFR0179a 9/2005 Post Construction Certification



Pennsylvania DEPARTMENT OF ENVIRONMENTAL PROTECTION

#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF CLEAN WATER

# WATER QUALITY MANAGEMENT

# POST CONSTRUCTION CERTIFICATION

| PERMITTEE IDENTIFIER                                                                                                                                                                                                                                                                                                                                                        |                        |                                        |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------|--|--|--|
| Permittee                                                                                                                                                                                                                                                                                                                                                                   | DELCORA                |                                        |  |  |  |
| Municipality                                                                                                                                                                                                                                                                                                                                                                | Chester City           |                                        |  |  |  |
| County                                                                                                                                                                                                                                                                                                                                                                      | Delaware               |                                        |  |  |  |
| WQM Permit No.                                                                                                                                                                                                                                                                                                                                                              | <u>2318401</u>         |                                        |  |  |  |
| Facility Type                                                                                                                                                                                                                                                                                                                                                               | Sewage                 |                                        |  |  |  |
| All of the above information should be taken directly from the Water Quality Management Permit.                                                                                                                                                                                                                                                                             |                        |                                        |  |  |  |
| CERTIFICATION                                                                                                                                                                                                                                                                                                                                                               |                        |                                        |  |  |  |
| This certification must be completed and returned to the permits section of the DEP's regional office issuing the WQM permit within 30 days of completion of the project and received by DEP prior to operation, and if requested, as-built drawings, photographs (if available) and a discussion of any DEP-approved deviations from the design plans during construction. |                        |                                        |  |  |  |
| I, being a Registered Professional Engineer in Pennsylvania, do hereby certify to the best of my knowledge and belief, based upon personal observation and interviews, that the above facility approved under the Water Quality Management Permit has been constructed in accordance with the plans, specifications and modifications approved by DEP.                      |                        |                                        |  |  |  |
| Construction Completion Date (MM/DD/YYYY):                                                                                                                                                                                                                                                                                                                                  |                        |                                        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |                        | Professional Engineer                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |                        | Name                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             | (Please Print or Type) |                                        |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |                        | Signature                              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |                        | Date                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |                        | License Expiration Date                |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |                        | Firm or Agency                         |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |                        | Telephone                              |  |  |  |
| Permittee or Authorized                                                                                                                                                                                                                                                                                                                                                     |                        | Permittee or Authorized Representative |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |                        | Name                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             |                        | (Please Print or Type)                 |  |  |  |
| Engin                                                                                                                                                                                                                                                                                                                                                                       |                        | Signature                              |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             | cer's                  | Title                                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                             | Seal                   | Telephone                              |  |  |  |

| ER BWQ-15 Rev 9/73 CO<br>PART<br>UREA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | OMMONWEALTH<br>MENT OF ENVIE<br>AU OF WATER Q                                                                                      | OF PENNSYLVANIA<br>RONMENTAL RESOUR(<br>UALITY MANAGEMEN, |                                                            |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------|--|--|
| WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | QUALITY M                                                                                                                          | ANAGEMENT PERMI                                           | T NO 2374402                                               |  |  |
| <ul> <li>A. PERMITTEE (Name and Address)</li> <li>elaware County Regional Water Qua<br/>Control Authority</li> <li>100 East Fifth Street</li> <li>Chester, Pennsylvania 19013</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ality                                                                                                                              | B. PROJECT LOC<br>Municipality<br>County                  | ATION<br>City of Chester<br>Delaware                       |  |  |
| C. TYPE OF FACILITY OR ESTABLISHM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ENT                                                                                                                                | D. NAME OF MINE, OPERATION OR AREA SERVED                 |                                                            |  |  |
| Pumping Station and force main 2nd<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | l and Dock                                                                                                                         | Chester Creek Dra<br>Ridley Creek and                     | linage Area & Eddystone Borough<br>Crum Creek Service Area |  |  |
| E. THIS PERMIT APPROVES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                    |                                                           |                                                            |  |  |
| 1. Plans For Construction of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2. The Disch                                                                                                                       | arge of:                                                  | 3. The Operation of:                                       |  |  |
| 8. X PUMP STATIONS; SEWERS<br>AND APPURTENANCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | a. 🗋                                                                                                                               | TREATED                                                   | MINE<br>MAXIMUM AREA TO BE DEEP<br>Mined                   |  |  |
| b. Sewage TREATMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                    | UNTREATED                                                 |                                                            |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ь. Ц                                                                                                                               | INDUSTRIAL WASTE                                          | DAM .                                                      |  |  |
| C. MINE DRAINAGE<br>TREATMENT FACILITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                    | MINE DRAINAGE                                             | 4. An Erosion and Sedimentation<br>Control Plan            |  |  |
| d. Industrial waste<br>Treatment facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                    | SEWAGE                                                    | PROJECT AREA IS ACRES.                                     |  |  |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5. Nature of                                                                                                                       | Discharge or Impoundm                                     | ent:                                                       |  |  |
| 8. DOUTFALL & HEADWALL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                    | RGE TO SURFACE WATES                                      | D DISCHARGE TO GROUND WATER                                |  |  |
| f. STREAM CROSSING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (Name of Stream to which discharged or drainage<br>area on which ground water discharge takes place or<br>impoundment is located). |                                                           |                                                            |  |  |
| <ul> <li>F. You are hereby authorized to construct, operate or discharge, as indicated above, provided that you comply with the following:</li> <li>1. All representations regarding operations, construction, maintenance and closing procedures as well as all other matters set forth in your application and its supporting documents (Application No. <u>2374402</u><br/>dated <u>February 19, 1974</u>), and amendments dated <u>August 5 andSept. 3, 1974</u><br/>Such application, it's supporting documents and amendments are hereby made a part of this permit.</li> <li>2. Conditions numbered 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 21, 22, &amp; 30, 31, of the</li> </ul>                                                                                                                                                                 |                                                                                                                                    |                                                           |                                                            |  |  |
| SewerageStandard Conditions dated1972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                    |                                                           |                                                            |  |  |
| which conditions are attached hereto and a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | are made a part                                                                                                                    | of this permit.                                           |                                                            |  |  |
| 3. Special condition(s) designated This permit is also subject to the Standard (1973)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                    |                                                           |                                                            |  |  |
| The Authority granted by this permit is subject to the following further qualifications:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                    |                                                           |                                                            |  |  |
| <ol> <li>If there is a conflict between the application or its supporting documents and amendments and the standard or special conditions, the standard or special conditions shall apply.</li> <li>Failure to comply with the Rules and Regulations of the Department or the terms or conditions of this permit shall void the authority given to the permittee by the issuance of the permit.</li> <li>This permit is issued pursuant to the Clean Streams Law, The Act of June 22, 1937, P.L. 1987 as amended and/or the Water Obstruction Act of June 25, 1913, P.L. 555 as amended.         Issuance of this permit shall not relieve the permittee of any responsibility under any other law.         This permit must be recorded in the Recorder of Deeds Office in Delaware County.         DEPARTMENT OF ENVIRONMENTAL RESOURCES     </li> </ol> |                                                                                                                                    |                                                           |                                                            |  |  |
| DATE <u>S-11-75</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8Y                                                                                                                                 | C.T. Beechwood                                            | lech word                                                  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TITLE                                                                                                                              | Regional Sanit<br>Norristown Off                          | ary Engineer<br>ice                                        |  |  |

#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES

K2v. 5⊱73

# STANDARD CONDITIONS RELATING TO SEWERAGE - 1972

ONE: All relevant and non-superseded conditions of prior sewerage or water quality management permits or orders issued to the herein named permittee or his predecessor shall continue in full force and effect and together with the provisions of this permit shall apply to his successors, lessees, heirs, and assigns.

TWO: During construction no radical changes shall be made from the plans, designs, and other data herein approved unless the permittee shall first receive written approval thereof from the Department. The sewerage facilities shall be constructed under expert engineering supervision and competent inspection.

THREE: Sewers herein approved shall have tight, well-fitting joints, shall be laid with straight alignment and grade and shall have smooth interior surfaces. The sewers shall have adequate foundation support as soil conditions requires. Special care shall be taken in construction of sewers under deep or shallow cover and under other conditions which impose extra hazards to sewer stability. Trenches shall be back-filled such that the sewers will have proper structural stability, with minimum setting and adequate protection against breakage. Concrete used in connection with these sewers shall be protected until cured from injury by water, freezing, drying or other harmful conditions.

FOUR: Manholes shall be placed and constructed as shown upon the herein approved plans except, that if not already so provided, they shall be placed on all sewers at junctions, at each change in grade or alignment, at summit ends, and upon straight lines at intervals not exceeding four hundred feet, or wherever necessary to permit satisfactory entrance to and maintenance of the sewers; manhole inverts shall be so formed as to facilitate the flow of the sewage and to prevent the stranding of sewage solids, and the whole manhole structure shall have proper structural strength and be so constructed as to prevent undue infiltration, entrance of street wash or grit, and to provide convenient and safe means of access and maintenance.
FIVE: No storm water from pavements, area ways, roofs, foundation drains or other sources shall be admitted to the sanitary sewers herein approved.

SIX: Attention is directed to the necessity of having a qualified person make a proper study of all industrial wastes discharging or proposed for discharge to the public sewer systems, to determine what degree of preliminary treatment is necessary before these waste may be discharged to the sewer system so that the wastes will not prejudicially affect the sewerage structure or their functioning or the process of sewage treatment.

SEVEN: The permittee shall adopt and enforce an ordinance or otherwise require all occupied buildings on premises accessible to a public sewer used in conformity with the requirements of State Law, to be connected thereto; also require the abandonment of privies, cesspools or similar receptacle for human excrement on said premises.

EIGHT: The herein approved and previously constructed sewers shall be maintained in good condition, by repair when necessary and kept free from deposits by flushing or other proper means of cleaning.

NINE: The permittee shall file with the Department of Environmental Resources a satisfactory record or detail plans showing the correct plan of all sewers and sewerage structures as actually constructed together with any other information in connection therewith that may be required.

TEN: The out fall sewer or drain shall be extended to low water mark of the receiving body of water in such a manner as to insure the satisfactory dispersion of its effluent thereinto; insofar as practicable it shall have its outlet submerged; and shall be contructed of cast iron, concrete, or other material approved by the Department; and shall be so protected against the effects of flood water, ice, or other hazards as to reasonable insure its structural stability and freedom from stoppage.

ELEVEN: The permittee shall secure any necessary permission from the proper federal authority for any outfall or sewage treatment structure which discharges into or enters navigable waters and shall obtain approval of any stream crossing, encroachment or change of natural stream conditions coming within the jurisdiction of the Department.

TWELVE: If at any time the sewerage facilities of the permittee, or any part thereof, or the discharge of the effluent therefrom, shall have created a public nuisance, or such discharge is causing or contributing to pollution of the waters of the Commonwealth, the permittee shall-forthwith adopt such remedial measures as are acceptable to the Department.

THIRTEEN: Nothing herein contained shall be construed to be an intent on the part of the Department to approve any act made or to be made by the permittee inconsistent with the permittee's lawful powers or with existing laws of the Commonwealth regulating stream pollution and the practice of professional engineering, nor shall this permit be construed to sanction any act otherwise forbidden by any of the laws of the Commonwealth of Pennsylvania or of the United States.

FOURTEEN: The approval herein given is specifically made contingent upon the permittee acquiring all necessary rights, by easement or otherwise as required, providing for the satisfactory construction, operation, maintenance and replacement of all sewers or sewerage structures in, along, or across private property, with full rights of ingress, egress and regress.

FIFTEEN: When the herein a approved sewage treatment works is completed and before it is placed in operation, the permittee shall notify the Department in writing so that an inspection of the works may be made by a representative of the Department.

SIXTEEN: The various structures and apparatus of the sewage treatment works herein approved shall be maintained in proper condition so that the facilities will individually and collectively preform the functions for which they were designed.

SEVENTEEN: The screenings and sludge shall be so handled that nuisance is not created and shall be disposed of in a sanitary manner satisfactory to the Department.

EIGHTEEN: The permittee shall keep records of operation and efficiency of the waste treatment works and shall submit to the Department, promptly at the end of each month, such report thereon as may be required by the Department.

NINETEEN: The sewage treatment works shall be operated by a competent person or persons. In this connection attention is directed to the necessity for expert advice and supervision over the operation of the sewage treatment works in order to secure efficiency of operation and protection to the waters of the Commonwealth. To this end the permittee shall place the operation of the sewage treatment works under the control of the dsigner of the works or some other person expert in the operation of sewage treatment works, for at least one year after completion thereof and report submitted. The sewage treatment works shall be operated by a operator certified in accordance with the Sewage Treatment Plant and Water Works Operators Certification Act, Act No. 322 approved November 18, 1968 as amended.

TWENTY: The right to discharge the effluent from the herein approved sewage treatment works into the waters of the Commonwealth is contingent upon such operation of these works as will at all times produce an effluent of a quality satisfactory to the Department. If, in the opinion of the Department, these works are not so operated or if by reason of change in the character of wastes or increased load upon the works, or changed use or condition of the receiving body of water, or otherwise, the said effluent ceases to be satisfactory for such discharge, then upon notice by the Department the right herein granted to discharge such effluent shall cease and become null and void unless within the time specified by the Department, the permittee shall adopt such remedial measures as will produce an effluent which, in the opinion of the Department, will be satisfactory for discharge into the said receiving body of water.

TWENTY-ONE: The attention of the permittee is called to the highly explosive nature of certain gases generated by the digestion of sewage solids when these gases are mixed in proper proportions with air, and to the highly toxic character of certain gases arising from such digestion or from sewage in insufficiently ventilated compartments or sewers. Therefore, at all places throughout the sewerage facilities where hazard of fire, explosion, or danger from toxic gases may occur, the permittee shall post conspicuously proper warnings of a permanent and easily legible character and shall provide for the thorough instruction of all employes concerning the aforesaid hazards and in first aid and emergency methods of meeting such hazards and shall further provide, in a conveniently accessible place, all necessary equipment and material therefor.

TWENTY-TWO: Cross connections between a potable water supply and a sewerage system constitute a potential danger to the public health. Therefore, all direct and indirect connections whereby under normal or abnormal conditions the potable water supply may become contaminated from an inferior water supply, from any unit of the sewage treatment works, or by any appurtenance thereof or from any part of a sewerage system, are hereby specifically prohibited. The permittee is further warned against permitting to be made permanent any temporary connection with a potable supply designed to be held in place while being used for flushing or other purposes, and is also cautioned against the danger of back siphonage through portable hose lines and similar avenues of possible contamination.

TWENTY-THREE: Effective disinfection to control disease producing organisms shall be the production of an effluent which will contain a concentration not greater than 200/100 ml of Fecal Coliform organisms as a geometric average value nor greater than 1,000/100 ml of these organisms in more than 10% of the samples tested.

TWENTY-FOUR: The approval herein granted for sewers is limited to the right to construct the sewers, but approval of connection there to is specifically withheld until such time approval for use thereof is granted by the Department.

TWENTY-FIVE: The attention of the permittee is directed to the fact that the effluent from the herein approved sewage treatment works is discharged to a dry stream normally without the benefit of dilution. If the effluent creates a health hazard or nuisance, the permittee shall upon notice from the Department of Environmental Resources, provide such additional treatment as may be required by the Department.

TWENTY-SIX: If facilities become available for conveying the sewage to and treating it at a more suitable location, upon order from the Department of Environmental Resources, the permittee shall provide for the discharge of the sewage to such facilities and shall abandon the use of the herein approved sewage treatment works.

TWENTY-SEVEN: The plant hereby approved is required to effect secondary treatment of the sewage which it receives. Secondary treatment is that treatment that will reduce the organic waste load as measured by the biochemical oxygen demand test by at least 85% during the period May 1 to October 31 and by at least 75% during the remainder of the year based on a five consecutive day average of values; will remove practically all of the suspended solids; will provide effective disinfection to control disease producing organisms; will provide satisfactory disposal of sludge; and will reduce the quantities of oil, greases, acids, alkalis, toxic, taste and odor producing substances, color, and other substances inimical to the public interest to levels that will not pollute the receiving stream.

TWENTY-EIGHT: Records of the operation of the single residence sewage treatment works as the State Department of Environmental Resources may deem necessary for the proper control of the operation of the treatment works shall be kept on forms satisfactory to the Department and shall be filed in the Regional Office of the Department at intervals as specified.

TWENTY-NINE: The permittee shall submit to the Department by March 31 of each year a report showing the hydraulic and organic load compared to the design load and the expected load for a period of five years hence.

THIRTY: The permittee shall prohibit additional connections to a sewer system or load from being placed upon a sewage treatment plant when the plant capacity will be exceeded within five years unless steps have been taken to enlarge the plant within that time.

THIRTY-ONE: The permittee shall take the necessary measures for the construction of sewerage facilities in a manner compatible with good conservation methods to minimize the effect on the environment, the regimen of the stream bed or channel, and to prevent sediment and pollutants from entering the waters of the Commonwealth.

THIRTY-TWO: The local waterways patrolmen of the Pennsylvania Fish Commission shall be notified when the construction of the stream crossing and outfall is started and completed. A permit must be secured from the Pennsylvania Fish Commission if the use of explosives is required. The permittee shall notify the local waterways patrolmen when explosives are to be used.

THIRTY-THREE: If future operations by the Commonwealth of Pennsylvania require modification of the stream crossing, and/or outfall or there shall be unreasonable obstruction to the free passage of floods or navigation, the permittee shall remove or alter the structural work or obstruction without expense to the Commonwealth of Pennsylvania. If upon the revocation of the permit, the work shall not be completed, the permittee, at his own expense and in such time and manner as the Department may require, shall remove any or all portions of the incompleted work and restore the watercourse to its former condition. No claim shall be made against the Commonwealth of Pennsylvania on account of any such removal or alteration.

to . . . . . . . . .

- je so

Delaware Cr ty Regional Water Quality Contro. .uthority 100 East Fifth Street Chester, Pennsylvania 19103

Permit No. 2374402

City of Chester Delaware County

Commonwealth of Pennsylvania Department of Environmental Resources

## RECORDER OF DEEDS CERTIFICATE

į

. . . . . . . . . . . . .

Recorder of Deeds for

. . . . . . . . . . . . County

### COMMONWEALTH OF PENNSYLVANIA

#### DEPARTMENT OF ENVIRONMENTAL RESOURCES

STANDARD CONDITIONS RELATING TO EROSION CONTROL

For use in Water Quality Management Permits

#### 1973

### General ,

- By approval of the plans for which this permit is issued, neither the Department nor the Commonwealth of Pennsylvania assumes any responsibility for the feasibility of the plans or the operation of the measures and facilities to be constructed thereunder.
- 2. All relevant conditions of any prior water quality management permits, decrees, or orders issued to the herein permittee or his predecessor shall be continued in full force and effect unless explicitly superseded by this permit. The provisions of this permit shall apply to the permittee's successors, lessees, heirs and assigns.

3. The responsibility for the carrying out of the conditions of this permit shall rest upon the owner, lessee, assignee, or other party in responsible manager-ial charge of the earthmoving affecting the runoff and of the erosion control facilities herein approved, such responsibility passing with each succession in said control. Approval of measures and facilities under a permit shall not be effective as to a new owner until a transfer has been executed and filed on forms provided by the Department and the transfer is approved by the Department.

 The permittee shall secure any necessary permission from the proper federal authority for any outfall or structure which discharges into or enters navigable waters.

5. In order to avoid obsolescence of the plans of erosion control measures and facilities, the approval of the plans herein granted, and the authority granted in the permit, if not specifically extended, shall cease and be null and void two years from the date of this permit unless the erosion control measures and facilities covered by said plans shall have been completed and placed in operation on or before that date. Also, cancellation of permits by the Regional Sanitary Engineer or Water Quality Manager may be possible six months after construction has ended.

6. Approval of plans refers to functional design and not constructional stability, which is assumed to be sound and in accordance with good structural design. Failure of the measures and facilities herein approved because of faulty structural design or poor construction will render the permit void.

- 7. If at any time the activities undertaken pursuant to this permit or the discharge of the effluent therefrom is causing or contributing to pullution of the waters of the Commonwealth, the permittee shall forthwith adopt such remedial measures as are acceptable to the Department.
- 8. The Clean Streams Law and the Regulations promulgated thereunder are incorporated into and made part of this permit.
- 9. The permittee shall have his erosion control plan available at the site of the activity at all times.

#### Construction

- 10. At least seven days before earthmoving will begin, the permittee, by certified mail, shall notify the Regional Sanitary Engineer or Water Quality Manager of the date for beginning of construction.
- 11. All earthmoving activities shall be undertaken in such a manner as to minimize the areal extent of disturbed land.
- 12. All surface water upslope of the project area shall be kept away by diverting the water around the project area.
- 13. The erosion control measures and facilities shall be constructed under expert professional supervision and competent inspection, and in accordance with plans, designs, and other data as herein approved or amended, and with the conditions of this permit.
- 14. No radical changes shall be made in the measures and facilities herein approved without approval of the Deaprtment. Revisions which do not change the control measures and facilities or the points of discharge may be approved by the Regional Sanitary Engineer or Water Quality Manager upon submission of plans. Other revisions must be approved by a permit.
- 15. When the herein approved erosion control measures and facilities are completed, the permittee shall notify the Department so that an inspection of the measures and facilities may be made by a representative of the Department.

#### Operation and Maintenance

16. No storm water, sewage or industrial wastes not specifically approved herein, shall be admitted to the measures and facilities for which this permit is issued, unless with the approval of the Department

17. The erosion control measures and facilities herein approved shall be maintained in proper condition so that they will individually and collectively perform the functions for which they were designed. In order to insure the efficacy and proper maintenance of the measures and facilities, the permittee shall make periodic inspections at sufficiently frequent intervals to detect any impairment of the structural stability, adequate capacity, or other requisites of the herein approved measures and facilities which might impair their effectiveness, and shall take immediate steps to correct any such impairment found to exist.

- 18. Sediment shall at no time be permitted to accumulate in sedimentation basins to a depth sufficient to limit storage capacity or interfere with the settling efficiency thereof. Any such material removed shall be handled and disposed of so that a problem is not created and so that every reasonable and practical precaution is taken to prevent the said material from reaching the waters of the Commonwealth.
- 19. All slopes, channels, ditches or any disturbed area shall be stabilized as soon as possible after the final grade or final earthmoving has been completed. Where it is not possible to permanently stabilize a disturbed area immediately after the final earthmoving has been completed or where the activity ceases for more than 20 days, interim stabilization measures shall be implemented promptly.
- 20. Upon completion of the project, all areas which were disturbed by the project shall be stabilized so that accelerated erosion will be prevented. Any erosion and sedimentation control facility required or necessary to protect areas from erosion during the stabilization period shall be maintained until stabilization is completed. Upon completion of stabilization, all unnecessary or unusable control measures and facilities shall be removed, the areas shall be graded and the soils shall be stabilized.

Rev. 4-73

STATE OF PENNSYLVANIA COUNTY OF MONTGOMERY

On the in the day of 15th May year one thousand nine hundred and before seventy-five me, the Subscriber, a Notary Public, came the above named

### C.T. Beechwood

SS

and duly acknowledged the foregoing permit to be his act and deed and desired that the same might be recorded as such.

Witness my hand and notarial seal the day and year aforesaid.

NOTARY PUBLIC Notary Public Boro of Norristown, Montg. Co.

My Commission Expires August 16, 1976

| SR-BWO-5v. 3-73COMMONWEALTH ODatePreparedDEPARTMENT OF ENVWATER QUALIT                                                                                                                                                                                                                                                                                                                    | F PENNSYLVANI.<br>IRONMENTAL RESOURCES<br>Y MANAGEMENT                                                                                                                  |                                                                                                                                      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| Applica                                                                                                                                                                                                                                                                                                                                                                                   | tion For                                                                                                                                                                | or Department Use Only                                                                                                               |
| Water Quality M                                                                                                                                                                                                                                                                                                                                                                           | anagement Permit                                                                                                                                                        |                                                                                                                                      |
| A lcant Name                                                                                                                                                                                                                                                                                                                                                                              | Project                                                                                                                                                                 | Location                                                                                                                             |
| Delaware County Regional Water<br>Control Authority (DELCORA)                                                                                                                                                                                                                                                                                                                             | (A) Municipality<br>Chester City                                                                                                                                        |                                                                                                                                      |
| Telephone No.                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                         |                                                                                                                                      |
| Mailing Address                                                                                                                                                                                                                                                                                                                                                                           | (B) County                                                                                                                                                              |                                                                                                                                      |
| Control Auth., Chester, PA 19063                                                                                                                                                                                                                                                                                                                                                          | Delaware Co                                                                                                                                                             | unty                                                                                                                                 |
| Hereby Applies For: (Check appropriate blocks                                                                                                                                                                                                                                                                                                                                             | in columns A, B, C and D)                                                                                                                                               | ·                                                                                                                                    |
| A. Approval of Plans for Construction of:                                                                                                                                                                                                                                                                                                                                                 | B. Approval to<br>Discharge:                                                                                                                                            | C. Approval to                                                                                                                       |
| X Pump Stations; Sewers and Appurtenances                                                                                                                                                                                                                                                                                                                                                 | (1) TTreated                                                                                                                                                            | Underground                                                                                                                          |
| Sewage Treatment Plant                                                                                                                                                                                                                                                                                                                                                                    | [X] Untreated                                                                                                                                                           | Mine                                                                                                                                 |
| Mine Drainage Treatment Plant                                                                                                                                                                                                                                                                                                                                                             | (2) [] Industrial Was                                                                                                                                                   | te D. Approval of an                                                                                                                 |
| Industrial Waste Treatment Plant                                                                                                                                                                                                                                                                                                                                                          | Mine Drainage                                                                                                                                                           | IVI Eroston and                                                                                                                      |
| 🗖 Outfall and Headwall                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                         | Sedimentation                                                                                                                        |
| Stream Crossing                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                         | Plan                                                                                                                                 |
| (All Discharges Of Wastes Are Pu                                                                                                                                                                                                                                                                                                                                                          | rsuant To "The Clean Stre                                                                                                                                               | ams Law")                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                           | Signature of Applicant                                                                                                                                                  | or Responsible Official                                                                                                              |
| Name of Applicant or Responsible Official:<br>William H. Turner                                                                                                                                                                                                                                                                                                                           | Title<br>Executive Director                                                                                                                                             | Date of Application<br>February 19, 1974                                                                                             |
| Address<br>100 E. Fifth Street, Chester, Pennsyl                                                                                                                                                                                                                                                                                                                                          | vanla 19013                                                                                                                                                             |                                                                                                                                      |
| Affidavit                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                         |                                                                                                                                      |
| Commonwealth of Pennsylvania, County of                                                                                                                                                                                                                                                                                                                                                   | Delaware                                                                                                                                                                |                                                                                                                                      |
| I, <u>William H. Turner</u> , being duly sw<br>(am the applicant) (am an officer or official-<br>this application) and that the plans, reports<br>cation are true and correct to the best of my                                                                                                                                                                                           | orn, according to law, de<br>of-the applicant) (have t<br>and documents submitted a<br>knowledge and belief.                                                            | pose and say that I<br>he_authority to make<br>is part of the appli-                                                                 |
| Sworn and subscribed to before me this                                                                                                                                                                                                                                                                                                                                                    | 17                                                                                                                                                                      | <b>K</b>                                                                                                                             |
| 19thday_ofFebruary19 74                                                                                                                                                                                                                                                                                                                                                                   | - Ca                                                                                                                                                                    | 11-1-                                                                                                                                |
| Arances m. Benderhum manager                                                                                                                                                                                                                                                                                                                                                              | all thein M                                                                                                                                                             | - ricana                                                                                                                             |
| Notary Public Commission Expires August 2                                                                                                                                                                                                                                                                                                                                                 | 6. 1973<br>6. 1973                                                                                                                                                      | or Responsible Official                                                                                                              |
| The section below is to be completed by the p<br>application. NOTE: Sewerage, Industrial Wast<br>stered professional engineer, except that<br>th and safety are not involved.<br>Name of Design Individual and Firm D. N. Bi<br>pright & Friel a division of Betz Envir<br>Mailing Address Plymouth Meeting,<br>lymouth Meeting Mall PA 19462<br>Agreement Date Signature of Design Engin | erson authorized by the a<br>e, and Mine Drainage app<br>a registered surveyor is<br>bbo, P.E.<br>conmental Eng.<br>Telephone Number<br>[215-825-3800<br>eer (or other) | pplicant to prepare this<br>licaruons require a<br>acceptable swame public<br>Design ingineer's<br>Cor other's<br>Engineer<br>Salt F |
| 1. 11, 1972   D. M. 451 / C-y                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                         | NSVLV ALL                                                                                                                            |

| DATE PE           | EPARED<br>-74                                                                                                     | DEPARTMENT OF ENVIRORMENTAL RESOURCE<br>WATER QUALITY MANAGEMENT                                                                                                                                                                                                                                                                                                                                                                             | ΣΕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------|-------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                                                                                                                   | MODULE 1 – GENERAL INFORMATIC<br>SEWERAGE                                                                                                                                                                                                                                                                                                                                                                                                    | DN For Department Use Only                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| APPLIC/           | NT Delaw:                                                                                                         | are County Regional Water Quality                                                                                                                                                                                                                                                                                                                                                                                                            | Control Authority                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| LOCATI            | ON OF PROJEC                                                                                                      | Chester City                                                                                                                                                                                                                                                                                                                                                                                                                                 | COUNTYDelaware                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DESIGN            | ENGINEER AN                                                                                                       | Albright & Friel Div. of Betz<br>Plymouth Meeting, Pa.                                                                                                                                                                                                                                                                                                                                                                                       | z Environmental Engineers, Inc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DESIGN            | ENGINEERS A                                                                                                       | Modification of Sewage Pumpin                                                                                                                                                                                                                                                                                                                                                                                                                | g Station on 2nd & Dock St. in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <u>Che</u><br>Was | ester City<br>stewater (                                                                                          | with approximately 2 5 miles of for<br>Freatment Plant. (See Attachment I                                                                                                                                                                                                                                                                                                                                                                    | orce main to the Chester<br>No. 1 appended to these module:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| A. DOCI           | JMENTATION                                                                                                        | REQUIRED                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1. H              | AS A CHECK FO                                                                                                     | OR \$25.00, PAYABLE TO THE PENNSYLVANIA DEPAR<br>AL RESOURCES, BEEN INCLUDED? (NOT REQUIRED (                                                                                                                                                                                                                                                                                                                                                | TMENT OF X Yes No No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2. H/<br>(3<br>RI | AVE 2 COPIES<br>COPIES REQU<br>VER BASIN).                                                                        | OF THE APPLICATION, FORM H710.046, BEEN SUBMI<br>IRED FOR PROJECTS IN ALLEGHENY COUNTY AND I                                                                                                                                                                                                                                                                                                                                                 | TTED? X Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   |                                                                                                                   | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A.                | HAS THE AFF                                                                                                       | IDAVIT BEEN PROPERLY COMPLETED AND EXECUT                                                                                                                                                                                                                                                                                                                                                                                                    | ED? X- Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| A.<br>3. Do       | HAS THE AFF                                                                                                       | IDAVIT BEEN PROPERLY COMPLETED AND EXECUT                                                                                                                                                                                                                                                                                                                                                                                                    | ED? X Yes No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A.<br>3. 120<br>, | HAS THE AFF                                                                                                       | IDAVIT BEEN PROPERLY COMPLETED AND EXECUT<br>ICATION INCLUDE THE FOLLOWING APPLICABLE MC                                                                                                                                                                                                                                                                                                                                                     | ED? X Yes No<br>DULES:<br>NUMBER OF<br>PAGES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A.<br>3. Do       | HAS THE AFF                                                                                                       | IDAVIT BEEN PROPERLY COMPLETED AND EXECUT<br>ICATION INCLUDE THE FOLLOWING APPLICABLE MO<br><u>TITLE</u><br>GENERAL INFORMATION - SEWERAGE                                                                                                                                                                                                                                                                                                   | ED? X Yes No<br>DUULES:<br><u>NUMBER OF</u><br><u>PAGES</u><br>9 X Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A.<br>3. 130      | HAS THE AFF                                                                                                       | IDAVIT BEEN PROPERLY COMPLETED AND EXECUT<br>ICATION INCLUDE THE FOLLOWING APPLICABLE MO<br><u>TITLE</u><br>GENERAL INFORMATION - SEWERAGE<br>WASTE LOAD AND CHARACTERISTICS                                                                                                                                                                                                                                                                 | ED? X Yes No<br>DUULES:<br><u>NUMBER OF</u><br><u>PAGES</u><br>9 X Yes<br>3 Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| A.<br>3. Do       | HAS THE AFF<br>DES THE APPLI<br>MODULE<br>NUMBER<br>1<br>4<br>5                                                   | IDAVIT BEEN PROPERLY COMPLETED AND EXECUT<br>ICATION INCLUDE THE FOLLOWING APPLICABLE MO<br><u>TITLE</u><br>GENERAL INFORMATION - SEWERAGE<br>WASTE LOAD AND CHARACTERISTICS<br>GEOLOGY AND GROUND WATER INFORMATION                                                                                                                                                                                                                         | ED? X Yes No<br>DUULES:<br><u>NUMBER OF</u><br>9 X Yes<br>3 Yes<br>2 Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| A.<br>3. 130      | HAS THE APPLI<br>DES THE APPLI<br>MODULE<br>NUMBER<br>1<br>4<br>5<br>6                                            | IDAVIT BEEN PROPERLY COMPLETED AND EXECUT<br>ICATION INCLUDE THE FOLLOWING APPLICABLE MO<br><u>TITLE</u><br>GENERAL INFORMATION - SEWERAGE<br>WASTE LOAD AND CHARACTERISTICS<br>GEOLOGY AND GROUND WATER INFORMATION<br>SEWERS AND APPURTENANCES                                                                                                                                                                                             | ED? X Yes No<br>DUULES:<br>9 X Yes<br>3 Yes<br>2 Yes<br>5 Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| A.<br>3. 120      | HAS THE APPLI<br>DES THE APPLI<br>MODULE<br>NUMBER<br>1<br>4<br>5<br>6<br>7                                       | IDAVIT BEEN PROPERLY COMPLETED AND EXECUT<br>ICATION INCLUDE THE FOLLOWING APPLICABLE MO<br><u>TITLE</u><br>GENERAL INFORMATION - SEWERAGE<br>WASTE LOAD AND CHARACTERISTICS<br>GEOLOGY AND GROUND WATER INFORMATION<br>SEWERS AND APPURTENANCES<br>SEWAGE PUMPING STATIONS                                                                                                                                                                  | ED? X Yes No<br>DUULES:<br><u>NUMBER OF</u><br>9 X Yes<br>3 Yes<br>2 Yes<br>5 Yes<br>4 X Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| A.<br>3. 130      | HAS THE APPLI<br>DES THE APPLI<br>MODULE<br>NUMBER<br>1<br>4<br>5<br>6<br>7<br>8                                  | IDAVIT BEEN PROPERLY COMPLETED AND EXECUT<br>ICATION INCLUDE THE FOLLOWING APPLICABLE MO<br><u>TITLE</u><br>GENERAL INFORMATION – SEWERAGE<br>WASTE LOAD AND CHARACTERISTICS<br>GEOLOGY AND GROUND WATER INFORMATION<br>SEWERS AND APPURTENANCES<br>SEWAGE PUMPING STATIONS<br>PUMPING FACILITIES                                                                                                                                            | ED? X Yes No<br>DUULES:<br><u>NUMBER OF</u><br>9 X Yes<br>3 Yes<br>2 Yes<br>5 Yes<br>4 X Yes<br>1 Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| A.<br>3. (30      | HAS THE APPLI<br>DES THE APPLI<br>MODULE<br>NUMBER<br>1<br>4<br>5<br>6<br>7<br>8<br>8<br>9                        | IDAVIT BEEN PROPERLY COMPLETED AND EXECUT<br>ICATION INCLUDE THE FOLLOWING APPLICABLE MO<br><u>TITLE</u><br>GENERAL INFORMATION – SEWERAGE<br>WASTE LOAD AND CHARACTERISTICS<br>GEOLOGY AND GROUND WATER INFORMATION<br>SEWERS AND APPURTENANCES<br>SEWAGE PUMPING STATIONS<br>PUMPING FACILITIES<br>FLOW EQUALIZATION AND STORAGE BASINS                                                                                                    | ED? X Yes No<br>DUULES:<br>NUMBER OF<br>PAGES<br>9 X Yes<br>3 Yes<br>2 Yes<br>4 Yes<br>1 Yes<br>2 Yes<br>4 Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| A.<br>3. 130      | HAS THE APPLI<br>DES THE APPLI<br>MODULE<br>NUMBER<br>1<br>4<br>5<br>6<br>7<br>8<br>9<br>10                       | IDAVIT BEEN PROPERLY COMPLETED AND EXECUT<br>ICATION INCLUDE THE FOLLOWING APPLICABLE MO<br><u>TITLE</u><br>GENERAL INFORMATION – SEWERAGE<br>WASTE LOAD AND CHARACTERISTICS<br>GEOLOGY AND GROUND WATER INFORMATION<br>SEWERS AND APPURTENANCES<br>SEWAGE PUMPING STATIONS<br>PUMPING FACILITIES<br>FLOW EQUALIZATION AND STORAGE BASINS<br>GRIT CHAMBERS                                                                                   | ED? X Yes No<br>DUULES:<br>NUMBER OF<br>PAGES<br>9 X Yes<br>3 Yes<br>2 Yes<br>5 Yes<br>4 X Yes<br>1 Yes<br>1 X Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| A.<br>3. 130      | HAS THE AFF<br>DES THE APPEN<br>MODULE<br>NUMBER<br>1<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11                   | IDAVIT BEEN PROPERLY COMPLETED AND EXECUT<br>ICATION INCLUDE THE FOLLOWING APPLICABLE MO<br><u>TITLE</u><br>GENERAL INFORMATION – SEWERAGE<br>WASTE LOAD AND CHARACTERISTICS<br>GEOLOGY AND GROUND WATER INFORMATION<br>SEWERS AND APPURTENANCES<br>SEWAGE PUMPING STATIONS<br>PUMPING FACILITIES<br>FLOW EQUALIZATION AND STORAGE BASINS<br>GRIT CHAMBERS<br>SCREENING AND COMMINUTING DEVICES                                              | ED? X Yes No<br>DUULES:<br>NUMBER OF<br>PAGES<br>9 X Yes<br>3 Yes<br>2 Yes<br>4 Yes<br>4 X Yes<br>1 Yes<br>2 Yes<br>1 X Yes<br>2 X Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| A.<br>3. 120      | HAS THE AFF<br>DES THE APPEN<br>MODULE<br>NUMBER<br>1<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>11<br>12       | TIDAVIT BEEN PROPERLY COMPLETED AND EXECUT<br>ICATION INCLUDE THE FOLLOWING APPLICABLE MO<br><u>TITLE</u><br>GENERAL INFORMATION – SEWERAGE<br>WASTE LOAD AND CHARACTERISTICS<br>GEOLOGY AND GROUND WATER INFORMATION<br>SEWERS AND APPURTENANCES<br>SEWAGE PUMPING STATIONS<br>PUMPING FACILITIES<br>FLOW EQUALIZATION AND STORAGE BASINS<br>GRIT CHAMBERS<br>SCREENING AND COMMINUTING DEVICES<br>IMHOFF AND SEPTIC TANKS                  | ED? X Yes No<br>DUULES:<br>NUMBER OF<br>PAGES<br>9 X Yes<br>3 Yes<br>2 Yes<br>5 Yes<br>4 X Yes<br>1 Yes<br>2 Yes<br>1 X Yes<br>2 Yes<br>2 Yes<br>2 Yes<br>2 Yes<br>2 Yes<br>2 Yes<br>2 Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| A.<br>3. 130      | HAS THE AFF<br>DES THE APPEL<br>MODULE<br>NUMBER<br>1<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>11<br>12<br>13 | IDAVIT BEEN PROPERLY COMPLETED AND EXECUT<br>ICATION INCLUDE THE FOLLOWING APPLICABLE MO<br><u>TITLE</u><br>GENERAL INFORMATION – SEWERAGE<br>WASTE LOAD AND CHARACTERISTICS<br>GEOLOGY AND GROUND WATER INFORMATION<br>SEWERS AND APPURTENANCES<br>SEWAGE PUMPING STATIONS<br>PUMPING FACILITIES<br>FLOW EQUALIZATION AND STORAGE BASINS<br>GRIT CHAMBERS<br>SCREENING AND COMMINUTING DEVICES<br>IMHOFF AND SEPTIC TANKS<br>SETTLING TANKS | ED? X Yes No<br>DUULES:<br><u>NUMBER OF</u><br>9 X Yes<br>3 Yes<br>2 Yes<br>5 Yes<br>4 X Yes<br>1 Yes<br>2 Yes<br>1 X Yes<br>2 Yes |

| EH710.046.1   |   |
|---------------|---|
| DATE PREPARED |   |
| 2-28-74       | 1 |
| DATE REVISED  |   |
|               |   |

COMMONWEALTH OF PENNSYLVANIA NSYL DEPARTMENT OF ENVIRONMENTAL RESOURCES WATER QUALITY MANAGE SENT

WATER POLLUTION CONTROL MODULE 1 - GENERAL INFORMATION SEWERAGE

For Department Use Only

| •   |      | TITLE                                                      | NUMBER OF<br>PAGES | de la construcción de la constru |     |
|-----|------|------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | 15   | TRICKLING FILTERS                                          | 2                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| • • | 16   | AERATION TANKS OR BASINS                                   | 3                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|     | 17   | WASTE STABILIZATION PONDS                                  | 3                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|     | 18   | CHEMICAL TREATMENT (INCLUDING FEEDERS)                     | 3                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|     | 19   | MIXING AND FLOCCULATION FACILITIES                         | 1                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|     | 20   | SAND FILTERS                                               | 2                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| •   | 21.  | DISINFECTION                                               | 2                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| -   | 22   | SPRAY IRRIGATION                                           | 1                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|     | 23   | PHYSICAL ABSORPTION, ION EXCHANGE, AND CONTACT UNITS       | 2                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | • • |
|     | 25   | DEEP WELL DISPOSAL                                         | - 4                | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|     | 26   | SLUDGE TREATMENT AND DISPOSAL                              |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |
|     | . ·  | A. SEPARATE DIGESTION TANKS AND SLUDGE<br>THICKENING TANKS | 2                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|     | •    | B. ELUTRIATION                                             | 1                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|     |      | C. WET OXIDATION                                           | 1                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|     | ·, • | D. SLUDGE DRYING BEDS                                      | 1                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|     |      | E. LAND DISPOSAL OF SLUDGE                                 | 1                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •   |
|     |      | F. SLUDGE BASINS                                           | 1                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
| ,   | · -  | G. FILTERS AND CENTRIFUGES                                 | . 1                | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|     |      | H. INCINERATION                                            | 1                  | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|     |      |                                                            |                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •   |

## B. REQUIRED DATA

1. THE FRONT COVER OF FLYLEAF OF EACH SET OF DRAWINGS AND SPECIFICATIONS MUST BEAR THE SIGNATURE AND SEAL OF THE REGISTERED PROFESSIONAL ENGINEER, SURVEYOR BY OR UNDER WHOM PREPARED. EACH DRAWING MUST BEAR AN IMPRINT OR REASONABLE FACSIMILE OF SUCH SEAL.

••

.

î

. .

| DATE REVISED       WATER POLLUTION CONTROL<br>MODULE 1 - GENERAL INFORMATION         For Department Use Only<br>SEWERAGE         8. REQUIRED DATA - CONTINUED         2. INFORMATION RELATIVE TO SPECIFIC PROGRAMS:         A. 2 COPIES of DESIGNER'S FLANG, MODULES, AND SPECIFICATIONS-<br>IS COPIES REQUIRED FOR PROJECTS IN ALLEGHENY COUNTY AND<br>DELAWARE RIVER BASIN         9. HYORAULE PROFILE ON SCHEMATIC FLOW DIAGRAM FOR PROPOSED         INFORMATION RELATIVE TO SPECIFIC DUM DIAGRAM FOR PROPOSED         INFORMATION PLANT.         C. UNITED STATES GEOLOGICAL SURVEY TOPOGRAPHICAL MAP SHOWING<br>EXAMPTION TO DISCHARGE AND TREATMENT FLANT OR PRIME STATION         DELAWARE RIVER BASIN         C. UNITED STATES GEOLOGICAL SURVEY TOPOGRAPHICAL MAP SHOWING<br>EXAMPTION TO DISCHARGE AND TREATMENT FLANT OR PRIME STATION         D. HAVE YOU APPLIED FOR A PUBLIC UTILITY COMMISSION CERTIFICATE         VER         (2) IN SERTIFICATE OF PUBLIC ONVENIENCE ENCLOSED7         (3) IN SECTIVE UTILITY COMMISSION APPLICATION         NUMBER         (4) IN SECTIVE DATION SAFECTING EMPLOYES SAFETY         (5) IN SECTIVE UTILITY COMMISSION APPLICATION         NUMBER         (5) IN CONTRELATE OF PUBLIC ONVENIENCE ENCLOSED7         (6) IN SECTIVE AND ARTICLES APPROVAL OF STREAM ENCREACHMENTION         NUMBER         (7) IN SECTIVE AND ARTICLES APPROVAL OF STREAM ENCLOSED AND THE CONTROL FACTURES AFERYT         (8) DO YOU HAVE AN AGREEM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | ER710.046.1<br>DATE FREPARED<br>2-28-74             | COMMONWEALTH OF<br>DEPARTMENT OF ENVIRO<br>WATER QUALITY                                                         | PENNSYLVANIA<br>NMENTAL RESOURCE.<br>MANAGEMENT                        |                                   |                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-----------------------------------|-----------------|
| B. REQUINED DATA - CONTINUED  2. INFORMATION RELATIVE TO SPECIFIC PROGRAMS:  A. 2 COPIES OF DESIGNERS PLANS, MODULES, AND SPECIFICATIONS: B. 2 COPIES OF DESIGNERS PLANS, MODULES, AND SPECIFICATIONS: B. 2 COPIES OF DESIGNERS PLANS, MODULES, AND SPECIFICATIONS: B. 2 COPIES OF DESIGNERS PLANS, MODULES, AND SPECIFICATIONS: DELAWARE INVERTIGATIO FLOW DIAGRAM FOR PROPOSED  NVA  DELAWARE INVERTIGATE OF SPECIFIC PROBENT COLUMDIAGRAM FOR PROPOSED  NVA  C. UNITED FATTS CEDILOICAL SURVEY TOPOGRAPHICAL MAPSHOWING APpended as NVA  C. UNITED FATTS CEDILOICAL SURVEY TOPOGRAPHICAL MAPSHOWING APpended as NVA  C. UNITED FATTS CEDILOICAL SURVEY TOPOGRAPHICAL MAPSHOWING APPENDIC CONVENIENCE SAFETY FULLY COMMISSION CERTIFICATE PROBLIC CONVENIENCE (1) SPECIFY PUBLIC UTILITY COMMISSION APPLICATION NUMBER  (2) IS CERTIFICATE OF FUELIC CONVENIENCE ENCLOSED?  (2) IS CERTIFICATE OF FUELIC CONVENIENCE ENCLOSED?  (3) IS CERTIFICATE OF FUELIC CONVENIENCE ENCLOSED?  (4) IS CERTIFICATE OF FUELIC CONVENIENCE ENCLOSED?  (5) IS CERTIFICATE OF FUELIC CONVENIENCE ENCLOSED?  (5) IS CERTIFICATE OF FUELIC CONVENIENCE ENCLOSED?  (6) IS CERTIFICATE OF FUELIC CONVENIENCE ENCLOSED?  (7) IS CERTIFICATE OF FUELIC CONVENIENCE ENCLOSED?  (7) IS CERTIFICATE OF FUELIC CONVENIENCE ENCLOSED?  (8) IS CERTIFICATE OF FUELIC CONVENIENCE ENCLOSED?  (9) IS CERTIFICATE OF PROVAL OF STREAM ENCROACHMENTISI?  (9) IS CERTIFICATE OF PROVAL OF STREAM ENCROACHMENTISI?  (9) IS CERTIFICATE OF PROVAL OF APPROVAL OF AND INDUSTRY APPLICATION  NUMBER  (9) OV HAVE AN AGREEMENT INDICATION AFFROVAL TO DISCHARGE  (1) NO  AFFROVAL FOR PROVAL OF AND REATMENT OF LABOR AND INDUSTRY APPLICATION  NUM CITACINAL  AND CONVENTED A LIST WITH NAMES, ADDRESSES, AND TITLES  OF ALL PARTNERS IN THE CASE OF A PARTNERSHIP ON ALL DEFICERS  NAM  AFFROVAL FOR APPLIED FOR AFFROVAL OF AND THERE ENTITY (NOT  NUM CITACINAL  AFFROVAL FOR ADA TREATMENT PLAN |     | DATE REVISED                                        | WATER POLLUT<br>MODULE 1 – GENEF<br>SEWEF                                                                        | ION CONTROL<br>RAL INFORMATION<br>RAGE                                 | For Department Use O              | nly             |
| 2. INFORMATION RELATIVE TO SPECIFIC PROGRAMS:  A. 2 COPIES OF DESIGNER'S PLANS, MODULES, AND SPECIFICATIONS (I COPIES REQUIRES POR PROJECTS IN ALLEGHENY COUNTY AND DELWARE RIVER BASIN)  B. HYORAULIC PROFILE OR SCHEMATIC FLOW DIAGRAM FOR PROPOSED  TREATMENT PLANT,  C. UNITED STATES GEOLOGICAL SURVEY TOPOGRAPHICAL MAP SHOWING EXACT FOINT OF DISCHARGE AND THEATMENT PLANT OR FUMP STATION  C. UNITED STATES GEOLOGICAL SURVEY TOPOGRAPHICAL MAP SHOWING EXACT FOINT OF DISCHARGE AND THEATMENT PLANT OR FUMP STATION  D. HAVE YOU APPLIED FOR A PUBLIC UTILITY COMMISSION CERTIFICATE  I. HAVE YOU APPLIED FOR A PUBLIC UTILITY COMMISSION CERTIFICATE  (I) SPECIFY PUBLIC UTILITY COMMISSION APPLICATION  NUMBER  (2) IS CENTIFICATE OF PUBLIC CONVENIENCE ENCLORED?  (I) SPECIFY PUBLICUTILITY COMMISSION APPLICATION  NUMBER  (2) IS CENTIFICATE OF PUBLIC CONVENIENCE ENCLORED?  (I) SPECIFY PUBLICUTICITY COMMISSION APPLICATION  NUMBER  (2) IS CENTIFICATE OF PUBLIC CONVENIENCE ENCLORED?  (I) SPECIFY PUBLICUTICITY COMMISSION APPLICATION  NUMBER  (2) IS CENTIFICATE OF PUBLIC CONVENIENCE ENCLORED?  (I) SPECIFY PUBLICUTICITY COMMISSION APPLICATION  NUMBER  (2) IS CENTIFICATE OF PUBLIC CONVENIENCE ENCLORED?  (I) SPECIFY PUBLICUTICITY COMMISSION APPLICATION  NUMBER  (2) IS CENTIFICATE OF PUBLIC CONVENIENCE ENCLORED?  (I) SPECIFY THE FOR DEPARTMENT OF LABOR AND INDUSTRY APPLICATION  NUMBER  (I) SPECIFY THE FOR DEPARTMENT OF LABOR AND INDUSTRY APPLICATION  NUMBER  (I) SPECIFY THE FOR APPROVAL OF STREAM ENCROACHMENT(S))  F. HAVE YOU APPLIED FOR APPROVAL OF AIR PROVAL TO DISCHARGE  (I) NO  (I) APPLIED FOR APPROVAL OF AIR PROVAL TO DISCHARGE  (I) NO  (I) APPLIED FOR APPROVAL OF AIR PROVAL TO DISCHARGE  (I) NO  (I) APPLIED FOR APPROVAL OF AIR PROVAL TO DISCHARGE  (I) NO  (I) APPLIED FOR APPROVAL OF AIR PROVAL TO DISCHARGE  (I) NO  (I) APPLIED FOR APPROVAL OF AIR PROVAL TO DISCHARGE  (I) NO  (I) APPLIED FOR APPROVAL OF AIR PROVAL TO DISCHARGE  (I) NO  (I) APPLIED FOR APPROVAL OF AIR PROVAL OF AIR PROVAL TO DISCHARGE  (I) NO  (I) APPLIED FOR APPROVAL OF |     | B. <u>REQUIRED DAYA</u> – C                         | ONTINUED                                                                                                         | ·                                                                      |                                   |                 |
| A 2 COPIES OF DESIGNER'S PLANS, MODULES, AND SPECIFICATIONS     (B) COPIES INSURABLE FOR INDUCETS IN ALLEGHENY COUNTY AND     DELATABLE FOUR ENVER BASH      B. HYDRAULIC PROFILE OF SCHEMATIC FLOW DIAGRAM FOR PROPOSED     INFA     TREATMENT PLANT.      UNITED STATES SEOLOGICAL SURVEY TOFOGRAPHICAL MAP SHOWING     EXACT POINT OF DISCHARGE AND THEATMENT PLANT OR PUMP STATION     LOCATION AND/OR AREA TO SEWERS.     MAVE YOU APPLIED FOR A PUBLIC UTILITY COMMISSION CERTIFICATE     Ves     No     NOMBER     (1) SPECIFY PUBLIC UTILITY COMMISSION APPLICATION     NUMBER     (2) IS CERTIFICATE OF PUBLIC CONVENIENCE ENCLORED?     (1) SPECIFY PUBLIC UTILITY COMMISSION APPLICATION     NUMBER     (2) IS CERTIFICATE OF PUBLIC CONVENIENCE ENCLORED?     (1) SPECIFY PUBLIC UTILITY COMMISSION APPLICATION     NUMBER     (2) IS CERTIFICATE OF PUBLIC CONVENIENCE ENCLORED?     (1) SPECIFY PUBLIC UTILITY COMMISSION APPLICATION     NUMBER     (2) IS CERTIFICATE OF PUBLIC CONVENIENCE ENCLORED?     (1) SPECIFY PUBLIC UTILITY COMMISSION APPLICATION     NUMBER     (2) IS CERTIFICATE OF PUBLIC CONVENIENCE ENCLORED?     (1) SPECIFY PUBLIC UTILITY COMMISSION APPLICATION     NUMBER     (2) IS CERTIFICATE OF PUBLIC CONVENIENCE ENCLORED?     (2) IS CERTIFICATE OF A APPROVAL OF STAEAM ENCROACHMENTIS!?     (2) IN O     (2) IN      | -   | 2. INFORMATION RE                                   | ATIVE TO SPECIFIC PROGRAM                                                                                        | MS:                                                                    |                                   |                 |
| B. HYDRAULIC PROFILE OR SCHEMATIC FLOW DIAGRAM FOR PROPOSED N/A   C. UNITED STATES GEOLOGICAL SURVEY TOPOGRAPHICAL MAP SHOWING EXACT POINT OF DIGCHARGE AND TREATMENT PLANT OR PUMP STATION MOULE 1-10 N/A   C. UNITED STATES GEOLOGICAL SURVEY TOPOGRAPHICAL MAP SHOWING EXACT POINT OF DIGCHARGE AND TREATMENT PLANT OR PUMP STATION MOULE 1-10 N/A   D. MAYE YOU APPLIED FOR A PUBLIC UTILITY COMMISSION CERTIFICATE Group Convenience? Yes No   (1) SPECIFY PUBLIC UTILITY COMMISSION APPLICATION   NUMBER   (2) IS CERTIFICATE OF PUBLIC CONVENIENCE ENCLOSED? Yes No   (2) IS CERTIFICATE OF PUBLIC CONVENIENCE ENCLOSED?   (2) IS CERTIFICATE OF PUBLIC CONVENIENCE ENCLOSED? Yes No   (3) SPECIFY PUBLIC DID FOR APPROVAL OF STREAM ENCROACHMENTISI? Yes No   (4) PROVAL FOR FEATURES AFFECTING EMPLOYEE SAFET? Will be made   (5) DO YOU HAVE AN AGREEMENT INDICATING APPROVAL TO DISCHARGE Yes No   (6) DO YOU HAVE AN AGREEMENT POLATION OF ANOTHER PERMITTER? No N/A   (7) SEWER SYSTEM AND TREATMENT OF ANOTHER PERMITTER? No N/A   (7) APPLIED FOR APPROVAL OF AIR POLUTION CONTROL FACILITIES? Yes No   (7) SEVER SYSTEM AND TREATMENT PLANT OF ANOTHER PERMITTER? No N/A   (8) DO YOU HAVE AN AGREEMENT INDICATING APPROVAL TO DISCHARGE Yes No   (9) DU SUBMITTED A LIST WITH NAMES, ADDRESSES, AND TITLES Yes No N/A   (1) HAVE YOU SUBMITTED A LIST WITH NAMES, ADDRESSES, AND TITLES Yes No N/A   (2) ALL PARTNERS IN THE CASE OF A PARTNERSHIP OR ALL OFFIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -   | A. 2 COPIES OF DE<br>(3 COPIES REQU<br>DELAWARE RIV | SIGNER'S PLANS, MODULES, A<br>IRED FOR PROJECTS IN ALLE<br>ER BASIN)                                             | ND SPECIFICATIONS<br>GHENY COUNTY AND                                  |                                   |                 |
| C. UNITED STATES GEOLOGICAL SURVEY TOPOGRAPHICAL MAP SHOWING<br>EXACT POINT OF DISCHARGE AND TREATMENT PLANT OR PUMP STATION<br>LOCATION AND/OR AREA TO SEWERS.       Appended as<br>Module 1-10         D. HAVE YOU APPLIED FOR A PUBLIC UTILITY COMMISSION CERTIFICATE<br>OF PUBLIC CONVENIENCE?       Yes       No       N/A         (1) SPECIFY PUBLIC UTILITY COMMISSION APPLICATION<br>NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | B. HYDRAULIC PR                                     | OFILE OR SCHEMATIC FLOW C                                                                                        | DIAGRAM FOR PROPOSED                                                   |                                   |                 |
| D. HAVE YOU APPLIED FOR A PUBLIC UTILITY COMMISSION CERTIFICATE       □       yma       □       No       ⊠       N/A         (1) SPECIFY PUBLIC UTILITY COMMISSION APPLICATION       NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | C. UNITED STATES<br>EXACT POINT O<br>LOCATION AND   | GEOLOGICAL SURVEY TOPO<br>F DISCHARGE AND TREATME<br>/OR AREA TO SEWERS.                                         | GRAPHICAL MAP SHOWING<br>NT PLANT OR PUMP STATIC                       | Appended as<br>Module 1-10        |                 |
| (1) SPECIFY PUBLIC UTILITY COMMISSION APPLICATION         NUMBER         (2) IS CERTIFICATE OF PUBLIC CONVENIENCE ENCLOSED?         (2) IS CERTIFICATE OF PUBLIC CONVENIENCE ENCLOSED?         (2) IS CERTIFICATE OF PUBLIC CONVENIENCE ENCLOSED?         (1) SPECIFY PUBLIC FOR APPROVAL OF STREAM ENCROACHMENT(S)?         (1) VO:         (2) IS CERTIFICATE OF PUBLIC CONVENIENCE ENCLOSED?         (1) F. HAVE YOU APPLIED FOR DEPARTMENT OF LABOR AND INDUSTRY Application         (2) OV OU APPLIED FOR DEPARTMENT OF LABOR AND INDUSTRY Application         (3) DO YOU HAVE AN AGREEMENT INDICATING APPROVAL TO DISCHARGE         (3) DO YOU HAVE AN AGREEMENT INDICATING APPROVAL TO DISCHARGE         (4) DO YOU HAVE AN AGREEMENT INDICATING APPROVAL TO DISCHARGE         (5) DO YOU HAVE AN AGREEMENT INDICATING APPROVAL TO DISCHARGE         (6) DO YOU HAVE AN AGREEMENT INDICATING APPROVAL TO DISCHARGE         (7) SEWER SYSTEM AND TREATMENT PLANT OF ANOTHER PERMITTEE?         (7) H. HAVE YOU SUBMITTED A LIST WITH NAMES, ADDRESSES, AND TITLES         (7) FALL PARTNERS IN THE CASE OF A CASE OF ACLOSENTED ASESOCIATION, NUNCORFORATED ASSOCIATION, NUNCORF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | D. HAVE YOU APP<br>OF PUBLIC CON                    | IED FOR A PUBLIC UTILITY C                                                                                       | COMMISSION CERTIFICATE                                                 | Yes                               |                 |
| NUMBER         (2) IS CERTIFICATE OF PUBLIC CONVENIENCE ENCLOSED?       voi       No       NA         E. HAVE YOU APPLIED FOR APPROVAL OF STREAM ENCROACHMENT(S)?       voi       No       NA         F. HAVE YOU APPLIED FOR DEPARTMENT OF LABOR AND INDUSTRY Application       voi       No       NA         APPROVAL FOR FEATURES AFFECTING EMPLOYEE SAFETY?       will be made       No       NA         G. DO YOU HAVE AN AGREEMENT INDICATING APPROVAL TO DISCHARGE       voi       No       NA         TO SEWER SYSTEM AND TREATMENT PLANT OF ANOTHER PERMITTER?       No       NA         H. HAVE YOU APPLIED FOR APPROVAL OF AIR POLUTION CONTROL FACILITIES?       voi       No       NA         I. HAVE YOU SUBMITTED A LIST WITH NAMES, ADDRESSES, AND TITLES       voi       NA       NA         I. HAVE YOU SUBMITTED A LIST WITH NAMES, ADDRESSES, AND TITLES       voi       NA         OF ALL PARTNERS IN THE CASE OF A CORPORATION, UNINCORPORATED ASSOCIATION, INCORPORATED ASSOCIATION, UNINCORPORATED ASSOCIATION, INCORPORATED ASSOCIATION, UNINCORPORATED ASSOCIATION, MUT CIPAL)?       No       NA         Sepecify THE FOLLOWING:       2nd and Dock St. Sewage Pumping Station       ATE_Feb. 28, 1972       TITLE/DESCRIPTION         Structural and Mechanical Work       PLANS:       Contract No. 11       NO. OF SHEETS       2       DATE_Feb. 28, 1972         TITLE/DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |     | (1) SPECIFY PUE                                     |                                                                                                                  | PLICATION                                                              |                                   | ·<br>·          |
| (2) IS CERTIFICATE OF PUBLIC CONVENIENCE ENCLOSED?       □       ves       □       No       NA         E. HAVE YOU APPLIED FOR APPROVAL OF STREAM ENCROACHMENT(S)?       □       ves       □       No       ○       N/A         F. HAVE YOU APPLIED FOR DEPARTMENT OF LABOR AND INDUSTRY Application       □       ves       □       No       ○       N/A         G. DO YOU HAVE AN AGREEMENT INDICATING APPROVAL TO DISCHARGE       □       ves       □       No       ○       N/A         H. HAVE YOU APPLIED FOR AFFROVAL OF AIR POLUTION CONTROL FACILITIES?       □       ves       □       No       ○       N/A         G. DO YOU HAVE AN AGREEMENT INDICATING APPROVAL TO DISCHARGE       □       ves       □       No       ○       N/A         H. HAVE YOU APPLIED FOR AFFROVAL OF AIR POLUTION CONTROL FACILITIES?       □       ves       □       No       ○       N/A         I. HAVE YOU SUBMITTED A LIST WITH NAMES, ADDRESSES, AND TITLES       □       ves       □       No       ○       N/A         I. HAVE YOU SUBMITTED A LIST WITH NAMES, ADDRESSES, AND TITLES       □       ves       □       No       ○       N/A         I. HAVE YOU SUBMITTED A LIST WITH NAMES, ADDRESSES, AND TITLES       □       ves       □       No       ○       N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     | NUMBER                                              |                                                                                                                  |                                                                        |                                   |                 |
| E. HAVE YOU APPLIED FOR APPROVAL OF STREAM ENCROACHMENT(S)?  F. HAVE YOU APPLIED FOR DEPARTMENT OF LABOR AND INDUSTRY Application voi N/A  F. HAVE YOU APPLIED FOR DEPARTMENT OF LABOR AND INDUSTRY Application voi N/A  APPROVAL FOR FEATURES AFFECTING EMPLOYEE SAFETY? will be made  C. DO YOU HAVE AN AGREEMENT INDICATING APPROVAL TO DISCHARGE TO SEWER SYSTEM AND TREATMENT PLANT OF ANOTHER PERMITTEE?  H. HAVE YOU APPLIED FOR APPROVAL OF AIR POLUTION CONTROL FACILITIES? H. HAVE YOU SUBMITTED A LIST WITH NAMES, ADDRESSES, AND TITLES OF ALL PARTNERS IN THE CASE OF A PARTNERSHIP OR ALL OFFICERS IN THE CASE OF A CORPORATION, UNINCORPORATED ASSOCIATION, NICCORPORATED ASSOCIATION, PARTNERSHIP, OR OTHER ENTITY (NOT MUT CIPAL)?  S. SPECIFY THE FOLLOWING: 2 DATE Feb. 28, 1972 TITLE/DESCRIPTION Structural and Mechanical Work PLANS: COntract No. 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | (2) IS CERTIFIC.                                    | ATE OF PUBLIC CONVENIENCE                                                                                        | ENCLOSED?                                                              | Yes                               | <b>No</b> NA    |
| <ul> <li>F. HAVE YOU APPLIED FOR DEPARTMENT OF LABOR AND INDUSTRY Application yes No N/A APPROVAL FOR FEATURES AFFECTING EMPLOYEE SAFETY? will be made</li> <li>G. DO YOU HAVE AN AGREEMENT INDICATING APPROVAL TO DISCHARGE Ves N/A TO SEWER SYSTEM AND TREATMENT PLANT OF ANOTHER PERMITTEE?</li> <li>H. HAVE YOU APPLIED FOR APPROVAL OF AIR FOLUTION CONTROL FACILITIES? Ves No X N/A</li> <li>I. HAVE YOU SUBMITTED A LIST WITH NAMES, ADDRESSES, AND TITLES OF A CORPORATION, VINCOPPORATED ASSOCIATION, NNACOPPORATED ASSOCIATION, NNACOPPORATED ASSOCIATION, NNACOPPORATED ASSOCIATION, PARTNERSHIP, OR OTHER ENTITY (NOT MU' CIPAL)?</li> <li>SPECIFY THE FOLLOWING: 2nd and Dock St. Sewage Pumping Station</li> <li>A. PLANS: Contract No. 10 No. OF SHEETS 8 DATE Feb. 28, 1972 TITLE/DESCRIPTION Structural and Mechanical Work PLANS: Contract No. 11 NO. OF SHEETS 2 DATE Feb. 28, 1972 TITLE/DESCRIPTION Electrical Work</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ÷ / | E. HAVE YOU APPI                                    | JED FOR APPROVAL OF STRE                                                                                         | AM ENCROACHMENT(S)?                                                    | Yos                               |                 |
| G. DO YOU HAVE AN AGREEMENT INDICATING APPROVAL TO DISCHARGE<br>TO SEWER SYSTEM AND TREATMENT PLANT OF ANOTHER PERMITTEE?       □ Yes       □ No X N/A         H. HAVE YOU APPLIED FOR APPROVAL OF AIR POLUTION CONTROL FACILITIES?       □ Yes       □ No X N/A         I. HAVE YOU SUBMITTED A LIST WITH NAMES, ADDRESSES, AND TITLES<br>OF ALL PARTNERS IN THE CASE OF A PARTNERSHIP OR ALL OFFICERS<br>IN THE CASE OF A CORPORATION, UNINCORPORATED ASSOCIATION,<br>INCORPORATED ASSOCIATION, PARTNERSHIP, OR OTHER ENTITY (NOT<br>MUT CIPAL)?       □ Yes       □ No X N/A         3. SPECIFY THE FOLLOWING:<br>2nd and Dock St. Sewage Pumping Station<br>A. PLANS: <u>Contract No. 10</u> NO. OF SHEETS 8<br>TITLE/DESCRIPTION<br>Structural and Me chanical Work<br>PLANS: <u>Contract No. 11</u> NO. OF SHEETS 2<br>TITLE/DESCRIPTION<br>Electrical Work       DATE Feb. 28, 1972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •-  | F. HAVE YOU APPI<br>APPROVAL FOR                    | IED FOR DEPARTMENT OF LA                                                                                         | ABOR AND INDUSTRY AP                                                   | plication <b>yes</b><br>l be made |                 |
| <ul> <li>H. HAVE YOU APPLIED FOR APPROVAL OF AIR POLUTION CONTROL FACILITIES?</li> <li>Yes: No X N/A</li> <li>HAVE YOU SUBMITTED A LIST WITH NAMES, ADDRESSES, AND TITLES<br/>OF ALL PARTNERS IN THE CASE OF A PARTNERSHIP OR ALL OFFICERS<br/>IN THE CASE OF A CORPORATION, UNINCORPORATED ASSOCIATION,<br/>INCORPORATED ASSOCIATION, PARTNERSHIP, OR OTHER ENTITY (NOT<br/>MUT CIPAL)?</li> <li>SPECIFY THE FOLLOWING:<br/>2nd and Dock St. Sewage Pumping Station<br/>A. PLANS: <u>Contract No. 10</u> NO. OF SHEETS 8<br/>TITLE/DESCRIPTION<br/>Structural and Mechanical Work<br/>PLANS: <u>Contract No. 11</u> NO. OF SHEETS 2<br/>DATE Feb. 28, 1972<br/>TITLE/DESCRIPTION<br/>Electrical Work</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | G. DO YOU HAVE A<br>TO SEWER SYST                   | N AGREEMENT INDICATING A                                                                                         | APPROVAL TO DISCHARGE<br>DF ANOTHER PERMITTEE7                         | Yes                               | N₀ X N/A        |
| <ul> <li>HAVE YOU SUBMITTED A LIST WITH NAMES, ADDRESSES, AND TITLES<br/>OF ALL PARTNERS IN THE CASE OF A PARTNERSHIP OR ALL OFFICERS<br/>IN THE CASE OF A CORPORATION, UNINCORPORATED ASSOCIATION,<br/>INCORPORATED ASSOCIATION, PARTNERSHIP, OR OTHER ENTITY (NOT<br/>MUT CIPAL)?</li> <li>SPECIFY THE FOLLOWING:<br/>2nd and Dock St. Sewage Pumping Station         <ul> <li>A. PLANS: <u>Contract No. 10</u> NO. OF SHEETS</li> <li>Mother Entity (Not Structural and Mechanical Work<br/>PLANS: <u>Contract No. 11</u> NO. OF SHEETS</li> <li>DATE Feb. 28, 1972<br/>TITLE/DESCRIPTION<br/>Electrical Work</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     | H. HAVE YOU APPI                                    | IED FOR APPROVAL OF AIR P                                                                                        | OLUTION CONTROL FACIL                                                  | LITIES? Yes                       | <b>No</b> X N/A |
| MUP CIPAL)?<br>3. SPECIFY THE FOLLOWING:<br>2nd and Dock St. Sewage Pumping Station<br>A. PLANS: <u>Contract No. 10</u> NO. OF SHEETS 8 DATE Feb. 28. 1972<br>TITLE/DESCRIPTION<br>Structural and Mechanical Work<br>PLANS: <u>Contract No. 11</u> NO. OF SHEETS 2 DATE Feb. 28. 1972<br>TITLE/DESCRIPTION<br>Electrical Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | I. HAVE YOU SUB<br>OF ALL PARTNE<br>IN THE CASE OF  | AITTED A LIST WITH NAMES, A<br>RS IN THE CASE OF A PARTNE<br>A CORPORATION, UNINCORP<br>ASSOCIATION, PARTNERSHIE | ADDRESSES, AND TITLES<br>ERSHIP OR ALL OFFICERS<br>ORATED ASSOCIATION, | <b>Yes</b>                        | <b>No</b> X N/A |
| 3. SPECIFY THE FOLLOWING:<br>2nd and Dock St. Sewage Pumping Station<br>A. PLANS: <u>Contract No. 10</u> NO. OF SHEETS <u>8</u> DATE Feb. 28. 1972<br>TITLE/DESCRIPTION<br>Structural and Mechanical Work<br>PLANS: <u>Contract No. 11</u> NO. OF SHEETS <u>2</u> DATE Feb. 28. 1972<br>TITLE/DESCRIPTION<br>Electrical Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | MUI CIPAL)?                                         |                                                                                                                  | ,                                                                      |                                   |                 |
| A. PLANS: <u>Contract No. 10</u> NO. OF SHEETS <u>8</u> DATE Feb. 28, 1972<br>TITLE/DESCRIPTION<br>Structural and Mechanical Work<br>PLANS: <u>Contract No. 11</u> NO. OF SHEETS <u>2</u> DATE Feb. 28, 1972<br>TITLE/DESCRIPTION<br>Electrical Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     | <b>3.</b> SPECIFY THE FOLL<br>2nd and Doc           | owing:<br>ck St. Sewage Pump                                                                                     | ing Station                                                            |                                   | а.              |
| Structural and Mechanical Work<br>PLANS: Contract No. 11 NO. OF SHEETS 2 DATE Feb. 28, 1972<br>TITLE/DESCRIPTION<br>Electrical Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | A. PLANS: <u>Cor</u>                                | tract No. 10                                                                                                     | NO. OF SHEETS8_                                                        | DATE Feb.                         | 28, 1972        |
| Electrical Work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     | Structural<br><sub>PLANS:</sub> <u>Con</u>          | and Mechanical Wor<br>tract No. 11<br>TITLE/DESCRIPTION                                                          | -K<br>NO. OF SHEETS2                                                   | DATE Feb.                         | 28, 1972        |
| PLANS: Contract No. 12 NO. OF SHEETS 14 DATE Feb. 28, 1972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - · | Elec<br>PLANS: Com                                  | tract No. 12                                                                                                     | NO. OF SHEETS14                                                        | DATE Feb.                         | 28, 1972        |

المتحقيق والمحالية والمحالية والمحالية والمحالية والمحالية والمحالية

· .

.

.

.

1 -- 3

|             | •                    |                                                                          |                  |
|-------------|----------------------|--------------------------------------------------------------------------|------------------|
| н<br>1      | ER710.046.1          | COMMONWEALTH OF PENNSYLVANIA                                             |                  |
| •<br>-      | DATE PREPARED        | WATER QUALITY MANAGEMENT                                                 |                  |
|             | DATE REVISED         | WATER POLLUTION CONTROL                                                  |                  |
|             |                      | MODULE 1 GENERAL INFORMATION For Department Use Only                     |                  |
|             | · · ·                | SEWERAGE                                                                 | ر <sub>سبب</sub> |
| الب         |                      | · · ·                                                                    |                  |
|             | B. REQUIRED DATA - ( | CONTINUED 2nd and Dock Street Sewage Pumping Station                     |                  |
|             | B SPECIFICATIO       | NS (IF APPLICABLE): Contract No. 10 - Structural and Mechanical Work     |                  |
|             |                      | TITLE<br>Contract No. 11 - Flectrical Work                               |                  |
|             | •                    | $\frac{1}{2-28-74}$                                                      |                  |
| •           |                      | NUMBER OF VOLUMES                                                        |                  |
|             | C. OTHER (SPECI      | FY TYPE AND NUMBER):                                                     |                  |
|             |                      | Chester Sewage Force Main                                                |                  |
|             |                      | Contract No. 12                                                          |                  |
|             |                      | No. of Volumes 1 Date Feb. 28, 1974                                      |                  |
|             |                      |                                                                          |                  |
|             |                      |                                                                          |                  |
|             | •                    |                                                                          |                  |
|             | 4. ARE THE PLANS:    |                                                                          |                  |
|             | A. CLEAR, LEGIB      | LE, AND DRAWN TO SCALE WITH NORTH ARROW INDICATED?                       |                  |
|             |                      |                                                                          |                  |
|             | B. WITHIN MAXIN      | AUM SIZE OF 36 INCHES BY 50 INCHES?                                      |                  |
|             |                      |                                                                          |                  |
|             | C. SEAL AND SIGNATU  | RE OF PROPESSIONAL ENGINEER OF SURVEYOR RESPONSIBLE FOR THIS APPLICATION |                  |
| · · ).      |                      |                                                                          |                  |
|             |                      | $\lambda = \frac{1}{2}$                                                  |                  |
|             | 1. SIGNATURE OF P    | ROFESSIONAL ENGINEER D. N.15-14                                          |                  |
|             | OR SURVEYOR          | VHERE PERMITTED BY LAW)                                                  | 1                |
|             |                      |                                                                          |                  |
|             |                      |                                                                          | -{               |
|             |                      |                                                                          |                  |
|             |                      |                                                                          |                  |
|             |                      | DINO NWEAT                                                               |                  |
|             |                      | REGISTERED                                                               |                  |
| •           |                      | PROFESSIONAL A PROFESSIONAL A PROFESSIONAL                               |                  |
| "           | 2. SEAL OF PROFES    | SIONAL ENGINEER D. N. BIBBO                                              |                  |
|             | OR SURVEYOR V        | WHERE PERMITTED BY LAW)                                                  |                  |
|             |                      | 9129-E 9129-E                                                            |                  |
| · · · · · · |                      | VSYLVAUDA                                                                |                  |
|             | <b>,</b>             |                                                                          |                  |
|             |                      |                                                                          |                  |
|             |                      |                                                                          |                  |
|             | · .                  |                                                                          |                  |
|             |                      |                                                                          |                  |
|             |                      |                                                                          |                  |
|             |                      |                                                                          |                  |
|             |                      |                                                                          | }                |
|             |                      |                                                                          |                  |
|             |                      |                                                                          | السب             |

:

. . .

•

-

| •<br>•<br>• • | DATE NEW SED                                                                                                                                                                                                                                                                                                                | WA<br>MODU              | TER POLL<br>JLE 1 – GE<br>SE | UTION C<br>NERAL IN<br>WERAGE | ONTROL<br>FORMATION                                                                                                                                                                                                                                                                                          | For Dep                                                                                                     | ortment Use            | Only                    | · · · · · · · · · · · · · · · · · · · |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------|-------------------------|---------------------------------------|
| )             | CLASS OF CONSTRUCTION<br>(Chack all applicable blocks)                                                                                                                                                                                                                                                                      |                         | NEW<br>REPLAC                | CEMENT OF                     | EXISTING UNIT(S                                                                                                                                                                                                                                                                                              |                                                                                                             | DITIONS AN             | D/OR<br>TO EXISTIN      | G UNIT(S)                             |
| ·<br>·        | TABLE I - DESIGN LOADIN                                                                                                                                                                                                                                                                                                     | G DATA                  |                              |                               | Existing<br>Facilities<br>Design                                                                                                                                                                                                                                                                             | Pre<br>Ope<br>Li                                                                                            | esent<br>rating<br>pad | Prop<br>Total Fr<br>Des | osed<br>acilities<br>ign              |
| •             | 1. EQUIVALENT POPULAT<br>(NO. OF PERSONS - SUB                                                                                                                                                                                                                                                                              | ON TO BE S<br>MIT CALCU | ERVED                        |                               |                                                                                                                                                                                                                                                                                                              |                                                                                                             |                        |                         |                                       |
|               | A. DOMESTIC                                                                                                                                                                                                                                                                                                                 |                         |                              |                               |                                                                                                                                                                                                                                                                                                              | 74.5                                                                                                        | 500                    | 77, 5                   | 00                                    |
|               | B. INDUSTRIAL                                                                                                                                                                                                                                                                                                               |                         |                              |                               |                                                                                                                                                                                                                                                                                                              | -                                                                                                           | 0-                     | 195,0                   | 00                                    |
|               | C. TOTAL                                                                                                                                                                                                                                                                                                                    |                         |                              |                               | •                                                                                                                                                                                                                                                                                                            | 74,5                                                                                                        | 500                    | 272.5                   | 00                                    |
|               | 2. DESIGN YEAR OR PERIC                                                                                                                                                                                                                                                                                                     | D FOR OPE               | RATING DA                    |                               |                                                                                                                                                                                                                                                                                                              |                                                                                                             |                        | 1990                    | I                                     |
|               | 3. BUNOFE PERIOD                                                                                                                                                                                                                                                                                                            |                         | (HRS                         | ;)                            |                                                                                                                                                                                                                                                                                                              | 2                                                                                                           | 4                      | 24                      |                                       |
|               | 4. DO- A. PER CAPITA                                                                                                                                                                                                                                                                                                        | FLOW                    | (GPC                         | D)                            |                                                                                                                                                                                                                                                                                                              | 8                                                                                                           | 5                      | 85                      |                                       |
|               | MESTIC<br>WASTE B. AVERAGE D                                                                                                                                                                                                                                                                                                | AILY FLOW               | (MGI                         | 5)                            |                                                                                                                                                                                                                                                                                                              |                                                                                                             | 6.3                    | 6.                      | 6                                     |
|               | DATA C. INFILTRATI                                                                                                                                                                                                                                                                                                          | DN (1                   | L) (MGI                      | <u>»</u>                      |                                                                                                                                                                                                                                                                                                              |                                                                                                             | 1.4                    | <u> </u>                | 4                                     |
|               | D. RUNOFF FL                                                                                                                                                                                                                                                                                                                | W RATE                  | (MGC                         | <u>) ( .</u>                  | •                                                                                                                                                                                                                                                                                                            |                                                                                                             | <u> </u>               |                         |                                       |
| -             | E INDUS                                                                                                                                                                                                                                                                                                                     | LOW RATE                | (1)(MGC                      | >)                            | •<br>                                                                                                                                                                                                                                                                                                        | <u>Z</u>                                                                                                    | 5.U                    | 25.                     | 0                                     |
|               | TRIAL                                                                                                                                                                                                                                                                                                                       | EDAILY FLO              | DW (MGI                      | 2)                            | · .                                                                                                                                                                                                                                                                                                          |                                                                                                             | 0-                     | 16.                     | 5                                     |
|               | FLOW<br>DATA B: MAXIMUN                                                                                                                                                                                                                                                                                                     | ADAILY FL               | OW (MGC                      | 5)                            |                                                                                                                                                                                                                                                                                                              |                                                                                                             | 0                      | 30.                     | 0                                     |
| 3             | 6. TOTÁL LESIGN AVERAG                                                                                                                                                                                                                                                                                                      | E FLOW                  | (MGE                         | >)                            |                                                                                                                                                                                                                                                                                                              |                                                                                                             |                        |                         | -                                     |
|               | ala hafa a mada ing managang m                                                                                                                                                                                                             |                         |                              |                               | -                                                                                                                                                                                                                                                                                                            |                                                                                                             |                        | 24.                     | <u>b</u>                              |
|               | TABLE II - FACILITIES DES                                                                                                                                                                                                                                                                                                   | IGN DATA (              | Specify numb                 | er of units)                  |                                                                                                                                                                                                                                                                                                              |                                                                                                             |                        |                         |                                       |
|               | Units                                                                                                                                                                                                                                                                                                                       | Existing                | To Be<br>Abandoned           | Total<br>Proposed             | Units                                                                                                                                                                                                                                                                                                        |                                                                                                             | Existing               | To Be<br>Abandoned      | Total<br>Proposed                     |
|               | 1. SCREENING DEVICES                                                                                                                                                                                                                                                                                                        | 2*                      | · 2                          | 2                             | 13. CHLORINE (<br>TANK(S)                                                                                                                                                                                                                                                                                    | CONTACT                                                                                                     |                        |                         |                                       |
|               | 2. GRIT CHAMBER(S)                                                                                                                                                                                                                                                                                                          | 2**                     |                              | 2                             | 14. DISINFECTI<br>FACILITIES                                                                                                                                                                                                                                                                                 | ON                                                                                                          | -                      |                         |                                       |
|               |                                                                                                                                                                                                                                                                                                                             |                         |                              | <u> </u>                      |                                                                                                                                                                                                                                                                                                              |                                                                                                             |                        |                         |                                       |
| •             | 3. COMMINUTOR(S)                                                                                                                                                                                                                                                                                                            |                         |                              |                               | 15. SEPARATES<br>DIGESTORS                                                                                                                                                                                                                                                                                   | LUDGE                                                                                                       | · ·                    | ·                       | ,                                     |
|               | 3. COMMINUTOR(S)<br>4. PRE-AERATION TANKS                                                                                                                                                                                                                                                                                   |                         |                              |                               | 15. SEPARATES<br>DIGESTORS<br>16. SLUDGE DR                                                                                                                                                                                                                                                                  | LUDGE<br>YING BEDS                                                                                          |                        |                         |                                       |
|               | <ul> <li>3. COMMINUTOR(S)</li> <li>4. PRE-AERATION TANKS</li> <li>5. PRIMARY SETTLING<br/>TANKS</li> </ul>                                                                                                                                                                                                                  |                         |                              |                               | 15. SEPARATES<br>DIGESTORS<br>16. SLUDGE DR<br>17. MECHANICA<br>DEWATERIN                                                                                                                                                                                                                                    | SLUDGE<br>YING BEDS<br>NL SLUDGE                                                                            |                        |                         |                                       |
|               | <ol> <li>COMMINUTOR(S)</li> <li>PRE-AERATION TANKS</li> <li>PRIMARY SETTLING<br/>TANKS</li> <li>IMHOFF TANK(S)</li> </ol>                                                                                                                                                                                                   |                         |                              |                               | 15. SEPARATES<br>DIGESTORS<br>16. SLUDGE DR<br>17. MECHANICA<br>DEWATERIM<br>18. SLUDGE ELU<br>TANKS                                                                                                                                                                                                         | SLUDGE<br>YING BEDS<br>LLSLUDGE                                                                             |                        |                         | <br>                                  |
|               | <ul> <li>3. COMMINUTOR(S)</li> <li>4. PRE-AERATION TANKS</li> <li>5. PRIMARY SETTLING<br/>TANKS</li> <li>6. IMHOFF TANK(S)</li> <li>7. TRICKLING FILTERS</li> </ul>                                                                                                                                                         |                         |                              |                               | <ul> <li>15. SEPARATES<br/>DIGESTORS</li> <li>16. SLUDGE DR</li> <li>17. MECHANICA<br/>DEWATERIN</li> <li>18. SLUDGE ELU<br/>TANKS</li> <li>19. SLUDGE STA<br/>TION TANKS</li> </ul>                                                                                                                         | SLUDGE<br>YING BEDS<br>AL SLUDGE<br>IG<br>JTRIATION<br>ABILIZA-                                             |                        |                         |                                       |
|               | <ul> <li>3. COMMINUTOR(S)</li> <li>4. PRE-AERATION TANKS</li> <li>5. PRIMARY SETTLING<br/>TANKS</li> <li>6. IMHOFF TANK(S)</li> <li>7. TRICKLING FILTERS</li> <li>B. INTERMEDIATE<br/>SETTLING TANKS</li> </ul>                                                                                                             |                         |                              |                               | <ul> <li>15. SEPARATES<br/>DIGESTORS</li> <li>16. SLUDGE DR</li> <li>17. MECHANICA<br/>DEWATERIM</li> <li>18. SLUDGE ELL<br/>TANKS</li> <li>19. SLUDGE STA<br/>TION TANKS</li> <li>20. INCINERATORS</li> </ul>                                                                                               | SLUDGE<br>YING BEDS<br>IG<br>JTRIATION<br>ABILIZA-<br>S<br>DRIS)                                            |                        |                         |                                       |
|               | <ul> <li>3. COMMINUTOR(S)</li> <li>4. PRE-AERATION TANKS</li> <li>5. PRIMARY SETTLING<br/>TANKS</li> <li>6. IMHOFF TANK(S)</li> <li>7. TRICKLING FILTERS</li> <li>B. INTERMEDIATE<br/>SETTLING TANKS</li> <li>9. AERATION TANKS</li> </ul>                                                                                  |                         |                              |                               | <ul> <li>15. SEPARATES<br/>DIGESTORS</li> <li>16. SLUDGE DR</li> <li>17. MECHANICA<br/>DEWATERIN</li> <li>18. SLUDGE ELU<br/>TANKS</li> <li>19. SLUDGE STA<br/>TION TANKS</li> <li>20. INCINERATO</li> <li>21. MIXING AND<br/>FLOCCULAT</li> </ul>                                                           | SLUDGE<br>YING BEDS<br>AL SLUDGE<br>IG<br>JTRIATION<br>ABILIZA-<br>S<br>DRIS)<br>D<br>ION TANKS             |                        |                         |                                       |
|               | <ul> <li>3. COMMINUTOR(S)</li> <li>4. PRE-AERATION TANKS</li> <li>5. PRIMARY SETTLING<br/>TANKS</li> <li>6. IMHOFF TANK(S)</li> <li>7. TRICKLING FILTERS</li> <li>B. INTERMEDIATE<br/>SETTLING TANKS</li> <li>9. AERATION TANKS</li> <li>10. FINAL SETTLING<br/>TANKS</li> </ul>                                            |                         |                              |                               | <ul> <li>15. SEPARATES<br/>DIGESTORS</li> <li>16. SLUDGE DR</li> <li>17. MECHANICA<br/>DEWATERIN</li> <li>18. SLUDGE ELU<br/>TANKS</li> <li>19. SLUDGE STA<br/>TION TANKS</li> <li>20. INCINERATO</li> <li>21. MIXING AND<br/>FLOCCULAT</li> <li>22. OTHER (Spec<br/>Pumping</li> </ul>                      | SLUDGE<br>YING BEDS<br>AL SLUDGE<br>IG<br>JTRIATION<br>ABILIZA-<br>S<br>DR(S)<br>D<br>STON TANKS<br>Station | 1***                   | 1                       | 1                                     |
|               | <ul> <li>3. COMMINUTOR(S)</li> <li>4. PRE-AERATION TANKS</li> <li>5. PRIMARY SETTLING<br/>TANKS</li> <li>6. IMHOFF TANK(S)</li> <li>7. TRICKLING FILTERS</li> <li>8. INTERMEDIATE<br/>SETTLING TANKS</li> <li>9. AERATION TANKS</li> <li>10. FINAL SETTLING<br/>TANKS</li> <li>11. INTERMITTENT<br/>SAND FILTERS</li> </ul> |                         |                              |                               | <ul> <li>15. SEPARATES<br/>DIGESTORS</li> <li>16. SLUDGE DR</li> <li>17. MECHANICA<br/>DEWATERIN</li> <li>18. SLUDGE ELI<br/>TANKS</li> <li>19. SLUDGE STA<br/>TION TANKS</li> <li>20. INCINERATO</li> <li>21. MIXING AND<br/>FLOCCULAT</li> <li>22. OTHER (Species)</li> <li>23. OTHER (Species)</li> </ul> | SLUDGE<br>YING BEDS<br>AL SLUDGE<br>IG<br>JTRIATION<br>ABILIZA-<br>S<br>DRIS)<br>D<br>ION TANKS<br>Station  | 1***                   | 1                       | 1                                     |

\*\*\* Replace Existing Pumps

(1) Combined sewers, includes inflow

|                | DECADEO                                                                                                                                                                              | UEPARTMEN                                                                                                                         | IT OF ENVIRONME                                                                                                                               | INTAL RESOURCES                                                                                                             |                                       |                                        |                                       |         |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------------------|----------------------------------------|---------------------------------------|---------|
| Z              | 2-28-74                                                                                                                                                                              | WA-                                                                                                                               | TER QUALITY MAN                                                                                                                               | AGEMENT                                                                                                                     |                                       |                                        | 1. <b>1</b> . 1.                      |         |
| DATE           | REVISED                                                                                                                                                                              | WATE                                                                                                                              |                                                                                                                                               |                                                                                                                             |                                       | •                                      |                                       |         |
|                | ·· .                                                                                                                                                                                 | мориц                                                                                                                             | F 1 – GENERAL                                                                                                                                 | INFORMATION                                                                                                                 | For Depa                              | rtment Use                             | Only                                  |         |
| L              | •                                                                                                                                                                                    |                                                                                                                                   | SEWERAG                                                                                                                                       | E                                                                                                                           | • • • • • • • • • • • • • • • • • • • | ······································ | •• <b>•••••••</b> ••                  |         |
|                | <u>,</u>                                                                                                                                                                             |                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·                                                                                                         |                                                                                                                             | · · · · · · · · · · · · · · · · · · · |                                        | <u></u>                               |         |
| D. G           | ENERAL INFORMA                                                                                                                                                                       | TION                                                                                                                              |                                                                                                                                               | •                                                                                                                           |                                       |                                        |                                       |         |
| <b>.</b>       |                                                                                                                                                                                      |                                                                                                                                   | •                                                                                                                                             | -                                                                                                                           |                                       |                                        |                                       |         |
| 1.             | EXISTING COMBIN                                                                                                                                                                      | NED SEWERS MAKI<br>THE SYSTEM.                                                                                                    | е UP <u>60</u> % с                                                                                                                            | F THE TOTAL                                                                                                                 |                                       |                                        |                                       |         |
| 2.             | ARE THE EXISTIN                                                                                                                                                                      | G SANITARY SEW                                                                                                                    | ERS SUBJECT TO                                                                                                                                | EXCESSIVE INFILTF                                                                                                           | ATION?                                | X Yes                                  | No No                                 | □ N/.   |
| ·              | A. IF YES, SPECIF                                                                                                                                                                    | Y MAJOR SOURCE                                                                                                                    | S OF INFILTRATI                                                                                                                               | on: <u>Not esta</u>                                                                                                         | .blished.                             |                                        |                                       |         |
| }              |                                                                                                                                                                                      |                                                                                                                                   |                                                                                                                                               |                                                                                                                             |                                       |                                        |                                       |         |
| ł              |                                                                                                                                                                                      |                                                                                                                                   | <u> </u>                                                                                                                                      |                                                                                                                             |                                       |                                        |                                       | ·····   |
|                |                                                                                                                                                                                      |                                                                                                                                   | • •                                                                                                                                           |                                                                                                                             |                                       |                                        |                                       |         |
| { `            | ·                                                                                                                                                                                    |                                                                                                                                   |                                                                                                                                               | ···                                                                                                                         | ·                                     |                                        |                                       |         |
|                | B. HAS A REGULA<br>PAVEMENTS, R                                                                                                                                                      | ATION PROHIBITIN                                                                                                                  | IG THE ADMITTA<br>R SOURCES BEEN                                                                                                              | NCE OF STORM WAT                                                                                                            | ER FROM                               | Yes                                    | X No                                  |         |
| ]              | (II TES, ENGLE                                                                                                                                                                       |                                                                                                                                   | · ·                                                                                                                                           |                                                                                                                             |                                       | · .                                    |                                       | · .     |
|                |                                                                                                                                                                                      |                                                                                                                                   |                                                                                                                                               |                                                                                                                             | · · · · · · · · · · · · · · · · · · · |                                        |                                       |         |
| 1              | C. SPECIFY STEPS                                                                                                                                                                     | TAKEN OR BEING                                                                                                                    | FAKEN TO COR                                                                                                                                  | RECT THE INFILTRA                                                                                                           | TION PROBLE                           | м,                                     |                                       | L N/    |
| 1              | An infiltrat                                                                                                                                                                         | tion/inflow a                                                                                                                     | nalysis acc                                                                                                                                   | ording to EP                                                                                                                | A guidelin                            | es is pr                               | esently                               | hein    |
| ł              | <b></b>                                                                                                                                                                              |                                                                                                                                   |                                                                                                                                               |                                                                                                                             |                                       | <u></u>                                | <u> </u>                              | <u></u> |
| ļ              | conducted.                                                                                                                                                                           | Report wil                                                                                                                        | l be availab                                                                                                                                  | le by April 1                                                                                                               | 5, 1974                               |                                        |                                       |         |
| Ł              | •                                                                                                                                                                                    |                                                                                                                                   |                                                                                                                                               |                                                                                                                             |                                       |                                        |                                       |         |
|                |                                                                                                                                                                                      | •                                                                                                                                 |                                                                                                                                               | · ·                                                                                                                         |                                       |                                        |                                       |         |
| <br> <br>      |                                                                                                                                                                                      | •                                                                                                                                 |                                                                                                                                               |                                                                                                                             |                                       | ······································ |                                       |         |
|                | <b></b>                                                                                                                                                                              | •<br>                                                                                                                             | , <u>, , , , , , , , , , , , , , , , </u>                                                                                                     |                                                                                                                             |                                       | ······································ |                                       |         |
|                | <u> </u>                                                                                                                                                                             |                                                                                                                                   | · · · · · · · · · · · · · · · · · · ·                                                                                                         |                                                                                                                             |                                       | · · · · · · · · · · · · · · · · · · ·  |                                       |         |
|                | <u> </u>                                                                                                                                                                             |                                                                                                                                   |                                                                                                                                               |                                                                                                                             |                                       | · · · · · · · · · · · · · · · · · · ·  |                                       |         |
|                |                                                                                                                                                                                      |                                                                                                                                   |                                                                                                                                               |                                                                                                                             |                                       |                                        |                                       |         |
|                |                                                                                                                                                                                      |                                                                                                                                   |                                                                                                                                               |                                                                                                                             |                                       | ······································ |                                       |         |
|                |                                                                                                                                                                                      |                                                                                                                                   |                                                                                                                                               |                                                                                                                             |                                       |                                        | · · · · · · · · · · · · · · · · · · · |         |
| 3.             | TYPES OF INDUST                                                                                                                                                                      | RIAL WASTES OF                                                                                                                    | SPECIAL CONSIDE                                                                                                                               | ERATION: NONE                                                                                                               |                                       |                                        | · · · · · · · · · · · · · · · · · · · |         |
| 3.             | TYPES OF INDUST                                                                                                                                                                      | RIAL WASTES OF :                                                                                                                  | SPECIAL CONSIDE                                                                                                                               | ERATION:NONE                                                                                                                |                                       | ······                                 |                                       |         |
| 3.             | TYPES OF INDUST                                                                                                                                                                      | RIAL WASTES OF                                                                                                                    | SPECIAL CONSIDE                                                                                                                               | ERATION: NONE                                                                                                               |                                       |                                        |                                       |         |
| 3.             |                                                                                                                                                                                      | RIAL WASTES OF                                                                                                                    | SPECIAL CONSIDE                                                                                                                               | ERATION: NONE                                                                                                               | 2                                     |                                        |                                       |         |
| 3.             | TYPES OF INDUST                                                                                                                                                                      | RIAL WASTES OF S                                                                                                                  | SPECIAL CONSIDE                                                                                                                               | ERATION: NONE                                                                                                               | =<br>=<br>=<br>= OF                   | X Yes                                  | No                                    |         |
| 3.             | TYPES OF INDUST<br>WILL THE APPLIC<br>SEWAGE FACILITI                                                                                                                                | RIAL WASTES OF S                                                                                                                  | SPECIAL CONSIDE                                                                                                                               | AND MAINTENANCE                                                                                                             | e<br>=<br>= 0F                        | X Yes                                  | No                                    |         |
| 3.             | TYPES OF INDUST<br>WILL THE APPLIC,<br>SEWAGE FACILITI<br>A. IF NO, EXPLAIN                                                                                                          | RIAL WASTES OF S                                                                                                                  | SPECIAL CONSIDE                                                                                                                               | ERATION: NONE                                                                                                               | e<br>E OF                             | X Yes                                  | No                                    |         |
| 3.             | WILL THE APPLIC<br>SEWAGE FACILITI                                                                                                                                                   | RIAL WASTES OF :<br>ANT BE RESPONSI<br>ES FOR WHICH AP                                                                            | SPECIAL CONSIDE                                                                                                                               | ERATION: NONE                                                                                                               | E OF                                  | X Yes                                  | No                                    |         |
| 3.             | TYPES OF INDUST<br>WILL THE APPLIC,<br>SEWAGE FACILITI<br>A. IF NO, EXPLAIN                                                                                                          | RIAL WASTES OF :<br>ANT BE RESPONSI<br>ES FOR WHICH AP                                                                            | SPECIAL CONSIDE                                                                                                                               | ERATION: NONE<br>AND MAINTENANCE<br>BMITTED?                                                                                | e<br>E OF                             | X Yes                                  | <u>No</u>                             |         |
| 3.             | TYPES OF INDUST<br>WILL THE APPLIC,<br>SEWAGE FACILITI<br>A. IF NO, EXPLAIN                                                                                                          | RIAL WASTES OF :<br>ANT BE RESPONSI<br>ES FOR WHICH AP                                                                            | SPECIAL CONSIDE<br>BLE FOR REPAIR<br>PLICATION IS SUI                                                                                         | ERATION: NONE                                                                                                               | E OF                                  | X Yes                                  | ∏ No                                  |         |
| 3.<br>4.<br>5. | TYPES OF INDUST<br>WILL THE APPLIC,<br>SEWAGE FACILITI<br>A. IF NO, EXPLAIN<br>THE DISTANCE OF                                                                                       | RIAL WASTES OF S                                                                                                                  | SPECIAL CONSIDE<br>BLE FOR REPAIR<br>PLICATION IS SUI<br>Station<br>HE NEAREST OCC                                                            | AND MAINTENANCE                                                                                                             | = OF                                  | X Yes                                  | ∏ No                                  |         |
| 3.<br>4.<br>5. | TYPES OF INDUST<br>WILL THE APPLIC,<br>SEWAGE FACILITI<br>A. IF NO, EXPLAIN<br>THE DISTANCE OF                                                                                       | RIAL WASTES OF :<br>ANT BE RESPONSI<br>ES FOR WHICH AP<br>N:<br>Pumping<br>THIS MXXXX/TO T                                        | SPECIAL CONSIDE<br>BLE FOR REPAIR<br>PLICATION IS SUI<br>Station<br>HE NEAREST OCC<br>200                                                     | ERATION: NONE<br>AND MAINTENANCE<br>BMITTED?                                                                                | = OF                                  | X Yes                                  | ∏ No                                  |         |
| 3.<br>4.       | TYPES OF INDUST<br>WILL THE APPLIC,<br>SEWAGE FACILITI<br>A. IF NO, EXPLAIN<br>THE DISTANCE OF<br>A. PRESENT                                                                         | RIAL WASTES OF :<br>ANT BE RESPONSI<br>ES FOR WHICH AP<br>V:<br>Pumping<br>THIS RUXAXIX/TO T                                      | SPECIAL CONSIDE<br>BLE FOR REPAIR<br>PLICATION IS SUI<br>Station<br>HE NEAREST OCC<br>200                                                     | ERATION: <u>None</u><br>AND MAINTENANCE<br>BMITTED?<br>CUPIED DWELLING:<br>FEET                                             | e<br>E OF                             | X Yes                                  | No                                    |         |
| 3.<br>4.<br>5. | TYPES OF INDUST<br>WILL THE APPLIC,<br>SEWAGE FACILITI<br>A. IF NO, EXPLAIN<br>THE DISTANCE OF<br>A. PRESENT<br>B. PROPOSED                                                          | RIAL WASTES OF S                                                                                                                  | SPECIAL CONSIDE<br>BLE FOR REPAIR<br>PLICATION IS SUI<br>Station<br>HE NEAREST OCC<br>200<br>200                                              | AND MAINTENANCE<br>BMITTED?                                                                                                 | E OF                                  | X Yes                                  | ∏ No                                  |         |
| 3.<br>4.<br>5. | TYPES OF INDUST<br>WILL THE APPLIC,<br>SEWAGE FACILITI<br>A. IF NO, EXPLAIN<br>THE DISTANCE OF<br>A. PRESENT<br>B. PROPOSED                                                          | RIAL WASTES OF :<br>ANT BE RESPONSI<br>ES FOR WHICH AP<br>N:<br>Pumping<br>THIS MXAXIT/TO T                                       | SPECIAL CONSIDE<br>BLE FOR REPAIR<br>PLICATION IS SUI<br>Station<br>HE NEAREST OCC<br>200<br>200                                              | AND MAINTENANCE<br>BMITTED?                                                                                                 | 5<br>E OF                             | X Yes                                  | ∏ No                                  |         |
| 3.<br>4.<br>6. | TYPES OF INDUST<br>WILL THE APPLIC,<br>SEWAGE FACILITI<br>A. IF NO, EXPLAIN<br>THE DISTANCE OF<br>A. PRESENT<br>B. PROPOSED<br>IF THE APPLIC ANT<br>HAS THE GOVERN<br>TREATMENT PLAN | RIAL WASTES OF :<br>ANT BE RESPONSI<br>ES FOR WHICH AP<br>V:<br>Pumping<br>THIS PUXAXIX/TO T<br>ING MUNICIPALIT                   | SPECIAL CONSIDE<br>BLE FOR REPAIR<br>PLICATION IS SUI<br>Station<br>HE NEAREST OCC<br>200<br>200<br>200<br>200                                | AND MAINTENANCE<br>AND MAINTENANCE<br>BMITTED?<br>CUPIED DWELLING:<br>FEET<br>FEET<br>OR MUNICIPAL AUT<br>THE PROPOSED SEW. | E OF                                  | X Yes                                  | ∏ No                                  | X N//   |
| 3.<br>4.<br>5. | TYPES OF INDUST<br>WILL THE APPLIC<br>SEWAGE FACILITI<br>A. IF NO, EXPLAIN<br>THE DISTANCE OF<br>A. PRESENT<br>B. PROPOSED<br>IF THE APPLICANT<br>HAS THE GOVERN<br>TREATMENT PLAN   | RIAL WASTES OF S                                                                                                                  | SPECIAL CONSIDE<br>BLE FOR REPAIR<br>PLICATION IS SUI<br>Station<br>HE NEAREST OCC<br>200<br>200<br>200<br>200                                | AND MAINTENANCE<br>BMITTED?<br>CUPIED DWELLING:<br>FEET<br>FEET<br>OR MUNICIPAL AUT<br>THE PROPOSED SEW.                    | E OF                                  | X Yes                                  | ∏ No                                  | X N//   |
| 3.<br>4.<br>6. | TYPES OF INDUST<br>WILL THE APPLIC,<br>SEWAGE FACILITI<br>A. IF NO, EXPLAIN<br>THE DISTANCE OF<br>A. PRESENT<br>B. PROPOSED<br>IF THE APPLIC ANT<br>HAS THE GOVERN<br>TREATMENT PLAN | RIAL WASTES OF :<br>ANT BE RESPONSI<br>ES FOR WHICH AP<br>N:<br>Pumping<br>THIS MXAXIX/TO T<br>ING MUNICIPALIT<br>ING MUNICIPALIT | SPECIAL CONSIDE<br>BLE FOR REPAIR<br>PLICATION IS SUI<br>Station<br>HE NEAREST OCC<br>200<br>200<br>200<br>A MUNICIPALITY<br>Y JBJL CTED TO T | AND MAINTENANCE<br>BMITTED?<br>CUPIED DWELLING:<br>FEET<br>FEET<br>OR MUNICIPAL AUT<br>THE PROPOSED SEW.                    |                                       | X Yes                                  | □ No                                  | X N//   |

| DATE PREPARED                                           | DEPARTMENT OF ENVIRONMENT                                                                                | AL RESOURCES                                               |              |                                       |                           |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------------|---------------------------------------|---------------------------|
| DATE REVISED                                            | WATER POLLUTION C<br>MODULE 1 – GENERAL INF                                                              | ONTROL<br>FORMATION                                        | r Department | Use Only                              | ·····                     |
|                                                         | SEWERAGE                                                                                                 |                                                            |              | ······                                |                           |
| D. GENERAL INFORM                                       | ATION - CONTINUED                                                                                        |                                                            | · ·          |                                       |                           |
| A. IS THE LETTE<br>APPENDED TO                          | R FROM MUNICIPAL OFFICER, SIGNIFY<br>D THIS APPLICATION?                                                 | ING THE OPINION,                                           |              | Yes 🗌                                 | No                        |
| 7. ARE DUPLICATE                                        | TREATMENT UNITS PROVIDED WHERE                                                                           | REQUIRED?                                                  |              | Yes                                   | No                        |
| A. IF NO, EXPLA                                         | ŧN:                                                                                                      |                                                            |              | · · · · · · · · · · · · · · · · · · · |                           |
| ·                                                       |                                                                                                          |                                                            |              |                                       |                           |
| B, DO ANY BY-P<br>COMMONWEA<br>BY-PASS STRU             | ASS STRUCTURES DISCHARGE TO WATE<br>LTH? (SPECIFY PLAN SHEET NUMBER(S<br>UCTURES) Sheet #401 Emerg       | ens of the<br>s) showing<br>ency By-pass P                 | umps         | Yes                                   | No                        |
| 8. HAS AN AUXILIA                                       | ARY STANDBY POWER SOURCE BEEN PR                                                                         | OVIDED?                                                    | X            | Yes 🗌                                 | No [                      |
| 9. DOES ANY PIPIN<br>WORKS WHICH M                      | G OR CONNECTION EXIST IN ANY PART                                                                        | OF THE TREATMENT                                           | , 🗌          | Yes                                   | No                        |
| <b>10,</b> IF A NON-POTAB<br>Permanently F              | LE WATER SUPPLY IS PROVIDED, ARE A<br>POSTED TO INDICATE WATER IS NOT SA                                 | ALL OUT LETS                                               |              | Yes 🚺                                 | No                        |
| -<br>11/ ARE FACILITIES                                 | PROVIDED FOR MEASURING THE SEWA                                                                          | GE FLOW?                                                   | X            | Yes                                   | No                        |
| 12. SAFETY:                                             | · · · ·                                                                                                  | . •                                                        |              |                                       |                           |
| A. ARE FACILITI<br>VISITORS7                            | ES PROVIDED TO EFFECTIVELY PROTE                                                                         | CT THE OPERATOR AND                                        | x            | Yes                                   | No                        |
|                                                         | Not applicable to this r                                                                                 | roject                                                     | -            | -                                     |                           |
| A. IS THE OUTFA                                         | LL SEWER ADEQUATELY PROTECTED                                                                            | TO ENSURE ITS                                              |              | Yes                                   | No                        |
| SIRUCTURAL                                              | STABILITY AND FREEDOM FROM STOP                                                                          |                                                            | · –          |                                       | . г                       |
| B. IS AN OUTFAL                                         | LL HEAD WALL PROVIDED?                                                                                   | •                                                          |              | Yes [_]                               |                           |
| C. DOES THE OU<br>RECEIVING ST                          | TFALL EXTEND TO THE LOW WATER M.<br>FREAM?                                                               | ARK OF THE                                                 |              | Yens                                  | No [-                     |
| 14. HAVE PROVISION<br>FLOTATION?                        | NS BEEN MADE TO PROTECT ALL STRUC                                                                        | CTURES AGAINST                                             | x            | Yes 🛄                                 | No                        |
| 15. IF THE PROJECT<br>DO THE SPECIFIC<br>ANY UNIT TO WA | INVOLVES ADDITIONS TO AN EXISTING<br>CATIONS INCLUDE A PROGRAM TO PRES<br>TERS OF THE COMMONWEALTH DURIN | TREATMENT PLANT,<br>VENT BY PASSING OF<br>IG CONSTRUCTION? |              | Yes                                   | No 3                      |
| A. SPECIFY VOL                                          | UME AND PAGE NUMBER OF SPECIFICA                                                                         | TIONS: NA                                                  |              |                                       | <del>س</del> مبر (بایت می |
| 16. SPECIFY NAMES                                       | OF MUNICIPALITIES AND POPULATION                                                                         | SERVED OR TO BE SER                                        | VED BY THIS  | Pumpin                                | ig Sta                    |

•

| · ,                                                                                                              | ER710.046.1<br>DATE PREPARED<br>2-28-74<br>WATER QUALITY MANAGEMENT                                                                                        |
|------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •                                                                                                                | DATE REVISED WATER POLLUTION CONTROL<br>MODULE 1 - GENERAL INFORMATION For Department Use Only<br>SEWERAGE                                                 |
| Come of                                                                                                          | E. RECEIVING STREAM*                                                                                                                                       |
|                                                                                                                  | 1. WHAT IS THE NAME OF THE RECEIVING STREAM? Delaware River<br>Delaware Bay                                                                                |
|                                                                                                                  | B. TRIBUTARY OF                                                                                                                                            |
| •<br>•<br>•                                                                                                      | C. MAJOR DRAINAGE BASIN:                                                                                                                                   |
| •<br>•.                                                                                                          | 2. DESCRIBE THE EXACT POINT OF DISCHARGE:                                                                                                                  |
| •                                                                                                                | <u>39</u> deg, <u>49</u> min, <u>34''</u> sec latitude                                                                                                     |
|                                                                                                                  | 75DEG,23MIN,39 <sup>11</sup> SEC LONGITUD                                                                                                                  |
| `                                                                                                                | 3. WHAT IS THE:<br>A WONSTING COUSECUTIVE DAYS FLOW 200 mm/210 ONCO IN 10 YEARS?                                                                           |
| and the second | NA* CUBIC FEET PER SECOND.                                                                                                                                 |
|                                                                                                                  | B. MINIMUM STREAM FLOW:NA*                                                                                                                                 |
|                                                                                                                  | C. ABOVE FLOWS ARE BASED ON:<br>MEASUREMENTS<br>ESTIMATES<br>NA*<br>YEARS OF RECORD                                                                        |
|                                                                                                                  | - 4. IS THE TREATMENT PLANT SUBJECT TO FLOODING?       Yes       No         pumping station       5. THE PROBABILITY OF THE TREATMENT BEING OUT OF SERVICE |
|                                                                                                                  | DUE TO FLOODING IS ONCE IN fifty YEARS.                                                                                                                    |
| •                                                                                                                | A, LIST BRIEFLY THE METHODS USED FOR FLOOD PROTECTION:                                                                                                     |
| •                                                                                                                |                                                                                                                                                            |
|                                                                                                                  |                                                                                                                                                            |
|                                                                                                                  |                                                                                                                                                            |
|                                                                                                                  | * Attach U.S. Geological Survey 7.5' or 15' Quadrangle Map showing exact points of discharge.                                                              |
|                                                                                                                  |                                                                                                                                                            |

۰.

÷ ÷

•

. .

. 1 - 8 -

1

| 2-28-74<br>ATE REVISED      | PARTMENT C<br>WATER                | POLLUTION               | NSYLVANIA<br>NTAL RESOURCE<br>AGEMENT | E D-     |             | - 0.1   |                      |
|-----------------------------|------------------------------------|-------------------------|---------------------------------------|----------|-------------|---------|----------------------|
|                             | MODULE 1                           | - GENERAL I<br>SEWERAGE | INFORMATION                           | For Dc   | partment Us | e Only  |                      |
| . RECEIVING STREAM          | - CONTINUED                        | NOT AI                  | PPLICABLE                             | 3        |             |         |                      |
| 6. TO THE BEST OF           | YOUR KNOWLEDGE,                    | WILL THE TREA           | ATED WASTE DISC                       | HARGE    |             |         |                      |
| ADVERSELY AFF               | ECI:                               | ,                       | · .                                   |          | •           |         | •.                   |
| A. DOMESTIC WA              | TER SUPPLY?                        |                         | ·<br>·                                |          | <u></u> ү   | es 🛄 i  | No                   |
| B. BATHING?                 |                                    | N                       |                                       | · ·      | <b>V</b>    | as 🗌 I  | No .                 |
| C. STOCK WATER              | RING?                              | • .                     | ,                                     |          | <b>v</b>    | es 🗌 i  | No                   |
| D. FISH AND AQU             | JATIC LIFE?                        |                         | · · · · ·                             | •        | V.          | 25      | No                   |
| E. INDUSTRIAL V             | NATER SUPPLY?                      |                         | · .                                   |          | . 🗋 Y       | »s      | No                   |
| F. IRRIGATION?              |                                    |                         |                                       |          | <b></b>     | as 🔲 i  | No                   |
| G. BOATING AND              | AESTHETICS?                        | •                       |                                       | **       | <b>X</b>    | 2\$ 🗌 i | No                   |
| -                           | •                                  |                         |                                       |          |             |         | - <b>4</b> - <b></b> |
| • • ·                       |                                    |                         |                                       |          |             |         |                      |
|                             |                                    |                         |                                       | 4        |             | •       |                      |
| <u></u>                     |                                    |                         | · · · · · · · · · · · · · · · · · · · |          |             |         |                      |
| This module<br>at the Chest | e is not applica<br>er Wastewate:  | able since<br>r Treatme | the project<br>nt Plant.              | force ma | uin will    | termina | ate                  |
| This module<br>at the Chest | e is not applica<br>er Wastewate:  | able since<br>r Treatme | the project<br>nt Plant.              | force ma | ain will    | termin: | ate                  |
| This module<br>at the Chest | e is not applica<br>er Wastewate:  | able since<br>r Treatme | the project<br>nt Plant.              | force ma | uin will    | termina | ate                  |
| This module<br>at the Chest | e is not applic:<br>:er Wastewate: | able since<br>r Treatme | the project<br>nt Plant.              | force ma | uin will    | termin: | ate                  |
| This module<br>at the Chest | e is not applica<br>er Wastewate:  | able since<br>r Treatme | the project<br>ent Plant.             | force ma | un will     | termin: | ate                  |
| This module<br>at the Chest | e is not applic:<br>er Wastewate:  | able since<br>r Treatme | the project<br>ent Plant.             | force ma | uin will    | termina | ate                  |
| This module<br>at the Chest | e is not applic:<br>er Wastewate:  | able since<br>r Treatme | the project<br>ent Plant.             | force ma | ain will    | termin: | ate                  |
| This module<br>at the Chest | e is not applic:<br>er Wastewate:  | able since<br>r Treatme | the project<br>ent Plant.             | force ma | uin will    | termin: | ate                  |
| This module<br>at the Chest | e is not applica<br>er Wastewate:  | able since<br>r Treatme | the project<br>ent Plant.             | force ma | ain will    | termin  | ate                  |
| This module<br>at the Chest | e is not applica<br>er Wastewate:  | able since<br>r Treatme | the project<br>ent Plant.             | force ma | uin will    | termin: | ate                  |
| This module<br>at the Chest | e is not applic:<br>er Wastewate:  | able since<br>r Treatme | the project<br>ent Plant.             | force ma | uin will    | termin: | ate                  |
| This module<br>at the Chest | e is not applic:<br>er Wastewate:  | able since<br>r Treatme | the project<br>ent Plant.             | force ma | uin will    | termin: | ate                  |

i - 9

•\*•. •

. . . . .



· ·

| DATE<br>2<br>DATE                                     | PREPARED<br>-28-74<br>REVISED                                                                                                                                                                                           | DEPARTMENT O<br>WATER                                                                                                                                                                       | F ENVIRONME<br>QUALITY MAN<br>DLLUTION                             | NAL RESOURCES                                                                                                                             |                                                          | · ·                                                                     | . •                                                                            |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                                                       |                                                                                                                                                                                                                         |                                                                                                                                                                                             |                                                                    |                                                                                                                                           | Fa                                                       | or Department                                                           | Use Only                                                                       |
|                                                       |                                                                                                                                                                                                                         |                                                                                                                                                                                             |                                                                    | IPING STATIONS                                                                                                                            | ,                                                        |                                                                         |                                                                                |
| ST                                                    | REET LOCATION                                                                                                                                                                                                           |                                                                                                                                                                                             |                                                                    |                                                                                                                                           |                                                          | PLAN SHEET 1                                                            | NUMBER                                                                         |
| CL<br>(Ci                                             | ASS OF CONSTRUC                                                                                                                                                                                                         | CTION<br>Blocks)                                                                                                                                                                            | NEW<br>REPLACEMEI                                                  | NT OF EXISTING U                                                                                                                          | NIT(S)                                                   | ADDITIO<br>X MODIFIC<br>UNIT(S)                                         | NS AND/OR<br>ATIONS TO EXISTING                                                |
| NC                                                    | TE: SUBMIT SEPA                                                                                                                                                                                                         | ARATE MODULE FOR EA                                                                                                                                                                         | CH PUMPING                                                         | STATION                                                                                                                                   |                                                          |                                                                         |                                                                                |
| T/                                                    | ABLE I – DESIGN                                                                                                                                                                                                         | N LOADING INFORM                                                                                                                                                                            | ATION                                                              |                                                                                                                                           | • •                                                      |                                                                         |                                                                                |
| 1. P(                                                 | DPULATION TO BE                                                                                                                                                                                                         | SERVED                                                                                                                                                                                      |                                                                    | INITIAL                                                                                                                                   | ם                                                        | ESIGN                                                                   | DESIGN YEAR                                                                    |
|                                                       |                                                                                                                                                                                                                         | •                                                                                                                                                                                           |                                                                    | 269,500                                                                                                                                   |                                                          | 272,500                                                                 | 1990                                                                           |
| 2.                                                    | De                                                                                                                                                                                                                      | SIGN FLOW DATA                                                                                                                                                                              | ·                                                                  | RATE (C                                                                                                                                   | SPCD)                                                    |                                                                         | RATE (MGD)                                                                     |
| A                                                     | DESIGN POPULA                                                                                                                                                                                                           | RATE (BASED ONLY O                                                                                                                                                                          | N                                                                  | · · · ·                                                                                                                                   |                                                          |                                                                         | 10.0                                                                           |
| B                                                     | MAXIMUM INDU                                                                                                                                                                                                            | STRIAL WASTE FLOW R                                                                                                                                                                         | ATE                                                                |                                                                                                                                           |                                                          | ·                                                                       | 30.0                                                                           |
| C                                                     | MAXIMUM INFIL                                                                                                                                                                                                           | TRATION RATE COM                                                                                                                                                                            | bined<br>r inflow                                                  |                                                                                                                                           | ·                                                        | <u></u>                                                                 | 25.0                                                                           |
| ٥                                                     | MAXIMUM DESIG                                                                                                                                                                                                           | ON FLOW RATE                                                                                                                                                                                |                                                                    |                                                                                                                                           |                                                          |                                                                         | 65.00                                                                          |
| Τ/                                                    |                                                                                                                                                                                                                         |                                                                                                                                                                                             |                                                                    |                                                                                                                                           |                                                          |                                                                         |                                                                                |
| T/<br>1. Pi                                           | ROBABILITY OF F                                                                                                                                                                                                         | LOODING IS ONCE IN                                                                                                                                                                          | 50                                                                 | _YEARS.                                                                                                                                   |                                                          |                                                                         |                                                                                |
| T/<br>1. Pi<br>2. Pi                                  | ROBABILITY OF F                                                                                                                                                                                                         | LOODING IS ONCE IN                                                                                                                                                                          | 50<br>No po                                                        | YEARS.<br>ower failure<br>YEARS.                                                                                                          | repor<br>in the                                          | ted by th<br>past 10 y                                                  | e power compan<br>7ears.                                                       |
| T/<br>1. Pi<br>2. Pi<br>3<br>5                        | ROBABILITY OF F<br>ROBABILITY OF P<br>A. MAXIMUM WA<br>SYSTEM AT A                                                                                                                                                      | LOODING IS ONCE IN<br>OWER FAILURE IS ONCI<br>NTER ELEVATION IN CO<br>POWER FAILURE                                                                                                         | 50<br>E IN NO PO                                                   | _YEARS.<br>ower failure<br>YEARS.<br>8.5                                                                                                  | repor<br>in the                                          | ted by th<br>past 10 y                                                  | e power compan<br>Zears.                                                       |
| 1. Pi<br>2. Pi<br>3 totemu                            | ROBABILITY OF F<br>ROBABILITY OF F<br>A. MAXIMUM WA<br>SYSTEM AT A<br>B. OVERFLOW L                                                                                                                                     | LOODING IS ONCE IN<br>OWER FAILURE IS ONCE<br>ATER ELEVATION IN CO<br>POWER FAILURE<br>EVEL IN WET WELL                                                                                     | 50<br>EIN_NO PO                                                    | _YEARS.<br>ower failure<br>YEARS.<br>8.5<br>Level in we<br>increases of                                                                   | repor<br>in the<br>et well                               | ted by th<br>past 10 y<br>is const<br>5 mgd the                         | e power compan<br>years.<br>ant when flow                                      |
| T/<br>1. Pi<br>2. Pi<br>3 toppenducture               | ROBABILITY OF F<br>ROBABILITY OF F<br>A. MAXIMUM WA<br>SYSTEM AT A<br>B. OVERFLOW L<br>C. LOWEST BASE<br>CONNECTED T                                                                                                    | LOODING IS ONCE IN<br>OWER FAILURE IS ONCE<br>TER ELEVATION IN CO<br>POWER FAILURE<br>EVEL IN WET WELL<br>EMENT FLOOR IN SYSTE<br>TO PUMP STATION                                           | 50<br>E IN NO PO<br>LLECTION                                       | _YEARS.<br>DWET failure<br>_YEARS.<br>8.5<br>Level in we<br>increases of<br>Unknown                                                       | repor<br>in the<br>et well                               | ted by th<br>past 10 y<br>is const<br>5 mgd the                         | e power companyears.<br>ant when flow<br>overflow pump                         |
| 1. Pi<br>2. Pi<br>3 topenuoju<br>4.                   | ROBABILITY OF F<br>ROBABILITY OF F<br>A. MAXIMUM WA<br>SYSTEM AT A<br>B. OVERFLOW L<br>C. LOWEST BASE<br>CONNECTED T<br>A. EFFECTIVE W                                                                                  | LOODING IS ONCE IN<br>OWER FAILURE IS ONCE<br>ATER ELEVATION IN CO<br>POWER FAILURE<br>EVEL IN WET WELL<br>EMENT FLOOR IN SYSTE<br>TO PUMP STATION                                          | 50<br>EIN_NO PO<br>LLECTION                                        | _YEARS.<br>ower failure<br>YEARS.<br>8.5<br>Level in we<br>increases o<br>Unknown<br>48,500                                               | repor<br>in the<br>et well                               | ted by th<br>past 10 y<br>is const<br>5 mgd the                         | e power company<br>years.<br>ant when flow<br>e overflow pump                  |
| 1. P                                                  | ROBABILITY OF F<br>ROBABILITY OF F<br>A. MAXIMUM WA<br>SYSTEM AT A<br>B. OVERFLOW L<br>C. LOWEST BASE<br>CONNECTED T<br>A. EFFECTIVE W<br>B. DETENTION                                                                  | LOODING IS ONCE IN<br>OWER FAILURE IS ONCE<br>ATER ELEVATION IN CO<br>POWER FAILURE<br>EVEL IN WET WELL<br>MENT FLOOR IN SYSTE<br>TO PUMP STATION<br>VET WELL CAPACITY<br>TIME              | 50<br>E IN <u>NO po</u><br>LLECTION<br>M<br>(Gel.)<br>(Min.)       | _YEARS.<br>ower failure<br>YEARS.<br>8.5<br>Level in we<br>increases o<br>Unknown<br>48,500<br>1.25 min a                                 | repor<br>in the<br>et well<br>over 5                     | ted by th<br>past 10 y<br>is const<br>5 mgd the<br>flow                 | e power compan<br>years.<br>ant when flow<br>overflow pump                     |
| T/<br>1. P<br>2. P<br>3 uppermation<br>4. NOILERALION | ROBABILITY OF F<br>ROBABILITY OF F<br>A. MAXIMUM WA<br>SYSTEM AT A<br>B. OVERFLOW L<br>C. LOWEST BASE<br>CONNECTED T<br>A. EFFECTIVE W<br>B. DETENTION<br>C. (1) TYPE OF M                                              | LOODING IS ONCE IN<br>OWER FAILURE IS ONCE<br>ATER ELEVATION IN CO<br>POWER FAILURE<br>EVEL IN WET WELL<br>EMENT FLOOR IN SYSTE<br>TO PUMP STATION<br>VET WELL CAPACITY<br>TIME             | 50<br>E IN<br>LLECTION<br>(Get.)<br>(Min.)                         | _YEARS.<br>DWET failure<br>YEARS.<br>8.5<br>Level in we<br>increases of<br>Unknown<br>48,500<br>1.25 min at<br>Prestresse                 | repor<br>in the<br>et well<br>over 5<br>t max.<br>d rein | ted by th<br>past 10 y<br>is const<br>5 mgd the<br>flow<br>f. conc.     | e power company<br>years.<br>ant when flow<br>e overflow pump<br>cylinder pipe |
| T/ 1. P P P P P P P P P P P P P P P P P P             | ROBABILITY OF F<br>ROBABILITY OF F<br>A. MAXIMUM WA<br>SYSTEM AT A<br>B. OVERFLOW L<br>C. LOWEST BASE<br>CONNECTED T<br>A. EFFECTIVE W<br>B. DETENTION<br>C. (1) TYPE OF M                                              | LOODING IS ONCE IN<br>OWER FAILURE IS ONCE<br>ATER ELEVATION IN CO<br>POWER FAILURE<br>EVEL IN WET WELL<br>MENT FLOOR IN SYSTE<br>TO PUMP STATION<br>VET WELL CAPACITY<br>TIME              | 50<br>E IN NO PO<br>E IN (Gel.)<br>(Min.)<br>(Ft.)                 | _YEARS.<br>DWET failure<br>YEARS.<br>8.5<br>Level in we<br>increases of<br>Unknown<br>48,500<br>1.25 min at<br>Prestresse<br>13,253       | repor<br>in the<br>et well<br>over 5<br>t max.<br>d rein | ted by the<br>past 10 y<br>is constant<br>5 mgd the<br>flow<br>f. conc. | e power company<br>years.<br>ant when flow<br>overflow pump<br>cylinder pipe   |
| CITY AND OPERATION Information 6                      | ROBABILITY OF F<br>ROBABILITY OF F<br>A. MAXIMUM WA<br>SYSTEM AT A<br>B. OVERFLOW L<br>C. LOWEST BASE<br>CONNECTED T<br>A. EFFECTIVE W<br>B. DETENTION<br>C. (1) TYPE OF M<br>V<br>W<br>(2) LENGTH<br>W<br>(3) DIAMETER | LOODING IS ONCE IN<br>OWER FAILURE IS ONCE<br>ATER ELEVATION IN CO<br>POWER FAILURE<br>EVEL IN WET WELL<br>EMENT FLOOR IN SYSTE<br>TO PUMP STATION<br>VET WELL CAPACITY<br>TIME<br>NATERIAL | 50<br>E IN NO PA<br>LLECTION<br>(Gel.)<br>(Min.)<br>(Ft.)<br>(In.) | _YEARS.<br>ower failure<br>YEARS.<br>8.5<br>Level in we<br>increases of<br>Unknown<br>48,500<br>1.25 min ar<br>Prestresse<br>13,253<br>48 | repor<br>in the<br>et well<br>over 5<br>t max.<br>d rein | ted by the<br>past 10 y<br>is constant<br>5 mgd the<br>flow<br>f. conc. | e power company<br>years.                                                      |

| 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | ER710.045.7 COMMONY<br>DATE PREPARED CARTMENT<br>2-28-74<br>DATE REVISED WATER |                                  | WEALTH OF PENNSYLVANIA<br>OF ENVIRONMENTAL RESOUR<br>R QUALITY MANAGEMENT<br>POLLUTION CONTROL | CES                                                       |                            | · · · · · · · · · · · · · · · · · · · |                                       |                       |
|------------------------------------------|--------------------------------------------------------------------------------|----------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------|----------------------------|---------------------------------------|---------------------------------------|-----------------------|
|                                          |                                                                                |                                  | SEWAGE PHMPING STATIC                                                                          |                                                           | For Department Use Only    |                                       |                                       |                       |
|                                          | TABL                                                                           | e III – Pumpin                   | IG FACILITIES                                                                                  |                                                           |                            | •                                     | • • • • • • • • • • • • • • • • • • • | , ·                   |
|                                          | UNIT<br>NUMBER                                                                 | CHECK<br>(IF PUMP, S             | TWO ITEMS<br>SPECIFY TYPE)                                                                     | CHECK ONE ITEM                                            | RATED<br>CAPACITY<br>(GPM) | RATED<br>HEAD<br>(FT.)                | PIPE SI<br>SUCTION                    | ZE (IN.)<br>DISCHARGE |
|                                          | #1                                                                             |                                  | Centrifugal                                                                                    | X BUBBLER<br>SEALED ELECTRODE<br>FLOAT<br>OTHER (SPECIFY) | 19,000                     | 110                                   | 30                                    | 24                    |
|                                          | · -                                                                            | X PROPOSE                        | :D<br>Y                                                                                        | <u>variable speed</u>                                     | :<br>:                     | -                                     |                                       |                       |
|                                          | #2 <sup>.</sup>                                                                | EJECTOF<br>X PUMP C              | a<br>Sentrifugal                                                                               | X BUBBLER<br>SEALED ELECTRODE<br>FLOAT                    |                            | •                                     | •                                     |                       |
|                                          |                                                                                | EXISTIN<br>X PROPOSE<br>STANDE   | NG<br>SED<br>BY                                                                                | variable speed                                            | 19,000                     | , 110<br>,                            | 30                                    | 24                    |
|                                          | #3                                                                             |                                  | Centrifugal<br>G                                                                               | X BUBBLER<br>SEALED ELECTRODE<br>FLOAT<br>OTHER (SPECIFY) | 19,000                     | -<br>110                              | 30                                    | 24                    |
| •                                        |                                                                                | X PROPOSE<br>X STANDB            | ED<br>Y                                                                                        | variable speed                                            |                            |                                       |                                       |                       |
|                                          | #4                                                                             |                                  | entrifugal                                                                                     | X BUBBLER<br>SEALED ELECTRODE<br>FLOAT<br>OTHER (SPECIFY) | 7,000                      | 30                                    | 16                                    | 16                    |
| •                                        |                                                                                | X PROPOSI<br>STANDB              | ED<br>Y                                                                                        | variable speed                                            |                            |                                       |                                       |                       |
|                                          | #5                                                                             |                                  | entrifugal                                                                                     | X BUBBLER<br>SEALED ELECTRODE                             |                            |                                       | 10                                    |                       |
| •                                        |                                                                                | EXISTIN<br>X PROPOSE<br>X STANDB | G<br>ED<br>Y .                                                                                 | variable speed                                            | 7,000                      | 30                                    | 10                                    | 10                    |
|                                          |                                                                                | EJECTOR<br>PUMP                  | 3                                                                                              | BUBBLER<br>SEALED ELECTRODE<br>FLOAT                      |                            |                                       |                                       | • .                   |
| ·                                        | -                                                                              | EXISTIN<br>PROPOSE<br>STANDB     | G<br>ED<br>Y                                                                                   | OTHER (SPECIFY)                                           |                            |                                       |                                       |                       |

7 - 2 · `

| DATE PREPARED                      | COMMOI                                                              | NWEALTH OF PENNSYLVANI<br>T OF ENVIRONMENTAL RESC<br>ER QUALITY MANAGEMENT | A                        |                                       | •<br>•       |
|------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------|---------------------------------------|--------------|
| DATE REVISED                       | WATER                                                               | POLLUTION CONTR                                                            | OL                       | For Department Use                    | Only         |
| L                                  | MODULE 7                                                            | - SEWAGE PUMPING STA                                                       | TIONS                    |                                       |              |
| À. <u>GENERAL I</u>                | ORMATION (                                                          |                                                                            |                          | •                                     |              |
| 1. THE WE                          | ELL VENTILATION IS                                                  | CONTINUOUS AT                                                              | 30                       | AIR CHANG                             | ES PER HOUR. |
| 2. THE DRY                         | VELL VENTILATION IS                                                 | CONTINUOUS AT                                                              | 30                       | AIR CHANG                             | ES PER HOUR. |
| 3. IF NO GE<br>AND PUE<br>LINES OF | REMOVAL FACILITIES<br>PIPING DESIGNED TO PI<br>PUMPS THAT ARE NOT O | PRECEDE PUMP STATIONS,<br>REVENT GRIT SETTLING IN<br>PERATING?             | IS WET WELL<br>DISCHARGE | Yes                                   | No X N/      |
| 4. ARE WET<br>COMPLE               | ND DRY WELLS, INCLU<br>LY SEPARATED?                                | DING THEIR SUPERSTRUCT                                                     | URES,                    | Yeş                                   | X No         |
| 5. SPECIFY                         | HE TYPE OF ACCESS TO                                                | DRY AND WET WELLS:S                                                        | tairways                 | · · · · · · · · · · · · · · · · · · · |              |
| 6. ARE PUN<br>SCREENS              | 3, EXCEPT EJECTORS, HA<br>2 INCHES MAXIMUM CLE                      | ANDLING RAW SEWAGE PRO<br>EAR OPENING) OR COMMINU                          | TECTED BY                | BAR X Yes                             | □ No □ N/    |
| 7. MAXIMU                          | SIZE OF SPHERE PASSED                                               | D BY PUMPING FACILITIES:                                                   | 5.6                      | INCHES.                               | · .          |
| 8. DOES EL<br>ACCUMU<br>• SPECIFIC | TRICAL EQUIPMENT IN<br>ATE COMPLY WITH NATI<br>TIONS FOR HAZARDOUS  | ENCLOSED PLACES WHERE<br>ONAL BOARD OF FIRE UND<br>S CONDITIONS?           | GAS MAY<br>ERWRITERS'    | X Yes                                 | ∐ No         |
| 9. DOES EA                         | I PUMP HAVE A SEPARA                                                | TE INTAKE?                                                                 |                          | X Yes                                 | No No        |
| 10. IS A SEP<br>ABOVE C            | ATE DRY WELL PUMP P<br>ERFLOW ELEVATION?                            | ROVIDED WITH DISCHARGE                                                     | TO WET WEL               | L X Yes                               | No No        |
| 11. UNDER I<br>A POSITI            | RMAL CONDITIONS, WIL<br>SUCTION HEAD?                               | L PUMPING FACILITIES OP                                                    | RATE UNDE                | R X Yes                               | No No        |
| 12. ARESHU<br>LINE WIT<br>THE DISC | OFF VALVES PROVIDED<br>A CHECK VALVE BETWE<br>ARGE LINE?            | FOR EACH PUMP SUCTION                                                      | AND DISCHAI              | RGE X Yes                             | No No        |
| 13. ARE WET<br>HOPPER              | ELL HOPPER SIDE SLOP<br>TOM HORIZONTAL AR                           | PES AT A MINIMUM OF 1 TO<br>REA NO LARGER THAN NEC                         | 1 AND THE<br>ESSARY?     | X Yes                                 | No           |
| 14. DO WET<br>MAINTEI<br>WELL SY   | LLS CONTAINING EQUI<br>NCE HAVE A VENTILAT<br>EM?                   | PMENT REQUIRING INSPECTION SYSTEM INDEPENDENT                              | TION AND                 | X Yes                                 | No No        |
| 15. IS THER<br>AND SEV             | ANY PHYSICAL CONNECT<br>GE PUMP STATION FACI                        | TION BETWEEN THE POTABI<br>LITIES?                                         | LE WATER SU              | JPPLY Yes                             | X No N/      |
|                                    | MATIC AIR RELIEF VAU                                                | VES PROVIDED AT HIGH PO                                                    | INTS IN                  | Yes                                   |              |

. ÷

•

5 - S - S

١.

| 2-28-74                                                                                                         | WATER BOLLUTION OF                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |               |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------|
| DATE REVISED                                                                                                    | WATER POLLOTION CC                                                      | MIROL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | For Department                         | Use Only      |
|                                                                                                                 | MODULE 7 – SEWAGE PUMPING                                               | STATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |               |
| • ·                                                                                                             |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ·.                                     |               |
| A. GENERAL INFORM                                                                                               | MATION - CONTINUED                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        | •<br>• •      |
| 17. IF NO OVERFL<br>SOURCES PROV                                                                                | ow is provided, are two independed<br>vided? (The overflow is pum       | ped out)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | x                                      | Yes No [      |
| 18. IF NO OVERFL                                                                                                | OW IS PROVIDED, IS EMERGENCY POWER                                      | B EQUIPMENT PROV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        | Yes X No      |
| 19. SPECIFY TYPE                                                                                                | OF EMERGENCY EQUIPMENT:                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |               |
|                                                                                                                 | ·                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        | · ·           |
|                                                                                                                 | · · ·                                                                   | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                        | · .           |
|                                                                                                                 | · · ·                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |               |
|                                                                                                                 |                                                                         | ······································                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        | ·······       |
| A. IF OVERFLO<br>AND STREA                                                                                      | DW IS PROVIDED, WHAT PROVISIONS HAY<br>M POLLUTION DURING EMERGENCY USE | VE BEEN MADE TO<br>E OF OVERFLOW?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MINIMIZE OBJECT                        | IONABLE CONDI |
| <u></u>                                                                                                         | <u></u>                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ······································ |               |
| <b></b>                                                                                                         |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        | ar-a          |
|                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |               |
| - <sup>-1</sup>                                                                                                 |                                                                         | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                        |               |
| 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - |                                                                         | •<br>• • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |               |
|                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        | •             |
|                                                                                                                 |                                                                         | . •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | к.,                                    |               |
| <b></b>                                                                                                         | · · · · · · · · · · · · · · · · · · ·                                   | Yen M <sub>en ma</sub> n i an airte airte airte airte an an an airte a | · · · · · · · · · · · ·                |               |
|                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ······································ |               |
| ·                                                                                                               |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |               |
|                                                                                                                 |                                                                         | ÷                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        | •<br>         |
|                                                                                                                 |                                                                         | · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | · · · · · · · · · · · · · · · · · · ·  |               |
|                                                                                                                 |                                                                         | an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                        |               |
| ••••••••••••••••••••••••••••••••••••••                                                                          |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |               |
|                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        | :             |
|                                                                                                                 |                                                                         | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <u></u>                                | <u> </u>      |
|                                                                                                                 | · · · · · · · · · · · · · · · · · · ·                                   | • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ······································ | · · ·         |
|                                                                                                                 |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |               |
| <u> </u>                                                                                                        |                                                                         | <del> </del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |               |
| 20. DO THE EXISTI<br>MAIN WILL COM<br>FLOW?                                                                     | NG SEWERS TO WHICH THE PROPOSED PI<br>NNECT HAVE ADEQUATE CAPACITY TO C | UMP STATION AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FORCE X<br>TIONAL                      | Yes 🗌 No      |
| 21, DO THE PLANS<br>THE PROPOSED                                                                                | INDICATE THE PERMIT NUMBER OF THE<br>POINT OF CONNECTION AND THE NAME   | EXISTING SEWER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (S) AT X                               | res 🔲 No      |

•...

•

| ER710.046.10<br>DATE PREPARED<br>2-28-74<br>DATE REVISED<br>COMMONWEALTH OF PENNSYLV<br>DEPARTMENT OF ENVIRONMENTAL<br>WATER QUALITY MANAGEME<br>WATER POLLUTION CON |                                                        |                                                           | NTROL                    |                                                |                               |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------|--------------------------|------------------------------------------------|-------------------------------|----------|
|                                                                                                                                                                      | ·                                                      | MODULE 10 - 0                                             | BRIT CHAM                | BERS                                           | for Department Use Or         | ity      |
| ТАВ                                                                                                                                                                  | LE 1                                                   | · · · · · · · · · · · · · · · · · · ·                     |                          | UNIT                                           | UNIT_ 2**                     |          |
| -                                                                                                                                                                    |                                                        |                                                           |                          | X EXISTING *                                   | X EXISTING*                   |          |
| 1.                                                                                                                                                                   | A. CHANNEL                                             |                                                           |                          |                                                | -                             | ]        |
| ⊨                                                                                                                                                                    | 8. DETRITOR                                            |                                                           |                          | ·                                              |                               |          |
| N                                                                                                                                                                    | C. AERATED                                             |                                                           |                          |                                                |                               |          |
| Ë                                                                                                                                                                    | D. MANUALLY CL                                         | EANED                                                     |                          |                                                |                               |          |
| БЩ                                                                                                                                                                   | E. MECHANICALL                                         | CLEANED                                                   | •                        | <u>    Yes                                </u> | Yes                           |          |
| ž                                                                                                                                                                    | F, OTHER (Specify)                                     |                                                           |                          | -                                              |                               |          |
| 2.                                                                                                                                                                   | A. LENGTH                                              | · · ·                                                     | (Ft.)                    | 60                                             | 60                            |          |
| SNOIS                                                                                                                                                                | B. WIDTH                                               |                                                           | (Ft.)                    | 11                                             | 11                            |          |
| DIMEN                                                                                                                                                                | C. DIAMETER                                            |                                                           | (ft.)                    | -                                              | -                             |          |
|                                                                                                                                                                      | D, SWD                                                 |                                                           | (Ft.)                    | _                                              |                               |          |
|                                                                                                                                                                      |                                                        |                                                           | ,<br>/=                  | 1                                              | 1 1                           |          |
| VIION                                                                                                                                                                | 5. METHOD OF TE                                        | LOCITY CONTROL (Specify)                                  |                          | Proportional<br>Flow weir                      | Proportional<br>Flow weir     |          |
| OPERA                                                                                                                                                                | C. DETENTION PE                                        | RIOD (Min.) AT                                            |                          |                                                | i <b>se d</b> e min           |          |
| -                                                                                                                                                                    | (1) AVERAGE                                            | DAILY FLOW                                                |                          | 8.0 MGD                                        | 8.0 MGD                       |          |
|                                                                                                                                                                      | (2) MINIMUM (                                          | DAILY FLOW                                                | ·                        |                                                |                               |          |
|                                                                                                                                                                      | (3) MAXIMUM                                            | DAILY FLOW                                                |                          | 25.0 MGD                                       | 25.0 MGD                      |          |
| <b>4</b> .                                                                                                                                                           | SIZE OF PARTICLE                                       | S TO BE REMOVED                                           | (Mm.)                    | 0.2 Mm and<br>larger                           | 0.2 Mm and<br>larger          |          |
| 5.                                                                                                                                                                   | GRIT DISPOSAL<br>A. DESCRIBE DISP<br>łand, complete ap | OSAL METHOD AND LOCATI<br>propriate portions of Module 5. | ON (If to<br>)           | To an<br>approved<br>landfill                  | To an<br>approved<br>landfill | ·        |
| (ONI                                                                                                                                                                 | Y SEWERAGE APPLI                                       | CANTS COMPLETE ITEM A)                                    |                          | <u> </u>                                       |                               | <u>.</u> |
| А.                                                                                                                                                                   | GENERAL INFORM                                         | ATION                                                     |                          |                                                |                               |          |
|                                                                                                                                                                      | 1. DOES THE UNIT                                       | PROVIDE FACILITIES FOR                                    | 1177                     | Yes                                            | No No                         |          |
|                                                                                                                                                                      | 2. IF A MECHANIC<br>IS PROVIDED, IS                    | ALLY CLEANED OR A SING<br>A BYPASS PROVIDED?              | LE HAND-CLE              | EANED CHAMBER                                  | Yes                           | No 🗌 N   |
|                                                                                                                                                                      | 3. ARE UNITS LOC<br>ADEQUATE LIG<br>REMOVING GRI       | ATED IN DEEP PITS PROVID<br>HTING AND VENTILATION,<br>T?  | ED WITH STA<br>AND ADEQU | AIRWAY ACCESS,<br>ATE MEANS FOR                | Yes                           | N₀ P     |
|                                                                                                                                                                      | 4. IS THE CHANNE                                       | L PRECEDING AND FOLLOW                                    | ANG THE UN               | IT SHAPED TO                                   | Yes                           | No No    |

نې مړيکې ا

| 5                                      | DA                 | 710.046.11<br>TE PREPARED<br>2-28-74<br>TE REVISED                              | COMMONWEALTH OF PENN<br>DEPARTMENT OF ENVIRONMENT<br>WATER QUALITY MANAGE<br>WATER POLLUTION (<br>MODULE 11 – SCREENI<br>COMMINUTING DEV | SYLVANIA<br>FAL RESOURCES<br>SEMENT<br>CONTROL<br>NG AND<br>ICES                        | For Depart                                              | ment Use Only                                                                                                               |
|----------------------------------------|--------------------|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                                        | TA                 | BLE I<br>REENING DEVICES                                                        | UNIT 1<br>EXISTING<br>X PROPOSED                                                                                                         | UNIT 2<br>EXISTING<br>X PROPOSED                                                        |                                                         |                                                                                                                             |
|                                        | LIDI<br>API<br>LIS | NTIFY BY FUNCTION AT<br>HT AND ANSWER ALL<br>PLICABLE INFORMATION<br>TED BELOW. | MANUALLY CLEANED<br>MECHANICALLY<br>CLEANED<br>BYPASS BAR SCREEN<br>VIBRATING SCREEN<br>ROTATING SCREEN<br>OTHER* (Specify)              | MANUALLY<br>MECHANICA<br>CLEANED<br>BYPASS BAR<br>VIBRATING<br>ROTATING S<br>OTHER• (Sp | CLEANED<br>ALLY<br>SCREEN<br>SCREEN<br>SCREEN<br>ecify) | MANUALLY CLEANED<br>MECHANICALLY<br>CLEANED<br>BYPASS BAR SCREEN<br>VIBRATING SCREEN<br>ROTATING SCREEN<br>OTHER• (Specify) |
| •                                      | 1.                 | SPECIFY SOURCE OF                                                               |                                                                                                                                          |                                                                                         |                                                         |                                                                                                                             |
| -                                      | DEVICESIN          | A. TYPE **<br>B. MANUFACTURER **                                                |                                                                                                                                          |                                                                                         |                                                         |                                                                                                                             |
|                                        | ROPRIETARY         | MODEL **                                                                        |                                                                                                                                          | -                                                                                       |                                                         |                                                                                                                             |
|                                        | 3.                 | A, RATED CAPACITY<br>(Mgd)                                                      | 25.0                                                                                                                                     | 25.0                                                                                    | · <u>·</u> ··································           |                                                                                                                             |
| •                                      | ŀ                  | B. TOTAL                                                                        | COMPUTE THE TOTAL FOR AL                                                                                                                 | L UNITS AND ENTER                                                                       |                                                         | 25.0                                                                                                                        |
| •<br>•                                 | DATA               | C. CAPACITY<br>RANGE (Mgd)                                                      |                                                                                                                                          |                                                                                         |                                                         |                                                                                                                             |
|                                        | DESIGN             | D. CLEAR OPENING BE-<br>TWEEN BARS (IN.)<br>OR SIZE OF MESH OR<br>SCREEN (NO.)  | 2 1/2"                                                                                                                                   | 2 1/2                                                                                   | ,r1                                                     |                                                                                                                             |
| · .                                    |                    | E. VELOCITY THROUGH<br>BARS (Fps)                                               | 2.5                                                                                                                                      | 2.5                                                                                     | • <u></u> •                                             |                                                                                                                             |
|                                        |                    | F. SLOPE OF BARS FROM<br>HORIZONTAL (Deg)                                       | 83° 46'                                                                                                                                  | 83° 46                                                                                  | <b>I</b>                                                |                                                                                                                             |
| · .                                    | •                  | If other device than listed, des                                                | cribe.<br>DN – SCREENING                                                                                                                 | ••                                                                                      | · · · ·                                                 | ** Only Industrial Waste Applica                                                                                            |
| ······································ |                    | 1. SCREENINGS DISPO                                                             | SAL<br>SAL METHOD AND LOCATION:                                                                                                          | incineration                                                                            | at Delawa                                               | a <u>re County Incine</u> rat                                                                                               |
|                                        |                    | 2. IS AN AUXILIARY SI<br>FLOW WHEN MECHA                                        | CREEN PROVIDED WITH AUTOMA                                                                                                               | ATIC DIVERSION OF                                                                       |                                                         | Ves No N/A                                                                                                                  |

÷

| ENTEDAGEST COMMUNERALT OF PENNSYLVANIA DEPARTMENT AL RESOURCES WATER OULLITY MANAGEMENT WATER POLLUTION CONTROL MODULE 11 - SCREENING AND COMMINUTING DEVICES  A GENERAL INFORMATION - SCREENING CONTROL MODULE 11 - SCREENING CONTROL S. ARE PROVISIONS MADE TO DEWATER EACH UNIT?  A GENERAL INFORMATION - SCREENING CONTROL MODULE 11 - SCREENING CONTROL S. ARE UNITS LOCATED IN DEEP PISS PROVIDED WITH STARWAY ACCESS, ADECUATE LIGHTNG AND VENTLATION, AND ADEQUATE MEANS FOR REMOVAL OF SCREENINGS  TABLE II COMMINUTING DEVICES  I A RATED CAPACITY MAGE (Mpd)  D. DIFFERENCE IN ELEVATION BETWEEN THE INVERT OF THE INCOMING SEVER (Mpd)  D. DIFFERENCE IN ELEVATION BETWEEN THE INVERT OF THE INCOMING SEVER ADECUATE LIGHTNON - COMMINUTING DEVICES  A RE CHANNEL DE NO DEMITH MECESSARY GATES TO DIVERT FLOW FROM ACOMMINUTING UNITY ARE CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?  A RE PROVIDED WITH MECESSARY GATES TO DIVERT FLOW FROM ACOMMINUTING UNITY ARE CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?  A RE PROVIDED WITH MECESSARY GATES TO DIVERT FLOW FROM ACOMMINUTING UNITY ARE CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?  A RE PROVIDED WITH MECESSARY GATES TO DIVERT FLOW FROM ACOMMINUTING UNITY ARE CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?  A RE PROVIDED WITH MECESSARY GATES TO DIVERT FLOW FROM ACOMMINUTING UNITY ARE CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?  ARE PROVIDED WITH AUTOMATIC DIVERSION OF ADECUATE LIGHTING, AND VENTLATION?  ARE PROVIDED WITH AUTOMATIC DIVERSION OF ADECUATE LIGHTING, AND VENTLATION?  ARE PROVIDED WITH AUTOMATIC DIVERSION OF ADECUATE LIGHTING, AND VENTLATION?  ARE PROVIDED WITH AUTOMATIC DIVERSION OF ADECUATE LIGHTING, AND VENTLATION?  ARE PROVIDED WITH AUTOMATIC DIVERSION OF ADECUATE LIGHTING, AND VENTLATION?  ARE PROVIDED WITH AUTOMATIC DIVERSION OF ADECUATE LIGHTING, AND VENTLATION?  ARE ON ADDITING DEPOSITION OF SOLIDS?  ARE D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | COMONERATIO DE FUNCTION PENNERAL RESOURCES VATER VALUE OF ENVIRONMENTAL RESOURCES VATER VALUET OF ENVIRONMENTAL RESOURCES VATER QUALITY MANAGEMENT VALUE OF ENVIRONMENTAL RESOURCES VATER QUALITY MANAGEMENT VALUE OF ENVIRONMENTAL RESOURCES A GENERAL INFORMATION - SCREENING (CONTINUED) A GENERAL INFORMATION - SCREENING (CONTINUED) A ARE PROVISIONS MADE TO DE WATER EACH UNIT A IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS7 A GENERAL INFORMATION - SCREENING, CONTINUED) A ARE PROVISIONS MADE TO DE WATER EACH UNIT A IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS7 A GENERAL INFORMATION - SCREENING, CONTINUED) A ARE PROVISIONS MADE TO DE WATER EACH UNIT A IS INLET CHANNEL DESIGNED TO PREVIDED WITH STAINWAY ACCESS, ADEGUATE UPTIME AND VENTILATION, AND ADEQUATE MEANS FOR REMOVAL OF SCREENINGS?  TABLE II COMMINUTING CAUCHES VIT UNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ۰.   |                                                                                       |                                                              |                                                         | ~                                     |                      |                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------------------------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------|---------------------------------------|----------------------|-------------------|
| 2-28-74     MATER POLLUTION CONTROL     MODULE 11 - SCREENING AND     CONTINUED     A GENERAL INFORMATION - SCREENING (CONTINUED)     A ARE PROVISIONS MADE TO DEWATER EACH UNITT     A IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS7     S. ARE UNITS LOCATED IN DEEP PITS PROVIDED WITH MAINWAY ACCESS,     ADEQUATE LIGHTING AND VENTLATION, AND ADEQUATE MEANS FOR     REMOVAL OF SCREENINGS7     ""* Only Sowerspe Applicante     TABLE II     COMMINUTING DEVICES     I A. RATED CAPACITY     (Mod     B. CAPACITY     (Mod     COMMINUTING DEVICES     I A. RATED CAPACITY     (Mod     COMMINUTING DEVICES     I A. RATED CAPACITY     (Mod     COMMINUTING DEVICES     ADE CHANNEL WITH     COMMINUTING DEVICES     ADE CHANNEL PROVIDED WITH AUGMATIC DIVERSION OF     FACH COMMINUTING UNITT     ARE PROVIDED WITH NECESSARY GATES TO DIVERT FLOW FROM     S. GENERAL INFORMATION - COMMINUTING DEVICES     ARE PROVIDED WITH NECESSARY GATES TO DIVERT FLOW FROM     S. GENERAL INFORMATION - COMMINUTING DEVICES     ARE PROVIDED WITH NECESSARY GATES TO DIVERT FLOW FROM     S. GATERIAL INFORMATION - COMMINUTING DEVICES     ARE PROVIDED WITH NECESSARY GATES TO DIVERT FLOW FROM     S. IS AN AUXILIARY BAR SCREEN PROVIDED WITH AUTOMATIC DIVERSION OF     FACH COMMINUTING UNIT?     ARE UNITS LOCATED IN DEFERING PROVIDED WITH AUTOMATIC DIVERSION OF     S. IS AN AUXILIARY BAR SCREEN PROVIDED WITH AUTOMATIC DIVERSION OF     S. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS7     Yee     No     No     NO     NO     NO     SUBJECT CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS7     Yee     No     SEQUATE LIGHTING, AND VENTILATION?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2-28-74       WATER POLLUTION CONTROL         MODULE 11 - SCREENING AND<br>COMMINUTING DEVICES       For Department Use Only         A GENERAL INFORMATION - SCREENING (CONTINUED)       A RE PROVISIONS MADE TO DEWATER EACH UNIT?       Yes       No         A IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?       Yes       No       No         ***6. ARE UNITS LOCATED IN DEEP PYTS PROVIDED WITH STAIRWAY ACCESS,<br>ADEQUATE LIGHTING AND VENTLATION, AND ADEQUATE MEANS FOR<br>REMOVAL OF SCREENINGS?       Yes       No       No/         TABLE II<br>COMMINUTING DEVICES       UNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITNONO         TABLE II<br>COMMINUTING DEVICES       UNITUNITUNITNONONO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [סי  | R710.046.11<br>ATE PREPARED                                                           | COMMONY<br>DEPARTMENT<br>WATER                               | EALTH OF PENNSYL<br>OF ENVIRONMENTAL<br>QUALITY MANAGEM | VANIA<br>RESOURCES                    |                      |                   |
| DATE REVISED       MODULE 11 - SCREENING AND<br>COMMINUTING DEVICES       For Department Use Only         A GENERAL INFORMATION - SCREENING (CONTINUED)       A. ARE PROVISIONS MADE TO DE-WATER EACH UNITY       Image: Screening (Continued)         3. ARE PROVISIONS MADE TO DE-WATER EACH UNITY       Image: Screening (Continued)       Image: Screening (Continued)         4. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS7       Image: Screening (Continued)       Image: Screening (Continued)         ***5. ARE UNITS LOCATED IN DEEP PITS PROVIDED WITH BTAIRWAY ACCESS, ARE ONLY CONTING AND VENTILATION, AND ADEQUATE MEANS FOR REMOVAL OF SCREENINGS7       Image: Screening (Continued)         *** Only Severage Applicants       Image: Screening (Continued)       Image: Screening (Continued)         *** Only Severage Applicants       Image: Screening (Continued)       Image: Screening (Continued)         *** Only Severage Applicants       Image: Screening (Continued)       Image: Screening (Continued)         *** Only Severage Applicants       Image: Screening (Continued)       Image: Screening (Continued)         *** Only Severage Applicants       Image: Screening (Continued)       Image: Screening (Continued)         *** Only Severage Applicants       Image: Screening (Continued)       Image: Screening (Continued)       Image: Screening (Continued)         *** Only Severage Applicants       Image: Screening (Continued)       Image: Screening (Conting)       Image: Screening (Continu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DATE REVISED       MODULE 11 - SCREENING AND<br>COMMINUTING DEVICES         A GENERAL INFORMATION - SCREENING (CONTINUED)         3. ARE PROVISIONS MADE TO DEWATER EACH UNITT         4. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS7         INS. ARE UNITS LOCATED IN DEEP PITS PROVIDED WITH STAIRWAY ACCESS,<br>ADDUATE LIGHTING AND VENTLATION, AND ADEQUATE MEANS FOR<br>REMOVAL OF SCREENINGS7         TABLE II         DOMINIUTING DEVICES         II A. RATED CAPACITY         INT         S. CAPACITY PANGE         Must         II A. RATED CAPACITY         III A. RATED CAPACITY         III A. RATED CAPACITY         III A. RATED CAPACITY         III A. RATED CAPACITY         IIII A. RATED CAPACITY         IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      | 2-28-74                                                                               | WATER POLILITION CONTROL                                     |                                                         |                                       |                      |                   |
| MODULE 11 - SCREENING AND<br>COMMUNUTING DEVICES         A GENERAL INFORMATION - SCREENING (CONTINUED)         3. ARE PROVISIONS MADE TO DEWATER EACH UNITT         4. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?         INF. ARE UNITS LOCATED IN DEEP PITS PROVIDED WITH STAIRWAY ACCESS,<br>ADEQUATE LIGHTING AND VENTILATION, AND ADEQUATE MEANS FOR<br>REMOVAL OF SCREENINGS?         INF. ONLY SUMMARY ADD VENTILATION, AND ADEQUATE MEANS FOR<br>REMOVAL OF SCREENINGS?         INF. ONLY SUMMARY ADD VENTILATION, AND ADEQUATE MEANS FOR<br>REMOVAL OF SCREENINGS?         INF. ONLY SUMMARY ADD VENTILATION, AND ADEQUATE MEANS FOR<br>REMOVAL OF SCREENINGS?         INF. ONLY SUMMARY ADD VENTILATION, AND ADEQUATE MEANS FOR<br>REMOVAL OF SCREENINGS?         INF. ONLY SUMMARY ADD VENTILATION, AND ADEQUATE MEANS FOR<br>REMOVAL OF SCREENINGS?         INF. ONLY SUMMARY ADD VENTILATION, AND ADEQUATE MEANS FOR<br>REMOVAL OF SCREENINGS?         INF. ONLY SUMMARY ADD VENTILATION, AND ADEQUATE MEANS FOR<br>REMOVAL OF SCREENINGS?         INF. ONLY SUMMARY AND VENTILATION, AND ADEQUATE MEANS FOR<br>REMOVAL OF SCREENINGS?         INF. ONLY SUMMARY AND VENTILATION EXERT<br>PROPOSED         INF. ONLY SUMMARY AND VENTILATION SEWER<br>AND THE INVERT OF THE INCOMING SEWER<br>AND THE INVERT OF THE SCREEN AND VENTILATION EXERT FLOW FROM<br>PROPOSED         INF. CREAL INFORMATION - COMMINUTING DEVICES         I. ARE CHANNEL SPONDED WITH NECESSARY GATES TO DIVERT FLOW FROM<br>EACH COMMINUTING UNITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MODULE 11 - SCREEMING (AND       If the Deptimination of Solids         A       GENERAL INFORMATION - SCREENING (CONTINUED)         3. ARE PROVISIONS MADE TO DE-WATER EACH UNIT?       If is inlet channel designed to Prevent DEPOSITION OF SOLIDS?         4. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?       If velocity         ***5. ARE UNITS LOCATED IN DEEP PITS PROVIDED WITH STAIRWAY ACCESS, ADEGUATE LIGHTING AND VENTILATION, AND ADEGUATE MEANS FOR REMOVAL OF SCREENINGS?       If velocity         **** Only Sowerge Applicants       UNIT       UNIT       UNIT         **** Only Sowerge Applicants       Existing       Existing       Existing         **** Only Sowerge Applicants       If A. RATED CAPACITY       If well       If it is the ison of the schemen and composed         **** Only Sowerge Applicants       If well       If is a capacity is a composed       If it is a composed       If it is a composed         **** Only Sowerge Applicants       If is a capacity shange       (Mpd)       If is a composed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . D/ | ATE REVISED                                                                           |                                                              | 02201.011 001                                           | F                                     | ar Danastmant Han () |                   |
| A       GENERAL INFORMATION - SCREENING (CONTINUED)         3.       ARE FROVISIONS MADE TO DEWATER EACH UNIT?       Image: Stress of the str                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A. GENERAL INFORMATION - SCREENING (CONTINUED)         3. ARE PROVISIONS MADE TO DEWATER EACH UNITT         4. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS7         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         ****         *****         ************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L    |                                                                                       |                                                              | E 11 – SCREENING<br>MINUTING DEVICE                     | AND <u>L'</u>                         | or Deportation Ose O | ат <i>у</i>       |
| 2. ARE PROVISIONS MADE TO DEWATER EACH UNIT?       Image: Strategy and Strategy a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3. ARE PROVISIONS MADE TO DE-WATER EACH UNITY       Image: Strategy and Strategy                        | LA   | GENERAL INFORMAT                                                                      | ION - SCREENING                                              | CONTINUED)                                              | <u> </u>                              | •                    |                   |
| 3. ARE PROVISIONS MADE TO DE-WATER EACH UNIT? Image: Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3. ARE PROVISIONS MADE TO DE-WATER EACH UNIT? Image: Second State |      | · <b>····································</b>                                         | ······································                       |                                                         |                                       | •                    |                   |
| A. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS7       Image: Solid Soli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLID37       Image: Solid Soli                       |      | 3. ARE PROVISIONS                                                                     | ADE TO DE-WATER                                              | EACH UNIT?                                              | •                                     | X Yes                | No                |
| ***5. ARE UNITS LOCATED IN DEEP PITS PROVIDED WITH STAIRWAY ACCESS, ADEQUATE LIGHTING AND VENTILATION, AND ADEQUATE MEANS FOR REMOVAL OF SCREENINGS?   *** Only Sewenge Applicants   TABLE II   COMMINUTING DEVICES   B. CAPACITY   CAPACITY RANGE   I. A. RATED CAPACITY   (Mgd)   B. CAPACITY RANGE   COMMINUTING CHANNEL   COMMINUTING CHANNEL   (Mgd)   B. CAPACITY RANGE   COMMINUTING CHANNEL   COMMINUTING CHANNEL <tr< td=""><td>****       ARE UNITS LOCATED IN DEEP PITS PROVIDED WITH STAIRWAY ACCESS, ADEQUATE LIGHTING AND VENTILATION, AND ADEQUATE MEANS FOR REMOVAL OF SCREENINGS?       Image: Constraint of the constraint</td><td></td><td>4. IS INLET CHANNES</td><td>DESIGNED TO PRE</td><td>VENT DEPOSITION O</td><td>F. SOLIDS?</td><td>X Yes</td><td>No No</td></tr<> | ****       ARE UNITS LOCATED IN DEEP PITS PROVIDED WITH STAIRWAY ACCESS, ADEQUATE LIGHTING AND VENTILATION, AND ADEQUATE MEANS FOR REMOVAL OF SCREENINGS?       Image: Constraint of the constraint                                 |      | 4. IS INLET CHANNES                                                                   | DESIGNED TO PRE                                              | VENT DEPOSITION O                                       | F. SOLIDS?                            | X Yes                | No No             |
| TABLE II     UNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TABLE II     UNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNIT_UNUTING DEVICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •    | **5. ARE UNITS LOCAT<br>ADEQUATE LIGHT<br>REMOVAL OF SCR                              | ED IN DEEP PITS PR<br>ING AND VENTILAT<br>EENINGS7           | OVIDED WITH STAIR<br>ION, AND ADEQUAT                   | WAY ACCESS,<br>E MEANS FOR            | X Yes                | No N//            |
| TABLE 11<br>COMMINUTING DEVICES       UNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNIT_UNG CHANNEL UNIT         8.       GENERAL INFORMATION DETWEEN<br>AND THE INVERT OF THE INCOMING SEWER<br>AND THE INVERT OF THE SCREEN AND<br>COMMINUTING CHANNEL UNIT         9.       GENERAL INFORMATION - COMMINUTING DEVICES         1.       ARE CHANNELS PROVIDED WITH NECESSARY GATES TO DIVERT FLOW FROM<br>EACH COMMINUTING UNIT?         2.       ARE PROVISIONS MADE TO DE-WATER EACH UNIT?         3.       IS AN AUXILIARY BAR SCREEN PROVIDED WITH AUTOMATIC DIVERSION OF<br>FLOW WHEN COMMINUTING DEVICE FAILS?         4.       IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?         ***5.       ARE UNITS LOCATED IN DEEP PITS PROVIDED WITH STAIRWAY ACCESS,<br>ADEQUATE LIGHTING, AND VENTILATION?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TABLE II       UNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITUNITNNITNNITNNITUNITNNITNNITNNIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                                                                       | ~                                                            |                                                         | •                                     | *** Only Se          | werage Applicants |
| DOMMINUTING DEVICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DUMMINUTING DEVICES       EXISTING       EXISTING       EXISTING       EXISTING       EXISTING       EXISTING       EXISTING       EXISTING       PROPOSED       PROPOSED <td>T/</td> <td>ABLE II</td> <td></td> <td>UNIT</td> <td>UNIT</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T/   | ABLE II                                                                               |                                                              | UNIT                                                    | UNIT                                  |                      |                   |
| Not Applicable       PROPOSED       PROPOSED       PROPOSED       PROPOSED         1       A. RATED CAPACITY       (Mgd)         B. CAPACITY RANGE       (Mgd)         2. DIFFERENCE IN ELEVATION BETWEEN<br>THE INVERT OF THE INCOMING SEWER<br>AND THE INVERT OF THE SCREEN AND<br>COMMINUTING CHANNEL       (Mgd)         3. DIFFERENCE IN ELEVATION BETWEEN<br>THE INVERT OF THE SCREEN AND<br>COMMINUTING CHANNEL       (III)         B. GENERAL INFORMATION - COMMINUTING DEVICES         1. ARE CHANNELS PROVIDED WITH NECESSARY GATES TO DIVERT FLOW FROM<br>EACH COMMINUTING UNIT?         2. ARE PROVISIONS MADE TO DE-WATER EACH UNIT?         3. IS AN AUXILIARY BAR SCREEN PROVIDED WITH AUTOMATIC DIVERSION OF<br>FLOW WHEN COMMINUTING DEVICE FAILS?         4. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?         ***5. ARE UNITS LOCATED IN DEEP PITS PROVIDED WITH STAIRWAY ACCESS,<br>ADEQUATE LIGHTING, AND VENTILATION?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Not Applicable       PROPOSED       Dot NUC       PROPOSED       PROPOSED       PROPOSED       PROPOSED         1       A. FATED CAPACITY       (Mgd)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | OMMINUTING DEVICES                                                                    |                                                              |                                                         |                                       | EXISTING             | EVISTING          |
| 1       A. BATED CAPACITY       (Mgd)         B. CAPACITY RANGE       (Mgd)         2. DIFFERENCE IN ELEVATION BETWEEN<br>THE INVERT OF THE INCOMING SEWER<br>AND THE INVERT OF THE INCOMING SEWER<br>AND THE INVERT OF THE SCREEN AND<br>COMMINITING CHANNEL       (III)         B. GENERAL INFORMATION - COMMINUTING DEVICES       (III)         B. GENERAL INFORMATION - COMMINUTING DEVICES       (III)         2. ARE CHANNELS PROVIDED WITH NECESSARY GATES TO DIVERT FLOW FROM<br>EACH COMMINUTING UNIT?       Yes         2. ARE PROVISIONS MADE TO DE-WATER EACH UNIT?       Yes         3. IS AN AUXILIARY BAR SCREEN PROVIDED WITH AUTOMATIC DIVERSION OF<br>FLOW WHEN COMMINUTING DEVICE FAILS?       No         4. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?       Yes       No         ***5. ARE UNITS LOCATED IN DEEP PITS PROVIDED WITH STAIRWAY ACCESS,<br>ADEQUATE LIGHTING, AND VENTILATION?       Yes       No         **** Only Sewerage Applicant:       **** Only Sewerage Applicant:       **** Only Sewerage Applicant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1       A. RATED CAPACITY       (Mgd)         B. CAPACITY RANGE       (Mgd)         2. DIFFERENCE IN ELEVATION BETWEEN<br>THE INVERT OF THE INCOMING SEWER<br>AND THE INVERT OF THE INCOMING SEWER<br>AND THE INVERT OF THE SCREEN AND<br>COMMINITING CHANNEL       (In)         B. GENERAL INFORMATION - COMMINUTING DEVICES       (In)         B. GENERAL INFORMATION - COMMINUTING DEVICES         1. ARE CHANNELS PROVIDED WITH NECESSARY GATES TO DIVERT FLOW FROM<br>EACH COMMINUTING UNIT?         2. ARE PROVISIONS MADE TO DE-WATER EACH UNIT?         3. IS AN AUXILIARY BAR SCREEN PROVIDED WITH AUTOMATIC DIVERSION OF<br>FLOW WHEN COMMINUTING DEVICE FAILS?         4. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?         •*** D. ARE UNITS LOCATED IN DEEP PITS PROVIDED WITH STAIRWAY ACCESS,<br>ADEQUATE LIGHTING, AND VENTILATION?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      | Not Applicat                                                                          | le                                                           | PROPOSED                                                | PROPOSED                              | PROPOSED             | PROPOSE           |
| B. CAPACITY RANGE       (Mgd)         2. DIFFERENCE IN ELEVATION BETWEEN<br>THE INVERT OF THE INCOMING SEWER<br>AND THE INVERT OF THE SCREEN AND<br>COMMINITING CHANNEL       (III)         B. GENERAL INFORMATION - COMMINUTING DEVICES         1. ARE CHANNELS PROVIDED WITH NECESSARY GATES TO DIVERT FLOW FROM<br>EACH COMMINUTING UNIT?       Yes       No         2. ARE PROVISIONS MADE TO DE-WATER EACH UNIT?       Yes       No         3. IS AN AUXILIARY BAR SCREEN PROVIDED WITH AUTOMATIC DIVERSION OF<br>FLOW WHEN COMMINUTING DEVICE FAILS?       Yes       No         4. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?       Yes       No         **** Only Sewerage Applicants       Yes       No       N//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | B. CAPACITY RANGE       (Mgd)         2. DIFFERENCE IN ELEVATION BETWEEN<br>THE INVERT OF THE INCOMING SEWER<br>AND THE INVERT OF THE SCREEN AND<br>COMMINUTING CHANNEL       (In)         B. GENERAL INFORMATION - COMMINUTING DEVICES       (In)         3. ARE CHANNELS PROVIDED WITH NECESSARY GATES TO DIVERT FLOW FROM<br>EACH COMMINUTING UNIT?       Yes         2. ARE PROVISIONS MADE TO DE-WATER EACH UNIT?       Yes         3. IS AN AUXILIARY BAR SCREEN PROVIDED WITH AUTOMATIC DIVERSION OF<br>FLOW WHEN COMMINUTING DEVICE FAILS?       No         4. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?       Yes       No         **** DATE UNITS LOCATED IN DEEP PITS PROVIDED WITH STAIRWAY ACCESS,<br>ADEQUATE LIGHTING, AND VENTILATION?       Yes       No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1    | A. RATED CAPACITY                                                                     | (Mgd)                                                        |                                                         |                                       |                      |                   |
| 2. DIFFERENCE IN ELEVATION BETWEEN<br>THE INVERT OF THE INCOMING SEWER<br>AND THE INVERT OF THE ISCREEN AND<br>COMMINUTING CHANNEL (IN)   3. GENERAL INFORMATION - COMMINUTING DEVICES   1. ARE CHANNELS PROVIDED WITH NECESSARY GATES TO DIVERT FLOW FROM<br>EACH COMMINUTING UNIT?   2. ARE PROVISIONS MADE TO DE-WATER EACH UNIT?   3. IS AN AUXILIARY BAR SCREEN PROVIDED WITH AUTOMATIC DIVERSION OF<br>FLOW WHEN COMMINUTING DEVICE FAILS?   4. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?   ••••• Only Sewerage Applicants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2. DIFFERENCE IN ELEVATION BETWEEN<br>THE INVERT OF THE INCOMINO SEWER<br>AND THE INVERT OF THE ISCREEN AND<br>COMMINITING CHANNEL IIII   3. GENERAL INFORMATION - COMMINUTING DEVICES   1. ARE CHANNELS PROVIDED WITH NECESSARY GATES TO DIVERT FLOW FROM<br>EACH COMMINUTING UNIT?   2. ARE PROVISIONS MADE TO DE-WATER EACH UNIT?   3. IS AN AUXILIARY BAR SCREEN PROVIDED WITH AUTOMATIC DIVERSION OF<br>FLOW WHEN COMMINUTING DEVICE FAILS?   4. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?   ••••• Only Sewerage Applicant:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ì    | B. CAPACITY BANGE                                                                     | (Mgd)                                                        | · ·                                                     |                                       |                      |                   |
| B. GENERAL INFORMATION - COMMINUTING DEVICES         1. ARE CHANNELS PROVIDED WITH NECESSARY GATES TO DIVERT FLOW FROM       Yes         PROVISIONS MADE TO DE-WATER EACH UNIT?       Yes         2. ARE PROVISIONS MADE TO DE-WATER EACH UNIT?       Yes         3. IS AN AUXILIARY BAR SCREEN PROVIDED WITH AUTOMATIC DIVERSION OF       Yes         FLOW WHEN COMMINUTING DEVICE FAILS?       No         4. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?       Yes         ***5. ARE UNITS LOCATED IN DEEP PITS PROVIDED WITH STAIRWAY ACCESS, ADEQUATE LIGHTING, AND VENTILATION?       No         **** Only Sewerage Applicants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B. GENERAL INFORMATION - COMMINUTING DEVICES         1. ARE CHANNELS PROVIDED WITH NECESSARY GATES TO DIVERT FLOW FROM         Provisions Made to DE-WATER EACH UNIT?         2. ARE PROVISIONS MADE TO DE-WATER EACH UNIT?         3. IS AN AUXILIARY BAR SCREEN PROVIDED WITH AUTOMATIC DIVERSION OF         FLOW WHEN COMMINUTING DEVICE FAILS?         4. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?         ****5. ARE UNITS LOCATED IN DEEP PITS PROVIDED WITH STAIRWAY ACCESS, ADEQUATE LIGHTING, AND VENTILATION?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2    | 2. DIFFERENCE IN ELEV<br>THE INVERT OF THE I<br>AND THE INVERT OF<br>COMMINUTING CHAN | ATION BETWEEN<br>NCOMING SEWER<br>THE SCREEN AND<br>NEL (IN) |                                                         |                                       |                      |                   |
| 1. ARE CHANNELS PROVIDED WITH NECESSARY GATES TO DIVERT FLOW FROM       Yes       No       N//         2. ARE PROVISIONS MADE TO DE-WATER EACH UNIT?       Yes       No         3. IS AN AUXILIARY BAR SCREEN PROVIDED WITH AUTOMATIC DIVERSION OF       Yes       No         FLOW WHEN COMMINUTING DEVICE FAILS?       Yes       No         4. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?       Yes       No         ***5. ARE UNITS LOCATED IN DEEP PITS PROVIDED WITH STAIRWAY ACCESS, ADEQUATE LIGHTING, AND VENTILATION?       No       N//                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1. ARE CHANNELS PROVIDED WITH NECESSARY GATES TO DIVERT FLOW FROM       Yes       No       N//         2. ARE PROVISIONS MADE TO DE-WATER EACH UNIT?       Yes       No         3. IS AN AUXILIARY BAR SCREEN PROVIDED WITH AUTOMATIC DIVERSION OF       Yes       No         FLOW WHEN COMMINUTING DEVICE FAILS?       No       Yes       No         4. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?       Yes       No         ****5. ARE UNITS LOCATED IN DEEP PITS PROVIDED WITH STAIRWAY ACCESS, ADEQUATE LIGHTING, AND VENTILATION?       No       N//         **** Only Sewerage Applicants       **** Only Sewerage Applicants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . В. | GENERAL INFORMAT                                                                      |                                                              | G DEVICES                                               | · · · · · · · · · · · · · · · · · · · | J                    |                   |
| 2. ARE PROVISIONS MADE TO DE-WATER EACH UNIT?       □ Yes       □ No         3. IS AN AUXILIARY BAR SCREEN PROVIDED WITH AUTOMATIC DIVERSION OF FLOW WHEN COMMINUTING DEVICE FAILS?       □ Yes       □ No         4. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?       □ Yes       □ No         ****5. ARE UNITS LOCATED IN DEEP PITS PROVIDED WITH STAIRWAY ACCESS, ADEQUATE LIGHTING, AND VENTILATION?       □ Yes       □ No         **** Only Sewerage Applicants       ****                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2. ARE PROVISIONS MADE TO DE-WATER EACH UNIT?       Yes       No         3. IS AN AUXILIARY BAR SCREEN PROVIDED WITH AUTOMATIC DIVERSION OF       Yes       No         FLOW WHEN COMMINUTING DEVICE FAILS?       Yes       No         4. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?       Yes       No         ***5. ARE UNITS LOCATED IN DEEP PITS PROVIDED WITH STAIRWAY ACCESS, ADEQUATE LIGHTING, AND VENTILATION?       Yes       No         **** Only Sewerage Applicants       ****       Only Severage Applicants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •    | 1. ARE CHANNELS PE<br>EACH COMMINUTI                                                  | IOVIDED WITH NECI<br>NG UNIT?                                | ESSARY GATES TO D                                       | VERT FLOW FROM                        | Yes Yes              | No N/A            |
| <ul> <li>2. ARE PROVISIONS MADE TO DE-WATER EACH UNIT?</li> <li>3. IS AN AUXILIARY BAR SCREEN PROVIDED WITH AUTOMATIC DIVERSION OF<br/>FLOW WHEN COMMINUTING DEVICE FAILS?</li> <li>4. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?</li> <li>***5. ARE UNITS LOCATED IN DEEP PITS PROVIDED WITH STAIRWAY ACCESS,<br/>ADEQUATE LIGHTING, AND VENTILATION?</li> <li>**** Only Sewerage Applicants</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <ol> <li>ARE PROVISIONS MADE TO DE-WATER EACH UNIT?</li> <li>IS AN AUXILIARY BAR SCREEN PROVIDED WITH AUTOMATIC DIVERSION OF<br/>FLOW WHEN COMMINUTING DEVICE FAILS?</li> <li>IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?</li> <li>Yes No</li> <li>Yes No</li> <li>Yes No</li> <li>Yes No</li> <li>Yes No</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                                                                                       |                                                              |                                                         | •                                     | <b></b>              |                   |
| 3. IS AN AUXILIARY BAR SCREEN PROVIDED WITH AUTOMATIC DIVERSION OF       Image: Comparison of the state of t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3. IS AN AUXILIARY BAR SCREEN PROVIDED WITH AUTOMATIC DIVERSION OF       Yes       No         FLOW WHEN COMMINUTING DEVICE FAILS?       Yes       No         4. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?       Yes       No         ****5. ARE UNITS LOCATED IN DEEP PITS PROVIDED WITH STAIRWAY ACCESS,<br>ADEQUATE LIGHTING, AND VENTILATION?       Yes       No         **** Only Sewerage Applicants       ****       Only Sewerage Applicants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ļ    | 2. ARE PROVISIONS N                                                                   | ADE TO DE-WATER                                              | EACH UNIT?                                              | • .                                   | Yes                  | No .              |
| 4. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4. IS INLET CHANNEL DESIGNED TO PREVENT DEPOSITION OF SOLIDS?       Image: Solid Stress and                       | · -  | 3. IS AN AUXILIARY<br>FLOW WHEN COMM                                                  | BAR SCREEN PROVI                                             | DED WITH AUTOMAT<br>AILS?                               | IC DIVERSION OF                       | Yes                  | No                |
| ••••5. ARE UNITS LOCATED IN DEEP PITS PROVIDED WITH STAIRWAY ACCESS,<br>ADEQUATE LIGHTING, AND VENTILATION?<br>••••• Only Sewerage Applicants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ••••5. ARE UNITS LOCATED IN DEEP PITS PROVIDED WITH STAIRWAY ACCESS,<br>ADEQUATE LIGHTING, AND VENTILATION?<br>••••• Only Sewerage Applicants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |      | 4. IS INLET CHANNEL                                                                   | . DESIGNED TO PRE                                            | VENT DEPOSITION O                                       | F SOLIDS?                             | Yes                  | No                |
| •••• Only Sewerage Applicants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •••• Only Sewerage Applicants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •    | **5. ARE UNITS LOCAT<br>ADEQUATE LIGHT                                                | ED IN DEEP PITS PR                                           | OVIDED WITH STAIR                                       | WAY ACCESS,                           | Yes                  | No N/4            |
| •••• Only Sewerage Applicants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | •** Only Sewerage Applicants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                                                       |                                                              |                                                         |                                       |                      | -                 |
| *** Only Sewerage Applicants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | *** Only Sewerage Applicants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                                                                       | · ·                                                          |                                                         | · .                                   |                      | •                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | •<br>•                                                                                |                                                              |                                                         | ·                                     | •** Only Set         | werage Applicants |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                                                                       |                                                              |                                                         |                                       |                      |                   |

• •

.

.. h

· ·

## DELAWARE COUNTY REGIONAL WATER QUALITY CONTROL AUTHORITY DELAWARE COUNTY, PENNSYLVANIA ATTACHMENT NO. 1 PURPOSE AND DESCRIPTION OF PROJECT

1. The subject project is <u>another step</u> in a regional program to control pollution of streams from wastewaters originating in practically all 49 municipalities in Delaware County and several neighboring municipalities in Chester County. It is one of many projects recommended in a comprehensive report prepared by Albright & Friel, a Division of Betz Environmental Engineers, Inc., for the Delaware County Planning Commission entitled: "DELAWARE COUNTY REGIONAL SEWERAGE PROJECT", dated October 28, 1971. The following agencies coordinated their efforts in arriving at a solution to this regional project:

> Delaware County Planning Commission City of Philadelphia Delaware River Basin Commission Delaware Valley Regional Planning Commission Pennsylvania Department of Environmental Resources

The subject involves the expansion and rehabilitation of the existing pump station located at 2nd and Dock Streets in the City of Chester. In addition to rehabilitating the pump station, all existing pumps will be removed-and replaced. Two (2) sewage pumps plus one (1) spare, each of 27.5 MGD capacity @ 110 ft. TDH will be installed to pump sewage through a proposed 48" force main approximately 13,000 ft. to the proposed expanded and upgraded wastewater treatment plant in the City of Chester which will be constructed with Federal aid and for which bids were received February 19, 1974. One (1) additional pump plus one spare, each of 10 MGD capacity will also be installed to automatically pump all flows exceeding 55 MGD directly to Chester Creek. This pumping station will have capacity to pump sewage from portions of the City of Chester and all or part of the following municipalities: Borough of Brookhaven, Ridley Twp, Borough of Rose Valley, Borough of Parkside, Nether Providence Twp, and Upland Borough. In addition, it will have capacity to receive industrial wastewaters from the Scott Paper Company in the City of Chester and sewage from the Borough of Eddystone, thereby enabling the future "phasing out" of the existing primary wastewater treatment plant of the Borough of Eddystone.

The project will be a major factor in promoting the improvement of water quality in the Delaware River, which is an interstate and tidal stream used as a major source of industrial water; for propagation of fish, aquatic life and wildlife; and for recreational, agricultural and other legitimate uses. Available or existing facilities of the existing pumping station and its grit chamber which were constructed in 1929 and modified in 1939 will be used to the fullest extent possible. Modifications will include new pumping units, mechanically cleaned grit chamber, and new grit cleaning facilities and various structural rehabilitations. The existing 36" force main which now operates under a relatively low pressure has been subject to numerous failures. The now proposed 47" main will be considerably longer and operating at a much higher pressure pumping directly to the expanded and upgraded treatment plant which will be elevated to a higher elevation than the existing primary treatment plant.



March 7, 2016

CERTIFIED MAIL NO. 7015 0640 0002 9146 7095

Mr. Bill Messic Project Manager Rose Hill Developers, LP 1 Raymond Drive Havertown, PA 19083

MAR 1 1 2018 BY: 2016-0337 MJD EB

Re: WQM Permit - Sewage Rose Hill Pump Station Permit No. WQG02231601 Authorization ID No. 1106700 Chester Heights Borough Delaware County

Dear Mr. Messic:

Your Water Quality Management (WQM) permit is enclosed. You must comply with all Standard and Special Conditions attached to this Permit. Construction must be done in accordance with the permit application and all supporting documentation. Please review the permit conditions and the supporting documentation submitted with your application before starting construction.

Please note that you are responsible for securing all other required permits, approvals and/or registrations associated with the project, if applicable, under Chapters 102 (erosion and sedimentation control), 105 (stream obstructions and encroachments) and 106 (floodplains) of DEP's regulations. Construction may not proceed until all other required permits have been obtained.

Enclosed is the "Water Quality Management Post Construction Certification" form. A Pennsylvania-registered Professional Engineer must sign and complete this form prior to startup of the facilities. You or your authorized representative must also sign the form. This certification and other post-construction documentation must be submitted to DEP within 30 days of completion of the project and must be received by DEP prior to commencing operation of the facilities. Any person aggrieved by this action may appeal, pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. Section 7514, and the Administrative Agency Law, 2 Pa.C.S. Chapter 5A, to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, P.O. Box 8457, Harrisburg, PA 17105-8457, 717.787.3483. TDD users may contact the Board through the Pennsylvania Relay Service, 800.654.5984. Appeals must be filed with the Environmental Hearing Board within 30 days of receipt of written notice of this action unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in braille or on audiotape from the Secretary to the Board at 717.787.3483. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law.

IF YOU WANT TO CHALLENGE THIS ACTION, YOUR APPEAL MUST REACH THE BOARD WITHIN 30 DAYS. YOU DO NOT NEED A LAWYER TO FILE AN APPEAL WITH THE BOARD.

IMPORTANT LEGAL RIGHTS ARE AT STAKE, HOWEVER, SO YOU SHOULD SHOW THIS DOCUMENT TO A LAWYER AT ONCE. IF YOU CANNOT AFFORD A LAWYER, YOU MAY QUALIFY FOR FREE PRO BONO REPRESENTATION. CALL THE SECRETARY TO THE BOARD (717.787.3483) FOR MORE INFORMATION.

If you have any questions, please contact Mr. James Roth at 484.250.5169.

Sincerely,

Jenifer Fields, P.E. Regional Manager Clean Water

Enclosures

 cc: Chester Heights Borough SWDCMA
 DELCORA
 Mr. Ciocco, P.E. - Catania Engineering Associates, Inc. Operations Re 30 (GJE16CLW)054-3 3800-PM-WSFR0045f 6/2005 Permit Pennsylvania DEPARTMENT OF ENVIRONMENTAL PROTECTION

.

#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER STANDARDS AND FACILITY REGULATION

# WQG-02 WATER QUALITY MANAGEMENT GENERAL PERMIT FOR SEWER EXTENSIONS AND PUMP STATIONS

## PERMIT NUMBER WQG02231510

| Α. | PERMITTEE (Name and Address):                                                                                                                                                                                                                                                                                        | B. PROJECT/FACILITY (Name):                               |  |  |  |  |  |  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|--|--|--|--|
|    | Rose Hill Developers, LP<br>1 Raymond Drive                                                                                                                                                                                                                                                                          | PF: Southwest Delaware County Municipal<br>Authority WWTP |  |  |  |  |  |  |
|    | Havertown, PA 19083                                                                                                                                                                                                                                                                                                  | SF: Rose Hill Development Pump Station                    |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                      | C. LOCATION (County, Municipality):                       |  |  |  |  |  |  |
|    | CLIENT ID# 325865                                                                                                                                                                                                                                                                                                    | Chester Heights Borough, Delaware County                  |  |  |  |  |  |  |
| D. | This General Permit approves the construction and operati                                                                                                                                                                                                                                                            | on of:                                                    |  |  |  |  |  |  |
|    | SEWER EXTENSION                                                                                                                                                                                                                                                                                                      |                                                           |  |  |  |  |  |  |
|    | DUMP STATION                                                                                                                                                                                                                                                                                                         |                                                           |  |  |  |  |  |  |
| E. | APPROVAL GRANTED BY THIS GENERAL PERMIT IS SUB                                                                                                                                                                                                                                                                       | JECT TO THE FOLLOWING:                                    |  |  |  |  |  |  |
|    | 1. All construction, operations and procedures shall be in <i>Manual.</i>                                                                                                                                                                                                                                            | accordance with the Domestic Wastewater Facilities        |  |  |  |  |  |  |
|    | <b>Transfers:</b> In the event the permittee plans to transfer ownership of the facility to another entity, the permittee and the transferee shall submit an application for such transfer to DEP. If the transfer is approved by DEP, the transferee is subject to the terms and conditions of this General Permit. |                                                           |  |  |  |  |  |  |
|    | 2. The attached conditions apply to this General Permit and an                                                                                                                                                                                                                                                       | e hereby made part of same.                               |  |  |  |  |  |  |
| F. | THE AUTHORITY GRANTED BY THIS PERMIT IS QUALIFICATIONS:                                                                                                                                                                                                                                                              | SUBJECT TO THE FOLLOWING FURTHER                          |  |  |  |  |  |  |
|    | 1. If there is a conflict between the NOI or its supporting documents and amendments and the attached conditions, the attached conditions shall apply.                                                                                                                                                               |                                                           |  |  |  |  |  |  |
|    | 2. Failure to comply with the rules and regulations of DEP or with the terms or conditions of this General Permit shall void the authority given to the permittee by the issuance of this General Permit.                                                                                                            |                                                           |  |  |  |  |  |  |
|    | 3. This General Permit is issued pursuant to the Clean Streams Law, Act of June 22, 1937, P.L. 1987, as amended 35 P.S. §691.1 <i>et seq.</i> Issuance of this General Permit shall not relieve the permittee of any responsibility under any other law.                                                             |                                                           |  |  |  |  |  |  |
| PE | RMIT ISSUED:                                                                                                                                                                                                                                                                                                         | BY: DR. QQ                                                |  |  |  |  |  |  |
|    | March 7, 2016                                                                                                                                                                                                                                                                                                        | TITLE: Clean Water Program Manager                        |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                      |                                                           |  |  |  |  |  |  |



# Pennsylvania Department of Environmental Protection

2 East Main Street Norristown, PA 19401 December 4, 2009

|        | -            |
|--------|--------------|
| Phone: | 484-250-5970 |
| Fax:   | 484-250-5971 |

Mr. David Debusschere FC Pennsylvania Stadium, LLC 322 A Street, Suite 300 Wilmington, DE 19801

Southeast Regional Office

Re:

e: Chester Soccer Stadium Pump Station Sewerage WQG02230908 File Type: Permit City of Chester Delaware County

Dear Mr. Debusschere:

Your permit is enclosed.

You must comply with all Standard and Special Conditions attached to this permit. Construction must be done in accordance with the permit application and all supporting documentation. Please review the permit conditions and the supporting documentation submitted with your application before starting construction.

An Operation and Maintenance Agreement between FC Pennsylvania LLC and the Delaware County Regional Authority for the Chester Soccer Stadium Pump Station must be finalized and signed to satisfy the Act 537 Planning requirements for this portion of the project. A copy of the signed O&M Agreement shall be submitted to the PA DEP, Water Management Planning Section prior to start-up of the pump station.

Enclosed is the "Sewage and Industrial Wastewater Facilities Construction Certification" form. A Pennsylvania-registered Professional Engineer must sign and complete this form prior to startup of the facilities (see Special Conditions). You or your authorized representative must also sign the form. This certification and other post-construction documentation must be submitted to the Department within 30 days following startup of the facilities. Mr. David Debusschere

Any person aggrieved by this action may appeal, pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. Section 7514, and the Administrative Agency Law, 2 Pa.C.S. Chapter 5A, to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, P.O. Box 8457, Harrisburg, PA 17105-8457, 717-787-3483. TDD users may contact the Board through the Pennsylvania Relay Service, 800-654-5984. Appeals must be filed with the Environmental Hearing Board within 30 days of receipt of written notice of this action unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in braille or on audiotape from the Secretary to the Board at 717-787-3483. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law.

IF YOU WANT TO CHALLENGE THIS ACTION, YOUR APPEAL MUST REACH THE BOARD WITHIN 30 DAYS. YOU DO NOT NEED A LAWYER TO FILE AN APPEAL WITH THE BOARD.

IMPORTANT LEGAL RIGHTS ARE AT STAKE, HOWEVER, SO YOU SHOULD SHOW THIS DOCUMENT TO A LAWYER AT ONCE. IF YOU CANNOT AFFORD A LAWYER, YOU MAY QUALIFY FOR FREE PRO BONO REPRESENTATION. CALL THE SECRETARY TO THE BOARD (717-787-3483) FOR MORE INFORMATION.

If you have any questions, please call Mr. David Talley at 484-250-5181.

Sincerely,

Jenifer Fields, P.E. Regional Manager Water Management

Enclosures

cc: Mr. Andrews – Pennoni Associates Operations Section Re (GJE09WQ)275-11

484 250 5971

| 3800-PM-WSFR0045f | 6/2005 |
|-------------------|--------|
| Permit            |        |

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER STANDARDS AND FACILITY REGULATION

| pennsylvania                                                                                                                                                                                                                                                                                                         |                                                                                                                               |  |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| WQG-02<br>WATER QUALITY MANAGEMENT<br>GENERAL PERMIT FOR SEWER EXTENSIONS AND PUMP STATIONS                                                                                                                                                                                                                          |                                                                                                                               |  |  |  |  |  |  |  |
| PERMIT NO. WQG                                                                                                                                                                                                                                                                                                       | 02230908                                                                                                                      |  |  |  |  |  |  |  |
| A. PERMITTEE (Name and Address):<br>FC Pennsylvania Stadium, LLC<br>322 A Street, Suite 300<br>Wilmington, DE 19801<br>CLIENT ID# 268226                                                                                                                                                                             | B. PROJECT/FACILITY (Name):<br>Chester Soccer Stadium Pump Station     C. LOCATION (County, Municipality):<br>City of Chester |  |  |  |  |  |  |  |
| D. This General Permit approves the construction and operation                                                                                                                                                                                                                                                       | on of:                                                                                                                        |  |  |  |  |  |  |  |
| SEWER EXTENSION     PUMP STATION                                                                                                                                                                                                                                                                                     |                                                                                                                               |  |  |  |  |  |  |  |
| E. APPROVAL GRANTED BY THIS GENERAL PERMIT IS SUB.                                                                                                                                                                                                                                                                   | JECT TO THE FOLLOWING;                                                                                                        |  |  |  |  |  |  |  |
| 1. All construction, operations and procedures shall be in Manual.                                                                                                                                                                                                                                                   | accordance with the Domestic Wastewater Facilities                                                                            |  |  |  |  |  |  |  |
| <b>Transfers:</b> In the event the permittee plans to transfer ownership of the facility to another entity, the permittee and the transferee shall submit an application for such transfer to DEP. If the transfer is approved by DEP, the transferee is subject to the terms and conditions of this General Permit. |                                                                                                                               |  |  |  |  |  |  |  |
| 2. The attached conditions apply to this General Permit and a                                                                                                                                                                                                                                                        | e hereby made part of same.                                                                                                   |  |  |  |  |  |  |  |
| F. THE AUTHORITY GRANTED BY THIS PERMIT IS SUBJECT<br>QUALIFICATIONS:                                                                                                                                                                                                                                                | TO THE FOLLOWING FURTHER                                                                                                      |  |  |  |  |  |  |  |
| <ol> <li>If there is a conflict between the NOI or its supporting docu<br/>the attached conditions shall apply.</li> </ol>                                                                                                                                                                                           | uments and amendments and the attached conditions,                                                                            |  |  |  |  |  |  |  |
| <ol><li>Failure to comply with the rules and regulations of DEP or v<br/>void the authority given to the permittee by the issuance of</li></ol>                                                                                                                                                                      | with the terms or conditions of this General Permit shall this General Permit.                                                |  |  |  |  |  |  |  |
| <ol> <li>This General Permit is issued pursuant to the Clean Streams Law, Act of June 22, 1937, P.L. 1987, as amended<br/>35 P.S. §691.1 et seq. Issuance of this General Permit shall not relieve the permittee of any responsibility under<br/>any other law.</li> </ol>                                           |                                                                                                                               |  |  |  |  |  |  |  |
| PERMIT ISSUED:                                                                                                                                                                                                                                                                                                       | BY: John Pull                                                                                                                 |  |  |  |  |  |  |  |
| December 4, 2009                                                                                                                                                                                                                                                                                                     | TITLE: Water Management Program Manager                                                                                       |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                      |                                                                                                                               |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                      |                                                                                                                               |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                      |                                                                                                                               |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                      | •                                                                                                                             |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                      |                                                                                                                               |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                      |                                                                                                                               |  |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                      |                                                                                                                               |  |  |  |  |  |  |  |

-1-

NA)
3800-PM-WSFR00451 6/2005 Permit Permit No. WQG02230908

#### 

- Consistent with DEP's technical guidance document Conducting Technical Reviews of Water Quality Management Permit Wastewater Treatment Facilities, DEP ID: 362-2000-007, available on DEP's website, DEP considers the registered professional engineer whose seal is affixed to the design documents to be fully responsible for the adequacy of all aspects of the facility's design.
- The approval is specifically made contingent on the permittee acquiring all necessary property rights, by easement
  or otherwise, providing for the satisfactory construction, operation, maintenance and replacement of all sewers or
  sewerage structures in, along or across private property with full rights of ingress, egress and regress.
- 3. If, at any time, the sewer extension and/or pump station covered by this General Permit creates a public nuisance, including but not limited to, causing malodors or causing environmental harm to waters of the Commonwealth, DEP may require the permittee to adopt appropriate remedial measures to abate the nuisance or harm.
- This permit does not relieve the permittee of its obligations to comply with all federal, interstate, state or local laws, ordinances and regulations applicable to the facilities.
- 5. This General Permit does not give any real or personal property rights or grant any exclusive privileges, nor shall it be construed to grant or confirm any right, easement or interest in, on, to, or over any lands which belong to the Commonwealth.
- No discharge is authorized from these facilities unless approved by an NPDES Permit.

#### 

7. An Erosion and Sedimentation (E&S) Control Plan must be developed prior to construction of the permitted facility, pursuant to Title 25 Pa. Code Chapter 102, and implemented during and after the earth disturbance activity.

If the activity involves 5 or more acres of earth disturbance, or from 1 to 5 acres of earth disturbance with a point source discharge to surface waters of the Commonwealth, an NPDES Permit is required.

In addition to the state NPDES permitting requirements, some municipalities, through local ordinances, require the E&S Control Plan to be reviewed and approved by the local county conservation district office prior to construction. For specific information regarding E&S control planning approval and NPDES permitting requirements please contact your local county conservation district office.

- Prior to beginning any construction or excavation, the locations of all utility lines must be identified through notification to the PA One Call system (<u>www.paonecall.org</u>). The notification shall not be less than three nor more than 10 working days in advance of beginning the construction or excavation.
- 9. The local waterways conservation officer of the Pennsylvania Fish and Boat Commission (PFBC) shall be notified when the construction of any stream crossing and/or outfall is started and completed. A written permit must be secured from the PFBC if there is any use of explosives in any waterways and the permittee shall notify the local waterways conservation officer when explosives are to be used.
- 10. Manhole inverts shall be formed to facilitate the flow of the sewage and to prevent the stranding of sewage solids. The whole manhole structure shall be built to prevent undue infiltration, entrance of street wash or grit and provide safe access to facilitate manhole maintenance activities.
- 11. The facilities shall be constructed under the supervision of a Pennsylvania registered Professional Engineer in accordance with the approved reports, plans and specifications.
- 12. A Pennsylvania registered Professional Engineer shall certify that construction of the permitted facilities was completed in accordance with the application and design plans submitted to DEP, using "Post Construction Certification" (3800-PM-WSWM0179a). It is the permittee's responsibility to ensure that a Professional Engineer is on-site to provide the necessary oversight and/or inspections to certify the facilities. The certification must be submitted to DEP before the facility is placed in operation. If requested, "as-built" drawings, photographs (if available) and a description of any DEP-approved deviations from the application and design plans must be submitted to DEP within 30 days of certification. Construction must be completed within two years of permit issue date.

-2-

p.5

#### 3800-PM-WSFR0045f 6/2005 Permit

#### Permit No. WQG02230908

#### 

- 13. The permittee shall maintain sewer extension and/or pump station operation and maintenance (O&M) manuals at the facility and ensure proper O&M of the permitted facility. The permittee shall file the O&M manuals with DEP upon.request
- 14. Stormwater from roofs, foundation drains, basement drains or other sources shall not be admitted directly to the sewer extension or pump station.
- 15. The sewer extension shall have adequate foundation support as soil conditions require. Trenches shall be backfilled to ensure that sewers will have proper structural stability, with minimal settling and adequate protection against breakage. Concrete used in connection with these sewers shall be protected from damage by water. freezing, drying or other harmful conditions until cured.
- 16. The approved sewer extensions and/or pump stations shall be maintained in good condition, kept free of deposits by flushing or other cleaning methods and repaired when necessary.
- 17. The sewer extension and/or pump station shall be properly operated and maintained so that the facility will perform as designed.
- 18. The attention of the permittee is called to the highly explosive nature of certain gases generated by the digestion of sewage solids when these gases are mixed in proper proportions with air and to the highly toxic character of certain gases arising from such digestion or from sewage in poorly ventilated compartments or sewers. Therefore, at all places throughout the facilities where hazard of fire, explosion or danger from toxic gases may occur, the permittee shall post conspicuous permanent and legible warnings. The permittee shall instruct all employees concerning the aforesaid hazards, first aid and emergency methods of meeting such hazards and shall make all necessary equipment and material accessible.
- 19. There shall be no physical connection between a public water supply system and a sewer or appurtenance to it which would permit the passage of any sewage or polluted water into the potable water supply. No water pipe shall pass through or come in contact with any part of the sewer extension and/or pump station.
- 20. Collected screenings; sluries, sludge and other solids shall be handled and disposed of in compliance with Title 25 Pa. Code, Chapters 271, 273, 275, 283 and 285 (related to permits and requirements for land filling, land application, incineration and storage of sewage sludge), Federal Regulations 40 CFR Part 257 and the Federal Clean Water Act and its amendments.

# Re 30 (GJE09WQ)275-11A

- 3



Southeast Regional Office

# Pennsylvania Department of Environmental Protection

| 2 East Main Street   |
|----------------------|
| Norristown, PA 19401 |
| December 7, 2009     |

Phone: 484-250-5970 Fax: 484-250-5971

Mr. Michael Hare FC Pennsylvania Stadium, LLC 322 A Street, Suite 300 Wilmington, DE 19801

| Chester Soccer Stadium Pump Station |
|-------------------------------------|
| Sewerage 2309410                    |
| <br>File Type: Permit               |
| City of Chester                     |
| Delaware County                     |

Dear Mr. Hare:

Your permit is enclosed.

You must comply with all Standard and Special Conditions attached to this permit. Construction must be done in accordance with the permit application and all supporting documentation. Please review the permit conditions and the supporting documentation submitted with your application before starting construction.

Re:

Enclosed is the "Sewage and Industrial Wastewater Facilities Construction Certification" form. A Pennsylvania-registered Professional Engineer must sign and complete this form prior to startup of the facilities (see Special Conditions). You or your authorized representative must also sign the form. This certification and other post-construction documentation must be submitted to the Department within 30 days following startup of the facilities.

Any person aggrieved by this action may appeal, pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. Section 7514, and the Administrative Agency Law, 2 Pa.C.S. Chapter SA, to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, P.O. Box 8457, Harrisburg, PA 17105-8457, 717-787-3483. TDD users may contact the Board through the Pennsylvania Relay Service, 800-654-5984. Appeals must be filed with the Environmental Hearing Board within 30 days of receipt of written notice of this action unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in braille or on audiotape from the Secretary to the Board at 717-787-3483. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law.

An Equal Opportunity Employer

#### www.dep.state.pa.us

Printed on Recycled Paper

Mr. Hare

IF YOU WANT TO CHALLENGE THIS ACTION, YOUR APPEAL MUST REACH THE BOARD WITHIN 30 DAYS. YOU DO NOT NEED A LAWYER TO FILE AN APPEAL WITH THE BOARD.

IMPORTANT LEGAL RIGHTS ARE AT STAKE, HOWEVER, SO YOU SHOULD SHOW THIS DOCUMENT TO A LAWYER AT ONCE. IF YOU CANNOT AFFORD A LAWYER, YOU MAY QUALIFY FOR FREE PRO BONO REPRESENTATION. CALL THE SECRETARY TO THE BOARD (717-787-3483) FOR MORE INFORMATION.

If you have any questions, please call David Talley at 484-250-5181.

Sincerely,

Jenifel Fields, P.E. Regional Manager Water Management

Enclosures

cc: Mr. Becker – RK&K Operations Section Re (GJE09WQ)329-6 .

484 250 5971 p.9

| 3800-PN-WSWM0015 Rev. 6/2004<br>Permit                                                                                                                | COMMONWEALTH OF<br>DEPARTMENT OF ENVIRON<br>BUREAU OF WATER SUPPLY AND V          | PENNSYLVANIA<br>MENTAL PROTECTION<br>VASTEWATER MANAGEMENT         | PERMIT NO. <u>2309410</u>                             |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------|--|
|                                                                                                                                                       | WATER QUALITY                                                                     | MANAGEMÈNT                                                         | APS ID 707616                                         |  |
| ·                                                                                                                                                     | PERN                                                                              | IIT ·                                                              | AUTH ID 814445                                        |  |
| <ul> <li>A. PERMITTEE (Name and Address);</li> <li>FC Pennsylvania Stadium, LLC<br/>322 A. Street, Suite 300</li> <li>Wilmington, DE 19428</li> </ul> | CLIENT ID#: 268226                                                                | B. PRIMARY FACILITY (Nam<br>Chester Soccer Stadiu                  | <sup>10):</sup><br>m Rump Station                     |  |
| · · · ·                                                                                                                                               |                                                                                   |                                                                    |                                                       |  |
| C. LOCATION (Municipality, County):<br>City of Chester<br>Delaware County                                                                             | <u>.</u>                                                                          | SITE ID#:<br>454804                                                |                                                       |  |
| ). This permit approves the constr                                                                                                                    | uction and operation of sewerage                                                  | facilities consisting of:                                          |                                                       |  |
| -A sanitary pump station and as<br>-A 15" PVC gravity line to delly                                                                                   | ssociated force main<br>for flow to the pump station                              |                                                                    | · · · · · · · · · · · · · · · · · · ·                 |  |
|                                                                                                                                                       | , ,                                                                               |                                                                    |                                                       |  |
| Pump Stations:                                                                                                                                        | Manure Storage:                                                                   | · Industrial Wastewater/S                                          | Sewage Treatment Facility:                            |  |
| Design Capecity: <u>925</u> GPM                                                                                                                       | · .                                                                               | Annual Average Flow:                                               | MGD                                                   |  |
| verage Annual Flow: <u>226,000</u> GPD                                                                                                                | Volume MG                                                                         | Design Hydraulic Capacity:                                         | MGD'                                                  |  |
|                                                                                                                                                       | Freeboard: inches                                                                 | Design Organic Capacity:                                           | lb/day                                                |  |
| Amendments: All construction, ope<br>application dated and its suppor                                                                                 | erations, and procedures shall be in acc<br>ling documentation, and addendums da  | ordance with the Water Quality Mar<br>ted, which are hereby made a | agement Permit Amendment<br>a part of this amendment. |  |
| Except for any herein approved modifi<br>Management Permit No dated                                                                                   | cations, all terms, conditions, supporting<br>shall remain in effect.             | g documentation and addendums a                                    | pproved under Water Quality                           |  |
| Transfers: Water Quality Managem<br>part of this transfer.                                                                                            | ent Permit No dated and c                                                         | onditions, supporting documentatio                                 | n and addendiums are also made<br>                    |  |
| Permit Conditions Relating to s                                                                                                                       | ewerage are allached and made part                                                | of this permit.                                                    | · · ·                                                 |  |
| Special Conditions numberedar                                                                                                                         | e attached and made part of this permit                                           | A<br>                                                              |                                                       |  |
| <ul> <li>THE AUTHORITY GRANTED BY THE</li> <li>If there is a conflict between the app<br/>shall annit</li> </ul>                                      | S PERMIT IS SUBJECT TO THE FOLL<br>lication or its supporting documents ar        | OWING FURTHER QUALIFICATIC<br>and amendments and the attached      | ons:<br>condilions, the atlached conditio             |  |
| <ol> <li>Failure to comply with the rules and n<br/>by the issuance of this permit.</li> </ol>                                                        | agulations of DEP or with the terms or                                            | conditions of this permit shall void                               | the authority given to the permit                     |  |
| <ol> <li>This permit is issued pursuant to the<br/>permit shall not relieve the permittee c</li> </ol>                                                | Clean Streams Law Act of June 22, 10<br>If any responsibility under any other law | 937, P.L. 1987, <u>as amended</u> 35 P.                            | S. §691.1 of seq. Issuance of th                      |  |
| PERMIT ISSUED:<br>December 7,                                                                                                                         | 2009                                                                              | BY:                                                                | ment Program Managar                                  |  |
| Re 30 (GJE09WQ)329-6A                                                                                                                                 | <u> </u>                                                                          |                                                                    |                                                       |  |
|                                                                                                                                                       |                                                                                   |                                                                    |                                                       |  |

3800-FM-WSWM0405 10/2004

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER SUPPLY AND WASTEWATER MANAGEMENT

pennsylvania

# ENGINEERING INTERNAL REVIEW AND RECOMMENDATIONS

| Name of A                                                        | pplicant:                                                  |                                                           | OFACTS APS I                                                                                       | D Number:                                                | Application Nur                                                   | nber:                                     |
|------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------|----------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------|
| FC Pennsy                                                        | Ivania Sladiu                                              | m LLC                                                     | 707616                                                                                             |                                                          | 2309410                                                           |                                           |
| <b>Project Lo</b><br>City of Che<br>Delaware C                   | cation:<br>ster<br>county                                  | . <u>.</u>                                                | I                                                                                                  |                                                          |                                                                   |                                           |
| Brief Desc                                                       | ription of Pr                                              | oject and D                                               | scussion (use additional she                                                                       | ets if necessary                                         | <b>v):</b>                                                        |                                           |
| The applica proposed C                                           | int proposes<br>Thester Socc                               | the constructer Stadium,                                  | tion and operation of a sanitary<br>as well as additional commercial                               | oump station. Ti<br>and residential                      | he pump station wi<br>development.                                | Il serve the                              |
| Permitted a<br>The propos<br>975gpm, de<br>1,120,000/2           | innual averaged pump state<br>epending on<br>243,502 = 4.6 | ge flow will b<br>ition will hav<br>the wet well<br>5 OK. | e 226,000gpd. The expected per<br>three pumps. With two pumps<br>evel. The peaking factor for a pl | ak instantaneou<br>running, the cap<br>ump station of th | s peak flow is 1.12<br>bacity of the pump<br>his size should be : | MGD (~778gpm).<br>station is 925-<br>3.5. |
| The propos                                                       | al also includ                                             | des a 15* P∖                                              | C gravity line to deliver flow from                                                                | the soccer sta                                           | dium to the propos                                                | ed pump station.                          |
| The force r                                                      | nain will be c                                             | onstructed o                                              | f 10" DIP and will discharge to D                                                                  | ELCORA's colle                                           | ection system for d                                               | isposal.                                  |
| Emergency                                                        | power is be                                                | ing provided                                              | by a back-up generator.                                                                            | • .                                                      |                                                                   |                                           |
| Act 14 Noti                                                      | fications wer                                              | e provided t                                              | the City of Chester and Delawa                                                                     | re County on O                                           | ct. 1, 2009.                                                      |                                           |
| -                                                                |                                                            |                                                           | RECOMMENDATION A                                                                                   |                                                          |                                                                   |                                           |
| Approve                                                          | Return                                                     | Deny                                                      | Signa                                                                                              | ture                                                     | -                                                                 | Date                                      |
| ø                                                                |                                                            |                                                           | July Palle<br>Revie                                                                                | y                                                        | · · · ·                                                           | 1/25/81                                   |
| 函                                                                |                                                            |                                                           | Ruth Ind<br>Chief, Techni                                                                          | en Services                                              |                                                                   | 12/4/09                                   |
| Ę                                                                | □.                                                         |                                                           | Rrogram                                                                                            | kull<br>Manager                                          |                                                                   | 12-7-09                                   |
| Hydrogeology IR&R Attached?  Yes No Solls IR&R Attached?  Yes No |                                                            |                                                           |                                                                                                    |                                                          |                                                                   |                                           |
| Ro 30 M                                                          | /10                                                        |                                                           |                                                                                                    |                                                          |                                                                   |                                           |

-1-

#### Dec 08 2009 11:25AM DEP WATER SERO 484 250 5971 3800-PM-WSWM0016a Rev. 6/2004 Permit No. \_2309410 **Conditions Sewerage** construction. For specific information regarding E&S control planning approval and NPDES permitting requirements, please contact your local County Conservation District office. $\boxtimes$ 12. The facilities shall be constructed under the supervision of a Pennsylvania registered Professional Engineer in accordance with the approved reports, plans and specifications. $\boxtimes$ 13. A Pennsylvania registered Professional Engineer shall certify that construction of the permitted facilities was completed in accordance with the application and design plans submitted to DEP, using "Post Construction Certification" (3800-PM-WSWM0179a). It is the permittee's responsibility to ensure that a Professional Engineer is on-site to provide the necessary oversight and/or inspections to certify the facilities. The certification must be submitted to DEP before the facility is placed in operation. If requested, "as-built" drawings, photographs (if available) and a description of any DEP-approved deviations from the application and design plans must be submitted to DEP within 30 days of certification. $\boxtimes$ 14. Manhole inverts shall be formed to facilitate the flow of the sewage and to prevent the stranding of sewage solids. The manhole structure shall be built to prevent undue infiltration, entrance of street wash or grit and provide safe access to facilitate manhole maintenance activities. 15. The local Waterways Conservation Officer of the Pennsylvania Fish and Boat Commission (PFBC) shall be $\mathbf{N}$ notified when the construction of any stream crossing and/or outfall is started and completed. A written permit must be secured from the PFBC If the use of explosives in any waterways is required and the permittee shall notify the local Waterways Conservation Officer when explosives are to be used. in the Poilar The permittee shall maintain records of "as-built" plans showing all the treatment facilities as actually constructed $\boxtimes$ 16. together with facility operation and maintenance (O&M) manuals and any other relevant information that may be regulred. Upon request, the "as-built" plans and O&M manuals shall be filed with DEP. 17. The sewers shall have adequate foundation support as soil conditions require. Trenches shall be back-filled to $\boxtimes$ ensure that sewers will have proper structural atability, with minimum settling and adequate protection against breakage. Concrete used in connection with these sewers shall be protected from damage by water, freezing, drying or other harmful conditions until cured. 18. Stomwater from roofs, foundation drains, basement drains or other sources shall not be admitted directly to the $\boxtimes$ sanitary sewers, $\boxtimes$ 19. The approved sewers shall be maintained in good condition, kept free of deposits by flushing or other cleaning. methods and repaired when necessary. 20. The sewerage facilities shall be properly operated and maintained to perform as designed. $\boxtimes$ The attention of the permittee is called to the highly explosive nature of certain gases generated by the digestion $\boxtimes$ 21. of sewage solids when these gases are mixed in proper proportions with air and to the highly toxic character of certain gases arising from such digestion or from sewage in poorly ventilated compartments or sewers. Therefore, at all places throughout the sewerage facilities where hazard of fire, explosion or danger from toxic gases may occur, the permittee shall post conspicuous permanent and legible warnings. The permittee shall instruct all employees concerning the aforesaid hazards, first aid and emergency methods of meeting such hazards and shall make all necessary equipment and material accessible. 22. An operator certified in accordance with the Water and Wastewater Systems Operator Certification Act of $\boxtimes$ February 21, 2002, 63 P.S. §§1001, et seq. shall operate the sewage treatment plant. The permittee shall properly control any industrial waste discharged into its sewerage system by regulating the 23. $\boxtimes$ rate and quality of such discharge, requiring necessary pretreatment and excluding industrial waste, if necessary, to protect the integrity or operation of the permittee's sewerage system. $\boxtimes$ 24. There shall be no physical connection between a public water supply system and a sewer or appurtenance to it which would permit the passage of any sewage or polluted water into the potable water supply. No water pipe shall pass through or come in contact with any part of a sewer manhole. 11 25. All connections to the approved sanitary sewers must be in accordance with the corrective action plan as contained in the approved Title 25 Pa. Code Chapter 94 Municipal Wasteload Management Annual Report, Collected screenings, slurges, sludge and other solids shall be handled and disposed of in compliance with Title t\_\_\_ 26. 25 Pa. Code Chapters 271, 273, 275, 283 and 285 (related to permits and requirements for land filling, land application, incineration and storage of sewage sludge), Federal Regulations 40 CFR 257 and the Federal Clean Water Act and its amendments.

- 2

| p. | 12 |
|----|----|
|----|----|

.

|                 |                                       | <u> </u>                                                                                                                                                                          | · ·                                                                                                                                                                                                                     |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                     | ,                                                        |
|-----------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| 3800-i<br>Condi | PM-WS                                 | WM0015a Rev. 6/200<br>Sewerage                                                                                                                                                    | 4                                                                                                                                                                                                                       | . F                                                                                                                                                                                               | Permit No2309410                                                                                                                                                                                                                                                                    | · · ·                                                    |
|                 | e,                                    | Ø                                                                                                                                                                                 | COMMONWEAL<br>DEPARTMENT OF EN<br>BUREAU OF WATER SUPPLY                                                                                                                                                                | TH OF PENNSYLVANIA<br>IRONMENTAL PROTECTION<br>AND WASTEWATER MANA                                                                                                                                | N<br>GEMENT                                                                                                                                                                                                                                                                         | • .                                                      |
|                 |                                       | P                                                                                                                                                                                 | ERMIT CONDITIONS                                                                                                                                                                                                        | RELATING TO SEV                                                                                                                                                                                   | VERAGE                                                                                                                                                                                                                                                                              |                                                          |
|                 | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                   | For use in Water Qui                                                                                                                                                                                                    | ality-Management-Pe                                                                                                                                                                               |                                                                                                                                                                                                                                                                                     |                                                          |
| (Plac           | cei a 1                               | in the box that ap                                                                                                                                                                | oplies)                                                                                                                                                                                                                 |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                     | •                                                        |
|                 |                                       |                                                                                                                                                                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                     |                                                          |
| X               | 1.                                    | Consistent with the<br>Technical Reviews<br>007) available on D<br>whose seal is affixed<br>design.                                                                               | Department of Environment<br>of Water Quality Manageme<br>EP's website at <u>www.dep.sta</u><br>d to the design documents to                                                                                            | al Protection's (DEP) tec<br>nt Permit Wastewater Tr<br>ate pa.us. DEP consider<br>be fully responsible for th                                                                                    | chnical guidance document Conduc<br>eatment Facilities (DEP 1D: 362-20<br>rs the registered Professional Engine<br>he adequacy of all aspects of the fac                                                                                                                            | ting<br>)00-<br>neer<br>cillty                           |
|                 | <b>2.</b>                             | The permittee shall receptacles for hur accessible to public                                                                                                                      | adopt and enforce an ordina<br>nan waste and onlot sewa<br>sewers. All such structures r                                                                                                                                | ance requiring the aband<br>ge disposal systems on<br>nust be connected to the                                                                                                                    | lonment of privies, cesspools or sin<br>the premises of occupied struct<br>public sewers.                                                                                                                                                                                           | <b>nilar</b><br>ures <u>i</u>                            |
|                 | 3.                                    | The outfall sewer of<br>necessary to ensur<br>appurtenances belor<br>secured an easeme<br>and Encroachments                                                                       | or drain shall be extended t<br>e proper mixing and waste<br>w the low water mark and in<br>nt, right-of-way, license or le<br>Act, the Act of November 26                                                              | o the low water mark o<br>assimilation, an outfall<br>o the bed of a navigable<br>ase from DEP in accord<br>, 1978, P.L. 1375, as and                                                             | f the receiving body of water. Wi<br>sewer or drain may be extended<br>stream provided that the permittee<br>ance with Section 15 of the Dam Sa<br>ended.                                                                                                                           | nere<br>with<br>has<br>ifely                             |
| X               | 4,                                    | The approval is spe<br>or otherwise, provid<br>sewerage structures                                                                                                                | cifically made contingent on t<br>ing for the satisfactory const<br>in, along or across private p                                                                                                                       | he permittee acquiring all<br>uction, operation, mainte<br>roperty with full rights of i                                                                                                          | I necessary property rights, by easer<br>mance and replacement of all sewer<br>ngress, egress and regress.                                                                                                                                                                          | nent<br>rs or                                            |
| $\boxtimes$     | 5.                                    | When construction (<br>permittee shall notify                                                                                                                                     | of the approved sewerage fa<br>y DEP in writing so that a DE                                                                                                                                                            | cilities is completed and<br><sup>2</sup> representative may ins                                                                                                                                  | before they are placed in operation,<br>pect the facilities.                                                                                                                                                                                                                        | , the                                                    |
| ⊠               | 6.                                    | If, at any time, the s<br>causing malodors of<br>to adopt appropriate                                                                                                             | ewerage facilities covered by<br>r causing environmental harm<br>remedial measures to abate                                                                                                                             | this permit create a pub<br>to waters of the Commo<br>the nuisance or harm.                                                                                                                       | lic nuisance, including but not limite<br>nwealth, DEP may require the perm                                                                                                                                                                                                         | d to,<br>littee                                          |
|                 | 7.                                    | This permit authors<br>facilities for convey<br>treating the permitte<br>adopted pursuant to<br>as amended. Whe<br>conveyance of the<br>DEP accordingly. T<br>relinguished to DEP | zes the construction and or<br>ance and treatment at a mo-<br>e's sewage. Such facilities<br>b Section 5 of the Pennsylvan<br>on such municipal sewerage<br>sewage to these sewerage f<br>his permit shall then, upon n | eration of the proposed<br>ore suitable location are<br>must be in accordance w<br>hia Sewage Facilities Act<br>facilities become availa<br>aclities, abandon the us<br>otice from DEP, terminate | I sewerage facilities until such time<br>installed and capable of receiving<br>with the applicable municipal official<br>, the Act of January 24, 1966, P.L.<br>able, the permittee shall provide for<br>e of these approved facilities and n<br>e and become null and vold and sha | e as<br>and<br>plan<br>1535<br>r the<br>notify<br>all be |
| $\boxtimes$     | 8.                                    | This permit does no<br>ordinances and regi                                                                                                                                        | t relieve the permittee of its o<br>ulations applicable to the sew                                                                                                                                                      | bligations to comply with<br>erage facilities.                                                                                                                                                    | all federal, interstate, state or local l                                                                                                                                                                                                                                           | aws,                                                     |
| ×               | 9.                                    | This permit does no<br>construed to grant<br>Commonwealth.                                                                                                                        | ot give any real or personal<br>or confirm any right, easem                                                                                                                                                             | property rights or grant<br>ent or interest in, on, to                                                                                                                                            | any exclusive privileges, nor shall<br>or over any lands which belong to                                                                                                                                                                                                            | it be<br>the                                             |
|                 | 10.                                   | The authority grant<br>conditions as set f<br>discharge is authorit                                                                                                               | ed by this permit is subject<br>arth in NPDES Permit No.<br>zed from these facilities unles                                                                                                                             | to all effluent requireme<br>PA and all subsets<br>approved by an NPDE                                                                                                                            | ents, monitoring requirements and o<br>quent amendments and renewals.<br>S Permit.                                                                                                                                                                                                  | other<br>No                                              |
|                 | n in de                               |                                                                                                                                                                                   |                                                                                                                                                                                                                         |                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                     |                                                          |
|                 | 11.                                   | An Erosion and So<br>pursuant to Title 25                                                                                                                                         | edimentation (E&S) Plan mi<br>Pa. Code Chapter 102, and I                                                                                                                                                               | ist be developed prior to mplemented during and a                                                                                                                                                 | to construction of the permitted far<br>after the earth disturbance activity.                                                                                                                                                                                                       | cility,                                                  |
|                 | . ·                                   | If the activity involve<br>source discharge to<br>Associated with Cor                                                                                                             | es 5 or more acres of earth o<br>surface waters of the Com<br>Instruction Activity is required.                                                                                                                         | listurbance, or from 1 to monwealth, an NPDES                                                                                                                                                     | 5 acres of earth disturbance with a<br>permit for the Discharge of Stormy                                                                                                                                                                                                           | point<br>waler                                           |
|                 |                                       | in addition to the sta<br>E&S Control Plan                                                                                                                                        | ate NPDES permitting require<br>to be reviewed and appro                                                                                                                                                                | ments, some municipalit<br>ved by the local Coun<br>-1-                                                                                                                                           | ies, through local ordinances, requir<br>ity Conservation District office prio                                                                                                                                                                                                      | e the<br>or to                                           |

•

.

|        |                |                                                              |                           | 800x2519 i                            | MGE 1166                                    | Sector and the sector |                                  |
|--------|----------------|--------------------------------------------------------------|---------------------------|---------------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| INBWC  | ¥15            | Rev. 9/33                                                    |                           | OMMONWEALTH                           | OF PENNSYLVANIA                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
|        |                |                                                              | BURE                      | AU OF WATER O                         | UALITY MANAGEMENT                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
|        |                |                                                              | WATER                     | QUALITY M                             | ANAGEMENT PERMI                             | T NO. 23744(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | )3                               |
| A. PE  | RMI            | TEE (Name and Address                                        | )                         |                                       | B. PROJECT LOC                              | ATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                  |
| De     | lawa           | re County Regional V                                         | later Qu                  | ality Con-                            |                                             | Maraua Hook Bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rouch                            |
| Ch     | ester          | r, Pennsylvania 19                                           | 063                       |                                       | Municipality                                | Marcus nook bo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .ougn                            |
|        |                |                                                              |                           |                                       | County                                      | Delaware County                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>y</u>                         |
| C. TY  | PE (           | <b>OF</b> FACILITY OR EST                                    | ABLISHN                   | IENT                                  | D. NAME OF MIN<br>Marcus Hook Boy           | NE, OPERATION OR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AREA SERVED                      |
| Se     | wage           | Pumping Station and                                          | l Forcem                  | ain                                   | Sun Oil Company                             | y and FMC Corporate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Lon                              |
| E. TH  | IS PI          | ERMIT APPROVES                                               |                           |                                       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| ,<br>, | Plans          | For Construction of                                          |                           | 2. The Disch                          | arge of: N/A                                | 3. The Operation of:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A                              |
|        | a.             | X PUMP STATIONS; SEX0<br>AND APPURTENANCES                   | <b>DAX</b>                | a                                     | TREATED                                     | MINE<br>MAXIMUM AR<br>MINED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | EA TO BE DEEP                    |
|        | b,             | SEWAGE TREATMENT                                             |                           |                                       | UNTREATED                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
|        |                | FACILITIES                                                   |                           | b. 🗖                                  | INDUSTRIAL WASTE                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
|        | C.             | MINE DRAINAGE<br>TREATMENT FACILITY                          | ES                        |                                       | MINE DRAINÂGE                               | 4. An Erosion and Se<br>Control Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | dimentation                      |
|        | d.             | INDUSTRIAL WASTE                                             | FS                        |                                       | SEWAGE                                      | PROJECT AREA IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ALKES.                           |
|        |                |                                                              |                           | 5. Nature of                          | Discharge or Impoundm                       | nent: N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                  |
|        | e.             | OUTFALL & HEADWA                                             | L. L.                     |                                       | RGE TO SURFACE WATE                         | R DISCHARGE TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | GROUND WATER                     |
|        | f,             | STREAM CROSSING                                              |                           |                                       | юмент<br>(Name of S<br>area on whi          | Stream to which discharge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ed or drainage<br>takes place or |
|        |                |                                                              |                           |                                       | impoundme                                   | ent is located).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                  |
| F. Yo  | ou are         | hereby authorized to constru                                 | ct, operate               | or discharge, as i                    | ndicated above, provided t                  | hat you comply with the f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ollowing :                       |
| 1.     | All r          | epresentations regarding oper                                | ations, con               | struction, mainter                    | ance and closing procedur                   | es as well as all other matte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rs set forth                     |
|        | in yo          | our application and its support                              | ting docum                | nents (Applicatio                     | n No. <u>2374</u> 2                         | 403                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                  |
|        | Such           | application, it's supporting                                 | <u>1974</u><br>documents  | ), and amendments                     | amendments dated<br>s are hereby made a par | <u>July 18, 1974</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |
| 2.     | Con            | ditions numbered <u>1,2</u>                                  | 6,8,9,1                   | 1,12,13,14,2                          | 1,22,30                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of the                           |
|        |                | Sewerage                                                     |                           | Sta                                   | indard Conditions dated                     | 1972                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |
| 3.     | Spec           | th conditions are attached h<br>tial condition(s) designated | ereto and                 | are made a part                       | of this permit. In 18                       | ndard Conditions R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | elating to                       |
|        | whic           | h are attached hereto and                                    | are made                  | a part of this p                      | ermit. Ero:                                 | sion Control (1973)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>)</b>                         |
| G. The | e Autl         | hority granted by this perm                                  | nit is subje              | ct to the follow                      | ing further qualifications:                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| 1.     | lf th          | nere is a conflict between t                                 | ne applicati              | on or its support                     | ing documents and amend                     | ments and the standard or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | special                          |
| n      | con(<br>Faile  | ditions, the standard or spe<br>use to comply with the Bul   | cial condit               | ions shall apply.<br>Wations of the F | Penartment or the terms                     | or conditions of this perm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | nit shall                        |
| ۷.     | void           | the authority given to the                                   | e permittee               | by the issuance                       | of the permit.                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |
| 3.     | This<br>the    | Water Obstruction Act of                                     | to the Clea<br>June 25, 1 | in Streams Law,<br>913, P.L. 555 a    | The Act of June 22, 193<br>s amended.       | 37, P.L. 1987 as amended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | and/or                           |
| Th     | lssua<br>is pa | ance of this permit shall n<br>ermit must be record          | ot relieve t<br>led in t  | the permittee of<br>he Recorder       | any responsibility under of Deeds Office in | any other law.<br>n Delaware County.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                  |
|        | P              | PERMIT ISSUED                                                |                           |                                       | DEPARTMENT OF E                             | NVIRONMENTAL RESOL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JRCES                            |
| DATE   |                | 10-23-74                                                     |                           | 8Y                                    | )                                           | ad word                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                  |
|        |                |                                                              |                           | 1                                     | C.T. Beech<br>Pogional                      | hwood L<br>Sapitery Engineer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                  |
|        |                |                                                              |                           | TITLE                                 | Norristow                                   | n Office                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                  |
|        |                |                                                              |                           |                                       |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                  |

ER-BWQ-69 . Rev. 4-73

STATE OF PENNSYLVANIA SS COUNTY OF MONTGOMERY

On the 23rd day of October in the year one thousand nine hundred and seventy-four before me, the Subscriber, a Notary Public, came the above named

# C.T. Beechwood

and duly acknowledged the foregoing permit to be his act and deed and desired that the same might be recorded as such.

Witness my hand and notarial seal the day and year afore-said.

NOTARY

Notary Public Boro of No. ri. torun, Montg. Co. My Commission Expires August. 16, 1976



BOOK 2519 PAGE 1167.

# BOOK 2519 PAGE 1168

#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES

### STANDARD CONDITIONS RELATING TO SEWERAGE - 1972

ONE: All relevant and non-superseded conditions of prior sewerage or water quality management permits or orders issued to the herein named permittee or his predecessor shall continue in full force and effect and together with the provisions of this permit shall apply to his successors, lessees, heirs, and assigns.

TWO: During construction no radical changes shall be made from the plans, designs, and other data herein approved unless the permittee shall first receive written approval thereof from the Department. The sewerage facilities shall be constructed under expert engineering supervision and competent inspection.

THREE: Sewers herein approved shall have tight, well-fitting joints, shall be laid with straight alignment and grade and shall have smooth interior surfaces. The sewers shall have adequate foundation support as soil conditions requires. Special care shall be taken in construction of sewers under deep or shallow cover and under other conditions which impose extra hazards to sewer stability. Trenches shall be back-filled such that the sewers will have proper structural stability, with minimum setting and adequate protection against breakage. Concrete used in connection with these sewers shall be protected until cured from injury by water, freezing, drying or other harmful conditions.

FOUR: Manholes shall be placed and constructed as shown upon the herein approved plans except, that if not already so provided, they shall be placed on all sewers at junctions, at each change in grade or alignment, at summit ends, and upon straight lines at intervals not exceeding four hundred feet, or wherever necessary to permit satisfactory entrance to and maintenance of the sewers; manhole inverts shall be so formed as to facilitate the flow of the sewage and to prevent the stranding of sewage solids, and the whole manhole structure shall have proper structural strength and be so constructed as to prevent undue infiltration, entrance of street wash or grit, and to provide convenient and safe means of access and maintenance.

1.

FIVE: No storm water from pavements, area ways, roofs, foundation drains or other sources shall be admitted to the sanitary sewers herein approved.

**SIX:** Attention is directed to the necessity of having a qualified person make a proper study of all industrial wastes discharging or proposed for discharge to the public sewer systems, to determine what degree of preliminary treatment is necessary before these waste may be discharged to the sewer system so that the wastes will not prejudicially affect the sewerage structure or their functioning or the process of sewage treatment.

**SEVEN:** The permittee shall adopt and enforce an ordinance or otherwise require all occupied buildings on premises accessible to a public sewer used in conformity with the requirements of State Law, to be connected thereto; also require the abandonment of privies, cesspools or similar receptacle for human excrement on said premises.

EIGHT: The herein approved and previously constructed sewers shall be maintained in good condition, by repair when necessary and kept free from deposits by flushing or other proper means of cleaning.

NINE: The permittee shall file with the Department of Environmental Resources a satisfactory record or detail plans showing the correct plan of all sewers and sewerage structures as actually constructed together with any other information in connection therewith that may be required.

TEN: The out fall sewer or drain shall be extended to low water mark of the receiving body of water in such a manner as to insure the satisfactory dispersion of its effluent thereinto; insofar as practicable it shall have its outlet submerged; and shall be contructed of cast iron, concrete, or other material approved by the Department; and shall be so protected against the effects of flood water, ice, or other hazards as to reasonable insure its structural stability and freedom from stoppage.

**ELEVEN:** The permittee shall secure any necessary permission from the proper federal authority for any outfall or sewage treatment structure which discharges into or enters navigable waters and shall obtain approval of any stream crossing, encroachment or change of natural stream conditions coming within the jurisdiction of the Department.

**TWELVE:** If at any time the sewerage facilities of the permittee, or any part thereof, or the discharge of the effluent therefrom, shall have created a public nuisance, or such discharge is causing or contributing to pollution of the waters of the Commonwealth, the permittee shall forthwith adopt such remedial measures as are acceptable to the Department.

2.

BOOK 2519 PAGE 1169

# BOOK 2519 PAGE 1170

and Al

THIRTEEN: Nothing herein contained shall be construed to be an intent on the part of the Department to approve any act made or to be made by the permittee inconsistent with the permittee's lawful powers or with existing laws of the Commonwealth regulating stream pollution and the practice of professional engineering, nor shall this permit be construed to sanction any act otherwise forbidden by any of the laws of the Commonwealth of Pennsylvania or of the United States.

FOURTEEN: The approval herein given is specifically made contingent upon the permittee acquiring all necessary rights, by easement or otherwise as required, providing for the satisfactory construction, operation, maintenance and replacement of all sewers or sewerage structures in, along, or across private property, with full rights of ingress, egress and regress.

FIFTEEN: When the herein a approved sewage treatment works is completed and before it is placed in operation, the permittee shall notify the Department in writing so that an inspection of the works may be made by a representative of the Department.

**SIXTEEN:** The various structures and apparatus of the sewage treatment works herein approved shall be maintained in proper condition so that the facilities will individually and collectively preform the functions for which they were designed.

**SEVENTEEN:** The screenings and sludge shall be so handled that nuisance is not created and shall be disposed of in a sanitary manner satisfactory to the Department.

**EIGHTEEN:** The permittee shall keep records of operation and efficiency of the waste treatment works and shall submit to the Department, promptly at the end of each month, such report thereon as may be required by the Department.

**NINETEEN:** The sewage treatment works shall be operated by a competent person or persons. In this connection attention is directed to the necessity for expert advice and supervision over the operation of the sewage treatment works in order to secure efficiency of operation and protection to the waters of the Commonwealth. To this end the permittee shall place the operation of the sewage treatment works under the control of the digner of the works or some other person expert in the operation of sewage treatment works, for at least one year after completion thereof and report submitted. The sewage treatment works shall be operated by a operator certified in accordance with the Sewage Treatment Plant and Water Works Operators Certification Act, Act No. 322 approved November 18, 1968 as amended.

3.

TWENTY: The right to discharge the effluent from the herein approved sewage treatment works into the waters of the Commonwealth is contingent upon such operation of these works as will at all times produce an effluent of a quality satisfactory to the Department. If, in the opinion of the Department, these works are not so operated or if by reason of change in the character of wastes or increased load upon the works, or changed use or condition of the receiving body of water, or otherwise, the said effluent ceases to be satisfactory for such discharge, then upon notice by the Department the right herein granted to discharge such effluent shall cease and become null and void unless within the time specified by the Department, the permittee shall adopt such remedial measures as will produce an effluent which, in the opinion of the Department, will be satisfactory for discharge into the said receiving body of water.

TWENTY-ONE: The attention of the permittee is called to the highly explosive nature of certain gases generated by the digestion of sewage solids when these gases are mixed in proper proportions with air, and to the highly toxic character of certain gases arising from such digestion or from sewage in insufficiently ventilated compartments or sewers. Therefore, at all places throughout the sewerage facilities where hazard of fire, explosion, or danger from toxic gases may occur, the permittee shall post conspicuously proper warnings of a permanent and easily legible character and shall provide for the thorough instruction of all employes concerning the aforesaid hazards and in first aid and emergency methods of meeting such hazards and shall further provide, in a conveniently accessible place, all necessary equipment and material therefor.

**TWENTY-TWO:** Cross connections between a potable water supply and a sewerage system constitute a potential danger to the public health. Therefore, all direct and indirect connections whereby under normal or abnormal conditions the potable water supply may become contaminated from an inferior water supply, from any unit of the sewage treatment works, or by any appurtenance thereof or from any part of a sewerage system, are hereby specifically prohibited. The permittee is further warned against permitting to be made permanent any temporary connection with a potable supply designed to be held in place while being used for flushing or other purposes, and is also cautioned against the danger of back siphonage through portable hose lines and similar avenues of possible contamination.

**TWENTY-THREE:** Effective disinfection to control disease producing organisms shall be the production of an effluent which will contain a concentration not greater than 200/100 ml of Fecal Coliform organisms as a geometric average value nor greater than 1,000/100 ml of these organisms in more than 10% of the samples tested.

**TWENTY-FOUR:** The approval herein granted for sewers is limited to the right to construct the sewers, but approval of connection there to is specifically withheld until such time approval for use thereof is granted by the Department.

**TWENTY-FIVE:** The attention of the permittee is directed to the fact that the effluent from the herein approved sewage treatment works is discharged to a dry stream normally without the benefit of dilution. If the effluent creates a health hazard or nuisance, the permittee shall upon notice from the Department of Environmental Resources, provide such additional treatment as may be required by the Department.

**TWENTY-SIX:** If facilities become available for conveying the sewage to and treating it at a more suitable location, upon order from the Department of Environmental Resources, the permittee shall provide for the discharge of the sewage to such facilities and shall abandon the use of the herein approved sewage treatment works.

TWENTY-SEVEN: The plant hereby approved is required to effect secondary treatment of the sewage which it receives. Secondary treatment is that treatment that will reduce the organic waste load as measured by the biochemical oxygen demand test by at least 85% during the period May 1 to October 31 and by at least 75% during the remainder of the year based on a five consecutive day average of values; will remove practically all of the suspended solids; will provide effective disinfection to control disease producing organisms: will provide satisfactory disposal of sludge; and will reduce the quantities of oil, greases, acids, alkalis, toxic, taste and odor producing substances, color, and other substances inimical to the public interest to levels that will not pollute the receiving stream.

**TWENTY-EIGHT:** Records of the operation of the single residence sewage treatment works as the State Department of Environmental Resources may deem necessary for the proper control of the operation of the treatment works shall be kept on forms satisfactory to the Department and shall be filed in the Regional Office of the Department at intervals as specified.

**TWENTY-NINE:** The permittee shall submit to the Department by March 31 of each year a report showing the hydraulic and organic load compared to the design load and the expected load for a period of five years hence.

**THIRTY:** The permittee shall prohibit additional connections to a sewer system or load from being placed upon a sewage treatment plant when the plant capacity will be exceeded within five years unless steps have been taken to enlarge the plant within that time.

**THIRTY-ONE:** The permittee shall take the necessary measures for the construction of sewerage facilities in a manner compatible with good conservation methods to minimize the effect on the environment, the regimen of the stream bed or channel, and to prevent sediment and pollutants from entering the waters of the Commonwealth.

**THIRTY-TWO:** The local waterways patrolmen of the Pennsylvania Fish Commission shall be notified when the construction of the stream crossing and outfall is started and completed. A permit must be secured from the Pennsylvania Fish Commission if the use of explosives is required. The permittee shall notify the local waterways patrolmen when explosives are to be used.

**THIRTY-THREE:** If future operations by the Commonwealth of Pennsylvania require modification of the stream crossing, and/or outfall or there shall be unreasonable obstruction to the free passage of floods or navigation, the permittee shall remove or alter the structural work or obstruction without expense to the Commonwealth of Pennsylvania. If upon the revocation of the permit, the work shall not be completed, the permittee, at his own expense and in such time and manner as the Department may require, shall remove any or all portions of the incompleted work and restore the watercourse to its former condition. No claim shall be made against the Commonwealth of Pennsylvania on account of any such removal or alteration.

6.

BOOK 2519 PAGE 1173

# BOOK 2519 PAGE 1174

### COMMONWEALTH OF PENNSYLVANIA

#### DEPARTMENT OF ENVIRONMENTAL RESOURCES

#### STANDARD CONDITIONS RELATING TO EROSION CONTROL

For use in Water Quality Management Permits

#### 1973

#### General

- 1. By approval of the plans for which this permit is issued, neither the Department nor the Commonwealth of Pennsylvania assumes any responsibility for the feasibility of the plans or the operation of the measures and facilities to be constructed thereunder.
- 2. All relevant conditions of any prior water quality management permits, decrees, or orders issued to the herein permittee or his predecessor shall be continued in full force and effect unless explicitly superseded by this permit. The provisions of this permit shall apply to the permittee's successors, lessees, heirs and assigns.
- 3. The responsibility for the carrying out of the conditions of this permit shall rest upon the owner, lessee, assignee, or other party in responsible managerial charge of the earthmoving affecting the runoff and of the erosion control facilities herein approved, such responsibility passing with each succession in said control. Approval of measures and facilities under a permit shall not be effective as to a new owner until a transfer has been executed and filed on forms provided by the Department and the transfer is approved by the Depart ment.
- The permittee shall secure any necessary permission from the proper federal authority for any outfall or structure which discharges into or enters navigable waters.
- 5. In order to avoid obsolescence of the plans of erosion control measures and facilities, the approval of the plans herein granted, and the authority granted in the permit, if not specifically extended, shall cease and be null and void two years from the date of this permit unless the erosion control measures and facilities covered by said plans shall have been completed and placed in operation on or before that date. Also, cancellation of permits by the Regional Sanitary Engineer or Water Quality Manager may be possible six months after construction has ended.

- 6. Approval of plans refers to functional design and not constructional stability, which is assumed to be sound and in accordance with good structural design. Failure of the measures and facilities herein approved because of faulty structural design or poor construction will render the permit void.
- 7. If at any time the activities undertaken pursuant to this permit or the discharge of the effluent therefrom is causing or contributing to pullution of the waters of the Commonwealth, the permittee shall forthwith adopt such remedial measures as are acceptable to the Department.
- 8. The Clean Streams Law and the Regulations promulgated thereunder are incorporated into and made part of this permit.
- 9. The permittee shall have his erosion control plan available at the site of the activity at all times.

#### Construction

- 10. At least seven days before earthmoving will begin, the permittee, by certified mail, shall notify the Regional Sanitary Engineer or Water Quality Manager of the date for beginning of construction.
- 11. All earthmoving activities shall be undertaken in such a manner as to minimize the areal extent of disturbed land.
- 12. All surface water upslope of the project area shall be kept away by diverting the water around the project area.
- 13. The erosion control measures and facilities shall be constructed under expert professional supervision and competent inspection, and in accordance with plans, designs, and other data as herein approved or amended, and with the conditions of this permit.
- 14. No radical changes shall be made in the measures and facilities herein approved without approval of the Deaprtment. Revisions which do not change the control measures and facilities or the points of discharge may be approved by the Regional Sanitary Engineer or Water Quality Manager upon submission of plans. Other revisions must be approved by a permit.
- 15. When the herein approved erosion control measures and facilities are completed, the permittee shall notify the Department so that an inspection of the measures and facilities may be made by a representative of the Department.

#### Operation and Maintenance

16. No storm water, sewage or industrial wastes not specifically approved herein, shall be admitted to the measures and facilities for which this permit is issued, unless with the approval of the Department

-2-

# BOOK 2519 PAGE 1175

BOOK 2519 PAGE 1176

- 3 -

- 17. The erosion control measures and facilities herein approved shall be maintained in proper condition so that they will individually and collectively perform the functions for which they were designed. In order to insure the efficacy and proper maintenance of the measures and facilities, the permittee shall make periodic inspections at sufficiently frequent intervals to detect any impairment of the structural stability, adequate capacity, or other requisites of the herein approved measures and facilities which might impair their effectiveness, and shall take immediate steps to correct any such impairment found to exist.
- 18. Sediment shall at no time be permitted to accumulate in sedimentation basins to a depth sufficient to limit storage capacity or interfere with the settling efficiency thereof. Any such material removed shall be handled and disposed of so that a problem is not created and so that every reasonable and practical precaution is taken to prevent the said material from reaching the waters of the Commonwealth.
- 19. All slopes, channels, ditches or any disturbed area shall be stabilized as soon as possible after the final grade or final earthmoving has been completed. Where it is not possible to permanently stabilize a disturbed area immediately after the final earthmoving has been completed or where the activity ceases for more than 20 days, interim stabilization measures shall be implemented promptly.
- 20. Upon completion of the project, all areas which were disturbed by the project shall be stabilized so that accelerated erosion will be prevented. Any erosion and sedimentation control facility required or necessary to protect areas from erosion during the stabilization period shall be maintained until stabilization is completed. Upon completion of stabilization, all unnecessary or unusable control measures and facilities shall be removed, the areas shall be graded and the soils shall be stabilized.

RECORDED in the Office for Recording of Deeds in and for Del. Co., Pa., in DEED Book No.2519 Page 1166 Witness my hand and seal of office this SIXTH day of NOVEMBER Anno Domini 1974

> DEPUTY BOOK 2519 PAGE 1177

Henry F. W. Teti Recorpter of Deeds

into

 $\sqrt{J}$ 

| 1710.120 | REV. 3-71 |
|----------|-----------|
|----------|-----------|



WATER QUALITY MANAGEMENT PERMIT

NO. 2372406

1.11 (b) By 0155

| A. PERMITTEE: (Name and Address)                                                                    | B. PROJECT LOCA            | TION<br>Darby Township and the                                   |  |  |
|-----------------------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------|--|--|
| Delaware County Regional Water Control Auth.<br>Delaware County Court House                         | Munic1pality               | City of Philadelphia                                             |  |  |
| Media, Pa. 19063                                                                                    |                            | Delaware and Philadelphia                                        |  |  |
|                                                                                                     | County                     | belaware and initiatelphili                                      |  |  |
| C. TYPE OF FACILITY                                                                                 | D. NAME OF MINE            | OR AREA SERVED                                                   |  |  |
| Sewage pump station and force main                                                                  | By-pass tro<br>sewage trea | m Darby Creek Joint Authority<br>tment plant to Phila. S.W.plant |  |  |
| E. THIS PERMIT APPROVES:                                                                            | <u>L bewage trea</u>       | treatment                                                        |  |  |
| 1. Plans For Construction Of                                                                        | • _ • •                    | 3. The Operation Of                                              |  |  |
| Pump Stations; Sewers                                                                               | 3                          |                                                                  |  |  |
| a. Appurtenances a. Treated                                                                         | N.A.                       | a. Mine N.A.                                                     |  |  |
| Sewage Treatment                                                                                    |                            | Maximum surface area to be affected                              |  |  |
| b, Facilities                                                                                       | lastes                     | shall not exceedacres.                                           |  |  |
| Industrial Wastes                                                                                   |                            |                                                                  |  |  |
| c. Treatment Facilities                                                                             |                            | Maximum area to be deep mined                                    |  |  |
|                                                                                                     |                            |                                                                  |  |  |
| (Receiv                                                                                             | ring Waters)               |                                                                  |  |  |
| F. YOU ARE HEREBY AUTHORIZED TO CONSTRUCT, OPERATE<br>COMPLY WITH THE FOLLOWING:                    | OR DISCHARGE, AS           | NDICATED ABOVE, PROVIDED THAT YOU                                |  |  |
|                                                                                                     |                            |                                                                  |  |  |
| OTHER MATTERS SET FORTH IN YOUR APPLICATION AND ITS                                                 | SUPPORTING DOCUME          | IND CLOSING PROCEDURES AS WELL AS ALL                            |  |  |
| February 29, 1972 AND AMENDMENTS                                                                    | DATED June 1,              |                                                                  |  |  |
| CATION, IT'S SUPPORTING DOCUMENTS AND AMENDMENTS ARE                                                | HEREBY MADE A PA           | ART OF THIS PERMIT.                                              |  |  |
| 2. CONDITIONS NUMBERED 1, 2, 3, 4, 5, 6, 7, 9, 10                                                   | , 11, 13, 14, 1            | 5, 17, 18, 25, 26 & 27                                           |  |  |
| OF THE SEWERAGE STANDARD                                                                            | CONDITIONS DATED           | November 1, 1942                                                 |  |  |
|                                                                                                     |                            |                                                                  |  |  |
| 3. SPECIAL CONDITION(S) NUMBERED NOne                                                               | to have                    | ome energitive this permit                                       |  |  |
| must be recorded in the office of the Record                                                        | er of Deeds in             | Delaware County                                                  |  |  |
|                                                                                                     |                            |                                                                  |  |  |
| G. THE AUTHORITY GRANTED BY THIS PERMIT IS SUBJECT TO                                               | THE FOLLOWING FU           | RTHER QUALIFICATIONS:                                            |  |  |
| 1. JF THERE IS A CONFLICT BETWEEN THE APPLICATION OR ITS SUP                                        | PORTING DOCUMENT           | S AND AMENDMENTS AND THE                                         |  |  |
| STANDARD OR SPECIAL CONDITIONS, THE STANDARD OR SPECIAL CONDITIONS SHALL APPLY.                     |                            |                                                                  |  |  |
| 2. FAILURE TO COMPLY WITH THE BULES AND REGULATIONS OF THE DEPARTMENT OR THE TERMS OF CONDITIONS OF |                            |                                                                  |  |  |
| THIS PERMIT SHALL VOID THE AUTHORITY GIVEN TO THE PERMITTEE BY THE ISSUANCE OF THE PERMIT.          |                            |                                                                  |  |  |
| 3. THIS PERMIT IS ISSUED PUBSUANT TO THE CLEAN STREAMS LAW                                          | THE ACT OF JUNE 22         | 2 1937 P.L. 1957 AS AMENDED.                                     |  |  |
| ISSUANCE OF THIS PERMIT SHALL NOT RELIEVE THE PERMITTEE                                             | OF ANY RESPONSIBIL         | LITY UNDER ANY OTHER LAW,                                        |  |  |
| PERMIT ISSUED DEPARTMENT OF ENVIRONMENTAL RESOURCES                                                 |                            |                                                                  |  |  |
| 8-7-77 OTICAL                                                                                       |                            |                                                                  |  |  |
| DATE UI I A BY BY Deley Michaeley                                                                   |                            |                                                                  |  |  |
|                                                                                                     | TITLE Regiona              | al Sanitary Engineer                                             |  |  |
| C110                                                                                                | 100                        |                                                                  |  |  |
| 800K C 44C                                                                                          | PACE OF                    |                                                                  |  |  |

ER 711.308

STATE OF PENNSYLVANIA SS

On the seventh day of August in the year one thousand nine hundred and seventy-two before me, the Subscriber, a Notary Public, came the above named

# C.T. Beechwood

and duly acknowledged the foregoing permit to be his act and deed and desired that the same might be recorded as such.

Witness my hand and notarial seal the day and year aforesaid.

J home NOTARY PUBLIC

THOMAS E. WILSON Notary Public, Philadelphia, Philadelphia Co. My Commission Expires May 13, 1974 HSE-6310-P

# FENNSYLVANIA DEPARTMENT OF HEALTH SANITARY (WATER BOARD

#### STANDARD CONDITIONS RELATING TO SEWERAGE

#### Effective November 1, 1942.

ONE: All relevant and non-superseded conditions of prior sewerage permits, decrees, or orders issued to the herein named permittee or his predecessor shall be continued in full force and effect.

TWO: During construction no radical changes shall be made from the plans, designs, and other data herein approved unless the permittee shall first submit each such revision to the Sanitary Water Board and receive written approval thereof.

THREE: The works shall be constructed under expert engineering supervision and competent inspection, and in accordance with the plans, designs, and other data as herein approved or amended, and with the conditions of this permit.

FOUR: During construction the herein approved sewers shall be so laid and such care and skill shall be used in their construction as will insure that they conform to the following requirements:

(a) They shall have well-fitted joints made tight to reduce infiltration to a minimum; shall be laid with straight alignment and to true grade; and shall have smooth interior surfaces.

(b) They shall have adequate foundation support by means of the natural soil; or by an approved, especially prepared foundation of piling, concrete cradle, or encasement, or otherwise as conditions require; and their trenches shall be so back-filled that the sewers will have proper structural stability, minimum settlement, and adequate protection against breakage.

(c) To these ends special care shall be taken in the placing of sewers under deep or shallow cover, under heavy loading, in stream crossings, in rock or wet excavations, or under other conditions which impose extra hazards upon their construction. (d) All concrete used in connection with these sewers and their appurtenances shall be so placed and protected until cured that it will not be injured by water, freezing, drying, or otherwise.

(e) The type and material of both sewer pipe and joint shall be so selected in accordance with actual field and construction conditions, and shall be so incorporated into the work as to conform to the aforesaid requirements.

FIVE: Manholes shall be placed and constructed as shown upon the herein approved plans except, that if not already so provided, they shall be placed on all sewers at junctions, at each change in grade or alignment, at summit ends, and upon straight lines at intervals not exceeding four hundred feet, or wherever necessary to permit satisfactory entrance to and maintenance of the sewers; manhole inverts shall be so formed as to facilitate the flow of the sewage and to prevent the stranding of sewage solids, and the whole manhole structure shall have proper structural strength and be so constructed as to prevent undue infiltration, entrance of street wash or grit, and to provide convenient and safe means of access and maintenance.

SIX: No storm water from pavements, areaways, roofs, or other sources shall be admitted to the sanitary sewers herein approved, which shall be used exclusively as carriers of domestic sewage and suitable industrial wastes.

Storm water shall be admitted only to such sewers as are specifically approved for use as combined sewers.

SEVEN: Attention is directed to the necessity of having a qualified person make proper study of all industrial wastes proposed for discharge to the public sewer system, to determine the degree of preliminary treatment, if any, which is necessary before these wastes may be discharged to the said system.

No industrial wastes shall be discharged to the sewer system which will prejudicially affect the sewerage structures or their functioning, or the processes of sewage treatment, and any permission granted by the permittee for industrial wastes discharge into the sewer system should reserve to the permittee the right to regulate the rate of such discharge or to require such further preliminary treatment as may be necessary, or the exclusion of the said industrial wastes from the sewers, if this be deemed necessary to protect the permittee's interests.

-2-

EIGHT: The permittee shall forthwith adopt and enforce an erdinance requiring all occupied buildings on premises accessible to a public sewer used in conformity with the requirements of State laws, to be connected thereto; also requiring the abandonment of privies, cesspools or similar receptables for human excrement on said premises; and also prohibiting any connection from any privy vault or cesspool being made to the public sewer system.

NINE: In accordance with the provisions of State laws regarding connection to sewers and the rules and regulations of the Pennsylvania Department of Health pertaining thereto, the permittee shall forthwith require all occupied buildings on premises accessible to a public sewer used in conformity with the requirements of State laws, to be connected thereto; and shall also require the abandonment of privies, cesspools or similar receptacles for human excrement on said premises; and shall also prohibit any connection from any privy vault or cesspool being made to any approved sewers.

TEN: The herein approved and previously constructed sewers shall be maintained in good condition, by repair when necessary, and kept free from deposits by flushing or other proper means of cleansing, in order that they may at all times afford a proper means for the prompt conveyance of sewage.

ELEVEN: No sewers or sewerage work shall be constructed except such as are herein approved or have been approved by a prior permit still valid; and on or before December thirtyfirst of each year the permittee shall file in the office of the State Department of Health satisfactory record, or detail plans, showing the correct plan of all sewers and sewerage structures as actually constructed during that year, together with any other information in connection therewith that may be required, in order that the Sanitary Water Board may at all times have full information as to the extent and use of the system.

TWELVE: The outfall sewer shall be extended to low water mark of the receiving body of water in such a manner as to insure the satisfactory dispersion of its effluent thereinto; insofar as practicable it shall have its outlet submerged; and shall be constructed of cast iron, concrete, or other material approved by the Bureau of Sanitary Engineering; and shall be so protected against the effects of flood water, ice, or other hazards as to reasonably insure its structural stability and freedom from stoppage.

THIRTEEN: The permittee shall secure any necessary permission

-3-

BOOK 2442 PAGE 186

from the proper federal authority for any outfall or sewerage structure which discharges into or enters navigable waters and shall obtain from the State Water & Power Resources Board approval of any stream crossing, encroachment, or change of natural stream conditions coming within the jurisdiction of the said Board.

FOURTEEN: If at any time the sewerage system of the permittee, or any part thereof, or the discharge of sewage therefrom, shall have created a public nuisance, or such discharge is or may become inimical and injurious to the public health or to animal or aquatic life or to the use of the receiving water for domestic or industrial consumption, or for recreation, the permittee shall forthwith adopt such remedial measures as the Sanitary Water Board may advise or approve.

FIFTEEN: Nothing herein contained shall be construed to be an intent on the part of the Sanitary Water Board to approve any act made or to be made by the permittee inconsistent with the permittee's lawful powers or with existing laws of the Commonwealth regulating sewerage and the practice of professional engineering, or shall be construed as approval of the structural adequacy of the approved structures; nor shall this permit be construed to permit any act otherwise forbidden by any of the laws of the Commonwealth of Pennsylvania or of the United States.

SIXTEEN: The improvements being effected in the waters of the State through the progressive, sanitary clean-up of streams by the Sanitary Water Board render the effects of untreated municipal sewage and industrial wastes upon these waters increasingly harmful or inimical to the public interest, in consequence of which the time should be anticipated when such sewage and/or industrial wastes must be suitably modified prior to its discharge thereto.

Therefore, the permittee is hereby notified that when the Sanitary Water Board shall have determined that the public interests require the treatment or further treatment of the sewage and/or industrial wastes of the permittee, then the permittee shall, upon notice by the Board, within the time specified, submit to the Board for its approval, plans and a report providing for the degree of treatment of the permittee's sewage and/or industrial wastes specified by the Board and after approval thereof shall construct such works in accordance with the directions of the Board.

SEVENTEEN: The approval herein given is specifically made

BOOK 2442 PAGE 187

contingent upon the permittee acquiring all necessary rights, by easement or otherwise as required, providing for the satisfactory construction, operation, maintenance and replacement of all sewers or sewerage structures in, along, or across private property, with full rights of ingress, egress and regress.

EIGHTEEN: Promptly upon completion of the herein approved sewerage, duplicate detail record plans showing these works as actually constructed, shall be filed with the Sanitary Water Board for its information.

NINETEEN: When the herein approved sewage treatment works is constructed and before it is placed in operation, the permittee shall notify the State Department of Health so that an inspection of the works may be made by a representative of the Department.

TWENTY: The various structures and apparatus of the sewage treatment works herein approved shall be maintained in proper condition so that they will individually and collectively perform the functions for which they were designed.

TWENTY-ONE: The screenings and sludge shall be so handled that a nuisance is not created and shall be disposed of in a sanitary manner to the satisfaction of the Sanitary Water Board.

TWENTY-TWO: Daily records of the operation of the sewage treatment works shall be kept on forms satisfactory to the State Department of Health and copies of such records shall be filed at weekly intervals in the office of the said Department. These reports shall include the quantity of sewage treated and the results of such tests and analyses as the State Department of Health may deem necessary for proper control of the operation of the sewage treatment works.

TWENTY-THREE: The sewage treatment works shall be operated by a competent person or persons. In this connection attention is directed to the necessity for expert advice and supervision over the operation of the sewage treatment works in order to secure efficiency of operation and protection to the waters of the State. To this end the permittee shall place the operation of the sewage treatment works under the control of the designer of these works, or some other person expert in the operation of sewage treatment works, for at least one year after completion thereof. Effective January 1, 1971, the sewage treatment plant shall be operated by a certified operator, in accordance with the Sewage Treatment Plant and Waterworks Operators' Certification Act, Act #322, approved November 18, 1968.

(Amended June 13, 1969)

-5-

TWENTY-FOUR: The right to discharge the effluent from the permittee's sewage treatment works into the waters of the State is specifically made contingent upon such operation of these works as will produce an effluent of a quality satisfactory for discharge into the receiving body of water. If, in the opinion of the Sanitary Water Board, these works are not so operated or if by reason of increased load upon the works, changed use or condition of the receiving body of water, or otherwise, the said effluent ceases to be satisfactory for such discharge, then upon notice by the Board the right herein granted to discharge such effluent shall cease and become null and void and, within the time specified by the Board, the permittee shall take such remedial measures as will produce an effluent which in the opinion of the Board, will be satisfactory for discharge into the said receiving body of water.

TWENTY-FIVE: The attention of the permittee is called to the highly explosive nature of certain gases generated by the digestion of sewage solids when these gases are mixed in proper proportions with air, and to the highly toxic character of certain gases arising from such digestion or from sewage in insufficiently ventilated compartments or sewers. Therefore, at all places throughout the works where hazard of fire, explosion, or danger from toxic gases may occur, the permittee shall post conspicuously proper warnings of a permanent and easily legible character and shall provide for the thorough instruction of all employes concerning the aforesaid hazards and in first aid and emergency methods of meeting such hazards and shall further provide, in a conveniently accessible place, all necessary equipment and material therefor.

TWENTY-SIX: Adequate and assured ventilation shall be provided for all enclosed screen chambers, sewage wells, pump rooms, sludge wells, general control rooms, chlorine control, and digestor control rooms, and also for all other compartments in which explosive or dangerous gases or dusts can accumulate and which must be entered periodically for inspection or operation.

TWENTY-SEVEN: Cross connections between a potable water supply and a sewerage system constitute a potential danger to the public health. Therefore, all direct and indirect connections whereby under normal or abnormal conditions the potable water supply may become contaminated from an inferior water supply, from any unit of the sewage treatment works, or by any appurtenance thereof or from any part of a sewerage system, are hereby specifically prohibited. The permittee is further warned against permitting to be made permanent any temporary connection with a potable supply designed to be held in place while being

The right to discharge the effluent from TWENTY-FOUR: the permittee's sewage treatment works into the waters of the State is specifically made contingent upon such operation of these works as will produce an effluent of a quality satisfactory for discharge into the receiving body of water. If, in the opinion of the Sanitary Water Board, these works are not so operated or if by reason of increased load upon the works, changed use or condition of the receiving body of water, or otherwise, the said effluent ceases to be satisfactory for such discharge, then upon notice by the Board the right herein granted to discharge such effluent shall cease and become null and void and, within the time specified by the Board, the permittee shall take such remedial measures as will produce an effluent which in the opinion of the Board, will be satisfactory for discharge into the said receiving body of water.

The attention of the permittee is called to TWENTY-FIVE: the highly explosive nature of certain gases generated by the digestion of sewage solids when these gases are mixed in proper proportions with air, and to the highly toxic character of certain gases arising from such digestion or from sewage in insufficiently ventilated compartments or Therefore, at all places throughout the works sewers. where hazard of fire, explosion, or danger from toxic gases may occur, the permittee shall post conspicuously proper warnings of a permanent and easily legible character and shall provide for the thorough instruction of all employes concerning the aforesaid hazards and in first aid and emergency methods of meeting such hazards and shall further provide. in a conveniently accessible place, all necessary equipment and material therefor.

TWENTY-SIX: Adequate and assured ventilation shall be provided for all enclosed screen chambers, sewage wells, pump rooms, sludge wells, general control rooms, chlorine control, and digestor control rooms, and also for all other compartments in which explosive or dangerous gases or dusts can accumulate and which must be entered periodically for inspection or operation.

TWENTY-SEVEN: Cross connections between a potable water supply and a sewerage system constitute a potential danger to the public health. Therefore, all direct and indirect connections whereby under normal or abnormal conditions the potable water supply may become contaminated from an inferior water supply, from any unit of the sewage treatment works, or by any appurtenance thereof or from any part of a sewerage system, are hereby specifically prohibited. The permittee is further warned against permitting to be made permanent any temporary connection with a potable supply designed to be held in place while being

> -6-BOOK 2442 PAGE 190

used for flushing or other purposes, and is also cautioned against the danger of back siphonage through portable hose lines and similar avenues of possible contamination.

Į.

800K 2442 PAGE 191

|        | NEALTH OF PENNSV | RECEIVED 8-16-12 |              |
|--------|------------------|------------------|--------------|
| COMMON |                  | LVANITAR TO      | ي<br>با<br>م |
|        |                  | ANSWD            | <u>ب</u>     |

#### DEPARTMENT OF ENVIRONMENTAL RESOURCES

August 7, 1972

Certified Mail

Delaware County Regional Water Control Authority Delaware County CourthHouse Media, Pa. 19063 Attn: William H. Turner, Chairman

> SUBJECT: Sewerage Permit No. 2372406 Delaware County Regional Water Control Authority

Gentlemen:

Subject permit is enclosed.

Please study the permit carefully and direct any questions to this office.

To become operative this permit must be recorded in the Office of the Recorder of Deeds in the county in which the discharge is located. Enclosed is a certificate and pre-addressed envelope for this purpose. Please have the Recorder of Deeds accomplish the certificate and return it within ten (10) days.

Very truly yours, C.T. Riechurrent C. T. Beechwood

Regional Sanitary Engineer

Enclosures - Permit Standard Conditions Certificate Return Envelope

cc: Division of Management Services Albright and Friel



MAR 7

Fax:

2005-0503

Phone: 484-250-5970

484-250-5971 Oniz Permit Book

2005

CC: JLS & File Cope

2 East Main Street Norristown, PA 19401

# March 3, 2005

# Southeast Regional Office

Mr. Joseph Salvucci Executive Director Delaware County Regional Water Quality Authority 100 East Fifth Street P.O. Box 999 Chester, PA 19016

> Re: DELCORA Project Name: PRF Pump Station Sewerage 2304406 File Type: Permit Chester City Delaware County

Dear Mr. Salvucci:

Your permit is enclosed.

You must comply with all Standard and Special Conditions attached to this Permit. Construction must be done in accordance with the permit application and all supporting documentation. Please review the permit conditions and the supporting documentation submitted with your application before starting construction.

Any person aggrieved by this action may appeal, pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. Section 7514, and the Administrative Agency Law, 2 Pa.C.S. Chapter 5A, to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, P.O. Box 8457, Harrisburg, PA 17105-8457, 717-787-3483. TDD users may contact the Board through the Pennsylvania Relay Service, 800-654-5984. Appeals must be filed with the Environmental Hearing Board within 30 days of receipt of written notice of this action unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in braille or on audiotape from the Secretary to the Board at 717-787-3483. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law.

IF YOU WANT TO CHALLENGE THIS ACTION, YOUR APPEAL MUST REACH THE BOARD WITHIN 30 DAYS. YOU DO NOT NEED A LAWYER TO FILE AN APPEAL WITH THE BOARD.



Mr. Joseph Salvucci

IMPORTANT LEGAL RIGHTS ARE AT STAKE, HOWEVER, SO YOU SHOULD SHOW THIS DOCUMENT TO A LAWYER AT ONCE. IF YOU CANNOT AFFORD A LAWYER, YOU MAY QUALIFY FOR FREE PRO BONO REPRESENTATION. CALL THE SECRETARY TO THE BOARD (717-787-3483) FOR MORE INFORMATION.

If you have any questions, please call Mr. David Talley at 484-250-5181.

Sincerely,

James Newbold, P.E. Regional Manager Water Management

Enclosures

cc: Mr. Weinzapfel, BCM Engineers Operations Section Water Management Permits Chief File Re (AR05WQM)054-5

| A. PERMIT ISE (Name):       CUENT IDF: 42321         Delaware County Regional Water Quality Authority       DBILCORA Western Treatment Plant         DBIL CORA.       Fifth St.         P.O. Bor 999       Chester, PA 19016         C. LOCATION (Municipality, County):       SITE ID#:         Chester, PA 19016       SITE ID#:         C. LOCATION (Municipality, County):       Chester City         Delaware County       SITE ID#:         D. This permit approves the modification of sewerage facilities coasisting of:       Upgrading the capacity of the PRF pump station from approximately 2.0mgd to approximately 4.5mgd.         Pump Stations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00-PM-WSWM0015 Rev. 6/2004<br>rmit                                                                                                                                                                 | COMMONWEALTH OF PEI<br>DEPARTMENT OF ENVIRONMEN<br>BUREAU OF WATER SUPPLY AND WAS<br>WATER QUALITY M/<br>PERMIT                               | PERMIT NO. <u>2304406</u><br>AMENDMENT NO<br>APS ID <u>541986</u><br>AUTH ID <u>577753</u>   |                                                                                        |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--|--|
| C.       LOCATION (Municipality, County):       SITE ID#:         C.       LOCATION (Municipality, County):       454804         Delaware County       0.       This permit approves the modification of sewerage facilities consisting of:       Upgrading the capacity of the PRF pump station from approximately 2.0mgd to approximately 4.5mgd.         Pump Stations:       1       Manure Storage:       Industrial Wastewater/Sewage Treatment Fac         Design Capacity:       3150       GPM       Youme       MG         Design Capacity:       3150       GPM       Youme       MG         Pump Stations:       4.500,000       GPD       Youme       MG       Design Hydraulic Capacity:       MGD         Design Capacity:       3150       GPM       Youme       MG       Design Organic Capacity:       MGD         I.       New Permits:       All construction, operations, and procedures shall be in accordance with the Water Quality Management Permit Applic:       12/8/04       Its supporting docoumentation, and addendums dated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Delaware County Regional V<br>(DELCORA)<br>100 E. Fifth St.<br>P.O. Box 999<br>Chester, PA 19016                                                                                                   | CLIENT ID#: 42332<br>/ater Quality Authority                                                                                                  | B. PRIMARY FACILITY (Na<br>DELCORA Western<br>Plant Return Feed (P                           | <sup>me):</sup><br>Treatment Plant<br>PRF) Pump Station                                |  |  |
| D.       This permit approves the modification of severage facilities consisting of:<br>Upgrading the capacity of the PRF pump station from approximately 2.0mgd to approximately 4.5mgd.         Pump Stations:       1       Manure Storage:<br>Industrial Wastewater/Sewage Treatment Fac<br>Annual Average Flow:         Design Capacity:       3150       GPM<br>Average Annual Flow.       4,500,000         Average Annual Flow:       4,500,000       GPD       MG<br>Freeboard:       MG<br>Inches         E.       APPROVAL GRANTED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING:       MGD         1.       New Permits: All construction, operations, and procedures shall be in accordance with the Water Quality Management Permit Amen<br>application dated and its supporting documentation, and addendums dated, which are hereby made a part of this permit.         Armendments:       All construction, operations, and procedures shall be in accordance with the Water Quality Management Permit Amen<br>application dated and its supporting documentation, and addendums dated, which are hereby made a part of this amendment<br>Except for any herein approved modifications, all terms, conditions, supporting documentation and addendums approved under Water Quality Management Permit No dated and conditions, supporting documentation and addendums are a<br>part of this transfer:         2.       Permit Conditions Relating to severage are attached and made part of this permit.         3.       Special Conditions numbered are attached and made part of this permit.         4.       Failure to comfky with the rules and                                                                                                                                                                                              | LOCATION (Municipality, County):<br>Chester City<br>Delaware County                                                                                                                                |                                                                                                                                               | SITE ID#:<br>454804                                                                          |                                                                                        |  |  |
| Pump Stations:       1       Manure Storage:       Industrial Wastewater/Sewage Treatment Fac         Design Capacity:       3150       GPM       GPM         Average Annual Flow:       4,500,000       GPD       GPD       MG         Freeboard:       inches       Design Hydraulic Capacity:       MGD         Design Organic Capacity:       Ib/day       MGD         E.       APPROVAL GRANTED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING:       Annual Average Flow:       MGD         1.       New Permits:       All construction, operations, and procedures shall be in accordance with the Water Quality Management Permit applicit       12/8/04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | This permit approves the mo<br>Upgrading the capacity of the                                                                                                                                       | lification of sewerage facilities consists<br>PRF pump station from approximation                                                             | sting of:<br>tely 2.0mgd to approximate                                                      | ely 4.5mgd.                                                                            |  |  |
| Design Capacity: <u>3150</u> GPM       Average Annual Flow: <u>4,500,000</u> GPD       VolumeMG       Annual Average Flow:MGD       MGD         Yearage Annual Flow: <u>4,500,000</u> GPD       Freeboard:inches       MG       Design Organic Capacity:MGD       MGD         E. APPROVAL GRANTED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING:       Inches       Design Organic Capacity:Ib/day       Ib/day         I. New Permits: All construction, operations, and procedures shall be in accordance with the Water Quality Management Permit application dated and its supporting documentation, and addendums dated, which are hereby made a part of this memotime application dated and its supporting documentation, and addendums dated, which are hereby made a part of this amendmene Except for any herein approved modifications, all terms, conditions, supporting documentation and addendums approved under Water C Management Permit No dated shall remain in effect.         Transfers: Water Quality Management Permit No dated and conditions, supporting documentation and addendums are a part of this transfer.         2. Permit Conditions Relating to sewerage are attached and made part of this permit.         3. Special Conditions numbered are attached and made part of this permit.         4. If there is a conflict between the application or its supporting documents and amendments and the attached conditions, the attached shall apply.         2. Failure to comply with the rules and regulations of DEP or with the terms or conditions of this permit shall void the authority given to thy the issuance of this permit.                                                                                                                                                                                           | np Stations:                                                                                                                                                                                       | Manure Storage:                                                                                                                               | Industrial Wastewater/                                                                       | Sewage Treatment Facility:                                                             |  |  |
| Average Annual Flow:       4.500,000       GPD       Volume       MG       Design Hydraulic Capacity:       MGD         E.       APPROVAL GRANTED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING:       Ib/day         E.       New Permits: All construction, operations, and procedures shall be in accordance with the Water Quality Management Permit applicat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | sign Capacity: <u>3150</u> GPM                                                                                                                                                                     |                                                                                                                                               | Annual Average Flow:                                                                         | MGD                                                                                    |  |  |
| Freeboard:       inches       Design Organic Capacity:       ib/day         E. APPROVAL GRANTED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING:       New Permits: All construction, operations, and procedures shall be in accordance with the Water Quality Management Permit applicit       12/8/04_, its supporting documentation, and addendums dated, which are hereby made a part of this permit.         Amendments: All construction, operations, and procedures shall be in accordance with the Water Quality Management Permit Amen application dated and its supporting documentation, and addendums dated, which are hereby made a part of this amendmene Except for any herein approved modifications, all terms, conditions, supporting documentation and addendums approved under Water C Management Permit No dated and conditions, supporting documentation and addendums are a part of this transfer.         2. Permit Conditions Relating to sewerage are attached and made part of this permit.         3. Special Conditions numbered are attached and made part of this permit.         F. THE AUTHORITY GRANTED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING FURTHER QUALIFICATIONS:         1. If there is a conflict between the application or its supporting documents and the attached conditions, the attached shall apply.         2. Failure to comply with the rules and regulations of DEP or with the terms or conditions of this permit.         3. This permit is issued pursuant to the Clean Streams Law Act of June 22, 1937, P.L. 1987, <u>as amended</u> 35 P.S. §691.1 <i>et seq.</i> Issu permit shall not relieve the permittee of any responsibility under any other law.         PERMIT ISSUED:       BY:                                                                                                              | arage Annual Flow:                                                                                                                                                                                 | D Volume MG                                                                                                                                   | Design Hydraulic Capacity:                                                                   | MGD                                                                                    |  |  |
| <ul> <li>E. APPROVAL GRANTED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING:</li> <li>New Permits: All construction, operations, and procedures shall be in accordance with the Water Quality Management Permit applici <u>12/8/04</u>, its supporting documentation, and addendums dated, which are hereby made a part of this permit.</li> <li>Amendments: All construction, operations, and procedures shall be in accordance with the Water Quality Management Permit Amen application dated and its supporting documentation, and addendums dated, which are hereby made a part of this amendment application dated and its supporting documentation, and addendums dated, which are hereby made a part of this amendment Except for any herein approved modifications, all terms, conditions, supporting documentation and addendums approved under Water C Management Permit No dated and conditions, supporting documentation and addendums are a part of this transfer.</li> <li>Permit Conditions Relating to severage are attached and made part of this permit.</li> <li>Special Conditions numbered are attached and made part of this permit.</li> <li>F. THE AUTHORITY GRANTED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING FURTHER QUALIFICATIONS:</li> <li>If there is a conflict between the application or its supporting documents and amendments and the attached conditions, the attached shall apply.</li> <li>Failure to comply with the rules and regulations of DEP or with the terms or conditions of this permit shall void the authority given to the by the issuance of this permit.</li> <li>This permit is issued pursuant to the Clean Streams Law Act of June 22, 1937, P.L. 1967, <u>as amended</u> 35 P.S. §691.1 <i>et seq.</i> Issu permit thall not relieve the permittee of any responsibility under any other law.</li> </ul> |                                                                                                                                                                                                    | Freeboard: inches                                                                                                                             | Design Organic Capacity:                                                                     | lb/day                                                                                 |  |  |
| <ol> <li>New Permits: All construction, operations, and procedures shall be in accordance with the Water Quality Management Permit applics <u>12/8/04</u>, its supporting documentation, and addendums dated, which are hereby made a part of this permit.     </li> <li>Amendments: All construction, operations, and procedures shall be in accordance with the Water Quality Management Permit Amen application dated and its supporting documentation, and addendums dated, which are hereby made a part of this mendment except for any herein approved modifications, all terms, conditions, supporting documentation and addendums approved under Water Q Management Permit No dated shall remain in effect.     Transfers: Water Quality Management Permit No dated and conditions, supporting documentation and addendums are a part of this transfer.     Permit Conditions Relating to sewerage are attached and made part of this permit.     Special Conditions numbered are attached and made part of this permit.     THE AUTHORITY GRANTED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING FURTHER QUALIFICATIONS:     If there is a conflict between the application or its supporting documents and amendments and the attached conditions, the attached shall apply.     Failure to comply with the rules and regulations of DEP or with the terms or conditions of this permit.     This permit is issued pursuant to the Clean Streams Law Act of June 22, 1937, P.L. 1987, <u>as amended</u> 35 P.S. §691.1 <i>et seq.</i> Issu permit shall not relieve the permittee of any responsibility under any other law.     PERMIT ISSUED:     BY:</li></ol>                                                                                                                                                                                          | APPROVAL GRANTED BY THIS F                                                                                                                                                                         | EBMIT IS SUBJECT TO THE FOLLOWING                                                                                                             | ·                                                                                            |                                                                                        |  |  |
| Amendments: All construction, operations, and procedures shall be in accordance with the Water Quality Management Permit Amerapplication dated and its supporting documentation, and addendums dated, which are hereby made a part of this amendme         Except for any herein approved modifications, all terms, conditions, supporting documentation and addendums approved under Water Q Management Permit No dated shall remain in effect.         Transfers: Water Quality Management Permit No dated and conditions, supporting documentation and addendums are a part of this transfer.         2.       Permit Conditions Relating to sewerage are attached and made part of this permit.         3.       Special Conditions numbered are attached and made part of this permit.         F.       THE AUTHORITY GRANTED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING FURTHER QUALIFICATIONS:         1.       If there is a conflict between the application or its supporting documents and the attached conditions, the attached shall apply.         2.       Failure to comply with the rules and regulations of DEP or with the terms or conditions of this permit shall void the authority given to the by the issuance of this permit.         7.       This permit is issued pursuant to the Clean Streams Law Act of June 22, 1937, P.L. 1987, <u>as amended</u> 35 P.S. §691.1 <i>et seq.</i> Issu permit shall not relieve the permittee of any responsibility under any other law.         PERMIT ISSUED:       BY:                                                                                                                                                                                                                                                                                                                         | New Permits: All construction, c<br><u>12/8/04</u> , its supporting docum                                                                                                                          | perations, and procedures shall be in accord<br>ientation, and addendums dated, which                                                         | lance with the Water Quality Man<br>are hereby made a part of this p                         | nagement Permit application dated<br>permit.                                           |  |  |
| Transfers: Water Quality Management Permit No dated and conditions, supporting documentation and addendums are a part of this transfer. Permit Conditions Relating to sewerage are attached and made part of this permit. Special Conditions numbered are attached and made part of this permit. F. THE AUTHORITY GRANTED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING FURTHER QUALIFICATIONS: I fit here is a conflict between the application or its supporting documents and amendments and the attached conditions, the attached shall apply. Failure to comply with the rules and regulations of DEP or with the terms or conditions of this permit shall void the authority given to the by the issuance of this permit. This permit is issued pursuant to the Clean Streams Law Act of June 22, 1937, P.L. 1987, <u>as amended</u> 35 P.S. §691.1 <i>et seq.</i> Issu permit shall not relieve the permittee of any responsibility under any other law. PERMIT ISSUED:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Amendments: All construction, application dated and its supplication dated and its supplication dated memory herein approved me                                                                    | perations, and procedures shall be in accom-<br>orting documentation, and addendums date<br>difications, all terms, conditions, supporting of | dance with the Water Quality Ma<br>d, which are hereby made<br>documentation and addendums a | nagement Permit Amendment<br>a part of this amendment.<br>approved under Water Quality |  |  |
| <ol> <li>Permit Conditions Relating to sewerage are attached and made part of this permit.</li> <li>Special Conditions numbered are attached and made part of this permit.</li> <li>THE AUTHORITY GRANTED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING FURTHER QUALIFICATIONS:         <ol> <li>If there is a conflict between the application or its supporting documents and amendments and the attached conditions, the attached shall apply.</li> </ol> </li> <li>Failure to comply with the rules and regulations of DEP or with the terms or conditions of this permit shall void the authority given to the by the issuance of this permit.</li> <li>This permit is issued pursuant to the Clean Streams Law Act of June 22, 1937, P.L. 1987, <u>as amended</u> 35 P.S. §691.1 <i>et seq.</i> Issue permit shall not relieve the permittee of any responsibility under any other law.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Management Permit No dated shall remain in effect. Transfers: Water Quality Management Permit No dated and conditions, supporting documentation and addendums are also made part of this transfer. |                                                                                                                                               |                                                                                              |                                                                                        |  |  |
| <ol> <li>Special Conditions numbered are attached and made part of this permit.</li> <li>F. THE AUTHORITY GRANTED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING FURTHER QUALIFICATIONS:         <ol> <li>If there is a conflict between the application or its supporting documents and amendments and the attached conditions, the attached shall apply.</li> </ol> </li> <li>Failure to comply with the rules and regulations of DEP or with the terms or conditions of this permit shall void the authority given to the by the Issuance of this permit.</li> <li>This permit is issued pursuant to the Clean Streams Law Act of June 22, 1937, P.L. 1987, <u>as amended</u> 35 P.S. §691.1 <i>et seq.</i> Issu permit shall not relieve the permittee of any responsibility under any other law.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Permit Conditions Relating t                                                                                                                                                                       | sewerage are attached and made part of                                                                                                        | this permit.                                                                                 |                                                                                        |  |  |
| <ul> <li>F. THE AUTHORITY GRANTED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING FURTHER QUALIFICATIONS:</li> <li>1. If there is a conflict between the application or its supporting documents and amendments and the attached conditions, the attached shall apply.</li> <li>2. Failure to comply with the rules and regulations of DEP or with the terms or conditions of this permit shall void the authority given to the by the issuance of this permit.</li> <li>3. This permit is issued pursuant to the Clean Streams Law Act of June 22, 1937, P.L. 1987, <u>as amended</u> 35 P.S. §691.1 <i>et seq.</i> Issu permit shall not relieve the permittee of any responsibility under any other law.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Special Conditions numbered                                                                                                                                                                        | are attached and made part of this permit.                                                                                                    |                                                                                              |                                                                                        |  |  |
| <ol> <li>If there is a conflict between the application or its supporting documents and amendments and the attached conditions, the attached shall apply.</li> <li>Failure to comply with the rules and regulations of DEP or with the terms or conditions of this permit shall void the authority given to the by the issuance of this permit.</li> <li>This permit is issued pursuant to the Clean Streams Law Act of June 22, 1937, P.L. 1987, <u>as amended</u> 35 P.S. §691.1 <i>et seq.</i> Issu permit shall not relieve the permittee of any responsibility under any other law.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | THE AUTHORITY GRANTED BY 1                                                                                                                                                                         | HIS PERMIT IS SUBJECT TO THE FOLLO                                                                                                            | WING FURTHER QUALIFICATIO                                                                    | ONS:                                                                                   |  |  |
| <ol> <li>Failure to comply with the rules and regulations of DEP or with the terms or conditions of this permit shall void the authority given to the by the issuance of this permit.</li> <li>This permit is issued pursuant to the Clean Streams Law Act of June 22, 1937, P.L. 1987, <u>as amended</u> 35 P.S. §691.1 <i>et seq.</i> Issu permit shall not relieve the permittee of any responsibility under any other law.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1. If there is a conflict between the application or its supporting documents and amendments and the attached conditions, the attached conditions shall apply.                                     |                                                                                                                                               |                                                                                              |                                                                                        |  |  |
| This permit is issued pursuant to the Clean Streams Law Act of June 22, 1937, P.L. 1987, <u>as amended</u> 35 P.S. §691.1 <i>et seq.</i> Issu permit shall not relieve the permittee of any responsibility under any other law.  PERMIT ISSUED:  BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2. Failure to comply with the rules and regulations of DEP or with the terms or conditions of this permit shall void the authority given to the permittee by the issuance of this permit.          |                                                                                                                                               |                                                                                              |                                                                                        |  |  |
| PERMIT ISSUED; BY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | This permit is issued pursuant to the<br>permit shall not relieve the permitte                                                                                                                     | e Clean Streams Law Act of June 22, 193<br>e of any responsibility under any other law.                                                       | 7, P.L. 1987, <u>as amended</u> 35 P.                                                        | .S. 9691.1 et seq. Issuance of this                                                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AMIT ISSUED:                                                                                                                                                                                       |                                                                                                                                               | BY: James                                                                                    | buld A                                                                                 |  |  |
| March 3, 2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | March 3, 2005                                                                                                                                                                                      |                                                                                                                                               | TITLE: Water Manage                                                                          | ment Program Manager                                                                   |  |  |

Permit No. 2304406



#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER SUPPLY AND WASTEWATER MANAGEMENT

# PERMIT CONDITIONS RELATING TO SEWERAGE

For use in Water Quality Management Permits

(Place a  $\sqrt{10}$  in the box that applies)

#### General ⊠ 1. Consistent with the Department of Environmental Protection's (DEP) technical guidance document Conducting Technical Reviews of Water Quality Management Permit Wastewater Treatment Facilities (DEP ID: 362-2000-007) available on DEP's website at www.dep.state.pa.us. DEP considers the registered Professional Engineer whose seal is affixed to the design documents to be fully responsible for the adequacy of all aspects of the facility design. П 2. The permittee shall adopt and enforce an ordinance requiring the abandonment of privies, cesspools or similar receptacles for human waste and onlot sewage disposal systems on the premises of occupied structures accessible to public sewers. All such structures must be connected to the public sewers. З. The outfall sewer or drain shall be extended to the low water mark of the receiving body of water. Where necessary to ensure proper mixing and waste assimilation, an outfall sewer or drain may be extended with appurtenances below the low water mark and into the bed of a navigable stream provided that the permittee has secured an easement, right-of-way, license or lease from DEP in accordance with Section 15 of the Dam Safety and Encroachments Act, the Act of November 26, 1978, P.L. 1375, as amended. $\boxtimes$ 4. The approval is specifically made contingent on the permittee acquiring all necessary property rights, by easement or otherwise, providing for the satisfactory construction, operation, maintenance and replacement of all sewers or sewerage structures in, along or across private property with full rights of ingress, egress and regress. $\boxtimes$ 5. When construction of the approved sewerage facilities is completed and before they are placed in operation, the permittee shall notify DEP in writing so that a DEP representative may inspect the facilities. $\boxtimes$ If, at any time, the sewerage facilities covered by this permit create a public nuisance, including but not limited to, 6. causing malodors or causing environmental harm to waters of the Commonwealth, DEP may require the permittee to adopt appropriate remedial measures to abate the nuisance or harm. Π 7. This permit authorizes the construction and operation of the proposed sewerage facilities until such time as facilities for conveyance and treatment at a more suitable location are installed and capable of receiving and treating the permittee's sewage. Such facilities must be in accordance with the applicable municipal official plan adopted pursuant to Section 5 of the Pennsylvania Sewage Facilities Act, the Act of January 24, 1966, P.L. 1535 as amended. When such municipal sewerage facilities become available, the permittee shall provide for the conveyance of the sewage to these sewerage facilities, abandon the use of these approved facilities and notify DEP accordingly. This permit shall then, upon notice from DEP, terminate and become null and void and shall be relinguished to DEP. This permit does not relieve the permittee of its obligations to comply with all federal, interstate, state or local laws, $\boxtimes$ 8. ordinances and regulations applicable to the sewerage facilities. This permit does not give any real or personal property rights or grant any exclusive privileges, nor shall it be $\boxtimes$ 9. construed to grant or confirm any right, easement or interest in, on, to or over any lands which belong to the Commonwealth. The authority granted by this permit is subject to all effluent requirements, monitoring requirements and other $\boxtimes$ 10. conditions as set forth in NPDES Permit No. PA0027103 and all subsequent amendments and renewals. No discharge is authorized from these facilities unless approved by an NPDES Permit. Construction 11. An Erosion and Sedimentation (E&S) Plan must be developed prior to construction of the permitted facility, pursuant to Title 25 Pa. Code Chapter 102, and implemented during and after the earth disturbance activity.

If the activity involves 5 or more acres of earth disturbance, or from 1 to 5 acres of earth disturbance with a point source discharge to surface waters of the Commonwealth, an NPDES permit for the Discharge of Stormwater Associated with Construction Activity is required.

In addition to the state NPDES permitting requirements, some municipalities, through local ordinances, require the E&S Control Plan to be reviewed and approved by the local County Conservation District office prior to

construction. For specific information regarding E&S control planning approval and NPDES permitting requirements, please contact your local County Conservation District office.

- 12. The facilities shall be constructed under the supervision of a Pennsylvania registered Professional Engineer in accordance with the approved reports, plans and specifications.
- 13. A Pennsylvania registered Professional Engineer shall certify that construction of the permitted facilities was completed in accordance with the application and design plans submitted to DEP, using "Post Construction Certification" (3800-PM-WSWM0179a). It is the permittee's responsibility to ensure that a Professional Engineer is on-site to provide the necessary oversight and/or inspections to certify the facilities. The certification must be submitted to DEP before the facility is placed in operation. If requested, "as-built" drawings, photographs (if available) and a description of any DEP-approved deviations from the application and design plans must be submitted to DEP within 30 days of certification.
- 14. Manhole inverts shall be formed to facilitate the flow of the sewage and to prevent the stranding of sewage solids. The manhole structure shall be built to prevent undue infiltration, entrance of street wash or grit and provide safe access to facilitate manhole maintenance activities.
- 15. The local Waterways Conservation Officer of the Pennsylvania Fish and Boat Commission (PFBC) shall be notified when the construction of any stream crossing and/or outfall is started and completed. A written permit must be secured from the PFBC if the use of explosives in any waterways is required and the permittee shall notify the local Waterways Conservation Officer when explosives are to be used.

Operation and Maintenance

- 16. The permittee shall maintain records of "as-built" plans showing all the treatment facilities as actually constructed together with facility operation and maintenance (O&M) manuals and any other relevant information that may be required. Upon request, the "as-built" plans and O&M manuals shall be filed with DEP.
- 17. The sewers shall have adequate foundation support as soil conditions require. Trenches shall be back-filled to ensure that sewers will have proper structural stability, with minimum settling and adequate protection against breakage. Concrete used in connection with these sewers shall be protected from damage by water, freezing, drying or other harmful conditions until cured.
- 18. Stormwater from roofs, foundation drains, basement drains or other sources shall not be admitted directly to the sanitary sewers.
- 19. The approved sewers shall be maintained in good condition, kept free of deposits by flushing or other cleaning methods and repaired when necessary.
- 20. The sewerage facilities shall be properly operated and maintained to perform as designed.
- 21. The attention of the permittee is called to the highly explosive nature of certain gases generated by the digestion of sewage solids when these gases are mixed in proper proportions with air and to the highly toxic character of certain gases arising from such digestion or from sewage in poorly ventilated compartments or sewers. Therefore, at all places throughout the sewerage facilities where hazard of fire, explosion or danger from toxic gases may occur, the permittee shall post conspicuous permanent and legible warnings. The permittee shall instruct all employees concerning the aforesaid hazards, first aid and emergency methods of meeting such hazards and shall make all necessary equipment and material accessible.
- 22. An operator certified in accordance with the Water and Wastewater Systems Operator Certification Act of February 21, 2002, 63 P.S. §§1001, et seq. shall operate the sewage treatment plant.
- 23. The permittee shall properly control any industrial waste discharged into its sewerage system by regulating the rate and quality of such discharge, requiring necessary pretreatment and excluding industrial waste, if necessary, to protect the integrity or operation of the permittee's sewerage system.
- 24. There shall be no physical connection between a public water supply system and a sewer or appurtenance to it which would permit the passage of any sewage or polluted water into the potable water supply. No water pipe shall pass through or come in contact with any part of a sewer manhole.
- 25. All connections to the approved sanitary sewers must be in accordance with the corrective action plan as contained in the approved Title 25 Pa. Code Chapter 94 Municipal Wasteload Management Annual Report.
- 26. Collected screenings, slurries, sludge and other solids shall be handled and disposed of in compliance with Title 25 Pa. Code Chapters 271, 273, 275, 283 and 285 (related to permits and requirements for land filling, land application, incineration and storage of sewage sludge), Federal Regulations 40 CFR 257 and the Federal Clean Water Act and its amendments.


Southeast Regional Office

Ms. Christine Volkay-Hiditch Director of Engineering

Control Authority 100 East Fifth Street Chester, PA 19016-0999

Delaware County Regional Water Quality

Pennsylvania Department of Environmental Protection

Lee Park, Suite 6010 555 North Lane Conshohocken, PA 19428

July 10, 2003 DECENTED JUL 1  $\stackrel{4}{}$  2003 By  $\frac{2}{}$   $\frac{2}{}$   $\frac{2}{}$   $\frac{3}{}$  -188

Phone: 610-832-6130 Fax: 610-832-6133

Re: Western Regional Treatment Plant SEW 2303403 File Type: Permit City of Chester Delaware County

Dear Ms. Volkay-Hiditch:

Your permit is enclosed.

You must comply with all Standard and Special Conditions attached to this Permit. Construction must be done in accordance with the permit application and all supporting documentation. Please review the permit conditions and the supporting documentation submitted with your application before starting construction.

Any person aggrieved by this action may appeal, pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. Section 7514, and the Administrative Agency Law, 2 Pa. C.S. Chapter 5A, to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, P.O. Box 8457, Harrisburg, PA 17105-8457, 717-787-3483. TDD users may contact the Board through the Pennsylvania Relay Service, 800-654-5984. Appeals must be filed with the Environmental Hearing Board within 30 days of receipt of written notice of this action unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in braille or on audiotape from the Secretary to the Board at 717-787-3483. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law.

IF YOU WANT TO CHALLENGE THIS ACTION, YOUR APPEAL MUST REACH THE BOARD WITHIN 30 DAYS. YOU DO NOT NEED A LAWYER TO FILE AN APPEAL WITH THE BOARD.



Scanned uli 19

Ms. Christine Volkay-Hiditch

- 2 -

July 10, 2003

IMPORTANT LEGAL RIGHTS ARE AT STAKE, HOWEVER, SO YOU SHOULD SHOW THIS DOCUMENT TO A LAWYER AT ONCE. IF YOU CANNOT AFFORD A LAWYER, YOU MAY QUALIFY FOR FREE PRO BONO REPRESENTATION. CALL THE SECRETARY TO THE BOARD (717-787-3483) FOR MORE INFORMATION.

If you have any questions, please call Mr. Paul R. Grella at 610-832-6195.

Sincerely,

James Newbold, P.E. Regional Manager Water Management

Enclosure

cc: Mr. Weinzapfel - BCM Engineers Operations Section Water Management Permits Chief File Re 30 (RN03WQM)112-17 .

.

٢

#### COMMONWEALTH OF PENNSYLVANIA

#### DEPARTMENT OF ENVIRONMENTAL PROTECTION WATER MANAGEMENT PROGRAM

PERMIT NO. 2303403

AMENDMENT NO.

# WATER QUALITY MANAGEMENT PERMIT

| /<br>       | PERMITTEE                                               | (Name &                                   | Address).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                         |                            |                                                                  |                                                                            |
|-------------|---------------------------------------------------------|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------|------------------------------------------------------------------|----------------------------------------------------------------------------|
| <b>~</b> 1. | ] ERGMITTEE                                             | Delawar                                   | e County Regi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ional Water Ouality C                                                                   | ontrol Au                  | thority - Client II                                              | ) No. 42332                                                                |
|             | 1                                                       | 100 East                                  | Fifth Street                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                         |                            | ţ,                                                               |                                                                            |
|             | (                                                       | Chester,                                  | PA 19016-09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 99                                                                                      |                            |                                                                  |                                                                            |
| B,          | PROJECT (Na                                             | ıme, Coun                                 | ty, Municipality)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                         |                            |                                                                  |                                                                            |
|             | £                                                       | Sludge M                                  | lixing and Pu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mp Upgrade - Site ID I                                                                  | No. 45480                  | 4                                                                |                                                                            |
|             | 0                                                       | City of C                                 | Chester                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                         |                            |                                                                  |                                                                            |
|             | 01110                                                   | Delawar                                   | e County                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                         | •                          |                                                                  | Wa to ray a                                                                |
| С.          | 1 HIS:                                                  | <u></u>                                   | Permit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Peri                                                                                    | nit Amen                   | ament                                                            | Permit Transfer                                                            |
|             | APPROVES:                                               |                                           | The constructi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | on/operation of:                                                                        | x                          | Modification(s) to t                                             | he construction/operation of:                                              |
|             |                                                         | x                                         | <ul> <li>Sewage Treatm</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ent Facilities                                                                          |                            | Industrial Waste Tre                                             | atment Facilities                                                          |
|             |                                                         |                                           | <br>Land Applicati                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on Facilities                                                                           |                            | Other:                                                           |                                                                            |
|             |                                                         |                                           | Average Desig                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n Flow of                                                                               | MGD c                      | onsisting of:                                                    |                                                                            |
|             |                                                         |                                           | 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                   |                            |                                                                  | анан алан ал ан                        |
|             |                                                         |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                            |                                                                  | ·                                                                          |
|             |                                                         |                                           | Sewers and Ap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | purtenances                                                                             |                            | Pump Station(s)                                                  |                                                                            |
|             |                                                         |                                           | Impoundment(s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5)                                                                                      |                            | Injection Well(s)                                                |                                                                            |
|             |                                                         |                                           | Soil Erosion &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sedimentation Control Plan                                                              |                            | Forcemain with or w                                              | vithout Individual Pumps                                                   |
|             | •                                                       |                                           | Stream Crossin<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | g(s)                                                                                    |                            | Outfall & Headwall(                                              | (s)                                                                        |
| Ъ.          | Such applica<br>Water Qualit                            | tion, its sur                             | pporting documen<br>nent Permit No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | tation and addendums are her                                                            | reby made a<br>dated       | part of this permit.                                             | and conditions, supporting                                                 |
|             | <ul> <li>documentation</li> <li>permit ameno</li> </ul> | on and add<br>dment.                      | endums are (excep                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ot for any modifications to the                                                         | e original pe              | mit herein permitted)                                            | also made a part of this                                                   |
| 2.          | Conditions n                                            | umbered                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-6, 11-13, and 17-1                                                                    | 9                          | of the                                                           | Sewerage standard                                                          |
|             | conditions da                                           | ited                                      | 09/98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and conditions number                                                                   | ed                         | 1-13                                                             | of the erosion control standard                                            |
|             | conditions da                                           | ated                                      | 09/98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | are attached and made                                                                   | part of this p             | ermit.                                                           |                                                                            |
| 3.          | Special cond                                            | itions num                                | bered                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I                                                                                       | •                          | are attached and                                                 | d made part of this permit.                                                |
| E.          | THE AUTHOR                                              | RITY GR                                   | ANTED BY THE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S PERMIT IS SUBJECT T                                                                   | O THE FOI                  | LOWING FURTHE                                                    | R QUALIFICATIONS:                                                          |
| 1.          | If there is a c<br>standard or s<br>Failure to con      | onflict bet<br>pecial con-<br>mply with   | ween the applicati<br>ditions shall apply<br>the rules and regu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | on or its supporting documer<br>,<br>lations of the Department or                       | its and amen with the term | dments and the standar                                           | rd or special conditions, the permit shall void the authority              |
| 3.          | given to the p<br>This permit i<br>Safety and E         | permittee b<br>s issued pu<br>neroachme   | by the issuance of the substance of the second seco | the permit.<br>n Stream law Act of June 22,<br>ber 26, 1978, P.L. 1375, <u>as a</u>     | , 1937, P.L.<br>mended, 32 | 1987, <u>as amended</u> 35 P<br>P.S. § 693.1 <u>et seq</u> . Isa | S. § 691.1 <u>et seq.</u> , and/or the Dam suance of this permit shall not |
| 4.          | relieve the pe<br>Industrial Fa<br>permit will b        | ermittee of<br>cilities - If<br>ecome nul | any responsibility<br>the herein permitt<br>l and void and rea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | under any other law.<br>ed facilities or modifications<br>pplication shall be required. | are not com                | pleted with two (2) yea                                          | ars of the issue date below, this                                          |
| PER         | MIT ISSUED:                                             | 0, 200                                    | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                       | DEPAI                      | TMENT OF ENVIR                                                   | RONMENTAL PROTECTION                                                       |
|             | ENDMENT ISS                                             | SUED:                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         | BY:                        | James C.                                                         | V Jeuld 1                                                                  |
| JAT         | Е                                                       |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         | TITLE:                     | Regional Manage                                                  | er, Water Management                                                       |
| Ĺ           |                                                         |                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                         |                            | U                                                                | - A                                                                        |
| Re 3        | 0 (GJE03WQ)1                                            | 11-30                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - ] -                                                                                   |                            |                                                                  |                                                                            |

# Page 2 of 2

# Sewerage Permit No. 2303403 Delaware County Regional Water Quality Control Authority City of Chester, Delaware County

# This permit is subject to the following Special Condition(s):

I. Consistent with Department of Environmental Protection Policy, the Department did not conduct a detailed technical review of the application for this permit. The Department considers the registered professional engineer whose seal is affixed to the design documents, to be fully responsible for the adequacy of all aspects of the facility design.

Re 30 (RN03WQM)111-23

solution of

Surger S

#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION

## STANDARD CONDITIONS RELATING TO SEWERAGE for Use in Water Quality Management Permits

1. During construction, no changes affecting any engineering design parameter relied on in issuing this permit shall be made from the plans, designs, and other data herein approved unless the permittee shall first receive written approval thereof from the Department. The sewerage facilities shall be constructed under expert engineering supervision and competent inspection.

The permittee shall maintain "as-built" plans showing the correct plan of all sewers and sewerage structures as actually constructed together with any other information that may be required. The permittee shall also maintain facility operation and maintenance (O&M) manuals at the facility to assure proper O&M of the permitted facility. The permittee shall file the "as-builts" and O&M manuals with the Department upon request.

2. The sewers shall have adequate foundation support, as soil conditions require. Trenches shall be back-filled such that the sewers will have proper structural stability, with minimum settling and adequate protection against breakage. Concrete used in connection with these sewers shall be protected from damage by water, freezing, drying, or other harmful conditions until cured.

3. Manhole inverts shall be so formed as to facilitate the flow of the sewage and to prevent the standing of sewage solids, and the whole manhole structure shall have proper structural strength and be so constructed as to prevent undue infiltration, entrance of the street wash or grit, and to provide convenient and safe means of access and maintenance.

4. No stormwater from pavements, area ways, roofs, foundation drains, basement drains, or other sources shall be admitted to the sanitary sewers herein approved. The stormwater from stormwater collection and retention facilities serving the facility may be discharged to the plant headworks at a hydraulic and organic rate, which will not violate the Permit.

5. The permittee shall adopt and enforce an ordinance requiring the abandonment of privies, cesspools, or similar receptacles for human waste and on-lot sewage disposal systems on the premises of occupied structures, which are accessible to public sewers and require the connection of such structures to the public sewers.

6. The herein approved sewers shall be maintained in good condition, kept free from deposits by flushing or other proper means of cleaning, and repaired when necessary.

7. The outfall sewer or drain shall be extended to the low water mark of the receiving body of water. Where necessary to assure the proper mixing and waste assimilation, an outfall sewer or drain may be extended with appurtenances below the low water mark and into the bed of a navigable stream, provided that the permittee has secured an easement, right-of-way, license, or lease from the Department in accordance with Section 15 of the Dam Safety and Encroachments Act, the Act of November 26, 1978, P.L. 1375, as amended.

8. The approval is specifically made contingent upon the permittee acquiring all necessary property rights, by easement or otherwise, providing for the satisfactory construction, operation, maintenance, and replacement of all sewers or sewerage structures in, along, or across private property, with full rights of ingress, egress, and regress.

9. The various structures and apparatus of the sewage treatment works herein approved shall be maintained in proper condition so that the facility will individually and collectively perform the functions for which they were designed.

10. When the herein approved sewage treatment works is completed and before it is placed in operation, the permittee shall notify the Department in writing so that an inspection of the works may be made by a representative of the Department.

11. If, at any time, the sewage and/or conveyance facilities covered by this permit create a public nuisance, including but not limited to, causing malodors, or cause environmental harm to waters of the Commonwealth, the Department may require the permittee to adopt appropriate remedial measures to abate the nuisance or harm.

12. The attention of the permittee is called to the highly explosive nature of certain gases generated by the digestion of sewage solids when these gases are mixed in proper portions with air, and to the highly toxic character of certain gases arising from such digestion or from sewage in insufficiently ventilated compartments or sewers. Therefore, at all places throughout the sewerage facilities where hazard of fire, explosion, or danger from toxic gases may occur, the permittee shall post conspicuously proper warnings of a permanent and legible character and shall provide for the thorough instruction of all employees concerning the aforesaid hazards and in first aid and emergency methods of meeting such hazards and shall further provide, in a conveniently accessible place, all necessary equipment and material therefore.

13. Cross connections between the potable water supply and the sewerage system constitute a potential danger to the public health. Therefore, all direct and indirect connections whereby under normal or abnormal conditions, the potable water supply may become contaminated from an inferior water supply from any unit of the sewage treatment works, or by any appurtenance thereof or from any part of a sewerage system are hereby specifically prohibited. The permittee is further warned against performing to be made permanent any temporary connection with a potable supply designed to be held in place while being used for flushing or other purposes, and is also cautioned against the danger of back siphonage through portable hose lines and similar avenues of possible contamination.

14. This permit authorizes the construction and operation of the proposed sewerage facilities until such time as facilities for conveyance and treatment at a more suitable location are installed and are capable of receiving and treating the permittee's sewage. Such facilities must be in accordance with the applicable municipal official plan adopted pursuant to Section 5 of the Pennsylvania Sewage Facilities Act, the Act of January 24, 1956, P.L. 1535, as amended. When such municipal sewerage facilities become available, the permittee shall provide for the conveyance of the sewage to these sewerage facilities, abandon the use of the herein-approved facilities, and notify the Department accordingly. This permit shall then, upon notice from the Department, terminate and become null and void, and shall be relinquished to the Department.

15. The local waterways patrolman of the Pennsylvania Fish and Boat Commission shall be notified when the construction of a stream crossing and outfall is started and completed. A permit must be secured from the Pennsylvania Fish and Boat Commission if the use of explosives is required. The permittee shall notify the local waterways patrolman when explosives are to be used.

16. The sewage treatment plant shall be operated by an operator certified in accordance with the Sewage Treatment Plant and Waterworks Operators' Certification Act, the Act of November 18, 1968, P.L. 1217, as amended.

17. The permittee shall properly control any industrial waste discharged into its sewerage system by regulating the rate and quality of such discharge, requiring necessary pretreatment, and excluding industrial waste, if necessary, to protect the integrity or operation of the permittee's sewerage system.

18. The permit does not relieve the permittee of its obligations to comply with all federal, interstate, state or local laws, ordinances, and regulations applicable to the sewerage facilities authorized herein.

19. This permit does not give any real or personal property rights or grant any exclusive privileges, nor shall it be construed to grant or confirm any right, title, easement, or interest in, on, to, or over any lands belonging to the Commonwealth.

20. No untreated or ineffectively treated wastewaters from any facility shall be discharged into the waters of the Commonwealth, and special care shall be used in developing and implementing the PPC plan to prevent accidental "spills" or similar unusual discharges of all raw, finished, and waste materials.

3620-PM-WQ0015a 9/98

#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION

## STANDARD CONDITIONS RELATING TO EROSION AND SEDIMENT CONTROL for Use in Water Quality Management Permits

1. By approval of the plans for which this permit is issued, neither the Department nor the Commonwealth of Pennsylvania assumes any responsibility for the feasibility of the plans or the measures and facilities to be constructed thereunder.

2. If at any time the erosion and sediment control activities undertaken pursuant to this permit or other activities carried out at the location is causing or contributing to pollution of the waters of the Commonwealth, the permitee shall forthwith adopt such remedial measures as are acceptable to the Department.

3. This permit does not authorize any earth disturbance controlled or regulated by an ordinance enacted by a local municipality. Additional permits must be secured from local municipalities where earthmoving activities are covered by such local ordinances.

4. At least seven days before earthmoving will begin, the permittee, by telephone or certified mail, shall notify the Department or its designee of the date for beginning of construction and invite the County Conservation District representative to attend a pre-construction conference. The permittee shall have his erosion control plan available at the activity at all times.

5. All earthmoving activities shall be undertaken in the manner set forth in the erosion and sediment control plan identified with this permit. Revisions to the plan shall be pre-approved by the Department or the conservation district.

The erosion control measures and facilities shall be constructed under the supervision and competent inspection of an individual trained and experienced in erosion control, and in accordance with the plans, designs and other data as herein approved or amended, and with the conditions of this permit. Control facilities shall be frequently inspected and maintained to insure effective control.

7. When the herein approved erosion and sediment control measures and facilities are completed, the permittee shall notify the County Conservation District so that a final inspection of the measures and facilities may be made.

8. No storm water, sewage or other wastes not specifically approved herein, shall be admitted to the erosion and sediment control facilities for which this permit is issued.

9. Sediment shall at not time be permitted to accumulate in sedimentation basins to a depth that may limit storage capacity or interfere with the facility's settling efficiency. The sediment removed shall be handled and disposed of in a manner that will not create pollution problems and so that every reasonable and practical precaution is taken to prevent the said material from reaching the waters of the Commonwealth.

10. All slopes, channels, ditches or any disturbed area shall be stabilized as soon as possible after the final grade or final earthmoving has been completed. Where it is not possible to permanently stabilize a disturbed area immediately after the final earthmoving has been completed or where the activity ceases for more than 20 days, interim stabilization measures shall be implemented promptly.

11. Upon completion of the project, all areas which were disturbed by the project shall be stabilized so that accelerated erosion will be prevented. Any erosion and sediment control facility required or necessary to protect areas from erosion during the stabilization period shall be maintained until stabilization is completed. Upon completion of stabilization, all unnecessary or unusable control measures and facilities shall be removed, the areas shall be graded and the soils shall be abilized.

12. The responsibility of carrying out the permit conditions or to assure that they are carried out shall rest with the permittee.

13. If the proposed earth disturbance is five acres or greater, the permittee shall comply with the NPDES General

Scanned ulildorg-bab

CUMMONWEALTH OF PENNSYLVANIA

11

WQ-15 Rev. 11/72

| WATER | QUALITY | MANAGEMENT PERMIT |
|-------|---------|-------------------|
|       |         |                   |

|                                                                                                   |                                                                                | No, <u>_23/2408</u>                                                                                                         |
|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| . PERMITTEE: (Name and Address)                                                                   | B. PROJECT 1                                                                   |                                                                                                                             |
| 'Delaware Co. Reg. Water Co<br>Delaware County Courthouse                                         | ntrol Auth. Municipality                                                       | <u>City of Chester</u>                                                                                                      |
| Media, Pa. 19063                                                                                  | Carrier (See States) of County 200                                             | Delaware                                                                                                                    |
| . TYPE OF FACILITY                                                                                | D. NAME OF M                                                                   | IINE OR AREA SERVED                                                                                                         |
| Sewage Treatment Plant Exp                                                                        | ansion City of                                                                 | Chester and adjacent Service A                                                                                              |
| . THIS PERMIT APPROVES:                                                                           |                                                                                |                                                                                                                             |
|                                                                                                   |                                                                                |                                                                                                                             |
| Plans For Construction Of: 2.2.                                                                   | ine Discharge Of:                                                              | N.A.                                                                                                                        |
| a. and Appurtenances                                                                              | a. X Treated                                                                   | a, 📙 Mine                                                                                                                   |
| b. X Sewage Treatment<br>Facilities                                                               | Untreated                                                                      | Maximum surface area to be affected<br>shall not exceedacres.<br>(Surface Mines)                                            |
| c. Industrial Wastes                                                                              | Sewage                                                                         | Maximum area to be deep mined                                                                                               |
|                                                                                                   | 0: Dolawaro Dirror                                                             | acres.                                                                                                                      |
|                                                                                                   | (Receiving Waters)                                                             | <del>le p</del> ier de la company de la |
| CONDITIONS NUMBERED 1, 2, 9, 10<br>OF THE <u>Sewerage</u><br>WHICH CONDITIONS ARE ATTACHED HERETC | , 11, 12, 13, 14, 15<br>STANDARD CONDITIONS DAD<br>AND ARE MADE A PART OF THIS | <u>, 16, 17, 18, 19, 20, 21, 22,</u><br>атер <u>1972</u><br>ревміт.                                                         |
| SPECIAL CONDITION(S) NUMBERED                                                                     |                                                                                |                                                                                                                             |
| WHICH ARE ATTACHED HERETO AND ARE M                                                               | ADE A PART OF THIS PERMIT.                                                     |                                                                                                                             |
| This permit must be record<br>THE AUTHORITY GRANTED BY THIS PERMI                                 | ed in the Recorder of<br>IT IS SUBJECT TO THE FOLLOWING                        | <u>f Deeds Office in Delaware Co.</u><br>G FURTHER QUALIFICATIONS:                                                          |
| . IF THERE IS A CONFLICT BETWEEN THE APPL<br>STANDARD OR SPECIAL CONDITIONS, THE ST.              | ICATION OR ITS SUPPORTING DOCUN<br>ANDARD OR SPECIAL CONDITIONS SI             | ENTS AND AMENDMENTS AND THE                                                                                                 |
| . FAILURE TO COMPLY WITH THE RULES AND F<br>THIS PERMIT SHALL VOID THE AUTHORITY G                | REGULATIONS OF THE DEPARTMENT<br>IVEN TO THE PERMITTEE BY THE ISS              | OR THE TERMS OR CONDITIONS OF<br>SUANCE OF THE PERMIT.                                                                      |
| . THIS PERMIT IS ISSUED PURSUANT TO THE CL<br>ISSUANCE OF THIS PERMIT SHALL NOT RELIE             | EAN STREAMS LAW, THE ACT OF JUI<br>VE THE PERMITTEE OF ANY RESPON              | ▶<br>NE 22, 1937, P.L. 1987, AS AMENDED.<br>ISIBILITY UNDER ANY OTHER LAW.                                                  |
| PERMIT ISSUED                                                                                     | DEPAR                                                                          | TMENT OF ENVIRONMENTAL RESOURCES                                                                                            |
| DATE 2-15-73                                                                                      | (v .                                                                           |                                                                                                                             |
|                                                                                                   | вү                                                                             | T. Derchinert                                                                                                               |

Sewerage Permit No. 2372408 'DELCORA' City of Chester, Delaware County

#### This permit is subject to the following special condition:

. .

I. The plant hereby approved is required to effect secondary treatment of the sewage which it receives. For the purpose of this permit, secondary treatment is that treatment that will:

During the period May 1 through October 31 reduce the organic waste load as measured by the biochemical oxygen demand test by at least 89.25% and limit the amount of carbonaceous oxygen demand that may be discharged in the effluent from DELCORA's Chester Regional Water Pollution Control Plant to 9,350 lbs. per day (30 consecutive day average value).

During the period November 1 through April 30 reduce the organic waste load as measured by the biochemical oxygen demand test by at least 82% and limit the amount of carbonaceous oxygen demand that may be discharged in the effluent from DELCORA's Chester Regional Water Pollution Control Plant to 15,600 lbs. per day (10 consecutive day average value).

The suspended solids in the effluent shall not exceed 20 mg/l (based on a five (5) consecutive day average value).

In addition, secondary treatment is that treatment that will provide effective disinfection to control disease producing organisms; will provide satisfactory disposal of sludge; and will reduce the quantities of oil, grease, acid, alkalis, toxic, taste and odor producing substances inimical to the public interest to levels that will not pollute the receiving stream. H711-308

STATE OF PENNSYLVANIA COUNTY OF MONTGOMERY

On the 15th day of February in the year one thousand nine hundred and seventy-three before me, the Subscriber, a Notary Public, came the above named

#### C.T. Beechwood

and duly acknowledged the foregoing permit to be his act and deed and desired that the same might be recorded as such.

Witness my hand and notarial seal the day and year afore-

said.

he suite and a second state of the second NOTARY PUBLIC Notary Public Boro of Norristown, Montg. Co.  $(m_{H})$ Lay Commission Expires August 16, 1976

ER 711.310 Rev. 9/72

#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES

#### STANDARD CONDITIONS RELATING TO SEWERAGE - 1972

**ONE:** All relevant and non-superseded conditions of prior sewerage or water quality management permits or orders issued to the herein named permittee or his predecessor shall continue in full force and effect and together with the provisions of this permit shall apply to his successors, lessees, heirs, and assigns.

TWO: During construction no radical changes shall be made from the plans, designs, and other data herein approved unless the permittee shall first receive written approval thereof from the Department. The sewerage facilities shall be constructed under expert engineering supervision and competent inspection.

THREE: Sewers herein approved shall have tight, well-fitting joints, shall be laid with straight alignment and grade and shall have smooth interior surfaces. The sewers shall have adequate foundation support as soil conditions requires. Special care shall be taken in construction of sewers under deep or shallow cover and under other conditions which impose extra hazards to sewer stability. Trenches shall be back-filled such that the sewers will have proper structural stability, with minimum setting and adequate protection against breakage. Concrete used in connection with these sewers shall be protected until cured from injury by water, freezing, drying or other harmful conditions.

FOUR: Manholes shall be placed and constructed as shown upon the herein approved plans except, that if not already so provided, they shall be placed on all sewers at junctions, at each change in grade or alignment, at summit ends, and upon straight lines at intervals not exceeding four hundred feet, or wherever necessary to permit satisfactory entrance to and maintenance of the sewers; manhole inverts shall be so formed as to facilitate the flow of the sewage and to prevent the stranding of sewage solids, and the whole manhole structure shall have proper structural strength and be so constructed as to prevent undue infiltration, entrance of street wash or grit, and to provide convenient and safe means of access and maintenance.

FIVE: No storm water from pavements, area ways, roofs, foundation drains or other sources shall be admitted to the sanitary sewers herein approved.

SIX: Attention is directed to the necessity of having a qualified person make a proper study of all industrial wastes discharging or proposed for discharge to the public sewer systems, to determine what degree of preliminary treatment is necessary before these waste may be discharged to the sewer system so that the wastes will not prejudicially affect the sewerage structure or their functioning or the process of sewage treatment.

**SEVEN:** The permittee shall adopt and enforce an ordinance or otherwise require all occupied buildings on premises accessible to a public sewer used in conformity with the requirements of State Law, to be connected thereto; also require the abandonment of privies, cesspools or similar receptacle for human excrement on said premises.

**EIGHT:** The herein approved and previously constructed sewers shall be maintained in good condition, by repair when necessary and kept free from deposits by flushing or other proper means of cleaning.

**NINE:** The permittee shall file with the Department of Environmental Resources a satisfactory record or detail plans showing the correct plan of all sewers and sewerage structures as actually constructed together with any other information in connection therewith that may be required.

TEN: The out fall sewer or drain shall be extended to low water mark of the receiving body of water in such a manner as to insure the satisfactory dispersion of its effluent thereinto; insofar as practicable it shall have its outlet submerged; and shall be contructed of cast iron, concrete, or other material approved by the Department; and shall be so protected against the effects of flood water, ice, or other hazards as to reasonable insure its structural stability and freedom from stoppage.

**ELEVEN:** The permittee shall secure any necessary permission from the proper federal authority for any outfall or sewage treatment structure which discharges into or enters navigable waters and shall obtain approval of any stream crossing, encroachment or change of natural stream conditions coming within the jurisdiction of the Department.

**TWELVE:** If at any time the sewerage facilities of the permittee, or any part thereof, or the discharge of the effluent therefrom, shall have created a public nuisance, or such discharge is causing or contributing to pollution of the waters of the Commonwealth, the permittee shall forthwith adopt such remedial measures as are acceptable to the Department.

BOOK 2461 MACE 60

THIRTEEN: Nothing herein contained shall be construed to be an intent on the part of the Department to approve any act made or to be made by the permittee inconsistent with the permittee's lawful powers or with existing laws of the Commonwealth regulating stream pollution and the practice of professional engineering, nor shall this permit be construed to sanction any act otherwise forbidden by any of the laws of the Commonwealth of Pennsylvania or of the United States.

FOURTEEN: The approval herein given is specifically made contingent upon the permittee acquiring all necessary rights, by easement or otherwise as required, providing for the satisfactory construction, operation, maintenance and replacement of all sewers or sewerage structures in, along, or across private property, with full rights of ingress, egress and regress.

**FIFTEEN:** When the herein a approved sewage treatment works is completed and before it is placed in operation, the permittee shall notify the Department in writing so that an inspection of the works may be made by a representative of the Department.

SIXTEEN: The various structures and apparatus of the sewage treatment works herein approved shall be maintained in proper condition so that the facilities will individually and collectively preform the functions for which they were designed.

**SEVENTEEN:** The screenings and sludge shall be so handled that nuisance is not created and shall be disposed of in a sanitary manner satisfactory to the Department.

**EIGHTEEN:** The permittee shall keep records of operation and efficiency of the waste treatment works and shall submit to the Department, promptly at the end of each month, such report thereon as may be required by the Department.

**NINETEEN:** The sewage treatment works shall be operated by a competent person or persons. In this connection attention is directed to the necessity for expert advice and supervision over the operation of the sewage treatment works in order to secure efficiency of operation and protection to the waters of the Commonwealth. To this end the permittee shall place the operation of the sewage treatment works under the control of the dsigner of the works or some other person expert in the operation of sewage treatment works, for at least one year after completion thereof and report submitted. The sewage treatment works shall be operated by a operator certified in accordance with the Sewage Treatment Plant and Water Works Operators Certification Act, Act No. 322 approved November 18, 1968 as amended.

TWENTY: The right to discharge the effluent from the herein approved sewage treatment works into the waters of the Commonwealth is contingent upon such operation of these works as will at all times produce an effluent of a quality satisfactory to the Department. If, in the opinion of the Department, these works are not so operated or if by reason of change in the character of wastes or increased load upon the works, or changed use or condition of the receiving body of water, or otherwise, the said effluent ceases to be satisfactory for such discharge, then upon notice by the Department the right herein granted to discharge such effluent shall cease and become null and void unless within the time specified by the Department, the permittee shall adopt such remedial measures as will produce an effluent which, in the opinion of the Department, will be satisfactory for discharge into the said receiving body of water.

**TWENTY-ONE:** The attention of the permittee is called to the highly explosive nature of certain gases generated by the digestion of sewage solids when these gases are mixed in proper proportions with air, and to the highly toxic character of certain gases arising from such digestion or from sewage in insufficiently ventilated compartments or sewers. Therefore, at all places throughout the sewerage facilities where hazard of fire, explosion, or danger from toxic gases may occur, the permittee shall post conspicuously proper warnings of a permanent and easily legible character and shall provide for the thorough instruction of all employes concerning the aforesaid hazards and in first aid and emergency methods of meeting such hazards and shall further provide, in a conveniently accessible place, all necessary equipment and material therefor.

**TWENTY-TWO:** Cross connections between a potable water supply and a sewerage system constitute a potential danger to the public health. Therefore, all direct and indirect connections whereby under normal or abnormal conditions the potable water supply may become contaminated from an inferior water supply, from any unit of the sewage treatment works, or by any appurtenance thereof or from any part of a sewerage system, are hereby specifically prohibited. The permittee is further warned against permitting to be made permanent any temporary connection with a potable supply designed to be held in place while being used for flushing or other purposes, and is also cautioned against the danger of back siphonage through portable hose lines and similar avenues of possible contamination.

**TWENTY-THREE:** Effective disinfection to control disease producing organisms shall be the production of an effluent which will contain a concentration not greater than 200/100 ml of Fecal Coliform organisms as a geometric average value nor greater than 1,000/100 ml of these organisms in more than 10% of the samples tested.

4.

**TWENTY-FOUR:** The approval herein granted for sewers is limited to the right to construct the sewers, but approval of connection there to is specifically withheld until such time approval for use thereof is granted by the Department.

**TWENTY-FIVE:** The attention of the permittee is directed to the fact that the effluent from the herein approved sewage treatment works is discharged to a dry stream normally without the benefit of dilution. If the effluent creates a health hazard or nuisance, the permittee shall upon notice from the Department of Environmental Resources, provide such additional treatment as may be required by the Department.

**TWENTY-SIX:** If facilities become available for conveying the sewage to and treating it at a more suitable location, upon order from the Department of Environmental Resources, the permittee shall provide for the discharge of the sewage to such facilities and shall abandon the use of the herein approved sewage treatment works.

TWENTY-SEVEN: The plant hereby approved is required to effect secondary treatment of the sewage which it receives. Secondary treatment is that treatment that will reduce the organic waste load as measured by the biochemical oxygen demand test by at least 85% during the period May 1 to October 31 and by at least 75% during the remainder of the year based on a five consecutive day average of values; will remove practically all of the suspended solids; will provide effective disinfection to control disease producing organisms; will provide satisfactory disposal of sludge; and will reduce the quantities of oil, greases, acids, alkalis, toxic, taste and odor producing substances, color, and other substances inimical to the public interest to levels that will not pollute the receiving stream.

**TWENTY-EIGHT:** Records of the operation of the single residence sewage treatment works as the State Department of Environmental Resources may deem necessary for the proper control of the operation of the treatment works shall be kept on forms satisfactory to the Department and shall be filed in the Regional Office of the Department at intervals as specified.

**TWENTY-NINE:** The permittee shall submit to the Department by March 31 of each year a report showing the hydraulic and organic load compared to the design load and the expected load for a period of five years hence.

**THIRTY:** The permittee shall prohibit additional connections to a sewer system or load from being placed upon a sewage treatment plant when the plant capacity will be exceeded within five years unless steps have been taken to enlarge the plant within that time.

5.

#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES

Special Conditions Relative To Sewerage - 1972

I The plant hereby approved is required to effect (specify secondary or tertiary) treatment of the sewage which it receives. (Specify secondary or tertiary) treatment is treatment that will, for the purpose of this permit, reduce the organic waste load at least (Specify % BOD removal, suspended solids, P04 etc. or concentration permitted in effluent) during the remainder of the year based on a five consecutive day average of values; will remove practically all of the suspended solids; will provide effective disinfection to control disease producing orginisms; will provide satisfactory disposal of sludge; and will reduce the quantities of oil, grease, acids, alkalis, toxic, taste and odor producing substances, color, and other substances inimical to the public interest to levels that will not pollute the receiving stream.

II The plant hereby approved is required to effect the specified degree of reduction of BOD and suspended solids and under no circumstances may more than (specify) pounds of BOD or (specify) pound of suspended solids (or any other parameter) be discharge on any one day.

6.

| WATER OUALITY MANAGEMENT PERMIT       NO.         A. PERMITTEE: (Name and Address)       9. PROJECT LOCATION         Delaware County Regional<br>Water Quality Control Authority<br>100 East Flith Street<br>Chester, PA 19013       9. PROJECT LOCATION         C. TYPE OF FACILITY (For industrial wasks, type of establishment<br>31udge Dewatering Pacilities       0. NAME OF PLANT, AREA SERVED. OUTFALL<br>Western Regional Treatment PI<br>0. NAME OF PLANT, AREA SERVED. OUTFALL<br>Western Regional Treatment PI<br>0. A Defavore         1. Presere Construction Of:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2390/0/                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
| A. PERMITTEE: (Name and Adgress)     Delaware County Regional     Water Quality Control Authority     100 Bast Pitts Street     Chester, PA 19013     County Delaware     County from industrial varies type of stablishment     Shudge Dewatering Pacifities     D. NAME OF PLANT, AREA SERVED CUTFAL     Wostern Regional Treatment PI     D. NAME OF PLANT, AREA SERVED CUTFAL     Western Regional Treatment PI     D. NAME OF PLANT, AREA SERVED CUTFAL     Western Regional Treatment PI     d. Indexion Of:         . If Pums For Construction Of:         . If Pums For Construction Of:         . If Pums Stations Severs         b. X Sevage Treatment         c. If T         d. Indexion Verifies         d. Indexide Verifies         d. Indexed Verifies         d. Indexide Verifies         d. Indexide Ve                                                                                        | <u> </u>                                                   |
| Delaware County Regional<br>Water Quality Control Authority<br>100 East Fifth Street<br>Chester, PA 19013       Municipality       City of Chester         C. TYPE OF FACILITY IFOR Industrial wates type of establishment<br>Sludge Dewatering Pacilities       D. NAME OF FLANT, AREA SERVED, OUTFALL<br>Western Regional Treatment Pl<br>Western Regional Treatment Pl<br>Western Regional Treatment Pl<br>Western Regional Treatment Pl<br>Western Regional Treatment Pl<br>Discharge Of a.         1. Prace For Construction Of<br>a.       Pump Statons Severs<br>on Accurrenances       D. NAME OF FLANT, AREA SERVED, OUTFALL<br>Western Regional Treatment Pl<br>Severation Veal         2. The Discharge Of<br>a.       Treated       N/Ab       Untreated<br>on Accurrenances       D.         3. Discharge Treatment<br>b.       Surface Water       Severage of deal (Discharged or drainage area in which grow<br>uset place or impoundment is located.         4.       Preparations, Proceention<br>Contingency (PPC) Plan       N/A       S. An Erosion and Sedimentation Control Plan<br>Project Area is <u>M/A</u> Acces         F. THIS APPROVAL IS SUBJECT TO THE FOLLOWING CONDITIONS:       1. ALL CONSTRUCTION, OPERATIONS, PROCEDURES AND DISCHARGE SHALL BE IN ACCORDANCE WITH APPLIC<br>NO.       23(0)(A)       OATEO <u>7/31/30</u> its Supporting DO<br>AND AMENDENTS ARE HEREBY MADE A PART OF THIS PERMIT.         2. CONDITIONS NUMBERED       1/19-22<br>Standard Conditions NAMEERED       1/19-22<br>Standard Conditions Mate Apart of THIS PERMIT.         3. SPECIAL CONDITIONS MARE ARED CONDITIONS OF THE APPLICATION ON ITS SUPPORTING DO<br>AMENDMENTS ARE ATRACHED AND MADE PART OF THIS PERMIT.         3. SPECIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            |
| C. TYPE OF FACILITY (For industrial wastes type of establishment<br>Sludge Dewatering Facilities  O. NAME OF PLANT, AREA SERVED OUTFALL<br>Western Regional Treatment PI<br>Western Regional Treatment PI<br>I. Plans For Construction Of:<br>a. Propagation Weal<br>a. O.: (all & Meadwall<br>c. Treatment PI<br>a. O.: (all & Meadwall<br>c. D. (all & Meadwall |                                                            |
| 1.       Plans For Construction OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NO., ETC.<br>ant                                           |
| d. Injection Weil e. O.:tall & Headwall f. Stream Crossing e. Ind   2. The Discharge Of: a. Treated N/A. Untreated c. Sewage d. Ind   3. Discharge To: a. Surface Water N/A name of Stream to which discharged or drainage area in which grown takes prace or impoundment is located.   4. Preparameters, Prevention. D. S. An Erosion and Sedimentation Control Plan   6. Project Area is N/A   7. This APPROVAL IS SUBJECT TO THE FOLLOWING CONDITIONS:   1. ALL CONSTRUCTION, OPERATIONS, PROCEDURES AND DISCHARGE SHALL BE IN ACCORDANCE WITH APPLIC   NO. 23(3)(20, 1/3/91, 1/14/91 Such APPLICATION, ITS SUPPORTING DOI   AMENDMENTS ARE HEREBY MADE A PART OF THIS PERMIT.   2. CONDITIONS NUMBERED   1. 7, 9-14, 16, 19-22   THE Sewergage   Strandard Conditions ARE ATTACHED AND AND CONDITIONS DATED   9000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dustrial Wastes<br>eatment Facilities                      |
| 2. The Discharge Of: a. Treated N/A <sub>0</sub> Untreated c. Sewage d. Inc   3. Discharge To: a. Surface Water N/A Name of Stream to which discharged or drainage area in which grountakes place or impoundment is located.   4. Preparadness Prevention<br>Contingency (PPC) Plan N/A Name of Stream to which discharged or drainage area in which grountakes place or impoundment is located.   4. Preparadness Prevention<br>Contingency (PPC) Plan N/A S. An Erosion and Sedimentation Control Plan   7. This APPROVAL IS SUBJECT TO THE FOLLOWING CONDITIONS: N/A Acrest   1. ALL CONSTRUCTION, OPERATIONS, PROCEDURES AND DISCHARGE SHALL BE IN ACCORDANCE WITH APPLIC<br>NO. 2390404 Acrest   2. CONDITIONS NUMBERED 1/7,19,1/14/91 Untreated 09/02/   AMENDMENTS ARE HEREBY MADE A PART OF THIS PERMIT. SUPPORTING DO AND AMENDMENTS UMBERED 19-22   THE SCWEP200 STANDARD CONDITIONS DATED 09/02/   AND CONDITIONS NUMBERED 1, 7, 9-14, 16, 19-22 STANDARD CONDITIONS DATED 09/02/   THE SCWEP200 STANDARD CONDITIONS DATED 09/02/   AND CONDITIONS NUMBERED 1 1/205 STANDARD CONDITIONS DATED   Special CONDITIONS ARE ATTACHED AND MADE PART OF THIS PERMIT. 3.   3. SPECIAL CONDITIONS DESIGNATED T   WHICH ARE ATTACHED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING FURTHER QUALIFICATIONS:   1. IF THERE IS A COMPLUCT BETWEEN THE APPLICATION ON ITS SUPPORTING DOCUMENTS AND AMENDMENS <td>poundment</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | poundment                                                  |
| 3. Discharge To:   a. Surface Water     b. Ground Water     W A.   Preparedness. Prevention. D.   Contingency (PPC) Plan N/A     N/A         F. THIS APPROVAL IS SUBJECT TO THE FOLLOWING CONDITIONS:      1. ALL CONSTRUCTION, OPERATIONS, PROCEDURES AND DISCHARGE SHALL BE IN ACCORDANCE WITH APPLIC   NO. 2390404   DATED 7/31/90   ITS SUPPORTING DO   AMENDMENTS DATED   AMENDMENTS DATED   2. CONDITIONS NUMBERED   1.   3. SPECIAL CONDITIONS ARE ATTACHED AND MADE PART OF THIS PERMIT.   3. SPECIAL CONDITIONS DESIGNATED   1.   4. THE AUTHORITY GRANTED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING FURTHER QUALIFICATIONS:   1. IF THERE IS A CONFLICT BETWEEN THE APPLICATION ON ITS SUPPORTING DOCUMENTS AND AMENDMENTS STANDARD OR SPECIAL CONDITIONS SHALL APPLY.     6. THE AUTHORITY GRANTED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING FURTHER QUALIFICATIONS:  1. IF THERE IS A CONFLICT BETWEEN THE APPLICATION ON ITS SUPPORTING DOCUMENTS AND AMENDMENTS STANDARD OR SPECIAL CONDITIONS SHALL APPLY.  2. FAILURE TO COMPLY WITH THE RULES AND REGULATIONS OF THE DEPARTMENT OR WITH THE TERMS. OF THIS PERMIT SHALL VOID THE AUTHORITY GIVEN TO THE PERMITTEE BY THE ISSUANCE OF THE PERM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ustriał Wastes                                             |
| M/A Name of Stream to which discharged or drainage area in which groun takes place or impoundment is located.         u       A. Preparadness, Prevention Control Plan         Contingency iPPCi Plan       S. An Erosion and Sedimentation Control Plan         Project Area is       N/A         Project Area is       N/A         Project Area is       N/A         A. L. CONSTRUCTION, OPERATIONS, PROCEDURES AND DISCHARGE SHALL BE IN ACCORDANCE WITH APPLIC         No.       2390404         DateD       7/31/90         Its supporting Doc         AND AMENDMENTS DATED       1, 7, 9-14, 16, 19-22         THE       Sconditions numbered         Severage       Standard conditions dated         And Conditions Numbered       1, 7, 9-14, 16, 19-22         THE       Severage         Standard conditions dated       1025         which conditions are attached and made part of this permit.         3. special conditions designated       1         Which are attached and are made a part of this permit.         3. special conditions designated       1         Standard conditions date a part of this permit.         3. special conditions designated       1         Which are attached and are made a part of this permit.         3. special conditions designated       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |
| 4. Preparadness, Prevention<br>Contingency (PPC) Plan       N/A       5. An Erosion and Sedimentation Control Plan<br>Project Area is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | dwater discharge                                           |
| <ul> <li>F. THIS APPROVAL IS SUBJECT TO THE FOLLOWING CONDITIONS: <ol> <li>ALL CONSTRUCTION, OPERATIONS, PROCEDURES AND DISCHARGE SHALL BE IN ACCORDANCE WITH APPLIC<br/>NO2390404DATED7/31/90ITS SUPPORTING DO:<br/>AND AMENDMENTS DATED8/30/90, 1/3/91, 1/14/91 SUCH APPLICATION, ITS SUPPORTING DO:<br/>AMENDMENTS ARE HEREBY MADE A PART OF THIS PERMIT.</li> <li>CONDITIONS NUMBERED1, 7, 9-14, 16, 19-22</li></ol></li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                            |
| <ol> <li>ALL CONSTRUCTION, OPERATIONS, PROCEDURES AND DISCHARGE SHALL BE IN ACCORDANCE WITH APPLIC<br/>NO2390404DATED7/31/90ITS SUPPORTING DO<br/>AND AMENDMENTS DATED8/30/90, 1/3/91, 1/14/91 SUCH APPLICATION, ITS SUPPORTING DO<br/>AMENDMENTS ARE HEREBY MADE A PART OF THIS PERMIT.</li> <li>CONDITIONS NUMBERED1, 7, 9-14, 16, 19-22<br/>THESEWETAGE1 through 12<br/>EROSION CONTROL STANDARD CONDITIONS DATED1085<br/>WHICH CONDITIONS ARE ATTACHED AND MADE PART OF THIS PERMIT.</li> <li>SPECIAL CONDITIONS DESIGNATEDI<br/>WHICH ARE ATTACHED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING FURTHER QUALIFICATIONS:</li> <li>IF THERE IS A CONFLICT BETWEEN THE APPLICATION ON ITS SUPPORTING DOCUMENTS AND AMENOMEN<br/>STANDARD OR SPECIAL CONDITIONS, THE STANDARD OR SPECIAL CONDITIONS SHALL APPLY.</li> <li>FAILURE TO COMPLY WITH THE RULES AND REGULATIONS OF THE DEPARTMENT OR WITH THE TERMS<br/>OF THIS PERMIT SHALL VOID THE AUTHORITY GIVEN TO THE PERMITTEE BY THE ISSUANCE OF THE PERMIT.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                            |
| <ul> <li>G. THE AUTHORITY GRANTED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING FURTHER QUALIFICATIONS:</li> <li>1. IF THERE IS A CONFLICT BETWEEN THE APPLICATION ON ITS SUPPORTING DOCUMENTS AND AMENDMEN STANDARD OR SPECIAL CONDITIONS, THE STANDARD OR SPECIAL CONDITIONS SHALL APPLY.</li> <li>2. FAILURE TO COMPLY WITH THE RULES AND REGULATIONS OF THE DEPARTMENT OR WITH THE TERMS OF THIS PERMIT SHALL VOID THE AUTHORITY GIVEN TO THE PARMITTEE BY THE ISSUANCE OF THE PE</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | UMENTATION,<br>UMENTATION AND<br>0F<br><u>05</u><br>0F THE |
| <ul> <li>3. SPECIAL CONDITIONS DESIGNATED</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                            |
| WHICH ARE ATTACHED AND ARE MADE A PART OF THIS PERMIT.<br>G. THE AUTHORITY GRANTED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING FURTHER QUALIFICATIONS:<br>1. IF THERE IS A CONFLICT BETWEEN THE APPLICATION ON ITS SUPPORTING DOCUMENTS AND AMENDMEN<br>STANDARD OR SPECIAL CONDITIONS, THE STANDARD OR SPECIAL CONDITIONS SHALL APPLY.<br>2. FAILURE TO COMPLY WITH THE RULES AND REGULATIONS OF THE DEPARTMENT OR WITH THE TERMS<br>OF THIS PERMIT SHALL VOID THE AUTHORITY GIVEN TO THE P&RMITTEE BY THE ISSUANCE OF THE PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            |
| <ul> <li>G. THE AUTHORITY GRANTED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING FURTHER QUALIFICATIONS:</li> <li>1. IF THERE IS A CONFLICT BETWEEN THE APPLICATION ON ITS SUPPORTING DOCUMENTS AND AMENDMEN STANDARD OR SPECIAL CONDITIONS, THE STANDARD OR SPECIAL CONDITIONS SHALL APPLY.</li> <li>2. FAILURE TO COMPLY WITH THE RULES AND REGULATIONS OF THE DEPARTMENT OR WITH THE TERMS OF THIS PERMIT SHALL VOID THE AUTHORITY GIVEN TO THE PCRMITTEE BY THE ISSUANCE OF THE PE</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            |
| <ol> <li>IF THERE IS A CONFLICT BETWEEN THE APPLICATION ON ITS SUPPORTING DOCUMENTS AND AMENDMEN<br/>STANDARD OR SPECIAL CONDITIONS, THE STANDARD OR SPECIAL CONDITIONS SHALL APPLY.</li> <li>FAILURE TO COMPLY WITH THE RULES AND REGULATIONS OF THE DEPARTMENT OR WITH THE TERMS<br/>OF THIS PERMIT SHALL VOID THE AUTHORITY GIVEN TO THE PERMITTEE BY THE ISSUANCE OF THE PE</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                            |
| 2. FAILURE TO COMPLY WITH THE RULES AND REGULATIONS OF THE DEPARTMENT OR WITH THE TERMS<br>OF THIS PERMIT SHALL VOID THE AUTHORITY GIVEN TO THE PERMITTEE BY THE ISSUANCE OF THE PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TS AND THE                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | R CONDITIONS                                               |
| 3, THIS PERMIT IS ISSUED FORSOANT TO THE CLEAN STREAMS LAW, ACT OF JONE 22, 1937, P.L. 1987 AS AMENDE<br>\$691.1 ET SEQ. AND/OR THE DAM SAFETY AND ENCROACHMENTS ACT OF NOVEMBER 26, 1978; P.L. 1375, AS AM<br>\$693.1 ET SEQ. ISSUANCE OF THIS PERMIT SHALL NOT RELIEVE THE PERMITTEE OF ANY RESPONSIBILITY UNI<br>LAW.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            |
| PERMIT ISSUED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ) 35 P.S.<br>IENDED, 32 P S.<br>ER ANY ОТНЕЯ               |
| DATE 2/7/91 BY Joseph A. Feoto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35 P.S.<br>IENDED, 32 P S.<br>ER ANY OTHER                 |
| Joseph A. Feola                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) 35 P.S.<br>IENDED, 32 P S.<br>ER ANY ОТНЕЯ<br>:ES        |
| (WOM).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ) 35 P.S.<br>IENDED, 32 P S.<br>ER ANY ОТНЕЯ<br>:ES        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9 35 P.S.<br>IENDED, 32 P S.<br>ER ANY ОТНЕЯ<br>ES<br>Bger |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) 35 P.S.<br>IENDED, 32 P S.<br>ER ANY ОТНЕЯ<br>ES         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35 P.S.<br>IENDED, 32 P S.<br>ER ANY OTHER<br>ES           |

- investigation

AN ISSUE

()

#### Sewerage Permit No. 2390404 Delaware County Regional Water Quality Control Authority City of Chester, Delaware County

This permit is subject to the following Special Condition(s):

I. The Authority granted by this permit is subject to all effluent requirements, and other conditions as set forth in Parts A, B and C of the Part I Discharge Permit No. PAOO27103 Amendment No. 1 as issued on August 7, 1987. No discharge is authorized for these facilities unless approved by a Part I permit.

(WQM).2

11.25

September 2, 1983

# STANDARD CONDITIONS RELATING TO SEWERAGE - PART II PERMITS

ONE: During construction, no changes affecting any engineering design parameter shall be made from the plans, designs, and other data herein approved unless the permittee shall first receive written approval thereof from the Department. The sewerage facilities shall be constructed under expert engineering supervision and competent inspection.

TWO: The sewers shall have adequate foundation support as soil conditions require. Trenches shall be back-filled such that the sewers will have proper structural stability, with minimum settling and adequate protection against breakage. Concrete used in connection with these sewers shall be protected from injury by water, freezing, drying or other harmful conditions until cured.

THREE: Manhole inverts shall be so formed as to facilitate the flow of the sewage and to prevent the stranding of sewage solids, and the whole manhole structure shall have proper structural strength and be so constructed as to prevent undue infiltration, entrance of the street wash or grit, and to provide convenient and safe means of access and maintenance.

FOUR: No stormwater from pavements, area ways, roofs, foundation drains or other sources shall be admitted to the sanitary sewers herein approved.

FIVE: The permittee shall adopt and enforce an ordinance requiring the abandonment of privies, cesspools or similar receptacles for human waste and on-lot sewage disposal systems on the premises of occupied structures which are accessible to public sewers and require the connection of such structures to the public sewers.

SIX: The herein approved sewers shall be maintained in good condition, kept free from deposits by flushing or other proper means of cleaning, and repaired when necessary.

SEVEN: The permittee shall file with the Department of Environmental Resources "as-built" plans showing the correct plan of all sewers and sewerage structures as actually constructed together with any other information in connection therewith that may be required.

EIGHT: The outfall sewer or drain shall be extended to the low water mark of the receiving body of water. Where necessary to assure the proper mixing and waste assimilation an outfall sewer or drain may be extended with appurtenances below the low water mark and into the bed of navigable stream, provided that the permittee has secured an easement, right-of-way, license, or lease from the Department in accordance with Section 15 of the Dam Safety and Encroachment Act, the Act of November 26, 1978, P.L. 1375, as amended. NINE: The approval herein given is specifically made contingent upon the permittee acquiring all necessary property rights, by easement or otherwise, providing for the satisfactory construction, operation, maintenance and replacement of all sewers or sewerage structures in, along, or across private property, with full rights of ingress, egress and regress.

TEN: When the herein approved sewage treatment works is completed and before it is placed in operation, the permittee shall notify the Department in writing so that an inspection of the works may be made by a representative of the Department.

ELEVEN: The various structures and apparatus of the sewage treatment works herein approved shall be maintained in proper condition so that the facility will individually and collectively perform the functions for which they were designed.

TWELVE: If, in the opinion of the Department, these works are not so operated or if by reason of change in the character of wastes or increased load upon the works, or changed use or condition of the receiving body of water, or otherwise the effluent from the said works ceases to be satisfactory or the sewerage facilities shall have created a public nuisance, then upon notice by the Department, the right herein granted shall cease and become null and void unless within the time specified by the Department, the permittee shall adopt such remedial measures as will produce an effluent which, in the opinion of the Department, will be satisfactory.

THIRTEEN: The attention of the permittee is called to the highly explosive nature of certain gases generated by the digestion of sewage solids when these gases are mixed in proper portions with air, and to the highly toxic character of certain gases arising from such digestion or from sewage in insufficiently ventilated compartments or sewers. Therefore, at all places throughout the sewerage facilities where hazard of fire, explosion, or danger from toxic gases may occur, the permittee shall post conspicuously proper warnings of a permanent and legible character and shall provide for the thorough instruction of all employees concerning the aforesaid hazards and in first aid and emergency methods of meeting such hazards and shall further provide, in a conveniently accessible place, all necessary equipment and material therefor.

FOURTEEN: Cross connections between the potable water supply and the sewerage system constitute a potential danger to the public health. Therefore, all direct and indirect connections whereby under normal or abnormal conditions the potable water supply may become contaminated from an inferior water supply from any unit of the sewage treatment works, or by any appurtenance thereof or from any part of a sewerage system are hereby specifically prohibited. The permittee is further warned against permitting to be made permanent any temporary connection with a potable supply designed to be held in place while being used for flushing or other purposes, and is also cautioned against the danger of back siphonage through portable hose lines and similar avenues of possible contamination. FIFTEEN: This permit authorizes the construction and operation of the proposed sewerage facilities until such time as facilities for conveyance and treatment at a more suitable location are installed and are capable of receiving and treating the permittee's sewage. Such facilities must be in accordance with either the applicable municipal official plan adopted pursuant to Section 5 of the Pennsylvania Sewage Facilities Act, the Act of January 24, 1956, P.L. 1535, as amended, or a comprehensive Water Quality Management Plan as set forth in Section 91.31 of the Rules and Regulations of the Department. When such municipal sewerage facilities become available, the permittee shall provide for the conveyance of the sewage to these sewerage facilities, abandon the use of the herein-approved facilities and notify the Department accordingly. This permit shall then, upon notice from the Department, terminate and become null and void, and shall be relinquished to the Department.

SIXTEEN: The permittee shall construct the sewerage facilities in a manner compatible with good conservation methods in order to minimize the adverse effect on the environment.

SEVENTEEN: The local waterways patrolman of the Pennsylvania Fish Commission shall be notified when the construction of a stream crossing and outfall is started and completed. A permit must be secured from the Pennsylvania Fish Commission if the use of explosives is required. The permittee shall notify the local waterways patrolman when explosives are to be used.

EIGHTEEN: If future operations by the Commonwealth of Pennsylvania require modifications of the stream crossing and/or outfall, or there shall be unreasonable obstruction to the free passage of floods or navigation from the stream crossing and/or outfall, permittee shall remove or alter the structural work or obstruction without expense to the Commonwealth of Pennsylvania. If upon the revocation of the permit, the work shall not be completed, the permittee, at his own expense and in such time and manner as the Department may require, shall remove any or all portions of the incompleted work and restore the water-course to its former condition. No claims shall be made against the Commonwealth of Pennsylvania on account of any such removal or alteration.

NINETEEN: The sewage treatment plant shall be operated by an operator certified in accordance with the Sewage Treatment Plant and Waterworks Operators' Certification Act, the Act of November 18, 1968, P.L. 1217, as amended.

TWENTY: All industrial waste discharged or proposed for discharge into the sewer system shall be studied to determine the degree of pretreatment necessary in order that the industrial waste will not adversely affect the sewerage facilities or the sewage treatment process. The permittee shall properly control any industrial waste discharge into its sewerage system by regulating the rate of such discharge, requiring necessary pretreatment, and excluding industrial waste, if necessary, to protect the integrity of the permittee's sewerage system.

TWENTY-ONE: Receipt of this permit does not relieve the permittee of its obligations to comply with all federal, interstate, state, or local laws, ordinances, and regulations applicable to the sewerage facilities authorized herein.

TWENTY-TWO: This permit does not give any real or personal property rights or grant any exclusive privileges, nor shall it be construed to grant or confirm any right, title, easement, or interest in, on, to, or over any lands belonging to the Commonwealth.

#### DEPARTMENT OF ENVIRONMENTAL RESOURCES STANDARD CONDITIONS RELATING TO EROSION CONTROL For Use in Water Quality Management Permits

1985

- 1. By approval of the plans for which this permit is issued, neither the Department nor the Commonwealth of Pennsylvania assumes any responsibility for the feasibility of the plans or the operation of the measures and facilities to be constructed thereunder.
- 2. If at any time the erosion and sedimentation activities undertaken pursuant to this permit or the discharge of the effluent therefrom is causing or contributing to pollution of the waters of the Commonwealth, the permittee shall forthwith adopt such remedial measures as are acceptable to the Department.
- 3. This permit does not authorize any earth disturbance controlled by an ordinance enacted by a local municipality. Additional permits must be secured from local municipalities where earth-moving activities are covered by local ordinances.
- 4. At least seven days before earthmoving will begin, the permittee, by telephone or certified mail, shall notify the Department or its designee of the date for beginning of construction and invite the County Conservation District Representative to attend a pre-construction conference with the contractor. The permittee shall have his erosion control plan available at the site of the activity at all times.
- 5. All earthmoving activities shall be undertaken in the manner set forth in the erosion and sedimentation control plan identified with this permit. Revisions to the plan shall be approved by the Department.
- 6. The erosion control measures and facilities shall be constructed under the supervision and competent inspection of an individual trained and experienced in erosion control, and in accordance with plans, designs and other data as herein approved or amended, and with the conditions of this permit. Control facilities shall be frequently inspected to insure effective control.
- 7. When the herein approved erosion control measures and facilities are completed, the permittee shall notify the Department so that an inspection of the measures and facilities may be made by a representative of the County Conservation District.
- 8. No storm water, sewage or industrial wastes not specifically approved herein, shall be admitted to the erosion and sedimentation measures and facilities for which this permit is issued, unless with the approval of the Department.
- 9. Sediment shall at no time be permitted to accumulate in sedimentation basins to a depth sufficient to limit storage capacity or interfere with the settling efficiency thereof. The sediment removed shall be handled and disposed of in a manner that will not create pollution problems and so that every reasonable and practical precaution is taken to prevent the said material from reaching the waters of the Commonwealth.
- 10. All slopes, channels, ditches or any disturbed area shall be stabilized as soon as possible after the final grade or final earthmoving has been completed. Where it is not possible to permanently stabilize a disturbed area immediately after the final earthmoving has been completed or where the activity ceases for more than 20 days, interim stabilization measures shall be implemented promptly.
- 11. Upon completion of the project, all areas which were disturbed by the project shall be stabilized so that accelerated erosion will be prevented. Any erosion and sedimentation control facility required or necessary to protect areas from erosion during the stabilization period shall be maintained until stabilization is completed. Upon completion of stabilization, all unnecessary or unusable control measures and facilities shall be removed, the areas shall be graded and the soils shall be stabilized.

12. The responsibility of carrying out the permit conditions shall rest with the owner, lessee, assign or other responsible manager of earthmoving that affects the approved erosion controls. Such responsibility passes with each control succession.

2

1

٠,

ER-8WQ-15-Rev. 11/85

ìĽ.

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES BUREAU OF WATER QUALITY MANAGEMENT ATER QUALITY MANAGEMENT PERMIT

| Α,                            | PERMITTEE: (Name and Address)                                                                             | 8. PROJECT LOCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\bigcirc$                    | Delaware County Regional Water<br>Quality Control Authority<br>100 East Fifth Street<br>Chester, PA 19013 | Municipality <u>City of Chestor</u><br>County <u>Delaware</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| C,                            | TYPE OF FACILITY (For industrial wastes:type of establishment<br>Dry Ash Handling System                  | D. NAME OF PLANT, AREA SERVED, OUTFALL NO., ETC.<br>Delcora Western Regional Treatment Plant                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                               | 1. Plans For Construction Of:<br>a. and Appurtenar                                                        | Sewers Sewage Treatment Industrial Wastes<br>ces b. X Facilities c. Treatment Facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IOVES:                        | d. Injection Well e. Outfail & Heady                                                                      | vall f. Stream Crossing g. Impoundment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| IIT APP!                      | 2. The Discharge Of: a. Treated N/A b. Untre                                                              | ated c. Sewage d. Industrial Wastes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ERM                           | 3. Discharge To:<br>a. Surface Water                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| E THIS P                      | b. Ground Water takes place of                                                                            | aam to which discharged or drainage area in which groundwater discharge<br>or impoundment is located.                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                               | 4. Preparedness, Prevention,<br>Contingency (PPC) Plan N/A                                                | 5. An Erosion and Sedimentation Control Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\frown$                      | HIS APPROVAL IS SUBJECT TO THE FOLLOWING CONDITIONS                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\square$                     | ALL CONSTRUCTION, OPERATIONS, PROCEDURES AND DISCH                                                        | ARGE SHALL BE IN ACCORDANCE WITH APPLICATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                               | NO 2392403DATED                                                                                           | 02/19/92 ITS SUPPORTING DOCUMENTATION,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                               |                                                                                                           | , SUCH APPLICATION, ITS SUPPORTING DOCUMENTATION AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                               | AMENDMENTS ARE REMEBY MADE A PART OF THIS PERMIT.                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 2.                            | CONDITIONS NUMBERED 7, 9-14, 16, 17, 19                                                                   | 0, <u>20, 21, 22</u> OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                               | AND CONDITIONS NUMBERED 1 three                                                                           | _STANDARD CONDITIONS DATED9702783                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                               | EROSION CONTROL STANDARD CONDITIONS DATED                                                                 | 985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                               | WHICH CONDITIONS ARE ATTACHED AND MADE PART OF TH                                                         | IS PERMIT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3.                            |                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                               | SPECIAL CONDITIONS DESIGNATED                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                               | SPECIAL CONDITIONS DESIGNATED                                                                             | ERMIT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                               | SPECIAL CONDITIONS DESIGNATED                                                                             | ÉRMIT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| G. T                          | SPECIAL CONDITIONS DESIGNATED                                                                             | ERMIT.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| G. T<br>1                     | SPECIAL CONDITIONS DESIGNATED                                                                             | ERMIT.<br>HE FOLLOWING FURTHER QUALIFICATIONS:<br>ITS SUPPORTING DOCUMENTS AND AMENDMENTS AND THE<br>SPECIAL CONDITIONS SHALL APPLY.                                                                                                                                                                                                                                                                                                                                                                                                    |
| G. T<br>1<br>2                | SPECIAL CONDITIONS DESIGNATED                                                                             | ERMIT.<br>THE FOLLOWING FURTHER QUALIFICATIONS:<br>ITS SUPPORTING DOCUMENTS AND AMENDMENTS AND THE<br>SPECIAL CONDITIONS SHALL APPLY.<br>S OF THE DEPARTMENT OR WITH THE TERMS OR CONDITIONS<br>THE PERMITTEE BY THE ISSUANCE OF THE PERMIT.                                                                                                                                                                                                                                                                                            |
| G. T<br>1<br>2<br>3           | SPECIAL CONDITIONS DESIGNATED                                                                             | ERMIT.<br>THE FOLLOWING FURTHER QUALIFICATIONS:<br>ITS SUPPORTING DOCUMENTS AND AMENDMENTS AND THE<br>SPECIAL CONDITIONS SHALL APPLY.<br>S OF THE DEPARTMENT OR WITH THE TERMS OR CONDITIONS<br>THE PERMITTEE BY THE ISSUANCE OF THE PERMIT.<br>AW, ACT OF JUNE 22, 1937, P.L. 1987 AS AMENDED 35 P.S.<br>NTS ACT OF NOVEMBER 26, 1978, P.L. 1375, AS AMENDED, 32 P.S.<br>YE THE PERMITTEE OF ANY RESPONSIBILITY UNDER ANY OTHER                                                                                                        |
| G. T<br>1<br>2<br>3           | SPECIAL CONDITIONS DESIGNATED                                                                             | ERMIT.<br>THE FOLLOWING FURTHER QUALIFICATIONS:<br>ITS SUPPORTING DOCUMENTS AND AMENDMENTS AND THE<br>SPECIAL CONDITIONS SHALL APPLY.<br>S OF THE DEPARTMENT OR WITH THE TERMS OR CONDITIONS<br>THE PERMITTEE BY THE ISSUANCE OF THE PERMIT.<br>AW, ACT OF JUNE 22, 1937, P.L. 1987 AS AMENDED 35 P.S.<br>NTS ACT OF NOVEMBER 26, 1978, P.L. 1375, AS AMENDED, 32 P.S.<br>YE THE PERMITTEE OF ANY RESPONSIBILITY UNDER ANY OTHER<br>DEPARTMENT OF ENVIRONMENTAL RESOURCES                                                               |
| G. T<br>1<br>2<br>3           | SPECIAL CONDITIONS DESIGNATED                                                                             | ERMIT.<br>HE FOLLOWING FURTHER QUALIFICATIONS:<br>ITS SUPPORTING DOCUMENTS AND AMENDMENTS AND THE<br>SPECIAL CONDITIONS SHALL APPLY.<br>S OF THE DEPARTMENT OR WITH THE TERMS OR CONDITIONS<br>THE PERMITTEE BY THE ISSUANCE OF THE PERMIT.<br>AW, ACT OF JUNE 22, 1937, P.L. 1987 AS AMENDED 35 P.S.<br>NTS ACT OF NOVEMBER 26, 1978, P.L. 1375, AS AMENDED, 32 P.S.<br>YE THE PERMITTEE OF ANY RESPONSIBILITY UNDER ANY OTHER<br>DEPARTMENT OF ENVIRONMENTAL RESOURCES                                                                |
| G. T<br>1<br>2<br>3<br>0      | SPECIAL CONDITIONS DESIGNATED                                                                             | ERMIT.<br>THE FOLLOWING FURTHER QUALIFICATIONS:<br>ITS SUPPORTING DOCUMENTS AND AMENDMENTS AND THE<br>SPECIAL CONDITIONS SHALL APPLY.<br>S OF THE DEPARTMENT OR WITH THE TERMS OR CONDITIONS<br>THE PERMITTEE BY THE ISSUANCE OF THE PERMIT.<br>AW, ACT OF JUNE 22, 1937, P.L. 1987 AS AMENDED 35 P.S.<br>NTS ACT OF NOVEMBER 26, 1978, P.L. 1375, AS AMENDED, 32 P.S.<br>YE THE PERMITTEE OF ANY RESPONSIBILITY UNDER ANY OTHER<br>DEPARTMENT OF ENVIRONMENTAL RESOURCES<br>WORTH A MACHINE                                            |
| G. T<br>1<br>2<br>3<br>0<br>0 | SPECIAL CONDITIONS DESIGNATED                                                                             | ERMIT.<br>HE FOLLOWING FURTHER QUALIFICATIONS:<br>ITS SUPPORTING DOCUMENTS AND AMENDMENTS AND THE<br>SPECIAL CONDITIONS SHALL APPLY.<br>S OF THE DEPARTMENT OF WITH THE TERMS OR CONDITIONS<br>THE PERMITTEE BY THE ISSUANCE OF THE PERMIT.<br>AW, ACT OF JUNE 22, 1937, P.L. 1987 AS AMENDED 35 P.S.<br>NTS ACT OF NOVEMBER 26, 1978, P.L. 1375, AS AMENDED, 32 P.S.<br>YE THE PERMITTEE OF ANY RESPONSIBILITY UNDER ANY OTHER<br>DEPARTMENT OF ENVIRONMENTAL RESOURCES<br>MALMAN<br>JOSEPH A. Feola<br>Bagional Water Ouglity Manager |

# 

يەلەرلەر يەت بە

.

.

.

n ang papaning na ang pang na p Pang na pang na

and the second second

Sewerage Permit No. 2392403 Delaware County Regional Water Quality Control Authority City of Chester Delaware County

This permit is subject to the following Special Condition(s):

I. The Authority granted by this permit is subject to all effluent requirements, and other conditions as set forth in Parts A, B and C of the Part I Discharge Permit No. PA0027103 Amendment No. 1 as issued on July 8, 1987. No discharge is authorized for these facilities unless approved by a Part I permit.

(WQM).4

en de la composition de la comp

.

1.14

#### DEPARTMENT OF ENVIRONMENTAL RESOURCES STANDARD CONDITIONS RELATING TO EROSION CONTROL For Use in Water Quality Management Permits

August 1991

- 1. By approval of the plans for which this permit is issued, neither the Department nor the Commonwealth of Pennsylvania assumes any responsibility for the feasibility of the plans or the operation of the measures and facilities to be constructed thereunder.
- 2. If at any time the erosion and sedimentation activities undertaken pursuant to this permit or the discharge of the effluent therefrom is causing or contributing to pollution of the waters of the Commonwealth, the permittee shall forthwith adopt such remedial measures as are acceptable to the Department.
- This permit does not authorize any earth disturbance controlled by an ordinance enacted by a local municipality. Additional permits must be secured from local municipalities where earthmoving activities are covered by local ordinances.
- 4. At least seven days before earthmoving will begin, the permittee, by telephone or certified mail, shall notify the Department or its designee of the date for beginning of construction and invite the County Conservation. District Representative to attend a pre-construction conference with the contractor. The permittee shall have his erosion control plan available at the site of the activity at all times.
- 5. All earthmoving activities shall be undertaken in the manner set forth in the erosion and sedimentation control plan identified with this permit. Revisions to the plan shall be pre-approved by the Department.
- 6. The erosion control measures and facilities shall be constructed under the supervision and competent inspection of an individual trained and experienced in erosion control, and in accordance with plans, designs and other data as herein approved or amended, and with the conditions of this permit. Control facilities shall be frequently inspected and maintained to insure effective control.
- 7. When the herein approved erosion control measures and facilities are completed, the permittee shall notify the County Conservation District so that an inspection of the measures and facilities may be made.
- 8. No storm water, sewage or industrial wastes not specifically approved herein, shall be admitted to the erosion and sedimentation measures and facilities for which this permit is issued, unless with the approval of the Department.
- 9. Sediment shall at no time be permitted to accumulate in sedimentation basins to a depth sufficient to limit storage capacity or interfere with the settling efficiency thereof. The sediment removed shall be handled and disposed of in a manner that will not create pollution problems and so that every reasonable and practical precaution is taken to prevent the said material from reaching the waters of the Commonwealth.
- 10. All slopes, channels, ditches or any disturbed area shall be stabilized as soon as possible after the final grade or final earthmoving has been completed. Where it is not possible to permanently stabilize a disturbed area immediately after the final earthmoving has been completed or where the activity ceases for more than 20 days, interim stabilization measures shall be implemented promptly.
- 11. Upon completion of the project, all areas which were disturbed by the project shall be stabilized so that accelerated erosion will be prevented. Any erosion and sedimentation control facility required or necessary to protect areas from erosion during the stabilization period shall be maintained until stabilization is completed. Upon completion of stabilization, all unnecessary or unusable control measures and facilities shall be removed, the areas shall be graded and the soils shall be stabilized.
- The responsibility of carrying out the permit conditions shall rest with the owner, lessee, assignee or other responsible manager of earthmoving that affects the approved erosion controls. Such responsibility passes with each control succession.

.

and a second second

and a set of a set of the set of t the set of t the set of the

المحلة المراجعة المراجعة المحلة المحلة المراجعة للإنتخاب المحلة المحلة المحلة المحلة المحلة المحلة المحلة المراجع المحلة المراجعة المراجعة المحلة ا المحلة الم المحلة المحلة

(a) An and the set of the set

e de la construcción de la constru de la construcción de la construcció de la construcción de la construcció de la construcción de la const de la construcción de de la construcción de la constru de la construcción de

and the second secon

#### September 2, 1983

# STANDARD CONDITIONS RELATING TO SEWERAGE - PART II PERMITS

ONE: During construction, no changes affecting any engineering design parameter shall be made from the plans, designs, and other data herein approved unless the permittee shall first receive written approval thereof from the Department. The sewerage facilities shall be constructed under expert engineering supervision and competent inspection.

TWO: The sewers shall have adequate foundation support as soil conditions require. Trenches shall be back-filled such that the sewers will have proper structural stability, with minimum settling and adequate protection against breakage. Concrete used in connection with these sewers shall be protected from injury by water, freezing, drying or other harmful conditions until cured.

THREE: Manhole inverts shall be so formed as to facilitate the flow of the sewage and to prevent the stranding of sewage solids, and the whole manhole structure shall have proper structural strength and be so constructed as to prevent undue infiltration, entrance of the street wash or grit, and to provide convenient and safe means of access and maintenance.

FOUR: No stormwater from pavements, area ways, roofs, foundation drains or other sources shall be admitted to the sanitary sewers herein approved.

FIVE: The permittee shall adopt and enforce an ordinance requiring the abandonment of privies, cesspools or similar receptacles for human waste and on-lot sewage disposal systems on the premises of occupied structures which are accessible to public sewers and require the connection of such structures to the public sewers.

SIX: The herein approved sewers shall be maintained in good condition, kept free from deposits by flushing or other proper means of cleaning, and repaired when necessary.

SEVEN: The permittee shall file with the Department of Environmental Resources "as-built" plans showing the correct plan of all sewers and sewerage structures as actually constructed together with any other information in connection therewith that may be required.

EIGHT: The outfall sewer or drain shall be extended to the low water mark of the receiving body of water. Where necessary to assure the proper mixing and waste assimilation an outfall sewer or drain may be extended with appurtenances below the low water mark and into the bed of navigable stream, provided that the permittee has secured an easement, right-of-way, license, or lease from the Department in accordance with Section 15 of the Dam Safety and Encroachment Act, the Act of November 26, 1978, P.L. 1375, as amended. NINE: The approval herein given is specifically made contingent upon the permittee acquiring all necessary property rights, by easement or otherwise, providing for the satisfactory construction, operation, maintenance and replacement of all sewers or sewerage structures in, along, or across private property, with full rights of ingress, egress and regress.

TEN: When the herein approved sewage treatment works is completed and before it is placed in operation, the permittee shall notify the Department in writing so that an inspection of the works may be made by a representative of the Department.

ELEVEN: The various structures and apparatus of the sewage treatment works herein approved shall be maintained in proper condition so that the facility will individually and collectively perform the functions for which they were designed.

TWELVE: If, in the opinion of the Department, these works are not so operated or if by reason of change in the character of wastes or increased load upon the works, or changed use or condition of the receiving body of water, or otherwise the effluent from the said works ceases to be satisfactory or the sewerage facilities shall have created a public nuisance, then upon notice by the Department, the right herein granted shall cease and become null and void unless within the time specified by the Department, the permittee shall adopt such remedial measures as will produce an effluent which, in the opinion of the Department, will be satisfactory.

THIRTEEN: The attention of the permittee is called to the highly explosive nature of certain gases generated by the digestion of sewage solids when these gases are mixed in proper portions with air, and to the highly toxic character of certain gases arising from such digestion or from sewage in insufficiently ventilated compartments or sewers. Therefore, at all places throughout the sewerage facilities where hazard of fire, explosion, or danger from toxic gases may occur, the permittee shall post conspicuously proper warnings of a permanent and legible character and shall provide for the thorough instruction of all employees concerning the aforesaid hazards and in first aid and emergency methods of meeting such hazards and shall further provide, in a conveniently accessible place, all necessary equipment and material therefor.

FOURTEEN: Cross connections between the potable water supply and the sewerage system constitute a potential danger to the public health. Therefore, all direct and indirect connections whereby under normal or abnormal conditions the potable water supply may become contaminated from an inferior water supply from any unit of the sewage treatment works, or by any appurtenance thereof or from any part of a sewerage system are hereby specifically prohibited. The permittee is further warned against permitting to be made permanent any temporary connection with a potable supply designed to be held in place while being used for flushing or other purposes, and is also cautioned against the danger of back siphonage through portable hose lines and similar avenues of possible contamination. FIFTEEN: This permit authorizes the construction and operation of the proposed sewerage facilities until such time as facilities for conveyance and treatment at a more suitable location are installed and are capable of receiving and treating the permittee's sewage. Such facilities must be in accordance with either the applicable municipal official plan adopted pursuant to Section 5 of the Pennsylvania Sewage Facilities Act, the Act of January 24, 1956, P.L. 1535, as amended, or a comprehensive Water Quality Management Plan as set forth in Section 91.31 of the Rules and Regulations of the Department. When such municipal sewerage facilities become available, the permittee shall provide for the conveyance of the sewage to these sewerage facilities, abandon the use of the herein-approved facilities and notify the Department accordingly. This permit shall then, upon notice from the Department, terminate and become null and void, and shall be relinquished to the Department.

SIXTEEN: The permittee shall construct the sewerage facilities in a manner compatible with good conservation methods in order to minimize the adverse effect on the environment.

SEVENTEEN: The local waterways patrolman of the Pennsylvania Fish Commission shall be notified when the construction of a stream crossing and outfall is started and completed. A permit must be secured from the Pennsylvania Fish Commission if the use of explosives is required. The permittee shall notify the local waterways patrolman when explosives are to be used.

EIGHTEEN: If future operations by the Commonwealth of Pennsylvania require modifications of the stream crossing and/or outfall, or there shall be unreasonable obstruction to the free passage of floods or navigation from the stream crossing and/or outfall, permittee shall remove or alter the structural work or obstruction without expense to the Commonwealth of Pennsylvania. If upon the revocation of the permit, the work shall not be completed, the permittee, at his own expense and in such time and manner as the Department may require, shall remove any or all portions of the incompleted work and restore the water-course to its former condition. No claims shall be made against the Commonwealth of Pennsylvania on account of any such removal or alteration.

NINETEEN: The sewage treatment plant shall be operated by an operator certified in accordance with the Sewage Treatment Plant and Waterworks Operators' Certification Act, the Act of November 18, 1968, P.L. 1217, as amended.

TWENTY: All industrial waste discharged or proposed for discharge into the sewer system shall be studied to determine the degree of pretreatment necessary in order that the industrial waste will not adversely affect the sewerage facilities or the sewage treatment process. The permittee shall properly control any industrial waste discharge into its sewerage system by regulating the rate of such discharge, requiring necessary pretreatment, and excluding industrial waste, if necessary, to protect the integrity of the permittee's sewerage system.

TWENTY-ONE: Receipt of this permit does not relieve the permittee of its obligations to comply with all federal, interstate, state, or local laws, ordinances, and regulations applicable to the sewerage facilities authorized herein.

TWENTY-TWO: This permit does not give any real or personal property rights or grant any exclusive privileges, nor shall it be construed to grant or confirm any right, title, easement, or interest in, on, to, or over any lands belonging to the Commonwealth.

.

a definition and a second s In the second In the second second

### DEPARTMENT OF ENVIRONMENTAL RESOURCES STANDARD CONDITIONS RELATING TO EROSION CONTROL For Use in Water Quality Management Permits

1.

By approval of the plans for which this permit is issued, neither the Department nor the Commonwealth of Pennsylvania assumes any responsibility for the feasibility of the plans or the operation of the measures and facilities to be constructed thereunder.

1985

- 2. If at any time the erosion and sedimentation activities undertaken pursuant to this permit or the discharge of the effluent therefrom is causing or contributing to pollution of the waters of the Commonwealth, the permittee shall forthwith adopt such remedial measures as are acceptable to the Department.
- 3. This permit does not authorize any earth disturbance controlled by an ordinance enacted by a local municipality. Additional permits must be secured from local municipalities where earth-moving activities are covered by local ordinances.
- 4. At least seven days before earthmoving will begin, the permittee, by telephone or certified mail, shall notify the Department or its designee of the date for beginning of construction and invite the County Conservation District Representative to attend a pre-construction conference with the contractor. The permittee shall have his erosion control plan available at the site of the activity at all times.
- 5. All earthmoving activities shall be undertaken in the manner set forth in the erosion and sedimentation control plan identified with this permit. Revisions to the plan shall be approved by the Department.
- 6. The erosion control measures and facilities shall be constructed under the supervision and competent inspection of an individual trained and experienced in erosion control, and in accordance with plans, designs and other data as herein approved or amended, and with the conditions of this permit. Control facilities shall be frequently inspected to insure effective control.
- 7. When the herein approved erosion control measures and facilities are completed, the permittee shall notify the Department so that an inspection of the measures and facilities may be made by a representative of the County Conservation District.
- 8. No storm water, sewage or industrial wastes not specifically approved herein, shall be admitted to the erosion and sedimentation measures and facilities for which this permit is issued, unless with the approval of the Department.
- 9. Sediment shall at no time be permitted to accumulate in sedimentation basins to a depth sufficient to limit storage capacity or interfere with the settling efficiency thereof. The sediment removed shall be handled and disposed of in a manner that will not create pollution problems and so that every reasonable and practical precaution is taken to prevent the said material from reaching the waters of the Commonwealth.
- 10. All slopes, channels, ditches or any disturbed area shall be stabilized as soon as possible after the final grade or final earthmoving has been completed. Where it is not possible to permanently stabilize a disturbed area immediately after the final earthmoving has been completed or where the activity ceases for more than 20 days, interim stabilization measures shall be implemented promptly.
- 11. Upon completion of the project, all areas which were disturbed by the project shall be stabilized so that accelerated erosion will be prevented. Any erosion and sedimentation control facility required or necessary to protect areas from erosion during the stabilization period shall be main-tained until stabilization is completed. Upon completion of stabilization, all unnecessary or unusable control measures and facilities shall be removed, the areas shall be graded and the soils shall be stabilized.

.

# The responsibility of carrying out the permit conditions shall rest with the owner, lessee, assigned 12. or other responsible manager of earthmoving that affects the approved erosion controls. Such responsibility passes with each control succession, a true is the approved erosion control

;

ала с уменение водах дина на составание стана водание на проделение на конседи у у составание состава. По оставляется водах дина на составляется с водание на вида не поставляется и на конседи у у у составляется с от یندان از معامل میرد به به برای ایند به این ایند برای از میرود ایند. اینده این اینده اینده اینده اینده اینده اینده میرو میرود و میرود اینده اینده اینده اینده اینده اینده اینده ایند اینده این

an ang ang tanàna amin'ny tanàna amin'ny tanàna amin'ny taona 2008–2014. Ilay kaominina dia a series de la companya de la compa La companya de la comp La companya de la comp 

and and the second providence of the period and the second second second second second second second second se andari ya kata mwaka mwak

and the second state of the second second

· · · · · · · ·

and the second particular system of the second particular states of the second second second second second sec and the second second provide a provide strain second second second second second second second second second s and a second second

erentaaparen harren erentaaturen erentaan erentaan erentaan erentaan erentaan erentaan erentaan erentaan erenta

|          | BUREAU OF WATER O                                                                                                                                                                                                                                                                                                                                                     | RONMENTAL RESC                                                                                                                                                                                                                                                                                                  | MENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | in ned \                                                                                                                                                                                                                                                                                                                                                                                       | chilogon-                                                                                                                                              |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | WATER QUALITY M                                                                                                                                                                                                                                                                                                                                                       | ANAGEMENT                                                                                                                                                                                                                                                                                                       | PERMIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NO.                                                                                                                                                                                                                                                                                                                                                                                            | 2393401                                                                                                                                                |
| Α.       | PERMITTEE: (Name and Address)                                                                                                                                                                                                                                                                                                                                         | B. PROJECT L                                                                                                                                                                                                                                                                                                    | OCATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                        |
|          | Delaware County Regional Water<br>Quality Control Authority<br>100 East Fifth Street<br>Chester, PA 19013                                                                                                                                                                                                                                                             | Municipality<br>County                                                                                                                                                                                                                                                                                          | <u>City of</u><br>Delawar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u>Chester</u>                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                      |
|          |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ,                                                                                                                                                                                                                                                                                                                                                                                              | ······                                                                                                                                                 |
| с.       | TYPE OF FACILITY (For industrial wastes: type of establishment                                                                                                                                                                                                                                                                                                        | D, NAME OF PL                                                                                                                                                                                                                                                                                                   | LANT, AREA SER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | VED, OUTFAL                                                                                                                                                                                                                                                                                                                                                                                    | L NO., ETC.                                                                                                                                            |
|          | Final Clarifier Upgrade                                                                                                                                                                                                                                                                                                                                               | Western                                                                                                                                                                                                                                                                                                         | Regional 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | reatment                                                                                                                                                                                                                                                                                                                                                                                       | Plant                                                                                                                                                  |
|          | 1. Plans For Construction Of:<br>a. Pump Stations<br>and Appurtena                                                                                                                                                                                                                                                                                                    | r Sewers<br>Inces b.                                                                                                                                                                                                                                                                                            | Sewage Treatmen<br>Facilities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ·t ε, Π                                                                                                                                                                                                                                                                                                                                                                                        | Industrial Wastes<br>Freatment Facilit                                                                                                                 |
| IOVES:   | d. Injection Well e. Outfail & Head                                                                                                                                                                                                                                                                                                                                   | iwali f,                                                                                                                                                                                                                                                                                                        | Stream Crossing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | g, 🚺 I                                                                                                                                                                                                                                                                                                                                                                                         | mpoundment                                                                                                                                             |
| IT APP   | 2, The Discharge Of a. Treated N/B. Unt                                                                                                                                                                                                                                                                                                                               | reated c.                                                                                                                                                                                                                                                                                                       | Sewage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d. 🗌 In                                                                                                                                                                                                                                                                                                                                                                                        | dustrial Wastes                                                                                                                                        |
| EAM      | 3. Discharge To:<br>a. Surface Water                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                        |
| E THIS P | b. Ground Water takes place                                                                                                                                                                                                                                                                                                                                           | tream to which discha<br>For impoundment is                                                                                                                                                                                                                                                                     | rged or drainage as<br>located,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ea in which grou                                                                                                                                                                                                                                                                                                                                                                               | indwater dischar                                                                                                                                       |
| , u      | 4. Preparedness, Prevention,<br>Contingency (PPC) Plan N/A                                                                                                                                                                                                                                                                                                            | 5. An Erosion<br>Project A                                                                                                                                                                                                                                                                                      | and Sedimentatio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n Control Plan                                                                                                                                                                                                                                                                                                                                                                                 | -                                                                                                                                                      |
|          | 1. ALL CONSTRUCTION, OPERATIONS, PROCEDURES AND DISC<br>NO                                                                                                                                                                                                                                                                                                            | CHARGE SHALL BE<br>12/29/92<br>SUCH APPL<br>T.                                                                                                                                                                                                                                                                  | IN ACCORDANC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E WITH APPLI<br>UPPORTING DO                                                                                                                                                                                                                                                                                                                                                                   | CATION<br>OCUMENTATIO                                                                                                                                  |
|          | <ol> <li>ALL CONSTRUCTION, OPERATIONS, PROCEDURES AND DISC<br/>NO. 2393401</li></ol>                                                                                                                                                                                                                                                                                  | 212/29/92<br>12/29/92<br>2007 SUCH APPL<br>19, 20, 21, 2<br>2007 STANDARD CON<br>19, 12<br>2009 12<br>August, 1991<br>THIS PERMIT.                                                                                                                                                                              | IN ACCORDANC<br>ITS S<br>ICATION, ITS SL<br>2<br>NDITIONS DATEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E WITH APPLI<br>UPPORTING DO<br>IPPORTING DO                                                                                                                                                                                                                                                                                                                                                   | CATION<br>DCUMENTATIO<br>ICUMENTATIO<br>2/83<br>OF TH                                                                                                  |
|          | 1. ALL CONSTRUCTION, OPERATIONS, PROCEDURES AND DISC         NO                                                                                                                                                                                                                                                                                                       | HARGE SHALL BE<br>12/29/92<br>SUCH APPL<br>I.<br>19, 20, 21, 2<br>STANDARD COP<br>rough 12<br>August, 1991<br>This permit.                                                                                                                                                                                      | IN ACCORDANC<br>ITS S<br>ICATION, ITS SL<br>2<br>NDITIONS DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E WITH APPLI<br>UPPORTING DO                                                                                                                                                                                                                                                                                                                                                                   | CATION<br>DCUMENTATIO<br>ICUMENTATIO<br>2/83<br>OF T                                                                                                   |
|          | <ol> <li>ALL CONSTRUCTION, OPERATIONS, PROCEDURES AND DISC<br/>NO. 2393401</li></ol>                                                                                                                                                                                                                                                                                  | CHARGE SHALL BE<br>12/29/92<br>                                                                                                                                                                                                                                                                                 | IN ACCORDANC<br>ITS S<br>ICATION, ITS SL<br>2<br>IDITIONS DATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E WITH APPLI<br>UPPORTING DO<br>IPPORTING DO                                                                                                                                                                                                                                                                                                                                                   | CATION<br>DCUMENTATIO<br>CUMENTATIO<br>2/83<br>OF T                                                                                                    |
|          | <ol> <li>ALL CONSTRUCTION, OPERATIONS, PROCEDURES AND DISC<br/>NO. 2393401</li></ol>                                                                                                                                                                                                                                                                                  | HARGE SHALL BE<br>12/29/92<br>SUCH APPL<br>I.<br>19, 20, 21, 2<br>STANDARD CON<br>rough 12<br>August, 1991<br>THIS PERMIT.<br>PERMIT.                                                                                                                                                                           | IN ACCORDANC<br>ITS S<br>ICATION, ITS SL<br>2<br>IDITIONS DATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E WITH APPLI<br>UPPORTING DO                                                                                                                                                                                                                                                                                                                                                                   | CATION<br>DCUMENTATIO<br>CUMENTATIO<br>2/83<br>OF T                                                                                                    |
|          | 1. ALL CONSTRUCTION, OPERATIONS, PROCEDURES AND DISC         NO2393401       DATED                                                                                                                                                                                                                                                                                    | THE FOLLOWING                                                                                                                                                                                                                                                                                                   | IN ACCORDANC<br>ITS S<br>ICATION, ITS SL<br>2<br>IDITIONS DATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E WITH APPLI<br>UPPORTING DO                                                                                                                                                                                                                                                                                                                                                                   | CATION<br>DCUMENTATIO<br>CUMENTATIO<br>2/83<br>OF TI                                                                                                   |
| G.       | 1. ALL CONSTRUCTION, OPERATIONS, PROCEDURES AND DISC         NO.       2393401         AND AMENDMENTS DATED         AMENDMENTS ARE HEREBY MADE A PART OF THIS PERMIT         2. CONDITIONS NUMBERED       1, 7, 9-14, 16, 17,         THE       Sewerage         AND CONDITIONS NUMBERED       1 this         EROSION CONTROL STANDARD CONDITIONS DATED               | THE FOLLOWING<br>THE FOLLOWING<br>THE SUPPORTING<br>THE CONDIT                                                                                                                                                                                                                                                  | IN ACCORDANC<br>ITS S<br>ICATION, ITS SL<br>2<br>IDITIONS DATES<br>FURTHER QUAL<br>DOCUMENTS A<br>IONS SHALL AP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E WITH APPLI<br>UPPORTING DO<br>IPPORTING DO<br>                                                                                                                                                                                                                                                                                                                                               | CATION<br>DCUMENTATIO<br>CUMENTATIO<br>2/83<br>OF Th                                                                                                   |
| G.       | <ol> <li>ALL CONSTRUCTION, OPERATIONS, PROCEDURES AND DISC<br/>NO. 2393401</li></ol>                                                                                                                                                                                                                                                                                  | THE FOLLOWING<br>THE FOLLOWING<br>THE FOLLOWING<br>THE PERMIT.                                                                                                                                                                                                                                                  | IN ACCORDANC<br>ITS S<br>ICATION, ITS SL<br>2<br>IDITIONS DATED<br>FURTHER QUAL<br>DOCUMENTS A<br>IONS SHALL AP<br>ITMENT OR WIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | E WITH APPLI<br>UPPORTING DO<br>PPORTING DO<br>09/00<br>09/00<br>09/00<br>09/00<br>09/00<br>09/00<br>09/00<br>09/00<br>09/00<br>09/00<br>09/00<br>09/00<br>09/00<br>09/00<br>09/00<br>09/00<br>09/00<br>09/00<br>09/00<br>09/00<br>09/00<br>09/00<br>09/00<br>09/00<br>09/00<br>09/00<br>09/00<br>09/00<br>00<br>09/00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00 | CATION<br>DCUMENTATIO<br>CUMENTATION<br>2/83<br>OF TH<br>OF TH<br>OF TH<br>OF TH<br>OF TH<br>ON THE<br>OR CONDITIO                                     |
| G.       | <ol> <li>ALL CONSTRUCTION, OPERATIONS, PROCEDURES AND DISC<br/>NO</li></ol>                                                                                                                                                                                                                                                                                           | THE FOLLOWING<br>THE FOLLOWING<br>THE FOLLOWING<br>SPECIAL CONDIT<br>NS OF THE DEPAPF<br>THE PERMITTEE<br>THE PERMITTEE                                                                                                                                                                                         | IN ACCORDANC<br>ITS S<br>ICATION, ITS SL<br>2<br>IDITIONS DATED<br>UNITIONS DATED<br>IDITIONS DATED | E WITH APPLI<br>UPPORTING DO<br>IPPORTING DO<br>09/00<br>00000000000000000000000000000000                                                                                                                                                                                                                                                                                                      | CATION<br>DCUMENTATION<br>CUMENTATION<br>2/83<br>OF Th<br>2/83<br>OF Th<br>0F Th<br>0F CONDITION<br>ENDED 35 P.S.<br>MENDED, 32 P.<br>IDER ANY OTH     |
| G.       | 1. ALL CONSTRUCTION, OPERATIONS, PROCEDURES AND DISC<br>NO                                                                                                                                                                                                                                                                                                            | THE FOLLOWING<br>THE FOLLOWING<br>THE FOLLOWING<br>THE FOLLOWING<br>THE PERMIT.<br>THE PERMIT.<br>THE PERMIT.<br>THE PERMIT<br>THE PERMIT<br>THE PERMIT<br>THE PERMITTEE<br>LAW, ACT OF JUNI<br>MENTS ACT OF NOV<br>EVE THE PERMITTEE<br>DEPARTMENT                                                             | IN ACCORDANC<br>ITS S<br>ICATION, ITS SL<br>2<br>IDITIONS DATED<br>IDITIONS DATED | E WITH APPLI<br>UPPORTING DO<br>IPPORTING DO<br>                                                                                                                                                                                                                                                                                                                                               | CATION<br>DCUMENTATIO<br>CUMENTATION<br>2/83<br>OF Th<br>2/83<br>OF Th<br>0F CONDITIO<br>ERMIT.<br>ED 35 P.S.<br>MENDED, 32 P.<br>IDER ANY OTH<br>RCES |
| G.       | 1. ALL CONSTRUCTION, OPERATIONS, PROCEDURES AND DISC         NO.       2393401         DATED         AND AMENDMENTS DATED         AMENDMENTS ARE HEREBY MADE A PART OF THIS PERMIT         2. CONDITIONS NUMBERED       1, 7, 9-14, 16, 17,         THE       Sewerage         AND CONDITIONS NUMBERED       1 this         EROSION CONTROL STANDARD CONDITIONS DATED | HARGE SHALL BE<br>12/29/92<br>SUCH APPL<br>I.<br>19, 20, 21, 2<br>STANDARD CON<br>YOU GN 12<br>AUQUST, 1991<br>THIS PERMIT.<br>PERMIT.<br>PERMIT.<br>THE FOLLOWING<br>ISPECIAL CONDIT<br>NS OF THE DEPAR<br>INS OF THE DEPAR<br>LAW, ACT OF JUNE<br>IENTS ACT OF NOV<br>EVE THE PERMITTEE<br>DEPARTMENT<br>MOSE | IN ACCORDANC<br>ITS S<br>ICATION, ITS SL<br>2<br>IDITIONS DATED<br>DITIONS DATED<br>DOCUMENTS A<br>IONS SHALL API<br>ITMENT OR WIT<br>BY THE ISSUAN<br>22, 1937, P.L. 15<br>EMBER 26, 1978,<br>E OF ANY RESPO<br>OP ENVIRONME<br>DO A. FEOTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | E WITH APPLI<br>UPPORTING DO<br>IPPORTING DO<br>                                                                                                                                                                                                                                                                                                                                               | CATION<br>DCUMENTATIO<br>CUMENTATIO<br>2/83<br>OF Th<br>2/83<br>OF Th<br>0F CONDITIO<br>ERMIT.<br>ED 35 P.S.<br>MENDED, 32 P.<br>IDER ANY OTH<br>RCES  |
#### Sewerage Permit No. 2393401 Delaware County Regional Water Quality Control Authority City of Chester, Delaware County

This permit is subject to the following Special Condition(s):

- The water level within the impoundment(s) shall be controlled so that a freeboard of at least 24 inches is maintained at all times.
- II. The Authority granted by this permit is subject to all effluent requirements, and other conditions as set forth in Parts A, B and C of the Part I Discharge Permit No. PA0027103, Amendment No. 1 as issued on July 8, 1987. No discharge is authorized for these facilities unless approved by a Part I permit.

(WQM2).1

#### DEPARTMENT OF ENVIRONMENTAL RESOURCES STANDARD CONDITIONS RELATING TO EROSION CONTROL For Use in Water Quality Management Permits

August 1991

inlast Banar . Law

- 1. By approval of the plans for which this permit is issued, neither the Department nor the Commonwealth of Pennsylvania assumes any responsibility for the feasibility of the plans or the operation of the measures and facilities to be constructed thereunder.
- 2. If at any time the erosion and sedimentation activities undertaken pursuant to this permit or the discharge of the effluent therefrom is causing or contributing to pollution of the waters of the Commonwealth, the permittee shall forthwith adopt such remedial measures as are acceptable to the Department.
- This permit does not authorize any earth disturbance controlled by an ordinance enacted by a local municipality. Additional permits must be secured from local municipalities where earthmoving activities are covered by local ordinances.
- 4. At least seven days before earthmoving will begin, the permittee, by telephone or certified mail, shall notify the Department or its designee of the date for beginning of construction and invite the County Conservation District Representative to attend a pre-construction conference with the contractor. The permittee shall have his erosion control plan available at the site of the activity at all times.
- 5. All earthmoving activities shall be undertaken in the manner set forth in the erosion and sedimentation control plan identified with this permit. Revisions to the plan shall be pre-approved by the Department.
- 6. The erosion control measures and facilities shall be constructed under the supervision and competent inspection of an individual trained and experienced in erosion control, and in accordance with plans, designs and other data as herein approved or amended, and with the conditions of this permit. Control facilities shall be frequently inspected and maintained to insure effective control.
- 7. When the herein approved erosion control measures and facilities are completed, the permittee shall notify the County Conservation District so that an inspection of the measures and facilities may be made.
- 8. No storm water, sewage or industrial wastes not specifically approved herein, shall be admitted to the erosion and sedimentation measures and facilities for which this permit is issued, unless with the approval of the Department.
- 9. Sediment shall at no time be permitted to accumulate in sedimentation basins to a depth sufficient to limit storage capacity or interfere with the settling efficiency thereof. The sediment removed shall be handled and disposed of in a manner that will not create pollution problems and so that every reasonable and practical precaution is taken to prevent the said material from reaching the waters of the Commonwealth.
- 10. All slopes, channels, ditches or any disturbed area shall be stabilized as soon as possible after the final grade or final earthmoving has been completed. Where it is not possible to permanently stabilize a disturbed area immediately after the final earthmoving has been completed or where the activity ceases for more than 20 days, interim stabilization measures shall be implemented promptly.
- 11. Upon completion of the project, all areas which were disturbed by the project shall be stabilized so that accelerated erosian will be prevented. Any erosion and sedimentation control facility required or necessary to protect areas from erosion during the stabilization period shall be maintained until stabilization is completed. Upon completion of stabilization, all unnecessary or unusable control measures and facilities shall be removed, the areas shall be graded and the soils shall be stabilized.
- 12. The responsibility of carrying out the permit conditions shall rest with the owner, lessee, assignee or other responsible manager of earthmoving that affects the approved erosion controls. Such responsibility passes with each control succession.

# STANDARD CONDITIONS RELATING TO SEWERAGE - PART II PERMITS

ONE: During construction, no changes affecting any engineering design parameter shall be made from the plans, designs, and other data herein approved unless the permittee shall first receive written approval thereof from the Department. The sewerage facilities shall be constructed under expert engineering supervision and competent inspection.

> TWO: The sewers shall have adequate foundation support as soil conditions require. Trenches shall be back-filled such that the sewers will have proper structural stability, with minimum settling and adequate protection against breakage. Concrete used in connection with these sewers shall be protected from injury by water, freezing, drying or other harmful conditions until cured.

THREE: Manhole inverts shall be so formed as to facilitate the flow of the sewage and to prevent the stranding of sewage solids, and the whole manhole structure shall have proper structural strength and be so constructed as to prevent undue infiltration, entrance of the street wash or grit, and to provide convenient and safe means of access and maintenance.

FOUR: No stormwater from pavements, area ways, roofs, foundation drains or other sources shall be admitted to the sanitary sewers herein approved.

FIVE: The permittee shall adopt and enforce an ordinance requiring the abandonment of privies, cesspools or similar receptacles for human waste and on-lot sewage disposal systems on the premises of occupied structures which are accessible to public sewers and require the connection of such structures to the public sewers.

SIX: The herein approved sewers shall be maintained in good condition, kept free from deposits by flushing or other proper means of cleaning, and repaired when necessary.

SEVEN: The permittee shall file with the Department of Environmental Resources "as-built" plans showing the correct plan of all sewers and sewerage structures as actually constructed together with any other information in connection therewith that may be required.

EIGHT: The outfall sewer or drain shall be extended to the low water mark of the receiving body of water. Where necessary to assure the proper mixing and waste assimilation an outfall sewer or drain may be extended with appurtenances below the low water mark and into the bed of navigable stream, provided that the permittee has secured an easement, right-of-way, license, or lease from the Department in accordance with Section 15 of the Dam Safety and Encroachment Act, the Act of November 26, 1978, P.L. 1375, as amended. NINE: The approval herein given is specifically made contingent upon the permittee acquiring all necessary property rights, by easement or otherwise, providing for the satisfactory construction, operation, maintenance and replacement of all sewers or sewerage structures in, along, or across private property, with full rights of ingress, egress and regress.

TEN: When the herein approved sewage treatment works is completed and before it is placed in operation, the permittee shall notify the Department in writing so that an inspection of the works may be made by a representative of the Department.

ELEVEN: The various structures and apparatus of the sewage treatment works herein approved shall be maintained in proper condition so that the facility will individually and collectively perform the functions for which they were designed.

TWELVE: If, in the opinion of the Department, these works are not so operated or if by reason of change in the character of wastes or increased load upon the works, or changed use or condition of the receiving body of water, or otherwise the effluent from the said works ceases to be satisfactory or the sewerage facilities shall have created a public nuisance, then upon notice by the Department, the right herein granted shall cease and become null and void unless within the time specified by the Department, the permittee shall adopt such remedial measures as will produce an effluent which, in the opinion of the Department, will be satisfactory.

THIRTEEN: The attention of the permittee is called to the highly explosive nature of certain gases generated by the digestion of sewage solids when these gases are mixed in proper portions with air, and to the highly toxic character of certain gases arising from such digestion or from sewage in insufficiently ventilated compartments or sewers. Therefore, at all places throughout the sewerage facilities where hazard of fire, explosion, or danger from toxic gases may occur, the permittee shall post conspicuously proper warnings of a permanent and legible character and shall provide for the thorough instruction of all employees concerning the aforesaid hazards and in first aid and emergency methods of meeting such hazards and shall further provide, in a conveniently accessible place, all necessary equipment and material therefor.

.

FOURTEEN: Cross connections between the potable water supply and the sewerage system constitute a potential danger to the public health. Therefore, all direct and indirect connections whereby under normal or abnormal conditions the potable water supply may become contaminated from an inferior water supply from any unit of the sewage treatment works, or by any appurtenance thereof or from any part of a sewerage system are hereby specifically prohibited. The permittee is further warned against permitting to be made permanent any temporary connection with a potable supply designed to be held in place while being used for flushing or other purposes, and is also cautioned against the danger of back siphonage through portable hose lines and similar avenues of possible contamination. FIFTEEN: This permit authorizes the construction and operation of the proposed sewerage facilities until such time as facilities for conveyance and treatment at a more suitable location are installed and are capable of receiving and treating the permittee's sewage. Such facilities must be in accordance with either the applicable municipal official plan adopted pursuant to Section 5 of the Pennsylvania Sewage Facilities Act, the Act of January 24, 1956, P.L. 1535, as amended, or a comprehensive Water Quality Management Plan as set forth in Section 91.31 of the Rules and Regulations of the Department. When such municipal sewerage facilities become available, the permittee shall provide for the conveyance of the sewage to these sewerage facilities, abandon the use of the herein-approved facilities and notify the Department accordingly. This permit shall then, upon notice from the Department, terminate and become null and void, and shall be relinquished to the Department.

SIXTEEN: The permittee shall construct the sewerage facilities in a manner compatible with good conservation methods in order to minimize the adverse effect on the environment.

SEVENTEEN: The local waterways patrolman of the Pennsylvania Fish Commission shall be notified when the construction of a stream crossing and outfall is started and completed. A permit must be secured from the Pennsylvania Fish Commission if the use of explosives is required. The permittee shall notify the local waterways patrolman when explosives are to be used.

EIGHTEEN: If future operations by the Commonwealth of Pennsylvania require modifications of the stream crossing and/or outfall, or there shall be unreasonable obstruction to the free passage of floods or navigation from the stream crossing and/or outfall, permittee shall remove or alter the structural work or obstruction without expense to the Commonwealth of Pennsylvania. If upon the revocation of the permit, the work shall not be completed, the permittee, at his own expense and in such time and manner as the Department may require, shall remove any or all portions of the incompleted work and restore the water-course to its former condition. No claims shall be made against the Commonwealth of Pennsylvania on account of any such removal or alteration.

NINETEEN: The sewage treatment plant shall be operated by an operator certified in accordance with the Sewage Treatment Plant and Waterworks Operators' Certification Act, the Act of November 18, 1968, P.L. 1217, as amended.

TWENTY: All industrial waste discharged or proposed for discharge into the sewer system shall be studied to determine the degree of pretreatment necessary in order that the industrial waste will not adversely affect the sewerage facilities or the sewage treatment process. The permittee shall properly control any industrial waste discharge into its sewerage system by regulating the rate of such discharge, requiring necessary pretreatment, and excluding industrial waste, if necessary, to protect the integrity of the permittee's sewerage system.

TWENTY-ONE: Receipt of this permit does not relieve the permittee of its obligations to comply with all federal, interstate, state, or local laws, ordinances, and regulations applicable to the sewerage facilities authorized herein.

TWENTY-TWO: This permit does not give any real or personal property rights or grant any exclusive privileges, nor shall it be construed to grant or confirm any right, title, easement, or interest in, on, to, or over any lands belonging to the Commonwealth. ER-8WQ-188:REV.3/83 0ATE PREPARED 12-14-92

· · · · · ·

# COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES BUREAU OF WATER QUALITY MANAGEMENT

FOR DEPARTMENT USE ONLY

|       | APPLICAT | ION FOR PART | - U    |     |
|-------|----------|--------------|--------|-----|
| WATER | QUALITY  | MANAGEME     | NT PER | MIT |
|       | SE       | WERAGE       |        |     |

| APPLICANT NAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 이 사이는 사람들은 것은 것을 가지 않는 것이 있는 것은 것을 위해 가지 않는 것이 있는 것을 수요.<br>이 사람들은 것은 것을 가지 않는 것을 수요.<br>이 사람들은 것은                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PROJECT DES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CRIPTION                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Delaware Count<br>Control Author                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | y Regional Water Quality<br>ity (DELCORA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NAME OF PROJECT, OR MUNICIF<br>Secondary Clarifier N<br>Sludge Pumping Statio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PALITY SERVED:<br>0. 5 and Activated<br>n                                                                                                                                                   |
| TELEPNONE NO. (215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )876-5523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PRO JECT LOCATION Heston                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Degional Treatmon                                                                                                                                                                           |
| MAILING ADDRESS: 10<br>Ch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | O East Fifth Street<br>ester, PA 19013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | COUNTY: Delaware                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Regional ireatmen<br>Plan                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                             |
| HEREBY APPLIES FOR: IC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | HECK APPROPRIATE BLOCKS IN SPACES A.B.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | AND C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                             |
| A, APPROVAL OF PLANS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | FOR CONSTRUCTION OF:<br>TENANCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 8. L'I APPROVAL TO OPERATE<br>SEWERAGE FACILITIES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | DATE OF APPLICATION                                                                                                                                                                         |
| ビ PUMP STATIONS<br>述 SEWAGE TREATMEN<br>C OUTFALL AND HEAD<br>C STREAM CROSSING                                                                                                                                                                                                                                                                                                                                                                                                                               | T PLANT<br>WALL<br>[] IMPOUNDMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C. (APPROVAL OF AN<br>EROSION AND SEDIMEN-<br>TATION CONTROL PLAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12-14-92                                                                                                                                                                                    |
| IALL DISCHAF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | RGES OF WASTES ARE PURSUANT TO "THE C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LEAN STREAMS LAW" AND NPDES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PART I PERMIT)                                                                                                                                                                              |
| AFFIDAVIT<br>COMMONWEALTH OF PE                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NNSYLVANIA, COUNTY OF Delaware                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                             |
| ATPLE ATION) AND THAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T THE PLANS, REPORTS AND DOCUMENTS DESIGNAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of the application                                                                                                                                                                          |
| APPER ATION AND THAT<br>THE AND CORRECT<br>Signature<br>Title <u>Executi</u><br>Notarial S<br>Frances M. Berder,<br>Upper Chichester Twp.,<br>My Commission Expin<br>Member, Pennsylvania Ast                                                                                                                                                                                                                                                                                                                 | THE PLANS, REPORTS AND DOCUMENTS DESIGNAT<br>TO THE BEST OF MY KNOWLEDGE AND BELIEF,<br>We Director<br>Ve Director<br>Ve Director<br>Ve Director<br>Ve Director<br>Ve Director<br>Ve Director<br>Ve Director<br>Ve Director<br>SWORN AND SUBSCRIBED T<br>29th DAY OF<br>Sociation of Notaries                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TED AND ATTACHED HERE WITH AS PART<br>Date Decembe<br>O BEFORE ME THIS<br>F_December19 92.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DF THE APPLICATION<br>T 29, 1992<br>NOTARY<br>SEAL                                                                                                                                          |
| APPER ATION AND THAT<br>Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | THE PLANS, REPORTS AND DOCUMENTS DESIGNAT<br>TO THE BEST OF MY KNOWLEDGE AND BELIEF.<br>Ve. Director<br>Ve. Director<br>Ve. Director<br>Ve. Director<br>Ve. Director<br>SWORN AND SUBSCRIBED T<br>Addary Public<br>Delaware County<br>PS Nov. 6, 1994<br>Sociation of Notaries<br>E COMPLETED BY THE REGISTERED F<br>OMPANYING REPORT AND SUPPORT<br>ave personally reviewed all engineering info<br>d other documents which are part of this ap<br>t, and is in conformance with the requireme<br>of my knowledge, withhold information tha<br>partment.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date December<br>December<br>December<br>December<br>December<br>December<br>December<br>December<br>19 92<br>December<br>19 92<br>December<br>19 92<br>December<br>December<br>19 92<br>December<br>December<br>19 92<br>December<br>December<br>19 92<br>December<br>December<br>19 92<br>December<br>19 92<br>December<br>10 0<br>December<br>10 0<br>10 | NOTARY<br>SEAL<br>O PREPARES THIS<br>nying modules, draw-<br>be good engineering<br>sental Resources, and<br>compliance with the                                                            |
| APPLICATION AND THAT<br>Signature<br>Title <u>Executi</u><br>Notarial S<br>Frances M. Bender,<br>Upper Chichester Twp.,<br>My Commission Expir<br>Member, Pennsylvania As<br>THIS SECTION TO B<br>APPLICATION, ACCO<br>This is to certify that I h<br>n js. specifications, and<br>puality, true and correct<br>i does not, to the best<br>equirements of the De<br>NOTICE: It is an offer<br>Department.                                                                                                     | THE PLANS, REPORTS AND DOCUMENTS DESIGNAT<br>TO THE BEST OF MY KNOWLEDGE AND BELIEF.<br>Ve Director<br>Ve Director  | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NOTARY<br>SEAL<br>O PREPARES THIS<br>nying modules, draw-<br>be good engineering<br>bental Resources, and<br>compliance with the                                                            |
| APPER ALION AND THAT<br>Signature<br>Signature<br>Title <u>Executi</u><br>Notarial S<br>Frances M. Bender,<br>Upper Chichester Twp.,<br>My Commission Expir<br>Member, Pennsylvania As<br>THIS SECTION TO BI<br>APPLICATION, ACCO<br>This is to certify that I h<br>njs, specifications, and<br>publicy, true and correct<br>i does not, to the best<br>uquirements of the De<br>NOTICE: It is an offer<br>Department.<br>Name of Design Engine                                                               | THE PLANS, REPORTS AND DOCUMENTS DESIGNAT<br>TO THE BEST OF MY KNOWLEDGE AND BELIEF.<br>VE Director<br>Teal<br>Notary Public<br>Delaware County<br>BS Nov. 6, 1994<br>Sociation of Notaries<br>E COMPLETED BY THE REGISTERED F<br>OMPANYING REPORT AND SUPPORTI<br>Notary Public<br>Delaware County<br>BS Nov. 6, 1994<br>Sociation of Notaries<br>E COMPLETED BY THE REGISTERED F<br>OMPANYING REPORT AND SUPPORTI<br>nave personally reviewed all engineering infor<br>d other documents which are part of this ap<br>t, and is in conformance with the requirement<br>of my knowledge, withhold information that<br>partment.<br>The Donald T. Edwards, P.E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date December<br>Date December<br>December 19 92.<br>December 19 92.<br>De                                                                                                                                                                                            | NOTARY<br>SEAL<br>O PREPARES THIS<br>nying modules, draw-<br>be good engineering<br>iental Resources, and<br>compliance with the                                                            |
| APPER ALION AND THAT<br>Signature                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | THE PLANS, REPORTS AND DOCUMENTS DESIGNAT<br>TO THE BEST OF MY KNOWLEDGE AND BELIEF.<br>Ve. Director<br>Ve. Director<br>Ve. Director<br>SWORN AND SUBSCRIBED T<br>Adary Public<br>Delaware County<br>PS NOV. 6, 1994<br>Sociation of Notaries<br>E COMPLETED BY THE REGISTERED F<br>OMPANYING REPORT AND SUPPORT<br>ave personally reviewed all engineering info<br>d other documents which are part of this ap<br>t, and is in conformance with the requireme<br>of my knowledge, withhold information that<br>partment.<br>The UNAL STREED STREED F<br>Donald T. Edwards, P.E.<br>PSC Engineers & Consultants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Date December<br>Date December<br>December 19 92.<br>December 1                                                                                                                                                                                                                                                                                                                                            | NOTARY<br>SEAL<br>O PREPARES THIS<br>nying modules, draw-<br>be good engineering<br>sental Resources, and<br>compliance with the<br>WE 1.<br>NETEREDA                                       |
| APPER ALION AND THAT<br>Signature<br>Title <u>Executi</u><br>Notarial S<br>Frances M. Bender,<br>Upper Chichester Twp.,<br>My Commission Expir<br>Member, Pennsylvania As<br>THIS SECTION TO B<br>APPLICATION, ACCO<br>This is to certify that I h<br>a.j.s. specifications, and<br>publity, true and correct<br>i does not, to the best<br>equirements of the De<br>NOTICE: It is an offer<br>Department.<br>Name of Design Engine<br>Design Firm:<br>Mailing Address:                                       | The PLANS, REPORTS AND DOCUMENTS DESIGNAT<br>TO THE BEST OF MY KNOWLEDGE AND BELIEF.<br>Ve Director<br>Ve Director<br>SWORN AND SUBSCRIBED T<br>29th DAY OF<br>29th DAY OF<br>2 | Date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NOTARY<br>SEAL<br>O PREPARES THIS<br>nying modules, draw-<br>be good engineering<br>sental Resources, and<br>compliance with the<br>METALIAN                                                |
| APPER ALION AND THAT<br>Signature<br>Title <u>Executi</u><br>Notarial S<br>Frances M. Bender,<br>Upper Chichester Twp.,<br>My Commission Expir<br>Member, Pennsylvania As<br>THIS SECTION TO B<br>APPLICATION, ACCI<br>This is to certify that I h<br>o.js. specifications, and<br>publicy, true and correct<br>i does not, to the best<br>uquirements of the De<br>NOTICE: It is an offer<br>Department.<br>Name of Design Engine<br>Design Firm:<br>Mailing Address:                                        | THE PLANS, REPORTS AND DOCUMENTS DESIGNAT<br>TO THE BEST OF MY KNOWLEDGE AND BELIEF.<br>Ve Director<br>Ve Director<br>Ve Director<br>Ve Director<br>SWORN AND SUBSCRIBED T<br>Addary Public<br>Delaware County<br>ES NOV. 6, 1994<br>Sociation of Notaries<br>E COMPLETED BY THE REGISTERED F<br>OMPANYING REPORT AND SUPPORTI<br>have personally reviewed all engineering info<br>d other documents which are part of this ap<br>art ment.<br>The requirement of the second to affect<br>partment.<br>The consultants<br>649 North Lewis Road<br>Limerick, PA 19468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date December<br>Date December<br>O BEFORE ME THIS<br>December 19 92.<br>Date 19 92.<br>December 19 92.<br>Decem                                                                                                                                                                                            | NOTARY<br>SEAL<br>O PREPARES THIS<br>nying modules, draw-<br>be good engineering<br>tental Resources, and<br>compliance with the<br>stated to the<br>WE 1<br>AL<br>SIONALA                  |
| APPER ALION AND THAT<br>THE ALUE AND CORRECT<br>Signature<br>Title <u>Executi</u><br>Notarial S<br>Frances M. Bender,<br>Upper Chichester Twp.,<br>My Commission Expir<br>Member, Pennsylvania As<br>THIS SECTION TO B<br>APPLICATION, ACCI<br>This is to certify that I h<br>njs, specifications, and<br>publicy, true and correct<br>i does not, to the best<br>uquirements of the De<br>NOTICE: It is an offer<br>Department.<br>Name of Design Engine<br>Design Firm:<br>Mailing Address:                 | THE PLANS, REPORTS AND DOCUMENTS DESIGNAT<br>TO THE BEST OF MY KNOWLEDGE AND BELIEF.<br>VE Director<br>Adding Public<br>Delaware County<br>BS Nov. 6, 1994<br>Sociation of Notaries<br>E COMPLETED BY THE REGISTERED F<br>OMPANYING REPORT AND SUPPORTING<br>ave personally reviewed all engineering inford<br>d other documents which are part of this ap<br>t, and is in conformance with the requirement<br>of my knowledge, withhold information that<br>partment.<br>The Donald T. Edwards, P.E.<br>PSC Engineers & Consultants<br>649 North Lewis Road<br>Limerick, PA 19468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Date December<br>Date December<br>December 19 92.<br>December 1                                                                                                                                                                                                                                                                                                                                            | NOTARY<br>SEAL<br>O PREPARES THIS<br>nying modules, draw-<br>be good engineering<br>sental Resources, and<br>compliance with the<br>submitted to the<br>WE T<br>ASSIONALATING<br>T. EDWARDS |
| APPER ALION AND THAT<br>THE ALUE AND CORRECT<br>Signature<br>Title <u>Executi</u><br>Notarial S<br>Frances M. Bender,<br>Upper Chichester Twp.,<br>My Commission Expir<br>Member, Pennsylvania As<br>THIS SECTION TO B<br>APPLICATION, ACCI<br>This is to certify that I h<br>n js. specifications, and<br>publicy, true and correct<br>to does not, to the best<br>uquirements of the De<br>NOTICE: It is an offer<br>Department.<br>Name of Design Engine<br>Design Firm:<br>Mailing Address:<br>Felephone: | THE PLANS, REPORTS AND DOCUMENTS DESIGNAT<br>TO THE BEST OF MY KNOWLEDGE AND BELIEF.<br>We Director<br>We Director<br>SWORN AND SUBSCRIBED T<br>29th DAY OF<br>29th DAY OF<br>2 | Date December<br>Date December<br>December 19 92.<br>December 1                                                                                                                                                                                                                                                                                                                                            | NOTARY<br>SEAL<br>O PREPARES THIS<br>of the submitted to the<br>WE 1<br>STEREDA<br>AL<br>STOMALA<br>T. EDWARDS<br>BINSER                                                                    |
| APPER ALION AND THAT<br>THE ALUE AND CORRECT<br>Signature<br>Title <u>Executi</u><br>Frances M. Bender,<br>Upper Chichester Twp.,<br>My Commission Expir<br>Member, Pennsylvania As<br>THIS SECTION TO B<br>APPLICATION, ACCI<br>This is to certify that I h<br>n js. specifications, and<br>publicy, true and correct<br>I does not, to the best<br>equirements of the De<br>NOTICE: It is an offer<br>Department.<br>Name of Design Engine<br>Design Firm:<br>Mailing Address:<br>Felephone:                | THE PLANS, REPORTS AND DOCUMENTS DESIGNAT<br>TO THE BEST OF MY KNOWLEDGE AND BELIEF.<br>We Director<br>Ve Director<br>Ve Director<br>SWORN AND SUBSCRIBED T<br>Addary Public<br>Delaware County<br>BES NOV. 6, 1994<br>Sociation of Notaries<br>E COMPLETED BY THE REGISTERED F<br>OMPANYING REPORT AND SUPPORT<br>have personally reviewed all engineering info<br>d other documents which are part of this ap<br>t, and is in conformance with the requirement<br>of my knowledge, withhold information that<br>partment.<br>The UNAS, P.E.<br>PSC Engineers & Consultants<br>649 North Lewis Road<br>Limerick, PA 19468<br>(215)495_0303<br>AC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Date December<br>Date December<br>December 19 92.<br>December 1                                                                                                                                                                                                                                                                                                                                            | NOTARY<br>SEAL<br>O PREPARES THIS<br>nying modules, draw-<br>be good engineering<br>ental Resources, and<br>compliance with the<br>METIONALA<br>T. EDWARDS<br>SINSER<br>24661               |

EB 89/0-186.1:8EV.3/83

12-14-92

DATE REVISED

ŕ.

#### DEPARTMENT OF ENVIRONMENTAL RESOURCES WATER QUALITY MANAGEMENT

COMMONWEALTH OF PENNSYLVANIA

WATER POLLUTION CONTROL

MODULE 1 - GENERAL INFORMATION SEWERAGE

FOR DEPARTMENT USE ONLY

| CLASS                 |                                                                  | MENT OF EXISTING UNIT(5)      | X ADDITIONS AND<br>X MODIFICATIONS       | D/OR<br>TO EXISTING UNIT(5)         |
|-----------------------|------------------------------------------------------------------|-------------------------------|------------------------------------------|-------------------------------------|
| TABLE                 | I - DESIGN LOADING DATA                                          | Existing Facilities<br>Dasign | Present Operating<br>Data                | Proposed Total<br>Facilitias Design |
| 1. EQUI<br>(NO. 1     | VALENT POPULATION TO BE SERVED<br>OF PERSONS-SUBMIT CALCULATIONS | )                             |                                          |                                     |
| A. DOME               | STIC                                                             |                               |                                          |                                     |
| 2. DESIC              | SN YEAR OR PERIOD FOR OPERATING                                  | NO CHANGES IN                 | an a |                                     |
| 3. RUNC               | OFFPERIOD (HRS)                                                  | TREATMENT PROCESS             | · · · · · · · · · · · · · · · · · · ·    |                                     |
| 4, DOMES-             | A. PER CAPITA FLOW (GPCD)                                        | NOR SEWAGE FLOWS              | · · · · · · · · · · · · · · · · · · ·    |                                     |
| TIC                   | B. AVERAGE DAILY FLOW (MGD)                                      | PROPOSED                      |                                          |                                     |
| FLOW                  | C. INFILTRATION (MGD)                                            | ·                             |                                          |                                     |
| DATA                  | D. RUNOFF FLOW RATE (MGD)                                        |                               |                                          |                                     |
|                       | E. MAXIMUM FLOW PATE (MGD)                                       |                               |                                          |                                     |
| 5. INDUS-<br>TRIAL    | A. AVERAGE DAILY FLOW (MGD)                                      |                               |                                          |                                     |
| WASTE<br>FLOW<br>DATA | 8. MAXIMUM DAILY FLOW (MGD)                                      |                               | · · · · · · · · · · · · · · · · · · ·    |                                     |
| 5. TOTA               | L DESIGN AVERAGE FLOW (MGD)                                      | 44.0 MGD                      | i sere                                   |                                     |

TABLE II -- FACILITIES DESIGN DATA (Specify number of units)

| Units                                | Existing | To Be<br>Abandoned | Total<br>Proposed | Units                                   | Existing | To Be<br>Abandoned | Total<br>Proposed |
|--------------------------------------|----------|--------------------|-------------------|-----------------------------------------|----------|--------------------|-------------------|
| 1. SCREENING DEVICES                 | -        | -                  | -                 | 14. RAPID SAND FILTER(S)                | -        | -                  | -                 |
| 2. GRIT CHAMBER(S)                   | 2        | -                  |                   | 15. MICROSCREEN UNIT(S)                 |          | -                  | -                 |
| 3. COMMINUTORIS                      | -        |                    | -                 | 16. WASTE STABILIZA-<br>TION PONO(S)    | -<br>-   | _                  | -                 |
| 4. EQUALIZATION TANK(S)              | 3        | -                  |                   | 17. CHLORINE CONTACT<br>TANK(S)         | 2        | _                  | _                 |
| 5. PREAERATION TANKS                 | 2        | _                  | -                 | TH. DISINFECTION                        | _        |                    |                   |
| INMARY SETTLING                      | 8        | -                  |                   | 19 SLUDGE THICKENING<br>TANK(S)         | 4        | _ ·                | -                 |
| CONCILING FILTERS                    | -        | -                  |                   | 20. AEROBIC DIGESTION TANKS             | -        |                    |                   |
| 5. HITEHMEDIATE<br>SETTLING TANKS    | -        | -                  |                   | 21. ANAEROBIC DIGESTORS                 | <u> </u> | -                  |                   |
| 9. AERATION TANKS                    | 4        | -                  |                   | 22. MECHANICAL SLUDGE<br>DEWATERING     | 3        | -                  | -                 |
| 10. FINAL SETTLING<br>TANKS          | 4        | -                  | 1                 | 23. SLUDGE DRYING<br>BEDS               | -        | -                  |                   |
| II. MIXING AND<br>FLOCCULATION TANKS | -        | -                  |                   | 24. INCINERATOR(S)                      | 2 '      | -                  | -                 |
| 12. CHEMICAL TREATMENT               |          | -                  | _                 | 25. OTHER (SPECIFY)<br>Activated Sludge |          |                    |                   |
| TI. HATEHMITTENT                     |          |                    |                   | Pumping Station                         | 1.       | -                  | 1                 |

| 12-14-92     | DEPARTMENT OF ENVIRONMENTAL RESOURCES |                         |
|--------------|---------------------------------------|-------------------------|
| (alterevisto | SEWERAGE APPLICATION                  | FOR DEPARTMENT USE ONLY |
|              |                                       |                         |

()

|                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |         | DER     | USE      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|---------|---------|----------|
| Accompanying materials and documentation (See General Instructions)                                                                                                                                                                                                                                                                                                                                                                  | ATTACHE | D       | COMPL   | ETE      |
| 1 Appropriate application fee                                                                                                                                                                                                                                                                                                                                                                                                        | YES     |         | YES     |          |
| 2. Two(2) copies of application, design engineer's report, and accompanying drawings and plans.                                                                                                                                                                                                                                                                                                                                      | X       | ļ       |         |          |
| <ul> <li>a. Alfidavit and proper signatures</li> <li>b. Engineers's professional seal</li> <li>c. Properly notarized</li> <li>a. Secondary Clarifier No. 5 and Activated Sludge P.S.</li> </ul>                                                                                                                                                                                                                                      |         |         |         |          |
| d. Plans <u>electrony</u> of an <u>intervenced studge P.S.</u><br>No. of sheets <u>24</u> Date <u>12/15/92</u>                                                                                                                                                                                                                                                                                                                       | X       |         |         |          |
| Plans Date Date<br>Specifications <u>Same as plans</u><br>TITLE<br>3. <u>2</u> additional copies of application, design engineer's report, and<br>accompanying plans and specifications for review by DRBC, Allegheny County<br>or Erie County.<br>4. Soil Erosion and Sedimentation Control Plan<br>a. County Conservation District comments (optional)<br>5. Has appropriate ACT 537 planning approval been obtained?<br>6. Other: |         |         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | · · · · | <u></u> | <u> </u> |

| 8 | awo. | 188.2 | Continued |
|---|------|-------|-----------|
|   |      |       |           |

| DATE PREPARED |
|---------------|
| DATE HEVISED  |

#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES BUREAU OF WATER QUALITY MANAGEMENT

#### WATER POLLUTION CONTROL MODULE 2

FOR DEPARTMENT USE ONLY

#### 6. General Information

(a) Describe 100 yr. flood elevation, ventilation, emergency power provision and alarm system.

Refer to Engineer's Report.

|              | TABLE 3 - PUMPING FACILITIES                      |                                                         |          |             |                |                    |                     |               |               |               |                       |               |  |  |
|--------------|---------------------------------------------------|---------------------------------------------------------|----------|-------------|----------------|--------------------|---------------------|---------------|---------------|---------------|-----------------------|---------------|--|--|
|              | LIST ALL                                          | THE PUMPS IN THE ENTIRE                                 | TRE      | AT          | MEN            | NT P               | AC                  | ILIT          | Y             |               |                       |               |  |  |
| PUMPS        |                                                   |                                                         |          |             | Ch<br>Th<br>To | eck<br>at A<br>Eau | Col<br>Àppl<br>ch P | um<br>Y<br>um | ns<br>p       |               |                       |               |  |  |
| ENTICAL      |                                                   |                                                         |          | 0           | ÉÊD            | PEED               | NTROL               | <b>TROL</b>   | CTOR          | IATION        | Pump C                | apacity       |  |  |
| NUMBER OF ID | Describe Pump Use                                 | Түре оf Ритр                                            | EXISTING | PROPOSEI    | VARIABLE SP    | CONSTANT SI        | AUTOMATIC CO        | MANUAL CONT   | PNEUMATIC EJE | STAND BY OPER | (GPM)                 | TD11<br>(FT.) |  |  |
|              | NEW PUMPING STATION:                              |                                                         |          |             |                |                    |                     |               |               |               |                       |               |  |  |
| 2            | Return Activated Sludge                           | Vertical, non-clog                                      |          | x           | x              |                    | x                   |               |               |               | 8,280                 | 40            |  |  |
| 1            | Waste Activated Sludge                            | Vertical, non-clo                                       |          | x           | x              |                    | x                   |               |               |               | 730                   | 60            |  |  |
|              | EXISTING PUMPING STATIO                           | 1:                                                      |          |             |                |                    |                     |               |               |               |                       |               |  |  |
| 2**          | Return Activated Sludge                           | Horizontal,                                             |          |             |                |                    |                     |               |               |               | 9 620                 | 20            |  |  |
| 2**<br>2**   | Return Activated Sludge<br>Waste Activated Sludge | Vertical, non-clog<br>Vertical, non-clog<br>Centrifugal |          | X<br>X<br>X | x              | x                  | ×××                 |               |               |               | 8,830<br>5,340<br>730 | 37<br>60      |  |  |
|              |                                                   |                                                         |          |             |                |                    |                     |               |               |               |                       |               |  |  |

\* Modifications to existing pumps

\*\* Replacement of existing pumps

1

| DATE PREPARED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WATER POLLUTION CO                                             | ONTROL               |                  |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------|------------------|------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | MODULE 4                                                       | •<br>•               | FOR DEPARTMENT   | USE ONLY   |
| a a anticipation a subsection of the subsection |                                                                |                      |                  |            |
| FOR EACH DEVICE BEING L<br>FOR FUNCTION - INCLUDE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | JSED, PROVIDE A BRIEF DESCRIPT<br>DESIGN DATA SUCH AS CAPACITY | ION<br>VELOCITY THRO | UGH BARS AND SLO | PE OF BARS |
| ТҮРЕ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOCATION                                                       |                      | FUNCTION         |            |
| i a qui a contra que de transmismo de aceptera.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |                      |                  |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |                      |                  |            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                |                      |                  |            |

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL RESOURCES

WATER QUALITY MANAGEMENT

ł

ER-8WQ-188.4: REV. 3/83

Г

|                      | TABLE 2<br>SETTLING TAN                     | IKS         | UNIT 1<br>KX Existing<br>Proposed  | UNIT 2<br>X Existing<br>Proposed   | UNIT 3<br>X Existing<br>Proposed   | UNIT 4<br>XX Existing<br>Proposed  |
|----------------------|---------------------------------------------|-------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| IDENTI<br>THE PF     | FY FUNCTION AND SEC<br>TOCESS USED.         |             | Primary<br>Intermediate<br>X Final | Primary<br>Intermediate<br>X Final | Primary<br>Intermediate<br>X Final | Primary<br>Intermediate<br>X Final |
| 1.<br>2 o            | A. FORWARD FLOW (I                          | Mgd)        | 7.58                               | 7.58                               | 7.58                               | 7.58                               |
| DING<br>VG RU        | B. RECIRCULATION F<br>(If applicable) (Mgd) | LOW         | 2.27                               | 2.27                               | 2.27                               | 2.27                               |
| HYDR<br>LOA<br>DURIN | C. TOTAL FLOW (A + B) (Mgd)                 |             | 9,85                               | 9.85                               | 9.85                               | 9.85                               |
| 2. Â                 | A. CAPACITY (gallons                        |             | 1,490,000                          | 1,490,000                          | 1,490,000                          | 1,490,000                          |
| S<br>FLC             | B. DETENTION TIME                           | (1) Average | 4.72                               | 4.72                               | 4.72                               | 4.72                               |
| ATE                  |                                             | (2) Minimum | 2,43                               | 2.43                               | 2.43                               | 2.43                               |
| 4G F                 | C. SURFACE                                  | [1] Average | 570                                | 570                                | 570                                | 570                                |
| LOADIA               | (Gal/Div/Sq. Ft.)                           | (2) Maximum | 1,107                              | 1,107                              | 1,107                              | 1,107                              |
|                      | D. WEIR OVERFLOW                            | (1) Average | 10,437                             | 10,437                             | 10,437                             | 10,437                             |
| (BASI                | (Gal/Ft/Day)                                | (2) Maximum | 20,255                             | 20,255                             | 20,255                             | 20,255                             |

1. FOR FINAL SETTLING TANKS IN THE ACTIVATED SLUDGE PROCESS, DESCRIBE THE AVERAGE AND PEAK SOLIDS LOADING BATES BASED ON MIXED LIQUOR FLOW (FORWARD FLOW + RECIRCULATION)

| Ε. | Solids Loading Rate |      |      | 1.1 |      |      |      |
|----|---------------------|------|------|-----|------|------|------|
|    | (lbs/day/sq. ft.)   | Avg. | 18.6 |     | 18.6 | 18.6 | 18.6 |
|    | MLSS = 3,000  mg/L  | Max. | 36.0 |     | 36.0 | 36.0 | 36.0 |

ER-8WQ-188.4: REV. 3/83

#### COMMONWEALTH OF PENNSYLVANIA Department of environmental resources water quality management

12-14-92

## WATER POLLUTION CONTROL MODULE 4

FOR DEPARTMENT USE ONLY

1

|                                                                                                                                                      | TABLE 1 - SCREENING AN | D COMMINUTING DEVICES |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------|--|--|
| FOR EACH DEVICE BEING USED, PROVIDE A BRIEF DESCRIPTION FOR FUNCTION - INCLUDE DESIGN DATA SUCH AS CAPACITY, VELOCITY THROUGH BARS AND SLOPE OF BARS |                        |                       |  |  |
| ТҮРЕ                                                                                                                                                 | LOCATION               | FUNCTION              |  |  |
|                                                                                                                                                      |                        |                       |  |  |
|                                                                                                                                                      |                        |                       |  |  |
|                                                                                                                                                      |                        |                       |  |  |
|                                                                                                                                                      |                        |                       |  |  |
| · · · ·                                                                                                                                              |                        |                       |  |  |

|   | TABLE 2<br>SETTLING TANKS        |                                                      | UNIT 5<br>Existing<br>X Proposed          | UNIT<br>Existing<br>Proposed | UNIT<br>Existing<br>Proposed       | UNIT<br>Existing<br>Proposed     |                                  |                                  |  |
|---|----------------------------------|------------------------------------------------------|-------------------------------------------|------------------------------|------------------------------------|----------------------------------|----------------------------------|----------------------------------|--|
|   | IDENTI<br>THE PF                 | FY<br>10C                                            | FUNCTION AND SEC<br>ESS USED.             | DUENCE IN                    | Primary<br>Intermediate<br>X Final | Primary<br>Intermediate<br>Final | Primary<br>Intermediate<br>Final | Primary<br>Intermediate<br>Final |  |
| 1 | t.<br>u Ža                       | Α.                                                   | FORWARD FLOW (                            | /tgd)                        | 13.7                               | ·.                               |                                  |                                  |  |
|   | HYDRAULI<br>LOADING<br>DURING RU | 8.                                                   | RECIRCULATION F<br>(If applicable) (Mgd). | LOW                          | 4.11                               |                                  |                                  |                                  |  |
|   |                                  | C.                                                   | TOTAL FLOW (A +                           | B) (Mgd)                     | 17.81                              |                                  |                                  |                                  |  |
|   | 2. 3                             | Α,                                                   | CAPACITY (gallons                         |                              | 3,238,000                          |                                  |                                  |                                  |  |
|   | S<br>FL(                         | ₿.                                                   | DETENTION TIME                            | (1) Average                  | 5.67                               |                                  |                                  |                                  |  |
|   | ATE<br>ARD                       |                                                      |                                           | (2) Minimum                  | 2,92                               |                                  |                                  |                                  |  |
|   | NG R                             | C. SURFACE<br>SETTLING<br>(Gal/Div/Sc<br>O. WEIR OVE | C. SUR                                    | SURFACE                      | (1) Average                        | 570                              |                                  |                                  |  |
| l | ADIA<br>N FI                     |                                                      | (Gal/Div/Sq. Ft.)                         | (2) Maximum                  | 1,107                              |                                  |                                  |                                  |  |
| [ |                                  |                                                      | WEIR OVERFLOW                             | (1) Average                  | 9,494                              |                                  |                                  |                                  |  |
|   | BASI                             |                                                      | (Gal/Ft/Day)                              | (2) Maximum                  | 18,434                             |                                  |                                  |                                  |  |

1. FOR FINAL SETTLING TANKS IN THE ACTIVATED SLUDGE PROCESS, DESCRIBE THE AVERAGE AND PEAK SOLIDS LOADING BALES.

.

BASED ON MIXED LIQUOR FLOW (FORWARD FLOW + RECIRCULATION)

E. Solids Loading Rate

| (1bs/day/sq. | ft.) | Avg. | 18.6 |
|--------------|------|------|------|
| MLSS = 3,000 | mg/L | Max. | 36.0 |



#### PSC Engineers & Consultants, Inc.

December 13, 1991

CERTIFIED MAIL RETURN RECEIPT REQUESTED

Mayor's Office City of Chester Welsh Street City of Chester, PA 19013

RE: Delaware County Regional Water Quality Control Authority (DELCORA) P.N. 1267.01

#### Gentlemen:

In accordance with Act 14 of the Commonwealth of Pennsylvania's Administrative Code, Section 1905-A, "Cooperation with Municipalities", DELCORA is hereby notifying you that the Authority will be applying to the Pennsylvania Department of Environmental Resources for a Water Quality Management Permit Amendment for constructing a new final clarifier and associated appurtenances at the Auhtority's wastewater treatment plant. No response from your office is required. However, if you wish to comment on this project, you have a 30 day period in which to do so.

Sincerely yours, usull M Smith Russell M. Smith, P.E. **Project Manager** 

cc: Mr. Nick Catania, DELCORA J.E. Spitko, Jr., PSC E&C D.S. Friedman, PSC E&C D.T. Edwards, PSC E&C

Merging Hulh Engineers & PSC Environmental Services

649 North Lewis Road, Limerick, PA 19468

215-495-0303 / FAX 215-495-5855

SENDER: Complete items 1 and/or 2 for additional services.
Complete items 3, and 4a & b.
Print your name and address on the reverse of this form so that we can return this card to you. I also wish to receive the following services (for an extra fee): 1. C Addressee's Address Attach this form to the front of the mailpiece, or on the Write "Return Receipt Requested" on the mailpiece next to 2. C Restricted Delivery the article number. Consult postmaster for fee. 4a. Article Number P 837 215 890 3. Article Addressed to: Mayor's Office City of Choster Welsh St. City of Chester, PA 19013 4b. Service Type Registered Insured Certified Express Mail Return Receipt for Merchandise DEC T'T 1991 7. 5. Signature (Addressee) 8. Addressee's Address (Only if requested and fee is paid) 6. Signature (Agent) eter in PS Form 3811, October 1990 ± U.S. GPO: 1990---273-861 DOMESTIC RETURN RECEIPT

1

٨\*



#### PSC Engineers & Consultants, Inc.

December 13, 1991

CERTIFIED MAIL **RETURN RECEIPT REQUESTED** 

Mr. John E. Pickett, Director Delaware County Planning Department Second and Orange Streets Media, PA 19063

> RE: Delaware County Regional Water Quality Control Authority (DELCORA) P.N. 1267.01

Dear Mr. Pickett:

In accordance with Act 14 of the Commonwealth of Pennsylvania's Administrative Code, Section 1905-A, "Cooperation with Municipalities", DELCORA is hereby notifying you that the Authority will be applying to the Pennsylvania Department of Environmental Resources for a Water Quality Management Permit Amendment for constructing a new final clarifier and associated appurtenances at the Auhtority's wastewater treatment plant. No response from your office is required. However, if you wish to comment on this project, you have a 30 day period in which to do so.

Sincerely yours, Russell M. Smith, P.E. Project Manager

cc: Mr. Nick Catania, DELCORA J.E. Spitko, Jr., PSC E&C D.S. Friedman, PSC E&C D.T. Edwards, PSC E&C

Merging Huth Engineers & PSC Environmental Services

649 North Lewis Road, Limerick, PA 19468 215-495-0303 / FAX 215-495-5855

ł

| <ul> <li>Print your name and address on the reverse of this that we can return this card to you.</li> <li>Attach this form to the front of the mailpiece, or o back if space does not permit.</li> <li>Write "Return Receipt Requested" on the mailpiece the article number.</li> </ul> | form so fee):<br>n the 1. Addressee's Address<br>e next to 2. Restricted Delivery.<br>Consult postmaster for fee.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3. Article Addressed to:                                                                                                                                                                                                                                                                | 4a. Article Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| John Pickett<br>Delaware Co. Planning Cept<br>Second + Orange St.<br>Media, PA 19063                                                                                                                                                                                                    | +       8       7       -       4()       8       7         4b. Service Type       -       Begistered       Insured         Image: Begistered       Image: Begistered       Image: Begistered       1         Ima |
|                                                                                                                                                                                                                                                                                         | 7. Date of Delivery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5. Signature (Addressee)                                                                                                                                                                                                                                                                | 8. Addressee's Address (Only H requested<br>and fee is paid)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6. Signature (Agéht)                                                                                                                                                                                                                                                                    | ante de 2000 de la superior.<br>Reconstruction de la superior de la s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

5. S 6. S PS F

ч.

.

.

..

•

,

· · · e

• •



#### DELAWARE COUNTY CONSERVATION DISTRICT

ELCORA

EDWARD M. MAGARGO.

ONSERVATION DISTRICT MARAGER

#### FAIR ACRES CENTER, BUILDING 19

MIDDLETOWN ROAD

AREA CODE (215) 891-5962

FAX # (215) 891-2706

May 19, 1992

COUNCIL MARY ANN ARTY CHAIRMAN WARD T. WILLIAMS VICE CHAIRMAN JOSEPH F. KELLY

PAUL G. MATTUS

Brian P. MacEwen P.S.C. Engineers & Consultants 649 North Lewis Road Limerick, Pa. 19468

Re: Delcora Expansion - Classifier - City of Chester

Dear Mr. MacEwen:

The Erosion and Sediment Control Plan for the clarifier additions to Delcora's Plant in the City of Chester has been reviewed by the Delaware County Conservation District. The plan will be considered adequate as submitted. Please note the following conditions or minor corrections:

1. Inlet Protection - While the control device illustrated is an acceptable alternative, the design engineer must evaluate whether or not these controls will cause significant problems if they become plugged. Especially on the two inlets contained within the silt fence. I would suggest a sump around these two inlets, and a donut hole in the center of the stone berm covering the inlet as one consideration.

A copy of this plan is required by law to be available on site at all times during construction.

The Conservation District reviews plans solely to determine, whether they are adequate to satisfy the requirements of 25 Pa. <u>Code 102.1 et. seq</u>., the erosion control regulations of the Department of Environmental Resources. By a determination that the plan is adequate to meet these requirements, neither the Conservation District nor the County assumes responsibility for the implementation of the plan or the proper construction and operation of the facilities contained in the plan. This review is void after two years if construction has not started.

This review does not take the place of any reviews which may be required by the Department of Environmental Resources.

- continued -



Brian P. MacEwen - Clarifier - Delcora's Plant in the City of Chester May 19, 1992 Page 2 of 2

It is the duty of the contractor to comply with the provisions of Act 172 (Public Utilities Law) before performing any excavation work.

If you would like further assistance, please feel free to contact the Conservation District Office at 891-5962.

Edward M. Magargee Conservation District Manager

EMM:jf

p.c. - City of Chester



CDPS Upgrade



Southeast Regional Office

Delaware County Regional Water Quality Control Authority 100 East Fifth Street, P.O. Box 999

Mr. Joseph L. Salvacci Executive Director

Chester, PA 19016

# Pennsylvania Department of Environmental Protection 🕃 🕃 🛽 🕻

Lee Park, Suite 6010 555 North Lane Conshohocken, PA 19428

April 12, 2000

COPY

APR 1 3 2000 610-832-6130 Fax 610-832-6133 cc: MBF wi questionnaire

Re: Sewerage Permit No. 2399404 Delaware County Regional Water Quality Control Authority APS No. 43379, AUTH No. 45485 Ridley Township Delaware County

Dear Mr. Salvacci:

Referenced permit is enclosed.

Please study the permit carefully and direct any questions to the Permits Section of this office.

Please take the time to complete the enclosed questionnaire and return it in the pre-addressed and stamped envelope. Your response will be taken into account, as we consider ways of improving our service to the public and regulated community. Thank you for your cooperation.

Sincerely,

ames Newbold, P.E.

James Newbold, P.E. Regional Manager Water Management

Enclosures:

Permit Standard Conditions Relating to Sewerage Standard Conditions Relating to Erosion Control

cc: Ridley Township City of Chester Permits and Compliance Mr. Newbold Ms. W. Warren (Transmittal Letter Only) Re 30 (RN99)202-21C

#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION WATER MANAGEMENT PROGRAM

PERMIT NO. 2399404

AMENDMENT NO.

#### WATER QUALITY MANAGEMENT PERMIT

| ۸        | PEDMITTEE                                                                                                                           | Numa & A                   | ddraea)                         |                                       |                      |                          |                                  |
|----------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------|---------------------------------------|----------------------|--------------------------|----------------------------------|
| А.       | PERMII I I EE (Name & Address):<br>Delements Derional Weter Onelity Original Authority - Olivert ID No. 42222                       |                            |                                 |                                       |                      |                          |                                  |
|          | Delaware County Regional Water Quality Control Authority - Client ID No. 42332                                                      |                            |                                 |                                       |                      |                          |                                  |
|          | 100 East Fifth Street, P.O. Box 999                                                                                                 |                            |                                 |                                       |                      |                          |                                  |
|          | Chester, PA 19016                                                                                                                   |                            |                                 |                                       |                      |                          |                                  |
| в.       | PROJECT (Na                                                                                                                         | me, Count                  | y, Municipality)                | n i gui                               |                      |                          |                                  |
|          | (                                                                                                                                   | Central L                  | Jelaware Coun                   | ity Pumping Static                    | )n                   |                          |                                  |
|          | 1                                                                                                                                   | Jelaware                   | •County Regio                   | onal Water Quality                    | y Control Auti       | iority - Site ID No      | ). 4548804                       |
|          | ł                                                                                                                                   | tidley To                  | wnship                          |                                       |                      |                          |                                  |
|          | I                                                                                                                                   | Delaware                   | County                          |                                       |                      |                          |                                  |
| С.       | THIS:                                                                                                                               | <u> </u>                   | Permit                          | F                                     | Permit Amend         | ment                     |                                  |
|          | APPROVES:                                                                                                                           | v                          | The constructio                 | n/operation of:                       |                      | Modification(s) to th    | e construction/operation of:     |
|          |                                                                                                                                     |                            | Seware Treatma                  | nt Facilities                         |                      | Industrial Worth Trant   | ment Regilition                  |
|          |                                                                                                                                     |                            | Scwage Heatine                  | ant Pacificies                        |                      | Industrial waste freat   | inent Pacifics                   |
|          |                                                                                                                                     |                            | Land Application                | n Facilities                          |                      | Other:                   |                                  |
|          |                                                                                                                                     |                            | Average Design                  | Flow of                               | MGD cor              | sisting of:              |                                  |
|          |                                                                                                                                     |                            | •                               |                                       |                      |                          |                                  |
|          |                                                                                                                                     | v                          | Sewers and App                  | urtenances                            |                      | Pump Station(s)          |                                  |
|          |                                                                                                                                     |                            | -<br>Imnoundment(s)             | )                                     | <u> </u>             | Injection Well(s)        |                                  |
|          |                                                                                                                                     | X7                         | - Soil Eropion & S              | /<br>Redimentation Control I          |                      | injection wents)         |                                  |
|          |                                                                                                                                     | <u> </u>                   | - 0. 0                          |                                       | (21)                 | 0 (CH 0 II 1 1)          |                                  |
|          |                                                                                                                                     | <u> </u>                   | - Stream Crossing               | 3(5)                                  | <u> </u>             | Outtall & Headwall(s     | )                                |
| <u>n</u> |                                                                                                                                     | DANTED                     | BV THIS DEDM                    | UT IS SUBJECT TO T                    | THE FOLLOWIN         | C CONDITIONS             |                                  |
| 1 .      | ATTROVALO                                                                                                                           | ANALY LED                  | DI IIIGIERM                     | III IS SUBJECT TO .                   | THE FOLLOWING        |                          |                                  |
| 1.a.     | All construct                                                                                                                       | ion, operati               | ions, and procedure             | es shall be in accordanc              | e with the Water (   | hality Management Pe     | ermit/Permit Amendment           |
|          | Application of                                                                                                                      | lated                      | 05/28/99                        | 9 , its supp                          | orting documentat    | on, and addendums da     | ted 07/14/99                     |
|          | Such application                                                                                                                    | tion, it's su              | pporting document               | tation and addendums a                | re hereby made a j   | part of this permit.     |                                  |
| U        | . water Qualit                                                                                                                      | y wanagen                  | ient Ferniti No.                |                                       | dated                |                          | and conditions, supporting       |
|          | documentatio                                                                                                                        | on and adde                | endums are (except              | t for any modifications               | to the original perm | ait herein permitted) al | so made a part of this           |
| 2.       | Conditions n                                                                                                                        | umbered                    | 1-6                             | 8 11 through 15                       | 17 18 19             | of the                   | Sewerage standard                |
|          | conditions da                                                                                                                       | ited                       | 1-0                             | and conditions nu                     | mbered               | 1 12                     | of the crossion control standard |
|          | conditions de                                                                                                                       |                            | 07/90                           | are attached and m                    | ade part of this pa  | 1-13                     |                                  |
| -        | Containions uz                                                                                                                      |                            | 09/98                           |                                       | ade par or uns pe    |                          |                                  |
| 5.       | Special cond                                                                                                                        | nions nume                 |                                 | <u> </u>                              | ·                    |                          | made part of mis permit.         |
| E.       | THE AUTHO                                                                                                                           | RITY GRA                   | NTED BY THIS                    | PERMIT IS SUBJEC                      | T TO THE FOL         | LOWING FURTHER           | OUALIFICATIONS:                  |
|          |                                                                                                                                     |                            |                                 |                                       |                      |                          | -                                |
| 1.       | If there is a c                                                                                                                     | onflict bety               | ween the application            | on or its supporting docu             | iments and amend     | ments and the standard   | or special conditions, the       |
|          | standard or s                                                                                                                       | pecial cond                | litions shall apply.            |                                       | a tatat a            |                          | te of other states at a de-      |
| Ζ.       | Failure to co                                                                                                                       | mpiy wiin i<br>nermittee b | the rules and regulation of the | ations of the Department              | it or with the terms | or conditions of this p  | ermit shall void the authority   |
| 3        | This permit i                                                                                                                       | s issued ou                | rsuant to the Clean             | ne perint.<br>a Stream law Act of lun | e 22 1937 P.L. 10    | 987 as amended 35 P S    | S & 691 Let sea and/or the Dam   |
|          | Safety and Encroachments Act of November 26, 1978, P.L. 1375, as amended. 32 P.S. & 693.1 et seq. Issuance of this permit shall not |                            |                                 |                                       |                      |                          |                                  |
|          | relieve the permittee of any responsibility under any other law.                                                                    |                            |                                 |                                       |                      |                          |                                  |
| 4.       | Industrial Fa                                                                                                                       | cilities - If              | the herein permitte             | ed facilities or modification         | tions are not comp   | leted with two (2) year  | s of the issue date below, this  |
|          | permit will b                                                                                                                       | ecome null                 | and void and reap               | plication shall be requi              | red.                 |                          |                                  |
| PE       | RMIT ISSUED:                                                                                                                        |                            |                                 |                                       | DEPAR                | IMENT OF ENVIRO          | <b>DNMENTAL PROTECTION</b>       |
|          | TE Apr                                                                                                                              | il 12,                     | 2000                            |                                       |                      |                          | 1                                |
|          | - <u></u>                                                                                                                           |                            | ······                          |                                       |                      | 1 N.                     | 1 101                            |
| AM       | IENDMENT IS                                                                                                                         | SUED:                      |                                 |                                       | BY:                  | James / fo               | allo 4                           |
| DA       | те                                                                                                                                  |                            |                                 |                                       | TITLE:               | Regional Manager         | , Water Management               |
| ł        |                                                                                                                                     |                            |                                 | <u> </u>                              |                      | $\mathcal{U}$            | ·                                |
|          |                                                                                                                                     |                            |                                 |                                       | - ] .                | ,                        |                                  |
| Re       | 30 (RN99)202-2                                                                                                                      | 1B                         |                                 |                                       |                      |                          |                                  |

#### Sewerage Permit No. 2399404 Delaware County Regional Water Quality Control Authority Ridley Township, Delaware County

#### This permit is subject to the following Special Condition(s):

I. Consistent with Department of Environmental Protection Policy, the Department did not conduct a detailed technical review of the application for this permit. The Department considers the registered professional engineer whose seal is affixed to the design documents, to be fully responsible for the adequacy of all aspects of the facility design.

Re 30 (RN99)202-21D

#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION

#### STANDARD CONDITIONS RELATING TO SEWERAGE for Use in Water Quality Management Permits

1. During construction, no changes affecting any engineering design parameter relied on in issuing this permit shall be made from the plans, designs, and other data herein approved unless the permittee shall first receive written approval thereof from the Department. The sewerage facilities shall be constructed under expert engineering supervision and competent inspection.

The permittee shall maintain "as-built" plans showing the correct plan of all sewers and sewerage structures as actually constructed together with any other information that may be required. The Permittee shall also maintain facility operation and maintenance (O&M) manuals at the facility to assure proper O&M of the permitted facility. The Permittee shall file the "as-builts" and O&M manuals with the Department upon request.

2. The sewers shall have adequate foundation support as soil conditions require. Trenches shall be back-filled such that the sewers will have proper structural stability, with minimum settling and adequate protection against breakage. Concrete used in connection with these sewers shall be protected from damage by water, freezing, drying or other harmful conditions until cured.

3. Manhole inverts shall be so formed as to facilitate the flow of the sewage and to prevent the standing of sewage solids, and the whole manhole structure shall have proper structural strength and be so constructed as to prevent undue infiltration, entrance of the street wash or grit, and to provide convenient and safe means of access and maintenance.

A No stormwater from pavements, area ways, roofs, foundation drains, basement drains, or other sources shall be mitted to the sanitary sewers herein approved. The stormwater from stormwater collection and retention facilities serving the facility may be discharged to the plant headworks at a hydraulic and organic rate which will not violate the Permit.

5. The permittee shall adopt and enforce an ordinance requiring the abandonment of privies, cesspools or similar receptacles for human waste and on-lot sewage disposal systems on the premises of occupied structures which are accessible to public sewers and require the connection of such structures to the public sewers.

6. The herein approved sewers shall be maintained in good condition, kept free from deposits by flushing or other proper means of cleaning, and repaired when necessary.

7. The outfall sewer or drain shall be extended to the low water mark of the receiving body of water. Where necessary to assure the proper mixing and waste assimilation, an outfall sewer or drain may be extended with appurtenances below the low water mark and into the bed of a navigable stream, provided that the permittee has secured an easement, right-of-way, license, or lease from the Department in accordance with Section 15 of the Dam Safety and Encroachments Act, the Act of November 26, 1978, P.L. 1375, as amended.

8. The approval is specifically made contingent upon the permittee acquiring all necessary property rights, by easement or otherwise, providing for the satisfactory construction, operation, maintenance and replacement of all sewers or sewerage structures in, along, or across private property, with full rights of ingress, egress and regress.

9. The various structures and apparatus of the sewage treatment works herein approved shall be maintained in proper condition so that the facility will individually and collectively perform the functions for which they were designed.

10. When the herein approved sewage treatment works is completed and before it is placed in operation, the permittee all notify the Department in writing so that an inspection of the works may be made by a representative of the Department.

11. If, at any time, the sewage and/or conveyance facilities covered by this permit create a public nuisance, including but not limited to, causing malodors, or cause environmental harm to waters of the Commonwealth, the Department may require the Permittee to adopt appropriate remedial measures to abate the nuisance or harm.

#### 3620-PM-WQ0015b 9/98

12. The attention of the permittee is called to the highly explosive nature of certain gases generated by the digestion sewage solids when these gases are mixed in proper portions with air, and to the highly toxic character of certain gas arising from such digestion or from sewage in insufficiently ventilated compartments or sewers. Therefore, at all places throughout the sewerage facilities where hazard of fire, explosion, or danger from toxic gases may occur, the permittee shall post conspicuously proper warnings of a permanent and legible character and shall provide for the thorough instruction of all employees concerning the aforesaid hazards and in first aid and emergency methods of meeting such hazards and shall further provide, in a conveniently accessible place, all necessary equipment and material therefor.

13. Cross connections between the potable water supply and the sewerage system constitute a potential danger to the public health. Therefore, all direct and indirect connections whereby under normal or abnormal conditions the potable water supply may become contaminated from an inferior water supply from any unit of the sewage treatment works, or by any appurtenance thereof or from any part of a sewerage system are hereby specifically prohibited. The permittee is further warned against permitting to be made permanent any temporary connection with a potable supply designed to be held in place while being used for flushing or other purposes, and is also cautioned against the danger of back siphonage through portable hose lines and similar avenues of possible contamination.

14. This permit authorizes the construction and operation of the proposed sewerage facilities until such time as facilities for conveyance and treatment at a more suitable location are installed and are capable of receiving and treating the permittee's sewage. Such facilities must be in accordance with either the applicable municipal official plan adopted pursuant to Section 5 of the Pennsylvania Sewage Facilities Act, the Act of January 24, 1956, P.L. 1535, as amended, or a comprehensive Water Quality Management Plan as set forth in Section 91.31 of the Rules and Regulations of the Department. When such municipal sewerage facilities become available, the permittee shall provide for the conveyance of the sewage to these sewerage facilities, abandon the use of the herein-approved facilities and notify the Department accordingly. This permit shall then, upon notice from the Department, terminate and become null and void, and shall be relinquished to the Department.

15. The local waterways patrolman of the Pennsylvania Fish and Boat Commission shall be notified when construction of a stream crossing and outfall is started and completed. A permit must be secured from the Pennsylvania Fish and Boat Commission if the use of explosives is required. The permittee shall notify the local waterways patrolman when explosives are to be used.

16. The sewage treatment plant shall be operated by an operator certified in accordance with the Sewage Treatment Plant and Waterworks Operators' Certification Act, the Act of November 18, 1968, P.L. 1217, as amended.

17. The permittee shall properly control any industrial waste discharged into its sewerage system by regulating the rate and quality of such discharge, requiring necessary pretreatment, and excluding industrial waste, if necessary, to protect the integrity or operation of the permittee's sewerage system.

18. The permit does not relieve the permittee of its obligations to comply with all federal, interstate, state, or local laws, ordinances, and regulations applicable to the sewerage facilities authorized herein.

19. This permit does not give any real or personal property rights or grant any exclusive privileges, nor shall it be construed to grant or confirm any right, title, easement, or interest in, on, to, or over any lands belonging to the Commonwealth.

20. No untreated or ineffectively treated wastewaters from any facility shall be discharged into the waters of the Commonwealth, and special care shall be used in developing and implementing the PPC plan to prevent accidental "spills" or similar unusal discharges of all raw, finished and waste materials.

21. No stormwater from pavements, area ways, roofs, foundation drains, basement drains, or other sources shall be admitted to the sanitary sewers herein approved. The stormwater from stormwater collection and retention facilities serving the facility may be discharged to the plant has wastes as a hydraulic and organic rate which will not violate Permit.

#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION

#### STANDARD CONDITIONS RELATING TO EROSION AND SEDIMENT CONTROL for Use in Water Quality Management Permits

1. By approval of the plans for which this permit is issued, neither the Department nor the Commonwealth of Pennsylvania assumes any responsibility for the feasibility of the plans or the measures and facilities to be constructed thereunder.

2. If at any time the erosion and sediment control activities undertaken pursuant to this permit or other activities carried out at the location is causing or contributing to pollution of the waters of the Commonwealth, the permitee shall forthwith adopt such remedial measures as are acceptable to the Department.

3. This permit does not authorize any earth disturbance controlled or regulated by an ordinance enacted by a local municipality. Additional permits must be secured from local municipalities where earthmoving activities are covered by such local ordinances.

4. At least seven days before earthmoving will begin, the permittee, by telephone or certified mail, shall notify the Department or its designee of the date for beginning of construction and invite the County Conservation District representative to attend a pre-construction conference. The permittee shall have his erosion control plan available at the activity at all times.

5. All earthmoving activities shall be undertaken in the manner set forth in the erosion and sediment control plan identified with this permit. Revisions to the plan shall be pre-approved by the Department or the conservation district.

6. The erosion control measures and facilities shall be constructed under the supervision and competent inspection of an individual trained and experienced in erosion control, and in accordance with the plans, designs and other data as herein approved or amended, and with the conditions of this permit. Control facilities shall be frequently inspected and maintained to insure effective control.

7. When the herein approved erosion and sediment control measures and facilities are completed, the permittee shall notify the County Conservation District so that a final inspection of the measures and facilities may be made.

8. No storm water, sewage or other wastes not specifically approved herein, shall be admitted to the erosion and sediment control facilities for which this permit is issued.

9. Sediment shall at not time be permitted to accumulate in sedimentation basins to a depth that may limit storage capacity or interfere with the facility's settling efficiency. The sediment removed shall be handled and disposed of in a manner that will not create pollution problems and so that every reasonable and practical precaution is taken to prevent the said material from reaching the waters of the Commonwealth.

10. All slopes, channels, ditches or any disturbed area shall be stabilized as soon as possible after the final grade or final earthmoving has been completed. Where it is not possible to permanently stabilize a disturbed area immediately after the final earthmoving has been completed or where the activity ceases for more than 20 days, interim stabilization measures shall be implemented promptly.

11. Upon completion of the project, all areas which were disturbed by the project shall be stabilized so that accelerated erosion will be prevented. Any erosion and sediment control facility required or necessary to protect areas from erosion during the stabilization period shall be maintained until stabilization is completed. Upon completion of stabilization, all unnecessary or unusable control measures and facilities shall be removed, the areas shall be graded and the soils shall be stabilized.

#### 3620-PM-WQ0015a 9/98

12. The responsibility of carrying out the permit conditions or to assure that they are carried out shall rest with a permittee.

13. If the proposed earth disturbance is five acres or greater, the permittee shall comply with the NPDES General Permit for Stormwater Discharges from Construction Activities. An individual NPDES Storm Water Discharge Permit issued by the Department is required for any earth disturbance activities in waters designated as Special Protection at 25 PA Code Chapter 93.

i

scanned w/1/201



Southeast Regional Office

Mr. Joseph L. Salvucci Executive Director

100 East Fifth Street

Chester, PA 19016-0999

P.O. Box 999

Pennsylvania Department of Environmental Protection

2 East Main Street Norristown, PA 19401

April 21, 2006 Phone: 484-250-5970 File Fax: 484-250-5971 R: JLS, CUA, Di Santis, B.KARCH, BCM Design File 2006

Re: Darby Creek Pump Station WQM Application No. 2305406 File Type: Sewage Permit Sharon Hill Borough Delaware County

Dear Mr. Salvucci:

Your permit is enclosed.

Delaware County Regional Water Quality Control Authority (DELCORA)

You must comply with all Standard and Special Conditions attached to this permit. Construction must be done in accordance with the permit application and all supporting documentation. Please review the permit conditions and the supporting documentation submitted with your application before starting construction.

Any person aggrieved by this action may appeal, pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. Section 7514, and the Administrative Agency Law, 2 Pa.C.S. Chapter 5A, to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, P.O. Box 8457, Harrisburg, PA 17105-8457, 717-787-3483. TDD users may contact the Board through the Pennsylvania Relay Service, 800-654-5984. Appeals must be filed with the Environmental Hearing Board within 30 days of receipt of written notice of this action unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in braille or on audiotape from the Secretary to the Board at 717-787-3483. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law.

Mr. Joseph L. Salvucci

IF YOU WANT TO CHALLENGE THIS ACTION, YOUR APPEAL MUST REACH THE BOARD WITHIN 30 DAYS. YOU DO NOT NEED A LAWYER TO FILE AN APPEAL WITH THE BOARD.

IMPORTANT LEGAL RIGHTS ARE AT STAKE, HOWEVER, SO YOU SHOULD SHOW THIS DOCUMENT TO A LAWYER AT ONCE. IF YOU CANNOT AFFORD A LAWYER, YOU MAY QUALIFY FOR FREE PRO BONO REPRESENTATION. CALL THE SECRETARY TO THE BOARD (717-787-3483) FOR MORE INFORMATION.

If you have any questions, please call Ms. Karen McDaniel at 484-250-5126.

Sincerely,

Jenifer Fields, P.E. Regional Manager Water Management

Enclosures

cc: Mr. Weinzapfel – BCM Engineers Operations Section Data Systems and Analysis File Re (GJE06)074-2

| Permit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BUREAU OF WAT                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MMONWEALTH OF PENNS<br>MENT OF ENVIRONMENTA<br>FER SUPPLY AND WASTE                                                                                                                                                                                                                                                                                                                                                            | SYLVANIA<br>L PROTECTION<br>WATER MANAGEMENT                                                                                                                                                                                                                                                                                                     | PERMIT NO. <u>2305406</u>                                                                                                                                                                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WATER                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                | IAGEMENT                                                                                                                                                                                                                                                                                                                                         | APS ID <u>564280</u>                                                                                                                                                                                                                                                                                                           |
| ĵ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PERMIT                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                  | AUTH ID 607269                                                                                                                                                                                                                                                                                                                 |
| A. PERMITTEE (Name and<br>Delaware County Re<br>(DELCORA)<br>100 East Fifth Street<br>P.O. Box 999<br>Chaster PA 10016 0                                                                                                                                                                                                                                                                                                                                                                                                                                 | Address): CLI<br>gional Water Quality Co                                                                                                                                                                                                                                                                                                                                                                                                                                 | ENT ID#: 42332<br>ntrol Authority                                                                                                                                                                                                                                                                                                                                                                                              | B. PRIMARY FACILITY (N<br>DELCORA Sew Sy<br>(Darby Creek pum)                                                                                                                                                                                                                                                                                    | lame):<br>s to S.W. PWD STP<br>p station)                                                                                                                                                                                                                                                                                      |
| C. LOCATION (Municipality,<br>Sharon Hill Borough<br>Delaware County                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | , County):<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                          | I                                                                                                                                                                                                                                                                                                                                                                                                                              | ITE ID#:<br>573137                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                |
| D. This permit approve<br>Upgrades to the Dar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s the construction of sewe<br>by Creek pump station a                                                                                                                                                                                                                                                                                                                                                                                                                    | erage facilities consistin<br>long with the rebuildir                                                                                                                                                                                                                                                                                                                                                                          | g of:<br>Ig of two existing 25,00                                                                                                                                                                                                                                                                                                                | 0 gpm pumps and the addi                                                                                                                                                                                                                                                                                                       |
| of a third 25,000 gpn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n pump.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                |
| Pump Stations: 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Mai                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | nure Storage:                                                                                                                                                                                                                                                                                                                                                                                                                  | Industrial Wastewate                                                                                                                                                                                                                                                                                                                             | er/Sewage Treatment Facility:                                                                                                                                                                                                                                                                                                  |
| Design Capacity: 25,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | GPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /                                                                                                                                                                                                                                                                                                                                                                                                                              | Annual Average Flow:                                                                                                                                                                                                                                                                                                                             | MGD                                                                                                                                                                                                                                                                                                                            |
| Average Annual Flow: <u>36,0</u><br>GPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000,000 Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                           | MG                                                                                                                                                                                                                                                                                                                                                                                                                             | Design Hydraulic Capacity:                                                                                                                                                                                                                                                                                                                       | MGD                                                                                                                                                                                                                                                                                                                            |
| \<br>\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Freeboard:                                                                                                                                                                                                                                                                                                                                                                                                                                                               | inches                                                                                                                                                                                                                                                                                                                                                                                                                         | Design Organic Capacity:                                                                                                                                                                                                                                                                                                                         | Ib/day                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BY THIS PERMIT IS SUBJEC                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T TO THE FOLLOWING:                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                |
| . APPROVAL GRANTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                |
| APPROVAL GRANTED I<br>Mew Permits: All cons<br>09/21/06, its suppo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | struction, operations, and proc<br>orting documentation, and add                                                                                                                                                                                                                                                                                                                                                                                                         | edures shall be in accordan<br>endums dated <u>10/13/06</u>                                                                                                                                                                                                                                                                                                                                                                    | ce with the Water Quality M<br>, which are hereby made                                                                                                                                                                                                                                                                                           | anagement Permit application da<br>a part of this permit.                                                                                                                                                                                                                                                                      |
| APPROVAL GRANTED I<br>New Permits: All cons<br><u>09/21/06</u> , its suppo<br>Amendments: All con<br>application dated a                                                                                                                                                                                                                                                                                                                                                                                                                                 | struction, operations, and proc<br>orting documentation, and add<br>istruction, operations, and proc<br>and its supporting documentation                                                                                                                                                                                                                                                                                                                                 | edures shall be in accordan<br>endums dated <u>10/13/06</u><br>cedures shall be in accordar<br>on, and addendums dated <u></u>                                                                                                                                                                                                                                                                                                 | ce with the Water Quality M<br>, which are hereby made<br>nce with the Water Quality M<br>, which are hereby made                                                                                                                                                                                                                                | anagement Permit application da<br>a part of this permit.<br>Management Permit Amendment<br>le a part of this amendment.                                                                                                                                                                                                       |
| APPROVAL GRANTED I<br>New Permits: All cons<br><u>09/21/06</u> , its suppo<br>Amendments: All con<br>application dated a<br>Except for any herein app<br>Management Permit No.                                                                                                                                                                                                                                                                                                                                                                           | struction, operations, and proc<br>orting documentation, and add<br>istruction, operations, and proc<br>and its supporting documentation<br>proved modifications, all terms<br>dated shall remain                                                                                                                                                                                                                                                                        | edures shall be in accordan<br>endums dated <u>10/13/06</u><br>cedures shall be in accordan<br>on, and addendums dated <u></u><br>s, conditions, supporting doo<br>n in effect.                                                                                                                                                                                                                                                | ce with the Water Quality M<br>, which are hereby made<br>nce with the Water Quality M<br>, which are hereby made<br>sumentation and addendum                                                                                                                                                                                                    | anagement Permit application da<br>a part of this permit.<br>Management Permit Amendment<br>le a part of this amendment.<br>s approved under Water Quality                                                                                                                                                                     |
| APPROVAL GRANTED I<br>New Permits: All cons<br><u>09/21/06</u> , its support<br>Amendments: All con<br>application dateda<br>Except for any herein app<br>Management Permit No.<br>Transfers: Water Qua<br>part of this transfer.                                                                                                                                                                                                                                                                                                                        | struction, operations, and proc<br>orting documentation, and add<br>istruction, operations, and proc<br>and its supporting documentation<br>proved modifications, all terms<br>dated shall remain<br>lity Management Permit No                                                                                                                                                                                                                                           | edures shall be in accordan<br>endums dated <u>10/13/06</u><br>cedures shall be in accordan<br>on, and addendums dated <u></u><br>s, conditions, supporting doo<br>n in effect.<br><u>dated</u> and condit                                                                                                                                                                                                                     | ce with the Water Quality M<br>, which are hereby made<br>nee with the Water Quality M<br>, which are hereby made<br>sumentation and addendum                                                                                                                                                                                                    | anagement Permit application da<br>a part of this permit.<br>Management Permit Amendment<br>le a part of this amendment.<br>s approved under Water Quality<br>tion and addendums are also man                                                                                                                                  |
| APPROVAL GRANTED F<br>New Permits: All cons<br><u>09/21/06</u> , its support<br>Amendments: All con<br>application dateda<br>Except for any herein app<br>Management Permit No.<br>Transfers: Water Qua<br>part of this transfer.<br>Permit Conditions R                                                                                                                                                                                                                                                                                                 | struction, operations, and proc<br>orting documentation, and add<br>istruction, operations, and proc<br>and its supporting documentation<br>proved modifications, all terms<br>dated shall remain<br>lity Management Permit No<br>celating to sewerage are at                                                                                                                                                                                                            | edures shall be in accordan<br>endums dated <u>10/13/06</u><br>cedures shall be in accordar<br>on, and addendums dated <u></u><br>s, conditions, supporting doo<br>n in effect.<br><u>dated</u> and condit                                                                                                                                                                                                                     | ce with the Water Quality M<br>, which are hereby made<br>nee with the Water Quality M<br>, which are hereby made<br>sumentation and addendum<br>ons, supporting documenta                                                                                                                                                                       | anagement Permit application dat<br>a part of this permit.<br>Management Permit Amendment<br>le a part of this amendment.<br>s approved under Water Quality<br>tion and addendums are also mad                                                                                                                                 |
| <ol> <li>APPROVAL GRANTED F</li> <li>New Permits: All cons<br/>09/21/06 , its support<br/>Amendments: All con<br/>application dateda</li> <li>Except for any herein app<br/>Management Permit No.</li> <li>Transfers: Water Qua<br/>part of this transfer.</li> <li>Permit Conditions R</li> <li>Special Conditions numb</li> </ol>                                                                                                                                                                                                                      | struction, operations, and proc<br>orting documentation, and add<br>istruction, operations, and proc<br>and its supporting documentation<br>proved modifications, all terms<br>dated shall remain<br>lity Management Permit No<br>elating to sewerage are att<br>pered are attached and n                                                                                                                                                                                | edures shall be in accordan<br>endums dated <u>10/13/06</u><br>cedures shall be in accordar<br>on, and addendums dated <u></u><br>s, conditions, supporting doo<br>n in effect.<br><u>dated</u> and condit<br>tached and made part of this<br>nade part of this permit.                                                                                                                                                        | ce with the Water Quality M<br>, which are hereby made<br>nee with the Water Quality M<br>, which are hereby made<br>sumentation and addendum<br>ons, supporting documenta                                                                                                                                                                       | anagement Permit application dat<br>a part of this permit.<br>Management Permit Amendment<br>le a part of this amendment.<br>s approved under Water Quality<br>tion and addendums are also mad                                                                                                                                 |
| <ul> <li>APPROVAL GRANTED F</li> <li>New Permits: All cons<br/>09/21/06 , its support<br/>Amendments: All con<br/>application dateda</li> <li>Except for any herein app<br/>Management Permit No.</li> <li>Transfers: Water Qua<br/>part of this transfer.</li> <li>Permit Conditions R</li> <li>Special Conditions numb</li> <li>THE AUTHORITY GRAM</li> </ul>                                                                                                                                                                                          | struction, operations, and proc<br>orting documentation, and add<br>istruction, operations, and proc<br>and its supporting documentation<br>proved modifications, all terms<br>dated shall remain<br>lity Management Permit No<br>elating to sewerage are att<br>pered are attached and no<br>structory THIS PERMIT IS SU                                                                                                                                                | edures shall be in accordan<br>endums dated <u>10/13/06</u><br>cedures shall be in accordar<br>on, and addendums dated <u></u><br>s, conditions, supporting doo<br>n in effect.<br><u>dated</u> and condit<br>tached and made part of this<br>nade part of this permit.                                                                                                                                                        | ce with the Water Quality M<br>, which are hereby made<br>nee with the Water Quality M<br>, which are hereby made<br>sumentation and addendum<br>ons, supporting documenta<br>s permit.                                                                                                                                                          | anagement Permit application dat<br>a part of this permit.<br>Management Permit Amendment<br>le a part of this amendment.<br>s approved under Water Quality<br>tion and addendums are also mad                                                                                                                                 |
| <ul> <li>APPROVAL GRANTED F</li> <li>New Permits: All cons<br/>09/21/06 , its support<br/>Amendments: All con<br/>application dateda</li> <li>Except for any herein app<br/>Management Permit No.</li> <li>Transfers: Water Qua<br/>part of this transfer.</li> <li>Permit Conditions R</li> <li>Special Conditions numb</li> <li>THE AUTHORITY GRAN</li> <li>If there is a conflict betw<br/>shall apply.</li> </ul>                                                                                                                                    | struction, operations, and proc<br>orting documentation, and add<br>istruction, operations, and proc<br>and its supporting documentation<br>proved modifications, all terms<br>datedshall remain<br>lity Management Permit No<br>elating to sewerage are att<br>bered are attached and n<br>ITED BY THIS PERMIT IS SU<br>veen the application or its sup                                                                                                                 | edures shall be in accordan<br>endums dated <u>10/13/06</u><br>cedures shall be in accordar<br>on, and addendums dated <u></u><br>s, conditions, supporting doo<br>n in effect.<br><u>dated</u> and condit<br>tached and made part of this<br>nade part of this permit.<br>IBJECT TO THE FOLLOWI<br>oporting documents and an                                                                                                  | ce with the Water Quality M<br>, which are hereby made<br>nee with the Water Quality M<br>, which are hereby made<br>sumentation and addendum<br>ons, supporting documenta<br>s permit.                                                                                                                                                          | anagement Permit application dat<br>a part of this permit.<br>Management Permit Amendment<br>le a part of this amendment.<br>s approved under Water Quality<br>tion and addendums are also mad                                                                                                                                 |
| <ul> <li>APPROVAL GRANTED F</li> <li>New Permits: All cons<br/><u>09/21/06</u>, its support<br/>Amendments: All cons<br/>application dateda</li> <li>Except for any herein app<br/>Management Permit No.</li> <li>Transfers: Water Qua<br/>part of this transfer.</li> <li>Permit Conditions R</li> <li>Special Conditions numb</li> <li>F. THE AUTHORITY GRAN</li> <li>If there is a conflict betwishall apply.</li> <li>Failure to comply with the<br/>by the issuance of this period.</li> </ul>                                                      | struction, operations, and proc<br>orting documentation, and add<br>istruction, operations, and proc<br>and its supporting documentation<br>proved modifications, all terms<br>dated shall remain<br>lity Management Permit No<br>elating to sewerage are attrached and n<br>strend are attached and n<br>ited BY THIS PERMIT IS SU<br>ween the application or its sup<br>e rules and regulations of DEle<br>armit.                                                      | edures shall be in accordan<br>endums dated <u>10/13/06</u><br>cedures shall be in accordar<br>on, and addendums dated <u>_</u><br>s, conditions, supporting doc<br>n in effect.<br><u></u> dated <u></u> and condit<br>tached and made part of this<br>nade part of this permit.<br>IBJECT TO THE FOLLOWII<br>oporting documents and an<br>P or with the terms or cond                                                        | ce with the Water Quality M<br>, which are hereby made<br>nee with the Water Quality M<br>, which are hereby made<br>sumentation and addendum<br>ons, supporting documenta<br>ons, supporting documenta<br>s permit.<br>NG FURTHER QUALIFICA<br>hendments and the attache<br>tions of this permit shall vo                                       | anagement Permit application dat<br>a part of this permit.<br>Management Permit Amendment<br>le a part of this amendment.<br>s approved under Water Quality<br>tion and addendums are also mad<br>FIONS:<br>ed conditions, the attached condit<br>id the authority given to the perm                                           |
| <ul> <li>APPROVAL GRANTED F</li> <li>New Permits: All cons<br/>09/21/06 , its support<br/>Amendments: All con<br/>application dateda</li> <li>Except for any herein app<br/>Management Permit No.</li> <li>Transfers: Water Qua<br/>part of this transfer.</li> <li>Permit Conditions R</li> <li>Special Conditions numb</li> <li>THE AUTHORITY GRAN</li> <li>If there is a conflict betwishall apply.</li> <li>Failure to comply with the<br/>by the issuance of this per</li> <li>This permit is issued pur<br/>permit shall not relieve th</li> </ul> | struction, operations, and proc<br>orting documentation, and add<br>istruction, operations, and proc<br>and its supporting documentation<br>proved modifications, all terms<br>datedshall remain<br>datedshall remain<br>lity Management Permit No<br>elating to sewerage are at<br>pered are attached and n<br>atted BY THIS PERMIT IS SU<br>ween the application or its sup<br>e rules and regulations of DEl<br>armit.                                                | edures shall be in accordan<br>endums dated <u>10/13/06</u><br>cedures shall be in accordar<br>on, and addendums dated <u></u><br>s, conditions, supporting doo<br>n in effect.<br><u></u> dated <u></u> and condit<br>tached and made part of this<br>nade part of this permit.<br>IBJECT TO THE FOLLOWI<br>oporting documents and an<br>P or with the terms or cond<br>Law Act of June 22, 1937,<br>ity under any other law. | ce with the Water Quality M<br>, which are hereby made<br>, which are hereby made<br>, which are hereby made<br>sumentation and addendum<br>ons, supporting documenta<br>ons, supporting documenta<br>s permit.<br>NG FURTHER QUALIFICA<br>herdments and the attache<br>tions of this permit shall vo<br>P.L. 1987, <u>as amended</u> 35         | anagement Permit application dat<br>a part of this permit.<br>Management Permit Amendment<br>le a part of this amendment.<br>s approved under Water Quality<br>tion and addendums are also mad<br>flons:<br>ad conditions, the attached condit<br>id the authority given to the perm<br>P.S. §691.1 <i>et seq.</i> Issuance of |
| <ul> <li>APPROVAL GRANTED F</li> <li>New Permits: All cons<br/>09/21/06 , its support<br/>Amendments: All con<br/>application dateda</li> <li>Except for any herein app<br/>Management Permit No.</li> <li>Transfers: Water Qua<br/>part of this transfer.</li> <li>Permit Conditions R</li> <li>Special Conditions numb</li> <li>THE AUTHORITY GRAN</li> <li>If there is a conflict betwishall apply.</li> <li>Failure to comply with the<br/>by the issuance of this permit shall not relieve th</li> <li>PERMIT ISSUED:</li> </ul>                    | struction, operations, and proc<br>orting documentation, and add<br>istruction, operations, and proc<br>and its supporting documentation<br>proved modifications, all terms<br>dated shall remain<br>lity Management Permit No<br>elating to sewerage are at<br>pered are attached and n<br>dTED BY THIS PERMIT IS SU<br>ween the application or its sup<br>e rules and regulations of DEI<br>armit.<br>rsuant to the Clean Streams I<br>he permittee of any responsibil | edures shall be in accordan<br>endums dated <u>10/13/06</u> .<br>cedures shall be in accordar<br>on, and addendums dated <u>_</u><br>s, conditions, supporting doo<br>n in effect.<br><u></u>                                                                                                                                                                                                                                  | ce with the Water Quality M<br>, which are hereby made<br>, which are hereby made<br>, which are hereby made<br>sumentation and addendum<br>ons, supporting documenta<br>ons, supporting documenta<br>s permit.<br>NG FURTHER QUALIFICA<br>hendments and the attache<br>itions of this permit shall vo<br>P.L. 1987, <u>as amended</u> 35<br>BY: | anagement Permit application dat<br>a part of this permit.<br>Management Permit Amendment<br>le a part of this amendment.<br>s approved under Water Quality<br>tion and addendums are also mad<br>flons:<br>ed conditions, the attached condit<br>id the authority given to the perm<br>P.S. §691.1 <i>et seq.</i> Issuance of |

1

· · · · ·

3800-PM-WSWM0015a Rev. 6/2004 Conditions Sewerage Permit No. 2305406\_



1 1

#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER SUPPLY AND WASTEWATER MANAGEMENT

PERMIT CONDITIONS RELATING TO SEWERAGE

For use in Water Quality Management Permits

(Place a  $\sqrt{}$  in the box that applies)

| Ger         | neral |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | 1.    | Consistent with the Department of Environmental Protection's (DEP) technical guidance document <i>Conducting Technical Reviews of Water Quality Management Permit Wastewater Treatment Facilities</i> (DEP ID: 362-2000-007) available on DEP's website at <u>www.dep.state.pa.us</u> . DEP considers the registered Professional Engineer whose seal is affixed to the design documents to be fully responsible for the adequacy of all aspects of the facility design.                                                                                                                                                                                                                                                                                                                                                    |
|             | 2.    | The permittee shall adopt and enforce an ordinance requiring the abandonment of privies, cesspools or similar receptacles for human waste and onlot sewage disposal systems on the premises of occupied structures accessible to public sewers. All such structures must be connected to the public sewers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | 3.    | The outfall sewer or drain shall be extended to the low water mark of the receiving body of water. Where necessary to ensure proper mixing and waste assimilation, an outfall sewer or drain may be extended with appurtenances below the low water mark and into the bed of a navigable stream provided that the permittee has secured an easement, right-of-way, license or lease from DEP in accordance with Section 15 of the Dam Safety and Encroachments Act, the Act of November 26, 1978, P.L. 1375, as amended.                                                                                                                                                                                                                                                                                                    |
| $\boxtimes$ | 4.    | The approval is specifically made contingent on the permittee acquiring all necessary property rights, by easement or otherwise, providing for the satisfactory construction, operation, maintenance and replacement of all sewers or sewerage structures in, along or across private property with full rights of ingress, egress and regress.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | 5.    | When construction of the approved sewerage facilities is completed and before they are placed in operation, the permittee shall notify DEP in writing so that a DEP representative may inspect the facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | 6.    | If, at any time, the sewerage facilities covered by this permit create a public nuisance, including but not limited to, causing malodors or causing environmental harm to waters of the Commonwealth, DEP may require the permittee to adopt appropriate remedial measures to abate the nuisance or harm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | 7.    | This permit authorizes the construction and operation of the proposed sewerage facilities until such time as facilities for conveyance and treatment at a more suitable location are installed and capable of receiving and treating the permittee's sewage. Such facilities must be in accordance with the applicable municipal official plan adopted pursuant to Section 5 of the Pennsylvania Sewage Facilities Act, the Act of January 24, 1966, P.L. 1535 as amended. When such municipal sewerage facilities become available, the permittee shall provide for the conveyance of the sewage to these sewerage facilities, abandon the use of these approved facilities and notify DEP accordingly. This permit shall then, upon notice from DEP, terminate and become null and void and shall be relinquished to DEP. |
| $\boxtimes$ | 8.    | This permit does not relieve the permittee of its obligations to comply with all federal, interstate, state or local laws, ordinances and regulations applicable to the sewerage facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 9.    | This permit does not give any real or personal property rights or grant any exclusive privileges, nor shall it be construed to grant or confirm any right, easement or interest in, on, to or over any lands which belong to the Commonwealth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | 10.   | The authority granted by this permit is subject to all effluent requirements, monitoring requirements and other conditions as set forth in NPDES Permit No. <b>PA</b> and all subsequent amendments and renewals. No discharge is authorized from these facilities unless approved by an NPDES Permit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Cor         | nstru | ction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $\boxtimes$ | 11.   | An Erosion and Sedimentation (E&S) Plan must be developed prior to construction of the permitted facility, pursuant to Title 25 Pa. Code Chapter 102, and implemented during and after the earth disturbance activity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |       | If the activity involves 5 or more acres of earth disturbance, or from 1 to 5 acres of earth disturbance with a point source discharge to surface waters of the Commonwealth, an NPDES permit for the Discharge of Stormwater Associated with Construction Activity is required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             |       | In addition to the state NPDES permitting requirements, some municipalities, through local ordinances, require the E&S Control Plan to be reviewed and approved by the local County Conservation District office prior to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

-5

construction. For specific information regarding E&S control planning approval and NPDES permitting requirements, please contact your local County Conservation District office.

- 12. The facilities shall be constructed under the supervision of a Pennsylvania registered Professional Engineer in accordance with the approved reports, plans and specifications.
- 13. A Pennsylvania registered Professional Engineer shall certify that construction of the permitted facilities was completed in accordance with the application and design plans submitted to DEP, using "Post Construction Certification" (3800-PM-WSWM0179a). It is the permittee's responsibility to ensure that a Professional Engineer is on-site to provide the necessary oversight and/or inspections to certify the facilities. The certification must be submitted to DEP before the facility is placed in operation. If requested, "as-built" drawings, photographs (if available) and a description of any DEP-approved deviations from the application and design plans must be submitted to DEP within 30 days of certification.
- 14. Manhole inverts shall be formed to facilitate the flow of the sewage and to prevent the stranding of sewage solids. The manhole structure shall be built to prevent undue infiltration, entrance of street wash or grit and provide safe access to facilitate manhole maintenance activities.
- 15. The local Waterways Conservation Officer of the Pennsylvania Fish and Boat Commission (PFBC) shall be notified when the construction of any stream crossing and/or outfall is started and completed. A written permit must be secured from the PFBC if the use of explosives in any waterways is required and the permittee shall notify the local Waterways Conservation Officer when explosives are to be used.

#### Operation and Maintenance

- 16. The permittee shall maintain records of "as-built" plans showing all the treatment facilities as actually constructed together with facility operation and maintenance (O&M) manuals and any other relevant information that may be required. Upon request, the "as-built" plans and O&M manuals shall be filed with DEP.
- 17. The sewers shall have adequate foundation support as soil conditions require. Trenches shall be back-filled to ensure that sewers will have proper structural stability, with minimum settling and adequate protection against breakage. Concrete used in connection with these sewers shall be protected from damage by water, freezing, drying or other harmful conditions until cured.
- 18. Stormwater from roofs, foundation drains, basement drains or other sources shall not be admitted directly to the sanitary sewers.
- 19. The approved sewers shall be maintained in good condition, kept free of deposits by flushing or other cleaning methods and repaired when necessary.
- 20. The sewerage facilities shall be properly operated and maintained to perform as designed.
- 21. The attention of the permittee is called to the highly explosive nature of certain gases generated by the digestion of sewage solids when these gases are mixed in proper proportions with air and to the highly toxic character of certain gases arising from such digestion or from sewage in poorly ventilated compartments or sewers. Therefore, at all places throughout the sewerage facilities where hazard of fire, explosion or danger from toxic gases may occur, the permittee shall post conspicuous permanent and legible warnings. The permittee shall instruct all employees concerning the aforesaid hazards, first aid and emergency methods of meeting such hazards and shall make all necessary equipment and material accessible.
- 22. An operator certified in accordance with the Water and Wastewater Systems Operator Certification Act of February 21, 2002, 63 P.S. §§1001, et seq. shall operate the sewage treatment plant.
- 23. The permittee shall properly control any industrial waste discharged into its sewerage system by regulating the rate and quality of such discharge, requiring necessary pretreatment and excluding industrial waste, if necessary, to protect the integrity or operation of the permittee's sewerage system.
- 24. There shall be no physical connection between a public water supply system and a sewer or appurtenance to it which would permit the passage of any sewage or polluted water into the potable water supply. No water pipe shall pass through or come in contact with any part of a sewer manhole.
- 25. All connections to the approved sanitary sewers must be in accordance with the corrective action plan as contained in the approved Title 25 Pa. Code Chapter 94 Municipal Wasteload Management Annual Report.
- 26. Collected screenings, slurries, sludge and other solids shall be handled and disposed of in compliance with Title 25 Pa. Code Chapters 271, 273, 275, 283 and 285 (related to permits and requirements for land filling, land application, incineration and storage of sewage sludge), Federal Regulations 40 CFR 257 and the Federal Clean Water Act and its amendments.



Your permit is enclosed.

()

You must comply with all Standard and Special Conditions attached to this permit. Construction must be done in accordance with the permit application and all supporting documentation. Please review the permit conditions and the supporting documentation submitted with your application before starting construction.

Enclosed is the "Sewage and Industrial Wastewater Facilities Construction Certification" form. A Pennsylvania-registered Professional Engineer must sign and complete this form prior to startup of the facilities (see Special Conditions). You or your authorized representative must also sign the form. This certification and other post-construction documentation must be submitted to the Department within 30 days following startup of the facilities.

Any person aggrieved by this action may appeal, pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. Section 7514, and the Administrative Agency Law, 2 Pa.C.S. Chapter 5A, to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, P.O. Box 8457, Harrisburg, PA 17105-8457, 717-787-3483. TDD users may contact the Board through the Pennsylvania Relay Service, 800-654-5984. Appeals must be filed with the Environmental Hearing Board within 30 days of receipt of written notice of this action unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in braille or on audiotape from the Secretary to the Board at 717-787-3483. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law.

Mr. Joseph Salvucci

IF YOU WANT TO CHALLENGE THIS ACTION, YOUR APPEAL MUST REACH THE BOARD WITHIN 30 DAYS. YOU DO NOT NEED A LAWYER TO FILE AN APPEAL WITH THE BOARD.

IMPORTANT LEGAL RIGHTS ARE AT STAKE, HOWEVER, SO YOU SHOULD SHOW THIS DOCUMENT TO A LAWYER AT ONCE. IF YOU CANNOT AFFORD A LAWYER, YOU MAY QUALIFY FOR FREE PRO BONO REPRESENTATION. CALL THE SECRETARY TO THE BOARD (717-787-3483) FOR MORE INFORMATION.

If you have any questions, please call Mr. Andrew Haneiko at 484-250-5183.

Sincerely,

fild

Jenifer Fields, P.E. Regional Manager Water Management

Enclosures

cc: Mr. Burt – Weston Solutions Operations Section Mr. Sheckler Re 30 (joh07wqm)120-15 3800-PM-WSWM0015 Rev. 6/2004

# Permit

#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER SUPPLY AND WASTEWATER MANAGEMENT

PERMIT NO. 2307402

AMENDMENT NO.\_\_\_\_\_

APS ID 609094

### WATER QUALITY MANAGEMENT PERMIT

AUTHID 673255

| A. PERMITTEE (Name and Address):<br>DELCORA<br>100 East Fifth Street<br>Chester, PA 19016                                                                                                                                                  | CLIENT ID#: <b>42332</b>                                                                                                                                                                                                                                                          | B. PRIMARY FACILITY (Name):<br>DELCORA STP – Trainer | r Boro Sewer System           |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|-------------------------------|--|--|
| C. LOCATION (Municipality, County):<br>Trainer Borough<br>Delaware County                                                                                                                                                                  |                                                                                                                                                                                                                                                                                   | SITE ID#:<br>454804                                  |                               |  |  |
| D. This permit approves the constr<br>8" and 10" forcemain collection                                                                                                                                                                      | uction of sewerage facilities con<br>system.                                                                                                                                                                                                                                      | sisting of:                                          | -                             |  |  |
| Pump Stations:                                                                                                                                                                                                                             | Manure Storage:                                                                                                                                                                                                                                                                   | Industrial Wastewater/Sewag                          | ge Treatment Facility:        |  |  |
| Design Capacity: GPM                                                                                                                                                                                                                       | Volumo MC                                                                                                                                                                                                                                                                         | Annual Average Flow:                                 | MGD                           |  |  |
| Average Annual Flow: GPD                                                                                                                                                                                                                   | Erooboord: inchoo                                                                                                                                                                                                                                                                 | Design Hydraulic Capacity:                           | MGD                           |  |  |
| <u> </u>                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                   | Design Organic Capacity:                             | lb/day                        |  |  |
| <ul> <li>E. APPROVAL GRANTED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING:</li> <li>1. New Permits: All construction, operations, and procedures shall be in accordance with the Water Quality Management Permit application dated</li></ul> |                                                                                                                                                                                                                                                                                   |                                                      |                               |  |  |
| 2. Permit Conditions Relating to so                                                                                                                                                                                                        | 2. Permit Conditions Relating to sewerage are attached and made part of this permit.                                                                                                                                                                                              |                                                      |                               |  |  |
|                                                                                                                                                                                                                                            | Special Conditions numbered are attached and made part of this permit.                                                                                                                                                                                                            |                                                      |                               |  |  |
| In a conflict between the appli<br>shall apply.                                                                                                                                                                                            | <ul> <li>THE AUTHORITY GRANTED BY THIS PERMIT IS SUBJECT TO THE FOLLOWING FURTHER QUALIFICATIONS:</li> <li>If there is a conflict between the application or its supporting documents and amendments and the attached conditions, the attached conditions shall apply.</li> </ul> |                                                      |                               |  |  |
| <ol><li>Failure to comply with the rules and re<br/>by the issuance of this permit.</li></ol>                                                                                                                                              | Pailure to comply with the rules and regulations of DEP or with the terms or conditions of this permit shall void the authority given to the permittee<br>by the issuance of this permit.                                                                                         |                                                      |                               |  |  |
| 3. This permit is issued pursuant to the opermit shall not relieve the permittee of                                                                                                                                                        | Clean Streams Law Act of June 22, 1<br>any responsibility under any other law                                                                                                                                                                                                     | 937, P.L. 1987, <u>as amended</u> 35 P.S. §69<br>v.  | 91.1 et seq. Issuance of this |  |  |
| PERMIT ISSUED:                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                   | BY: Jak Fu                                           | LS                            |  |  |
| May 3, 2007                                                                                                                                                                                                                                | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                             | TITLE: <u>Water Management</u>                       | Program Manager               |  |  |

Ĺ

l.

3800-PM-WSWM0015a Rev. 6/2004 Conditions Sewerage Permit No. 2307402



#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER SUPPLY AND WASTEWATER MANAGEMENT

#### PERMIT CONDITIONS RELATING TO SEWERAGE

For use in Water Quality Management Permits

(Place a  $\sqrt{}$  in the box that applies)

#### General

- 1. Consistent with the Department of Environmental Protection's (DEP) technical guidance document Conducting Technical Reviews of Water Quality Management Permit Wastewater Treatment Facilities (DEP ID: 362-2000-007) available on DEP's website at <u>www.dep.state.pa.us</u>. DEP considers the registered Professional Engineer whose seal is affixed to the design documents to be fully responsible for the adequacy of all aspects of the facility design.
- 2. The permittee shall adopt and enforce an ordinance requiring the abandonment of privies, cesspools or similar receptacles for human waste and onlot sewage disposal systems on the premises of occupied structures accessible to public sewers. All such structures must be connected to the public sewers.
- 3. The outfall sewer or drain shall be extended to the low water mark of the receiving body of water. Where necessary to ensure proper mixing and waste assimilation, an outfall sewer or drain may be extended with appurtenances below the low water mark and into the bed of a navigable stream provided that the permittee has secured an easement, right-of-way, license or lease from DEP in accordance with Section 15 of the Dam Safety and Encroachments Act, the Act of November 26, 1978, P.L. 1375, as amended.
- 4. The approval is specifically made contingent on the permittee acquiring all necessary property rights, by easement or otherwise, providing for the satisfactory construction, operation, maintenance and replacement of all sewers or sewerage structures in, along or across private property with full rights of ingress, egress and regress.
- 5. When construction of the approved sewerage facilities is completed and before they are placed in operation, the permittee shall notify DEP in writing so that a DEP representative may inspect the facilities.
- 6. If, at any time, the sewerage facilities covered by this permit create a public nuisance, including but not limited to, causing malodors or causing environmental harm to waters of the Commonwealth, DEP may require the permittee to adopt appropriate remedial measures to abate the nuisance or harm.
- 7. This permit authorizes the construction and operation of the proposed sewerage facilities until such time as facilities for conveyance and treatment at a more suitable location are installed and capable of receiving and treating the permittee's sewage. Such facilities must be in accordance with the applicable municipal official plan adopted pursuant to Section 5 of the Pennsylvania Sewage Facilities Act, the Act of January 24, 1966, P.L. 1535 as amended. When such municipal sewerage facilities become available, the permittee shall provide for the conveyance of the sewage to these sewerage facilities, abandon the use of these approved facilities and notify DEP accordingly. This permit shall then, upon notice from DEP, terminate and become null and void and shall be relinquished to DEP.
- 8. This permit does not relieve the permittee of its obligations to comply with all federal, interstate, state or local laws, ordinances and regulations applicable to the sewerage facilities.
- 9. This permit does not give any real or personal property rights or grant any exclusive privileges, nor shall it be construed to grant or confirm any right, easement or interest in, on, to or over any lands which belong to the Commonwealth.
- 10. The authority granted by this permit is subject to all effluent requirements, monitoring requirements and other conditions as set forth in NPDES Permit No. PA\_\_\_\_\_ and all subsequent amendments and renewals. No discharge is authorized from these facilities unless approved by an NPDES Permit.

#### Construction

11. An Erosion and Sedimentation (E&S) Plan must be developed prior to construction of the permitted facility, pursuant to Title 25 Pa. Code Chapter 102, and implemented during and after the earth disturbance activity.

If the activity involves 5 or more acres of earth disturbance, or from 1 to 5 acres of earth disturbance with a point source discharge to surface waters of the Commonwealth, an NPDES permit for the Discharge of Stormwater Associated with Construction Activity is required.

In addition to the state NPDES permitting requirements, some municipalities, through local ordinances, require the E&S Control Plan to be reviewed and approved by the local County Conservation District office prior to

construction. For specific information regarding E&S control planning approval and NPDES permitting requirements, please contact your local County Conservation District office.

- 12. The facilities shall be constructed under the supervision of a Pennsylvania registered Professional Engineer in accordance with the approved reports, plans and specifications.
- 13. A Pennsylvania registered Professional Engineer shall certify that construction of the permitted facilities was completed in accordance with the application and design plans submitted to DEP, using "Post Construction Certification" (3800-PM-WSWM0179a). It is the permittee's responsibility to ensure that a Professional Engineer is on-site to provide the necessary oversight and/or inspections to certify the facilities. The certification must be submitted to DEP before the facility is placed in operation. If requested, "as-built" drawings, photographs (if available) and a description of any DEP-approved deviations from the application and design plans must be submitted to DEP within 30 days of certification.
- 14. Manhole inverts shall be formed to facilitate the flow of the sewage and to prevent the stranding of sewage solids. The manhole structure shall be built to prevent undue infiltration, entrance of street wash or grit and provide safe access to facilitate manhole maintenance activities.
- 15. The local Waterways Conservation Officer of the Pennsylvania Fish and Boat Commission (PFBC) shall be notified when the construction of any stream crossing and/or outfall is started and completed. A written permit must be secured from the PFBC if the use of explosives in any waterways is required and the permittee shall notify the local Waterways Conservation Officer when explosives are to be used.

# Operation and Maintenance

- 16. The permittee shall maintain records of "as-built" plans showing all the treatment facilities as actually constructed together with facility operation and maintenance (O&M) manuals and any other relevant information that may be required. Upon request, the "as-built" plans and O&M manuals shall be filed with DEP.
- 17. The sewers shall have adequate foundation support as soil conditions require. Trenches shall be back-filled to ensure that sewers will have proper structural stability, with minimum settling and adequate protection against breakage. Concrete used in connection with these sewers shall be protected from damage by water, freezing, drying or other harmful conditions until cured.
- 18. Stormwater from roofs, foundation drains, basement drains or other sources shall not be admitted directly to the sanitary sewers.
- 19. The approved sewers shall be maintained in good condition, kept free of deposits by flushing or other cleaning methods and repaired when necessary.
- 20. The sewerage facilities shall be properly operated and maintained to perform as designed.
- 21. The attention of the permittee is called to the highly explosive nature of certain gases generated by the digestion of sewage solids when these gases are mixed in proper proportions with air and to the highly toxic character of certain gases arising from such digestion or from sewage in poorly ventilated compartments or sewers. Therefore, at all places throughout the sewerage facilities where hazard of fire, explosion or danger from toxic gases may occur, the permittee shall post conspicuous permanent and legible warnings. The permittee shall instruct all employees concerning the aforesaid hazards, first aid and emergency methods of meeting such hazards and shall make all necessary equipment and material accessible.
- 22. An operator certified in accordance with the Water and Wastewater Systems Operator Certification Act of February 21, 2002, 63 P.S. §§1001, et seq. shall operate the sewage treatment plant.
- 23. The permittee shall properly control any industrial waste discharged into its sewerage system by regulating the rate and quality of such discharge, requiring necessary pretreatment and excluding industrial waste, if necessary, to protect the integrity or operation of the permittee's sewerage system.
- 24. There shall be no physical connection between a public water supply system and a sewer or appurtenance to it which would permit the passage of any sewage or polluted water into the potable water supply. No water pipe shall pass through or come in contact with any part of a sewer manhole.
- 25. All connections to the approved sanitary sewers must be in accordance with the corrective action plan as contained in the approved Title 25 Pa. Code Chapter 94 Municipal Wasteload Management Annual Report.
- 26. Collected screenings, slurries, sludge and other solids shall be handled and disposed of in compliance with Title 25 Pa. Code Chapters 271, 273, 275, 283 and 285 (related to permits and requirements for land filling, land application, incineration and storage of sewage sludge), Federal Regulations 40 CFR 257 and the Federal Clean Water Act and its amendments.

3800-PM-WSWM0179a 5/2004 Post Construction Certification



ť

#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER SUPPLY AND WASTEWATER MANAGEMENT

#### WATER QUALITY MANAGEMENT

#### POST CONSTRUCTION CERTIFICATION

| an a                                                        | PERMITTEE IDENTIFIER |  |
|-------------------------------------------------------------------------------------------------|----------------------|--|
| Permittee                                                                                       | DELCORA              |  |
| Municipality                                                                                    | Trainer Borough      |  |
| County                                                                                          | Delaware             |  |
| WQM Permit No.                                                                                  | 2307402              |  |
| Facility Type                                                                                   | Collection system    |  |
| All of the above information should be taken directly from the Water Quality Management Permit. |                      |  |

CERTIFICATION

This certification must be completed and returned to the permits section of the DEP's regional office issuing the WQM permit within 30 days of completion of the project and received by DEP prior to operation, and if requested, as-built drawings, photographs (if available) and a discussion of any DEP-approved deviations from the design plans during construction.

being a Registered Professional Engineer in Pennsylvania, do hereby certify to the best of my knowledge and belief, based upon personal observation and interviews, that the above facility approved under the Water Quality Management Permit has been constructed in accordance with the plans, specifications and modifications approved by DEP.

Construction Completion Date (MM/DD/YYYY):

|           | Pro                  | ofessional Engineer         |
|-----------|----------------------|-----------------------------|
|           | Name                 |                             |
| Ennimanda | (1                   | Please Print or Type) = 0   |
| Seal      | Signature            |                             |
| 27441     | Date                 | <b>~</b> 2                  |
|           | License Expiration D | Date                        |
|           | Firm or Agency       |                             |
|           | Telephone            |                             |
|           | Permittee o          | r Authorized Representative |
|           | Name                 |                             |
|           | (                    | Please Print or Type)       |
|           | Signature            | m o                         |
|           | Title                |                             |
|           | Telephone            |                             |
nnsylvania Department of Environmental Protection **2 East Main Street** Norristown, PA 19401 October 9, 2008 he. - application Phone: 484-250-5970 OCT 2 0 2008 Fax: 484-250-5971 2008-13 ality Control Authority 100 East Fifth Street Chester, PA 19016-0999 Re: Trainer Borough Sewer System - Price Street **Pump Station** Application No. 2307402 - Al File Type: Permit Trainer Borough

Dear Mr. Salvucci:

Your permit is enclosed.

You must comply with all Standard and Special Conditions attached to this permit. Construction must be done in accordance with the permit application and all supporting documentation. Please review the permit conditions and the supporting documentation submitted with your application before starting construction.

Delaware County

Enclosed is the "Sewage and Industrial Wastewater Facilities Construction Certification" form. A Pennsylvania-registered Professional Engineer must sign and complete this form prior to startup of the facilities (see Special Conditions). You or your authorized representative must also sign the form. This certification and other post-construction documentation must be submitted to the Department within 30 days following startup of the facilities.

Any person aggrieved by this action may appeal, pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. Section 7514, and the Administrative Agency Law, 2 Pa.C.S. Chapter 5A, to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, P.O. Box 8457, Harrisburg, PA 17105-8457, 717-787-3483. TDD users may contact the Board through the Pennsylvania Relay Service, 800-654-5984. Appeals must be filed with the Environmental Hearing Board within 30 days of receipt of written notice of this action unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in braille or on audiotape from the Secretary to the Board at 717-787-3483. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law.

Printed on Recycled Paper

Mr. Joseph Salvucci

IF YOU WANT TO CHALLENGE THIS ACTION, YOUR APPEAL MUST REACH THE BOARD WITHIN 30 DAYS. YOU DO NOT NEED A LAWYER TO FILE AN APPEAL WITH THE BOARD.

IMPORTANT LEGAL RIGHTS ARE AT STAKE, HOWEVER, SO YOU SHOULD SHOW THIS DOCUMENT TO A LAWYER AT ONCE. IF YOU CANNOT AFFORD A LAWYER, YOU MAY QUALIFY FOR FREE PRO BONO REPRESENTATION. CALL THE SECRETARY TO THE BOARD (717-787-3483) FOR MORE INFORMATION.

If you have any questions, please call Mr. Andrew Haneiko at 484-250-5183.

Sincerely,

Jenifer Fields, P.E. Regional Manager Water Management

Enclosures

cc: Permits Chief Mr. Volkay-Hilditch – DELCORA Mr. Burt – Weston Solutions Mr. Goldberg, DEP Operations Section Mr. Sheckler Re 30 (joh08wqm)280-6

| BU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | COMMONWEALTH OF PE<br>DEPARTMENT OF ENVIRONME<br>IREAU OF WATER SUPPLY AND WA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ENNSYLVANIA<br>ENTAL PROTECTION<br>STEWATER MANAGEMENT                                                                                                                                                                                                                                                                                                                                                 | PERMIT NO. <u>2307402</u>                                                                                                                                                                                                                                                 |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                        | AMERIZMENT NO. <u>1</u>                                                                                                                                                                                                                                                   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                        | APS ID 051/04                                                                                                                                                                                                                                                             |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PERIVI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                      | AUTH ID 734480                                                                                                                                                                                                                                                            |  |  |
| <ul> <li>PERMITTEE (Name and Address):</li> <li>DELCORA</li> <li>100 East Fifth Street</li> <li>Chester, PA 19016-0999</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | CLIENT ID#: 42332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | B. PRIMARY FACILITY (Na<br>DELCORA STP -Tr:<br>– Price Street P.S.                                                                                                                                                                                                                                                                                                                                     | me):<br>ainer Borough Sewer Sys                                                                                                                                                                                                                                           |  |  |
| C. LOCATION (Municipality, County):<br>Trainer Borough<br>Delaware County                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SITE ID#:<br>454804                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                           |  |  |
| Replacement and upgrade of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | existing pump station.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                           |  |  |
| Pump Stations:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Manure Storage:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Industrial Wastewater                                                                                                                                                                                                                                                                                                                                                                                  | Sewage Treatment Facility:                                                                                                                                                                                                                                                |  |  |
| Design Capacity: <u>600</u> GPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Annual Average Flow:                                                                                                                                                                                                                                                                                                                                                                                   | MGD                                                                                                                                                                                                                                                                       |  |  |
| Average Annual Flow: 0.08 GPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Volume MG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Design Hydraulic Capacity:                                                                                                                                                                                                                                                                                                                                                                             | MGD                                                                                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Freeboard: inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Design Organic Capacity:                                                                                                                                                                                                                                                                                                                                                                               | lb/day                                                                                                                                                                                                                                                                    |  |  |
| N7 TN 74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | allen and a cost of the ball to the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                           |  |  |
| <ol> <li>New Permits: All construction, oper<br/>, its supporting documentation, and a</li> <li>Amendments: All construction, oper<br/>application dated <u>07/08/2008</u> ar<br/>amendment.</li> <li>Except for any herein approved modific<br/>Management Permit No. <u>2307402</u></li> <li>Transfers: Water Quality Management<br/>part of this transfer.</li> <li>Permit Conditions Relating to see</li> </ol>                                                                                                                                                                                                                                                                                                                                          | ations, and procedures shall be in acco<br>addendums dated, which are here<br>rations, and procedures shall be in acc<br>id its supporting documentation, and ac<br>cations, all terms, conditions, supporting<br>dated of the support<br>ent Permit No dated and c<br>ewerage are attached and made part of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rdance with the Water Quality Mar<br>by made a part of this permit.<br>ordance with the Water Quality Ma<br>Idendums dated, which are I<br>g documentation and addendums a<br>n in effect.<br>onditions, supporting documentation                                                                                                                                                                      | nagement Permit application of<br>unagement Permit Amendmer<br>nereby made a part of this<br>approved under Water Quality<br>on and addendums are also m                                                                                                                  |  |  |
| <ol> <li>New Permits: All construction, oper<br/>, its supporting documentation, and a</li> <li>Amendments: All construction, oper<br/>application dated <u>07/08/2008</u> ar<br/>amendment.</li> <li>Except for any herein approved modific<br/>Management Permit No. <u>2307402</u></li> <li>Transfers: Water Quality Management<br/>part of this transfer.</li> <li>Permit Conditions Relating to see<br/>Special Conditions numbered are<br/>THE AUTHORITY GRANTED BY THIS</li> </ol>                                                                                                                                                                                                                                                                    | ations, and procedures shall be in accordaddendums dated, which are here<br>rations, and procedures shall be in accord its supporting documentation, and accorditions, all terms, conditions, supporting<br>dated dated shall remain<br>ent Permit No dated and cordinate are attached and made part of this permit<br>& PERMIT IS SUBJECT TO THE FOLL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rdance with the Water Quality Mar<br>by made a part of this permit.<br>ordance with the Water Quality Ma<br>Idendums dated, which are I<br>g documentation and addendums a<br>n in effect.<br>onditions, supporting documentation<br>of this permit.                                                                                                                                                   | nagement Permit application of<br>unagement Permit Amendmen<br>hereby made a part of this<br>approved under Water Quality<br>on and addendums are also m                                                                                                                  |  |  |
| <ol> <li>New Permits: All construction, oper<br/>, its supporting documentation, and a<br/>Amendments: All construction, oper<br/>application dated <u>07/08/2008</u> ar<br/>amendment.</li> <li>Except for any herein approved modific<br/>Management Permit No. <u>2307402</u></li> <li>Transfers: Water Quality Management<br/>part of this transfer.</li> <li>Permit Conditions Relating to see<br/>Special Conditions numbered are</li> <li>F. THE AUTHORITY GRANTED BY THIS</li> <li>If there is a conflict between the applic<br/>shall apply.</li> </ol>                                                                                                                                                                                             | ations, and procedures shall be in acco<br>addendums dated, which are here<br>rations, and procedures shall be in acc<br>od its supporting documentation, and ac<br>pations, all terms, conditions, supporting<br>dated shall remain<br>ent Permit No dated and co<br>exercise are attached and made part of<br>e attached and made part of this permit<br>is PERMIT IS SUBJECT TO THE FOLL<br>ication or its supporting documents ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rdance with the Water Quality Mar<br>by made a part of this permit.<br>ordance with the Water Quality Ma<br>Idendums dated, which are I<br>g documentation and addendums a<br>n in effect.<br>onditions, supporting documentation<br>of this permit.<br>                                                                                                                                               | nagement Permit application of<br>unagement Permit Amendmen<br>nereby made a part of this<br>approved under Water Quality<br>on and addendums are also m<br>ONS:<br>conditions, the attached con                                                                          |  |  |
| <ol> <li>New Permits: All construction, oper<br/>, its supporting documentation, and a</li> <li>Amendments: All construction, oper<br/>application dated <u>07/08/2008</u> ar<br/>amendment.</li> <li>Except for any herein approved modific<br/>Management Permit No. <u>2307402</u></li> <li>Transfers: Water Quality Management<br/>part of this transfer.</li> <li>Permit Conditions Relating to see<br/>3. Special Conditions numbered are<br/>F. THE AUTHORITY GRANTED BY THIS</li> <li>If there is a conflict between the appli<br/>shall apply.</li> <li>Failure to comply with the rules and re<br/>by the issuance of this permit.</li> </ol>                                                                                                      | ations, and procedures shall be in accordaddendums dated, which are here rations, and procedures shall be in accord its supporting documentation, and accord its supporting documentation, and according atted shall termain dated shall remain ent Permit No dated and cord eattached and made part of this permit attached and made part of the permit attached | rdance with the Water Quality Mai<br>by made a part of this permit.<br>ordance with the Water Quality Mai<br>Idendums dated, which are I<br>g documentation and addendums a<br>n in effect.<br>onditions, supporting documentation<br>of this permit.<br>OWING FURTHER QUALIFICATI-<br>id amendments and the attached<br>conditions of this permit shall void                                          | nagement Permit application of<br>inagement Permit Amendmer<br>hereby made a part of this<br>approved under Water Quality<br>on and addendums are also m<br>ONS:<br>conditions, the attached con<br>the authority given to the per                                        |  |  |
| <ol> <li>New Permits: All construction, oper<br/>, its supporting documentation, and a</li> <li>Amendments: All construction, oper<br/>application dated <u>07/08/2008</u> ar<br/>amendment.</li> <li>Except for any herein approved modific<br/>Management Permit No. <u>2307402</u>.</li> <li>Transfers: Water Quality Management<br/>part of this transfer.</li> <li>Permit Conditions Relating to see<br/>3. Special Conditions numbered are</li> <li>F. THE AUTHORITY GRANTED BY THIS</li> <li>If there is a conflict between the appli<br/>shall apply.</li> <li>Failure to comply with the rules and re<br/>by the issuance of this permit.</li> <li>This permit is issued pursuant to the 0<br/>permit shall not relieve the permittee of</li> </ol> | ations, and procedures shall be in accordaddendums dated, which are here rations, and procedures shall be in accord its supporting documentation, and accord its supporting documentation, and accorditions, all terms, conditions, supportingdated05/03/2007shall remained attachedand corditions are attached and made part of this permites PERMIT IS SUBJECT TO THE FOLL ication or its supporting documents are agulations of DEP or with the terms or a corditions of the permites and corditions are any responsibility under any other law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rdance with the Water Quality Mai<br>by made a part of this permit.<br>ordance with the Water Quality Ma<br>Idendums dated, which are I<br>g documentation and addendums a<br>n in effect.<br>onditions, supporting documentation<br>of this permit.<br>OWING FURTHER QUALIFICATI-<br>id amendments and the attached<br>conditions of this permit shall void<br>037, P.L. 1987, <u>as amended</u> 35 P | nagement Permit application of<br>unagement Permit Amendment<br>hereby made a part of this<br>approved under Water Quality<br>on and addendums are also m<br>ONS:<br>conditions, the attached con<br>the authority given to the per<br>.S. §691.1 <i>et seq.</i> Issuance |  |  |



Pennsylvania Department of Environmental Protection

2 East Main Street Norristown, PA 19401 August 5, 2008

Phone: 484-250-5970

AUG 7

484-250-5971

2008

a: John Kochneka

Application file Weston Prosect

PERMIT Book

Fax:

### Southeast Regional Office

Mr. Joseph Salvucci Executive Director Delaware County Regional Water Quality Authority 100 East Fifth Street Chester, PA 19016-0999

Re: DELCORA STP Application No. 2308402 File Type: Permit Chester City **Delaware** County

Dear Mr. Salvucci:

Your permit is enclosed.

You must comply with all Standard and Special Conditions attached to this permit. Construction must be done in accordance with the permit application and all supporting documentation. Please review the permit conditions and the supporting documentation submitted with your application before starting construction.

Enclosed is the "Sewage and Industrial Wastewater Facilities Construction Certification" form. A Pennsylvania-registered Professional Engineer must sign and complete this form prior to startup of the facilities (see Special Conditions). You or your authorized representative must also sign the form. This certification and other post-construction documentation must be submitted to the Department within 30 days following startup of the facilities.

Any person aggrieved by this action may appeal, pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. Section 7514, and the Administrative Agency Law, 2 Pa.C.S. Chapter 5A, to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, P.O. Box 8457, Harrisburg, PA 17105-8457, 717-787-3483. TDD users may contact the Board through the Pennsylvania Relay Service, 800-654-5984. Appeals must be filed with the Environmental Hearing Board within 30 days of receipt of written notice of this action unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in braille or on audiotape from the Secretary to the Board at 717-787-3483. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law.

Mr. Joseph Salvucci

IF YOU WANT TO CHALLENGE THIS ACTION, YOUR APPEAL MUST REACH THE BOARD WITHIN 30 DAYS. YOU DO NOT NEED A LAWYER TO FILE AN APPEAL WITH THE BOARD.

IMPORTANT LEGAL RIGHTS ARE AT STAKE, HOWEVER, SO YOU SHOULD SHOW THIS DOCUMENT TO A LAWYER AT ONCE. IF YOU CANNOT AFFORD A LAWYER, YOU MAY QUALIFY FOR FREE PRO BONO REPRESENTATION. CALL THE SECRETARY TO THE BOARD (717-787-3483) FOR MORE INFORMATION.

If you have any questions, please call Mr. Andrew Haneiko at 484-250-5183.

Sincerely,

Jenife Fields, P.E. Regional Manager Water Management

Enclosures

cc: Permits Chief Mr. Booz – Weston Solutions Operations Section Mr. Sheckler Re (joh08wgm)203-5

| 380<br>Perr<br>A. | D-PM-WSWM0015 Rev. 6/2004<br>mit BU<br>PERMITTEE (Name and Address):<br>Delaware County Regional Wate<br>100 East Fifth Street<br>Chester, PA 19016-0999                                                                                                                                      | COMMONWEALTH OF PE<br>DEPARTMENT OF ENVIRONME<br>REAU OF WATER SUPPLY AND WA<br>WATER QUALITY M<br>PERMI<br>CLIENT ID#: 42332<br>CLIENT ID#: 42332<br>or Quality Authority                                                                                          | ENNSYLVANIA<br>INTAL PROTECTION<br>ISTEWATER MANAGEMENT<br>ANAGEMENT<br>T<br>B. PRIMARY FACILITY (Na<br>DELCORA STP                                                                                                | PERMIT NO. <u>2308402</u><br>AMENDMENT NO<br>APS ID <u>648346</u><br>AUTH ID <u>728667</u><br>ame):                                                                           |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C.                | LOCATION (Municipality, County):<br>Chester City<br>Delaware County                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                     | SITE ID#:<br>454804                                                                                                                                                                                                |                                                                                                                                                                               |
| D.                | This permit approves the constru<br>Sludge screen, grease screen, and                                                                                                                                                                                                                         | action of sewerage facilities cons<br>I pump modifications to existing                                                                                                                                                                                              | isting of:<br>facility.                                                                                                                                                                                            |                                                                                                                                                                               |
| Pun               | np Stations:                                                                                                                                                                                                                                                                                  | Manure Storage:                                                                                                                                                                                                                                                     | Industrial Wastewater                                                                                                                                                                                              | /Sewage Treatment Facility:                                                                                                                                                   |
| Des               | ign Capacity: GPM                                                                                                                                                                                                                                                                             | Volume MG                                                                                                                                                                                                                                                           | Annual Average Flow:                                                                                                                                                                                               | MGD                                                                                                                                                                           |
| Ave               | rage Annual Flow: GPD                                                                                                                                                                                                                                                                         | Freeboard: inches                                                                                                                                                                                                                                                   | Design Hydraulic Capacity:<br>Design Organic Capacity:                                                                                                                                                             | MGD<br>Ib/day                                                                                                                                                                 |
| •                 | APPROVAL GRANTED BY THIS PERI                                                                                                                                                                                                                                                                 | L<br>MIT IS SUBJECT TO THE FOLLOWING                                                                                                                                                                                                                                | G:                                                                                                                                                                                                                 |                                                                                                                                                                               |
| 1.                | New Permits: All construction, opera<br>6/02/2008, its supporting docume<br>Amendments: All construction, oper<br>application dated and its supporti<br>Except for any herein approved modific<br>Management Permit No dated<br>Transfers: Water Quality Management<br>part of this transfer. | ations, and procedures shall be in acco<br>entation, and addendums dated, v<br>ations, and procedures shall be in acco<br>ng documentation, and addendums dai<br>ations, all terms, conditions, supporting<br>shall remain in effect.<br>ent Permit No dated and co | rdance with the Water Quality Ma<br>which are hereby made a part of the<br>prodance with the Water Quality Ma<br>ted, which are hereby made<br>documentation and addendums<br>proditions, supporting documentation | nagement Permit application dated<br>nis permit.<br>anagement Permit Amendment<br>a part of this amendment.<br>approved under Water Quality<br>on and addendums are also made |
| 2.                | Permit Conditions Relating to se                                                                                                                                                                                                                                                              | werage are attached and made part of                                                                                                                                                                                                                                | of this permit.                                                                                                                                                                                                    |                                                                                                                                                                               |
| З.                | Special Conditions numbered are                                                                                                                                                                                                                                                               | attached and made part of this permit.                                                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                              |                                                                                                                                                                               |
| F.                | THE AUTHORITY GRANTED BY THIS                                                                                                                                                                                                                                                                 | PERMIT IS SUBJECT TO THE FOLL                                                                                                                                                                                                                                       | OWING FURTHER QUALIFICATI                                                                                                                                                                                          | ONS:                                                                                                                                                                          |
| 1.                | If there is a conflict between the applic<br>shall apply.                                                                                                                                                                                                                                     | cation or its supporting documents an                                                                                                                                                                                                                               | d amendments and the attached                                                                                                                                                                                      | conditions, the attached conditions                                                                                                                                           |
| 2.                | Failure to comply with the rules and re-<br>by the issuance of this permit.                                                                                                                                                                                                                   | gulations of DEP or with the terms or o                                                                                                                                                                                                                             | conditions of this permit shall void                                                                                                                                                                               | the authority given to the permittee                                                                                                                                          |
| 3.                | This permit is issued pursuant to the C permit shall not relieve the permittee of                                                                                                                                                                                                             | Clean Streams Law Act of June 22, 19 any responsibility under any other law.                                                                                                                                                                                        | 37, P.L. 1987, <u>as amended</u> 35 P                                                                                                                                                                              | .S. §691.1 et seq. issuance of this                                                                                                                                           |
| PEF               | August 5,                                                                                                                                                                                                                                                                                     | 2008                                                                                                                                                                                                                                                                | BY:                                                                                                                                                                                                                | Yuls<br>ement Program Manager                                                                                                                                                 |
| ně                | 30 ( WP )                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                    |                                                                                                                                                                               |

3800-PM-WSWM0015a Rev. 6/2004 Conditions Sewerage Permit No. 2308402



#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER SUPPLY AND WASTEWATER MANAGEMENT

### PERMIT CONDITIONS RELATING TO SEWERAGE

For use in Water Quality Management Permits

(Place a  $\sqrt{10}$  in the box that applies)

### General

- 1. Consistent with the Department of Environmental Protection's (DEP) technical guidance document Conducting Technical Reviews of Water Quality Management Permit Wastewater Treatment Facilities (DEP ID: 362-2000-007) available on DEP's website at <u>www.dep.state.pa.us</u>. DEP considers the registered Professional Engineer whose seal is affixed to the design documents to be fully responsible for the adequacy of all aspects of the facility design.
- 2. The permittee shall adopt and enforce an ordinance requiring the abandonment of privies, cesspools or similar receptacles for human waste and onlot sewage disposal systems on the premises of occupied structures accessible to public sewers. All such structures must be connected to the public sewers.
- 3. The outfall sewer or drain shall be extended to the low water mark of the receiving body of water. Where necessary to ensure proper mixing and waste assimilation, an outfall sewer or drain may be extended with appurtenances below the low water mark and into the bed of a navigable stream provided that the permittee has secured an easement, right-of-way, license or lease from DEP in accordance with Section 15 of the Dam Safety and Encroachments Act, the Act of November 26, 1978, P.L. 1375, as amended.
- 4. The approval is specifically made contingent on the permittee acquiring all necessary property rights, by easement or otherwise, providing for the satisfactory construction, operation, maintenance and replacement of all sewers or sewerage structures in, along or across private property with full rights of ingress, egress and regress.
- 5. When construction of the approved sewerage facilities is completed and before they are placed in operation, the permittee shall notify DEP in writing so that a DEP representative may inspect the facilities.
- 6. If, at any time, the sewerage facilities covered by this permit create a public nuisance, including but not limited to, causing malodors or causing environmental harm to waters of the Commonwealth, DEP may require the permittee to adopt appropriate remedial measures to abate the nuisance or harm.
- 7. This permit authorizes the construction and operation of the proposed sewerage facilities until such time as facilities for conveyance and treatment at a more suitable location are installed and capable of receiving and treating the permittee's sewage. Such facilities must be in accordance with the applicable municipal official plan adopted pursuant to Section 5 of the Pennsylvania Sewage Facilities Act, the Act of January 24, 1966, P.L. 1535 as amended. When such municipal sewerage facilities, abandon the use of these approved facilities and notify DEP accordingly. This permit shall then, upon notice from DEP, terminate and become null and void and shall be relinquished to DEP.
- 8. This permit does not relieve the permittee of its obligations to comply with all federal, interstate, state or local laws, ordinances and regulations applicable to the sewerage facilities.
- 9. This permit does not give any real or personal property rights or grant any exclusive privileges, nor shall it be construed to grant or confirm any right, easement or interest in, on, to or over any lands which belong to the Commonwealth.
- 10. The authority granted by this permit is subject to all effluent requirements, monitoring requirements and other conditions as set forth in NPDES Permit No. PA0027103 and all subsequent amendments and renewals. No discharge is authorized from these facilities unless approved by an NPDES Permit.

#### Construction

11. An Erosion and Sedimentation (E&S) Plan must be developed prior to construction of the permitted facility, pursuant to Title 25 Pa. Code Chapter 102, and implemented during and after the earth disturbance activity.

If the activity involves 5 or more acres of earth disturbance, or from 1 to 5 acres of earth disturbance with a point source discharge to surface waters of the Commonwealth, an NPDES permit for the Discharge of Stormwater Associated with Construction Activity is required.

In addition to the state NPDES permitting requirements, some municipalities, through local ordinances, require the E&S Control Plan to be reviewed and approved by the local County Conservation District office prior to

construction. For specific information regarding E&S control planning approval and NPDES permitting requirements, please contact your local County Conservation District office.

- 12. The facilities shall be constructed under the supervision of a Pennsylvania registered Professional Engineer in accordance with the approved reports, plans and specifications.
- 13. A Pennsylvania registered Professional Engineer shall certify that construction of the permitted facilities was completed in accordance with the application and design plans submitted to DEP, using "Post Construction Certification" (3800-PM-WSWM0179a). It is the permittee's responsibility to ensure that a Professional Engineer is on-site to provide the necessary oversight and/or inspections to certify the facilities. The certification must be submitted to DEP before the facility is placed in operation. If requested, "as-built" drawings, photographs (if available) and a description of any DEP-approved deviations from the application and design plans must be submitted to DEP within 30 days of certification.
- 14. Manhole inverts shall be formed to facilitate the flow of the sewage and to prevent the stranding of sewage solids. The manhole structure shall be built to prevent undue infiltration, entrance of street wash or grit and provide safe access to facilitate manhole maintenance activities.
- 15. The local Waterways Conservation Officer of the Pennsylvania Fish and Boat Commission (PFBC) shall be notified when the construction of any stream crossing and/or outfall is started and completed. A written permit must be secured from the PFBC if the use of explosives in any waterways is required and the permittee shall notify the local Waterways Conservation Officer when explosives are to be used.

Operation and Maintenance

- 16. The permittee shall maintain records of "as-built" plans showing all the treatment facilities as actually constructed together with facility operation and maintenance (O&M) manuals and any other relevant information that may be required. Upon request, the "as-built" plans and O&M manuals shall be filed with DEP.
- 17. The sewers shall have adequate foundation support as soil conditions require. Trenches shall be back-filled to ensure that sewers will have proper structural stability, with minimum settling and adequate protection against breakage. Concrete used in connection with these sewers shall be protected from damage by water, freezing, drying or other harmful conditions until cured.
- 18. Stormwater from roofs, foundation drains, basement drains or other sources shall not be admitted directly to the sanitary sewers.
- 19. The approved sewers shall be maintained in good condition, kept free of deposits by flushing or other cleaning methods and repaired when necessary.
- $\boxtimes$  20. The sewerage facilities shall be properly operated and maintained to perform as designed.
- 21. The attention of the permittee is called to the highly explosive nature of certain gases generated by the digestion of sewage solids when these gases are mixed in proper proportions with air and to the highly toxic character of certain gases arising from such digestion or from sewage in poorly ventilated compartments or sewers. Therefore, at all places throughout the sewerage facilities where hazard of fire, explosion or danger from toxic gases may occur, the permittee shall post conspicuous permanent and legible warnings. The permittee shall instruct all employees concerning the aforesaid hazards, first aid and emergency methods of meeting such hazards and shall make all necessary equipment and material accessible.
- 22. An operator certified in accordance with the Water and Wastewater Systems Operator Certification Act of February 21, 2002, 63 P.S. §§1001, et seq. shall operate the sewage treatment plant.
- 23. The permittee shall properly control any industrial waste discharged into its sewerage system by regulating the rate and quality of such discharge, requiring necessary pretreatment and excluding industrial waste, if necessary, to protect the integrity or operation of the permittee's sewerage system.
- 24. There shall be no physical connection between a public water supply system and a sewer or appurtenance to it which would permit the passage of any sewage or polluted water into the potable water supply. No water pipe shall pass through or come in contact with any part of a sewer manhole.
- 25. All connections to the approved sanitary sewers must be in accordance with the corrective action plan as contained in the approved Title 25 Pa. Code Chapter 94 Municipal Wasteload Management Annual Report.
- 26. Collected screenings, slurries, sludge and other solids shall be handled and disposed of in compliance with Title 25 Pa. Code Chapters 271, 273, 275, 283 and 285 (related to permits and requirements for land filling, land application, incineration and storage of sewage sludge), Federal Regulations 40 CFR 257 and the Federal Clean Water Act and its amendments.

3800-PM-WSFR0179a 9/2005 Post Construction Certification



#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER STANDARDS AND FACILITY REGULATION

# WATER QUALITY MANAGEMENT

# POST CONSTRUCTION CERTIFICATION

|                                                                                     | PERMIT                                                                                                                                                                                                                                                                                                                                                                      | TEE IDENTIFIER                                                                                                                                                                       |  |  |  |  |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Permittee                                                                           | DELCORA                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |  |  |  |  |
| Municipality                                                                        | Chester City                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                      |  |  |  |  |
| County                                                                              | Delaware                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                      |  |  |  |  |
| WQM Permit No.                                                                      | 2308402                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                      |  |  |  |  |
| Facility Type                                                                       | WWTP                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                      |  |  |  |  |
| All of the above i                                                                  | nformation should be taken d                                                                                                                                                                                                                                                                                                                                                | irectly from the Water Quality Management Permit.                                                                                                                                    |  |  |  |  |
|                                                                                     | CEI                                                                                                                                                                                                                                                                                                                                                                         | RTIFICATION                                                                                                                                                                          |  |  |  |  |
| This certification n<br>WQM permit with<br>requested, as-buil<br>the design plans d | This certification must be completed and returned to the permits section of the DEP's regional office issuing the WQM permit within 30 days of completion of the project and received by DEP prior to operation, and if requested, as-built drawings, photographs (if available) and a discussion of any DEP-approved deviations from the design plans during construction. |                                                                                                                                                                                      |  |  |  |  |
| I, being a Registe<br>and belief, based<br>uality Managem<br>modifications appr     | red Professional Engineer in P<br>upon personal observation and<br>nent Permit has been constr<br>oved by DEP.                                                                                                                                                                                                                                                              | ennsylvania, do hereby certify to the best of my knowledge<br>interviews, that the above facility approved under the Water<br>ucted in accordance with the plans, specifications and |  |  |  |  |
| Construction Com                                                                    | pletion Date (MM/DD/YYYY):                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                      |  |  |  |  |
| 5<br>                                                                               |                                                                                                                                                                                                                                                                                                                                                                             | Professional Engineer                                                                                                                                                                |  |  |  |  |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                             | Name                                                                                                                                                                                 |  |  |  |  |
| ]                                                                                   | Undineerdy                                                                                                                                                                                                                                                                                                                                                                  | (Please Print or Type)                                                                                                                                                               |  |  |  |  |
|                                                                                     | Seal                                                                                                                                                                                                                                                                                                                                                                        | Signature                                                                                                                                                                            |  |  |  |  |
|                                                                                     | ~~ v N @ A                                                                                                                                                                                                                                                                                                                                                                  | Date                                                                                                                                                                                 |  |  |  |  |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                             | License Expiration Date                                                                                                                                                              |  |  |  |  |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                             | Firm or Agency                                                                                                                                                                       |  |  |  |  |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                             | Telephone                                                                                                                                                                            |  |  |  |  |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                             | Permittee or Authorized Representative                                                                                                                                               |  |  |  |  |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                             | Name                                                                                                                                                                                 |  |  |  |  |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                             | (Please Print or Type)                                                                                                                                                               |  |  |  |  |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                             | Signature                                                                                                                                                                            |  |  |  |  |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                             | Title                                                                                                                                                                                |  |  |  |  |
|                                                                                     |                                                                                                                                                                                                                                                                                                                                                                             | Telephone                                                                                                                                                                            |  |  |  |  |



Southeast Regional Office

Mr. Joseph Salvucci Executive Director DELCORA P.O. Box 999 Chester, PA 19016-0999

Pennsylvania Department of Environmental Protection 2 East Main Street Norristown, PA 19401 May 6, 2009 File MAY 1 1 2009 CC: JLS, CUH, DiSANTIS, Hindt, KochubKA

Phone: 484-250-5970 484-250-5971 Fax:

CC: Es Bothwell Chester Souce Sta file

Re: **DELCORA STP - Chester Riverfront** Redevelopment MSL Stadium CSO Relocation Application No. 2309406 File Type: Permit City Chester **Delaware** County

Dear Mr. Salvucci:

Your permit is enclosed.

You must comply with all Standard and Special Conditions attached to this permit. Construction must be done in accordance with the permit application and all supporting documentation. Please review the permit conditions and the supporting documentation submitted with your application before starting construction.

Enclosed is the "Sewage and Industrial Wastewater Facilities Construction Certification" form. A Pennsylvania-registered Professional Engineer must sign and complete this form prior to startup of the facilities (see Special Conditions). You or your authorized representative must also sign the form. This certification and other post-construction documentation must be submitted to the Department within 30 days following startup of the facilities.

Any person aggrieved by this action may appeal, pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. Section 7514, and the Administrative Agency Law, 2 Pa.C.S. Chapter 5A, to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, P.O. Box 8457, Harrisburg, PA 17105-8457, 717-787-3483. TDD users may contact the Board through the Pennsylvania Relay Service, 800-654-5984. Appeals must be filed with the Environmental Hearing Board within 30 days of receipt of written notice of this action unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in braille or on audiotape from the Secretary to the Board at 717-787-3483. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law.

Printed on Recycled Paper

IF YOU WANT TO CHALLENGE THIS ACTION, YOUR APPEAL MUST REACH THE BOARD WITHIN 30 DAYS. YOU DO NOT NEED A LAWYER TO FILE AN APPEAL WITH THE BOARD.

IMPORTANT LEGAL RIGHTS ARE AT STAKE, HOWEVER, SO YOU SHOULD SHOW THIS DOCUMENT TO A LAWYER AT ONCE. IF YOU CANNOT AFFORD A LAWYER, YOU MAY QUALIFY FOR FREE PRO BONO REPRESENTATION. CALL THE SECRETARY TO THE BOARD (717-787-3483) FOR MORE INFORMATION.

If you have any questions, please call Mr. Andrew Haneiko at 484-250-5183.

Sincerely.

Jenifer Fields, P.E. Regional Manager Water Management

Enclosures

cc: Permits Chief Operations Section Delwayne Becker – RK&K Engineers Mr. Sheckler Re 30 (AR09WQM)106-5

| 3800-PM-WSW | /M0015 | Rev. | 6/2004 |
|-------------|--------|------|--------|
| Permit      | 1      |      |        |

А.

| 3800<br>Perr | D-PM-WSWM0015 Rev. 6/2004<br>nit<br>pennsylvania<br>department of environmental protection                                                              | COMMONWEALTH OF<br>DEPARTMENT OF ENVIROM<br>BUREAU OF WATER SUPPLY AND V<br>WATER QUALITY<br>PERN | PERMIT NO. <u>2309406</u><br>AMENDMENT NO<br>APS ID <u>690245</u><br>AUTH ID <u>787912</u>                                                   |                                                                                                           |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Α.           | PERMITTEE (Name and Address):<br>DELCORA<br>P.O. Box 999<br>Chester, PA 19016-0999                                                                      | CLIENT ID#: 42332                                                                                 | B. PRIMARY FACILITY (Nan<br>DELCORA STP – Ch<br>Redevelopment MSL                                                                            | ne):<br>lester Riverfront<br>Stadium CSO Relocation                                                       |
| C.           | LOCATION (Municipality, County):<br>City of Chester<br>Delaware County                                                                                  |                                                                                                   | SITE ID#:<br>454804                                                                                                                          |                                                                                                           |
| D.           | This permit approves the constru<br>The relocation of an existing com                                                                                   | ction of sewerage facilities consi<br>bined sewer overflow.                                       | sting of:                                                                                                                                    |                                                                                                           |
|              | no Stations:                                                                                                                                            | Manure Storage:                                                                                   | Industrial Wastewater/                                                                                                                       | Sewage Treatment Facility:                                                                                |
| Des          | ion Capacity: GPM                                                                                                                                       |                                                                                                   | Annual Average Flow:                                                                                                                         | MGD                                                                                                       |
| Ave          | rage Annual Flow: GPD                                                                                                                                   | Volume MG                                                                                         | Design Hydraulic Capacity:                                                                                                                   | MGD                                                                                                       |
|              |                                                                                                                                                         | Freeboard: inches                                                                                 | Design Organic Capacity:                                                                                                                     | lb/day                                                                                                    |
| )            |                                                                                                                                                         |                                                                                                   |                                                                                                                                              | ······································                                                                    |
| 1.           | New Permits: All construction, opera<br>03/20/2009_, its supporting docum<br>Amendments: All construction, opera<br>application datedand its supporting | tions, and procedures shall be in accor<br>entation, and addendums dated                          | rdance with the Water Quality Man<br>which are hereby made a part of th<br>ordance with the Water Quality Man<br>red which are hereby made a | agement Permit application dated<br>his permit.<br>hagement Permit Amendment<br>a part of this amendment. |
|              | Except for any herein approved modifica<br>Management Permit No dated                                                                                   | ations, all terms, conditions, supporting                                                         | documentation and addendums a                                                                                                                | pproved under Water Quality                                                                               |
|              | Transfers: Water Quality Manageme part of this transfer.                                                                                                | nt Permit No dated and co                                                                         | onditions, supporting documentatio                                                                                                           | n and addendums are also made                                                                             |
| 2.           | Permit Conditions Relating to se                                                                                                                        | werage are attached and made part of                                                              | of this permit.                                                                                                                              |                                                                                                           |
| 3.           | Special Conditions numbered are                                                                                                                         | attached and made part of this permit.                                                            |                                                                                                                                              |                                                                                                           |
| F.           | THE AUTHORITY GRANTED BY THIS                                                                                                                           | PERMIT IS SUBJECT TO THE FOLL                                                                     | OWING FURTHER QUALIFICATIO                                                                                                                   | <br>DNS:                                                                                                  |
| 1.           | If there is a conflict between the applic shall apply.                                                                                                  | ation or its supporting documents an                                                              | d amendments and the attached                                                                                                                | conditions, the attached conditions                                                                       |
| 2.           | Failure to comply with the rules and rec<br>by the issuance of this permit,                                                                             | ulations of DEP or with the terms or o                                                            | conditions of this permit shall void                                                                                                         | the authority given to the permittee                                                                      |
| 3.           | This permit is issued pursuant to the C permit shall not relieve the permittee of                                                                       | lean Streams Law Act of June 22, 19<br>any responsibility under any other law.                    | 37, P.L. 1987, <u>as amended</u> 35 P.                                                                                                       | S. §691.1 et seq. Issuance of this                                                                        |
| PE           | RMIT ISSUED:                                                                                                                                            |                                                                                                   | BY:                                                                                                                                          |                                                                                                           |

May 6, 2009

Water Management Program Manager TITLE: \_\_

Re 30 ( WP )



#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER SUPPLY AND WASTEWATER MANAGEMENT

# PERMIT CONDITIONS RELATING TO SEWERAGE

For use in Water Quality Management Permits

(Place a  $\sqrt{}$  in the box that applies)

| Ger         | eral     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | 1,       | Consistent with the Department of Environmental Protection's (DEP) technical guidance document <i>Conducting Technical Reviews of Water Quality Management Permit Wastewater Treatment Facilities</i> (DEP ID: 362-2000-007) available on DEP's website at <u>www.dep.state.pa.us</u> . DEP considers the registered Professional Engineer whose seal is affixed to the design documents to be fully responsible for the adequacy of all aspects of the facility design.                                                                                                                                                                                                                                                                                                                                                    |
|             | 2.       | The permittee shall adopt and enforce an ordinance requiring the abandonment of privies, cesspools or similar receptacles for human waste and onlot sewage disposal systems on the premises of occupied structures accessible to public sewers. All such structures must be connected to the public sewers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ⊠           | 3.       | The outfall sewer or drain shall be extended to the low water mark of the receiving body of water. Where necessary to ensure proper mixing and waste assimilation, an outfall sewer or drain may be extended with appurtenances below the low water mark and into the bed of a navigable stream provided that the permittee has secured an easement, right-of-way, license or lease from DEP in accordance with Section 15 of the Dam Safety and Encroachments Act, the Act of November 26, 1978, P.L. 1375, as amended.                                                                                                                                                                                                                                                                                                    |
| ⊠           | 4.       | The approval is specifically made contingent on the permittee acquiring all necessary property rights, by easement or otherwise, providing for the satisfactory construction, operation, maintenance and replacement of all sewers or sewerage structures in, along or across private property with full rights of ingress, egress and regress.                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| X           | 5.       | When construction of the approved sewerage facilities is completed and before they are placed in operation, the permittee shall notify DEP in writing so that a DEP representative may inspect the facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $\boxtimes$ | 6.       | If, at any time, the sewerage facilities covered by this permit create a public nuisance, including but not limited to, causing malodors or causing environmental harm to waters of the Commonwealth, DEP may require the permittee to adopt appropriate remedial measures to abate the nuisance or harm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | 7.       | This permit authorizes the construction and operation of the proposed sewerage facilities until such time as facilities for conveyance and treatment at a more suitable location are installed and capable of receiving and treating the permittee's sewage. Such facilities must be in accordance with the applicable municipal official plan adopted pursuant to Section 5 of the Pennsylvania Sewage Facilities Act, the Act of January 24, 1966, P.L. 1535 as amended. When such municipal sewerage facilities become available, the permittee shall provide for the conveyance of the sewage to these sewerage facilities, abandon the use of these approved facilities and notify DEP accordingly. This permit shall then, upon notice from DEP, terminate and become null and void and shall be relinquished to DEP. |
| ⊠           | 8.       | This permit does not relieve the permittee of its obligations to comply with all federal, interstate, state or local laws, ordinances and regulations applicable to the sewerage facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\boxtimes$ | 9.       | This permit does not give any real or personal property rights or grant any exclusive privileges, nor shall it be construed to grant or confirm any right, easement or interest in, on, to or over any lands which belong to the Commonwealth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | 10.      | The authority granted by this permit is subject to all effluent requirements, monitoring requirements and other conditions as set forth in NPDES Permit No. <b>PA_(A)_</b> and all subsequent amendments and renewals. No discharge is authorized from these facilities unless approved by an NPDES Permit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cor         | istruç   | tion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\boxtimes$ | _<br>11. | An Erosion and Sedimentation (E&S) Plan must be developed prior to construction of the permitted facility, pursuant to Title 25 Pa. Code Chapter 102, and implemented during and after the earth disturbance activity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |          | If the activity involves 5 or more acres of earth disturbance, or from 1 to 5 acres of earth disturbance with a point source discharge to surface waters of the Commonwealth, an NPDES permit for the Discharge of Stormwater Associated with Construction Activity is required.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 100 M       |          | In addition to the state NPDES permitting requirements, some municipalities, through local ordinances, require the E&S<br>Control Plan to be reviewed and approved by the local County Conservation District office prior to construction. For                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

specific information regarding E&S control planning approval and NPDES permitting requirements, please contact your local County Conservation District office.

12. The facilities shall be constructed under the supervision of a Pennsylvania registered Professional Engineer in

X

accordance with the approved reports, plans and specifications.

- 13. A Pennsylvania registered Professional Engineer shall certify that construction of the permitted facilities was completed in accordance with the application and design plans submitted to DEP, using "Post Construction Certification" (3800-PM-WSWM0179a). It is the permittee's responsibility to ensure that a Professional Engineer is on-site to provide the necessary oversight and/or inspections to certify the facilities. The certification must be submitted to DEP before the facility is placed in operation. If requested, "as-built" drawings, photographs (if available) and a description of any DEPapproved deviations from the application and design plans must be submitted to DEP within 30 days of certification.
- 14. Manhole inverts shall be formed to facilitate the flow of the sewage and to prevent the stranding of sewage solids. The manhole structure shall be built to prevent undue infiltration, entrance of street wash or grit and provide safe access to facilitate manhole maintenance activities.
- 15. The local Waterways Conservation Officer of the Pennsylvania Fish and Boat Commission (PFBC) shall be notified when the construction of any stream crossing and/or outfall is started and completed. A written permit must be secured from the PFBC if the use of explosives in any waterways is required and the permittee shall notify the local Waterways Conservation Officer when explosives are to be used.

Operation and Maintenance

- 16. The permittee shall maintain records of "as-built" plans showing all the treatment facilities as actually constructed together with facility operation and maintenance (O&M) manuals and any other relevant information that may be required. Upon request, the "as-built" plans and O&M manuals shall be filed with DEP.
- 17. The sewers shall have adequate foundation support as soil conditions require. Trenches shall be back-filled to ensure that sewers will have proper structural stability, with minimum settling and adequate protection against breakage. Concrete used in connection with these sewers shall be protected from damage by water, freezing, drying or other harmful conditions until cured.
- 18. Stormwater from roofs, foundation drains, basement drains or other sources shall not be admitted directly to the sanitary sewers.
- 19. The approved sewers shall be maintained in good condition, kept free of deposits by flushing or other cleaning methods and repaired when necessary.
- 20. The sewerage facilities shall be properly operated and maintained to perform as designed.
- 21. The attention of the permittee is called to the highly explosive nature of certain gases generated by the digestion of sewage solids when these gases are mixed in proper proportions with air and to the highly toxic character of certain gases arising from such digestion or from sewage in poorly ventilated compartments or sewers. Therefore, at all places throughout the sewerage facilities where hazard of fire, explosion or danger from toxic gases may occur, the permittee shall post conspicuous permanent and legible warnings. The permittee shall instruct all employees concerning the aforesaid hazards, first aid and emergency methods of meeting such hazards and shall make all necessary equipment and material accessible.
- 22. An operator certified in accordance with the Water and Wastewater Systems Operator Certification Act of February 21, 2002, 63 P.S. §§1001, et seq. shall operate the sewage treatment plant.
- 23. The permittee shall properly control any industrial waste discharged into its sewerage system by regulating the rate and quality of such discharge, requiring necessary pretreatment and excluding industrial waste, if necessary, to protect the integrity or operation of the permittee's sewerage system.
- 24. There shall be no physical connection between a public water supply system and a sewer or appurtenance to it which would permit the passage of any sewage or polluted water into the potable water supply. No water pipe shall pass through or come in contact with any part of a sewer manhole.
- 25. All connections to the approved sanitary sewers must be in accordance with the corrective action plan as contained in the approved Title 25 Pa. Code Chapter 94 Municipal Wasteload Management Annual Report.

onditions Sewer

26. Collected screenings, slurries, sludge and other solids shall be handled and disposed of in compliance with Title 25 Pa. Code Chapters 271, 273, 275, 283 and 285 (related to permits and requirements for land filling, land application, incineration and storage of sewage sludge), Federal Regulations 40 CFR 257 and the Federal Clean Water Act and its amendments.

Re 30 (WP)

ALC: NO.

3800-PM-WSFR0020e 9/2005 Post Construction Certification



COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER STANDARDS AND FACILITY REGULATION

#### WATER QUALITY MANAGEMENT . POST CONSTRUCTION CERTIFICATION

|                                                           |                                                                                                                                                   | PERMITIEE IDENTIFIER                                                                                                                                                                                           |  |  |  |  |
|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Permittee                                                 | DELCORA                                                                                                                                           |                                                                                                                                                                                                                |  |  |  |  |
| Address                                                   | P.O. Box 999, Chester, PA                                                                                                                         | P.O. Box 999, Chester, PA 19016-0999                                                                                                                                                                           |  |  |  |  |
| Municipality                                              | City of Chester                                                                                                                                   |                                                                                                                                                                                                                |  |  |  |  |
| County                                                    | Delaware                                                                                                                                          | Delaware                                                                                                                                                                                                       |  |  |  |  |
|                                                           |                                                                                                                                                   | CERTIFICATION                                                                                                                                                                                                  |  |  |  |  |
| and if reque<br>deviations fro<br>I,, beir<br>under Water | asted as-built drawings, phom the design plans during c<br>ng a Registered Professiona<br>Quality Management Permit<br>specifications approved by | and a discussion of any DEP approved<br>construction.<br>al Engineer in Pennsylvania do hereby certify that the approved<br>t No. <u>2309406</u> has been inspected and constructed in accordance with<br>DEP. |  |  |  |  |
| Construction                                              | Completion Date (MM/DD/Y                                                                                                                          | (YYY):                                                                                                                                                                                                         |  |  |  |  |
|                                                           |                                                                                                                                                   | Professional Engineer                                                                                                                                                                                          |  |  |  |  |
|                                                           |                                                                                                                                                   | Name                                                                                                                                                                                                           |  |  |  |  |
|                                                           |                                                                                                                                                   |                                                                                                                                                                                                                |  |  |  |  |
|                                                           |                                                                                                                                                   | (Please Print or Type)                                                                                                                                                                                         |  |  |  |  |
|                                                           |                                                                                                                                                   | (Please Print or Type)<br>Signature                                                                                                                                                                            |  |  |  |  |
|                                                           |                                                                                                                                                   | (Please Print or Type)<br>Signature<br>Date                                                                                                                                                                    |  |  |  |  |
|                                                           | fingineeris                                                                                                                                       | (Please Print or Type)<br>Signature<br>Date<br>Title                                                                                                                                                           |  |  |  |  |
|                                                           | Engineer's<br>Scal                                                                                                                                | (Please Print or Type)<br>Signature<br>Date<br>Title<br>Firm or Agency                                                                                                                                         |  |  |  |  |
|                                                           | Engineer's<br>Scal                                                                                                                                | (Please Print or Type)<br>Signature<br>Date<br>Title<br>Firm or Agency<br>Telephone<br>Permittee or Authorized Percentative                                                                                    |  |  |  |  |
|                                                           | Engineer's<br>Seal                                                                                                                                | (Please Print or Type)<br>Signature<br>Date<br>Title<br>Firm or Agency<br>Telephone<br>Permittee or Authorized Representative<br>Name                                                                          |  |  |  |  |
|                                                           | Engineer's<br>Seal                                                                                                                                | (Please Print or Type) Signature Date Title Firm or Agency Telephone Permittee or Authorized Representative Name                                                                                               |  |  |  |  |
|                                                           | Engineer's<br>Scal                                                                                                                                | (Please Print or Type)<br>Signature<br>Date<br>Title<br>Firm or Agency<br>Telephone<br>Permittee or Authorized Representative<br>Name<br>(Please Print or Type)<br>Signature                                   |  |  |  |  |
|                                                           | Engineer's<br>Scal                                                                                                                                | (Please Print or Type)<br>Signature<br>Date<br>Title<br>Firm or Agency<br>Telephone<br>Permittee or Authorized Representative<br>Name<br>(Please Print or Type)<br>Signature<br>Title                          |  |  |  |  |



April 20, 2015

### CERTIFIED MAIL NO. 7013 2250 0000 7504 1694

Robert J. Willert Executive Director DELCORA PO Box 999 Chester, PA 19016

WQM Permit - Sewage Re: Sheeder Tract Subdivision Permit No. 1505419 Authorization ID No. 1050423 Pocopson Township, Chester County

Dear Mr. Willert:

Your Water Quality Management (WQM) permit is enclosed. You must comply with all Standard and Special Conditions attached to this Permit. Please review the permit conditions and the supporting documentation.

Scanned to server

MJD Joe Simatko

Note: Please pay special attention to significant changes to the irrigation conditions that are outlined in the special conditions of the permit.

Any person aggrieved by this action may appeal, pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. Section 7514, and the Administrative Agency Law, 2 Pa. C.S. Chapter 5A, to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, P.O. Box 8457, Harrisburg, PA 17105-8457, 717.787.3483. TDD users may contact the Board through the Pennsylvania Relay Service, 800.654.5984. Appeals must be filed with the Environmental Hearing Board within 30 days of receipt of written notice of this action unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in braille or on audiotape from the Secretary to the Board at 717.787.3483. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law.

IF YOU WANT TO CHALLENGE THIS ACTION, YOUR APPEAL MUST REACH THE BOARD WITHIN 30 DAYS. YOU DO NOT NEED A LAWYER TO FILE AN APPEAL WITH THE BOARD.

IMPORTANT LEGAL RIGHTS ARE AT STAKE, HOWEVER, SO YOU SHOULD SHOW THIS DOCUMENT TO A LAWYER AT ONCE. IF YOU CANNOT AFFORD A LAWYER,

# YOU MAY QUALIFY FOR FREE PRO BONO REPRESENTATION. CALL THE SECRETARY TO THE BOARD (717.787.3483) FOR MORE INFORMATION.

If you have any questions, please contact Karen McDaniel at 484.250.5126 or kmcdaniel@pa.gov.

Sincerely,

Jenifer L. Fields, P.E. Environmental Program Manager Clean Water Program

Enclosures

cc: Pocopson Township Chester County Health Department Chester County Board of Commissioners Ms. Hessler, Castle Valley Consultants Operations-SERO Ms. Sansoni- SERO Ms. Lashley- SERO Re 3800-PM-WSFR0015 1/2011 Permit



#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF POINT AND NON-POINT SOURCE MANAGEMENT

WATER QUALITY MANAGEMENT

PERMIT

PERMIT NO. 1505419

AMENDMENT NO. Renewal

APS ID. <u>857488</u>

AUTH. ID. 1050423

| Α.  | PERMITTEE (Name and Address):                                                                | CLIENT ID#: 110302                                                                | B. PROJECT/FACILITY (Name<br>Sheadar Tract Wastewate                         |                                                   |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|------------------------------------------------------------------------------|---------------------------------------------------|--|--|--|--|
|     | PO Box 999                                                                                   |                                                                                   | Sneeder Tract Wastewater Treatment Plant                                     |                                                   |  |  |  |  |
|     | Chester, PA 19016                                                                            |                                                                                   |                                                                              |                                                   |  |  |  |  |
| С.  | LOCATION (Municipality, County):                                                             |                                                                                   | SITE ID#: 656747                                                             |                                                   |  |  |  |  |
|     | Pocopson Township, Chester County                                                            |                                                                                   |                                                                              |                                                   |  |  |  |  |
| D.  | This permit approves the renewal of sewage lagoon, a storage lagoon, chlorination, and a     | e facilities consisting of: the existing<br>a spray irrigation system discharging | : An influent pump station with a gr<br>g effluent to 3- zones on 9.02 acres | inder, an aerated treatment                       |  |  |  |  |
|     |                                                                                              |                                                                                   |                                                                              |                                                   |  |  |  |  |
|     |                                                                                              |                                                                                   |                                                                              |                                                   |  |  |  |  |
|     |                                                                                              |                                                                                   |                                                                              |                                                   |  |  |  |  |
|     |                                                                                              |                                                                                   |                                                                              |                                                   |  |  |  |  |
|     |                                                                                              |                                                                                   |                                                                              |                                                   |  |  |  |  |
|     |                                                                                              |                                                                                   |                                                                              |                                                   |  |  |  |  |
|     |                                                                                              |                                                                                   |                                                                              |                                                   |  |  |  |  |
| Pum | np Stations: Influent , Spray Irrigation                                                     | Lagoon Storage:                                                                   | Sewage Treatment Facility:                                                   |                                                   |  |  |  |  |
| Des | ign Capacity: <u>125</u> GPM, <u>516</u> GPM                                                 | Volume: <u>6.4</u> MG                                                             | Annual Average Flow:                                                         | <u>.045150</u> MGD                                |  |  |  |  |
|     |                                                                                              | Freeboard: 24 inches                                                              | Design Hydraulic Capacity:                                                   | <u>.125</u> MGD                                   |  |  |  |  |
|     |                                                                                              |                                                                                   | Design Organic Capacity:                                                     | 96 lb/day                                         |  |  |  |  |
| E.  | APPROVAL GRANTED BY THIS PERMIT IS                                                           | S SUBJECT TO THE FOLLOWING                                                        |                                                                              |                                                   |  |  |  |  |
| 1.  | New Permits: All construction, operations, its supporting documentation and ad               | and procedures shall be in accord<br>dendums dated, which are h                   | ance with the Water Quality Managereby made a part of this permit.           | gement Permit application dated                   |  |  |  |  |
|     | Renewal : All construction, operations and dated <u>11/10/2014</u> and its supporting docume | procedures shall be in accordance<br>entation and addendums dated                 | with the Water Quality Managemen<br>, which are hereby made a part of        | It Permit Amendment application f this amendment. |  |  |  |  |
|     | Except for any herein approved modification<br>Management Permit No dated                    | ons, all terms, conditions, supporti<br>_shall remain in effect.                  | ng documentation and addendums                                               | approved under Water Quality                      |  |  |  |  |
|     | Transfers: Water Quality Management Per part of this transfer.                               | mit No dated and co                                                               | nditions, supporting documentation                                           | and addendums are also made                       |  |  |  |  |
| 2.  | Permit Conditions Relating to Sewerage are                                                   | attached and made part of this per                                                | nit.                                                                         |                                                   |  |  |  |  |
| 3.  | Special Conditions I - XVI are attached and                                                  | made part of this permit.                                                         |                                                                              |                                                   |  |  |  |  |
| F.  | THE AUTHORITY GRANTED BY THIS PER                                                            | RMIT IS SUBJECT TO THE FOLLO                                                      | WING FURTHER QUALIFICATION                                                   | S:                                                |  |  |  |  |
| 1.  | If there is a conflict between the application shall apply.                                  | or its supporting documents and am                                                | endments and the attached condition                                          | ons, the attached conditions                      |  |  |  |  |
| 2.  | Failure to comply with the rules and regulation by the issuance of this permit.              | ons of DEP or with the terms or con                                               | ditions of this permit shall void the a                                      | uthority given to the permittee                   |  |  |  |  |
| 3.  | This permit is issued pursuant to the Clean permit shall not relieve the permittee of any    | Streams Law Act of June 22, 193 responsibility under any other law.               | 7, P.L. 1987, as amended 35 P.S.                                             | §691.1 et seq. Issuance of this                   |  |  |  |  |
| 4.  | This permit shall expire on The p expiration date.                                           | ermittee shall submit an applicatio                                               | n to renew the permit no later that                                          | an 180 days prior to the permit $0$               |  |  |  |  |
|     | PERMIT ISSUED:                                                                               | BY:                                                                               | Jet. fr                                                                      | ald                                               |  |  |  |  |
|     | April 20, 2015                                                                               | דודו בי                                                                           | Jenifer L. Fields, P.E.<br>Clean Water Program Mana                          | ger                                               |  |  |  |  |
|     |                                                                                              |                                                                                   | Southeast Regional Office                                                    | 301                                               |  |  |  |  |
|     |                                                                                              |                                                                                   |                                                                              |                                                   |  |  |  |  |

.



#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF WATER STANDARDS AND FACILITY REGULATION

# SPECIAL CONDITIONS Water Quality Management Permit No. 1505419

Pocopson Township, Chester County

# This permit is subject to the following Special Condition(s):

- I. Effective disinfection to control disease producing organisms shall be the production of an effluent which will contain a concentration not greater than 200/100 ml of Fecal Coliform organisms, as a geometric average value not greater than 1,000/100 ml of these organisms in more than 10 percent of the samples tested.
- **II.** Copies of monthly Discharge Monitoring Reports must be submitted within 28 days of the end of the monitoring period to:

Department of Environmental Protection Southeast Regional Office Water Management 2 East Main Street Norristown, PA 19401

### III. Discharge Limitations and Monitoring Requirements

Effluent from the sewage treatment plant shall be sampled from a designated sampling point and shall be limited at all times as follows:

|                   | Discha             | rge Limitati               | Monitoring Requiremen    |                          |                     |  |  |
|-------------------|--------------------|----------------------------|--------------------------|--------------------------|---------------------|--|--|
| Parameter         | Average<br>Monthly | Average<br>Weekly          | Instantaneous<br>Maximum | Measurement<br>Frequency | Sample<br>Type      |  |  |
| Flow (mgd)        | .045150            |                            |                          | Continuous               | Recorded            |  |  |
| CBOD <sub>5</sub> | 25                 |                            | 50                       | 1/Month                  | 8 Hour<br>Composite |  |  |
| Total Nitrogen*   | Monitor/<br>Report |                            | Monitor/<br>Report       | 1/Month                  | 8 Hour<br>Composite |  |  |
| Suspended         |                    |                            | <u> </u>                 |                          | 8 Hour              |  |  |
| Solids            | 30                 | 60                         |                          | l/Month                  | Composite           |  |  |
| Fecal Coliform    | _ 200/100          | ml as geome                | tric average             | 1/Month                  | Grab                |  |  |
| рН                | Within limits      | of 6.0 to 9.0<br>all times | 1/Month                  | Grab                     |                     |  |  |

\* Total Nitrogen = Total Kjeldahl Nitrogen + Nitrite (NO<sub>2</sub>) + Nitrate (NO<sub>3</sub>)

Additional treatment requirements include the satisfactory disposal of sludge and the reduction of quantities of oils, greases, acids, alkalis, toxic, taste and odor producing substances, inimical to the public interest to levels which will not pollute the receiving waters

# IV. Groundwater Monitoring Requirements

The permittee shall effectively monitor the quality of the groundwater. The parameters to be tested, and frequency of analysis and other monitoring requirements shall be as follows:

- Quarterly analysis of groundwater sampled at groundwater monitoring wells MW-1, MW-2, MW-3, MW-4, MW-5R, MW-6, and MW-7 shall consist of: static water level, sampling depth, turbidity, pH, chloride, total phosphorus, ammonia nitrogen, nitrate nitrogen, nitrite nitrogen, total dissolved solids, fecal coliform, and alkalinity.
- Annual analysis of groundwater sampled at all groundwater monitoring wells shall consist of: total solids, settleable solids, total iron, total manganese, sulfate, and sodium.
- Groundwater elevations must be measured prior to purging the groundwater monitoring well.
- Before collection of the groundwater sample, a groundwater monitoring well shall be properly purged and allowed to recover to at least 90 percent of the well volume that was present prior to purging.
- All groundwater samples shall be collected from within the top five feet of the water elevation within the well column.

# V. Groundwater Monitoring Data Reporting Requirements

All groundwater data shall be submitted to DEP **<u>annually</u>** and be in <u>**report form**</u>. The report shall be due to DEP within 28 days of the end of your annual permit cycle. For example, if your permit was issued on March 4, 2008, then your annual report is due by April 28, 2009. The annual report shall be mailed under separate cover and addressed to:

Department of Environmental Protection Southeast Regional Office Clean Water Program 2 East Main Street Norristown, PA 19401

Attention: Hydrogeologist Planning Section The annual groundwater monitoring report shall include the following information:

- 1. General Information
  - A. Facility name
  - B. Facility permit number
  - C. Facility location (including municipality and county)
  - D. Facility contact information:
  - permittee name, address, and telephone number
  - contact name and title
  - facility operator name, address, and telephone number
  - facility consultant name, address, and telephone number
- 2. Site Information
  - A. Brief narrative, including site limitations.
  - B. Soil type and bedrock lithology beneath the absorption areas.
  - C. Site drawings showing general location of absorption fields and monitoring wells. Drawings must show site topography.
- 3. Construction details of each groundwater monitoring well shall include:
  - A. Well depth.
  - B. Casing depth.
  - C. Static water levels.
  - D. Surface elevation.
  - E. Well log.
  - F. Water bearing zones.
  - G. Top of casing elevation.
  - H. Ground surface elevation.
- 4. Site History
  - A. Date site 537 approval issued.
  - B. Date site permit issued.
  - C. Date groundwater monitoring began.
  - D. Date treatment plant started operation.
  - E. Date land application of treated wastewater started.

- F. Date of any additional permit actions and description of actions (e.g., waiver of special conditions or anything else which may impact the groundwater monitoring program contained within this permit). Include copy of any correspondence in correspondence section.
- G. Date and description of any enforcement action.
- H. Date and description of any facility event which impacted any part of the groundwater monitoring program whether or not it resulted in an enforcement action (e.g., collapse of groundwater monitoring well, etc.).
- 5. Site Data
  - A. Average effluent flow for the year covered by the report.
  - B. In tabular form, the following information needs to be provided for at least the last 5 years of system operation:
    - i. Date of sampling.
    - ii. Groundwater elevation.
    - iii. Sampling depth.
    - iv. Identification of upgradient and downgradient wells.
    - v. The results of the analysis of the samples.
  - C. Background groundwater data generated prior to system start-up.
- 6. Comprehensive Groundwater Evaluation (CGE)

As part of the facility's 5-year permit renewal application, the permittee shall submit a report that is a result of a comprehensive evaluation of the systems impact on groundwater. A Registered P.G. must identify any trends which may pose a threat to human health or certify that none are present. Should adverse impacts to groundwater be identified, the permittee needs to recommend actions to address the potential threat.

### VI. Sprayfield Weekly Maximum Hydraulic Loadings

- A. Effluent flows to each sprayfield must be consistent with the maximum hydraulic loading requirements of the following table, which provides the weekly maximum irrigation gallons for each zone.
- B. The permittee shall include with the monthly Discharge Monitoring Report a Supplemental Land Application System Form 3800-FM-BPNPSM0449 that indicates the gallons per day discharged to each of the zones.
- C. At no time shall the application rate exceed 0.25 inch per hour.

|       | Zone 1      | Zone 2     | Zone 3      |
|-------|-------------|------------|-------------|
| Month | 3.78 ac     | 3.29 ac    | 1.98 ac     |
|       | Grass Field | Wooded     | Grass Field |
|       | (gal/wk)    | (gal/wk)   | (gal/wk)    |
| Jan   | 51,318      | 44,666     | 26,881      |
| Feb   | 51,318      | 44,666     | 26,881      |
| Mar   | 153,954     | 133,997    | 80,643      |
| Apr   | 153,954     | 133,997    | 80,643      |
| May   | 205,272     | 178,663    | 107,524     |
| Jun   | 256,590     | 223,328    | 134,404     |
| Jul   | 256,590     | 223,328    | 134,404     |
| Aug   | 256,590     | _133,997 _ | 134,404     |
| Sep   | _ 256,590   | 111,664    | 134,404     |
| Oct   | 112,900     | 98,265     | 59,138      |
| Nov   | 102,636     | 58,065     | • 53,762    |
| Dec   | 51,318      | 44,666     | 26,881      |

# MAXIMUM WEEKLY HYDRAULIC LOADINGS IN GALLONS PER ZONE

### VII. Sprayfield Operation

Į

- A. Application of the effluent shall be managed to prevent runoff from the permitted spray fields and ponding of effluent.
- B. No irrigation is to occur on frozen soils.
- C. No irrigation is to occur if more than 0.5 inches of rainfall has fallen during the previous 24 hours.
- D. The operator is to assess soil moisture content and soil/vegetation conditions frequently. It is the operator's responsibility to inspect the fields on a routine basis to prevent and/or address damage to the irrigation fields.
- E. The spray fields shall be maintained to ensure that vegetation does not interfere with or impair proper operation of the spray heads.
- F. All spray fields must be managed to maintain a perennial grass or forested cover. Several times each growing season, grass fields must be harvested by cutting, with clippings removed off the spray fields. Forested fields should be maintained to remove dead and fallen wood during periods that would minimize soil compaction by equipment.
- G. Sprayfield vegetation and soils must be managed in accordance with an approved annual Crop Management Plan (CMP). Upon notification by the Department, the permittee shall prepare and submit an updated CMP for review and approval.

### XIII. Storage Lagoon Management

At all times, the wastewater levels in the lagoon shall be managed within the low and high water level parameters as designed. The water level shall be controlled so that a freeboard of at least 24 inches is maintained at all times. The Department must be notified if the water level is anticipated to enter freeboard.

- **IX.** If there is a change in ownership of this facility or in permittee name, an application for transfer of permit must be submitted to the Department.
- X. The authorization to discharge contained in this permit shall expire in five years from the date of issuance, or reissuance. Application for renewal of this permit, or notification of intent to cease discharging by the expiration date, must be submitted to the Department at least 180 days prior to the above expiration date (unless permission has been granted by the Department for submission at a later date). In the event that a timely and complete application for renewal has been submitted and the Department is unable, through no fault of the permittee, to reissue the permit before the above expiration date, the terms and conditions of this permit will be automatically continued and will remain fully effective and enforceable pending the grant or denial of the application for permit renewal. The application for renewal shall be submitted on the appropriate Water Quality Management Part II Application forms and shall include a tabulated summary of all groundwater monitoring data for the previous five years, including a discussion of groundwater quality trends resulting from this discharge.
- XI. Unless, otherwise, specified in this permit, the test procedures for analysis of pollutants shall be those contained in 40 C.F.R. Part 136, or alternative test procedures approved pursuant to that Part. For the analysis of CBOD5, consult Section 507 of Standard Methods.
- XII. If the permittee monitors any pollutant more frequently than the permit requires, the results of this monitoring shall be incorporated, as appropriate, into the calculations used to report self-monitoring data on the DMR.

# XIII. Recording of Results

For each measurement or sample taken pursuant to the requirements of this permit, the permittee shall record the following information:

- 1. The exact place, date, and time of sampling or measurement.
- 2. The person(s) who performed the sampling or measurement.
- 3. The dates the analyses were performed.
- 4. The person(s) who performed the analyses.
- 5. The analytical techniques or methods used.
- 6. The results of such analyses.

# XIV. Recordkeeping and Retention

The permittee shall keep records of operation and efficiency of the wastewater treatment facilities. All records of monitoring activities and results (including all original strip chart recordings for continuous monitoring instrumentation and calibration and maintenance records), copies of all reports required by this permit, and records of all data used to complete the application for this permit shall be retained by the permittee for three (3) years. The three-year period shall be extended as requested by the Department.

# XV. Laboratory Certification

The Environmental Laboratory Accreditation Act of 2002 requires that all environmental laboratories register with the Department of Environmental Protection. An environmental laboratory is any facility engaged in the testing or analysis of environmental samples required by a statute administered by the Department relating to the protection of the environment or of public health, safety, and welfare.

**<u>VXI.</u>** The facility shall be operated under the charge of a responsible operator(s) certified under the Pennsylvania Water and Wastewater Systems Operations Certification Act (Act 11). The operator(s) shall comply with the continuing education requirements required under the regulations and guidelines related to Act 11.

JOUU-FIN-BENESMU402 J/2012

Pennsylvania

PRIMARY FACILITY NAME/ADDRESS

#### COMMONVEAL IN OF PENNSTLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF POINT AND NON-POINT SOURCE MANAGEMENT NATIONAL POLLUTANT DISCHARGE ELIMINATION SYSTEM (NPDES) DISCHARGE MONITORING REPORT (DMR)

| NAME             | Sheeder 7                                        | Fract Subdivision STP                                                                                        |                                                                                                                                                                 |                                                             |                                                                 |                                                             |                     |             |                 |          |                    |          |                        |           |              |                 |               |              |
|------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------|---------------------|-------------|-----------------|----------|--------------------|----------|------------------------|-----------|--------------|-----------------|---------------|--------------|
| CLIENT           | Pocopson Township Chester County 1505419         |                                                                                                              |                                                                                                                                                                 | 9                                                           | Sprayfield Zones 1,2 and 3 Rep                                  |                                                             |                     |             | eporting        | Frequ    | ency:              |          |                        |           |              |                 |               |              |
| ADDRESS          | PO Box 9                                         | 99                                                                                                           | [                                                                                                                                                               | PERM                                                        |                                                                 | MBER                                                        | OUTFALL NUMBER DMF  |             |                 | MR Effe  | AR Effective From: |          |                        |           |              |                 |               |              |
|                  | Chester, F                                       | PA 19016                                                                                                     |                                                                                                                                                                 |                                                             |                                                                 |                                                             |                     |             |                 |          | D                  | MR Effe  | ctive T                | 0:        |              |                 |               |              |
| LOCATION         | Pocopson                                         | Township                                                                                                     |                                                                                                                                                                 |                                                             |                                                                 | MONITO                                                      | ring pe             | ERIOD       |                 |          | Р                  | ermit Ex | pires:                 |           | A            | pril 3          | 0 202         | 20           |
|                  | Chester C                                        | county                                                                                                       |                                                                                                                                                                 | YEAR                                                        | мо                                                              | DAY                                                         |                     | YEAR        | мо              | DAY      | / P                | ermit Ap | ermit Application Due: |           |              | November 1 2010 |               |              |
| WATERSHED        | <br>3-H                                          |                                                                                                              |                                                                                                                                                                 |                                                             |                                                                 |                                                             | то                  |             |                 |          |                    | Che      | sk Here                | e if No D | ischarg      | 3               |               | my Ly        |
|                  | <u> </u>                                         |                                                                                                              |                                                                                                                                                                 |                                                             | <u>.                                    </u>                    | ·                                                           |                     |             |                 |          | N                  | OTE: Re  | ad Ins                 | tructions | before       | completin       | g this fo     | orm          |
|                  |                                                  |                                                                                                              | QUAN                                                                                                                                                            | ITITY OR L                                                  | OADIN                                                           | G                                                           |                     | QU          | ALITY OR        | CONC     | ENTRATIO           | DN       |                        | NO.       | FREC         |                 | SA            | MPI F        |
| PARAME           | TER                                              |                                                                                                              | Average                                                                                                                                                         | Maxim                                                       | ium                                                             | UNITS                                                       | Avera<br>Mont       | age<br>thly | Averag<br>Weekl | je<br>ly | Inst.<br>Maximum   |          | NITS                   | EX        | OF AI        | ALYSIS          | T             | YPE          |
|                  |                                                  | SAMPLE<br>MEASUREMENT                                                                                        |                                                                                                                                                                 |                                                             |                                                                 | -                                                           | XX                  | « _         | XXX             | <        | xxxx               |          |                        |           |              |                 |               |              |
| FLOW .           |                                                  | PERMIT .<br>REQUIREMENT                                                                                      | .045150                                                                                                                                                         | MONIT<br>REPC                                               | OR/<br>NRT                                                      | MGD                                                         | xx                  | x           | XXXX            |          | XXXX               | x        | xxx                    |           | CONTINOUS    |                 | ME            | TER .        |
|                  |                                                  | SAMPLE<br>MEASUREMENT                                                                                        | <u>xxxx</u>                                                                                                                                                     | XXXX                                                        |                                                                 |                                                             |                     | XXXX        |                 |          |                    |          |                        |           |              |                 |               |              |
| CBOD5            |                                                  | PERMIT<br>REQUIREMENT                                                                                        | xxxx                                                                                                                                                            | xxx                                                         | x                                                               | XXXX                                                        | 25                  | 5           | XXXX            | (        | 50                 | N        | G/L                    |           | 1/MONTH COM  |                 | HR<br>POSITE  |              |
|                  |                                                  | SAMPLE<br>MEASUREMENT                                                                                        | XXXX                                                                                                                                                            | XXX                                                         | x                                                               |                                                             |                     |             | XXX             |          |                    |          |                        |           | <br>         |                 |               |              |
| TSS              |                                                  | PERMIT<br>REQUIREMENT                                                                                        | XXXX                                                                                                                                                            | xxx                                                         | x                                                               | xxxx                                                        | 30                  | >           | XXXX            | (        | 60                 | N        | G/L                    |           | 1/MONTH COMP |                 | BHR<br>POSITE |              |
|                  |                                                  | SAMPLE<br>JMEASUREMENT                                                                                       | XXXX                                                                                                                                                            | XXXX                                                        |                                                                 | xxxx                                                        |                     |             |                 |          |                    | _        |                        |           |              |                 |               |              |
| TOTAL NITRO      | GEN                                              | PERMIT<br>REQUIREMENT                                                                                        | XXXX                                                                                                                                                            | XXX                                                         | x                                                               | XXXX                                                        | REPO                |             | XXXX            | (        | REPORT             | N N      | G/L                    |           | , 1/M        | ONTH            | 8<br>Corr     | HR<br>posite |
|                  |                                                  | SAMPLE<br>MEASUREMENT                                                                                        | XXXX                                                                                                                                                            | XXX                                                         | x                                                               |                                                             |                     |             | XXXX            |          | XXXX               |          |                        |           |              |                 |               |              |
| FECAL COLIFC     | AL COLIFORM PERMIT XXXX XXXX MEAN XXXX MEAN XXXX |                                                                                                              | XXXX                                                                                                                                                            | <                                                           | XXXX                                                            |                                                             | #/100ml             |             | 1/M             | ONTH     | GRAB               |          |                        |           |              |                 |               |              |
|                  |                                                  | SAMPLE<br>MEASUREMENT                                                                                        | XXXX                                                                                                                                                            | XXX                                                         | x                                                               |                                                             |                     |             | xxx             | <        |                    |          |                        |           |              |                 |               |              |
| ρH               |                                                  | PERMIT                                                                                                       | XXXX                                                                                                                                                            | XXX                                                         | x                                                               | xxxx                                                        | 6.0<br><u>MININ</u> | 0<br>//UM   | XXXX            |          | 9.0<br>MINIMUN     | 1        | SU                     |           | 1 <u>/</u> M | ONTH            | GRAB          |              |
| NAME/TITLE PF    | RINCIPAL EX                                      |                                                                                                              | I certify under penalty of<br>direction or supervision is<br>that qualified personnel                                                                           | law that this docu<br>n accordance with<br>nather and avaiu | ment was p<br>n a system d<br>ate the infor                     | repared under my<br>lealgned to assure<br>mation submitted. |                     |             |                 |          |                    | TELEPHON |                        | PHONE     |              |                 | DATE          |              |
|                  |                                                  |                                                                                                              | Based on my inquiry of t<br>or those persons directly<br>information submitted is,                                                                              | he person or per-<br>responsible for<br>to the best of m    | sons who m<br>gathering th<br>ly knowledge                      | e and belief, true,                                         |                     |             |                 |          |                    |          |                        |           |              |                 |               |              |
| TYPED OR PRINTED |                                                  | accurate and complete,<br>for submitting false info<br>imprisonment for knowin<br>to unsworn falsification). | to. I am aware that there are significant penalties,<br>information, including the possibility of fine and<br>wing violations. See 18 Pa. C.S. § 4904 (relating |                                                             | SIGNATURE OF PRINCIPAL EXECUTIVE<br>OFFICER OR AUTHORIZED AGENT |                                                             | AF                  | EA<br>DE    | NUME            | BER      | YEAR               | мо       | DAY                    |           |              |                 |               |              |
|                  |                                                  |                                                                                                              |                                                                                                                                                                 |                                                             |                                                                 |                                                             |                     |             |                 |          |                    |          |                        | _         |              |                 |               |              |

COMMENTS (Report all violations on the "Non-Compliance Reporting Form")



COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF POINT AND NON-POINT SOURCE MANAGEMENT

# INSTRUCTIONS FOR COMPLETING DISCHARGE MONITORING REPORTS (DMRs)

#### <u>General</u>

One or more Discharge Monitoring Reports (DMRs) are attached to your permit for reporting the results of selfmonitoring activities as required by your permit. You should make copies of the DMRs for your ongoing use, unless you elect to participate in the Department of Environmental Protection's (DEP's) electronic DMR (eDMR) program (see <u>www.dep.state.pa.us/edmr</u>).

- Reporting frequencies will vary depending on the monitoring frequencies listed in your permit, and are generally monthly, quarterly semi-annually and annually.
- Your reports must be <u>received</u> by DEP on the 28<sup>th</sup> day of the month following the end of the reporting period, unless otherwise specified in Part C of your permit.
- Your permit may require submission of DMRs to other agencies, including the U.S. Environmental Protection Agency (EPA).
- If you receive DMRs in the mail from EPA, please discontinue use of DMR Form No. 3800-FM-BPNPSM0462 and begin using EPA's DMRs.
- DMRs will generally include pre-populated information for permittee name and address, facility location, permit number, outfall number, permit expiration date, parameter names, and permit requirements. If you identify any errors on a DMR issued by DEP, please contact the DEP regional office that issued your permit. If you identify any errors on a DMR issued by EPA, please contact DEP's Central Office at 717-787-6744.
   DO NOT make changes to DMRs issued to you.
- You may use computer-generated replicas of Form No. 3800-FM-BPNPSM0462 or of EPA's DMR if you receive prior approval from DEP and EPA. DEP reserves the right to instruct you to discontinue the submission of computer-generated DMRs if the permit requirements you entered on the form are inaccurate.

### Instructions

- 1. Enter statistical results into each blank field below the "VALUE" column headers. Results must be reported in the same units shown on the DMR.
- Sum the total number of excursions or exceedances of permit limits across the row for each parameter and enter the value into the "NO. EX" field. For example, if the permit contains limits of 6.0 S.U. (Minimum) and 9.0 S.U. (Maximum) for pH, and the Minimum and Maximum results are 5.9 S.U. and 9.1 S.U., respectively, enter "2" into the "NO. EX" field.
- 3. Report the actual sampling frequency and sample type utilized during the reporting period in the fields corresponding to "Frequency of Analysis" and "Sample Type", respectively.
- 4. Type the name of the principal executive officer (or an authorized agent designated by a principal executive officer) who is taking responsibility for the report, sign the report (should be in ink), enter the telephone number of the responsible individual, and record the date that the report was signed. Mail only original, signed copies of DMRs.
- 5. In the Comments section at the bottom of the DMR, you may write a brief summary of violations in this section; however, DEP requests that <u>all</u> violations during the monitoring period be reported in more detail on DEP's **Non-Compliance Reporting Form** (3800-FM-BPNPSM0440) and be submitted as an attachment to the DMR. Other uses of the Comments Section include explanations of attachments to the DMR, explanations for the unavailability of data, and brief summaries of issues that have affected operations or effluent quality during the monitoring period. Always consider attaching a letter or separate document to explain your situation in more detail.

#### No Discharge or No Data Available

If there was <u>no discharge at all from an outfall</u> during the monitoring period, check the "No Discharge" box on the top of the DMR. Complete the information above and below the table and mail the DMR to the appropriate agencies. Be sure to sign and date the DMR.

If there was no discharge of a specific parameter (e.g., if a chlorine limit is in the permit but chlorine was not used for disinfection during the entire reporting period), or if data are not available for a specific parameter for the entire reporting period, <u>do not</u> leave the DMR blank. Instead, report one of the following No Data Indicator (NODI) codes that apply to your situation in the appropriate value field, and **provide an explanation as an attachment to the DMR**:

- **A** Use if you are exempted from monitoring the parameter because of a General Permit condition.
- **E** Use if <u>all samples or results</u> are not available for the reporting period due to equipment failure or because sample collection was overlooked or samples could not be collected for the parameter.
- **GG** Use if your permit requires sample collection and analysis only under certain conditions and those conditions were not met during the reporting period (e.g., report chlorine results only when chlorination system is used).
- **FF** Other: use if there is any reason for the absence of data that is not covered by those above.

If you have at least one result for a parameter, the value should be reported and not a NODI code.

#### **Calculations**

The following explains how to calculate statistical values that are commonly required by permits:

**Monthly Average** – For Loading (lbs/day), sum the total of daily loadings and divide by the number of samples during the month. To calculate the daily loading, multiply the daily concentration (mg/l) by the flow (MGD) on the date of sampling and a conversion factor of 8.34. For Concentration, sum the total of daily concentrations and divide by the number of samples.

**Weekly Average** – For Loading (lbs/day), sum the total of average daily loadings during each week of the reporting period (beginning on a Sunday and ending on a Saturday) and divide by the number of samples during the week. For Concentration, sum the total of daily concentrations each week and divide by the number of samples. Report the <u>maximum</u> weekly average on the DMR.

**Maximum Daily ("Daily Max")** – Report the maximum concentration or load measured during a 24-hour period during the reporting period; if multiple measurements are taken daily, include all data in the analysis.

**Instantaneous Maximum ("IMAX")** – Report the maximum result obtained by a grab sample for a specific pollutant over the entire reporting period covered by a DMR.

**Instantaneous Minimum ("Minimum")** – Report the minimum result obtained by a grab sample for a specific pollutant over the entire reporting period covered by a DMR.

**Total Monthly Load (Ibs)** – Sum the total of average daily loadings, divide by the number of samples during the month, and multiply by the number of days in the month.

**Geometric Mean** – Report the average of a set of *n* sample results given by the *n*th root of their product. If any result is zero (0), substitute 1 for the calculation. For example, five samples were analyzed with the following results: 20, 300, 400, 500, and 0. The calculation of geometric mean is as follows (note that you will need to use the power function on a calculator):

$$\sqrt[5]{20 \cdot 300 \cdot 400 \cdot 500 \cdot 1} = \sqrt[5]{1,200,000,000} = (1,200,000,000)^{1/5} = 65$$

#### Non-Detect Data

#### **Conventional and Toxic Parameters**

For calculating average values of data sets in which there are some "detections" (results at or above the laboratory reporting limit) and some "non-detect" data (results reported below the laboratory reporting limit), use the reporting limit for non-detect data. In other words, ignore the less than (<) symbol for statistical calculations and include the < symbol with the statistical result if there is at least one non-detect result in the data set. For example, four samples were analyzed with the following results: < 1.0, 2.0, < 1.0, and 1.0. The average statistical result is < 1.3.

Where the permit includes an effluent limitation for a parameter that is less than the most sensitive detection limit available, and the laboratory reports a value at or below the lowest level specified by the permit, you may use zero (0) in the calculation in lieu of the reporting limit, if the parameter is identified in 25 Pa. Code Chapter 16, Appendix A, Tables 2A and 2B. In general, parameters with limitations that are less than the most sensitive detection limit will be identified in Part C of the permit, if applicable.

#### Bacteria Parameters

Report all "non-detect" (e.g., < 2) and "too numerous to count" (TNTC) (e.g., > 2,000) results on DMR supplemental forms as reported by the laboratory. Do not report "TNTC" on supplemental forms, but instead report a value qualified with the">" symbol. Where a data set includes one or more "non-detect" and/or TNTC results, calculate the geometric mean by ignoring qualifying symbols, but report the value with the symbol. If a data set includes both ">" and "<" qualifiers, the ">" qualifier takes precedence for reporting. For all "non-detect" values, specify in the Comments section of the DMR the maximum volume filtered at the laboratory.

*Example 1* – For results are determined, < 2, 10, 20, and 30. The geometric mean should be reported as <  $(2 \cdot 10 \cdot 20 \cdot 30)^{0.25} = < 10$ . Specify the maximum volume filtered for the < 2 result in the DMR Comments.

*Example* 2 – Three results are determined, < 2, 1,000, and > 2,000. The geometric mean should be reported as > (2  $\cdot$  1,000  $\cdot$  2,000<sup>0.333</sup> = > 158.

#### Rounding and Precision

Statistical values reported on the DMR should be rounded to the same number of decimal places as the limit for the parameter as set forth in the permit. If the permit does not contain a limit but requests monitoring only, statistical values for concentration results should be rounded to the maximum number of decimal places in the data set as reported by the laboratory or the instrument used for analysis. If mass loads must be reported and there is no limit, round statistical values to the nearest whole number, unless the calculated number is less than one, in which case the value should be rounded to one significant figure (e.g., 0.1, 0.05, etc.). If the number you are rounding is followed by 5, 6, 7, 8, or 9, round the number up, otherwise round down.

The documents "Discharge Monitoring Reports Overview and Summary" (3800-BK-DEP3047) and "Management of Non-Detect Results for Discharge Monitoring Reports" (3800-FS-DEP4262) contain more information and are incorporated by reference. These documents are available on DEP's website.



#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF POINT AND NON-POINT SOURCE MANAGEMENT

### PERMIT CONDITIONS RELATING TO SEWERAGE

For use in Water Quality Management Permits

#### (Check boxes that apply)

| Ger         | ieral |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | 1.    | The Department of Environmental Protection (DEP) considers the licensed Professional Engineer whose seal is affixed to the design documents to be fully responsible for the adequacy of all aspects of the facility design.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\boxtimes$ | 2.    | The permittee shall adopt and enforce an ordinance requiring the abandonment of privies, cesspools or similar receptacles for human waste and onlot sewage disposal systems on the premises of occupied structures accessible to public sewers. All such structures must be connected to the public sewers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 3.    | The outfall sewer or drain shall be extended to the low water mark of the receiving body of water. Where necessary to ensure proper mixing and waste assimilation, an outfall sewer or drain may be extended with appurtenances below the low water mark and into the bed of a navigable stream provided that the permittee has secured an easement, right-of-way, license or lease from DEP in accordance with Section 15 of the Dam Safety and Encroachments Act, the Act of November 26, 1978, P.L. 1375, as amended.                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | 4.    | The approval is specifically made contingent on the permittee acquiring all necessary property rights, by easement or otherwise, providing for the satisfactory construction, operation, maintenance and replacement of all sewers or sewerage structures in, along or across private property with full rights of ingress, egress and regress.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|             | 5.    | When construction of the approved sewerage facilities is completed and before they are placed in operation, the permittee shall notify DEP in writing so that a DEP representative may inspect the facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | 6.    | The approval of the plans, and the authority granted in this permit, if not specifically extended, shall cease<br>and be null and void 2 years from the issuance date of this permit unless construction or modification of the<br>facilities covered by this permit has begun on or before the second anniversary of the permit date.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | 7.    | If, at any time, the sewerage facilities covered by this permit create a public nuisance, including but not limited to, causing malodors or causing environmental harm to waters of the Commonwealth, DEP may require the permittee to adopt appropriate remedial measures to abate the nuisance or harm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | 8.    | If, after the issuance of this permit, DEP approves a municipal sewage facilities official plan or an amendment<br>to an official plan under Act 537 (Pennsylvania Sewage Facilities Act, the Act of January 24, 1966, P.L. 1535<br>as amended) in which sewage from the herein approved facilities will be treated and disposed of at other<br>planned facilities, the permittee shall, upon notification from the municipality or DEP, provide for the<br>conveyance of its sewage to the planned facilities, abandon use and decommission the herein approved<br>facilities including the proper disposal of solids, and notify DEP accordingly. The permittee shall adhere to<br>schedules in the approved official plan, amendments to the plan, or other agreements between the permittee<br>and municipality. This permit shall then, upon notice from DEP, terminate and become null and void and<br>shall be relinquished to DEP. |
|             | 9.    | This permit does not relieve the permittee of its obligations to comply with all federal, interstate, state or local laws, ordinances and regulations applicable to the sewerage facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | 10.   | This permit does not give any real or personal property rights or grant any exclusive privileges, nor shall it be construed to grant or confirm any right, easement or interest in, on, to or over any lands which belong to the Commonwealth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | 11.   | The authority granted by this permit is subject to all effluent requirements, monitoring requirements and other conditions as set forth in NPDES Permit No. and all subsequent amendments and renewals. No discharge is authorized from these facilities unless approved by an NPDES Permit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Cor         | stru  | ction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\boxtimes$ | 12.   | This permit is issued under the authorization of The Clean Streams Law and 25 Pa. Code Chapter 91. The permittee shall obtain all necessary permits, approvals and/or registrations under 25 Pa. Code Chapters 102, 105 and 106 prior to commencing construction of the facilities authorized by this permit, as applicable. The permittee should contact the DEP office that issued this permit if there are any questions concerning the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

applicability of additional permits.

- 13. The facilities shall be constructed under the supervision of a Pennsylvania licensed Professional Engineer in accordance with the approved reports, plans and specifications.
- 14. A Pennsylvania licensed Professional Engineer shall certify that construction of the permitted facilities was completed in accordance with the application and design plans submitted to DEP, using "Post Construction Certification" form (3800-PM-WSFR0179a). It is the permittee's responsibility to ensure that a Professional Engineer is on-site to provide the necessary oversight and/or inspections to certify the facilities. The certification must be submitted to DEP before the facility is placed in operation. As-built drawings, photographs (if available) and a description of all deviations from the application and design plans must be submitted to DEP within 30 days of certification.
- 15. Manhole inverts shall be formed to facilitate the flow of the sewage and to prevent the stranding of sewage solids. The manhole structure shall be built to prevent undue infiltration, entrance of street wash or grit and provide safe access to facilitate manhole maintenance activities.
- 16. The local Waterways Conservation Officer of the Pennsylvania Fish and Boat Commission (PFBC) shall be notified when the construction of any stream crossing and/or outfall is started and completed. A written permit must be secured from the PFBC if the use of explosives in any waterways is required and the permittee shall notify the local Waterways Conservation Officer when explosives are to be used.

#### **Operation and Maintenance**

- ☑ 17. The permittee shall maintain records of "as-built" plans showing all the treatment facilities as actually constructed together with facility operation and maintenance (O&M) manuals and any other relevant information that may be required. Upon request, the "as-built" plans and O&M manuals shall be filed with DEP.
- 18. The sewers shall have adequate foundation support as soil conditions require. Trenches shall be back-filled to ensure that sewers will have proper structural stability, with minimum settling and adequate protection against breakage. Concrete used in connection with these sewers shall be protected from damage by water, freezing, drying or other harmful conditions until cured.
- 19. Stormwater from roofs, foundation drains, basement drains or other sources shall not be admitted directly to the sanitary sewers.
- 20. The approved sewers shall be maintained in good condition, kept free of deposits by flushing or other cleaning methods and repaired when necessary.
- 21. The sewerage facilities shall be properly operated and maintained to perform as designed.
- 22. The attention of the permittee is called to the highly explosive nature of certain gases generated by the digestion of sewage solids when these gases are mixed in proper proportions with air and to the highly toxic character of certain gases arising from such digestion or from sewage in poorly ventilated compartments or sewers. Therefore, at all places throughout the sewerage facilities where hazard of fire, explosion or danger from toxic gases may occur, the permittee shall post conspicuous permanent and legible warnings. The permittee shall instruct all employees concerning the aforesaid hazards, first aid and emergency methods of meeting such hazards and shall make all necessary equipment and material accessible.
- 23. An operator certified in accordance with the Water and Wastewater Systems Operator Certification Act of February 21, 2002, 63 P.S. §§1001, *et seq.* shall operate the sewage treatment plant.
- 24. The permittee shall properly control any industrial waste discharged into its sewerage system by regulating the rate and quality of such discharge, requiring necessary pretreatment and excluding industrial waste, if necessary, to protect the integrity or operation of the permittee's sewerage system.
- 25. There shall be no physical connection between a public water supply system and a sewer or appurtenance to it which would permit the passage of any sewage or polluted water into the potable water supply. No water pipe shall pass through or come in contact with any part of a sewer manhole.
- 26. All connections to the approved sanitary sewers must be in accordance with the official Act 537 Plan and, if applicable, a corrective action plan as contained in the approved Title 25 Pa. Code Chapter 94 Municipal Wasteload Management Annual Report.
- 27. Collected screenings, slurries, sludge and other solids shall be handled and disposed of in compliance with Title 25 Pa. Code Chapters 271, 273, 275, 283 and 285 (related to permits and requirements for land filling, land application, incineration and storage of sewage sludge), Federal Regulations 40 CFR 257 and the Federal Clean Water Act and its amendments.



#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF POINT AND NON-POINT SOURCE MANAGEMENT

# SUPPLEMENTAL LABORATORY ACCREDITATION FORM<sup>1</sup>

| Permittee Name: | DELCORA                                 |                 |                 |                            |
|-----------------|-----------------------------------------|-----------------|-----------------|----------------------------|
| Address:        | <u>PO Box 999</u><br><u>Chester, PA</u> | 19016           |                 |                            |
|                 | PERMIT                                  | NUMBER          | MONITO<br>Year/ | RING PERIOD<br>Month/Day   |
|                 | 1505                                    | 5419            |                 | то                         |
| PARAME          | TER                                     | ANALYSIS METHOD | LAB NAME        | LAB ID NUMBER <sup>2</sup> |
|                 |                                         |                 |                 |                            |
|                 |                                         |                 |                 |                            |
|                 |                                         |                 |                 |                            |
|                 |                                         |                 |                 |                            |
|                 |                                         |                 |                 |                            |
|                 |                                         |                 |                 |                            |
|                 |                                         |                 |                 |                            |
|                 |                                         |                 |                 |                            |
|                 |                                         |                 |                 |                            |
|                 |                                         |                 |                 |                            |

I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibly of fine and imprisonment for knowing violations.

Name/Title Principal Executive Officer

Phone:

Signature of Principal Executive Officer or Authorized Agent

Date:

<sup>1</sup> Submit this form with the first Discharge Monitoring Report (DMR) or Annual Report, where sample results are submitted to the Department for compliance purposes. You do not need to send this form to the Department again UNLESS there has been a change to the lab(s), parameter(s) or method(s) of analysis.

<sup>2</sup> For parameter(s) covered under accreditation-by-rule, submit the lab's registration number in lieu of an accreditation number.



#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF POINT AND NON-POINT SOURCE MANAGEMENT

### SUPPLEMENTAL REPORT LAND APPLICATION SYSTEMS

| Facility Name:              | Sheeder Tract Subdivision |                        | Month:                                                   | Year:        |
|-----------------------------|---------------------------|------------------------|----------------------------------------------------------|--------------|
| Municipality:<br>Watershed: | Pocopson Township<br>3-H  | County: <u>Chester</u> | Permit No.: <u>1505419</u><br>This permit will expire on | Outfall No.: |

|         | Zone: 1     | Zone: 2     | Zone: 3     | Zone:   | Zone:   | Precipitation |      | Average Ground<br>Temp Conditions |                    |
|---------|-------------|-------------|-------------|---------|---------|---------------|------|-----------------------------------|--------------------|
|         | Acres: 3.78 | Acres: 3.29 | Acres: 1.98 | Acres:  | Acres:  |               |      | Temp                              | Conditions         |
| Day     | Gallons     | Gallons     | Gallons     | Gallons | Gallons | Inches        | Туре | ۴F                                | (Wet, Dry, Frozen) |
| 1       |             |             |             |         |         |               |      |                                   |                    |
| 2       |             |             |             |         |         |               |      |                                   |                    |
| 3       |             |             |             |         |         | 1             |      |                                   |                    |
| 4       |             |             |             |         |         |               |      |                                   |                    |
| 5       |             |             |             |         |         |               | 1    |                                   |                    |
| 6       |             |             |             |         |         |               |      |                                   |                    |
| 7       |             |             |             |         |         |               |      |                                   |                    |
| 8       |             |             |             |         |         |               |      |                                   |                    |
| 9       |             |             |             |         |         |               |      |                                   |                    |
| 10      |             |             |             |         |         |               |      |                                   |                    |
| 11      |             |             |             |         |         |               |      | (                                 |                    |
| 12      |             |             |             |         |         |               | _    |                                   |                    |
| 13      |             |             |             |         |         |               |      |                                   |                    |
| 14      |             |             | 1           |         |         |               |      |                                   |                    |
| 15      |             |             | 1           |         |         |               |      |                                   |                    |
| 16      |             |             |             |         |         |               |      |                                   |                    |
| 17      |             |             |             |         |         |               |      |                                   |                    |
| 18      |             |             |             |         |         |               |      |                                   |                    |
| 19      |             |             |             |         |         |               |      | h                                 |                    |
| 20      |             |             |             |         | 1       |               |      |                                   |                    |
| 21      |             |             |             |         |         |               |      |                                   |                    |
| 22      |             |             |             |         |         |               |      |                                   |                    |
| 23      |             |             |             |         |         |               |      |                                   |                    |
| 24      |             |             |             |         |         |               |      |                                   |                    |
| 25      |             |             |             |         |         |               |      |                                   |                    |
| 26      |             |             |             |         |         |               |      |                                   |                    |
| 27      |             |             |             |         |         |               |      |                                   |                    |
| 28      |             |             |             |         |         |               |      |                                   |                    |
| 29      |             |             |             |         |         |               |      |                                   |                    |
| 30      |             |             |             |         |         |               |      |                                   |                    |
| 31      |             |             |             |         |         |               |      |                                   |                    |
| Totals: |             |             |             |         |         |               |      |                                   |                    |

I certify under penalty of law that this document was prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. See 18 Pa. C.S. § 4904 (relating to unsworn falsification).

Prepared By:

Signature:

Title:

Date:

3800-FM-BPNPSM0449 3/2012 Instructions



#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF POINT AND NON-POINT SOURCE MANAGEMENT

# INSTRUCTIONS FOR COMPLETING LAND APPLICATION SYSTEMS SUPPLEMENTAL REPORT

Use this form to document wastewater management activities for facilities with land application programs (e.g., surface or subsurface irrigation, drip irrigation, etc.) approved under a Water Quality Management (WQM) permit.

- 1. Enter Facility Name, Municipality, County, Watershed No., Month, Year, Permit No., Outfall No. (if applicable) and Permit Expiration Date (if applicable).
- 2. Next to each "Zone" heading (this may also be considered "land application site"), enter a unique identifier. For example, "1," "2," etc. or "Site 1," Site 2," etc. If the name of the zone or site is too long for the space provided, please use an abbreviation. Up to five zones can be accommodated on one report. If you have more than five zones, please use more sheets. Next to each "Acres" heading, enter the number of acres that receive effluent (e.g., "wettable acres").
- 3. Enter the daily volume (gallons) applied onto each zone.
- 4. Enter the average daily temperature at the land application site. An on-site temperature monitoring system is recommended, but other approaches may be acceptable, such as use of local airport data.
- 5. Enter the daily ground surface conditions (site-wide). Recommended entries include "dry," "wet," and "frozen," but others may be used.
- 6. Type the name of the person who prepared the form, the person's job title, and sign and date the form after reading the certification statement.

3800-FM-BPNPSM0439 Rev. 3/2014



#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF POINT AND NON-POINT SOURCE MANAGEMENT

# SUPPLEMENTAL REPORT - CHEMICAL ADDITIVES USAGE

| Facility Name: | Sheeder Tract Subdivision |                     |
|----------------|---------------------------|---------------------|
| Municipality:  | Pocopson Township         | <br>County: Chester |
| Watershed:     | 3-H                       | <br>                |

| Manth     |  |
|-----------|--|
| IVIOTITE. |  |
|           |  |

Year: \_\_\_\_\_ Outfall No.:

NPDES Permit No.: <u>1505419</u> Renewal application due <u>180 days</u> prior to expiration This permit will expire on

|         | Chemical Names |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         |     |
|---------|----------------|-----|---------|-----|---------|-----|---------|---------|---------|-----|---------------------------------------|-----|---------|-----------|---------|-----|
| Dav     |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         |     |
| Day     | gallons        | lbs | gallons | lbs | gallons | lbs | gallons | lbs     | gallons | lbs | gallons                               | lbs | gallons | lbs       | gallons | lbs |
| 1       |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         |     |
| 2       |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         |     |
| 3       |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         |     |
| 4       | 1              |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         |     |
| 5       |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           | _       |     |
| 6       |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         |     |
| 7       |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           | 1       |     |
| 8       |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         | J   |
| 9       | 1              |     |         |     |         | 1   |         |         |         |     | · · · · · · · · · · · · · · · · · · · |     |         |           |         |     |
| 10      |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         |     |
| 11      |                |     |         | -   |         |     |         |         |         |     |                                       |     |         |           | (       |     |
| 12      |                |     |         |     |         |     |         | -       |         |     |                                       |     |         |           |         |     |
| 13      |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         |     |
| 14      |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         |     |
| 15      |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         |     |
| 16      |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         |     |
| 17      |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         |     |
| 18      |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         |     |
| 19      |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         |     |
| 20      |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         |     |
| 21      |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         |     |
| 22      |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         |     |
| 23      |                |     |         |     |         |     |         | · · · · |         |     |                                       |     |         |           |         |     |
| 24      |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         |     |
| 25      |                |     |         |     |         |     |         |         |         | -   |                                       |     |         |           |         |     |
| 26      |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         |     |
| 27      |                |     |         |     |         | (   |         |         |         |     |                                       |     |         |           |         |     |
| 28      |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         |     |
| 29      |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         |     |
| 30      |                |     |         |     |         |     |         |         |         |     |                                       |     | ł       |           |         |     |
| 31      |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         |     |
| Average |                |     |         |     |         |     |         |         |         |     |                                       |     |         |           |         |     |
| Maximum |                |     |         |     |         |     |         |         |         |     |                                       |     |         | · · · · · |         |     |

I certify under penalty of law that this document was prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. See 18 Pa. C.S. § 4904 (relating to unsworn falsification).

| Pre | pared | By: |
|-----|-------|-----|
|     |       |     |

Signature:

Date:

Title:
3800-FM-BPNPSM0439 Rev. 3/2014 Instructions

> pennsylvania DEPARTMENT OF ENVIRONMENTAL PROTECTION

COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF POINT AND NON-POINT SOURCE MANAGEMENT



- 1. Enter Facility Name, Municipality, County, Watershed No., Month, Year, NPDES Permit No., Outfall No. and Permit Expiration Date. A separate sheet is required for each outfall that receives chemical additives.
- 2. In the spaces below the Chemical Names header in the table, enter the chemical additives used at the facility. If more than eight additives are used per Outfall, add more sheets.
- 3. Enter the daily usage rates for each chemical. Enter additives introduced in liquid form in the "gallons" column and additives in solid form (or if you have calculated the mass equivalent of liquid additives) under the "lbs" column.
- 4. Calculate and report the average and maximum usage rates for each chemical at the bottom of the table.
- 5. Type the name of the person who prepared the form, the person's job title, and sign and date the form after reading the certification statement.

3800-FM-BPNPSM0440 3/2012



#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF POINT AND NON-POINT SOURCE MANAGEMENT

#### **NON-COMPLIANCE REPORTING FORM**

Use this supplemental form to report all permit violations and any other non-compliance that may endanger health or the environment, in accordance with your permit. Complete all sections that apply. If you are reporting violations of permit limits, monitoring requirements or schedules that do not pose an immediate threat to health or the environment, you may attach this form to the Discharge Monitoring Report (DMR). Title 25, Pa. Code §§ 91.33 and 91.34 (regarding incidents causing or threatening pollution and activities utilizing pollutants, respectively), in part requires immediate notification by telephone to the Department of pollution incidents, remediation, and may require an additional report on the incident or plan of pollution prevention measures. If you are reporting other non-compliance events, and the reporting deadline does not coincide with your submission of the DMR, it should be submitted separately to the Department by the reporting deadline set forth in the permit. See instructions for more information.

Facility Name: Sheeder Tract Subdivision

Municipality: Pocopson Township

County: Chester

Month: \_\_\_\_\_\_ Permit No.: 1505419

\_\_\_\_\_

Year:

Violations of Permit Effluent Limitations\*

| Date | Parameter | Permit<br>Limit | Units | Statistical<br>Code | Result | Units | Cause of Violation | Corrective Action Taken                 |
|------|-----------|-----------------|-------|---------------------|--------|-------|--------------------|-----------------------------------------|
|      |           |                 |       |                     |        |       |                    |                                         |
|      |           |                 |       |                     |        |       |                    | • · · · · · · · · · · · · · · · · · · · |

#### Sanitary Sewer Overflows and Other Unauthorized Discharges\*

| Event Date | Substance<br>Discharged                | Location | Volume<br>(gals) | Duration<br>(hrs) | Receiving<br>Waters | Impact on Waters | Cause of Discharge | Date DEP<br>Notified |
|------------|----------------------------------------|----------|------------------|-------------------|---------------------|------------------|--------------------|----------------------|
|            |                                        |          |                  |                   |                     |                  |                    |                      |
|            | ······································ |          |                  |                   |                     |                  |                    |                      |

#### Other Permit Violations\*

 $\square$ 

| Sample collection less frequent than required | Explain |  |
|-----------------------------------------------|---------|--|
| Sample type not in compliance with permit     | Explain |  |
| Violation of permit schedule                  | Explain |  |
| Other                                         | Explain |  |
| Other                                         | Explain |  |

#### \* If the space provided is not sufficient to record all information, please attach additional sheets.

I certify under penalty of law that this document was prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations. See 18 Pa. C.S. § 4904 (relating to unsworn falsification).

| Prepared By: | Signature: |  |
|--------------|------------|--|
| Title:       | <br>Date:  |  |

3800-FM-BPNPSM0440 3/2012 Instructions



#### COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF POINT AND NON-POINT SOURCE MANAGEMENT

#### INSTRUCTIONS FOR COMPLETING NON-COMPLIANCE REPORTING FORM

Use this supplemental form to report <u>all</u> permit violations and any other non-compliance that may endanger health or the environment, in accordance with your permit. Complete all sections that apply. If you are reporting violations of permit limits, monitoring requirements or schedules that do not pose an immediate threat to health or the environment, you may attach this form to the Discharge Monitoring Report (DMR). If you are reporting other non-compliance events, and the deadline for a written report (e.g., 5 days) does not coincide with your submission of the DMR, this form should be submitted separately to the Department by the reporting deadline set forth in the permit.

If you are unsure of whether an incident constitutes non-compliance that may endanger health or the environment, it is recommended that you notify the Department verbally as soon as possible after you become aware of the incident. Title 25, Pa. Code §§ 91.33 and 91.34 (regarding incidents causing or threatening pollution and activities utilizing pollutants, respectively), in part requires immediate notification by telephone to the Department of pollution incidents, remediation, and may require an additional report on the incident or plan of pollution prevention measures.

#### Instructions:

- 1. Enter the name of the facility, the municipality and county where it is located, the month and year when violations occurred, and the NPDES or WQM permit number for the facility.
- 2. If there were violations of permit effluent limitations during the month, check the box next to "Violations of Permit Effluent Limitations." (Note if using the electronic version of this form, check the boxes first, and then select Tools Unprotect Document to enter additional information). Enter the date of the violation (if a violation of a minimum or maximum limit, the date of sample collection, or if a violation of an average limit, the end of the monitoring period), the parameter name, the permit limit and units, the statistical code (e.g., "MIN", "MAX", "MO AVG", etc.), the measured result and units, the cause of the violation and the corrective action taken. If there are more than two violations during the monitoring period and/or if the space provided is insufficient to explain the cause or corrective action, please attach additional pages.
- 3. If there are Sanitary Sewer Overflow (SSO) discharges or other unauthorized discharges from the facility (e.g., spills, leaks, etc.) that enter or have the potential to enter waters of the Commonwealth, including groundwater, notify DEP by phone as soon as possible, and document the discharge on this form by checking the box next to "Sanitary Sewer Overflows and Other Unauthorized Discharges." Record the event (discharge) date, the substance discharged (e.g., sewage, on-site chemicals, etc.), the location where the discharge occurred (e.g., manhole number, pump station name, equipment description, etc.), the volume discharged (gallons), the approximate duration of the discharge (hours), the receiving waters (name of stream or groundwater), the impact on the receiving waters, if observed (e.g., solids deposition, foam, fish kill, etc.), the cause of the discharge, and the date on which the Department was verbally notified. If there are more than two discharge, please attach additional pages.
- 4. If there are other violations of the permit, check the box next to "Other Permit Violations," and check the appropriate box that describes the violation type. If not identified on the form, check the box next to "Other" and provide a written explanation. If the space provided is insufficient to explain the violation, please attach additional pages.
- 5. Type your name and title and sign and date the form after reading the certification statement.

If you have questions about completing this form, contact the Clean Water Program Operations Section of the Department in your region:

Southeast Region – (484) 250-5970 Northeast Region – (570) 826-2553 Southcentral Region – (717) 705-4707 Northcentral Region – (570) 327-0532 Southwest Region – (412) 442-4060 Northwest Region – (814) 332-6942



June 6, 2017

CERTIFIED MAIL NO. 7015 0640 0002 3147 6479

Robert J. Willert DELCORA 100 East Fifth Street P O Box 999 Chester, PA 19016-0999

Re: WQM Permit - Sewage DELCORA Sewer System & STP Rose Valley PS Permit No. 2316406 Authorization ID No. 1161679 Chester City, Delaware County

PER-1705-C - 8 2017, 21.7-01e

cc: Bothwell, Hurst, Kochubka-Weston, Lehman-Weston, Contract File

Dear Mr. Willert:

Your Water Quality Management (WQM) permit is enclosed. You must comply with all Standard and Special Conditions attached to this Permit. Construction must be done in accordance with the permit application and all supporting documentation. Please review the permit conditions and the supporting documentation submitted with your application before starting construction.

Please note that you are responsible for securing all other required permits, approvals and/or registrations associated with the project, if applicable, under Chapters 102 (erosion and sedimentation control), 105 (stream obstructions and encroachments) and 106 (floodplains) of DEP's regulations. Construction may not proceed until all other required permits have been obtained.

Any person aggrieved by this action may appeal, pursuant to Section 4 of the Environmental Hearing Board Act, 35 P.S. Section 7514, and the Administrative Agency Law, 2 Pa.C.S. Chapter 5A, to the Environmental Hearing Board, Second Floor, Rachel Carson State Office Building, 400 Market Street, P.O. Box 8457, Harrisburg, PA 17105-8457, 717.787.3483. TDD users may contact the Board through the Pennsylvania Relay Service, 800.654.5984. Appeals must be filed with the Environmental Hearing Board within 30 days of receipt of written notice of this action unless the appropriate statute provides a different time period. Copies of the appeal form and the Board's rules of practice and procedure may be obtained from the Board. The appeal form and the Board's rules of practice and procedure are also available in braille or on audiotape from the Secretary to the Board at 717.787.3483. This paragraph does not, in and of itself, create any right of appeal beyond that permitted by applicable statutes and decisional law.

IF YOU WANT TO CHALLENGE THIS ACTION, YOUR APPEAL MUST REACH THE BOARD WITHIN 30 DAYS. YOU DO NOT NEED A LAWYER TO FILE AN APPEAL WITH THE BOARD.

IMPORTANT LEGAL RIGHTS ARE AT STAKE, HOWEVER, SO YOU SHOULD SHOW THIS DOCUMENT TO A LAWYER AT ONCE. IF YOU CANNOT AFFORD A LAWYER, YOU MAY QUALIFY FOR FREE PRO BONO REPRESENTATION. CALL THE SECRETARY TO THE BOARD (717.787.3483) FOR MORE INFORMATION.

During construction or upon completing construction, please contact Karen McDaniel at 484.250.5126 or kmcdaniel@pa.gov so that an inspection of the facilities may be conducted, at DEP's discretion.

Sincerely,

Jenifer L. Fields, P.E. Environmental Program Manager Clean Water Program

Enclosures

cc:

Ms. Healy, Rose Valley Borough Delaware County Planning Department Middletown Township Ms. Bolt, P.E., Weston Solutions, Inc Mr. Kochubka, Weston Solutions, Inc SERO Operations Re



COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF POINT AND NON-POINT SOURCE MANAGEMENT

WATER QUALITY MANAGEMENT PERMIT PERMIT NO. 2316406

AMENDMENT NO.

APS ID. 928907

AUTH. ID. 1161679

| <b>A</b> . | PERMITTEE (Name and Address):                                                                                                                                                                             | CLIENT 1D#: 42332                                                                                                                                                                                                               | В.                                                      | PROJECT/FACILITY (Name):                                                                                                                                                                                                                                                                    |            |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|            | DELCORA                                                                                                                                                                                                   |                                                                                                                                                                                                                                 |                                                         | Rose Valley Pump Station /DELCORA Sewer System &                                                                                                                                                                                                                                            |            |
|            | 100 East Fifth Street P O Box 999                                                                                                                                                                         |                                                                                                                                                                                                                                 |                                                         | 317                                                                                                                                                                                                                                                                                         |            |
|            | Crester, PA 19016-0999                                                                                                                                                                                    |                                                                                                                                                                                                                                 |                                                         |                                                                                                                                                                                                                                                                                             |            |
| U.         | Chester City Delaware County):                                                                                                                                                                            |                                                                                                                                                                                                                                 | 51                                                      | I E ID#: 454804                                                                                                                                                                                                                                                                             |            |
|            |                                                                                                                                                                                                           |                                                                                                                                                                                                                                 |                                                         |                                                                                                                                                                                                                                                                                             | _          |
| D.         | This permit approves the constructio<br>along with the installation of a 6 in d<br>Rose Valley PS will consists of a wel<br>station will a 6 in HDPE main that wil<br>crossing under Ridley Creek from Ol | n of sewage facilities consisting of: the r<br>iameter force main that will tie into the N<br>well, influent screen, valve vault and 2-<br>I connect to the existing Middletown Tow<br>d Mill PS to the Rose Valley STP will be | new Ros<br>fliddletov<br>submer<br>vnship 's<br>replace | The Valley Pump Station that will replace the Rose Valley STP<br>wn Township Sewer Authority force main along Knowltown Rd.<br>rsible 35 Hp pumps. The new force main from the new pump<br>s 8 in force main. The existing and exposed force main<br>d with a new 6 in diameter force main. |            |
|            | _                                                                                                                                                                                                         |                                                                                                                                                                                                                                 |                                                         |                                                                                                                                                                                                                                                                                             |            |
| Pun        | np Stations: Rose Valley PS                                                                                                                                                                               | Manure Storage:                                                                                                                                                                                                                 | Se                                                      | wage Treatment Facility:                                                                                                                                                                                                                                                                    | _          |
| Des        | ign Capacity: <u>275 GPM</u>                                                                                                                                                                              | Volume: MG                                                                                                                                                                                                                      | An                                                      | nual Average Flow: MGD                                                                                                                                                                                                                                                                      |            |
| Ann        | ual Aver Flow: 130,000 GPD                                                                                                                                                                                | Freeboard: inches                                                                                                                                                                                                               | De                                                      | sign Hydraulic Capacity: MGD                                                                                                                                                                                                                                                                |            |
|            |                                                                                                                                                                                                           |                                                                                                                                                                                                                                 | De                                                      | sign Organic Capacity: lb/day                                                                                                                                                                                                                                                               |            |
| E.         | APPROVAL GRANTED BY THIS PE                                                                                                                                                                               | RMIT IS SUBJECT TO THE FOLLOWIN                                                                                                                                                                                                 | NG:                                                     |                                                                                                                                                                                                                                                                                             |            |
| 1.         | New Permits: All construction, ope<br><u>11/16/2016</u> , its supporting document                                                                                                                         | rations and procedures shall be in acc<br>ation and addendums dated, which                                                                                                                                                      | ordance<br>ch are h                                     | with the Water Quality Management Permit application date<br>ereby made a part of this permit.                                                                                                                                                                                              | d          |
|            | Amendments: All construction, or application dated and its supp                                                                                                                                           | perations and procedures shall be in a<br>orting documentation and addendums d                                                                                                                                                  | accordar<br>ated                                        | nce with the Water Quality Management Permit Amendmer, which are hereby made a part of this amendment.                                                                                                                                                                                      | nt         |
|            | Except for any herein approved mo<br>Management Permit No date                                                                                                                                            | difications, all terms, conditions, suppo<br>dshall remain in effect.                                                                                                                                                           | orting do                                               | ocumentation and addendums approved under Water Qualit                                                                                                                                                                                                                                      | t <b>y</b> |
|            | Transfers: Water Quality Managem part of this transfer.                                                                                                                                                   | ent Permit No dated and                                                                                                                                                                                                         | conditio                                                | ons, supporting documentation and addendums are also mad                                                                                                                                                                                                                                    | e          |
| <b>2</b> . | Permit Conditions Relating to Sewera                                                                                                                                                                      | age are attached and made part of this p                                                                                                                                                                                        | ermit.                                                  |                                                                                                                                                                                                                                                                                             |            |
| 3.         | Special Conditions are attache                                                                                                                                                                            | ed and made part of this permit.                                                                                                                                                                                                |                                                         |                                                                                                                                                                                                                                                                                             |            |
| F.         | THE AUTHORITY GRANTED BY TH                                                                                                                                                                               | IS PERMIT IS SUBJECT TO THE FOLI                                                                                                                                                                                                |                                                         | FURTHER QUALIFICATIONS:                                                                                                                                                                                                                                                                     |            |
| 1.         | If there is a conflict between the appl shall apply.                                                                                                                                                      | ication or its supporting documents and                                                                                                                                                                                         | amendr                                                  | nents and the attached conditions, the attached conditions                                                                                                                                                                                                                                  |            |
| 2.         | . Failure to comply with the rules and regulations of DEP or with the terms or conditions of this permit shall void the authority given to the permittee by the issuance of this permit.                  |                                                                                                                                                                                                                                 |                                                         |                                                                                                                                                                                                                                                                                             |            |
| 3.         | This permit is issued pursuant to the or<br>shall not relieve the permittee of any                                                                                                                        | Clean Streams Law Act of June 22, 1937<br>responsibility under any other law.                                                                                                                                                   | , P.L. 19                                               | 987, as amended 35 P.S. §691.1 <i>et seq.</i> Issuance of this perm                                                                                                                                                                                                                         | it         |
| 4.         | This permit shall expire on The date.                                                                                                                                                                     | ne permittee shall submit an application                                                                                                                                                                                        | to renew                                                | v the permit no later than 180 days prior to the permit expiration $\bigcirc$                                                                                                                                                                                                               | n          |
|            | PERMIT ISSUED:                                                                                                                                                                                            | BY:                                                                                                                                                                                                                             |                                                         | Afrila                                                                                                                                                                                                                                                                                      |            |
| _          | June 6, 201                                                                                                                                                                                               | 7 тіті                                                                                                                                                                                                                          | .E:                                                     | Jenifer L. Kields, P.E.<br>Clean Water Program Manager<br>Southeast Regional Office                                                                                                                                                                                                         |            |
|            |                                                                                                                                                                                                           |                                                                                                                                                                                                                                 |                                                         |                                                                                                                                                                                                                                                                                             |            |



COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF POINT AND NON-POINT SOURCE MANAGEMENT

#### PERMIT CONDITIONS RELATING TO SEWERAGE

For use in Water Quality Management Permits

(Check boxes that apply)

| Gei         | neral |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\boxtimes$ | 1.    | The Department of Environmental Protection (DEP) considers the licensed Professional Engineer whose seal is affixed to the design documents to be fully responsible for the adequacy of all aspects of the facility design.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\boxtimes$ | 2.    | The permittee shall adopt and enforce an ordinance requiring the abandonment of privies, cesspools or similar receptacles for human waste and onlot sewage disposal systems on the premises of occupied structures accessible to public sewers. All such structures must be connected to the public sewers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | 3.    | The outfall sewer or drain shall be extended to the low water mark of the receiving body of water. Where necessary to ensure proper mixing and waste assimilation, an outfall sewer or drain may be extended with appurtenances below the low water mark and into the bed of a navigable stream provided that the permittee has secured an easement, right-of-way, license or lease from DEP in accordance with Section 15 of the Dam Safety and Encroachments Act, the Act of November 26, 1978, P.L. 1375, as amended.                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             | 4.    | The approval is specifically made contingent on the permittee acquiring all necessary property rights, by easement or otherwise, providing for the satisfactory construction, operation, maintenance and replacement of all sewers or sewerage structures in, along or across private property with full rights of ingress, egress and regress.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\boxtimes$ | 5.    | When construction of the approved sewerage facilities is completed and before they are placed in operation, the permittee shall notify DEP in writing so that a DEP representative may inspect the facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\boxtimes$ | 6.    | The approval of the plans, and the authority granted in this permit, if not specifically extended, shall cease<br>and be null and void 2 years from the issuance date of this permit unless construction or modification of the<br>facilities covered by this permit has begun on or before the second anniversary of the permit date.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $\boxtimes$ | 7.    | If, at any time, the sewerage facilities covered by this permit create a public nuisance, including but not limited to, causing malodors or causing environmental harm to waters of the Commonwealth, DEP may require the permittee to adopt appropriate remedial measures to abate the nuisance or harm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | 8.    | If, after the issuance of this permit, DEP approves a municipal sewage facilities official plan or an amendment<br>to an official plan under Act 537 (Pennsylvania Sewage Facilities Act, the Act of January 24, 1966, P.L. 1535<br>as amended) in which sewage from the herein approved facilities will be treated and disposed of at other<br>planned facilities, the permittee shall, upon notification from the municipality or DEP, provide for the<br>conveyance of its sewage to the planned facilities, abandon use and decommission the herein approved<br>facilities including the proper disposal of solids, and notify DEP accordingly. The permittee shall adhere to<br>schedules in the approved official plan, amendments to the plan, or other agreements between the permittee<br>and municipality. This permit shall then, upon notice from DEP, terminate and become null and void and shall<br>be relinquished to DEP. |
|             | 9.    | This permit does not relieve the permittee of its obligations to comply with all federal, interstate, state or local laws, ordinances and regulations applicable to the sewerage facilities.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|             | 10.   | This permit does not give any real or personal property rights or grant any exclusive privileges, nor shall it be construed to grant or confirm any right, easement or interest in, on, to or over any lands which belong to the Commonwealth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | 11.   | The authority granted by this permit is subject to all effluent requirements, monitoring requirements and other conditions as set forth in NPDES Permit No. and all subsequent amendments and renewals. No discharge is authorized from these facilities unless approved by an NPDES Permit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Con         | stru  | stion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\boxtimes$ | 12.   | This permit is issued under the authorization of The Clean Streams Law and 25 Pa. Code Chapter 91. The permittee shall obtain all necessary permits, approvals and/or registrations under 25 Pa. Code Chapters 102,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

12. This permit is issued under the authorization of the clean Streams Law and 25 Pa. Code Chapter 91. The permittee shall obtain all necessary permits, approvals and/or registrations under 25 Pa. Code Chapters 102, 105 and 106 prior to commencing construction of the facilities authorized by this permit, as applicable. The permittee should contact the DEP office that issued this permit if there are any questions concerning the applicability of additional permits.

- 13. The facilities shall be constructed under the supervision of a Pennsylvania licensed Professional Engineer in accordance with the approved reports, plans and specifications.
- 14. A Pennsylvania licensed Professional Engineer shall certify that construction of the permitted facilities was completed in accordance with the application and design plans submitted to DEP, using "Post Construction Certification" form (3800-PM-WSFR0179a). It is the permittee's responsibility to ensure that a Professional Engineer is on-site to provide the necessary oversight and/or inspections to certify the facilities. The certification must be submitted to DEP before the facility is placed in operation. As-built drawings, photographs (if available) and a description of all deviations from the application and design plans must be submitted to DEP within 30 days of certification.
- 15. Manhole inverts shall be formed to facilitate the flow of the sewage and to prevent the stranding of sewage solids. The manhole structure shall be built to prevent undue infiltration, entrance of street wash or grit and provide safe access to facilitate manhole maintenance activities.
- 16. The local Waterways Conservation Officer of the Pennsylvania Fish and Boat Commission (PFBC) shall be notified when the construction of any stream crossing and/or outfall is started and completed. A written permit must be secured from the PFBC if the use of explosives in any waterways is required and the permittee shall notify the local Waterways Conservation Officer when explosives are to be used.

#### **Operation and Maintenance**

- 17. The permittee shall maintain records of "as-built" plans showing all the treatment facilities as actually constructed together with facility operation and maintenance (O&M) manuals and any other relevant information that may be required. Upon request, the "as-built" plans and O&M manuals shall be filed with DEP.
- 18. The sewers shall have adequate foundation support as soil conditions require. Trenches shall be back-filled to ensure that sewers will have proper structural stability, with minimum settling and adequate protection against breakage. Concrete used in connection with these sewers shall be protected from damage by water, freezing, drying or other harmful conditions until cured.
- 19. Stormwater from roofs, foundation drains, basement drains or other sources shall not be admitted directly to the sanitary sewers.
- 20. The approved sewers shall be maintained in good condition, kept free of deposits by flushing or other cleaning methods and repaired when necessary.
- 21. The sewerage facilities shall be properly operated and maintained to perform as designed.
- 22. The attention of the permittee is called to the highly explosive nature of certain gases generated by the digestion of sewage solids when these gases are mixed in proper proportions with air and to the highly toxic character of certain gases arising from such digestion or from sewage in poorly ventilated compartments or sewers. Therefore, at all places throughout the sewerage facilities where hazard of fire, explosion or danger from toxic gases may occur, the permittee shall post conspicuous permanent and legible warnings. The permittee shall instruct all employees concerning the aforesaid hazards, first aid and emergency methods of meeting such hazards and shall make all necessary equipment and material accessible.
- 23. An operator certified in accordance with the Water and Wastewater Systems Operator Certification Act of February 21, 2002, 63 P.S. §§1001, *et seq.* shall operate the sewage treatment plant.
- 24. The permittee shall properly control any industrial waste discharged into its sewerage system by regulating the rate and quality of such discharge, requiring necessary pretreatment and excluding industrial waste, if necessary, to protect the integrity or operation of the permittee's sewerage system.
- 25. There shall be no physical connection between a public water supply system and a sewer or appurtenance to it which would permit the passage of any sewage or polluted water into the potable water supply. No water pipe shall pass through or come in contact with any part of a sewer manhole.
- 26. All connections to the approved sanitary sewers must be in accordance with the official Act 537 Plan and, if applicable, a corrective action plan as contained in the approved Title 25 Pa. Code Chapter 94 Municipal Wasteload Management Annual Report.
- 27. Collected screenings, slurries, sludge and other solids shall be handled and disposed of in compliance with Title 25 Pa. Code Chapters 271, 273, 275, 283 and 285 (related to permits and requirements for land filling, land application, incineration and storage of sewage sludge), Federal Regulations 40 CFR 257 and the Federal Clean Water Act and its amendments.

3800-PM-WSFR0179a 9/2005 Post Construction Certification COMMONWEALTH OF PENNSYLVANIA DEPARTMENT OF ENVIRONMENTAL PROTECTION BUREAU OF POINT AND NON-POINT SOURCE MANAGEMENT



#### WATER QUALITY MANAGEMENT

### POST CONSTRUCTION CERTIFICATION

|                                                                                       | PERMIT                                                                                                           | TTEE IDENTIFIER                                                                                                                                                                                 |  |  |  |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Permittee                                                                             | DELCORA                                                                                                          |                                                                                                                                                                                                 |  |  |  |
| Municipality                                                                          | Chester City                                                                                                     | Chester City                                                                                                                                                                                    |  |  |  |
| County                                                                                | Delaware                                                                                                         |                                                                                                                                                                                                 |  |  |  |
| WQM Permit No.                                                                        | 2316406                                                                                                          |                                                                                                                                                                                                 |  |  |  |
| Facility Type                                                                         | Sewage                                                                                                           |                                                                                                                                                                                                 |  |  |  |
| All of the above i                                                                    | nformation should be taken d                                                                                     | irectly from the Water Quality Management Permit.                                                                                                                                               |  |  |  |
|                                                                                       | CE                                                                                                               | RTIFICATION                                                                                                                                                                                     |  |  |  |
| This certification m<br>WQM permit withir<br>as-built drawings,<br>plans during const | nust be completed and returned<br>a 30 days of completion of the prophotographs (if available) and a<br>ruction. | to the permits section of the DEP's regional office issuing the<br>oject and received by DEP prior to operation, and if requested,<br>discussion of any DEP-approved deviations from the design |  |  |  |
| I, being a Register<br>belief, based upon<br>Management Perr<br>approved by DEP.      | ed Professional Engineer in Per<br>personal observation and interv<br>nit has been constructed in a              | nnsylvania, do hereby certify to the best of my knowledge and<br>views, that the above facility approved under the Water Quality<br>ccordance with the plans, specifications and modifications  |  |  |  |
| Construction Com                                                                      | pletion Date (MM/DD/YYYY):                                                                                       |                                                                                                                                                                                                 |  |  |  |
|                                                                                       |                                                                                                                  | Professional Engineer                                                                                                                                                                           |  |  |  |
|                                                                                       |                                                                                                                  | Name                                                                                                                                                                                            |  |  |  |
|                                                                                       |                                                                                                                  | (Please Print or Type)                                                                                                                                                                          |  |  |  |
|                                                                                       |                                                                                                                  | Signature                                                                                                                                                                                       |  |  |  |
|                                                                                       |                                                                                                                  | Date                                                                                                                                                                                            |  |  |  |
|                                                                                       |                                                                                                                  | License Expiration Date                                                                                                                                                                         |  |  |  |
|                                                                                       |                                                                                                                  | Firm or Agency                                                                                                                                                                                  |  |  |  |
|                                                                                       |                                                                                                                  | Telephone                                                                                                                                                                                       |  |  |  |
| Permittee or Authorized Representativ                                                 |                                                                                                                  |                                                                                                                                                                                                 |  |  |  |
|                                                                                       |                                                                                                                  | Name                                                                                                                                                                                            |  |  |  |
|                                                                                       |                                                                                                                  | (Please Print or Type)                                                                                                                                                                          |  |  |  |
|                                                                                       |                                                                                                                  | Signature                                                                                                                                                                                       |  |  |  |
|                                                                                       |                                                                                                                  | Title                                                                                                                                                                                           |  |  |  |
|                                                                                       |                                                                                                                  | Telephone                                                                                                                                                                                       |  |  |  |

# ACT 537 PLAN: SEWAGE FACILITIES PLAN, MUNICPAL & AUTHORITY INFLOW AND INFILTRATIONS STUDY, SUMMARY REPORT (MARCH 2000, REVISED JULY 2000)





Delaware County Planning Department Delaware County Regional Water Quality Control Authority

ACT 537: SEWAGE FACILITIES PLAN

# **MUNICIPAL & AUTHORITY INFLOW AND INFILTRATION STUDY**

**Summary Report** 

March 2000 Revised July 2000



ROY F. WESTON, INC. 1400 Weston Way West Chester, PA 19380 ACT 537: SEWAGE FACILITIES PLAN

# MUNICIPAL & AUTHORITY INFLOW AND INFILTRATION STUDY

### SUMMARY REPORT

Prepared for

#### DELAWARE COUNTY PLANNING DEPARTMENT Media, Pennsylvania

and

DELAWARE COUNTY REGIONAL WATER QUALITY CONTROL AUTHORITY Chester, Pennsylvania

Prepared by

### **ROY F. WESTON, INC.**

West Chester, Pennsylvania 19380

March 2000 Revised July 2000

# TABLE OF CONTENTS

| Se | Page |                                             |       |  |  |  |  |
|----|------|---------------------------------------------|-------|--|--|--|--|
| 1. | INT  | RODUCTION                                   | . 1-1 |  |  |  |  |
|    | 1.1  | INFILTRATION/INFLOW DEFINITIONS             | . 1-1 |  |  |  |  |
|    | 1.2  | PURPOSE OF THE STUDY                        | . 1-2 |  |  |  |  |
|    | 1.3  | STUDY AREA                                  | . 1-3 |  |  |  |  |
| 2. | SUM  | IMARIES OF INDIVIDUAL MUNICIPAL STUDIES     | . 2-1 |  |  |  |  |
|    | 2.1  | ALDAN BOROUGH                               | . 2-1 |  |  |  |  |
|    | 2.2  | CLIFTON HEIGHTS BOROUGH                     | . 2-2 |  |  |  |  |
|    | 2.3  | COLLINGDALE BOROUGH                         | . 2-4 |  |  |  |  |
|    | 2.4  | COLWYN BOROUGH                              | . 2-5 |  |  |  |  |
|    | 2.5  | DARBY BOROUGH                               | . 2-7 |  |  |  |  |
|    | 2.6  | DARBY TOWNSHIP                              | . 2-9 |  |  |  |  |
|    | 2.7  | FOLCROFT BOROUGH                            | 2-10  |  |  |  |  |
|    | 2.8  | GLENOLDEN BOROUGH                           | 2-11  |  |  |  |  |
|    | 2.9  | LANSDOWNE BOROUGH                           | 2-12  |  |  |  |  |
|    | 2.10 | MARPLE TOWNSHIP                             | 2-15  |  |  |  |  |
|    | 2.11 | MORTON BOROUGH                              | 2-17  |  |  |  |  |
|    | 2.12 | NETHER PROVIDENCE TOWNSHIP                  | 2-17  |  |  |  |  |
|    | 2.13 | NORWOOD BOROUGH                             | 2-19  |  |  |  |  |
|    | 2.14 | PROSPECT PARK BOROUGH                       | 2-20  |  |  |  |  |
|    | 2.15 | RIDLEY PARK BOROUGH                         | 2-21  |  |  |  |  |
|    | 2.16 | RIDLEY TOWNSHIP                             | 2-22  |  |  |  |  |
|    | 2.17 | RUTLEDGE BOROUGH                            | 2-23  |  |  |  |  |
|    | 2.18 | SHARON HILL BOROUGH                         | 2-24  |  |  |  |  |
|    | 2.19 | SPRINGFIELD TOWNSHIP                        | 2-25  |  |  |  |  |
|    | 2.20 | SWARTHMORE BOROUGH                          | 2-26  |  |  |  |  |
|    | 2.21 | UPPER DARBY TOWNSHIP                        | 2-27  |  |  |  |  |
|    | 2.22 | YEADON BOROUGH                              | 2-28  |  |  |  |  |
| 3. | SUM  | IMARIES OF INDIVIDUAL AUTHORITY STUDIES     | . 3-1 |  |  |  |  |
|    | 3.1  | CENTRAL DELAWARE COUNTY AUTHORITY           | . 3-1 |  |  |  |  |
|    | 3.2  | DARBY CREEK JOINT AUTHORITY                 | . 3-2 |  |  |  |  |
|    | 3.3  | MUCKINIPATES AUTHORITY                      | . 3-2 |  |  |  |  |
|    | 3.4  | RADNOR HAVERFORD MARPLE SEWER AUTHORITY     | . 3-3 |  |  |  |  |
|    | 3.5  | FIVE-YEAR PLAN FOR AUTHORITIES              | . 3-4 |  |  |  |  |
| 4. | SUM  | IMARY OF INDIVIDUAL CORRECTIVE ACTION PLANS | . 4-1 |  |  |  |  |

# TABLE OF CONTENTS (cont.)

# Section

# Page

| 5. | CON | ICLUSIONS AND RECOMMENDATIONS                          | 5-1 |
|----|-----|--------------------------------------------------------|-----|
|    | 5.1 | RECOMMENDED PROGRAMMATIC CORRECTIVE ACTIONS            | 5-1 |
|    |     | 5.1.1 Regular Sewer Cleaning                           | 5-1 |
|    |     | 5.1.2 I&I Monitoring Program Implementation            | 5-1 |
|    |     | 5.1.3 Sewage Facilities Documentation                  | 5-2 |
|    |     | 5.1.4 Sewage Facility Management System Implementation | 5-2 |
|    | 5.2 | AFFORDABILITY OF RECOMMENDED CORRECTIVE ACTION PLANS   | 5-2 |
|    | 5.3 | CORRECTIVE ACTION PLANS REQUIRING MODIFICATION         | 5-6 |
|    |     | 5.3.1 Aldan Borough                                    | 5-7 |
|    |     | 5.3.2 Norwood Borough                                  | 5-7 |
|    |     | 5.3.3 Ridley Township                                  | 5-7 |
|    |     | 5.3.4 Rutledge Borough                                 | 5-7 |
|    |     | 5.3.5 Swarthmore Borough                               | 5-8 |
|    |     | 5.3.6 Yeadon Borough                                   | 5-8 |
|    | 5.4 | IMPACT OF THE COST-SAVING BENEFIT ON THE CORRECTIVE    |     |
|    |     | ACTION PLANS                                           | 5-8 |
|    |     |                                                        |     |

# LIST OF FIGURES

# Figure

| 1-1 | Study Area Municipalities                          | 1-  | -5 |
|-----|----------------------------------------------------|-----|----|
| 5-1 | Corrective Action Plans Investment Rates of Return | 5-1 | .0 |

# LIST OF TABLES

### Table

# Page

Page

| 1-1 | Eastern Delaware County Municipalities Served by DELCORA        | 1-4 |
|-----|-----------------------------------------------------------------|-----|
| 4-1 | Effort and Cost Summary of Recommended I&I Reduction Program    | 4-2 |
| 4-2 | Normalized Summary of Recommended I&I Reduction Program         | 4-3 |
| 5-1 | Prioritization of Corrective Actions                            | 5-2 |
| 5-2 | Relative I/I Reduction Program Cost-Effectiveness               | 5-4 |
| 5-3 | Reduction Program Cost-Effectiveness per EDU                    | 5-5 |
| 5-4 | Investment Return Eastern Municipalities I&I Correction Program | 5-9 |

# LIST OF ACRONYMS

| CDCA    | Central Delaware County Authority                        |
|---------|----------------------------------------------------------|
| CEO     | Code Enforcement Officer                                 |
| DELCORA | Delaware County Regional Water Quality Control Authority |
| DCJA    | Darby Creek Joint Authority                              |
| EDU     | Equivalent dwelling unit                                 |
| I&I     | Infiltration / Inflow                                    |
| MA      | Muckinipates Authority                                   |
| O&M     | Operation and maintenance                                |
| PSW     | Philadelphia Suburban Water Company                      |
| PSWPCP  | Philadelphia Southwest Water Pollution Control Plant     |
| RHM     | Radnor-Haverford-Marple Sewer Authority                  |
| WRTP    | Western Region Treatment Plant                           |

# 1. INTRODUCTION

Many of the nation's sewer systems are slowly beginning to fail. Because sewer lines are placed underground, signs of accelerated deterioration and capacity limitations are not readily apparent until there is a major failure. Sewer systems inevitably begin to fail over time as pipes and manhole walls age and crack, laterals deflect, and joints offset, causing leaks to occur in the system and at manhole covers. Even with an effective maintenance plan, these failures cannot be completely avoided as tree roots, roadway repairs, and general wear and tear ultimately take their toll.

As a sewer system begins to fail, it allows the "infiltration" and/or "inflow" of large volumes of uncontaminated water to enter during periods of rain and high groundwater elevations. This additional water can cause sewer backups, surcharging at pump stations, and the bypassing of raw sewage at conveyance and treatment facilities. This puts a strain on the community's ecosystem, creates a health hazard, and raises sewage treatment costs because all flows going into a wastewater treatment facility must be treated. The long-term treatment of excessive amounts of uncontaminated waters, such as storm water and groundwater, is economically undesirable. Reduction of infiltration and inflow (I&I) by way of a well-planned program can result in a significant reduction in hydraulic loading at collection, conveyance, and treatment facilities during periods of wet weather. This, in turn, lowers capital and operating and maintenance (O&M) costs while prolonging the lifetime-capacity of the treatment facility. Reduction of wet-weather flows in a system and the installation of meters for customer billing translates into lower sewer bills. Therefore, by locating and subsequently correcting excessive I&I into a sewer system, a municipality can economically reduce collection, conveyance, and treatment costs; increase or extend plant capacity for new users; and prevent an environmentally hazardous situation in the community.

Eastern Delaware County contains in excess of 750 miles of sanitary sewers. In many areas, these sanitary sewers are more than 50 years old, with some sections built prior to 1910, and I&I constitutes a significant portion of the flow.

### 1.1 INFILTRATION/INFLOW DEFINITIONS

**Excessive Infiltration/Inflow** is defined as the quantities of I&I that can be economically eliminated from a sewer system by rehabilitation, as determined by a cost-effectiveness analysis that compares the costs for correcting the I&I conditions with the total cost for transportation and treatment of the I&I.

Extraneous Water includes all additional water flows, not generated by the system's users.

**Exfiltration** is defined as the wastewater that leaks out of sewer system and service connections into the ground or surface waters through such means as deteriorated pipes and separated joints.

**Infiltration/Inflow** (**I&I**) is defined as the total volume or flow of all extraneous waters that enter a sanitary sewer through either infiltration or inflow or both.

# ACT 537: SEWAGE FACILITIES PLAN

MUNICIPAL & AUTHORITY INFLOW AND INFILTRATION STUDY

**Infiltration** is defined as the water entering a sewer system and service connections from the ground through defects such as deteriorated pipes, separated pipe joints, or deteriorated manhole walls. Infiltration requires that the groundwater level be above the sewer as is often the case for lines running in close proximity to streams, ponds, or other bodies of surface water. The established engineering standard for infiltration is 1,500 gallons/day/inch-mile, where the inch refers to the diameter of the sewer and the mile refers to the length.

**Inflow** is defined as the water discharged into a sewer system including illegal service connections from such sources as roof leaders, sump pumps, cellar and yard drains, foundation drains, drains from springs and swampy areas, faulty manhole covers, storm waters, surface runoff, or streams. The ideal standard for inflow is zero gallons per day (gpd). Theoretically, these sources are controllable and should not be discharging to the sewer system.

**Peaking Factor** is defined as the ratio between the peak observed flow and the average flow (either observed for computed theoretically). During wet weather events (storm), the peaking factor is a measure of the inflow into the system. Under ideal conditions, the wet weather peaking factor would be 1 but often this is not the case. The acceptable range of inflow is based on the available capacity of the collection system and treatment plant. During dry weather, the peaking factor is a measure of the demand or user discharge characteristics. Normal dry weather (sewage flow) peaking factors can range from 2 to 5 depending on the size of the service area. The smaller the service area the greater the sewage flow peaking factor, and conversely, the larger the service area the smaller the sewage flow peaking factor.

# 1.2 PURPOSE OF THE STUDY

During 1996 and 1997, I&I studies were conducted (or recent studies submitted in lieu of conducting a new study) by each of 24 individual municipalities and the four municipal authorities in eastern Delaware County. These studies were conducted in order to gather information required to update the County-wide Act 537 Sewage Facilities Plan. The purpose of the studies as set forth in the scope of services was as follows:

"To identify and resolve existing sewage disposal problems, to avoid potential sewage problems resulting from new land development and to provide for the future disposal needs of the County, by developing planning strategies to:

- 1. Ensure that a lack of sewage facilities does not impair economic growth,
- 2. Eliminate restrictions on sewer connections and prevent future connection bans,
- 3. Eliminate any existing health hazards and property damage from overloaded municipal systems and malfunctioning on-site systems as well as prevent health hazards and property damage in the future,
- 4. Provide cost-effective solutions to sewage facility needs, and
- 5. Reduce the cost of conveying and treating extraneous water (infiltration and inflow) in the eastern service area."

These studies were performed to determine the extent of I&I in each municipality and to locate those segments with excessive I&I. These studies also quantified the I&I volume and estimated costs for potential corrective actions. The scope of work for each of the I&I studies included the following:

- Description of the study area.
- Review of plans and calculation of theoretical sewage flows.
- Flow monitoring to establish the magnitude of the problem as well as aid in determining those areas of the collection system that are subject to severe I&I. The flow meters used for the project typically measured the depth of flow in a sewer (with a pressure transducer) and velocity. The flow was computed by coupling this information with the pipe diameter.
- Field investigation and data gathering including:
  - Visual inspection of manholes for defects in the walls of the manholes that allow infiltration as well as inspection of the manhole cover for evidence of inflow either around the ring or through the cover.
  - Smoke testing, which involves isolation of a segment of the sewer system (typically with a sand bag or inflatable plug) and blowing a nonhazardous smoke into the sewer. Smoke testing is especially effective at finding inflow sources such as roof leaders, area drains, and storm water inlets.
  - Televising sewer lines by dragging or crawling a video camera through the sewer to inspect for broken or cracked pipe, offset or separated pipe joints, or any other defect that would allow infiltration.
- Data analysis.
- Corrective action plan.

Often with I&I studies, the length of sewers and the number of manholes are so large that a complete inspection of the sewer system is not feasible. Therefore, it is necessary to either conduct a "screening" of the sewer system to determine problem areas upon which further inspection will be performed or to inspect a representative section of the system with the assumption that the remaining sections will have the same problems on a proportional basis. The method selected is often dictated by knowledge of the system by the sewer maintenance employees and examination of flow metering records during storm events. If the flow monitoring shows severe problems with I&I in isolated areas but not system-wide, a focused study is appropriate, whereas if the monitoring shows widespread problems, a representative inspection is appropriate to establish the scope and magnitude of the problem.

# 1.3 STUDY AREA

The municipalities listed in Table 1-1 and shown on Figure 1-1 comprise the study area in eastern Delaware County that is serviced by the Delaware County Regional Water Quality Control Authority (DELCORA). The municipalities in the study area are organized into four

#### ACT 537: SEWAGE FACILITIES PLAN

MUNICIPAL & AUTHORITY INFLOW AND INFILTRATION STUDY

authorities: Darby Creek Joint Authority (DCJA), Muckinipates Authority (MA), Central Delaware County Authority (CDCA), and Radnor-Haverford-Marple Sewer Authority (RHM) with some municipalities belonging to more than one authority. These authorities have agreements with DELCORA for the conveyance and treatment of wastewater that is generated in the Eastern Service Area. DELCORA, in turn, has an agreement with the City of Philadelphia for treatment of wastewater at the Philadelphia Southwest Water Pollution Control Plant (PSWPCP). In the case of sewage flows from CDCA, it will soon pump its wastewater to the Western Region Treatment Plant (WRTP).

| Municipality               | Authority | Municipality          | Authority      |
|----------------------------|-----------|-----------------------|----------------|
| Aldan Borough              | DCJA      | Newtown Township      | RHM            |
| Clifton Heights Borough    | DCJA, MA  | Norwood Borough       | MA             |
| Collingdale Borough        | DCJA      | Prospect Park Borough | CDCA           |
| Colwyn Borough             | DCJA      | Radnor Township       | RHM            |
| Darby Borough              | DCJA      | Ridley Park Borough   | CDCA           |
| Darby Township             | DCJA, MA  | Ridley Township       | MA, CDCA       |
| Folcroft Borough           | DCJA, MA  | Rutledge Borough      | CDCA           |
| Glenolden Borough          | MA        | Sharon Hill Borough   | DCJA           |
| Haverford Township         | RHM       | Springfield Township  | DCJA, MA, CDCA |
| Lansdowne Borough          | DCJA      | Swarthmore Borough    | CDCA           |
| Marple Township            | RHM, CDCA | Upper Darby Township  | DCJA, MA       |
| Morton Borough             | CDCA      | Yeadon Borough        | DCJA           |
| Nether Providence Township | CDCA      |                       |                |
|                            |           |                       |                |
|                            |           |                       |                |

# Table 1-1 Eastern Delaware County Municipalities Served by DELCORA

The peaking factor discussed in the following summaries is defined as the metered flow divided by the theoretical flow based on the service area. It is also important to recognize that a high peak hourly flow coincident with a precipitation event is an indication of inflow. On the other hand, continuous low flows monitored in early morning are an indication of a persistent amount of infiltration that is leaking into the pipes and that is actually occurring continuously over a 24hr period.

In many cases, a consultant selected by the municipality conducted the I&I study and thus, the level of detail and the unit costs vary between municipalities.





# 2. SUMMARIES OF INDIVIDUAL MUNICIPAL STUDIES

The following subsections summarize the individual municipal studies conducted by others; thus, there is some variability in the information presented. The observed problems and corrective actions presented below are those presented in the individual studies.

# 2.1 ALDAN BOROUGH

Aldan Borough, a member of the DCJA, owns and operates approximately 13 miles of sanitary sewers with 254 manholes. The system was found to be in generally good condition from a maintenance standpoint, and structurally the manholes were found to be in good condition. However, based on field inspections and flow metering, there was probable significant I&I at various locations. There was evidence in most manholes of ground water seepage through the brick wall construction and the point where the manhole frame sits on top of the manhole. These two defects were significant sources of I&I into the system. Another significant source of suspected inflow was noted through illegal connections such as sump pumps and roof drains.

The Borough has an annual contract with a contractor to clean and flush the sewer system. This was evident during visual inspection of the manholes and sewer lines because neither blockages nor signs of surcharging were evident.

### 2.1.1 Observed Problems

- Some manholes are flooded during wet weather events and thus, inflow occurs into the system through the top of the manhole.
- Inflow during wet weather events was evidenced by the increase in flow of 142,841 gpd detected near the storm sewer crossing on Laurel Avenue just east of Linden Avenue and through the easements between Aldan Avenue and Linden Avenue (Linden Ave MH-168 to MH-167; Laurel Ave MH-167 to MH-123; Easements MH-167 to MH-157).
- The Lobbs Run Creek easement and crossing area was sited with I&I of approximately 280,963 gpd (easement from the manhole at Springfield Rd to MH-223 to West Maryland Ave at the stream crossing).
- I&I problems, totaling approximately 74,984 gpd, occurred between MH-45 and either MH-43 on Woodlawn Ave or MH-101 on Magnolia Avenue.
- The total I&I for the Borough was estimated to be 848,200 gpd.

# 2.1.2 Corrective Action Plan

It was estimated that I&I could be reduced in the Borough by 636,150 gpd. By installing manhole inserts and chimney seals alone, the estimated reduction in I&I would be 508,920 gpd.

Aldan Borough currently has a procedure for evaluating properties to determine whether an illegal connection of sump pumps/roof drains to the sanitary sewer connection exists. By acquiring the issuance of an Occupancy Certificate, Borough officials inspect both rental and owner-occupied units at time of rental or sale. If an illegal connection is identified, the

certificate is withheld until the connection has been removed and such has been verified by a Borough official (Borough Code, Ordinance No. 396, and Section 5.05 and 7.08).

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for Aldan Borough is available in Table 4-1 of Section 4.

# 2.2 CLIFTON HEIGHTS BOROUGH

Clifton Heights Borough, a member of the DCJA and MA, owns and operates approximately 12.1 miles of sanitary sewers with 253 manholes. The system is reported to be in excess of 60 years old.

Based on metered results, the Borough's average daily flow was calculated to be 1,649,805 gpd with an average daily flow peak factor of 2.96. Districts II-B, III, and IV contribute 224,405 gpd, or 40% of the Borough's theoretical flow, and are responsible for 1,004,100 gpd, or 61% of the Borough's I&I.

# 2.2.1 Observed Problems

# 2.2.1.1 District II

Analysis of the flow metering results determined that this district was within the acceptable 1.5 peaking factor. During field inspections, a direct source of inflow was found within the district. It appears that a 6-inch PVC pipe entering the wall of MH-18 originates at a Philadelphia Suburban Water Company (PSW) water tower and could be an overflow pipe. It was estimated that the overflow is contributing 3,000 gpd and is flowing constantly. The Borough was notified that PSW should be directed to disconnect the lateral if it is not currently permitted.

# 2.2.1.2 District IIB

Analysis of the flow metering data determined that this district had a peaking factor greater than 1.5. Three sewer lines were found to have severe deflections.

Interviews with maintenance personnel and field inspections revealed that an underground stream flows through this district and soils of this district are slow draining. Field observations and the flooding history of the district indicate that this area is a significant contributor to the Borough's overall I&I problem.

# 2.2.1.3 District III

Analysis of the flow metering data determined that this district had a peaking factor greater than 1.5. Ten specific sewer lines were noted as having deficiencies and visible evidence was found of infiltration through the walls of some of the district's manholes.

The region bordered by Sycamore Avenue, Mill Road, Rockbourne Road, and Darby Creek appears to contribute the greatest amount of I&I. This region is fed by a natural spring that is channeled into an underground stream that runs alongside the sanitary sewer, possibly sharing the same trench. Along the creek, sewage is carried in a 21-inch terracotta pipe. The inspection revealed cracks, broken sections, deflections, roots, and bows in the line. It appears that the entire line from MH-238 to MH-165 is in need of repair. The Darby Creek crossing between MH-166 and I-121 of the Darby Creek Interceptor also has the potential for large quantities of I&I.

A service lateral to a warehouse at the intersection of Rockbourne Road and Bridge Avenue was observed to be broken and exposed to the creek. During the inspection, it appeared that raw sewage was being discharged into the creek. During wet weather events it appears that this break would be submerged and thus, would be a source of direct inflow.

# 2.2.1.4 District IV

Analysis of the flow metering data determined that this district had a peaking factor greater than 1.5. Several sewer lines at the following locations were found to have deficiencies including bowed and defected lines. The sewers along Broadway Avenue are very deep and are almost assured to be below the water table. During the inspection of MH-211 it was found that the northern line had a cracked pipe.

# 2.2.1.4 District V

Analysis of the flow metering data determined that this district was within the acceptable 1.5 peaking factor. At the time of inspection, it was noted that the line from MH-243 to I-116 crosses Darby Creek and should be regularly monitored as a potential future source of I&I.

Once the districts were defined and the metering completed, the results suggested that infiltration was the more substantial portion of the I&I problem. However, the potential exists for greater amounts of inflow under certain conditions.

# 2.2.2 Corrective Action Plan

A four-phased corrective plan is recommended to reduce the I&I flow to an overall peaking factor of 1.5.

Manhole rehabilitation work conducted in Phase 1 will be expected to reduce the inflow portion of the average daily flow during rain events by 75%. Considering the total metered inflow of 219,440 gpd, this amounts to a reduction of 164,580 gpd.

Phases 2, 3, and 4 involve an in-depth study and rehabilitation plan that prioritizes districts in order of I&I importance. An analysis of each will involve re-metering to confirm the amount of I&I, followed by an in-depth study to locate the sources. After each study portion is performed, a detailed alternatives analysis and cost estimate will be prepared. The plan would provide long term, cost-effective solutions, using the best available technology. The plan will also involve the

implementation of rehabilitation measures. This work will mainly reduce the infiltration portion of the I&I. However, any inflow sources located during the study will be identified and targeted for rehabilitation.

After implementation of the corrective action plan, monitoring will be conducted to quantify the actual I&I reduction and evaluate the effectiveness of the plan.

The Borough's maintenance department is responsible for sewer system O&M that should include:

- 1. An improved sewer cleaning schedule.
- 2. The implementation of an I&I monitoring program.
- 3. Improved documentation.
- 4. Creation of a sanitary sewer file.

The implementation of these four items could prove to be the most cost-effective approach to maintaining the integrity of the Borough's sanitary system.

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for Clifton Heights Borough is available in Table 4-1 of Section 4.

# 2.3 COLLINGDALE BOROUGH

Collingdale Borough, a member of the DCJA, owns and operates approximately 14.2 miles of sanitary sewers with 245 manholes and serves approximately 9,900 residents who generate 3,091 equivalent dwelling units (EDUs, assigned a daily flow of 180 gpd) of sewage flow to the DELCORA system. Conditions during field inspections were generally better than expected in that few manholes along the streams exhibited visible signs of inflow. A majority of manholes in or near streets were in fair to good condition, with the exception that many manholes exhibited corroded and/or missing access rungs.

Manhole inspections indicated that approximately 20% (50 manholes) required some kind of repair. Rehabilitation would involve testing and grouting, which would extend the life of the structures approximately 3 to 4 additional years, or slip lining the manhole, which would serve as a permanent repair.

I&I was estimated to be approximately 320,000 gpd with a peaking factor of 1.5.

### 2.3.1 Observed Problems

Problem areas were determined to be the collector along Andrews Run and the sewer extending from the intersection of Clifton and Pitman Avenues. In addition to the potential for bad joints and leaking manholes resulting in I&I, results demonstrate the possibility of exfiltration. There have been reports of sewer overflows in heavy rain events from MH-66 at the intersection of Clifton and Pitman Avenues.

#### ACT 537: SEWAGE FACILITIES PLAN -

MUNICIPAL & AUTHORITY INFLOW AND INFILTRATION STUDY

Flow metering revealed a significant I&I problem that occurred above MH-8. This manhole is located directly adjacent to the Hermesprota Creek along which a high volume of I&I appears to be occurring (252,157 gpd). However, no television inspections have been performed along this reach to determine if the pipes have defects.

Two additional areas of concern are above MH-243 and MH-173. The metered average flow exceeded the theoretical flow by approximately 75,000 gpd and 100,000 gpd, respectively. This represents a peaking factor of approximately twice the theoretical flow associated with the system. The metered location at MH-197 exhibited about 65,000 gpd of I&I that results in a peaking factor of 1.1. Because MH-243 and MH-173 are tributary to MH-197, the large drop in I&I indicates that exfiltration may be occurring.

The metering alone was not comprehensive enough to specifically identify localized portions of the system contributing to excessive flows. It was, however, apparent through observation during metering, that the portion of the system along Andrew's Run and its tributaries along with the line extending from Clifton and Pitman, would be the most appropriate sections at which to begin a program of televised inspection and repair/replacement.

Total projected flow was 516,780 gpd, whereas the total average metered flow was approximately 1.6 times the projected flow for the Borough limits. It is also apparent from the data that rainfall has a significant impact on the flows within the system. One storm event recorded the actual flow to be 87% above the average daily flow. The increases associated with rainfall events indicated that inflow was a significant problem.

Only a moderate amount of flow, approximately 317,290 gpd on average, is being added to the collection system through infiltration and would be expected to be less for lower groundwater periods. One of the most significant results of the study was the discovery that exfiltration appears to be occurring during rainfall events.

### 2.3.2 Corrective Action Plan

The corrective action plan for Collingdale Borough includes the further inspection by camera of the collector along Andrews Run and the sewer extending from the intersection of Clifton and Pitman Avenues. Anticipated repairs include replacement of certain sections of sewers while other areas will need slip lining or grouting of joints. An anticipated reduction of approximately 60,000 gpd will be realized with the full implementation of the recommendations, including accounting for the additional flow added by the elimination of exfiltration.

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for Collingdale Borough is available in Table 4-1 of Section 4.

# 2.4 COLWYN BOROUGH

Colwyn Borough, a member of the DCJA, owns and operates approximately 3.3 miles of sanitary sewers with 85 manholes. Results from the study revealed that the Borough's sanitary

sewer system appears to be in adequate condition. It is estimated that Colwyn's sanitary sewer system produces between 57,600 and 324,000 gpd of inflow during a wet weather event and 61,200 gpd of infiltration. The threshold for determining excess infiltration is 20,160 gpd (based on the established engineering standard of 1,500 gallons/day/inch-mile). Based on these data, the Borough does not appear to be a major contributor to the I&I problem currently being experienced by DELCORA.

# 2.4.1 Observed Problems

Of the six regions that were flow metered, three meter locations were judged to have infiltration rates in excess of acceptable standards. Although sanitary sewers were not televised, it is believed that there is approximately 72,000 gpd of infiltration. The study recommended undertaking an extensive televising and grouting project of the Borough's entire sanitary system to establish a master plan for total system rehabilitation.

Inspections during wet weather events revealed that there are seven slotted/grated sanitary sewer manhole covers that allow rainwater (inflow) to enter directly into the sewer system and seven other manholes in which the rainwater was entering into the sewer system through the manhole frame and cover. By replacing the manhole covers and using plastic dome inserts, it is estimated that the inflow rate could be reduced by at least 50%.

Based on the results of field surveys in which 43% of the manholes were inspected, the existing manholes appeared to be in good structural condition. Of the 30 manholes inspected, only four (13.3%) were noted to need serious rehabilitation (resealing the manhole and/or the connecting pipe with mortar).

Manholes located in open space areas of Beach and Peach Streets should be constructed with a locking frame to dissuade potential illegal discharge into the sewer system, and a "Flow-Seal" type manhole cover installed to inhibit stormwater flow from entering into the sewer system.

The region defined by meter locations 1 and 2 had an average flow rate of 119,664 gpd. A review of the raw data indicated that during the course of the study a large amount of flow, usually in excess of 720,000 gpd, is introduced to this drainage area several times over the course of the day.

Sump pump connection did not appear to be a problem.

# 2.4.2 Corrective Action Plan

The corrective action plan for Colwyn Borough includes televising and grouting terra cotta pipe joints, replacement of 7 slotted manhole lids, repair of 12 manholes, and the placement of manhole inserts. It was estimated that up to 243,000 gpd of I&I could be removed with the completion of the corrective action plan.

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for Colwyn Borough is available in Table 4-1 of Section 4.

i&isummaryreport.final.rev2.doc

# 2.5 DARBY BOROUGH

Darby Borough, a member of the DCJA, owns and operates approximately 16.7 miles of sanitary sewers with 370 manholes. It is reported that 75% of the collection system was built prior to 1920. Since 1975 the Borough has undertaken several projects to reconstruct parts of the sanitary sewer system. Counting all projects, 65 manholes have been rebuilt, and 5,443 ft of sewer have been replaced, representing improvement of 17.5% of the manholes and 6% of the sewer main.

Between 1975 and 1994 the replacement rate averaged 220 ft of pipe each year. Starting in 1995, the Borough began major sewer reconstruction on Ninth and Tenth Streets in conjunction with improvement of the SEPTA trolley track. This work has been completed, and 19 manholes and 1,100 ft of sanitary sewer have been built.

As part of the planning for the project, sewers were cleaned and televised. It was discovered that seven storm inlets on Ninth Street and six inlets on Tenth Street connected into the sanitary sewer lines. At the time of the flow metering, all of the inlets on Ninth Street had been eliminated with the construction of a new storm system. At present, all inlets on Ninth and Tenth Streets between Main Street and Cedar Avenue have been disconnected from the sanitary sewer.

## 2.5.1 Observed Problems

### 2.5.1.1 Creek Crossings

Along Darby Creek there are six locations where the Borough's sewer lines are below the water level; three of these are located behind Park Lane School. At the time of the TV inspection, there were difficulties in accessing these six locations and any problems related to these crossings were unidentifiable. However, it was noted that from Bradford Rd to Thirteenth Street a sanitary sewer runs parallel to a small stream behind Park Lane School. The sewer is below the groundwater level for much of its length.

# 2.5.1.2 Roof Leaders

Curbside investigations identified blocks where homes and roof drains are connected to underground pipes. In eight of the 30 blocks surveyed, points of surface discharge for roof drains were located, with as many as 108 homes that may have roof drains connected to the sanitary sewers.

It was recommended that the Borough contact the residents on these blocks individually about disconnecting the roof drains.

## 2.5.1.3 Inlets

A map of the Borough identifying locations of inlets was developed from a curbside survey. As a result, 13 inlets on Ninth and Tenth Streets were disconnected from the sanitary sewer in 1996. There are 13 inlets that remain connected to the sanitary sewer.

#### 2.5.1.4 Manhole Inspection

In 1978, the Borough initiated a program to rehabilitate existing manholes (replace frames and lids, replace steps, repair mortar joints, construct new channels, and parge over brick walls). Approximately 1/3 of all the manholes had work done under this program. Current inspections found that manholes were generally in very good condition, especially those repaired in 1978. Results of the investigations found only six manholes having any kind of seepage or minor leaks.

#### 2.5.1.5 Sewer Video Inspection

The following problem areas were identified:

- The trunk sewer behind the Park Lane School, between Golf Road and Main Street, merits complete reconstruction of several large sections.
- Several spot repairs are needed on the trunk sewer along 13<sup>th</sup> Street.
- Two sections of the sewer along Cedar Avenue are high priorities for repair.
- On Fern Street, one manhole must be raised to grade.
- On 3<sup>rd</sup> Street, Greenway Avenue, and 4<sup>th</sup> Street, there are sections of the sewer that must be reconstructed.

### 2.5.1.6 Flow Metering

Analysis of the flow metering results revealed that Basin D-1 is contributing 46 million gallons annually from infiltration, primarily in the trunk sewer behind the Park Lane School, between Golf Road and Main Street. Basin D-2 contributes 5.8 million gallons annually, primarily due to inflow from inlets along MacDade Boulevard. Basin D-5 contributes 42 million gallons annually, primarily from infiltration through leaking joints of the trunk sewer.

Exhibit 4 of the Darby Borough I&I study report shows sewers that were observed to be carrying significant volumes of sewage during night monitoring. The trunk sewers in Subbasins D-1 and D-5 were carrying considerable volumes of flow.

Exhibit 18 of the Darby Borough I&I study report identifies specific I&I problem locations. In summary, the study reached the following conclusions:

- There are no pipes with average daily flows at capacity and the major trunk sewers are able to accommodate the peak flows.
- Less than 1% of the manholes have infiltration problems through the walls or pipe joints.

- An estimated 17.5 million gallons of inflow enters the Darby sewer system each year; the primary source being storm inserts and roof drains. The study identified pickholes in manhole lids as a secondary source of inflow.
- Inlets are connected to the sanitary sewer in the 900 block of Main Street, the 1100 block of Chestnut Street, MacDade Boulevard, and Pine Street.
- Inflow to the sanitary system can be reduced by 50%, or 8.8 million gallons, each year by proposed corrective action.
- An estimated 145 million gallons of infiltration enters the Darby sewer system each year.

# 2.5.2 Corrective Action Plan

The following actions were recommended in a 10-year plan:

- Eliminate the storm inlets in the 900 block of Main Street and the 1100 block of Chestnut Street.
- Install manhole inserts at low points.
- Perform spot repairs in Basins D-1 and D-6.
- Construct a separate storm sewer on Pine Street.
- Disconnect all roof drains from sewers.
- Grout joints in the Basin D-5 trunk sewer.
- Reconstruct 2,000 ft of Basin D-1 trunk sewer.
- Slip line 3,000 ft of Basin D-1 trunk sewer.
- Construct a separate storm sewer for MacDade Boulevard.

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for Darby Borough is available in Table 4-1 of Section 4.

### 2.6 DARBY TOWNSHIP

Darby Township, a member of the DCJA and MA, owns and operates approximately 19 miles of sanitary sewers with 270 manholes and has performed I&I studies previously. Little sewer-related corrective action has been initiated to relieve conditions noted in these earlier I&I studies. A manhole insert procurement and installation program has been implemented as well as a program of inspections to identify illegal discharges. At present, only 45% of the manhole covers with through-style pick holes have no insert in place.

Darby Township is forecasting no expansion of its sanitary sewer infrastructure for the purpose of serving additional units.

### 2.6.1 Observed Problems

Investigations of sewers and appurtenances suggest that inflow was responsible for metered values that were slightly higher than those theoretically determined. Televised inspections conducted in sewers that were suspected I&I sources revealed no problems.

Raw sewerage data for the entire township correlate well with theoretical flows. However, visual observations made during manhole inspections revealed that widespread cover holes present a greater potential for I&I during precipitation events. Inflow, as opposed to infiltration was stressed because wet-weather peaks only marginally exceeded dry flows. According to the weighting scheme established for adjustment of visual inspection data by weather, metered flow, and I&I potential, only a portion of Darby Township merits significant corrective action. These conclusions were determined more on the basis of manhole inspection reports than metering data trends.

The Township's sewers exhibited a wet-weather peaking only 1.5 times greater than theoretical flow. Previous attempts to meter or televise Township sewers, near the Muckinipates interceptor outfall, were frequently abandoned or postponed due to excess surcharging.

## 2.6.2 Corrective Action Plan

Every manhole cover in the Township has two through-style pick holes, admitting potential inflow. The study recommended procurement of approximately 111 inserts to correct the balance of manhole conditions. Further, manhole insert installation, replacement, and/or rehabilitation will also serve to enhance hydraulic capacity by reducing inflow. At a minimum, 44.6% of Darby Township's manholes will receive corrective action. The best-case I&I reduction of 288,000 gpd could be justified at the resultant cost/benefit estimate of \$0.017/gpd eliminated.

None of the existing collection system was proposed for pipe rehabilitation.

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for Darby Township is available in Table 4-1 of Section 4.

# 2.7 FOLCROFT BOROUGH

Folcroft Borough, a member of the DCJA and MA, owns and operates approximately 11.1 miles of sanitary sewers with 195 manholes. Prior I&I studies in the Borough pinpointed specific problems and corrective actions were initiated. No widespread programs for manhole insert procurement and installation or removal of illegal connections have been initiated.

Folcroft Borough is forecasting no expansion of its sanitary sewer infrastructure for the purpose of serving additional units.

#### 2.7.1 Observed Problems

In general, raw sewage meter data for much of the Borough correlated well with theoretical flows developed from actual building counts. Manhole inspections revealed that widespread cover holes present a greater potential for I&I during wet weather events. I&I was stressed because wet weather peaking factors were approximately 3.0. This pattern also was exhibited at meter site #10, even when average daily flow mirrored theoretical flow.

Analysis of the flow metering data reveals that inflow accounts for much more of the flow increases than infiltration during peak flow periods. This conclusion is clearly demonstrated in the Taylor and Heather subbasin (meter site #101).

Much of the Borough's collection system is located in proximity to either the main branch or a tributary of the Muckinipates Creek and Hermesprota Run. This location may account for the infiltration patterns in the flow metering data.

#### 2.7.2 Corrective Action Plan

The corrective action plan recommends procurement of approximately 42 inserts (21.6% of system manholes). Actual meter results correspond closely to theoretical values and therefore, do not justify correcting the balance of the manhole deficiencies.

Only two portions of the existing collection system (creek crossings) are proposed for pipe rehabilitation totaling 373 linear feet of sewer. One aerial crossing near Valleyview Drive will require structural modification, but is not considered to exhibit I&I potential. Sewer repair/rehabilitation represents 6.3% of the system, and 21.6% of the Borough's manholes will receive corrective action.

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for Folcroft Borough is available in Table 4-1 of Section 4.

### 2.8 GLENOLDEN BOROUGH

Glenolden Borough, a member of the MA, owns and operates approximately 16.7 miles of sanitary sewers with 224 manholes. Based on historic mapping, the majority of the Borough's system was constructed prior to the 1930s. Prior I&I studies in the Borough pinpointed specific problems and corrective actions were initiated. No widespread programs for manhole insert procurement/installation or removal of illegal connections have been initiated.

Glenolden Borough is forecasting no expansion of its sanitary sewer infrastructure for the purpose of serving additional units.

### 2.8.1 Observed Problems

Investigations of the sewers suggest that infiltration is responsible for peaking factors averaging 2.5 (maximum observed of 3.8). Low short-term increases in metered values were noted, suggesting that inflow does not greatly exacerbate infiltration-based peaking factors. Moreover, the Karen Circle meter site (#81) demonstrated virtually no effects from I&I.

The age and structural integrity of the manholes necessitate replacement, rather than inserts. Much of the Borough's collection system is located in proximity to the Muckinipates Creek. This may account for more infiltration-associated data patterns.

On average, the Borough's sewers exhibited a wet-weather peaking factor for both I&I of 3.32 times the theoretical flow. For this reason, should limited pipe rehabilitation or similar measures prove to reduce inflow, other sewers should be targeted for more intensive investigation. Only I&I sources with the greatest potential (sewers near/crossing creeks, i.e., Glen Avenue, Elmwood Avenue, MacDade Boulevard, Llanwellyn Avenue, Grays Avenue, Lynwood Circle, and Harrison Avenue) were televised.

#### 2.8.2 Corrective Action Plan

Only certain portions of Glenolden Borough merit significant corrective action. Planned corrective action calls for procurement of 150 manhole inserts, 35 manhole rehabilitations, 12 manhole frames and covers (totaling 88% of the Borough's manholes); plus a total of 2,102 ft of sewer rehabilitation (2.38% of the collection system) in 3 locations (creek crossings).

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for Glenolden Borough is available in Table 4-1 of Section 4.

### 2.9 LANSDOWNE BOROUGH

Lansdowne Borough, a member of the DCJA, owns and operates approximately 25.9 miles of sanitary sewers with 664 manholes. Since 1975, the Borough has undertaken 17 projects to reconstruct parts of its sanitary sewer system. A total of 7,050 ft of pipe have been replaced and 58 manholes rebuilt, representing 5% of the mains and 8.7% of the existing manholes. From 1977 to 1996, the replacement rate has averaged 353 ft per year. In 1995, the Borough purchased 100 polyethylene manhole inserts to restrict inflow during rainfall events. These were installed along Union Avenue, Wycombe Avenue, and in other low-lying intersections. This represents 15% of the total number of manholes in the Borough.

The Borough has a second ongoing I&I reduction program that requires the inspection of homes when sold to check for illegal connection of sump pumps and floor drains. Owners are required to physically disconnect the illegal plumbing.

In several locations the sanitary sewer follows the route of an old swale or stream where the drainageway has been enclosed in a culvert. Culverts built of set stone, mortared stone, or brick were generally built without solid floors. Culverts are prone to ground water seepage and are subject to exfiltration to a lesser extent. Locations where creeks run inside culverts are Pennock

Terrace from Baltimore Avenue, east of Ardmore Avenue, and behind the Ardmore Avenue Elementary School. As mentioned in the definitions, areas near bodies of surface water and with high ground water level are prone to infiltration.

North Wycombe Avenue and Bartram Avenue are two locations where groundwater is very close to the surface and above the elevation of the sewers.

A check was made throughout the Borough for roof drains that discharged underground, with possible connections to the sanitary sewer. No locations were identified as sources of inflow to the sewer.

The portion of the Borough that is tributary to the Cobbs Creek Basin (flowing to the City of Philadelphia) was studied in 1979. At that time, I&I was determined to be non-excessive; therefore, this area was not included in the current study.

# 2.9.1 Observed Problems

## 2.9.1.1 Creek Crossings

In various locations where sanitary sewers cross streams, the cast iron pipe encased in mortared stone, acts as a small dam or weir across the stream. There is no encasement around the 24-inch collector that crosses Falls Run at two locations. At the creek crossing west of the Knoll, and the crossing of Falls Run west of Bryn Mawr Avenue, two segments of sewer were repaired and encased in concrete in November 1996 to eliminate possible infiltration. Where Martin Drive crosses Falls Run, the stream bank has eroded, exposing the terra cotta pipe. Dye testing found no evidence of leaking, but the terra cotta pipe is damaged and the amount of inflow could be substantial.

# 2.9.1.2 Cross Connections

Two cross connections were identified during the study, both of which resulted in exfiltration from the sanitary sewer. Both locations have subsequently been sealed or the sewer abandoned.

# 2.9.1.3 Surcharging

Sewer system backups during wet weather periods have been reported near the intersection of Bryn Mawr and Runnemede Avenues.

### 2.9.1.4 Manhole Inspection

The overall condition of the Borough's manholes is good. Less than 4% were found to have infiltration of any significance. Where no channel exists, the flow velocity slows as the sewage goes through the manhole and sediment and debris settle out of the flow stream. Accumulations of sediment and debris in manholes are frequent causes of blockages in the system. MH-253 behind Wildman Arms has a 4-inch pipe discharging a steady stream of what appears to be non-sewage water from the apartments.

### 2.9.1.5 Video Inspection

The poor condition of the following sewers prevented the passage of the video equipment and the data collected from these sections are incomplete. Because most of the pipes that are in poor condition have alignment problems and bad sags, there are relatively few locations where a trenchless repair technique can be successfully applied. Most repairs will require complete reconstruction.

- Trunk sewer along south Lansdowne Avenue between Linden and Pennock Terrace needs joint rehabilitation to reduce high infiltration.
- Sewers in the 100 block of Stratford Avenue need to be replaced due to storm sewer deterioration.
- Trunk sewer between Baltimore Avenue and Dudley Avenue is in poor condition structurally with a number of offset joints.

# 2.9.1.6 Flow Metering

Based on night inspections, infiltration in the 10-inch and 12-inch diameter trunk sewer between Ardmore and Green Avenues is as much as 12,000 gpd/inch-mile. The volume of inflow to the sewers is significant because of the large number of manholes located near low points in the roadway and along gutterlines.

One outstanding observation from the investigations at the meter on Basin L-3 is that there are hydraulic conditions that are causing the pipe to surcharge. The volume of water during a wet weather peak exceeds the capacity of a 12-inch pipe at minimum grade. For the average daily flow of 330,000 gpd, there is no capacity problem, but wet weather peaks can triple the flow rate. Results from metering also demonstrated that during high flow periods the velocity slows dramatically (dropping below 1.0 ft/second.). This reduced velocity may result in the settling of sand and grit in the morning. The recommended course of action for basin L-3 is as follows:

- Fit manholes with inserts.
- Evaluate the maximum capacity of the trunk sewer between Stratford Avenue MH-650 and Bryn Mawr Avenue MH-142.
- Significantly reduce inflow, otherwise a section of the trunk sewer will have to be replaced with a larger pipe to increase the capacity.
- Improve several sections of sewer main between Ardmore and Green Avenues, which could reduce infiltration by 82 million gallons per year.

Infiltration into Basin L-4 is the second greatest volume of water being introduced to the sewer system, i.e., 46.5 million gallons annually. The rate of infiltration is 4,000 gpd/inch-mile. Although there were a number of manhole inserts installed on Union Avenue, inflow levels remain high, and the peak of the wet day flow graph has a strong correlation to the beginning and ending of a rainfall.

Within Basin L-5, the trunk sewer between Baltimore Avenue and Dudley Avenue is not structurally sound and the alignment is poor with a number of offset joints. Infiltration is the major problem in this basin, which allows 28.8 million gallons of water into the sewer system annually.

# 2.9.2 Corrective Action Plan

Exhibit 17 in the Borough's I&I study report identifies specific problem areas and corrective actions including:

- Regrout joints of the 24-inch diameter trunk sewer crossing Falls Run.
- Eliminate inflow from Wildman Arms at MH-253.
- Install manhole inserts in all manholes that are sited in a sump condition.
- Initiate an annual cleaning program.
- Grout the joints on the 18-inch diameter trunk sewer on Lansdowne Avenue between MH-599 and MH-605.
- Extend the concrete encasement of the sanitary sewer flowing from Martin Drive.
- Reconstruct the sewer from MH-510 on Baltimore Avenue to MH-657 south of the railroad.
- Implement system-wide manhole rehabilitation program.
- Reconstruct the sewer on Stratford Avenue between MH-273 and MH-650.
- Reconstruct portions of the trunk sewer between MH-650 and MH-142 that have insufficient capacity.
- Slip line portions of the trunk sewer between MH-650 and MH-333 to reduce infiltration.

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for Lansdowne Borough is available in Table 4-1 of Section 4.

### 2.10 MARPLE TOWNSHIP

Marple Township, a member of the RHM and CDCA, owns and operates more than 65 miles of sanitary sewers with over 2,000 manholes. The sanitary sewer system in Marple Township is divided into five subsystems. Subsystems 1 through 4 discharge to RHM, and Subsystem 5 discharges to CDCA. This study focused on Subsystem 5, which is comprised of approximately 32.5 miles of sanitary sewers with over 900 manholes. It was estimated that during storm events, Subsystem 5 contributed between 720,000 and 1,440,000 gpd of inflow and approximately 365,760 gpd of infiltration.

### 2.10.1 Observed Problems

i&isummaryreport.final.rev2.doc

## 2.10.1.1 Infiltration

Of the 12 areas that were flow metered, only 4 were found to have excessive infiltration rates that could be removed in a cost-effective manner. Although the sanitary sewer mains in those four areas (meter locations 2 and 4, 5, 7, and 13) were not televised, it is believed that joint grouting could eliminate approximately 224,470 gpd of infiltration. The 30 sewer segments were identified as having significant infiltration and should be candidates for grouting.

An excessive amount of infiltration is entering the system between Beechtree Road and Cedar Grove Road (MH-356 to MH-375). This portion of the system should be considered for rehabilitation to abate the high infiltration rate.

## 2.10.1.2 Inflow

It is believed that the probable sources of the high inflow rate are residential sump pumps and/or the seepage of rainwater through leaky sanitary sewer main joints. An inflow evaluation conducted throughout Subsystem 5 identified only a few potential sources that would contribute to the high inflow rate, including two sanitary sewer mains (located near meter locations 3, 9, and 10) that were exposed to a flowing stream.

The study identified a pipe from MH 119 that is located over a stream with an open joint. Therefore, an increase in stream level could be a significant source of inflow that is attributed to the high inflow levels.

### 2.10.1.3 Manholes

The manholes were constructed both of brick and mortar and of precast concrete and as a whole were found to be in good structural condition; however, 27 manholes were observed to allow I&I. The Richard Drive sewer main is in such poor condition that it should be sealed off or reconfigured.

### 2.10.2 Corrective Action Plan

The recommended corrective action plan to remediate I&I in the Township consists of the following elements:

- Televising and grouting of joints, as needed, of approximately 9 miles of sanitary sewer.
- Implementing a program to remove illegal sump pump connections with the inspection occurring at the closing of real estate transactions. This program would also include a public education program about the illegality of sump pump and other area drain connections.
- Reconstructing sewers that are exposed to creeks.
- Raising manholes and installing watertight lids in wooded/natural areas.
- Installing manhole inserts in all manholes that do not currently have them.
• Repairing/rehabilitating an estimated 273 manholes.

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for Marple Township is available in Table 4-1 of Section 4.

#### 2.11 MORTON BOROUGH

Morton Borough, a member of the CDCA, owns and operates approximately 7.6 miles of sanitary sewers with 132 manholes. Prior I&I studies in the Borough pinpointed specific problems and corrective actions were initiated. No widespread programs have been initiated for manhole insert procurement/installation or removal of illegal connections. Approximately 11.2% of the Borough's collection system is located in proximity to Stony Creek, including 12 stream crossings.

Morton Borough is forecasting no expansion of its sanitary sewer infrastructure for the purpose of serving additional units.

#### 2.11.1 Observed Problems

The results of the metered data reveal virtually no lag in meter value increases after a storm event and are indicative of inflow. Investigation of these sewers and appurtenances suggests that inflow is responsible for escalating metered flows to values 43% higher during wet weather events.

The Borough's sewers did corporately exhibit a wet-weather peaking factor roughly five times greater than theoretical flows and the suspected main source of I&I is through illegal connections.

#### 2.11.2 Corrective Action Plan

The corrective action plan for the Borough calls for the procurement of 132 manhole inserts (all the manholes owned by the Borough), the replacement of 7 frames and covers, and the rehabilitation of 744 linear feet of sewer between Providence Road and Harding Street (which represents less than 2% of the entire system).

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for Morton Borough is available in Table 4-1 of Section 4.

#### 2.12 NETHER PROVIDENCE TOWNSHIP

Nether Providence Township, a member of the CDCA, owns and operates approximately 27.6 miles of sanitary sewers with 650 manholes serving 2,763 units. There is no history of a formal I&I program in the Township; thus, problems have been corrected as they arose.

Nether Providence Township has large areas that are currently unsewered and is planning expansion of its sanitary sewer infrastructure into these areas for the purpose of serving additional units.

#### 2.12.1 Observed Problems

Based on the results of the manhole inspection, sediment was apparent in some of the manholes (about 2%), indicating that there could be breaks in upstream lines or separated joints.

The results of the smoke tests revealed that over 60% of the surface-water intrusion occurred through laterals and house plumbing.

The results from the metered data indicated the possibility of infiltration in the NP-12 study area. This is probably the result of several factors:

- Cracked/broken sanitary sewer pipe and/or offset/leaky joints exposed to high water table.
- Lateral connections in poor condition exposed to groundwater.

Inflow does not appear to be as significant a problem as does infiltration. Infiltration from the water table through breaks in the line such as the one confirmed on Surry Road, is suspected to be a major source of infiltration.

#### 2.12.2 Corrective Action Plan

Key maintenance items were selected based on the presumed overall benefit to the I&I situation including the following specific items:

- Repair of 378 manholes.
- Installation of 600 manhole inserts.
- Replacement of 8 manhole covers.
- Cleaning of 137 manholes.
- Parging of 54 manholes.
- Chemical root treatment of all sewers.
- Grouting of all joints.
- Annual cleaning and televising of the system.

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for Nether Providence Township is available in Table 4-1 of Section 4.

#### 2.13 NORWOOD BOROUGH

Norwood Borough, a member of the MA, owns and operates approximately 14.1 miles of sanitary sewers with 206 manholes. Prior I&I studies in the Borough pinpointed specific problems and corrective actions were initiated. No program for the removal of illegal connections has been initiated.

It is apparent that the age of the system, root damage, manhole seepage, and tie-ins of basement sump pumps are the significant contributors to the I&I problem facing the Borough. Approximately 50% of the manholes investigated have inserts.

Norwood Borough is forecasting no expansion of its sanitary sewer infrastructure for the purpose of serving additional units.

#### 2.13.1 Observed Problems

The results of the manhole inspection indicate that there is only one manhole that is in immediate need of replacement. Sediment was apparent in some of the manholes (about 5%), indicating that there could be breaks in lines or separated joints upstream from the manhole.

Grease is predominant in several locations:

- Seneca line from Summit Avenue.
- Chester Pike Line from Huron Avenue to Winona Avenue, principally due to Dunkin Donuts.
- The line running in the alley parallel to Winona Avenue and Amosland Road, between Welcome Avenue to Chester Pike (this line is behind Erin's Pub).

Smoke testing revealed that over 60% of surface-water inflow occurs through lateral and house plumbing.

#### 2.13.2 Corrective Action Plan

Retrofitting the remainder of the manholes with inserts is an immediate remedial action that will reduce inflow.

Key maintenance items were selected, based on the presumed overall benefit to the I&I situation. These include: chemical root treatment to destroy roots and prohibit regrowth; grouting, on average, every fourth joint in the system; and annual cleaning of all sewers. In addition, manhole repairs should be scheduled as priority items.

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for Norwood Borough is available in Table 4-1 of Section 4.

i&isummaryreport.final.rev2.doc

#### 2.14 PROSPECT PARK BOROUGH

Prospect Park Borough, a member of the CDCA, owns and operates approximately 13.9 miles of sanitary sewers with 179 manholes. Prior I&I studies in the Borough pinpointed specific problems and corrective actions were initiated. No program for the removal of illegal connections has been initiated.

In general, the sanitary sewer system is in adequate condition; however, the five drainage areas defined by meter locations 9, 11, 12, 13, and 14 are responsible for approximately 85% of the infiltration generated and should be considered for abatement.

Prospect Park Borough is forecasting no expansion of its sanitary sewer infrastructure for the purpose of serving additional units.

#### 2.14.1 Observed Problems

Inflow evaluation did not discover any deficiencies in the sanitary sewer system, therefore, it is believed that the probable sources of the high inflow rate are sump pumps or leaky sewer joints. Measured infiltration rates after a rainstorm event were between 1,000 and 10,000% higher than during a period without precipitation in certain areas of the Borough.

Physical inspection of manholes found a moderately high incidence rate of groundwater infiltration due to their poor structural condition. An estimated 27.4% of the 60.7% of sewer system manholes inspected need rehabilitation measures.

#### 2.14.2 Corrective Action Plan

The recommended corrective action plan to remediate I&I in the Borough consists of the following elements:

- Televising and grouting of joints, as needed, of approximately 3 miles of sanitary sewer.
- Implementing a program to remove illegal sump pump connections with the inspection occurring at the closing of real estate transactions. This program would also include a public education program about the illegality of sump pump and other area drain connections.
- Replacing two slotted manhole covers.
- Installing manhole inserts in selected manholes that do not currently have them.
- Repairing/rehabilitating of an estimated 81 manholes.

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for Prospect Park Borough is available in Table 4-1 of Section 4.

### 2.15 RIDLEY PARK BOROUGH

Ridley Park Borough, a member of the CDCA, owns and operates approximately 18.8 miles of sanitary sewers with 339 manholes. Prior I&I studies in the Borough pinpointed specific problems and corrective actions were initiated. To this date, efforts to reduce I&I were typically completed on a "case-by-case" basis. Although manhole repair, rehabilitation, and widespread insert procurement/installation were undertaken, very little sewer-related corrective action has been initiated to relieve conditions noted in earlier I&I studies. A program of inspections is in place to identify illegal discharges to Ridley Park collector sewers.

The study concluded that short-term increases in sewage flow, with a peaking factor of 3, are directly attributable to inflow solely introduced from pick-holes in the manhole covers.

Ridley Park Borough is forecasting no expansion of its sanitary sewer infrastructure for the purpose of serving additional units.

#### 2.15.1 Observed Problems

In general, raw sewerage metering data collected during the study period for the entire Borough correlate well with theoretical flows developed from actual building counts. However, visual observations made during manhole inspections revealed that widespread cover holes (especially when in sump condition) present a greater potential for I&I during precipitation events.

A high "base ratio" of average daily flows with respect to theoretical flow at sites 42 and 85 during dry weather suggest that infiltration is the dominant source of additional water in these areas. Meter site 85 demonstrated the highest base ratio (9.79) but only increased 14% during storm events. However, on average, the Borough's sewers did frequently exhibit a wet-weather peaking factor 2 to 3 times greater than average daily flows, indicating that inflow is present.

#### 2.15.2 Corrective Action Plan

Manhole insert installation, replacement, and/or rehabilitation will also serve to enhance hydraulic capacity by reducing inflow. In addition, rehabilitation/replacement of existing terra cotta pipe with plastic sewer sections or lining sewers will enhance capacity.

In summary, certain conditions have been viewed as strongly problematic, with respect to the potential for large volume I&I. These problem areas were determined primarily on the basis of inspections and metering, rather than on TV inspection trends. Every manhole cover in the Borough has two, through-style pick holes, admitting present/potential inflow. Therefore, the corrective action plan recommended that approximately 35 manholes be rehabilitated, and 292 inserts and 12 new frames and covers be procured to correct observed problems. Little of the existing collection system is proposed for pipe rehabilitation.

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for Ridley Park Borough is available in Table 4-1 of Section 4.

i&isummaryreport.final.rev2.doc

#### 2.16 RIDLEY TOWNSHIP

Ridley Township, a member of the MA and CDCA, owns and operates approximately 69.5 miles of sanitary sewers with approximately 1,400 manholes. Prior I&I studies in the Township pinpointed specific problems, and corrective actions were initiated. Other than manhole and isolated pipe repairs made concurrent with the earlier studies, little infrastructure rehabilitation has been undertaken. No other efforts have been made to significantly reduce I&I. Areas in the Crum Creek collection system have been upgraded via insert placement. No system-wide program for the installation of manhole inserts has been initiated. A program of inspections is in place to identify illegal discharges to Township collector sewers.

Ridley Township is forecasting no expansion of its sanitary sewer infrastructure for the purpose of serving additional units.

Inspection of sanitary sewers and appurtenances suggests that inflow is responsible for peaking factors, which, in some areas are over 8. Corrective actions focus on basin-specific, sewer/manhole rehabilitation and widespread identification and elimination of illegal connections. Additionally, much of the Township collection system is located in proximity to or crosses Stony, Muckinipates, Little Crum, and Crum Creeks.

Only 7.6% of the total system received TV inspection of which none revealed significant problems. High recurrent incidence of poor manhole conditions, and the fact that all manholes have two through-style pick holes, may explain that short-term (hours after rain events) increases in metered values were attributable to inflow introduced solely from street manhole cover pickholes.

#### 2.16.1 Observed Problems

Because of the prolonged history of downstream surcharging near the confluences of Ridley Township with other municipal collection systems and interceptors, efforts were concentrated in these areas. However, reproducible metering results were generally limited to dry weather events, inferring that wet weather events would exacerbate the already problematic peak flow conveyance.

Overall, the Township's sewer system exhibited mean dry and wet weather peaking factors of 2.73 or 4.52 times greater than theoretical flows, respectively. More specifically, the Crum Creek subbasins exhibited mean dry and wet-weather peaking factors of 2.25 or 3.07, while Stony Creek values escalated to 3.21 or 5.97, respectively. In Subbasin 49 (Eisenhower, Catherine, Kossuth, Vauclain, and Kelly Avenues), metered flows during precipitation events peaked as high as 9.56 times theoretical flows and were attributed to manhole conditions combined with illegal connection of roof and area drains.

### 2.16.2 Corrective Action Plan

Every manhole cover in the Township presently has two through-style pick holes. The results of the study recommended 73 manhole in situ rehabilitations, and procurement of 161 inserts and

28 new watertight frames/covers to correct manhole conditions. Widespread manhole insert installation, replacement, and/or rehabilitation will serve to enhance hydraulic capacity and mend structural problems.

The corrective active plan also calls for slip lining 43,300 ft of sewer. As a result, 11.8% of the total sewer footage and 262 manholes will receive corrective action.

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for Ridley Township is available in Table 4-1 of Section 4.

### 2.17 RUTLEDGE BOROUGH

Rutledge Borough, a member of the CDCA, owns and operates approximately 2.5 miles of sanitary sewers with 33 manholes serving 124 units. Prior I&I studies in the Borough pinpointed specific problems and corrective actions were initiated. To this date, efforts to reduce I&I were typically completed on a "case-by-case" basis. No widespread programs for manhole insert procurement or the removal of illegal discharges to Borough sewers have been implemented.

Rutledge Borough is forecasting no expansion of its sanitary sewer infrastructure for the purpose of serving additional units.

#### 2.17.1 Observed Problems

A severe sag in the sewer was observed in the line running along Waverly Terrace and from Waverly Terrace to the first manhole between Swarthmore Avenue and Rutledge Avenue.

A total of 1,668 ft of sewer were televised, and the following problems were noted:

- Three cracked crowns.
- One hole in the pipe.
- Two leaking joints.
- One instance of root intrusion.

#### 2.17.2 Corrective Action Plan

The planned corrective action plan includes the following items:

- Installation of 33 manhole inserts.
- Slip lining of 1,190 ft of sewer.
- Replacement of 435 ft of sewer.

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for Rutledge Borough is available in Table 4-1 of Section 4.

#### 2.18 SHARON HILL BOROUGH

Sharon Hill Borough, a member of the DCJA, owns and operates approximately 12.2 miles of sanitary sewers with 230 manholes serving approximately 5,600 residents. Efforts to reduce I&I in the Borough date back over 30 years. Within the last 3 years, several projects have been undertaken to remove storm sewer inlet connections to the sanitary sewer. These inlets were all connected to the Darby Creek Interceptor watershed, and were estimated to allow an average of 12,000 gpd inflow into the system.

Sharon Hill Borough is forecasting no expansion of its sanitary sewer infrastructure for the purpose of serving additional units.

Based on flow metering, it can be concluded that infiltration is introducing far more extraneous water into the sewer system than inflow. The adjusted annual inflow values were found to be 10 to 100 times less than the base infiltration amounts in each of the subbasins.

The Borough inspects dwellings and businesses for occupancy permits and requires removal of illegal downspout and sump pump connections. Also, the Borough has recently removed what was believed to be the last storm drainage connection.

#### 2.18.1 Observed Problems

The three metered areas comprised 75% of the total dwelling units, over half the land area and most of the 90-year-old sewers. The flow metering during night hours found that Subbasins D-3a and D-3b had the greatest percentage increase in observed flows during wet weather events.

Investigations revealed that isolated house roof drains may be connected to the sanitary laterals in some of the older dwellings in Subbasin D-2a.

The channel in MH-61 is deteriorated.

The study noted an increase in flows in Subbasin D-3a during wet weather events, but could not trace them to storm sewer connections. However, various properties were identified as having possible roof drain connections to sanitary laterals. Secondly, high flow rates may be a consequence of infiltration given the age of the system. It was noted that about 51% of the sewer system in Subbasin D-3a is over 90 years old and the remainder of the system is 60 to 70 years old.

A section of a combined sewer was discovered still in use, extending from the terminus of Ridley Avenue to Barker Avenue. The old 24-inch diameter sewer carried the sanitary flows from Ridley Avenue.

The infiltration rate measured in Subbasin D-3b was over 5,166 gpd/inch-mile. This high value can be attributed to the vicinity of the coastal plain. Subbasin D-3b is probably subjected to higher groundwater levels than Subbasins D-3a and D-2a. Infiltration measured in Subbasin D-2a was less than 1,400 gpd/inch-mile and is not considered excessive, whereas the rate of

infiltration measured in Subbasin D-3b was over 1,733 gpd/inch-mile. This figure is higher than desirable and may be reflective of the large number of lateral connections in this subbasin. Analysis of the base infiltration for the three subbasins shows that Subbasin D-3b has the greatest rate of infiltration. Subbasin D-2a has the least infiltration.

### 2.18.2 Corrective Action Plan

The corrective action plan for Sharon Hill Borough includes the following items:

- Clean and televise sections not inspected to date.
- Slip line 4,780 ft of sewers.

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for Sharon Hill Borough is available in Table 4-1 of Section 4.

#### 2.19 SPRINGFIELD TOWNSHIP

Springfield Township, a member of the DCJA, MA, and CDCA, owns and maintains approximately 83.4 miles of sanitary sewer with 2,060 manholes. Since 1972, the Borough has been very aggressive in controlling I&I with a program of televised inspections, flow metering, smoke testing, grouting, and inflow elimination.

Springfield Township has an active I&I program with ongoing repairs. Over the last few years the following rehabilitation has been performed: Insituform rehabilitation of 1,000 ft of sewer line, manhole inserts for 1,000 manholes, sump pump inspections, and metering of 75% of the Township's sanitary sewers.

#### 2.19.1 Observed Problems

Because the Township has an active I&I elimination program, a study was not performed. No estimates of I&I reduction were provided by the Township.

#### 2.19.2 Corrective Action Plan

It is anticipated that the I&I elimination program conducted by the Township will continue at its present level for the near future with an additional 1,000 linear feet of sewer being slip lined and an additional 1,000 manhole inserts being procured over the next 5 years.

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for Springfield Township is available in Table 4-1 of Section 4.

#### 2.20 SWARTHMORE BOROUGH

Swarthmore Borough, a member of the CDCA, owns and maintains approximately 18 miles of sanitary sewer with 398 manholes. The Borough has been very aggressive since 1972 in controlling I&I with a program of televised inspections, flow metering, smoke testing, grouting, and inflow elimination.

Borough personnel have indicated that surcharging of the interceptor in the North Drainage Area occurs during periods of heavy rainfall. The surcharging begins in the vicinity of MH-B13 on Benjamin West Avenue between Garrett Avenue and Princeton Avenue. The surcharging conditions occur along the remainder of the interceptor that extends from MH-B13 under the SEPTA railroad tracks, under the Borough garage, and then along Oberlin Avenue, Lafayette Avenue, and Harvard Avenue to MH-B1 located South of Cresson Lane. MH-B1 is the tie-in point of the Borough's sanitary sewer with the CDCA interceptor.

Surcharging of the interceptor below MH-A14 also occurs during periods of heavy rain. This interceptor extends from MH-A10 easterly through private property to the intersection of Haverford Place with Drexel Avenue and then easterly along Drexel Avenue to another tie-in point with the CDCA interceptor located east of the cul-de-sac end of Dickinson Avenue.

#### 2.20.1 Observed Problems

The results of the flow monitoring indicate that infiltration of approximately 250,000 gpd is occurring upstream of MH-B7 in the North Drainage Area. Above MH-A7 in the South Drainage Area, infiltration in the amount of approximately 20,000 gpd is present. The conclusions drawn from the flow measurements are that the surcharging in the South Drainage Areas is mainly attributable to inflow because the base flow from infiltration is relatively small. However, in the North Drainage Area, it appears that both I&I contribute to the surcharging problems.

Results from the smoke tests indicated possible sources of inflow at nine locations in the North Drainage Area and eight locations in the South Drainage Area.

The TV inspection reports identified six areas where the mains were broken or obstructed, root intrusion was present at joints and lateral connections, and offset joints and wet joints also indicate possible sources of infiltration.

#### 2.20.2 Corrective Action Plan

The corrective action plan for Swarthmore Borough includes the following items:

- Slip lining from MH-C2 to MH-C1 and lateral serving 410 Thayer Road.
- Slip lining from MH-A31 to MH-A25 and the laterals serving 210 and 214 Cornell Avenue.

#### ACT 537: SEWAGE FACILITIES PLAN .

MUNICIPAL & AUTHORITY INFLOW AND INFILTRATION STUDY

- Slip lining from MH-A16 to MH-A14, MH-B3 to MH-B6, MH-B6 to MH-B22, MH-B37 to MH-B61, MH-C12 to MH-C10, MH-B6 to MH B37, and from the new Odgen Avenue manhole (see below) to MH-C32.
- Installing a frame and cover on a manhole in the yard of 124 Guernsey Road in the vicinity of MH-C23
- Reconstructing MH-A64 and MH-A65 in the 300 block of Cornell Avenue.
- Reconstructing the sewer from MH-A66 and MH-A25 in the 300 block of Cornell Avenue.
- Reconstructing the sewer from MH-A15 to MH-A14 on Union Avenue.
- Reconstructing the sewer from MH-B10 to MH-B60 on Oberlin Avenue.
- Reconstructing the sewer from MH-C20 to MH-C22 including a new manhole on the north side of Odgen Avenue.
- Performing chemical/mechanical root removal.
- Installing manhole inserts in MH-C38, MH-B22, MH-A31, and MH-A66.

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for Swarthmore Borough is available in Table 4-1 of Section 4.

#### 2.21 UPPER DARBY TOWNSHIP

Upper Darby Township, a member of the DJCA and MA, owns and maintains sanitary sewers that discharge to the City of Philadelphia as well as to the Authorities. This study focused on the areas serviced by DELCORA through DJCA and MA. This area comprises 2.9 square miles and contains approximately 51.7 miles of sewers and over 1,213 manholes serving over 27,000 residents.

#### 2.21.1 Observed Problems

The study indicated that sanitary sewers in the Darby Creek system have an infiltration rate of 1,310,000 gpd and an inflow rate of 1,520,000 gpd. The Muckinipates system on the other hand has an infiltration rate of 730,000 gpd and an inflow rate of 190,000 gpd.

Results from flow monitoring indicated several problem areas. Subbasins A5, D1, and D5 from the Darby Creek sewershed had surcharged readings. During TV inspections of the lines notable findings were identified in the I&I report and identified on the map. The following subbasins were identified as having predominantly high I&I rates:

|          | Infiltration | Inflow  |          | Infiltration | Inflow  |
|----------|--------------|---------|----------|--------------|---------|
| Subbasin | (gpd)        | (gpd)   | Subbasin | (gpd)        | (gpd)   |
| A-2      | 358,000      | 608,000 | D-2      | 248,000      | 145,000 |
| A-5      | 447,000      | 384,000 | P-2*     | 736,000      | 38,000  |
| A-7*     | 287,000      | 73,000  | P-5      | 726,000      | 186,000 |
| A-8*     | 99,000       | 142,000 |          |              |         |

\* indicates subbasin that flows into other subbasin.

Physical inspection found evidence of inflow entering different areas of the system. The manholes subjected to ponding and those located in a drainage path are particularly vulnerable to any extraneous flows entering through cracked, broken, or loose covers and/or frames. The inspection indicated no evidence of problems related to cross-connections with storm sewers.

#### 2.21.2 Corrective Action Plan

The corrective action plan for Upper Darby Township includes the following items:

- Joint grouting 5,790 ft of sewers.
- Slip lining of 1,924 ft of sewers.
- Replacing of 1,162 ft of sewers.
- Replacing of one manhole.
- Cleaning of 317 manholes.
- Repairing manhole frames and covers on 948 manholes.
- Installing 20 manhole inserts.
- Sealing the walls of 409 manholes.

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for Upper Darby Township is available in Table 4-1 of Section 4.

#### 2.22 YEADON BOROUGH

Yeadon Borough, a member of the DCJA, owns and operates approximately 21.7 miles of sanitary sewers with 400 manholes serving 4,900 units. There is no history of a formal I&I program and problems have only been addressed as they arose.

Yeadon Borough is forecasting no expansion of its sanitary sewer infrastructure for the purpose of serving additional units.

It is apparent that the age of the system is a major issue. Root damage, manhole seepage, and degraded joints are the primary causes of the problems. Approximately 30% of the manholes did have an insert. Sump pumps connections do not appear to be prevalent in the Yeadon system.

#### 2.22.1 Observed Problems

Grease is predominant in several locations:

- Parmley Avenue from West Cobbs Creek Parkway to Pleasant Road.
- Baily Road and Cypress Street.

Sediment was apparent in some of the manholes (about 4.5%), indicating that there could be a break in upstream lines or joints.

#### 2.22.2 Corrective Action Plan

Key maintenance items were selected based on the presumed overall benefit to the I&I situation as follows:

- Repair of 164 defects observed in the manholes.
- Installation of 287 manhole inserts.
- Chemical root treatment.
- Grouting of every joint in the system.
- Annual cleaning and televised inspections.

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for Yeadon Borough is available in Table 4-1 of Section 4.

# 3. SUMMARIES OF INDIVIDUAL AUTHORITY STUDIES

## 3.1 CENTRAL DELAWARE COUNTY AUTHORITY

CDCA has four primary interceptor lines: Crum Creek Interceptor, Little Crum Creek Interceptor, Stony Creek Interceptor, and the Prospect Park Interceptor, totaling approximately 16.4 miles of sewers with 540 manholes. In 1994, a study was completed to determine the need for improvement of these facilities. The facilities were also monitored for the influence of I&I on the system. The Trout Run extension of the Crum Creek Interceptor in Marple Township was found to be in good condition in a 1986 study and was not re-investigated in 1994.

#### 3.1.1 Observed Problems

Signs of severe surcharging caused by numerous partial blockages were observed in the Prospect Park Interceptor.

Inspection of the Little Crum Creek Interceptor revealed an area of visible infiltration along the south side of Ridley Park Lake. The inspection also revealed five areas where the old interceptor, thought to have been abandoned, was still in service. These areas are listed below:

- 1. Ridley Township, south of MacDade Boulevard, behind the properties along Morton Avenue.
- 2. Ridley Township, Georgetown Road, south of Rosemont Lane.
- 3. Ridley Township, north of Michigan Avenue.
- 4. Swarthmore Borough, east of Dickenson Avenue.
- 5. Swarthmore Borough, north and south of Yale Avenue. The site south of Yale Avenue required emergency repair to prevent the discharge of sewage into the creek.

Inspection of the Crum Creek Interceptor creek crossings revealed visible infiltration at the crossing in Smedley Park.

#### 3.1.2 Corrective Action Plan

The two sites with the potential for exfiltration were repaired as an emergency repair.

Based on the other problems, the corrective action plan includes:

- Installing manhole inserts in all manholes.
- Slip lining the Smedley Park creek crossing.
- Televising the remaining creek crossings and slip lining if necessary.
- Cleaning the interceptors on a regular basis. (According to the report, the Prospect Park Interceptor was cleaned in September 1994.)
- Repairing the remaining areas in the old interceptor as described above.

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for CDCA is available in Table 4-1 of Section 4.

# 3.2 DARBY CREEK JOINT AUTHORITY

DCJA has three primary interceptor lines: the Darby Creek Interceptor, the Cobbs Creek Interceptor, and the Hermesprota Creek Interceptor, totaling approximately 10.7 miles with 250 manholes. In 1994, DCJA commissioned an I&I study of their system.

#### 3.2.1 Observed Problems

Flow metering confirmed the presence of severe I&I. Specifically, the following problems were observed:

- Suspected grit deposits downstream from MH-49 are partially obstructing flow.
- A blockage is suspected between MH-98 and MH-99 adjacent to the Hoffman Park tennis courts in Lansdowne Borough.
- In Darby Borough, an abandoned 24-inch creek crossing allows creek water to enter the interceptor.
- A second creek crossing between Springfield and Upper Darby is allowing creek water to enter the interceptor.

### 3.2.2 Corrective Action Plan

On May 19, 1999, the DCJA Board approved a routine maintenance and inspection program for their interceptor system. The plan covers a 6-year cycle in which the rights-of-way are cleared, pipes are cleaned, video inspection is conducted, and root control treatment is performed.

In addition to the routine maintenance program, the following corrective actions are appropriate:

- Cleaning to remove blockages.
- Investigation of the creek crossings and slip lining as necessary.
- Installation of manhole inserts in all manholes.

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for DCJA is available in Table 4-1 of Section 4.

### 3.3 MUCKINIPATES AUTHORITY

MA has only one primary interceptor, Muckinipates Creek Interceptor, which was constructed during 1949 and 1950 and runs approximately 4.9 miles with 118 manholes. There are 55 municipal sewer connections to the interceptor and 17 direct user connections, including 5 apartment complexes, shopping center, church, and 10 residences. In the 1980s, an I&I study of

the interceptor concluded that the majority of the I&I problem was attributable to the tributary municipal systems.

#### 3.3.1 Observed Problems

Historically, two sections of the interceptor have been subject to surcharging. The first section is in the rear of #1, #3, and #5 Amosland Road. These houses have laterals that tie into the interceptor and the backyards were graded to within 6 to 12 inches of the top of the interceptor. The other area is between MH-64 and MH-70 where one of the apartment complexes discharges. Root removal was conducted between MH-62 and MH-64 to correct the problem.

The lack of properly recorded easements has created a number of difficulties in accessing and maintaining the interceptor. The interceptor from MH-3 to MH-16 has never been televised due to access difficulties.

A total of 77 manhole covers were found to be subject to inflow, and 26 either could not be found or could not be opened.

A total of 12 stream crossings were inspected and no problems were observed.

#### 3.3.2 Corrective Action Plan

The recommended corrective action plan for MA includes:

- Procuring and installing manhole inserts.
- Televising all lines to document I&I.
- Cleaning sewers and manholes.

### 3.4 RADNOR HAVERFORD MARPLE SEWER AUTHORITY

RHM maintains an active I&I reduction program for its 8.25 miles of interceptors. RHM began conducting extensive I&I studies in 1994. An I&I program annual report dated 7 April 1998 was submitted that summarized I&I activities in 1997. RHM provides I&I corrective services to its member municipalities.

#### 3.4.1 Observed Problems

The ongoing study has found leaking pipe joints, cracked pipes, etc.

#### 3.4.2 Corrective Action Plan

RHM remedies problems, such as leaking pipe joints, as part of normal maintenance and repair activities. Extraordinary problems, such as storm sewer interconnections, are reported to the individual municipalities.

In 1997, RHM estimated that 43,875 gpd of I&I was removed by repair and rehabilitation activities, 15,900 gpd of I&I was removed by the RHM installation of manhole inserts, and 90,000 gpd of I&I was removed by municipal activities, for a total annual removal of 149,775 gpd.

In addition to the individual corrective actions mentioned above, a detailed listing of the common corrective actions for RHM is available in Table 4-1 of Section 4.

# 3.5 FIVE-YEAR PLAN FOR AUTHORITIES

The I&I studies for the Authorities were reviewed to identify the types of I&I problems present in the systems and potential remedies for the problems. An optional Five-Year Plan was then developed for the Authorities that should reduce the I&I present in their systems.

The I&I problems observed in the Authority systems include leaking joints along the interceptors, line breaks in the interceptors at creek crossings, open connections to the creeks, and leaking manholes and manhole covers. The studies also noted areas of accumulated grit and debris that would, or could, surcharge the interceptor system.

The generic Five-Year Plan that the Authorities could adopt to address these problems is outlined below:

#### Year 1

- Review the I&I studies and determine where maintenance and sewer cleaning need to be conducted. Execute maintenance and cleaning activities and identify any I&I problems observed.
- Review the I&I studies and I&I problems observed during maintenance and cleaning (above). Identify potential corrective actions required to reduce I&I and conduct a costbenefit analysis to determine the corrective actions to be taken.
- Authorize the execution of the corrective actions. These actions would be scheduled to meet seasonal (construction) and financial constraints over the duration of the Five-Year Plan.
- Identify routine maintenance practices that would lead to improved performance of the interceptor system. Prepare a Preventative Maintenance Plan that would include a sewer cleaning schedule, monitoring of "trouble" locations in the system, and other activities that would benefit the Authority. Include a procedure that would immediately identify I&I problems for subsequent corrective action.
- Implement the Preventative Maintenance Plan.
- Install manhole inserts in all manholes.

#### Years 2 Through 5

- Execute corrective actions. As the corrective actions are completed, monitor their performance.
- Execute the Preventative Maintenance Plan. Remedy observed I&I problems.

# 4. SUMMARY OF INDIVIDUAL CORRECTIVE ACTION PLANS

Table 4-1 presents a summary of the corrective action plans and the costs estimated in each individual study. However, because the widely varying unit costs make comparison between municipalities difficult, an attempt was made to normalize these unit costs. The normalized unit cost row on Table 4-1 was calculated by averaging the unit costs reported in each study and adding 25% for costs associated with engineering, legal, and procurement services. Unit costs from the individual studies that were significantly outside the norm of the other studies were discounted and not used to compute the average. Springfield Township did not perform a study because they currently have an active I&I removal program. The estimates for future work were based on the effort expended in recent years and the assumption that this level of effort will continue. RHM also has an active I&I program and its future efforts were estimated in the same manner.

Table 4-2 presents the items in the individual, municipal corrective action plans using the normalized unit costs from Table 4-1. The summary of all recommended improvements results in an average cost of \$0.85/gpd removed for the municipalities and an average cost of \$2.02/gpd removed for the Authorities.

Sumps and downspouts are an especially difficult problem for any municipality. Ordinances may prohibit sumps and roof drains from being connected to sanitary sewers. However, many are suspected of being tied into the sewers. Some communities have implemented programs that call for the Code Enforcement Officer (CEO) to inspect a property when it is sold and to order illegally connected sumps and roof drains disconnected and the discharge transferred to the lawn. However, it is suspected that many of these sumps are reconnected as the homeowners do not want the discharge onto their lawns. With few storm sewers, discharging to the lawn is the most logical option. When the lawn is saturated, the homeowner would probably want to reconnect the sump to the sanitary sewer. This becomes an almost impossible inspection problem for the CEO.

#### ACT 537: SEWAGE FACILITIES PLAN

#### MUNICIPAL & AUTHORITY INFLOW AND INFILTRATION STUDY

Table 4-1 Effort and Cost Summary of Recommended I&I Reduction Program

|                                                                                                                                                                                                                                                                                     |             |                 |          | Chemical |                               |                                |          |         |                  |         |      |              | Fran         | ne &       |          |            |     |               |          |         |            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----------------|----------|----------|-------------------------------|--------------------------------|----------|---------|------------------|---------|------|--------------|--------------|------------|----------|------------|-----|---------------|----------|---------|------------|
|                                                                                                                                                                                                                                                                                     | <b>TX</b> 7 | TWChar          | Chemical | Root     | Sewer Slip                    | Sewer                          | Terenete |         | Manhole          | Dana I  | 7    | Coal Ename   | Co<br>Demler | ver        | Manhole  | MH Chimi   | iey | Manhole       | Ma       | inhole  | Disconnect |
|                                                                                                                                                                                                                                                                                     | 1 V<br>(1f) | 1 V/Clean       | Grouting | (If)     | Lining                        | Replacement                    | (ea)     |         | Cleaning<br>(If) | Keset r | rame | Seal Frame   | керас        | ement      | (ea)     | (ea)       |     | Liner<br>(ea) | кера     | acement | (ea)       |
| Municipality<br>Aldan Borough                                                                                                                                                                                                                                                       | (11)        | (II)<br>© 833   |          | (11)     | (III)<br>\$ 50                | (11)                           | (ca)     | 50      | (11)             | (12     | 1)   | (ca)         | (1           | <i>a</i> ) | \$ 300   | (ca)       | 50  | (ca)          | ·'       | (ca)    | (ca)       |
| Clifton Heights Borough                                                                                                                                                                                                                                                             |             | ψ 0.55          | \$ 50.00 |          | \$ 50                         |                                | \$ 4     | 10      |                  |         |      | \$ 300       | \$           | 250        | \$ 500   | \$ 2       | 50  |               | <u> </u> |         |            |
| Collingdale Borough                                                                                                                                                                                                                                                                 |             |                 |          |          |                               | \$ 80                          | Ψ        |         |                  |         |      | ф <u>500</u> | Ψ            | 250        | \$ 1.150 | ψ 2        |     | \$ 2.500      | \$       | 2.500   |            |
| Colwyn Borough                                                                                                                                                                                                                                                                      |             |                 |          |          |                               | <del>\$</del>                  | \$ 5     | 50      |                  |         |      |              | \$           | 1,000      | \$ 720   |            |     | ¢ 2,000       | Ţ,       | 2,000   |            |
| Darby Borough                                                                                                                                                                                                                                                                       |             |                 |          |          | \$ 37                         | \$ 140                         | \$ 3     | 30      |                  |         |      |              |              | ,          |          |            |     |               |          |         | \$ 2,000   |
| Darby Township                                                                                                                                                                                                                                                                      |             |                 |          |          |                               |                                | \$ 4     | 17      |                  |         |      |              |              |            |          |            |     |               | [        |         |            |
| Folcroft Borough                                                                                                                                                                                                                                                                    |             |                 |          |          |                               |                                |          |         |                  |         |      |              |              |            |          |            |     |               | í —      |         |            |
| Glenolden Borough                                                                                                                                                                                                                                                                   |             |                 |          |          | \$ 48                         |                                | \$ 3     | 34      |                  |         |      |              |              |            |          |            |     |               | [        |         |            |
| Lansdowne Borough                                                                                                                                                                                                                                                                   |             |                 |          |          |                               | \$ 300 <sup>-1</sup>           |          |         |                  |         |      |              |              |            |          |            |     |               |          |         |            |
| Marple Township                                                                                                                                                                                                                                                                     | \$ 1.63     |                 |          |          |                               |                                | \$ 5     | 50      |                  |         |      |              | \$           | 1,250      | \$ 720   |            |     |               |          |         |            |
| Morton Borough                                                                                                                                                                                                                                                                      |             |                 |          |          | \$ 47                         |                                | \$ 3     | 34      |                  |         |      |              |              |            |          |            |     |               | $\vdash$ |         |            |
| Nether Providence Township                                                                                                                                                                                                                                                          | \$ 0.65     |                 | \$ 5.00  | \$ 1.75  |                               |                                | \$ 3     | 36      |                  | \$      | 140  | \$ 50        | \$           | 480        | \$ 410   | \$ 3       | 00  |               | L        |         |            |
| Norwood Borough                                                                                                                                                                                                                                                                     | \$ 0.65     |                 | \$ 5.00  | \$ 1.75  | \$ 44                         | \$ 100                         | \$ 3     | 36      | \$ 150           | \$      | 140  | \$ 50        | \$           | 480        | \$ 600   | \$ 3       | 00  |               | \$       | 2,500   |            |
| Prospect Park Borough                                                                                                                                                                                                                                                               | \$ 1.50     |                 | \$ 4.50  |          | \$ 135 '                      |                                | \$       | 50      |                  |         |      |              | \$           | 1,000      | \$ 720   |            |     |               | ⊢        |         |            |
| Ridley Park Borough                                                                                                                                                                                                                                                                 |             |                 |          |          | \$ 55                         |                                | \$ 3     | 34      |                  |         |      |              |              |            |          |            |     |               | ⊢        |         |            |
| Ridley Township                                                                                                                                                                                                                                                                     |             |                 |          |          | \$ 42<br>\$ 52                |                                | \$ 2     | 34      |                  |         |      |              |              |            |          |            | _   |               | ⊢        |         |            |
| Rutledge Borough                                                                                                                                                                                                                                                                    |             | ¢ 5.00          |          |          | \$ 52                         |                                | \$ :     | 54      |                  |         |      |              |              |            |          |            | _   |               | ⊢        |         |            |
| Sharon Hill Borough                                                                                                                                                                                                                                                                 |             | \$ 5.00         |          |          | \$ 100                        |                                |          | _       |                  |         |      |              |              |            |          |            | -   |               | ⊢        |         |            |
| Springheid Township                                                                                                                                                                                                                                                                 |             |                 |          |          |                               |                                |          | _       |                  |         |      |              |              |            |          |            |     |               | <u> </u> |         |            |
| Upper Darby Township                                                                                                                                                                                                                                                                |             |                 | \$ 7.50  |          | \$ 200 1                      | \$ 100                         |          |         | \$ 150           | ¢       | 250  |              |              |            | \$ 650   | \$ 5       |     |               | \$       | 4 000   |            |
| Veadon Borough                                                                                                                                                                                                                                                                      | \$ 0.65     |                 | \$ 5.00  | \$ 1.75  | \$ <u>200</u><br>\$ <u>52</u> | <u>\$ 100</u><br><u>\$ 100</u> |          | -       | φ 150            | φ       | 250  |              |              |            | \$ 050   | \$ J       |     |               | <u>ф</u> | 4,000   |            |
| Normalized unit cost 2                                                                                                                                                                                                                                                              | \$ 1.07     | \$ 922          | \$ 6.75  | \$ 2.20  | 50.00                         | \$ 120                         | ¢ 4      | 50      | ¢ 100            | ¢       | 221  | 62.50        | ¢            | 020        | ¢ 901    | \$ 1       | 00  | ¢ 2.105       | ¢        | 2 750   | \$ 2,500   |
| Alden Porough                                                                                                                                                                                                                                                                       | φ 1.27      | φ 0.55<br>5 360 | 2,000    | 9 2.20   | 3,000                         | φ 150                          | φ .<br>  | 0       | φ 100            | φ       | 221  | 02.50        | φ            | 929        | 3 301    | φ 4<br>1 2 |     | φ 5,125       | ф<br>—   | 3,750   | φ 2,500    |
| Clifton Heights Borough                                                                                                                                                                                                                                                             |             | 5,500           | 2,000    |          | 5,000                         |                                | 16       | 52      |                  |         |      | 21           |              | 4          | 200      | 2          | 17  |               | <u> </u> |         |            |
| Collingdale Borough                                                                                                                                                                                                                                                                 | 6 300       |                 | 4 752    |          | 5 586                         | 1.000                          | 10       | ,2      |                  |         |      | 21           |              |            | 14       |            |     | 14            | <u> </u> | 4       |            |
| Colwyn Borough                                                                                                                                                                                                                                                                      | 0,500       |                 | 4,752    |          | 5,500                         | 1,000                          | 8        | 35      |                  |         |      |              |              | 8          | 14       |            | -   | 1-1           | <u> </u> |         |            |
| Darby Borough                                                                                                                                                                                                                                                                       |             |                 |          |          | 3.000                         | 2.000                          | 10       | )0      |                  |         |      |              |              |            |          |            |     |               |          |         | 5          |
| Darby Township                                                                                                                                                                                                                                                                      |             |                 | 3.000    |          | _,                            |                                | 11       | 11      |                  |         |      |              |              |            |          |            |     |               |          |         |            |
| Folcroft Borough                                                                                                                                                                                                                                                                    |             |                 |          |          | 373                           |                                | 4        | 12      |                  |         |      |              |              |            |          |            |     |               | [        |         |            |
| Glenolden Borough                                                                                                                                                                                                                                                                   |             |                 |          |          | 2,102                         |                                | 15       | 50      |                  |         |      |              |              | 12         | 35       |            |     |               | [        |         |            |
| Lansdowne Borough                                                                                                                                                                                                                                                                   |             |                 | 950      |          | 3,300                         | 980                            | 12       | 20      |                  |         |      |              |              |            | 200      |            |     |               |          |         |            |
| Marple Township                                                                                                                                                                                                                                                                     | 171,600     |                 |          |          |                               |                                | 38       | 30      |                  |         |      |              |              | 40         | 273      |            |     |               | Ĺ        |         |            |
| Morton Borough                                                                                                                                                                                                                                                                      |             |                 |          |          | 744                           |                                | 13       | 32      |                  |         |      |              |              | 7          |          |            |     |               |          |         |            |
| Nether Providence Township                                                                                                                                                                                                                                                          | 145,582     |                 | 54,375   | 145,582  |                               |                                | 60       | 00      |                  |         | 162  | 141          |              | 8          | 45       |            | 54  |               | L        |         |            |
| Norwood Borough                                                                                                                                                                                                                                                                     | 74,300      |                 | 44,580   | 74,300   | 3,715                         | 743                            | 8        | 33      | 46               |         | 41   | 43           |              | 6          | 27       |            | 12  |               | <u> </u> | 1       |            |
| Prospect Park Borough                                                                                                                                                                                                                                                               | 71,280      |                 | 15,555   |          | 2,400                         |                                | 10       | 00      |                  |         |      |              |              | 2          | 81       |            |     |               | ⊢        |         |            |
| Ridley Park Borough                                                                                                                                                                                                                                                                 |             |                 |          |          | 1,114                         |                                | 29       | 12      |                  |         |      |              |              | 12         | 35       |            | _   |               | <u> </u> |         |            |
| Ridley Township                                                                                                                                                                                                                                                                     |             |                 |          |          | 43,300                        | 425                            | 16       | 21      |                  |         |      |              |              | 28         | 73       |            | _   |               | ⊢        |         |            |
| Rutledge Borough                                                                                                                                                                                                                                                                    |             | 01.161          |          |          | 1,190                         | 435                            | ć        | 55      |                  |         |      |              |              |            |          |            |     |               | ⊢        |         |            |
| Sharon Hill Borough                                                                                                                                                                                                                                                                 |             | 21,101          |          |          | 4,780                         |                                | 1.00     | <u></u> |                  |         |      |              |              |            |          |            |     |               | <u> </u> |         |            |
| Sworthmore Porcugh                                                                                                                                                                                                                                                                  |             |                 |          |          | 1,000                         | 1 740                          | 1,00     | 4       |                  |         |      |              |              | 3          |          |            | 4   |               | <u> </u> |         |            |
| Unper Darby Township                                                                                                                                                                                                                                                                |             |                 | 5 790    |          | 1 924                         | 1,749                          |          | 20      | 317              |         | 948  |              |              | 5          | 409      |            | -   |               | <u> </u> | 1       |            |
| Veadon Borough                                                                                                                                                                                                                                                                      | 114.500     |                 | 68.700   | 114.500  | 5.725                         | 5.725                          | 30       | 00      | 517              |         | 740  |              |              |            | 407      | 4          | 00  |               | <u> </u> |         |            |
| Central Delaware County Authority                                                                                                                                                                                                                                                   |             | 86.563          |          | 43.300   | 850                           | - ,                            | 54       | 10      |                  |         |      |              |              |            | 108      |            |     |               |          |         |            |
| Darby Creek Joint Authority                                                                                                                                                                                                                                                         |             | 47,800          |          | 24,000   | 107                           |                                | 13       | 39      |                  |         |      |              |              |            | 28       |            |     |               |          |         |            |
| Muckinipates Authority                                                                                                                                                                                                                                                              |             | 28,581          |          |          |                               |                                | 7        | 77      |                  |         |      |              |              |            |          |            |     |               |          |         |            |
| Radnor-Haverford-Marple Sewer Authority <sup>4</sup>                                                                                                                                                                                                                                | 900,995     |                 | 23,010   | 104,665  |                               |                                | 26       | 55      |                  |         |      |              |              |            | 1,825    |            |     |               |          |         |            |
| tes:<br>nit cost outside the norm. Not used to compute normalized cost.<br>cludes 25% for engineering, legal, procurement costs, etc.<br>rojected based on work reported to have been performed in recent years.<br>ctual repairs from 1997 and includes all member municipalities. |             |                 |          |          |                               |                                |          |         |                  |         |      |              |              |            |          |            |     |               |          |         |            |

Table 4-2Normalized Summary of Recomended I&I Reduction Program

|                                                      | Sewer<br>Length in<br>Service Area | Inserts            | Disconnect<br>Inlets | MH Frame<br>Repairs | MH<br>Repairs | MH Liner /<br>Replacement | Sewer<br>Replacement | Chemical<br>Grouting | Chemical<br>Root<br>Removal | Sewer Slip<br>Lining | Estimat<br>Inflow | ed  | Estimated<br>Infiltration     | Estimated    | Estimated<br>I&I<br>Reduction <sup>3</sup> | Cost pe<br>Gal | er I&I<br>(lon |
|------------------------------------------------------|------------------------------------|--------------------|----------------------|---------------------|---------------|---------------------------|----------------------|----------------------|-----------------------------|----------------------|-------------------|-----|-------------------------------|--------------|--------------------------------------------|----------------|----------------|
| Municipality                                         | (11)                               | (ea)               | (ea)                 | (ea)<br>\$ 107      | (ea)          | (ea)<br>© 3.313           | (II)<br>\$ 130       | (II)<br>\$ 6.75      | (II)<br>\$ 2.20             | (II)<br>\$ 50        | Cost              |     | Cost                          | T&I Cost     | (gpa)                                      | Kemo           | ovea           |
| Normalized unit cost                                 | 68 750                             | 3 <u>30</u><br>200 | \$ 2,300             | \$ 197              | <u>3</u> 003  | \$ 5,515                  | \$ 150               | \$ 0.75              | \$ 2.20                     | \$ <u>39</u>         | \$ 10             | 000 | \$ 464 500                    | \$ 474.500   | 626 150                                    | ¢              | 0.75           |
| Clifton Heights Borough                              | 64,000                             | 162                |                      | - 21                |               | -                         | -                    | 2,000                | -                           | 5,000                | \$ 10,<br>\$ 12   | 227 | \$ 10.180                     | \$ 474,300   | 814,000                                    | ¢              | 0.75           |
| Collingdale Borough                                  | 75,000                             | 102                |                      | 21                  | 14            | - 18                      | - 1 000              | - 1 752              | -                           | - 5 586              | \$ 12,            | 231 | \$ 560.874                    | \$ 560.874   | 300,000                                    | Ф<br>С         | 1.87           |
| Colwyn Borough                                       | 17 670                             | - 85               |                      |                     | 20            | - 10                      | 1,000                |                      |                             | 5,500                | \$\$              | 250 | \$ 13,700                     | \$ 17.050    | 130,000                                    | \$             | 0.14           |
| Darby Borough                                        | 87.950                             | 100                | - 5                  |                     |               |                           | 2 000                |                      |                             | 3,000                | \$ <del>1</del> 7 | 500 | \$ 437,000                    | \$ 454 500   | 447 000                                    | \$             | 1.02           |
| Darby Dorough                                        | 100.415                            | 111                |                      |                     |               |                           |                      | 3 000                | _                           | 5,000                | \$ 17,<br>\$ 5    | 550 | \$ 20,250                     | \$ 25,800    | 290,000                                    | \$             | 0.09           |
| Folcroft Borough                                     | 58,785                             | 42                 |                      | _                   | -             | _                         | _                    | -                    | _                           | 373                  | \$ <u>2</u>       | 100 | <u>\$ 20,230</u><br>\$ 22.007 | \$ 24,107    | 288,000                                    | \$             | 0.08           |
| Glenolden Borough                                    | 87.955                             | 150                | _                    | _                   | 47            | _                         | _                    | _                    | _                           | 2.102                | <u> </u>          | 500 | \$ 156.213                    | \$ 163.713   | 1.380.000                                  | \$             | 0.12           |
| Lansdowne Borough                                    | 136.900                            | 120                | _                    | _                   | 200           | _                         | 980                  | 950                  | _                           | 3.300                | \$ 6.             | 000 | \$ 465.513                    | \$ 471.513   | 529.000                                    | \$             | 0.89           |
| Marple Township                                      | 171,215                            | 380                | -                    | _                   | 313           | _                         | _                    | -                    | _                           | -                    | \$ 19,            | 000 | \$ 214,405                    | \$ 233,405   | 585,000                                    | \$             | 0.40           |
| Morton Borough                                       | 40,090                             | 132                | -                    | -                   | 7             | -                         | -                    | -                    | -                           | 744                  | \$ 6,             | 600 | \$ 48,691                     | \$ 55,291    | 414,000                                    | \$             | 0.13           |
| Nether Providence Township                           | 145,582                            | 600                | -                    | 303                 | 107           | -                         | -                    | 54,375               | 145,582                     | -                    | \$ 89,            | 691 | \$ 760,607                    | \$ 850,298   | 149,000                                    | \$             | 5.71           |
| Norwood Borough                                      | 74,300                             | 83                 | -                    | 84                  | 45            | 1                         | 743                  | 44,580               | 74,300                      | 3,715                | \$ 20,            | 698 | \$ 814,288                    | \$ 834,986   | 112,300                                    | \$             | 7.44           |
| Prospect Park Borough                                | 73,300                             | 100                | -                    | -                   | 83            | -                         | _                    | 15,555               | -                           | 2,400                | \$5,              | 000 | \$ 303,451                    | \$ 308,451   | 963,000                                    | \$             | 0.32           |
| Ridley Park Borough                                  | 99,000                             | 292                | -                    | -                   | 47            | -                         | -                    | -                    | -                           | 1,114                | \$ 14,            | 600 | \$ 97,921                     | \$ 112,521   | 1,250,000                                  | \$             | 0.09           |
| Ridley Township                                      | 367,000                            | 161                | -                    | -                   | 101           | -                         | -                    | -                    | -                           | 43,300               | \$ 8,             | 050 | \$ 2,623,885                  | \$ 2,631,935 | 2,950,000                                  | \$             | 0.89           |
| Rutledge Borough                                     | 13,450                             | 33                 | -                    | _                   | -             | -                         | 435                  | -                    | -                           | 1,190                | \$1,              | 650 | \$ 126,760                    | \$ 128,410   | 463,000                                    | \$             | 0.28           |
| Sharon Hill Borough                                  | 64,634                             | -                  | -                    | -                   | -             | -                         | -                    | -                    | -                           | 4,780                | \$                | -   | \$ 282,020                    | \$ 282,020   | 380,000                                    | \$             | 0.74           |
| Springfield Township                                 | 440,145                            | 1,000              | -                    | -                   | -             | -                         | -                    | -                    | -                           | 1,000                | \$ 50,            | 000 | \$ 59,000                     | \$ 109,000   | 350,000                                    | \$             | 0.31           |
| Swarthmore Borough                                   | 95,000                             | 4                  | -                    | -                   | 7             | -                         | 1,749                | -                    | -                           | 4,130                | \$                | 200 | \$ 475,835                    | \$ 476,035   | 270,000                                    | \$             | 1.76           |
| Upper Darby Township                                 | 272,761                            | 20                 | -                    | 948                 | 409           | 1                         | 1,162                | 5,790                | -                           | 1,924                | \$ 187,           | 756 | \$ 587,137                    | \$ 774,893   | 620,000                                    | \$             | 1.25           |
| Yeadon Borough                                       | 114,500                            | 300                | -                    | -                   | 400           | -                         | 5,725                | 68,700               | 114,500                     | 5,725                | \$ 15,            | 000 | \$ 2,071,650                  | \$ 2,086,650 | 131,000                                    | \$             | 15.93          |
| Municipal Totals                                     | 2,668,402                          | 4,075              | 5                    | 1,356               | 2,228         | 20                        | 13,794               | 199,702              | 334,382                     | 87,383               | \$ 483,           | 382 | \$10,624,886                  | \$11,108,268 | 13,451,450                                 | \$             | 0.83           |
| Central Delaware County Authority                    | 121,064                            | 540                | -                    | -                   | 108           | -                         | -                    | -                    | 43,300                      | 850                  | \$ 27,            | 000 | \$ 219,390                    | \$ 246,390   | 253,480                                    | \$             | 0.97           |
| Darby Creek Joint Authority                          | 48,921                             | 250                | -                    | -                   | 28            | -                         | -                    | -                    | 24,000                      | 107                  | \$ 12,            | 500 | \$ 78,293                     | \$ 90,793    | 87,380                                     | \$             | 1.04           |
| Muckinipates Authority                               | 26,581                             | 77                 | -                    | -                   | -             | -                         | -                    | -                    | -                           | -                    | \$ 3,             | 850 | \$ -                          | \$ 3,850     | 23,100                                     | \$             | 0.17           |
| Radnor-Haverford-Marple Sewer Authority <sup>2</sup> | 1,072,000                          | 265                | -                    | -                   | 1,825         | -                         | -                    | 23,010               | 104,665                     | -                    | \$ 13,            | 250 | \$ 1,635,706                  | \$ 1,648,956 | 748,775                                    | \$             | 2.20           |
| Authority Totals                                     | 1,268,566                          | 1,132              | -                    | -                   | 1,961         | -                         | -                    | 23,010               | 171,965                     | 957                  | \$ 56,            | 600 | \$ 1,933,389                  | \$ 1,989,989 | \$ 1,112,735                               | \$             | 1.79           |

Notes:

<sup>1</sup> Includes 25% for engineering, legal, procurement costs, etc.

<sup>2</sup> Actual repairs from 1997 and includes all member municipalities.

<sup>3</sup> Estimated I&I reduction for Springfield Twp., CDCA, DJCA, and MA based on 300 gpd per insert, 60 gpd per manhole repair, and 50 gpd per linear foot of pipe grout/slip line/replacement.

# 5. CONCLUSIONS AND RECOMMENDATIONS

The respective individual municipal and authority studies show that a significant I&I problem exists in DELCORA's Eastern Service Area. Reduction of this I&I will produce a number of benefits to DELCORA, the Authorities, and the individual municipalities, which include:

- Increase sewer infrastructure capacity for other users.
- Reduced treatment and O&M costs associated with disposal.
- Reduction or elimination of potential public health hazards resulting from sewage overflows in various problem areas with overtaxed facilities.

### 5.1 RECOMMENDED PROGRAMMATIC CORRECTIVE ACTIONS

Programmatic corrective actions are actions that each municipality and authority should implement as part of a comprehensive, sewage facility management program of which I&I reductions is a key component. A program that will ensure the continued long-term operation of the sewage facilities should consist of at least the following four items:

- Regular sewer cleaning.
- Implementation of an I&I monitoring program.
- Sewage facilities documentation.
- Implementation of a sewage facility management system.

### 5.1.1 Regular Sewer Cleaning

Regular cleaning of manholes and sewers is an important step to minimize the impact of I&I flow on a system. The accumulation of material in the sewers reduces the capacity of the sewers making it more difficult to manage the additional flows from I&I. Typically, all sewers and manholes should be cleaned once per year, however, there are exceptions in sewer segments that accumulate material at a rapid rate. Another aspect of this part of the programmatic recommendations is the need to maintain easements to allow access to the sewers.

#### 5.1.2 I&I Monitoring Program Implementation

The concept of a formal program to reduce I&I is not new, but it is one that if properly implemented can prove to be a cost-effective tool in ensuring continued elimination of I&I. There are three key aspects of an I&I monitoring program:

- Increasing public awareness.
- Implementation of a program to remove illegal connections.
- Regular manhole and sewer inspections.

The first aspect involves distributing information (handouts or possibly a column in the municipal newsletter) to the educate the residents about I&I by explaining why illegal connections such as foundation drains, roof drains, and sump pumps should not be connected to

the sanitary sewer system. A key point to stress to the residents is that every gallon of storm water that is discharged to the sanitary sewer system costs them money directly through increased pumping and treatment costs. Residents also pay indirectly for I&I through limitations on adding new customers who can share the fixed operating costs because of capacity limitations.

#### 5.1.3 Sewage Facilities Documentation

Documentation of the facilities and all activities is integral to maintaining a management program. Keeping records of cleaning activities will ensure the entire system gets cleaned and will indicate those segments that need more frequent attention. The most important document is an accurate map that shows all lines, manholes, pipe sizes, etc.

#### 5.1.4 Sewage Facility Management System Implementation

A sewage facility management system will provide a means by which to maintain the information collected by the program. This is a tool to aid the municipality in determining and tracking:

- An annual O&M plan.
- Sewer cleaning schedules.
- Sewer segments needing to be cleaned more frequently.
- A prioritization of corrective actions.
- Effectiveness of I&I monitoring program.
- Documentation on repairs.

### 5.2 AFFORDABILITY OF RECOMMENDED CORRECTIVE ACTION PLANS

In general, the priority of the corrective actions should be such that the most I&I is removed for each dollar spent. With this in mind, the following corrective actions in Table 5-1 are ranked in the order of cost effectiveness. Some items mentioned are not specifically listed in the individual corrective actions, such as public information and roof leader/sump pump disconnects, but are important components of an overall I&I removal strategy.

| Priority | Corrective Action                 | Priority | <b>Corrective Action</b>      |
|----------|-----------------------------------|----------|-------------------------------|
| 1        | Manhole Inserts                   | 6        | Chemical Grouting             |
| 2        | Public Education/Information      | 7        | Manhole Repairs               |
| 3        | Roof Leader/Sump Pump Disconnects | 8        | Slip Lining of Other Segments |
| 4        | Manhole Frame Repairs             | 9        | Disconnect Inlets             |
| 5        | Slip Lining of Stream Crossings   | 10       | Sewer Replacement             |
|          |                                   |          |                               |
|          |                                   |          |                               |

# Table 5-1Prioritization of Corrective Actions

#### ACT 537: SEWAGE FACILITIES PLAN .

MUNICIPAL & AUTHORITY INFLOW AND INFILTRATION STUDY

Table 5-2 has been developed as a means of comparing the relative costs from the individual studies associated with I&I reduction by the municipalities of the Eastern Service Area. This table presents the relative "unit cost" for I&I reduction, in cost per gallons per day of I&I removed, ranked by municipality from least expensive to most expensive. The table also shows the proportion of overall I&I in the service area that could potentially be removed by the respective corrective actions of each municipality. Based on the populations of each municipality, projected to the year 2000, the table was further expanded to roughly estimate the number of equivalent dwelling units (EDUs) in the Eastern Service Area within each municipality.

The determination of EDUs is based on an assumed uniform household size of 2.8 persons per dwelling unit and was utilized to develop a theoretical unit rehabilitative cost for I&I reduction per EDU (or customer) within each municipality. While this method to compute EDUs is not exact, this unit cost shows the relative affordability of the corrective actions in terms of potential financial impacts to users within each community. For a program period of 5 years over which the respective corrective actions would be implemented, it was assumed that an affordable user cost increase associated with the sewer rehabilitation should be approximately \$40 per year (or a total of about \$200 over the 5-year program period).

Using this cost range as a guideline, Table 5-2 shows those municipalities that could easily implement their respective planned corrective actions, as well as those that would need either outside financial assistance, an extension of the number of years to implement the recommended correction (more than 5), or a scaled-back proposal of rehabilitative measures. In the latter case, these municipalities would need to reassess and prioritize only those measures that would provide the greatest potential reduction in I&I at a more reasonable total cost.

Table 5-3 presents the same information except that the municipalities are ranked by the annual estimated rehabilitation cost per EDU. The table also shows a summary of the costs, I&I reduction, and unit costs for the 10 most affordable programs to be implemented (top 50%) and the 16 most affordable programs (top 75%).

From Tables 5-2 and 5-3, the following observations and conclusions are made:

- The Corrective Action Plans for Folcroft Borough and Darby Borough appear to have the lowest unit cost for I&I reduction and the lowest sewer rehabilitation cost per user in comparison to other municipalities in the Eastern Service Area.
- With the exception of Rutledge, Aldan, Norwood, Swarthmore, and Yeadon Boroughs, as well as Ridley Township, the corrective actions prescribed by the respective municipal studies appear to be affordable to the users in those communities assuming these actions are taken over a 5-year planning period.
- Three of the municipalities (Ridley Park, Glenolden, and Clifton Heights Boroughs), which have some of the lowest unit costs for I&I reduction and the low rehabilitation cost per user, represent a combined potential I&I reduction of over 25% of the total projected I&I reduction for all of the municipal studies.

| No   |                                         | I&I<br>Reduction <sup>1</sup> | Est. I&I<br>Reduction | Co<br>I&<br>Ro | ost per<br>zI gpd | Potential<br>I&I<br>Reduction | Population<br>(Yr. 2000<br>Projection) <sup>2</sup> | Estimated | R      | Fotal Est.<br>ehab Cost | Annual Est.<br>Rehab Cost |                                |
|------|-----------------------------------------|-------------------------------|-----------------------|----------------|-------------------|-------------------------------|-----------------------------------------------------|-----------|--------|-------------------------|---------------------------|--------------------------------|
| INO. | Municipality                            | (\$)<br>\$ 21.417             | (gpu)                 | ¢              |                   | 601                           | 6 020                                               | 2 475     | ر<br>م | 12.60                   |                           |                                |
| 1    | Clifton Heights Borough                 | \$ 31,417                     | 814,000               | ን<br>¢         | 0.04              | 0%                            | 6,930                                               | 2,475     | ۵<br>۵ | 12.09                   | \$ 2.54                   | Low cost per EDU; relatively I |
| 2    | Folcroft Borough                        | \$ 24,107                     | 288,000               | \$             | 0.08              | 2%                            | 7,340                                               | 2,621     | \$     | 9.20                    | \$ 1.84                   | Very low cost per EDU          |
| 3    | Darby Township                          | \$ 25,800                     | 290,000               | \$             | 0.09              | 2%                            | 10,580                                              | 3,779     | \$     | 6.83                    | \$ 1.37                   | Very low cost per EDU          |
| 4    | Ridley Park Borough                     | \$ 112,521                    | 1,250,000             | \$             | 0.09              | 9%                            | 7,430                                               | 2,654     | \$     | 42.40                   | \$ 8.48                   | Low cost per EDU; high poten   |
| 5    | Glenolden Borough                       | \$ 163,713                    | 1,380,000             | \$             | 0.12              | 10%                           | 7,140                                               | 2,550     | \$     | 64.20                   | \$ 12.84                  | Low cost per EDU; high poten   |
| 6    | Morton Borough                          | \$ 55,291                     | 414,000               | \$             | 0.13              | 3%                            | 2,810                                               | 1,004     | \$     | 55.07                   | \$ 11.01                  |                                |
| 7    | Colwyn Borough                          | \$ 17,950                     | 130,000               | \$             | 0.14              | 1%                            | 2,500                                               | 893       | \$     | 20.10                   | \$ 4.02                   |                                |
| 8    | Rutledge Borough                        | \$ 128,410                    | 463,000               | \$             | 0.28              | 3%                            | 840                                                 | 300       | \$     | 428.03                  | \$ 85.61                  | High cost per EDU; very smal   |
| 9    | Springfield Township                    | \$ 109,000                    | 350,000               | \$             | 0.31              | 3%                            | 23,500                                              | 8,393     | \$     | 12.99                   | \$ 2.60                   | Low cost per EDU               |
| 10   | Prospect Park Borough                   | \$ 308,451                    | 963,000               | \$             | 0.32              | 7%                            | 6,650                                               | 2,375     | \$     | 129.87                  | \$ 25.97                  | Moderately low cost per EDU    |
| 11   | Marple Township                         | \$ 233,405                    | 585,000               | \$             | 0.40              | 4%                            | 23,350                                              | 8,339     | \$     | 27.99                   | \$ 5.60                   |                                |
| 12   | Sharon Hill Borough                     | \$ 282,020                    | 380,000               | \$             | 0.74              | 3%                            | 5,570                                               | 1,989     | \$     | 141.79                  | \$ 28.36                  |                                |
| 13   | Aldan Borough                           | \$ 474,500                    | 636,150               | \$             | 0.75              | 5%                            | 4,570                                               | 1,632     | \$     | 290.75                  | \$ 58.15                  | High cost per EDU; relatively  |
| 14   | Lansdowne Borough                       | \$ 471,513                    | 529,000               | \$             | 0.89              | 4%                            | 11,290                                              | 4,032     | \$     | 116.94                  | \$ 23.39                  |                                |
| 15   | Ridley Township                         | \$ 2,631,935                  | 2,950,000             | \$             | 0.89              | 22%                           | 30,490                                              | 10,889    | \$     | 241.71                  | \$ 48.34                  | Moderately high cost per EDU   |
| 16   | Darby Borough                           | \$ 454,500                    | 447,000               | \$             | 1.02              | 3%                            | 10,740                                              | 3,836     | \$     | 118.48                  | \$ 23.70                  |                                |
| 17   | Upper Darby Township                    | \$ 774,893                    | 620,000               | \$             | 1.25              | 5%                            | 27,000                                              | 9,643     | \$     | 80.36                   | \$ 16.07                  |                                |
| 18   | Swarthmore Borough                      | \$ 476,035                    | 270,000               | \$             | 1.76              | 2%                            | 6,060                                               | 2,164     | \$     | 219.98                  | \$ 44.00                  |                                |
| 19   | Collingdale Borough                     | \$ 560,874                    | 300,000               | \$             | 1.87              | 2%                            | 8,820                                               | 3,150     | \$     | 178.06                  | \$ 35.61                  |                                |
| 20   | Nether Providence Township              | \$ 850,298                    | 149,000               | \$             | 5.71              | 1%                            | 13,160                                              | 4,700     | \$     | 180.91                  | \$ 36.18                  | Small potential I&I reduction  |
| 21   | Norwood Borough                         | \$ 834,986                    | 112,300               | \$             | 7.44              | 1%                            | 6,160                                               | 2,200     | \$     | 379.54                  | \$ 75.91                  | Very high cost per EDU; sma    |
| 22   | Yeadon Borough                          | \$ 2,086,650                  | 131,000               | \$             | 15.93             | 1%                            | 11,600                                              | 4,143     | \$     | 503.66                  | \$ 100.73                 | Very high cost per EDU; smal   |
|      | Municipal Totals                        | \$ 11,108,268                 | 13,451,450            | \$             | 0.83              |                               | 234,530                                             | 83,761    | \$     | 132.62                  | \$ 26.52                  |                                |
|      | Top 10 Totals (50%)                     | \$ 976,660                    | 6,342,000             | \$             | 0.15              | 47%                           | 75,720                                              | 27,043    | \$     | 36.12                   | \$ 7.22                   |                                |
|      | Top 16 Totals (75%)                     | \$ 5,524,533                  | 11,869,150            | \$             | 0.47              | 88%                           | 161,730                                             | 57,761    | \$     | 95.64                   | \$ 19.13                  |                                |
| 1    | Muckinipates Authority                  | \$ 3,850                      | 23,100                | \$             | 0.17              | 2%                            | 38,492                                              | 13,747    | \$     | 0.28                    | \$ 0.06                   |                                |
| 2    | Central Delaware County Authority       | \$ 246,390                    | 253,480               | \$             | 0.97              | 23%                           | 84,811                                              | 34,768    | \$     | 7.09                    | \$ 1.42                   |                                |
| 3    | Darby Creek Joint Authority             | \$ 90,793                     | 87,380                | \$             | 1.04              | 8%                            | 100,944                                             | 36,052    | \$     | 2.52                    | \$ 0.50                   |                                |
| 4    | Radnor-Haverford-Marple Sewer Authority | \$ 1,648,956                  | 748,775               | \$             | 2.20              | 69%                           | 73,828                                              | 26,367    | \$     | 62.54                   | \$ 12.51                  |                                |
|      | Authority Totals                        | \$ 30,707,717                 | 1,089,635             | \$             | 1.79              |                               | 259,584                                             | 97,187    | \$     | 315.97                  | \$ 63.19                  |                                |

 Table 5-2

 Relative I/I Reduction Program Cost-Effectiveness

Notes:

<sup>1</sup> Costs presented are based on normalized costs presented in Tables 4-1 and 4-2.

<sup>2</sup> Population figures based on Delco Planning Commission figures.

<sup>3</sup> EDUs (equivalent dwelling units) based on uniform assumed household size of 2.8 persons per dwelling unit. CDCA based on 2.53 persons per EDU and includes 1,250 EDUs for industrial.

<sup>+</sup> Annual estimated rehabilitation cost per EDU is based on 5-year program period.

| Comments                                                      |
|---------------------------------------------------------------|
| igh potential I&I reduction                                   |
|                                                               |
|                                                               |
| ial I&I reduction                                             |
| ial I&I reduction                                             |
|                                                               |
|                                                               |
| number of EDUs                                                |
|                                                               |
| nigh potential l&1 reduction                                  |
|                                                               |
| mall number of EDUs: relatively high notential L&I reduction  |
| main number of LDOS, relatively high potential feet reduction |
| very high potential I&I reduction                             |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
| potential I&I reduction                                       |
| potential I&I reduction                                       |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |

| No. | Municipality                            | I&I<br>Reduction <sup>1</sup><br>(\$) | Est. I&I<br>Reduction<br>(gpd) | Co<br>I&<br>Re | ost per<br>&I gpd<br>moved | Potential<br>I&I<br>Reduction | Population<br>(Yr. 2000<br>Projection) <sup>2</sup> | Estimated<br>EDUs <sup>3</sup> | R  | Fotal Est.<br>ehab Cost<br>per EDU | Annual Est.<br>Rehab Cost<br>per EDU <sup>4</sup> |                               |
|-----|-----------------------------------------|---------------------------------------|--------------------------------|----------------|----------------------------|-------------------------------|-----------------------------------------------------|--------------------------------|----|------------------------------------|---------------------------------------------------|-------------------------------|
| 1   | Darby Township                          | \$ 25,800                             | 290,000                        | \$             | 0.09                       | 2%                            | 10,580                                              | 3,779                          | \$ | 6.83                               | \$ 1.37                                           | Very low cost per user        |
| 2   | Folcroft Borough                        | \$ 24,107                             | 288,000                        | \$             | 0.08                       | 2%                            | 7,340                                               | 2,621                          | \$ | 9.20                               | \$ 1.84                                           | Very low cost per EDU         |
| 3   | Clifton Heights Borough                 | \$ 31,417                             | 814,000                        | \$             | 0.04                       | 6%                            | 6,930                                               | 2,475                          | \$ | 12.69                              | \$ 2.54                                           | Low cost per EDU; relatively  |
| 4   | Springfield Township                    | \$ 109,000                            | 350,000                        | \$             | 0.31                       | 3%                            | 23,500                                              | 8,393                          | \$ | 12.99                              | \$ 2.60                                           | · · ·                         |
| 5   | Colwyn Borough                          | \$ 17,950                             | 130,000                        | \$             | 0.14                       | 1%                            | 2,500                                               | 893                            | \$ | 20.10                              | \$ 4.02                                           |                               |
| 6   | Marple Township                         | \$ 233,405                            | 585,000                        | \$             | 0.40                       | 4%                            | 23,350                                              | 8,339                          | \$ | 27.99                              | \$ 5.60                                           |                               |
| 7   | Ridley Park Borough                     | \$ 112,521                            | 1,250,000                      | \$             | 0.09                       | 9%                            | 7,430                                               | 2,654                          | \$ | 42.40                              | \$ 8.48                                           | Low cost per EDU; high poter  |
| 8   | Morton Borough                          | \$ 55,291                             | 414,000                        | \$             | 0.13                       | 3%                            | 2,810                                               | 1,004                          | \$ | 55.07                              | \$ 11.01                                          |                               |
| 9   | Glenolden Borough                       | \$ 163,713                            | 1,380,000                      | \$             | 0.12                       | 10%                           | 7,140                                               | 2,550                          | \$ | 64.20                              | \$ 12.84                                          | Low cost per EDU; high poter  |
| 10  | Upper Darby Township                    | \$ 774,893                            | 620,000                        | \$             | 1.25                       | 5%                            | 27,000                                              | 9,643                          | \$ | 80.36                              | \$ 16.07                                          |                               |
| 11  | Lansdowne Borough                       | \$ 471,513                            | 529,000                        | \$             | 0.89                       | 4%                            | 11,290                                              | 4,032                          | \$ | 116.94                             | \$ 23.39                                          |                               |
| 12  | Darby Borough                           | \$ 454,500                            | 447,000                        | \$             | 1.02                       | 3%                            | 10,740                                              | 3,836                          | \$ | 118.48                             | \$ 23.70                                          |                               |
| 13  | Prospect Park Borough                   | \$ 308,451                            | 963,000                        | \$             | 0.32                       | 7%                            | 6,650                                               | 2,375                          | \$ | 129.87                             | \$ 25.97                                          | Moderately low cost per EDU:  |
| 14  | Sharon Hill Borough                     | \$ 282,020                            | 380,000                        | \$             | 0.74                       | 3%                            | 5,570                                               | 1,989                          | \$ | 141.79                             | \$ 28.36                                          |                               |
| 15  | Collingdale Borough                     | \$ 560,874                            | 300,000                        | \$             | 1.87                       | 2%                            | 8,820                                               | 3,150                          | \$ | 178.06                             | \$ 35.61                                          |                               |
| 16  | Nether Providence Township              | \$ 850,298                            | 149,000                        | \$             | 5.71                       | 1%                            | 13,160                                              | 4,700                          | \$ | 180.91                             | \$ 36.18                                          | Small potential I&I reduction |
| 17  | Swarthmore Borough                      | \$ 476,035                            | 270,000                        | \$             | 1.76                       | 2%                            | 6,060                                               | 2,164                          | \$ | 219.98                             | \$ 44.00                                          |                               |
| 18  | Ridley Township                         | \$ 2,631,935                          | 2,950,000                      | \$             | 0.89                       | 22%                           | 30,490                                              | 10,889                         | \$ | 241.71                             | \$ 48.34                                          | Moderately high cost per EDU  |
| 19  | Aldan Borough                           | \$ 474,500                            | 636,150                        | \$             | 0.75                       | 5%                            | 4,570                                               | 1,632                          | \$ | 290.75                             | \$ 58.15                                          | High cost per EDU; relatively |
| 20  | Norwood Borough                         | \$ 834,986                            | 112,300                        | \$             | 7.44                       | 1%                            | 6,160                                               | 2,200                          | \$ | 379.54                             | \$ 75.91                                          | Very high cost per EDU; sma   |
| 21  | Rutledge Borough                        | \$ 128,410                            | 463,000                        | \$             | 0.28                       | 3%                            | 840                                                 | 300                            | \$ | 428.03                             | \$ 85.61                                          | High cost per EDU; very smal  |
| 22  | Yeadon Borough                          | \$ 2,086,650                          | 131,000                        | \$             | 15.93                      | 1%                            | 11,600                                              | 4,143                          | \$ | 503.66                             | \$ 100.73                                         | Very high cost per EDU; sma   |
|     | <b>Municipal Totals</b>                 | \$ 11,108,268                         | 13,451,450                     | \$             | 0.83                       |                               | 234,530                                             | 83,761                         | \$ | 132.62                             | \$ 26.52                                          |                               |
|     | <b>Top 10 Totals (50%)</b>              | \$ 1,548,097                          | 6,121,000                      | \$             | 0.25                       | 46%                           | 118,580                                             | 42,350                         | \$ | 36.55                              | \$ 7.31                                           |                               |
|     | <b>Top 16 Totals (75%)</b>              | \$ 4,475,752                          | 8,889,000                      | \$             | 0.50                       | 66%                           | 174,810                                             | 62,432                         | \$ | 71.69                              | \$ 14.34                                          |                               |
| 1   | Muckinipates Authority                  | \$ 3,850                              | 23,100                         | \$             | 0.17                       | 2%                            | 38,492                                              | 13,747                         | \$ | 0.28                               | \$ 0.06                                           |                               |
| 2   | Darby Creek Joint Authority             | \$ 90,793                             | 87,380                         | \$             | 1.04                       | 8%                            | 100,944                                             | 36,052                         | \$ | 2.52                               | \$ 0.50                                           |                               |
| 3   | Central Delaware County Authority       | \$ 246,390                            | 253,480                        | \$             | 0.97                       | 23%                           | 84,811                                              | 34,768                         | \$ | 7.09                               | \$ 1.42                                           |                               |
| 4   | Radnor Haverford Marple Sewer Authority | \$ 1,648,956                          | 748,775                        | \$             | 2.20                       | 67%                           | 73,828                                              | 26,367                         | \$ | 62.54                              | \$ 12.51                                          |                               |
|     | Authority Totals                        | \$ 1,989,989                          | 1,112,735                      | \$             | 1.79                       | 100                           | 298,076                                             | 110,934                        | \$ | 17.94                              | \$ 3.59                                           |                               |

Table 5-3Reduction Program Cost-Effectiveness per EDU

Notes:

<sup>1</sup> Costs presented are based on normalized costs presented in Tables 4-1 and 4-2.

<sup>2</sup> Population figures based on Delaware County Planning Department figures.

<sup>5</sup> EDUs (equivalent dwelling units) based on uniform assumed household size of 2.8 persons per dwelling unit.

<sup>+</sup> Annual estimated rehabilitation cost per EDU is based on 5-year program period.

| Comments                                                      |
|---------------------------------------------------------------|
|                                                               |
|                                                               |
| igh potential I&I reduction                                   |
|                                                               |
|                                                               |
|                                                               |
| ial I&I reduction                                             |
|                                                               |
| ial I&I reduction                                             |
|                                                               |
|                                                               |
|                                                               |
| high potential I&I reduction                                  |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
| ; very high potential I&I reduction                           |
| small number of EDUs; relatively high potential I&I reduction |
| l potential I&I reduction                                     |
| number of EDUs                                                |
| l potential l&l reduction                                     |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |
|                                                               |

- Two municipalities, Prospect Park Borough and Ridley Township, combined represent almost 30% of the total potential I&I reduction for all of the municipality studies. These two municipalities, together with Ridley Park, Glenolden, and Clifton Heights Boroughs, represent over 55% of the total projected I&I reduction for all of the municipality studies.
- Norwood and Yeadon Boroughs exhibit rehabilitation costs per user that are deemed to be prohibitively high, while the anticipated I&I reductions represent a small proportional percentage (less than 2%) of the total for all municipalities studied. Part of the reason for this high cost is the recommendation that chemical root removal and other rehabilitative measures be performed over the entire length or a large percentage of sewers within each of these municipalities.
- Rutledge Borough, which could realize a significant proportional reduction in I&I in relation to all municipalities studied based on its size, has a high unit rehabilitation cost per user, primarily due to the relatively small number of users in the community.

Based on the above observations, it appears that, with the exception of Aldan, Norwood, Rutledge, Swarthmore and Yeadon Boroughs, and Ridley Township, the planned corrective actions of the communities in the Eastern Service Area are deemed to be affordable over the course of a 5-year program period.

It is recommended that each of these municipalities be encouraged to proceed with the implementation of their respective corrective action plans as highlighted in Section 2 for I&I reduction if they have not already been initiated.

# 5.3 CORRECTIVE ACTION PLANS REQUIRING MODIFICATION

For those municipalities having corrective action plans that appear to be too expensive to be borne by users in the community, an extension of the program period or a reassessment of the rehabilitative measures proposed and the objectives for I&I reduction is warranted. Such a reassessment should focus on discerning the most cost-effective rehabilitative measures that would result in the greatest proportional reduction in I&I. It is acknowledged that both the individual municipalities and their respective consultants, with their knowledge of local problem areas and the projected impacts of planned rehabilitative measures, can best make judgments regarding which corrective measures to implement.

Based on a review of the results presented in the individual I&I studies, the following recommendations are offered as a means of reducing the financial burden for corrective action in the previously noted municipalities while still providing a significant reduction in I&I. Note that this analysis looks solely at the capital cost of the corrective actions and does not factor in the cost savings benefit due to reduced collection, pumping, and treatment costs. The impact of the cost savings benefit is examined in Subsection 5.4.

## 5.3.1 Aldan Borough

Because of its relatively small population, which results in higher unit rehabilitative costs per user, it appears that Aldan Borough will need to reduce the scope of its planned corrective action for I&I reduction unless funding or grants are obtained from outside entities such as PADEP.

If no financial assistance can be obtained, then Aldan Borough probably will need to reduce its projected total sewer rehabilitation cost for I&I reduction to a more affordable cost for its users. Using the normalized costs of Tables 5-2 and 5-3, it is estimated that the total cost of the corrective action would need to be reduced from the current rehabilitative cost total of \$468,000 to approximately \$300,000 to be considered "affordable." Under this scenario, all of the planned manhole insert installations (200) could be implemented, as well as approximately 65% of the combined projected cost for manhole repairs, slip lining, and chemical grouting of sewers.

Candidate sewer lengths for either slip lining or chemical grouting would be prioritized based on the amount of I&I reduction anticipated by these methods of rehabilitation.

Installation of manhole chimney seals would be delayed beyond the 5-year program period.

#### 5.3.2 Norwood Borough

Norwood Borough is similar to Nether Providence Township in that a very large proportion of the projected cost for the sewer rehabilitation is associated with chemical grouting of sewers (44,580 linear feet), and chemical root removal (all 74,300 linear feet of sewers in the Borough). Consideration should be given to delaying the implementation of some or all of these measures beyond the 5-year program period, which would bring the total cost of the corrective action back to a more affordable range for the users of the Borough. Most other recommended rehabilitative measures, including manhole insert installation (83), manhole repairs (326), sewer replacement (743 linear feet), and slip lining (3,715 linear feet), could be implemented in the initial 5-year program period.

### 5.3.3 Ridley Township

Ridley Township's planned corrective action for I&I reduction is only slightly above the cost level in the analysis deemed to be "affordable." Therefore, only a relatively small portion (less than 20%) of the planned total footage of sewers to be slip lined (43,300 linear feet), as recommended in that community's I&I study, would need to be considered for a delay in implementation beyond the 5-year program period.

#### 5.3.4 Rutledge Borough

Rutledge Borough has a very small user base resulting in higher sewer rehabilitation costs per user. In this case, if outside financial assistance is unavailable, it is recommended that the portion of the I&I study corrective action consisting of manhole insert installation (33) and sewer replacement (435 linear feet) be undertaken during the 5-year program period. Slip lining of the projected sewer footage of 1,190 linear feet should be delayed for later implementation.

#### 5.3.5 Swarthmore Borough

Like Ridley Township, Swarthmore Borough's projected costs for corrective action to reduce I&I appear to be only slightly above the affordable level for the community. Therefore, the majority of the planned rehabilitative measures could be implemented within the 5-year program period. Consideration could be given to reducing the total corrective action cost associated with sewer replacement and slip lining by an estimated 10% to 15% to bring the rehabilitative costs to a more affordable range.

#### 5.3.6 Yeadon Borough

Yeadon Borough is similar to Norwood Borough in that a very large portion of the I&I study's recommended corrective action costs are associated with chemical root removal (the entire sewer system of 114,500 linear feet), chemical grouting of sewers (68,700 linear feet), and sewer replacement (5,725 linear feet). Consideration should be given to delaying the implementation of some or all of these measures beyond the 5-year program period in order to bring the total cost of rehabilitation to a more affordable range for users.

# 5.4 IMPACT OF THE COST-SAVING BENEFIT ON THE CORRECTIVE ACTION PLANS

As detailed previously, there is a definite capital cost associated with implementing the corrective action plans for each municipality and authority. Every gallon of groundwater and surface water that is allowed into the collection system must be transported, pumped, and treated. Based on recent figures developed by DELCORA, it costs approximately \$1,109 per million gallons to convey and treat wastewater at PSWPCP. This cost does not include fixed annual costs. Using this pump/treat cost and the I&I reduction estimated for each of the individual municipal and authority corrective action plans, it is possible to estimate the annual savings and, therefore also estimate the years required to pay back the initial capital investment and compute the capital investment rate of return (IRR).

Table 5-4 presents the time required for payback and the IRR for a 20-year life span. The calculations are based on the following assumptions:

- The entire program cost is incurred in the first year.
- The return on investment does not begin until the fourth year.
- A 60% reinvestment is required in the tenth year.

Figure 5-1 graphically depicts the IRR and clearly shows that only three corrective action plans have a negative IRR and only one more (RHM, which already has an active I&I program inplace) has a return of less that 10%.

### ACT 537: SEWAGE FACILITIES PLAN

#### MUNICIPAL & AUTHORITY INFLOW AND INFILTRATION STUDY

| Municipality                            | Estimated<br>Inflow<br>Cost | Estimated<br>Infiltration<br>Cost | Estimated<br>I&I<br>Cost | Estimated I&I<br>Reduction<br>(gpd) | Cost per I&I<br>Gallon<br>Removed | Annual<br>Savings <sup>1</sup> | Payback<br>Years | IRR <sup>2</sup><br>w/ 20-Year<br>Life |
|-----------------------------------------|-----------------------------|-----------------------------------|--------------------------|-------------------------------------|-----------------------------------|--------------------------------|------------------|----------------------------------------|
| Clifton Heights Borough                 | 12 237                      | 19 180                            | 31 417                   | 814.000                             | 0.04                              | 329.495                        | 0.10             | 157.8%                                 |
| Folcroft Borough                        | 2 100                       | 22.007                            | 24 107                   | 288.000                             | 0.04                              | 116 578                        | 0.10             | 109.8%                                 |
| Darby Township                          | 5 550                       | 20,250                            | 25,800                   | 290,000                             | 0.09                              | 117 388                        | 0.21             | 106.6%                                 |
| Ridley Park Borough                     | 14.600                      | 97.921                            | 112.521                  | 1.250.000                           | 0.09                              | 505.981                        | 0.22             | 105.9%                                 |
| Glenolden Borough                       | 7,500                       | 156.213                           | 163,713                  | 1.380.000                           | 0.12                              | 558,603                        | 0.29             | 92.2%                                  |
| Morton Borough                          | 6.600                       | 48.691                            | 55.291                   | 414.000                             | 0.13                              | 167.581                        | 0.33             | 86.7%                                  |
| Colwyn Borough                          | 4,250                       | 13,700                            | 17,950                   | 130,000                             | 0.14                              | 52,622                         | 0.34             | 85.2%                                  |
| Rutledge Borough                        | 1,650                       | 126,760                           | 128,410                  | 463,000                             | 0.28                              | 187,415                        | 0.69             | 57.9%                                  |
| Springfield Township                    | 50,000                      | 59,000                            | 109,000                  | 350,000                             | 0.31                              | 141,675                        | 0.77             | 54.1%                                  |
| Prospect Park Borough                   | 5,000                       | 303,451                           | 308,451                  | 963,000                             | 0.32                              | 389,808                        | 0.79             | 53.2%                                  |
| Marple Township                         | 19,000                      | 214,405                           | 233,405                  | 585,000                             | 0.40                              | 236,799                        | 0.99             | 46.4%                                  |
| Sharon Hill Borough                     | -                           | 282,020                           | 282,020                  | 380,000                             | 0.74                              | 153,818                        | 1.83             | 30.1%                                  |
| Aldan Borough                           | 10,000                      | 464,500                           | 474,500                  | 636,150                             | 0.75                              | 257,504                        | 1.84             | 30.0%                                  |
| Lansdowne Borough                       | 6,000                       | 465,513                           | 471,513                  | 529,000                             | 0.89                              | 214,131                        | 2.20             | 26.1%                                  |
| Ridley Township                         | 8,050                       | 2,623,885                         | 2,631,935                | 2,950,000                           | 0.89                              | 1,194,116                      | 2.20             | 26.1%                                  |
| Darby Borough                           | 17,500                      | 437,000                           | 454,500                  | 447,000                             | 1.02                              | 180,939                        | 2.51             | 23.3%                                  |
| Upper Darby Township                    | 187,756                     | 587,137                           | 774,893                  | 620,000                             | 1.25                              | 250,967                        | 3.09             | 19.3%                                  |
| Swarthmore Borough                      | 200                         | 475,835                           | 476,035                  | 270,000                             | 1.76                              | 109,292                        | 4.36             | 13.1%                                  |
| Collingdale Borough                     | -                           | 560,874                           | 560,874                  | 300,000                             | 1.87                              | 121,436                        | 4.62             | 12.2%                                  |
| Nether Providence Township              | 89,691                      | 760,607                           | 850,298                  | 149,000                             | 5.71                              | 60,313                         | 14.10            | -3.6%                                  |
| Norwood Borough                         | 20,698                      | 814,288                           | 834,986                  | 112,300                             | 7.44                              | 45,457                         | 18.37            | -6.8%                                  |
| Yeadon Borough                          | 15,000                      | 2,071,650                         | 2,086,650                | 131,000                             | 15.93                             | 53,027                         | 39.35            | -15.3%                                 |
| Municipal Totals                        | 483,382                     | 10,624,886                        | 11,108,268               | 13,451,450                          | 0.83                              | 5,444,945                      | 2.04             | 27.7%                                  |
| Muckinipates Authority                  | 3,850                       | -                                 | 3,850                    | 23,100                              | 0.17                              | 9,351                          | 0.41             | 77.1%                                  |
| Central Delaware County Authority       | 27,000                      | 219,390                           | 246,390                  | 253,480                             | 0.97                              | 102,605                        | 2.40             | 24.2%                                  |
| Darby Creek Joint Authority             | 12,500                      | 78,293                            | 90,793                   | 87,380                              | 1.04                              | 35,370                         | 2.57             | 22.9%                                  |
| Radnor Haverford Marple Sewer Authority | 13,250                      | 1,635,706                         | 1,648,956                | 748,775                             | 2.20                              | 303,093                        | 5.44             | 9.5%                                   |
| Authority Totals                        | 56,600                      | 1,933,389                         | 1,989,989                | 1,112,735                           | 1.79                              | 450,418                        | 4.42             | 12.9%                                  |
| Grand Totals                            | 539,982                     | 12,558,275                        | 13,098,257               | 14,564,185                          | 0.90                              | 5,895,364                      | 2.22             | 25.9%                                  |

#### Table 5-4 Investment Return Eastern Municipalities I&I Correction Program

Notes:

\$ 1,109.00 per million gallons.

 $^{1}$  Based on treatment and conveyance costs of \$ 1,109.00 per m <sup>2</sup> Assumes no savings in first 3 years and a 60% reinvestment in the 10th year.



# DELCORA LONG-TERM CSO CONTROL PLAN, CITY OF CHESTER COMBINED SEWER SYSTEM, APRIL 1999

#### DELAWARE COUNTY REGIONAL WATER QUALITY CONTROL AUTHORITY (DELCORA)

#### LONG-TERM CSO CONTROL PLAN

#### CITY OF CHESTER COMBINED SEWER SYSTEM APRIL 1999

Prepared by:

Roy F. Weston, Inc. 1400 Weston Way West Chester, Pennsylvania 19380

W.O. No. 05623-009-001

. .

# **DELCORA Long-Term CSO Control Plan**

### TABLE OF CONTENTS

# **Section**

| 1 | BAC  | KGROUND                                                | 1_1        |
|---|------|--------------------------------------------------------|------------|
|   | 1.1  | Purpose of Long Term Control Plan                      | 1-1        |
|   | 1.2  | NPDES Permit and LTCP Requirements                     | 1_1        |
|   | 1.3  | Implementation of the Nine Minimum Controls            | 1-2        |
|   | 1.4  | EPA CSO Policy and Small System Considerations         | 1-2        |
|   | 1.5  | Overview of Combined Sewer System                      | 1-4        |
|   | 1.6  | Overview of Monitoring and Modeling Effort             | 1-4        |
| 2 | SYST | EM CHARACTERIZATION                                    | 2-1        |
|   | 2.1  | Objective of System Characterization                   | 2_1        |
|   | 2.2  | Analysis of Existing Data                              | 2-1<br>2-1 |
|   | 2.3  | Monitoring                                             | $2^{-1}$   |
|   |      | 2.3.1 Flow Monitoring                                  | 2-3        |
|   |      | 2.3.2 Water Ouality Monitoring                         | 2-3        |
|   | 2.4  | Precipitation Data                                     | 2-4        |
|   |      | 2.4.1 Flow Monitoring Events                           | 2-5        |
|   |      | 2.4.2 Typical Year Precipitation                       | 2-5        |
|   |      | 2.4.3 Frequency Analysis                               | 2-5        |
|   | 2.5  | Modeling of Combined Sewer System                      | 2-6        |
|   |      | 2.5.1 SWMM Application and Calibration                 | 2-6        |
|   |      | 2.5.2 Hydraulic Characterization                       | 2-6        |
|   |      | 2.5.2.1 System Characterization                        | 2-6        |
|   |      | 2.5.2.2 Annual Discharge Volume                        | 2-7        |
|   |      | 2.5.2.3 Frequency Analysis                             | 2-7        |
|   |      | 2.5.3 Combined Sewer Overflow Quality Characterization | 2-7        |
| 3 | RECE | CIVING WATER QUALITY AND CSO IMPACTS                   | 3-1        |
|   | 3.1  | Water Quality Criteria and Existing Water Quality      | 2 1        |
|   | 3.2  | Impacts of CSOs on Receiving Waters                    | 3_1        |
|   | 3.3  | Impact on Sensitive Areas                              | 3-3        |
| 4 | PROP | OSED CONTROL ALTERNATIVES                              | 4-1        |
|   | 41   | Introduction                                           | 4 1        |
|   |      | 4.1.1 Identification of Control Alternatives           | 4∸l<br>⁄ 1 |
|   | 4.2  | Source Control Alternatives                            | 4-1<br>4-2 |
|   |      | 4.2.1 Street Sweeping                                  | 4-Z<br>1 2 |
|   |      | 4.2.1.1 Current Practices                              | 4-3<br>1 1 |
|   |      |                                                        | 4-4        |

# TABLE OF CONTENTS (cont.)

#### Section

#### Page

₹. 8

•

|     |               | 4.2.1.2 Cost of Additional Street Sweeping                   | 4-4   |
|-----|---------------|--------------------------------------------------------------|-------|
|     | 4.2.2         | Inlet Cleaning                                               | 4-4   |
|     | · • • <b></b> | 4.2.2.1 Current Practices                                    | . 4-5 |
|     |               | 4.2.2.2 Cost of Additional Inlet Cleaning                    | 4-5   |
|     | 4.2.3 I       | nlet Replacement                                             | 4-6   |
|     |               | 4.2.3.1 Typical Design                                       | . 4-6 |
|     |               | 4.2.3.2 Cost of Improvements                                 | . 4-6 |
| 4.3 | Collect       | tion System Control Alternatives                             | . 4-6 |
|     | 4.3.1         | Sewer Cleaning                                               | . 4-7 |
|     |               | 4.3.1.1 Current Practices                                    | . 4-7 |
|     |               | 4.3.1.2 Cost of Additional Sewer Cleaning                    | . 4-7 |
|     | 4.3.2         | Regulator Replacement                                        | . 4-7 |
|     |               | 4.3.2.1 Prioritizing of Regulator Replacement                | . 4-8 |
|     |               | 4.3.2.2 Cost of Regulator Replacement                        | . 4-8 |
|     | 4.3.3         | Sewer Separation                                             | . 4-8 |
|     | 4.3.4         | Consolidation/Elimination of Regulators                      | . 4-9 |
|     | 4.3.5         | Outfall Interceptor Along Ridley Creek                       | 4-10  |
|     |               | 4.3.5.1 Conceptual Design and Siting                         | 4-10  |
|     |               | 4.3.5.2 Cost of Outfall Interceptor                          | 4-10  |
|     | 4.3.6         | Maximizing Capacity of the Existing System                   | 4-11  |
|     |               | 4.3.6.1 Conceptual Design of Potential Areas for Directing   |       |
|     |               | Additional Flow to the Interceptors                          | 4-11  |
|     |               | 4.3.6.2 Cost of Connections                                  | 4-11  |
|     | 4.3.7         | Floatables Containment                                       | 4-11  |
|     |               | 4.3.7.1 Outfall Containment Booms                            | 4-12  |
|     |               | 4.3.7.2 In-Line Netting                                      | 4-12  |
|     |               | 4.3.7.3 End-of-Pipe Netting                                  | 4-13  |
|     |               | 4.3.7.4 Skimming of Public Areas                             | 4-13  |
|     | 4.3.8         | Summary of Collection System Control Alternatives            | 4-14  |
| 4.4 | Storage       | e Control Alternatives                                       | 4-14  |
| 4.5 | Remot         | e Treatment Control Alternatives                             | 4-14  |
| 4.6 | WRTP          | Treatment Capacity                                           | 4-15  |
|     | 4.6.1         | Impact of the Proposed CDPS Diversion Project                | 4-15  |
|     | 4.6.2         | Maximum Treatment Capacity and Potential Secondary Bypassing |       |
|     |               | at the WRTP                                                  | 4-16  |
|     |               | 4.6.2.1 Primary Tanks                                        | 4-17  |
|     |               | 4.6.2.2 Aerated Grit Chamber                                 | 4-18  |
|     |               | 4.6.2.3 Chlorine Contact Tanks                               | 4-19  |
|     |               | 4.6.2.4 Solids Handling                                      | 4-20  |
|     |               | 4.6.2.5 Conclusions                                          | 4-20  |
|     | 4.6.3         | Preliminary Operating Strategies                             | 4-21  |
# TABLE OF CONTENTS (cont.)

| ion |         |                                                         | Page |
|-----|---------|---------------------------------------------------------|------|
| EV  | VALUATI | ON OF ALTERNATIVES                                      | 5-1  |
| 5.1 | l Evalu | ation of Alternatives                                   | 5-1  |
|     | 5.1.1   | Summary of Alternative Benefits                         | 5-2  |
|     |         | 5.1.1.1 Source Control Alternatives                     | 5-2  |
|     |         | 5.1.1.2 Collection System Control Alternatives          | 5-2  |
|     |         | 5.1.1.3 Storage Control Alternatives                    | 5-3  |
|     |         | 5.1.1.4 Remote Treatment Control Alternatives           | 5-4  |
|     |         | 5.1.1.5 Summary                                         | 5-4  |
|     | 5.1.2   | Summary of Alternatives Costs                           | 5-5  |
|     | 5.1.3   | Selection of Alternatives                               | 5-5  |
| 5.2 | 2 Finan | cial Capability                                         | 5-7  |
|     | 5.2.1   | Residential Indicator                                   | 5-8  |
|     | 5.2.2   | Unemployment Rate                                       | 5-8  |
|     | 5.2.3   | Median Household Income                                 | 5-8  |
|     | 5.2.4   | Summary of Financial Capacity Indicators                | 5-8  |
|     | 5.2.5   | Financial Capability Matrix Score                       | 5-9  |
| AL  | TERNAT  | IVES SELECTED FOR IMPLEMENTATION                        | 6-1  |
| 6.1 | Progra  | am and Implementation Schedule of Selected Alternatives | 6-1  |
|     | 6.1.1   | Regulator and Tide Gate Monitoring                      | 6-1  |
|     | 6.1.2   | Regulator Replacement                                   | 6-2  |
|     | 6.1.3   | Regulator Consolidation and Sewer Separation            | 6-2  |
|     | 6.1.4   | Inlet Replacement                                       | 6-3  |
|     | 6.1.5   | Modified Sewer Cleaning Program                         |      |
|     | 6.1.6   | Ongoing Monitoring of Program Impacts                   | 6-4  |
|     | 6.1.7   | Public Information/Education Program                    |      |
| 6.2 | Impac   | t of the Implementation of the Selected Alternatives    |      |
|     | 6.2.1   | Combined Sewer Overflow Hydraulic Characterization for  |      |
|     |         | Future Typical Year                                     |      |
|     | 6.2.2   | Combined Sewer Overflow Quality Characterization for    |      |
|     |         | Future Typical Year                                     | 6-6  |
| 6.3 | Post-I1 | nplementation Monitoring Program                        | 6-6  |
| 6.4 | Impler  | nentation Schedule                                      | 6-7  |
| RE  | FERENC  | ES                                                      | ₽_1  |
|     |         |                                                         |      |

.

#### LIST OF APPENDICES

#### Appendix

- **CSO Sampling Results** Α
- **Typical Year Precipitation Events** В
- SWMM Summary Output for Baseline Typical Year С
- SWMM Summary Output for Future Typical Year D
- STORET Data Е
- NOAA Environmental Sensitivity Index Maps F
- Correspondence with the City of Chester Regarding Street Sweeping and Inlet G Replacement
- Detailed Cost Estimate Data Н

## LIST OF FIGURES

## Figure Location of Regulators, Outfalls, and Drainage Areas for Baseline Conditions ...... 1-6 1.5-1 Comparison of Monthly Precipitation Totals ...... 2-9 2.4-1 Comparison of Number of Events per Month ...... 2-10 2.4-2Interceptors Experiencing Frequent Surcharging During the Baseline Typical Year 2-11 2.5-1 Typical PADOT Type M Inlet with Sump ...... 4-23 4.2-1 Typical Brown & Brown Regulator Design ..... 4-24 4.3-1 Sanitary/Stormwater Sewer Separation Project ..... 4-25 4.3-2 Conceptual Siting of Ridley Creek Outfall Interceptor ...... 4-26 4.3-3 Schematic of Subarea 6A Interconnect ...... 4-27 4.3-4 Schematic of Subareas 4A and 4B Interconnect ...... 4-28 4.3-5 Interceptors Experiencing Frequent Surcharging During the Future Typical Year .... 6-8 6.2-1

Page

## LIST OF TABLES

| <u>Table</u> |                                                                                                    | Page  |
|--------------|----------------------------------------------------------------------------------------------------|-------|
| 1.1-1        | Long Term Control Plan Requirements                                                                | . 1-7 |
| 2.4-1        | 95 Year Precipitation Statistics                                                                   | 2-12  |
| 2.4-2        | Typical Year Comparison to 95 Year Average                                                         | 2-13  |
| 2.4-3        | 95 Year Frequency Analysis Statistics                                                              | 2-14  |
| 2.5-1        | Interceptor Surcharging During Baseline Typical Year Storm Events                                  | 2-15  |
| 2.5-2        | Monthly and Annual Summary of Overflows by Outfall for Baseline<br>Typical Year                    | 2-16  |
| 2.5-3        | Monthly and Annual Summary of Overflows by Receiving Water for<br>Baseline Typical Year            | 2-16  |
| 2.5-4        | Monthly and Annual Summary of Flows to 2 <sup>nd</sup> and Dock Pump Station and EPS-1 at WRTP     | 2-17  |
| 2.5-5        | Summary of Storm Frequency Analysis for Each Regulator                                             | 2-18  |
| 2.5-6        | Summary of Event Mean Concentration (EMC) Values, Sampling Results,<br>and Selected Concentrations | 2-19  |
| 2.5-7        | Total Suspended Solids Annual Load for Baseline Typical Year                                       | 2-20  |
| 2.5-8        | Total Biochemical Oxygen Demand Annual Load for Baseline Typical Year                              | 2-21  |
| 2.5-9        | Total Chemical Oxygen Demand Annual Load for Baseline Typical Year                                 | 2-22  |
| 2.5-10       | Fecal Coliform Bacteria Annual Load for Baseline Typical Year                                      | 2-23  |
| 2.5-11       | Total Dissolved Oxygen Annual Load for Baseline Typical Year                                       | 2-24  |
| 2.5-12       | Total Oil and Grease Annual Load for Baseline Typical Year                                         | 2-25  |
| 2.5-13       | Total Kjeldahl Nitrogen Annual Load for Baseline Typical Year                                      | 2-26  |
| 2.5-14       | Total Phosphorus Annual Load for Baseline Typical Year                                             | 2-27  |
| 2.5-15       | Total Zinc Annual Load for Baseline Typical Year                                                   | 2-28  |

| <u>Table</u>    |                                                                                                     | Page         |
|-----------------|-----------------------------------------------------------------------------------------------------|--------------|
| 2.5-16          | Total Copper Annual Load for Baseline Typical Year                                                  | 2 <b>-29</b> |
| 2.5-17          | Total Aluminum Annual Load for Baseline Typical Year                                                | 2-30         |
| 2.5-18          | Total Lead Annual Load for Baseline Typical Year                                                    | 2-31         |
| 2.5-19          | Total Mercury Load for Baseline Typical Year                                                        | 2-32         |
| 2.5-20          | Total Silver Load for Baseline Typical Year                                                         | 2-33         |
| 2.5-21          | Total Phenols Annual Load for Baseline Typical Year                                                 | 2-34         |
| 3.1-1           | Summary of Water Quality Criteria for Receiving Waters                                              | . 3-4        |
| 3.1-2           | Summary of Water Quality Sampling on Chester Creek                                                  | . 3-5        |
| 3.1-3           | Summary of Water Quality Sampling on Ridley Creek                                                   | . 3-6        |
| 3.1-4           | Summary of Water Quality Sampling on Delaware River                                                 | . 3-7        |
| 3.2-1           | Impact of CSO Discharge on Chester Creek Water Quality for Baseline<br>Typical Year                 | . 3-8        |
| 3.2 <b>-</b> 1a | Impact of CSO Discharge on Chester Creek Water Quality for Baseline<br>Typical Year at Regulator 20 | . 3-9        |
| 3.2 <b>-</b> 1b | Impact of CSO Discharge on Chester Creek Water Quality for Baseline<br>Typical Year at Regulator 19 | 3-10         |
| 3.2 <b>-</b> 1c | Impact of CSO Discharge on Chester Creek Water Quality for Baseline<br>Typical Year at Regulator 21 | 3-11         |
| 3.2-1d          | Impact of CSO Discharge on Chester Creek Water Quality for Baseline<br>Typical Year at Regulator 26 | 3-12         |
| 3.2 <b>-</b> 1e | Impact of CSO Discharge on Chester Creek Water Quality for Baseline<br>Typical Year at Regulator 22 | 3-13         |
| 3.2-1f          | Impact of CSO Discharge on Chester Creek Water Quality for Baseline<br>Typical Year at Regulator 25 | 3-14         |

1.15

| <u>Table</u>    |                                                                                                     | Page |
|-----------------|-----------------------------------------------------------------------------------------------------|------|
| 3.2-1g          | Impact of CSO Discharge on Chester Creek Water Quality for Baseline<br>Typical Year at Regulator 23 | 3-15 |
| 3.2-1h          | Impact of CSO Discharge on Chester Creek Water Quality for Baseline<br>Typical Year at Regulator 24 | 3-16 |
| 3.2 <b>-</b> 1i | Impact of CSO Discharge on Chester Creek Water Quality for Baseline<br>Typical Year at Regulator 12 | 3-17 |
| 3.2-2           | Impact of CSO Discharge on Ridley Creek Water Quality for Baseline<br>Typical Year                  | 3-18 |
| 3.2-2a          | Impact of CSO Discharge on Ridley Creek Water Quality for Baseline<br>Typical Year at Regulator 18  | 3-19 |
| 3.2-2Ъ          | Impact of CSO Discharge on Ridley Creek Water Quality for Baseline<br>Typical Year at Regulator 17  | 3-20 |
| 3.2-2c          | Impact of CSO Discharge on Ridley Creek Water Quality for Baseline<br>Typical Year at Regulator 16  | 3-21 |
| 3.2-2d          | Impact of CSO Discharge on Ridley Creek Water Quality for Baseline<br>Typical Year at Regulator 15  | 3-22 |
| 3.2-3           | Impact of CSO Discharge on Delaware River Water Quality for Baseline<br>Typical Year                | 3-23 |
| 4.3-1           | Regulators for Replacement                                                                          | 4-29 |
| 4.4-1           | Cost of Storage Alternatives for Ridley Creek                                                       | 4-30 |
| 4.5-1           | Cost of Remote Treatment Control Alternative                                                        | 4-30 |
| 5.1-1           | Summary of Benefits for Various Alternatives                                                        | 5-10 |
| 5.1-2           | Summary of Costs for Various Alternatives                                                           | 5-11 |
| 5.1-3           | Summary of Remaining Alternatives and Associated Annual Costs                                       | 5-12 |
| 5.1-4           | Selected Program Annual Costs and Cumulative Costs                                                  | 5-12 |
| 5.2-1           | Cost per Household (Worksheet 1)                                                                    | 5-13 |

| <u>Table</u> | Page                                                                                              |
|--------------|---------------------------------------------------------------------------------------------------|
| 5.2-2        | Summary of 1997 Budget Expenses Allocated to City of Chester System Users 5-14                    |
| 5.2-3        | Residential Indicator (Worksheet 2) 5-15                                                          |
| 5.2-4        | Unemployment Rate (Worksheet 5) 5-16                                                              |
| 5.2-5        | Median Household Income (Worksheet 6) 5-17                                                        |
| 5.2-6        | Summary of Permittee Financial Capability Indicators (Worksheet 9) 5-18                           |
| 5.2-7        | Financial Capability Matrix Score (Worksheet 10) 5-19                                             |
| 6.2-1        | Interceptor Surcharging During Future Typical Year Storm Events                                   |
| 6.2-2        | Monthly and Annual Summary of Overflows by Outfall for Future<br>Typical Year                     |
| 6.2-3        | Monthly and Annual Summary of Overflows by Receiving Water for<br>Future Typical Year             |
| 6.2-4        | Monthly and Annual Summary of Flows to 2 <sup>nd</sup> and Dock Pump Station<br>and EPS-1 at WRTP |
| 6.2-5        | Total Suspended Solids Annual Load for Future Typical Year                                        |
| 6.2-6        | Total Biochemical Oxygen Demand Annual Load for Future Typical Year 6-13                          |
| 6.2-7        | Total Chemical Oxygen Demand Annual Load for Future Typical Year 6-14                             |
| 6.2-8        | Fecal Coliform Bacteria Annual Load for Future Typical Year                                       |
| 6.2-9        | Total Dissolved Oxygen Annual Load for Future Typical Year                                        |
| 6.2-10       | Oil and Grease Annual Load for Future Typical Year 6-17                                           |
| 6.2-11       | Total Kjeldahl Nitrogen Annual Load for Future Typical Year                                       |
| 6.2-12       | Total Phosphorus Annual Load for Future Typical Year 6-19                                         |
| 6.2-13       | Total Zinc Annual Load for Future Typical Year 6-20                                               |
| 6.2-14       | Total Copper Annual Load for Future Typical Year 6-21                                             |

ŝ

| <u>Table</u>     |                                                                                                   | <u>Page</u>  |
|------------------|---------------------------------------------------------------------------------------------------|--------------|
| 6.2-15           | Total Aluminum Annual Load for Future Typical Year                                                | 6-22         |
| 6.2-16           | Total Lead Annual Load for Future Typical Year                                                    | . 6-23       |
| 6.2-17           | Total Mercury Load for Future Typical Year                                                        | 6-24         |
| 6.2-18           | Total Silver Load for Future Typical Year                                                         | 6-25         |
| 6.2-19           | Total Phenols Annual Load for Future Typical Year                                                 | 6-26         |
| 6.2-20           | Impact of CSO Discharge on Chester Creek Water Quality for Future<br>Typical Year                 | 6-27         |
| 6.2 <b>-</b> 20a | Impact of CSO Discharge on Chester Creek Water Quality for Future<br>Typical Year at Regulator 20 | 6-28         |
| 6.2-20b          | Impact of CSO Discharge on Chester Creek Water Quality for Future<br>Typical Year at Regulator 19 | 6-2 <b>9</b> |
| 6.2-20c          | Impact of CSO Discharge on Chester Creek Water Quality for Future<br>Typical Year at Regulator 21 | 6-30         |
| 6.2-20d          | Impact of CSO Discharge on Chester Creek Water Quality for Future<br>Typical Year at Regulator 26 | 6-31         |
| 6.2-20e          | Impact of CSO Discharge on Chester Creek Water Quality for Future<br>Typical Year at Regulator 22 | 6-32         |
| 6.2 <b>-</b> 20f | Impact of CSO Discharge on Chester Creek Water Quality for Future<br>Typical Year at Regulator 25 | 6-33         |
| 6.2-20g          | Impact of CSO Discharge on Chester Creek Water Quality for Future<br>Typical Year at Regulator 24 | 6-34         |
| 6.2-20h          | Impact of CSO Discharge on Chester Creek Water Quality for Future<br>Typical Year at Regulator 12 | 6-35         |
| 6.2-21           | Impact of CSO Discharge on Ridley Creek Water Quality for Future<br>Typical Year                  | 6-36         |
| 6.2-21a          | Impact of CSO Discharge on Ridley Creek Water Quality for Future<br>Typical Year at Regulator 18  | 6-37         |

| <u>Table</u> |                                                                                                  | <u>Page</u> |
|--------------|--------------------------------------------------------------------------------------------------|-------------|
| 6.2-21b      | Impact of CSO Discharge on Ridley Creek Water Quality for Future<br>Typical Year at Regulator 17 | 6-38        |
| 6.2-21c      | Impact of CSO Discharge on Ridley Creek Water Quality for Future<br>Typical Year at Regulator 16 | 6-39        |
| 6.2-21d      | Impact of CSO Discharge on Ridley Creek Water Quality for Future<br>Typical Year at Regulator 15 | 6-40        |
| 6.2-22       | Impact of CSO Discharge on Delaware River Water Quality for Future<br>Typical Year               | 6-41        |

.

.

#### **SECTION 1**

#### BACKGROUND

## 1.1 PURPOSE OF LONG-TERM CONTROL PLAN

The fundamental purpose of DELCORA's combined sewer overflow (CSO) program is to minimize the impacts of CSO's upon the quality of the receiving waters by developing a long-term strategy that is both technically viable and financially feasible. This Long-Term Control Plan (LTCP) summarizes DELCORA's strategy to achieve this purpose and consists of three primary elements:

- 1. System Characterization including modeling and system monitoring.
- 2. Development and Evaluation of Alternatives.
- 3. Selection and Implementation of Controls.

This document presents the requirements as defined in the existing NPDES Permit and the Department letter of 23 July 1996. Consideration is also given to EPA's CSO Policy, the Delaware River Basin Commission's (DRBC) CSO related studies, coordination with DELCORA's proposed CDPS Diversion Project, and the EPA CSO Policy provisions for "small system considerations" and "community's financial capability."

## 1.2 NPDES PERMIT AND LTCP REQUIREMENTS

In a letter issued by the Pennsylvania Department of Environmental Protection (DEP) to DELCORA on 23 July 1996, the Department discusses both its comments regarding the DELCORA Nine Minimum Control (NMC) Plan, as well as the three major elements that the Department considers to be essential to the LTCP as presented above.

These elements are consistent with the LTCP requirements in the existing NPDES Permit No. PA0027103.(Part C, Section 12.5), which include:

1-1

- Implementation of the nine minimum controls (NMC).
- Characterization and modeling of the system.
- Consideration of sensitive areas.
- Financial capability as related to implementation of the plan.
- Implementation schedule.

The Department has granted DELCORA an extension from 21 July 1996 until 25 July 1997 to submit the LTCP. The Department also requested a response from DELCORA regarding the Department's comments on the NMC Plan, as well as a copy of the SWMM model analysis. The NMC response was submitted 19 November 1996, and the SWMM model application, developed by Roy F. Weston, Inc. (WESTON®) for the DELCORA system, was submitted 16 May 1997.

#### **1.3 IMPLEMENTATION OF THE NINE MINIMUM CONTROLS**

DELCORA submitted its Nine Minimum Controls (NMC) Report for Correction of Combined Sewer Overflows (CSO) in July of 1995. DELCORA received PADEP comments on the NMC Report in a letter dated 23 July 1996 and on 19 November 1996 submitted revisions to the report. No subsequent comments have been received since this submission. Progress to date includes:

- Placement of warning signs is complete.
- Posting of CSO outfalls is complete.
- Conversion of the sewer system model to the EPA SWMM model is complete.
- Replacement of regulators is discussed in detail in this plan.
- Review of potential segregation of sanitary and stormwater flows is discussed in detail in this plan.
- Inlet modification/replacement is discussed in detail in this plan.

#### 1.4 EPA CSO POLICY AND SMALL SYSTEM CONSIDERATIONS

In addition to the Pennsylvania DEP requirements for the LTCP as discussed in the correspondence of 23 July 1996 and the specific LTCP requirements defined in the NPDES permit, the EPA CSO Control Policy identifies nine elements required for the LTCP. Three of these elements are currently specified in the existing DELCORA NPDES permit. The EPA CSO Policy also provides

some relief for small combined sewer systems that serve populations less than 75,000. At the discretion of the NPDES Authority, small systems may not need to complete all of the nine elements required for the LTCP. The nine elements of the LTCP as defined by EPA are indicated in Table 1.1-1. Also indicated in Table 1.1-1 are the elements that are currently required in the existing NPDES permit, and those requirements that must be addressed, at a minimum, for systems with populations under 75,000.

The EPA CSO Policy provides two options for combined sewer systems to demonstrate compliance with the Clean Water Act Requirements. The first approach, or "demonstration approach," requires that a planned control program be developed to meet existing water quality standards. This approach requires system characterization (modeling and monitoring). The characterization effort may indicate that water quality standards can be met even if overflows occur. The second approach, or "presumptive approach," limits overflow events to four per year and requires treatment of no less than 85% of the combined sewage volume. Given the limited capacity of the DELCORA CSS conveyance system, compliance with the presumptive approach would likely be very capital intensive and costly for DELCORA.

With regard to small system requirements, the EPA CSO Policy requirements for small systems do not include a requirement for system characterization using modeling and monitoring. However, it is not possible to meet the requirements of the demonstration approach without system characterization and Part C of DELCORA's existing NPDES permit requires a System Hydraulic Characterization using SWMM to characterize overflow events. EPA has indicated that the initial cost of system characterization is generally offset by the reduced costs of the control measures associated with the demonstration approach (i.e., the demonstration approach often indicates that overflows are allowable and do not compromise water quality standards). This is particularly applicable when the CSOs are to a large receiving stream, such as the Delaware River, with significant assimilative capacity.

#### **1.5 OVERVIEW OF COMBINED SEWER SYSTEM**

The Delaware County Regional Water Quality Authority (DELCORA) owns and operates the Western Regional Treatment Plant (WRTP) located in Chester, Delaware County. WRTP receives both sanitary wastewater flows and combined sanitary wastewater/storm water flows from the City of Chester, which has both separate and combined sewers. Several neighboring municipalities (Trainer Borough, Chester Township, Upland Borough, Brookhaven Borough, Parkside Borough, Nether Providence Township, Eddystone Borough, Lower Chichester, and Marcus Hook) discharge sanitary wastewater flows directly to the interceptors leading to the WRTP. There are twenty-five regulators within the City of Chester combined sewer system, which, during storm periods, control the rate of flow from the combined sewers to the WRTP. As the flow rates increase, the regulators close, preventing additional flow to the WRTP and allowing for overflow to the receiving waters. The overflows discharge at 24 outfalls (Outfalls 002-009 and 011-026) to the Delaware River, Chester Creek, and Ridley Creek. Regulator 10 discharges to the collector sewer system flowing to Regulator 9. In addition, the Chester Pump Station is permitted to bypass combined flows when the discharge received exceeds the 30 MGD pumping capacity during storm periods. This outfall is now being added to NPDES permit as Outfall 027. The WRTP (permit Outfall 001) and CSO outfalls (permit Outfalls 002-026) discharge under National Pollutant Discharge Elimination System (NPDES) Permit No. PA0027103, issued to DELCORA by the Pennsylvania Department of Environmental Protection (DEP) on 21 July 1993. A map showing the location of the regulators, outfalls, and associated drainage areas used for the baseline conditions is included as Figure 1.5-1.

#### 1.6 OVERVIEW OF MONITORING AND MODELING EFFORT

Evaluation of the combined sewer system response to storm events, through both monitoring and modeling, is central to compliance with the permit requirements. A hydraulic evaluation of the City of Chester combined sewer system was conducted by WESTON using the US EPA Storm Water Management Model (SWMM). SWMM is a mathematical computer model that simulates the complex time-varying process of rainfall onto land of varying characteristics, the conversion of rainfall to runoff, and the collection and transport of mixed stormwater runoff and sanitary sewage through the collection system. SWMM was developed to evaluate both quantity and quality

1-4

problems associated with urban stormwater runoff and combined sewer overflow phenomena. The model is public domain and has undergone many modifications and improvements due to its wide use and application. SWMM Version 4.30 (beta) was used in the analysis of the City of Chester combined sewer system.

Based on the flow monitoring data and model representation, it has been determined that the urban watershed area responds rapidly to storm events, quickly reaching peak runoff rates in response to rainfall. Correspondingly, the hydraulic system and regulators controlling discharges to the combined sewer outfalls respond rapidly to storm events, essentially routing flows to the outfalls early in the storm events.

Flow monitoring was conducted by DELCORA during three periods in 1994. The flow loggers showed the influence of the operation of the regulators on both the interceptors and the collector trunks.

Water quality monitoring was conducted during March and April 1997. The overflow from three different regulators as well as the flow through the Chester Pump Station (CPS) at 2<sup>nd</sup> and Dock Streets and the influent pumping station (EPS-1) at the WRTP were sampled and analyzed for five storm events.



.

Table 1.1-1

# Long Term Control Plan Requirements

|                                                          | NPDES       | CSO Policy/             | PA DEP       |
|----------------------------------------------------------|-------------|-------------------------|--------------|
|                                                          | Permit      | <b>EPA Small System</b> | Letter       |
| LTCP Requirement                                         | Requirement | Requirement             | 23 July 1996 |
| Implementation of NMC (including response to DEP letter) | Х           | X                       | X            |
| EPA LTCP Requirements                                    |             |                         |              |
| 1. Characterization, monitoring, and modeling of system. | X           | X <sup>(1)</sup>        | X            |
| 2. A public participation process.                       |             | X                       |              |
| 3. Consideration of sensitive areas.                     | X           | X                       |              |
| 4. Evaluation of alternatives to meet CWA requirements.  | X           | X                       | X            |
| 5. Cost/performance considerations.                      |             |                         |              |
| 6. Operation plan revisions for CSO controls.            |             |                         |              |
| 7. Maximization of treatment at POTW. <sup>(2)</sup>     | X           |                         |              |
| 8. Implementation schedule for CSO controls.             | X           |                         | X            |
| 9. Post-construction monitoring program.                 |             | X                       |              |

<sup>(1)</sup> Required for Demonstration Approach. <sup>(2)</sup> Requirement of NMC.

.... i

# SECTION 2 SYSTEM CHARACTERIZATION

## 2.1 OBJECTIVE OF SYSTEM CHARACTERIZATION

The EPA CSO Control Policy states that, "The purpose of the system characterization, monitoring, and modeling program initially is to assist the permittee in developing appropriate measures to implement the nine minimum controls and, if necessary to support the development of the long-term control plan." This is consistent with the Department's letter of 23 July 1996, which stated that, "The purpose of the modeling is not only to evaluate the quality and quantity of flows being discharged during storm events, but it is also to be utilized in conjunction with the NMC to implement non-capital intensive improvements within your system to help abate the discharges." Specifically, the system characterization defines the frequency and duration of overflows, on an average annual basis, and the effect of those CSOs on the receiving water quality. This further defines what CSO controls are necessary to protect water quality standards.

## 2.2 ANALYSIS OF EXISTING DATA

This effort includes compilation and review of all existing relevant data. Much of the existing data, especially related to the combined sewer system (CSS), was compiled during the development of the SWMM application. Required data for system characterization includes the following:

## • Existing precipitation data.

The event-specific precipitation data collected by DELCORA during the flow monitoring effort was used in the initial SWMM application development. Two-minute precipitation data was gathered by rain gages at the WRTP and the CPS. Further discussion of the precipitation data for the system flow monitoring as well as a summary of the precipitation data can be found in the SWMM model application report. The long-term one-hour precipitation data available for the NOAA meteorological station at the Philadelphia International Airport was used to determine the precipitation events for an average year. The period of record used for this analysis was from 1901 to 1995.

## • Drainage Areas.

The drainage areas to the regulators, as well as the drainage areas to interceptors flowing to the WRTP, have been delineated and a map developed. Further discussion of this data can be found in the SWMM model application report.

## • Physical Combined Sewer System Data.

Information on the location and inverts of the combined sewers, manholes, regulators, location of pumping stations, and other structural data was obtained from the DELCORA Location Plans - Wastewater Facilities (Sheets 0805-0808, 0905-0908, 1005-1008, and 110-1108). In a number of locations where plan information was lacking, field verification was performed by DELCORA. The locations of surface inlets were obtained from the City of Chester Storm Sewers map (Revised September 1974). Further discussion of this data can be found in the SWMM model application report.

## • Estimates of dry weather flows.

Estimates were made of the dry weather flows to each regulator and to the interceptors based on reported data. Further discussion of this data can be found in the SWMM model application report.

## • Existing receiving stream water quality and flow data.

A review of the existing flow and water quality data for the receiving streams is necessary to evaluate the impacts of the CSOs on the receiving stream water quality, and the ability of DELCORA's LTCP to meet the requirements of the Clean Water Act. All available water quality data was obtained from the EPA's STORET database for sampling since 1980.

## • Review of industrial dischargers.

A review of the connection locations of permitted significant industrial users (SIUs) revealed that no SIUs discharge above the regulators. All SIUs connect directly to the WRTP, EPS-1, CPS, the CPS force main, or the interceptor system.

## • Location and nature of sensitive areas.

Consideration of the impact on sensitive areas is a requirement of the LTCP. Any sensitive areas will be defined in the review of existing data. A further discussion of sensitive areas is contained in Section 3 of this plan.

## 2.3 MONITORING

CSS monitoring is a key element of system characterization since few systems have existing data sufficient to establish wet weather baseline conditions. Dry weather baseline conditions (sanitary sewage characterization) were obtained from the continuous monitoring of the WRTP influent conducted in 1995 and 1996. Literature values (i.e., EPA (1983)) were used to characterize the quality of the storm runoff portion of the overflow. The limited sampling data at the CSOs was used to fill gaps and to verify and calibrate the literature quality estimates. Data from the EPA's STORET database for sampling since 1980 was used to characterize the baseline conditions of the receiving waters.

## 2.3.1 Flow Monitoring

Flow monitoring in the CSS was conducted by DELCORA during three periods in 1994. Further discussion of flow monitoring can be found in the SWMM model application report.

## 2.3.2 Water Quality Monitoring

Water quality monitoring of the CSS consisted of sampling flows during storms at the WRTP, the CPS, and the following three regulators:

• Regulator 05 is located at Front and Townsend Streets with a drainage area of 281 acres, discharging directly to the WRTP when the regulator is open. SWMM indicates that Regulator 05 closes fairly rapidly in response to rainfall. Regulator 05 is an 8" McNulty which discharges to the Delaware River, has a double tide gate, and is not submerged during low tide. It is the closest regulator to the WRTP with a tide gate.

- Regulator 19 is located at 14<sup>th</sup> Street and Crozer Hospital and has a large drainage area (296 acres) discharging to the WRTP when the regulator is open. Regulator 19 is also fairly responsive to rainfall. It does not have a tide gate, but is only partially submerged during high tide, with discharge to Ship Creek/Ridley Creek. The regulator is a Brown and Brown with a 7 1/2" x 15 3/8" orifice.
- Regulator 25 is located at 5<sup>th</sup> and Penn Streets and has a relatively small drainage area (12 acres) discharging to the CPS when open. Regulator 25 discharges to Chester Creek and has a double tide gate. The regulator is an 8" McNulty and does not open as early in an event as Regulators 05 and 19.

The automatic samplers at the regulators were set with a sensor in the outfall pipe. When the sensor detected flow, the sampler began its program. Samplers at the WRTP and the CPS were started manually. All samplers collected an aliquot every 15 minutes into one of six discrete bottles.

At the WRTP and the CPS, grab samples were collected as the sampler was activated and again after one hour. The time-weighted samples collected in the first hour were composited to represent the first flush. The samples collected after the first hour until the end of the storm (or six hours, whichever came first) were also composited. Appendix A contains a summary of the sampled parameters and the results for each event monitored at the WRTP and the CPS.

Since grab samples could not be obtained at the regulators, Bottle 1 was used at the grab sample for the first flush. Bottles 2 through 5 were combined as the first hour composite. Bottle 6 was used as the grab for the remainder of the storm and all other collected bottles were composited. Appendix A contains a summary of the sampled parameters and the results for each of the events monitored at the regulator outfalls.

#### 2.4 PRECIPITATION DATA

Since the mechanical nature of the regulators prevent using SWMM in continuous mode, a typical year of precipitation events was created from the 95 years of data from the Philadelphia International Airport meteorological station. Using the RAIN block in SWMM, an analysis of the precipitation data from 1901 through 1995 was performed. The RAIN block requires that the length of the dry period between storm events be specified. A value of 12 hours was selected as the

Į,

length of dry period between events. Table 2.4-1 presents a summary of the statistics for the 95 years of data.

## 2.4.1 Flow Monitoring Events

Precipitation data during the flow monitoring was collected by DELCORA at the WRTP, and limited data was available from the rain gage at the CPS. Further discussion of the precipitation data for the flow monitoring can be found in the SWMM model application report.

## 2.4.2 Typical Year Precipitation

The typical year was created by selecting months of data that represented rainfall volumes and number of precipitation events very close to the 95-year averages. Table 2.4-2 presents a comparison of the typical year to the 95-year average, and Figures 2.4-1 and 2.4-2 provide a graphical comparison between the typical year and the 95-year average.

This analysis assumes that all precipitation occurs as rainfall in the typical year. While this is not actually the case, the number of overflows modeled as rain events will be greater than the actual number of overflows observed since some precipitation events (i.e., snow storms) will not cause an overflow. This is because of the slow melting of a snowfall event. Appendix B contains a listing of the events contained in the typical year.

## 2.4.3 Frequency Analysis

A frequency analysis was performed on the 95 years of precipitation data from the Philadelphia International Airport meteorological station. Table 2.4-3 presents a summary of statistics from the frequency analysis of the precipitation data. In terms of overall storm precipitation volume, the analysis produced values very close to those presented in the frontal design storms from NJDEP (1994) as well as close to literature values from *Rainfall Frequency Atlas of the United States for Durations from 30 Minutes to 24 Hours and Return Periods from 1 to 100 Years* (USWB, 1961).

## 2.5 MODELING OF COMBINED SEWER SYSTEM

## 2.5.1 SWMM Application and Calibration

The SWMM application, using SWMM Version 4.30 (beta), to the City of Chester combined sewer system has been developed to estimate the volume of runoff originating from the combined sewer drainage areas for a given storm event, the volume of combined flows routed to the WRTP, and the volume of CSO associated with a given storm event. The model can also indicate hydraulic bottlenecks, and can be used to evaluate the effects of modifications to the existing system. The model was applied for purposes of calibration to six storm events observed in 1994 for which precipitation and limited flow data was available. Further discussion of the SWMM model calibration can be found in the *Application of the US EPA Stormwater Management Model (SWMM)* report (DELCORA, 1997).

#### 2.5.2 Hydraulic Characterization

#### 2.5.2.1 System Characterization

#### **Constraints/Bottlenecks**

The analysis of the 87 events in a typical year clearly show constraints/bottlenecks in the interceptor system. Table 2.5-1 shows the junctions and the corresponding interceptors that are subject to frequent surcharging. Figure 2.5-1 shows the interceptor reaches that frequently surcharge. The frequency and widespread nature of the surcharging clearly demonstrates that little or no additional capacity is available in most of the system to store combined flows. This is especially true in the sections of the Front Street interceptor approaching the WRTP (conduits C, D, E, and F), the sections of the 2<sup>nd</sup> Street Interceptor (conduits I, H1, H2, and H3) and the Ridley Creek Interceptor (all conduits) that approach the CPS. There does, however, appear to be the potential for some storage and additional capacity in the West End Interceptor that can be evaluated. Extreme care must be given in changing the operating character of the interceptors since lateral connections to residences and businesses tie directly into the interceptor. Any change that would create more surcharging may create backup in the laterals.

2-6

The WRTP is currently permitted for an average flow of 44 MGD. Peak flow capacity is estimated at 85 MGD. The peak hydraulic capacity of the force mains from CPS and industrial users (given current pump configurations and the planned diversion from the Central Delaware Pumping Station) is 58.5 MGD (CPS - 30 MGD, Kimberly Clark – 16.5 MGD, CDPS – 12 MGD). The peak capacity of the gravity flow interceptor to the WRTP is 2.0 MGD.

## 2.5.2.2 Annual Discharge Volume

#### Overflows

Table 2.5-2 shows a monthly and annual summary by outfall of the overflows experienced in a typical year. Table 2.5-3 summarizes the monthly and annual overflows by receiving water.

## **Chester Pump Station and EPS-1 at WRTP**

Table 2.5-4 summarizes the monthly and annual flows from the interceptor system to CPS and to EPS-1 at the WRTP.

## 2.5.2.3 Frequency Analysis

In addition to analyzing the eighty-seven events of the typical year, an analysis was conducted of storm events with a specified return frequency. The purpose of this analysis is to identify those outfalls that discharge for the specified storm events. The analysis was performed on both recurrence interval storms selected from the historic record, as shown on Table 2.4-3 and the frontal design storms presented in *Projected Storm Water Generated Pollutant Loadings to the Delaware Estuary - A Modeling Study* (NJDEP, 1994). Table 2.5-5 summarizes the analysis and reveals that all outfalls discharge for all events with a return frequency greater than 2 months. It is important to observe that the analysis predicts that Regulators 12 and 23 do not close even for a 5-year event.

## 2.5.3 Combined Sewer Overflow Quality Characterization

The total load of a specified pollutant to the receiving water is computed by dividing the total CSO volume into a sanitary wastewater base flow component and a storm water runoff component. The apportioned volumes are then multiplied by the concentration of the specified pollutant in the

wastewater and storm water. Literature values were used to characterize the quality of the storm runoff portion of the overflow and the sampling data at the CSOs was used to supplement and verify and calibrate the characterization. The use of literature values to characterize the storm runoff portion of the overflow is consistent with the approach outlined in a 2 May 1995 letter from the City of Philadelphia to the Delaware River Basin Commission (DRBC). The DRBC is supportive of this approach and agrees that limited sampling data available does not improve the overall results. The sanitary sewage component of the CSO was characterized by using WRTP influent data from 1995 and 1996. Table 2.5-6 presents a summary of the literature values, the characterization sampling results, and the concentrations selected for the CSO quality characterization. Samples that reported values less than the analysis method reporting limit were treated as discussed in *Statistical Analysis of Ground-Water Monitoring Data for RCRA Facilities - Addendum to Interim Final Guidance (Draft)* (EPA, 1992).

Using the selected concentrations for wastewater and storm water from Table 2.5-6 and the CSO discharge volumes from Table 2.5-2, the annual load was computed by outfall and by receiving water for the specified pollutants as presented in Tables 2.5-7 through 2.5-21.





Pycar.xls Monthly Events Chart



Figure 2.4-2 Comparison of Number of Events per Month

April 1999

2-10





## **Table 2.4-1**

# 95 Year Precipitation Statistics

|           |        | 12 Hour   | Dry Period |         |
|-----------|--------|-----------|------------|---------|
|           | Total  |           | Average    |         |
|           | Number | Average   | Event      | Average |
|           | of     | Number    | Volume     | Volume  |
| Month     | Events | of Events | (in.)      | (in.)   |
| January   | 738    | 7.8       | 0.407      | 3.16    |
| February  | 660    | 6.9       | 0.409      | 2.84    |
| March     | 764    | 8.0       | 0.455      | 3.66    |
| April     | 742    | 7.8       | 0.436      | 3.41    |
| May       | 823    | 8.7       | 0.403      | 3.49    |
| June      | 805    | 8.5       | 0.43       | 3.64    |
| July      | 799    | 8.4       | 0.5        | 4.21    |
| August    | 737    | 7.8       | 0.57       | 4.42    |
| September | 592    | 6.2       | 0.553      | 3.45    |
| October   | 529    | 5.6       | 0.49       | 2.73    |
| November  | 604    | 6.4       | 0.474      | 3.01    |
| December  | 673    | 7.1       | 0.473      | 3.35    |
| Total     | 8466   | 89.12     | 0.467      | 41.37   |

.

## **Table 2.4-2**

|           | Precip | itation (ir | nches)           | Number o        | of Events |
|-----------|--------|-------------|------------------|-----------------|-----------|
| Month     | Typica | l Vear      | 95 Yr<br>Average | Typical<br>Vear | 95 Yr     |
| THOMEN T  | Typica | (100 -      | Average          | I CAI           | Average   |
| January   | 3.09   | (1995)      | 3.16             | 8               | 8         |
| February  | 2.74   | (1964)      | 2.84             | 7               | 7         |
| March     | 3.83   | (1970)      | 3.66             | 8               | 8         |
| April     | 3.43   | (1962)      | 3.41             | 8               | 8         |
| May       | 3.48   | (1967)      | 3.49             | 10              | 9         |
| June      | 3.51   | (1937)      | 3.64             | 8               | 8         |
| July      | 4.06   | (1986)      | 4.21             | 8               | 8         |
| August    | 4.54   | (1994)      | 4.42             | 7               | 8         |
| September | 3.55   | (1995)      | 3.45             | 6               | 6         |
| October   | 2.79   | (1960)      | 2.73             | 6               | 6         |
| November  | 3.14   | (1975)      | 3.01             | 5               | 6         |
| December  | 3.69   | (1993)      | 3.35             | 6               | 7         |
| Total     | 41.85  |             | 41.37            | 87              | 89        |

# Typical Year Comparison to 95 Year Average

.

Table 2.4-3

95 Year Frequency Analysis Statistics

|         | 12 H     | lour Dry Pe | riod   | Philadelphia | Frontal Desig | in Storms <sup>(1)</sup> | TP-40 <sup>(2)</sup> | Typical | Storms   |
|---------|----------|-------------|--------|--------------|---------------|--------------------------|----------------------|---------|----------|
|         |          |             |        |              | Maximum       |                          | 24-Hr                |         |          |
| Return  | Duration | Intensity   | Volume | Duration     | Intensity     | Volume                   | Volume               |         | Duration |
| Period  | (hrs)    | (in/hr)     | (in)   | (hrs)        | (in/hr)       | (ii)                     | (in)                 | Date    | (hrs)    |
| 5-Year  | 68       | 0.64        | 4.35   | 21           | 1.53          | 3.68                     | 4.25                 | 6/1/46  | 22       |
| 2-Year  | 57       | 0.495       | 3.47   | 17           | 1.31          | 2.71                     | 3.25                 | 1/12/15 | 32       |
| 1-Year  | · 47     | 0.374       | 2.8    | 13           | 1.12          | 2.21                     | 2.7                  | 4/14/70 | 29       |
| 2-Month | 27       | 0.153       | 1.47   | 7            | 0.75          | 1.36                     | N/A                  | 9/25/92 | 18       |

<sup>(1)</sup> NJDEP (1994)

<sup>(2)</sup> USWB (1961)

2-14

39 .

٢,

## Table 2.5-1

# Interceptor Surcharging During Baseline Typical Year Storm Events

| Innction   |                        | <u> </u>   | T                       |                |           |         |                       |                |          |          |                |           |       |               |                         |                |                    |          |                      |      |          |                  |       |              |               |               |                    |             |      | \$        | Storn           | n Nat                | mber     | r              |                 |                 |                          |          |              |       |                    |          |                     |                |                          |       |           |      |                                         |                  |      |                    |              |                     |           |                                                                   |               |              |                         |                         |            | T           | Free | auen/           | ev         |
|------------|------------------------|------------|-------------------------|----------------|-----------|---------|-----------------------|----------------|----------|----------|----------------|-----------|-------|---------------|-------------------------|----------------|--------------------|----------|----------------------|------|----------|------------------|-------|--------------|---------------|---------------|--------------------|-------------|------|-----------|-----------------|----------------------|----------|----------------|-----------------|-----------------|--------------------------|----------|--------------|-------|--------------------|----------|---------------------|----------------|--------------------------|-------|-----------|------|-----------------------------------------|------------------|------|--------------------|--------------|---------------------|-----------|-------------------------------------------------------------------|---------------|--------------|-------------------------|-------------------------|------------|-------------|------|-----------------|------------|
| Name       | Interceptor Name       | Conduit    |                         | 3              | 4 5       | 6       | 7 8                   | 9              | 10 1     | 1 12     | 13 14          | 15 I      | 6 17  | 18 19         | 20                      | 21 22          | 23                 | 24 25    | 26                   | 27 2 | 8 29     | 30 3             | 31 32 | : 33         | 34 3          | 5 36          | 37                 | 38 39       | 9 40 | 414       | 2 43            | 44                   | 45 4     | 6 47           | 48 4            | 9 50            | 51 5                     | 52 53    | 3 54         | 55 50 | 6 57               | 58 59    | 60                  | 61 6           | 2 63                     | 64 65 | 66        | 67 6 | 8 69                                    | 70               | 71 7 | 2 73               | 74           | 75 76               | 77        | 78 7                                                              | 9 80          | 81           | 82 83                   | 84                      | 85 86      | 87          | Ħ    | 0               | %          |
| C15        | Front St.              | A          |                         |                |           |         |                       |                |          |          |                |           |       |               |                         |                |                    |          |                      |      | 1        |                  | :     |              |               |               |                    |             |      |           |                 |                      |          |                |                 |                 |                          |          |              |       |                    |          | TT                  |                |                          |       |           |      | Τ.                                      |                  |      |                    |              |                     |           |                                                                   |               |              |                         |                         |            |             | 0    | 0               | 1%         |
| C10        | Front St.;West End     | B;10F      |                         |                |           |         |                       |                |          |          |                |           |       |               |                         |                |                    |          |                      |      |          |                  |       |              |               |               |                    |             |      |           |                 |                      |          |                |                 |                 |                          |          |              |       |                    |          |                     |                |                          |       |           |      |                                         |                  |      |                    |              |                     |           |                                                                   |               |              |                         |                         |            |             | 0    | 0               | 1%         |
| C12        | Front St.              | C          | X                       | (X             | XX        | (       | XX                    |                | XX       | (X)      | X              | XX        | X     | X X           | X                       | X X            | X                  | X X      | X                    | X 2  | X        | X                | X X   | X            | X             | x   X         | X                  | X X         |      | X Z       | x [ X           | X                    | X X      | ( X            | XX              | X X             | X                        | X X      | X            | XX    | (   X              | XX       | X[                  | XX             | $ \mathbf{X} $           | X X   | X         | X :  | X X                                     | X                | X    | X                  | Х            | X X                 | X         | XX                                                                | X             | X            | X X                     | X                       | X X        | X           | 84   | 97              | 7%         |
| D16        | Front SL               | D          | X D                     | $ \mathbf{X} $ | XX        | <[ ]    | XX                    | $ \mathbf{x} $ | XX       | (X       | X              | XX        | X     | X X           | X                       | x x            | X                  | X X      | X                    | XD   | X        | X                | X X   | X            | XZ            | x X           | X                  | X X         | X    | XD        | ×               | X                    | XX       | X              | XX              | X X             | X                        | X        | X            | XX    | $\left[ X \right]$ | Х        | X                   | XX             |                          | X X   | Х         | X    | X X                                     | X                | X    | X                  | Х            | X X                 | X         | XX                                                                | ( X           | X            | X X                     | X                       | X X        | X           | 80   | 92              | 2%         |
| DI7        | Front St.              | E          | X                       |                | XX        | (       | XX                    |                | XX       | X        | X              | XX        |       | X X           | X                       | - [X           | X                  | X X      | X                    | X 2  |          | X                | X X   | X            | X D           | X X           | X                  | X           | X    | X X       | ×               | X                    | XX       |                | XX              | X X             | X                        | X        | X            |       | X                  | Х        | X                   | XX             |                          | X X   | Х         | X 2  | X X                                     | X                | X    | X                  |              | X X                 | X         | XX                                                                | X             | X            | <u>X</u> X              | X                       | X          | X           | 71   | 82              | 2%         |
| A9         | Front St.              | F          | X                       | X              | XX        | (       | XX                    |                | XX       | X        | X              | XX        | X     | X X           | X                       | X              | X                  | X X      | X                    | X D  |          | X                | X X   | X            | X             | x [X          | X                  |             | X    | X         | × 📃             | X                    | X X      | (              | XX              | XX              | X                        | X        | X            |       |                    |          | X                   | XX             |                          | XX    | Х         | X    | X X                                     | X                | X    | X                  |              | X X                 | X         | X                                                                 | X             | X            | X X                     | X                       | x          | х           | 67   | 77              | 7%         |
| A16        | Front St.              | - G1       |                         | X              |           |         |                       | X              |          |          |                | X         |       | X X           |                         |                |                    |          |                      | X    |          |                  |       |              |               | X             |                    |             |      | X         | X .             |                      |          |                | X               | ×               | X                        |          |              |       |                    |          |                     |                |                          |       |           |      |                                         |                  |      |                    |              | X                   | X         | X                                                                 | _             |              | X X                     |                         | X          |             | 17   | 20              | J%         |
| B18        | Front St.              | G2         |                         | X              |           |         |                       | X              | N        | i I      |                | XX        |       | X X           | X                       |                |                    |          |                      | X    |          |                  |       |              |               | X             |                    |             |      | X )       | <u>۲</u>        |                      |          | (              |                 | ×               | X                        |          |              |       |                    |          |                     |                |                          |       |           | Х    | X                                       |                  | X    |                    |              | X                   | X         | X                                                                 | _             |              | X X                     |                         | X          |             | 24   | 28              | 8%         |
| B19        | Front St.              | G2         |                         | X              |           |         |                       |                |          |          |                |           |       |               |                         |                |                    |          |                      |      |          |                  |       |              |               |               |                    |             |      |           |                 |                      |          |                |                 |                 |                          |          |              |       |                    |          |                     |                |                          |       |           |      |                                         |                  |      |                    |              |                     |           | $\perp$                                                           |               |              |                         | $\square$               |            |             | 1    | 1'              | .%         |
| O28        | West End               | 1015       |                         |                |           |         |                       |                |          |          |                |           |       |               |                         |                |                    |          |                      |      |          |                  |       |              |               |               |                    |             |      |           |                 | Ш                    |          |                |                 |                 |                          |          |              |       |                    |          |                     |                |                          |       | $\square$ |      |                                         |                  |      | 1                  | Ц            |                     |           | ⊢⊢                                                                | _             |              |                         | $\square$               | _          |             | 0    | 0               | 1%         |
| 012        | West End;Stoney Cr.    | 10D;SCI    |                         |                |           |         |                       |                |          |          |                |           |       |               |                         |                |                    |          |                      |      |          |                  |       | $\square$    |               |               |                    | _           |      |           |                 |                      |          |                |                 |                 |                          |          |              |       | _                  |          | <b>_</b>            |                |                          |       |           |      | _                                       | $\square$        |      |                    |              |                     |           | ⊢⊢                                                                | _             | <b> </b>     |                         | $\downarrow$            |            |             | 0    | 0               | /%         |
| P13        | West End               | 10C        |                         |                |           |         |                       |                |          |          | _              |           |       |               |                         |                |                    |          |                      |      |          |                  |       | $\square$    |               |               | Ц                  |             |      |           |                 | $\square$            |          | $\square$      |                 |                 |                          |          |              |       |                    |          | <b>_</b>            |                |                          |       |           |      |                                         |                  |      |                    | $\square$    |                     |           | <u> </u>                                                          | -             |              |                         | $\square$               |            |             | 0    | <u> </u>        | 1%         |
| N08        | West End               | 10B        |                         |                |           |         |                       |                |          |          | _              |           |       |               | <b></b>                 |                |                    |          |                      |      |          |                  |       | $\square$    |               | $\perp$       |                    | _Ĺ          |      |           |                 |                      |          |                |                 | _               | <b> </b>                 |          |              |       | _                  |          |                     |                | $ \downarrow \downarrow$ |       |           |      |                                         |                  |      |                    |              | $\perp$             |           | , <b> </b>                                                        |               | ļļ.          |                         | $\square$               |            |             | 0    |                 | 1%         |
| P12        | West End               | 108        |                         |                |           |         |                       |                |          |          |                |           |       |               |                         |                | <b> </b>           |          |                      |      |          |                  |       | $\downarrow$ | _             | $\perp$       |                    |             |      |           |                 | Ц                    |          |                |                 | _               | _↓                       |          | _            |       | _                  |          | ╇                   |                |                          |       |           |      | -                                       |                  |      | $\perp$            |              |                     | 1.1       | ,                                                                 | _             | ╞──┟         |                         | $\square$               | _          |             | 0    |                 | 1%         |
| 10-P01     | West End               | 10A        |                         |                |           | _       | X                     |                |          |          |                |           | 1     |               | <b> </b>                |                | <b> </b>           |          |                      |      |          |                  |       | $\square$    | _             |               |                    |             | +    |           | 4_              | $\square$            |          |                |                 |                 | <b>  </b>                |          | X            |       |                    |          | ┥┈┟                 |                |                          |       | $\square$ |      |                                         |                  |      |                    |              |                     |           | <u> </u>                                                          | _             | ļļ.          |                         | $\square$               | _          |             | 2    | 2               | .%         |
| G17        | Stoney Cr.             | SC2        |                         |                |           | _       |                       |                |          |          |                |           | 1     |               | <b> </b>                |                |                    |          |                      | _    | 1_       |                  |       | $\square$    |               |               |                    | _           |      |           | _               | $\left  \right $     | _        |                |                 | -               |                          | _        |              |       |                    |          | <u> </u>            |                |                          |       |           |      | _                                       |                  |      | 1                  |              | _                   |           | <u></u>                                                           | <u> </u>      | ┢──┠         | <del> </del>            | $\square$               | <u>.</u>   |             | 0    | 0               | 1%         |
| 005        | Stoney Cr.             | SC3        |                         | X              |           | _       | X                     | X              | <u> </u> |          | <u>X</u>       | XX        | X     | X             | ┨┨-                     | XX             | _↓                 | XX       | X                    | -12  | <u> </u> | $\square$        |       | $\downarrow$ | X             |               |                    | XX          | -    |           | X               | $\left  X \right $   | XX       |                | X               |                 |                          | XX       |              |       |                    |          |                     | XX             |                          |       |           |      | XXX                                     | X                |      | X                  |              | $\frac{\lambda}{2}$ | ┥┈╽       | $\frac{\lambda   \lambda}{                                      $ |               | ┢╌╂          | <u>x</u>                | $\square$               |            |             | 40   | 1 3.9           | 3%0        |
| <u>K03</u> | Stoney Cr.             | SC3        |                         | X              |           |         | X                     |                | - 1      | <u> </u> |                |           | X     | <u>x</u>      | ┟╌┟                     | <u>x x</u>     | ┝─┤                | X X      | X                    | ;    | <u> </u> |                  | _     | $\downarrow$ | X             |               |                    | XX          | ·    |           |                 | X                    | XX       |                | <u>x</u>        | $\frac{1}{x}$   |                          | X X      |              |       | $ \mathbf{x} $     |          | 44                  | XXX            |                          | _     |           |      | <u>x x</u>                              | X                | _    | X                  | <u>     </u> | <u>x</u>            |           | <u> </u>                                                          |               | 1            | <u> </u>                | ++                      | <u> </u>   |             | 44   | 1 51            | 1%         |
| B17        | 2nd St.                | <u>р</u>   | <b> </b>                |                |           |         |                       |                |          | +        |                |           |       |               | ┨┣                      |                | $\square$          |          |                      |      | _        |                  |       |              |               |               | ┨──┟╴              |             |      |           |                 | _∔                   |          | ++             |                 | <u> </u>        | -                        |          | - <u> </u> _ | _     | .                  |          | +                   | <u>.</u>       |                          |       |           |      | -                                       |                  |      | - <del>  .</del> - |              |                     | +         |                                                                   |               | <b>∔</b>     | -                       | +                       |            |             |      | 10              | 7%         |
| 151.3      | 2nd St.                | 0;N        | <b>.</b>                |                |           |         |                       |                |          |          |                |           | + +   |               | $\vdash$                |                | $\vdash$           |          |                      |      |          | ┟╌╍┨┈            |       | ++           |               |               | ┥                  | 4-          |      |           | 12              | 14                   |          |                |                 | 1^              |                          | <u> </u> |              |       | 4                  |          | + +                 | XX             | 41                       | _     | +         |      |                                         | $\vdash$         |      | <u>   ^</u>        | ┝──┼         | <u> </u>            | ╉╍┥       | 4                                                                 | <u> </u>      | ┼╌╂          | 4-                      |                         |            | <b>  </b> - |      |                 | 370        |
| N41        | Znd St.                | 0          | ╉┉┽╸                    |                |           |         |                       | +              |          | ++       | $\rightarrow$  |           | ++    |               | ╞╌╞                     |                | ┝─┼                |          | 1                    |      |          |                  |       | ┥            |               |               |                    | <u>.</u>  - |      |           | -               |                      | _        |                |                 | <u> </u>        |                          |          |              |       |                    |          | +                   | <del>.</del>   |                          | _     | ┨         |      |                                         | ┝─┢              |      | -+                 | ┝──┼         |                     | ┨         | -+                                                                | <del>. </del> | ┼┈┼          | _                       |                         |            | ┼╌╌┠        |      | +               | 70/        |
| 1511       | Chesler CrW(2nd SL     | MIJ        | _⊢                      |                |           |         |                       | +              |          | ++       | -              |           | ┽╍╀   |               | ┟┈┟                     |                | ┢┈┝                |          |                      |      |          |                  |       | ++           |               | _             | ++                 | <u>`</u>  - |      |           |                 |                      | +        |                | +               |                 |                          | <u>x</u> |              |       |                    |          | + +                 |                |                          |       |           |      | •                                       | ┝╍╋              |      | $\frac{A}{v}$      | ┝╌┼          |                     | $\square$ | <del>Ц</del> ,                                                    |               | ┼╍╍┠         |                         | ┉                       |            | ┥┥          |      | ++              | 6.9/.      |
| NI8        | Chester CrW            | M.         |                         |                |           |         |                       | +              |          | +        |                |           | ┥╍╋   |               | ┟┈┟                     |                |                    |          |                      |      | -        | ┣┣-              | _     | ++           | -+            | +             |                    | _           |      | $\vdash$  | 1               |                      | +        |                | _               |                 |                          | <u> </u> |              |       | +                  |          | ┤┤                  | <u> </u>       | 4.4                      |       |           |      | •                                       | ┝╍╋              |      | +                  | -            | _                   | +         | <u> </u>                                                          | <u>`</u>      | ┝╍╍┠         |                         | ┿╉                      | _          |             | 0    | +               | 17a<br>00/ |
| IN (.)     | Chester Cr. W          | 1.         | ┨─┼─                    | ┥┥             |           |         | ¦                     | ┥┥             | <u> </u> | ┼╌┼      |                |           |       |               | ┼┈┼                     |                | ╋╍┼                |          | 1                    |      |          | ╞─┼╴             | +     | ++           | +             | +             | $\left  \right $   | _           |      | $\vdash$  | _               | $\vdash$             | +        |                | +               | 1               | $\left  \right ^{\cdot}$ | <u> </u> |              |       | -                  | _        | ╉╼╍╋                | <del>.</del> . | 14                       |       | +-+       |      |                                         | ┝─╋              |      | +~                 | $\square$    | -+                  | +         | <del>_</del>                                                      |               | ╂──╂         |                         | ┼┦                      | +          | ┤╴┨         | 5    | $+\frac{10}{7}$ |            |
| J07<br>E04 | Chester CrW            | 12.1.14    | ┨─┼╸                    | ┽┥             |           |         | ÷-                    |                |          | ┽╍╋      |                |           |       |               | ┝╌╿                     |                | $\left  - \right $ |          | ┼─┤                  |      | +        | +                | _     | ++           | +             | -             | $\left  \right $   |             |      | $\vdash$  | +               | +                    | _        |                |                 |                 | ++                       | _        |              | _     |                    |          |                     | <del>.</del> . |                          |       | +-+       |      |                                         | ┝╌┠              | _    | $\frac{1}{x}$      | $\vdash$     |                     | +         | ~                                                                 |               | ┼─┼          | +                       | +                       | +          | ╞╌┠         | 5    | +               | 50%        |
| ()58       | Chostar CrW            |            | ┠──┼─                   |                |           |         |                       |                |          | ╉╼╋      |                |           | ╌┼╌╌┼ |               | $\left  \right $        |                | +                  |          | ┼─┤                  | +    | +        | $\vdash$         | +     | +            | +             | -             | $\left  \right $   |             |      | $\vdash$  | +-              | $\square$            | +        | 1-1            |                 |                 | ┝╌┼                      |          |              |       | ++                 |          | ╉╍╋                 |                |                          |       | +         |      | +                                       | $\left  \right $ | +    | 1                  | $\vdash$     |                     | +         | <u>-</u> +-                                                       | +-            | ┼┼           | +                       | +                       | -          |             | 1    | Ť               | %          |
| <u> </u>   | Chester CrW            | KIR        | ┨┈┼┈                    |                |           |         |                       |                |          | +        |                |           | ┼─┼   |               | +                       |                | ┼─┼                | _ _      | $\frac{1}{\sqrt{2}}$ | +    | +        | +                |       | +            |               | +-            | $\left  \right $   | - -         |      |           | +               | $\frac{1}{\sqrt{2}}$ |          | 1              |                 | +               |                          | x x      |              |       |                    |          |                     | x              |                          | +     |           |      | +-                                      |                  | +    | x                  | ┠──╂         |                     | +         | $\overline{\mathbf{b}}$                                           |               | +            | +                       | +                       | +          |             | 14   | $\frac{1}{1}$   | 6%         |
| N05        | Chester CrW            | <u>K1C</u> | ┨─┼╴                    | - x            |           |         | $\frac{\alpha}{\chi}$ | +              |          |          | $-\frac{1}{2}$ | x 1       | x     | - x           | $\frac{1}{1}$           | <del>x x</del> | $\square$          | x x      |                      | × 1  | -        | $\left  \right $ | _     | +-+          | $\frac{1}{x}$ | $\frac{1}{x}$ |                    | x x         |      |           | $\frac{1}{x}$   | x                    | x        | $\frac{1}{x}$  | x               | $\frac{1}{x}$   | $\left\{ - \right\}$     | x x      |              |       |                    |          |                     | XX             |                          | x     | ┥┥        | -+   | x x                                     | $ \mathbf{x} $   | +-   | $\frac{1}{x}$      | ┝──┢         | x                   | ╆╌┥       | x y                                                               |               | ╞┼┤          | $\frac{1}{x}$           | +                       | x –        | ┼╌┠         | 47   | 54              | 4%         |
| 118        | Chester CrW            | ĸ          | ╉╌┼╴                    | $\frac{1}{x}$  |           | -       | x                     | $+\mathbf{x}$  |          | +        | $\frac{1}{x}$  | XX        |       | $\frac{1}{x}$ | +                       | XX             | $\mathbb{H}$       | XX       | $\frac{1}{x}$        | x    |          |                  | -     | +-+          | x             | $\frac{1}{x}$ | $\left  - \right $ | x x         |      |           | $-\frac{1}{x}$  | $\frac{1}{x}$        | <u>x</u> | $\frac{1}{x}$  | <del>x</del> †- | $\frac{1}{x}$   | + + +                    | x        | x            |       |                    |          |                     | XX             |                          | x     |           |      | x x                                     | $\frac{1}{x}$    |      | $+\frac{1}{x}$     |              | x                   | +         | XX                                                                | x             |              | x                       | +                       | x          |             | 45   | 5               | 2%         |
| M02        | Chester CrW            | К          | ╉╌┼╴                    | X              |           | +       | x                     |                |          |          |                |           | x     |               | +                       | XX             | $\mathbb{H}$       | X        | x                    |      | +-       | $\vdash$         |       | ++           | x             | -             |                    | x x         |      |           | $\frac{1}{X}$   | x                    |          |                |                 | $+\overline{x}$ |                          | x        | x            | X     |                    |          |                     | XX             |                          | -     |           |      | x x                                     | tx†              |      | $+\overline{x}$    | ┝──┼         | x                   | $\square$ | xx                                                                | :             |              | $\mathbf{x}^{+}$        | +                       | x 🗖        | ┼──┨-       | 33   | 31              | 8%         |
| A07        | 2nd St.                |            | ╉┼┼                     | x              |           | +       | x                     |                |          |          |                |           |       | +             | +                       | -              | ┼─┼                | x        | x                    |      | +        |                  |       | ++           | x             |               |                    | X           |      |           | $-\frac{1}{x}$  | 1x1                  |          |                |                 | $+\frac{1}{x}$  |                          | X        | x            |       |                    | X        |                     | XX             |                          | -     |           |      | x†                                      | x                |      | $+\overline{x}$    |              | x –                 | +         | xx                                                                |               | $\mathbf{f}$ | $\mathbf{x}^{+}$        | +-+                     |            |             | 25   | 20              | 9%         |
| P56        | 2nd St.                | 111        |                         | X              |           |         | X                     |                |          | ++       |                |           | ++    | +             | +                       | $\pm x$        | <del>  </del>      | x        | $\mathbf{x}$         |      | +        |                  |       | ++           | xt            | -+            | 1                  | x -         |      |           | $+\overline{x}$ | x                    | -        |                |                 | +x              |                          | x        | x            |       |                    |          | 1-1                 | X X            | $ \mathbf{x} $           |       |           |      | x†                                      | t x t            | -    | $+\overline{x}$    |              | x                   | Ħ         | XX                                                                |               | +            | $\mathbf{x}^{+}$        | +-+                     |            |             | 26   | 3(              | 0%         |
| P50        | 2nd St.                | 112        |                         | x              |           | -       | x                     |                | -        |          | X              | +         | x     | +             | ++                      | xx             | <del>  </del>      | x        | X                    |      | 1-       |                  |       | +-+          | X             | Ťx            | 1                  | x x         |      |           | X               | x                    | 5        |                | -+-             | X               |                          | x        | x            |       |                    | X        |                     | XX             | $ \mathbf{x} $           |       |           |      | x x                                     | İxt              |      | X                  |              | x                   | $\square$ | XX                                                                |               | $\square$    | $\overline{\mathbf{x}}$ |                         | X          |             | 35   | 4(              | 0%         |
| 038        | 2nd St.                | 112        |                         | X              |           |         | x                     |                |          |          | x              | +         | +     | +-            | +                       | x x            | ††                 | X        | x                    |      | +        |                  |       | <b>†</b>     | x             |               | 1-1                | x x         |      |           | X               | 1X                   | - 5      |                | +               | X               |                          | x        | x            | X     |                    | X        |                     | XX             | $ \mathbf{x} $           |       |           |      | $\overline{\mathbf{x} \mid \mathbf{x}}$ | <u> x</u>        | -    | X                  |              | x                   |           | XX                                                                |               |              | x                       | 1-1                     | X          |             | 31   | 30              | 6%         |
| B22        | 2nd St.                | 1          |                         |                |           |         |                       |                |          |          |                |           |       |               | $\uparrow \uparrow$     |                | ††                 | -        |                      | -    | 1        | tt-              |       | 11           |               | -+            | 1-1                |             |      |           | 1               | $\uparrow \uparrow$  | 1        |                |                 |                 |                          | 1        |              |       |                    | $\vdash$ | $\uparrow \uparrow$ | -              |                          |       |           |      |                                         | ΠŤ               |      |                    | $\square$    |                     | 11        |                                                                   | 1             | $\uparrow$   | 1                       |                         |            | T           | 0    | 0               | 1%         |
| B27        | 2nd St.                | Z          |                         |                |           |         |                       |                |          |          |                |           |       |               | 11                      |                |                    |          | 1-1                  |      | 1        | 1                |       | $\square$    |               | -             | 11                 | 1           |      |           |                 |                      |          |                |                 | $\top$          |                          |          |              |       | 1                  |          |                     |                |                          |       | 11        |      |                                         | 11               |      | 1                  |              |                     |           |                                                                   |               |              |                         | $\square$               |            |             | 0    | 0               | 196        |
| B18E       | Chester CrE.Ridley Cr. | Y;V        | 1                       |                |           |         |                       |                |          |          |                |           |       | 1             |                         | +-             |                    |          |                      |      |          |                  |       | T            |               |               |                    |             |      |           |                 |                      |          |                |                 |                 |                          |          |              |       |                    |          |                     |                |                          |       |           |      |                                         |                  |      | 1                  |              |                     |           |                                                                   |               |              |                         |                         |            |             | 0    | 0               | 1%         |
| N31        | Chester CrE            | X          |                         |                |           |         |                       |                |          |          |                |           | +     |               | $\square$               |                | $\square$          |          |                      |      | -        |                  |       | 11           |               |               |                    |             |      |           |                 |                      |          |                |                 |                 | $\Box \uparrow$          |          |              |       |                    |          |                     |                |                          |       |           |      |                                         |                  |      |                    |              |                     |           |                                                                   |               |              |                         |                         |            |             | 0    | 0               | ł%         |
| K33        | Chester CrE            | W          |                         | X              |           |         |                       | X              | )        |          | X              | XX        | X     | X X           | X                       | XX             |                    | XX       | X                    | X    | š        | T                | X     | X            | X             | X X           |                    | XX          |      | X         | X               | X                    | XX       | XX             | XX              | X X             |                          | X X      | (            | X     | (X)                | X        |                     | XX             |                          | X X   |           | 2    | x x                                     | X                |      | X                  |              | X                   |           | XX                                                                | (X            |              | X X                     |                         | X          |             | 54   | 62              | 2%         |
| G05        | Chester CrE            | W          |                         |                |           |         |                       |                |          |          |                |           |       |               |                         |                |                    |          | X                    |      |          |                  |       |              |               |               |                    | X           |      |           | X               | X                    |          | X              |                 | X               |                          | X        |              | X     |                    | X        |                     | X              |                          |       |           |      |                                         |                  |      | X                  |              |                     |           | XX                                                                | (             |              | X                       |                         |            |             | 15   | 17              | 7%         |
| C14        | Ridley Cr.             | U          |                         | X              |           |         |                       |                | 3        |          | X              |           | X     |               | Π                       | XX             | Π                  | X        |                      |      |          |                  |       |              | X             | X             |                    | X           |      |           |                 |                      | 2        |                |                 |                 |                          |          |              |       | X                  |          |                     | X              | (                        |       |           |      | x x                                     | X                |      | X                  |              | X                   |           |                                                                   |               |              | <u>x</u>                |                         | X          |             | 20   | 2?              | 3%         |
| P38        | Ridley Cr.             | T          |                         | X              |           |         | X                     | X              | 3        |          | X              |           | X     | X             |                         | XX             |                    | XX       | X                    |      |          |                  |       |              | X             | X             |                    | X X         |      |           | X               | X                    | )        | X X            |                 | X               |                          | X        | X            |       | X X                | X        |                     | XX             | (X                       |       |           | 2    | XX                                      | X                |      | X                  |              | x                   |           | XX                                                                | (             |              | X                       |                         | X          |             | 39   | 4:              | 5%         |
| Mi0        | Ridley Cr              | SI         |                         | X              |           |         | X                     | X              | X        | (        | X              | 2         | (X    | X             |                         | XX             | $\square$          | XX       | X                    |      | <        |                  |       |              | X             | X             |                    | XX          |      |           | X               | X                    | >        | ( X            |                 | X               |                          | X        | X            | X     | ( X                | X        |                     | XX             |                          |       |           |      | XX                                      | X                |      | X                  |              | X                   | Ш         | XX                                                                | ( X           | $\square$    | X                       | $\square$               | X          |             | 41   | 47              | 7%         |
| [32        | Ridley Cr.             | S2         |                         | X              |           |         | X                     | X              | 2        | (        | X              |           | X     | X             |                         | X X            |                    | Х        | X                    |      |          |                  |       |              | X             | X             |                    | X X         |      |           | X               | X                    | )        | (X             |                 | X               |                          | X        | X            |       | X                  | X        |                     | X X            |                          |       |           |      | X X                                     | X                |      | X                  |              | <u>x  </u>          |           | <u>, x   x</u>                                                    | 4             | Щ            | <u>x</u>                | $\square$               | <u>x  </u> | Ц           | 37   | 4.7             | 3%         |
| 125        | Ridley Cr.             | RTI        |                         | X              |           |         | X                     |                | >        | 4        | X              |           | X     | X             |                         | x x            |                    | X        | X                    |      |          |                  |       |              | X             | X             |                    | X X         | Ц    |           | X               | X                    | )        | $(\mathbf{x})$ |                 | X               |                          | X        | X            |       | ( X                | X        |                     | XX             |                          |       |           | ļ;   | x x                                     | X                |      | X                  |              | X                   |           | XX                                                                | 4             |              | X                       | $\downarrow \downarrow$ | X          |             | 37   | 43              | 3%         |
| 127        | Ridley Cr.             | 16C;RT2    |                         | X              |           |         |                       |                |          | 4        | X              | $\square$ | X     |               |                         | X X            |                    | X        |                      |      |          | $\square$        |       | 4            | X             | 1             | 1                  |             | 4    |           |                 | X                    | >        | 4              |                 | X               |                          |          |              |       | X                  |          | $\square$           | )              |                          |       |           |      | X X                                     | X                | _    | <u>X</u>           |              | X                   | $\square$ | $\square$                                                         |               | $\square$    | X                       | $\square$               | <u>x  </u> |             | 21   | 24              | 1%         |
| J12        | Ridley Cr.             | Q1         | $\downarrow \downarrow$ | X              |           |         | X                     |                | <u> </u> | 4        |                | Ц.        | X     |               | $\square$               | X X            | 1                  | X        | X                    |      |          |                  |       | 1            | X             | X             | <b> </b>           | XX          |      |           |                 | X                    | >        |                |                 | <u> X</u>       |                          | X        | X            |       | (X                 |          |                     | XX             |                          |       | 4         |      | XX                                      |                  |      | <u>X</u>           | ┟──┟         | X                   | $\square$ | XX                                                                | 4             | $\square$    | X                       | $\downarrow$            | <u>x</u>   |             | 36   | 41              | 1%         |
| G02        | Ridley Cr.             | Q2         | $\downarrow$            | X              |           | $\perp$ |                       |                |          | 4        |                |           | X     |               | $\downarrow \downarrow$ | XX             | <b> </b>           | X        |                      |      |          | _↓               |       | 4-4          | X             | X             | ╄╌╋                | XX          | 1    | $\square$ | +X              |                      | >        |                |                 | <u> X</u>       |                          | X _      | X            |       | X                  |          | 1-1                 | XX             |                          |       |           |      | $x \mid X$                              |                  |      | $\frac{1}{2}$      | ┢┈┝          | <u>x</u>            | $\square$ | $\frac{x \mid x}{y \mid x}$                                       | -             | $\square$    | <u>x</u>                | $\downarrow \downarrow$ | <u>x </u>  |             | 35   | 40              | J%         |
| <u>C04</u> | Ridley Cr.             | Q3         | $\downarrow$            | X              | $\square$ |         |                       | $\square$      |          | 4        |                |           | X     |               | +                       | X X            | Į                  | <u>x</u> |                      |      |          | _↓               |       | 4            | <u>x</u>  -   | <u>  X</u>    | ┟┈┟                | XX          |      |           |                 |                      |          |                |                 |                 |                          | X        |              |       |                    |          | 1_                  | XX             | X                        |       | +         |      | $x \mid x$                              | X↓               |      | - <u> X</u>        | ┢┈┟          | <u>x</u>            |           | $\frac{X \mid X}{V}$                                              |               | $\square$    | <u>x</u>                | $\square$               | X<br>V     |             | 35   | 40              | )%<br>00:  |
| C02        | Ridley Cr.             | Q3         |                         | X              |           |         |                       |                |          |          |                |           | X     |               |                         | X X            |                    | X        | X                    |      |          | $\square$        |       |              | X             |               |                    | X X         | 4    |           |                 | X                    |          | $ \mathbf{x} $ |                 | X               |                          | X        | X            |       | 4 X                |          |                     | XIX            |                          |       |           |      | <u>x   X</u>                            | X                |      | <u>  X</u>         |              | <u>x</u>            |           |                                                                   | <u> </u>      |              |                         |                         | <u> </u>   | LL          | 35   | 40              | J%         |

.

. .
### Monthly and Annual Summary of Overflows by Outfall for Baseline Typical Year

|         | Janu      | ary        | Febr      | uary                                     | Ma        | irch       | Ар        | ril        | 51        | ay         | Jı        | ne         | Jı        | ıly        | Auj       | gust       | Septe     | mber       | Oct       | ober       | Nove            | nıber      | Dece      | mbe <del>r</del> | An        | nual        |
|---------|-----------|------------|-----------|------------------------------------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------------|------------|-----------|------------------|-----------|-------------|
|         | Length of |            | Length of |                                          | Length of |            | Length of |            | Length of |            | Length of |            | Length of |            | Length of |            | Length of |            | Length of |            | Length of       |            | Length of |                  | Length of |             |
| Owned   | Wet Flow  | Total Flow | Wet Flow  | Total Flow                               | Wet Flow  | Total Flow | Wet Flow  | Total Flow | Wet Flow  | Total Flow | Wet Flow  | Tetal Flow | Wet Flow  | Total Flow | Wet Flow        | Total Flow | Wet Flow  | Total Flow       | Wet Flow  | Total Flow  |
| Oliusii | (11111)   | ((0.11)    | (10111)   | (((( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | (11111)   | (cun)      | (mm)      | (cu 11)    | (mm)      | (cu it)    | (1001)    | (cu tt)    | (min)     | (cu It)    | (0110)    | (cu ft)    | (min)     | (010)      | (inin)    | (cu it)    | (1010)          | (cu ft)    | (000)     | (cu tt)          | (000)     | (eu it)     |
| 002     | 2,528.2   | 545,240    | 2,916.6   | 524,017                                  | 4,354.9   | 723,368    | 3,324.2   | 673,892    | 4,454 1   | 627,555    | 3,489 1   | 639.235    | 3.286 1   | 789,214    | 3,786.1   | 916,749    | 3,310.3   | 644,210    | 2,673.3   | 500,887    | 2,670.3         | 592,296    | 3,562.2   | 694,988          | 40,355.5  | 7,871,651   |
| 003     | 818.6     | 674,480    | 1,514.4   | 487,608                                  | 2,486.1   | 712.720    | 2,023.5   | 686,728    | 1,943.8   | 594,385    | 1,197.3   | 736.288    | 1,058.5   | 879,766    | 1,919.2   | 1,072.897  | 1,907.9   | 750,219    | 1,069.8   | 599,119    | 1,557.6         | 698,237    | 2,035.7   | 722,468          | 19,532.4  | 8,614,915   |
| 004     | 829.1     | 339,130    | 1,566.4   | 206,019                                  | 2,629.7   | 312,250    | 2,115,6   | 312,641    | 1,790.4   | 247,022    | 1,297.3   | 334,232    | 1,117.9   | 444,923    | 2,003.1   | 486,686    | 1,980,7   | 340,304    | 1.132.7   | 271,099    | 1,691.7         | 321,495    | 2,078.8   | 320,688          | 20,233.4  | 3,936,490   |
| 005     | 4,787.4   | 1,337,021  | 5,303.2   | 1,084,110                                | 10,171.3  | 1,613,041  | 7,462.7   | 1,383,638  | 11,890.4  | 1,387,060  | 9,083.0   | 1,404.878  | 7,555.5   | 1,675,111  | 7,047.7   | 1,859,073  | 7,427.1   | 1,488.922  | 5,748.0   | 1,143,392  | 5,585.7         | 1,364,600  | 6,223.6   | 1,488,794        | 88,285.5  | 17,229,640  |
|         | 808.8     | 115,324    | 1,460.1   | 77,012                                   | 1,908.9   | 97.766     | 1,633.1   | 95,354     | 1,361.8   | 82,486     | 1.014.3   | 109,058    | 977.6     | 148,959    | 1,568.6   | 155,153    | 1,506.2   | 106,692    | 837.9     | 86,906     | 1,004.9         | 99,946     | 1,764.9   | 105,968          | 15,847.1  | 1,280,624   |
| 007     | 1,206.2   | 369,654    | 2,020.0   | 279,371                                  | 3,681.9   | 389,577    | 2,540.9   | 358,548    | 2,925 3   | 330,425    | 1,753.6   | 371.993    | 1,555.9   | 481,200    | 2,233.4   | 520,599    | 2,397.3   | 379,776    | 1,506.7   | 299,636    | 1,980.5         | 363,287    | 2,539.3   | 391,814          | 26,341.1  | 4,535,880   |
| 008     | 4,057.8   | 1,591,780  | 5,354.3   | 1,433,828                                | 10,190.8  | 2,083,199  | 7,512.7   | 1,859,780  | 11,226.6  | 1,800,553  | 9,117.4   | 1,958,008  | 6,811.1   | 2.135,698  | 6,337.0   | 2.602.676  | 7,470,3   | 1,965,756  | 5,778.3   | 1,527,708  | 5,612.3         | 1,912,563  | 5,514.2   | 1,979,540        | 84,982.7  | 22,851,089  |
| 009     | 863.7     | 707,630    | 1,951.4   | 411,830                                  | 3,071.5   | 558,396    | 2,327.4   | 546,650    | 2,514.7   | 535,780    | 1,553.2   | 684,767    | 1,377.7   | 928,622    | 2,164.6   | 992.766    | 2,175.8   | 646,206    | 1,310.8   | 564,901    | 1,870.5         | 666,904    | 2,383.5   | 601.219          | 23,564.7  | 7,845,670   |
| 011     | 681.8     | 379,120    | 910.8     | 167,705                                  | 1,225.1   | 204,563    | 1,163.9   | 209,041    | 975.4     | 237.668    | 761.8     | 335,784    | 785.8     | 489,464    | 1,516.9   | 486,696    | 1,316.7   | 294,696    | 818.1     | 290,020    | 933.7           | 327,258    | 1,339.8   | 299,070          | 12,429.9  | 3,721,086   |
| 012     | 62.6      | 10,465     |           | •                                        | -         | -          | 56.4      | 1.830      | 49.6      | 371        | 290.5     | 8,398      | 283,1     | 16,540     | 228.0     | 6,942      | -         | -          | 82.9      | 3,704      | 281.1           | 2,398      | 15.2      | 61               | 1,349.6   | 50,710      |
| 013     | 1,186.8   | 717,355    | 2,078.0   | 573,787                                  | 3,801.9   | 799,926    | 2,652.5   | 732,849    | 3,051.7   | 654,574    | 1,957.6   | 744,370    | 1,670.5   | 947,454    | 2,315.7   | 1,056,138  | 2,498.3   | 765,422    | 1,492.3   | 595,177    | 2,077.2         | 721,009    | 2,632.4   | 789,491          | 27,414.9  | 9,097,551   |
| 014     | 700.5     | 340,310    | 346.8     | 40,594                                   | 415.7     | 55,604     | 577.1     | 118,952    | 7150      | 126,204    | 647.4     | 292,561    | 696.1     | 441,160    | 1,301.8   | 391,154    | 812.9     | 137,431    | 750.9     | 203,421    | 611.3           | 301,101    | 679.1     | 101,537          | 8,254.5   | 2,550,028   |
| 015     | 1,321.2   | 154,252    | 1,877.3   | 62,003                                   | 3,058.9   | 97,574     | 2,591.4   | 101,157    | 2,981.5   | 97,883     | 1,795 4   | 141,237    | 1.665.5   | 198,445    | 2,453.7   | 208,377    | 2,528.4   | 121,233    | 1,583.1   | 119,301    | 2,007.0         | 145,787    | 2,673.7   | 103,288          | 26,537.1  | 1,550,536   |
| 016     | 886.8     | 480,260    | 1,880.4   | 217,152                                  | 2,424.8   | 303,887    | 2,172.8   | 318,902    | 1,792.0   | 265,771    | 1,217.2   | 415,445    | 1,337.7   | 629,561    | 1,941.9   | 599,032    | 1,866.7   | 354,965    | 1,002.6   | 337,310    | 1,321.1         | 389,371    | 2,009.5   | 343,661          | 19,853.6  | 4,655,316   |
| 017     | 3,885 3   | 414,208    | 5,686.9   | 387,874                                  | 9,598.3   | 550,990    | 6,854.3   | 483,903    | 10,609.5  | 459.489    | 8,334.4   | 466,400    | 6,8:0.5   | 534,427    | 6,442.1   | 647,113    | 6,877.4   | 513,511    | 4,164,6   | 374,197    | 5,418.0         | 454,169    | 5,918.4   | 520,617          | 80,599.8  | 5,806,898   |
| 018     | 3,956.3   | 1,132,256  | 5,706.4   | 881,672                                  | 9,575.1   | 1,283,246  | 6,887.9   | 1,154,437  | 10,624.5  | 1,126,156  | 8,351.0   | 1,214,806  | 6,061.3   | 1,483,802  | 6,446.7   | 1,621,841  | 6,929.9   | 1,210,918  | 4,326.3   | 934,745    | 5,419.3         | 1,136,066  | 5,223.6   | 1,207,109        | 79,508.3  | 14,387,055  |
| 019     | 956.2     | 1,442,300  | 2,1511    | 1,402,030                                | 3,372.3   | 1,891,195  | 2,633.8   | 1,731,923  | 2,795.0   | 1,482,172  | 1,799.6   | 807,829    | 1,699.7   | 1,244.958  | 2,450.1   | 2,014,762  | 2,398.7   | 1,820,550  | 1,175.7   | 1.051,146  | 2,057.1         | 1,056,460  | 2,502.5   | 1,928,542        | 25,991.8  | 17,873,866  |
| 020     | 780-4     | 116,461    | 1.143.3   | 38,756                                   | 1,523.3   | 51,976     | 1,149.3   | 62,697     | 1,080.5   | 61,855     | 844.3     | 108,009    | 762.5     | 158,485    | 1,253.4   | 133,796    | 1,245.4   | 71,364     | 737,9     | 73,117     | 661.4           | 92,880     | 1,368.1   | 63,913           | 12,549.9  | 1,033,310   |
| 021     | 564.5     | 62,294     | 651,4     | 19,272                                   | 784.6     | 26,157     | 790.5     | 32,964     | 583.9     | .30,869    | 606.4     | 60,722     | 519.1     | 87,401     | 962.9     | 77,117     | 955.0     | 37,787     | 562.3     | 41.799     | 527.5           | 53,967     | 992.0     | 34,884           | 8,500,1   | 565,233     |
| 022     | 786 1     | 230,431    | 1,320.9   | 92,167                                   | 1,695.3   | 123,999    | 1,287.0   | 138,097    | 1,142.8   | 133,157    | 927.5     | 215,580    | 813.6     | 308,897    | 1,404.8   | 274,297    | 1,334.8   | 158,772    | 774.2     | 152,222    | 739.9           | 189,724    | 1,520.1   | 143,490          | 13,747.1  | 2,160,832   |
| 023     | 360.3     | 30,553     | 2.36.9    | 1,217                                    | 284.0     | 2,679      | 240,1     | 11,393     | 395.9     | 8,583      | 363.0     | 35,730     | 407.9     | 52,411     | 542.5     | 36,410     | 303.6     | 6,167      | 296.3     | 16,211     | 363.2           | 23,512     | 243.3     | 5,869            | 4,037.1   | 230,735     |
| 024     | 730.7     | 185,310    | 1,023.4   | 92,987                                   | 1,679.5   | 122,782    | 1,367.9   | 127,872    | 1,278.7   | 126,989    | 825.5     | 171,431    | 813.5     | 243,038    | 1,612.5   | 258,104    | 1,588.9   | 164,275    | 922.9     | 147,241    | 1,132.9         | 172,493    | 1,627.1   | 161,394          | 14,603.6  | 1,973,915   |
| 025     | 667,2     | 78,412     | 5173      | 8,344                                    | 792.6     | 12,343     | 1,109.7   | 29,801     | 688.0     | 23,714     | 670.6     | 71,961     | 621.2     | 101,822    | 1,441.0   | 100,111    | 968.8     | 20,421     | 728.2     | 49,264     | 892.8           | 71,167     | 925.9     | 29,439           | 10,023.3  | 596,799     |
| 026     | 734 9     | 197,801    | 897.9     | 53,156                                   | 1.189.3   | 71.131     | 1,314.9   | 113,696    | 1,129.9   | 110,660    | 829.7     | 186,012    | 736.1     | 257,016    | [,618.6   | 274,920    | 1,395.3   | 138,431    | 935.1     | 152,137    | 1,084.2         | 184,132    | 1,324.0   | 113,117          | 13,189.9  | 1,852,210   |
| Total   | 34,161.5  | 11,652,046 | 48,515,2  | 8,542,511                                | 79,915,5  | 12,088,368 | 61,789.2  | 11,286,746 | 78,001.2  | 10,551,381 | 58,727.3  | 11,514,731 | 49,424.3  | 14,678,373 | 60,992.1  | 16,793,410 | 61,196.8  | 12,138,029 | 40,411.3  | 9,534,661  | <b>≈7,501,2</b> | 11,340,821 | 57,097.0  | 12,150,961       | 677,732.6 | 142,272,037 |

### Table 2.5-3

### Monthly and Annual Summary of Overflows by Receiving Water for Baseline Typical Year

|           | Jan       | uary       | Febr      | uary       | Ma        | irch       | A         | ril        | M         | ay         | Ju        | ne         | J         | aly        | Au        | gust       | Sept      | ember             | Oct       | ober       | Nove      | mber       | Deec      | embe <del>r</del> | An         | mual        |
|-----------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|-------------------|-----------|------------|-----------|------------|-----------|-------------------|------------|-------------|
|           | Length of |            | Length of |            | Length of |            | Length of |            | Length of |            | Length of |            | Length of |            | Length of |            | Length of | 1                 | Length of | 1          | Length of | [          | Length of |                   | 1.cngth of |             |
| Receiving | Wet Flow  | Total Flow | Wet Flow  | <b>Total Flow</b> | Wet Flaw  | Total Flow | Wet Flow  | Total Flow | Wet Flow  | Total Flow        | Wet Flow   | Total Flow  |
| Water     | (min)     | (en ft)    | (min)     | (cu ft)    | (miu)     | (cuft)     | (min)     | (cu ft)    | (min)     | (eu ft)    | (min)     | (en ft)           | (min)     | (cu ft)    | (min)     | (cn ft)    | (min)     | (cu ft)           | (min)      | (cu ft)     |
| Ridley    |           |            |           |            |           |            | ł         |            |           |            |           |            |           |            |           |            | 1         |                   |           |            |           |            |           | 1                 |            | 1           |
| Creek     | 10,049.7  | 2,180,976  | 15,151.0  | 1,548,701  | 24,657.1  | 2,235,696  | 18,506.4  | 2,058,399  | 26,007.6  | 1,949,298  | 19,698.0  | 2,237,887  | 15,875.0  | 2,846,235  | 17,284.3  | 3,076,363  | 18,202,4  | 2,200,628         | 11,076.7  | 1,765,553  | 14,165.4  | 2,125,393  | 15,825.3  | 2,174,675         | 206,498.7  | 26,399,804  |
| Chester   |           |            |           |            |           |            |           |            |           |            |           |            |           |            |           |            |           | 1                 |           |            |           |            |           |                   |            |             |
| Creek     | 5,643.0   | 2,354,027  | 7,942.1   | 1,707,929  | 11,320.9  | 2,302,261  | 9,949.5   | 2,250,274  | 9,144.4   | 1,978,370  | 7,157.2   | 1,665,671  | 6,656.8   | 2,470,568  | 11,513.8  | 3,176,459  | 10,190,6  | 2,417,766         | 6,215.7   | 1,686,842  | 7,740.1   | 1,846,732  | 10,518.2  | 2,480,710         | 103,992.3  | 26,337,608  |
| Delaware  |           |            |           |            |           |            |           |            |           |            |           |            |           |            |           |            | 1         |                   |           |            |           |            |           |                   |            |             |
| River     | 18,468.9  | 7,117.043  | 25,422.1  | 5,285,880  | 43,937.5  | 7,550,411  | 33,333.3  | 6,978,074  | 42,849.2  | 6,623,712  | 31,872.0  | 7,611,172  | 26,892.6  | 9,361,570  | 32,194.1  | 10,540,588 | 32,803.7  | 7,519,635         | 23,118.9  | 6,082,267  | 25,595.8  | 7,368,696  | 30,753.6  | 7,495,576         | 367,241.6  | 89,534,625  |
|           |           |            |           |            |           |            |           |            |           |            | 1         |            |           |            |           |            |           | 1                 | 1         |            |           |            | [         | 1                 |            |             |
| Total     | 34,161.5  | 11,652,046 | 48,515.2  | 8,542,511  | 79,915.5  | 12,088,368 | 61,789.2  | 11,286,746 | 78,001.2  | 10,551,381 | 58,727.3  | 11,514,731 | 49,424.3  | 14,678,373 | 60,992.1  | 16,793,410 | 61,196,8  | 12,138,029        | 40,411.3  | 9,534,661  | 47,501.2  | 11,340,821 | 57,097,0  | 12,150,961        | 677,732.6  | 142,272,037 |

• .

Monthly and Annual Summary of Wet Weather Flows to 2<sup>nd</sup> and Dock Pump Station and EPS-1 at WRTP

| Annual    | Total Flow | (cu ft)    | 30,846,360 | 99,000,870 | 129,847,230 |
|-----------|------------|------------|------------|------------|-------------|
| December  | Total Flow | (cu ft)    | 2,542,590  | 8,163,010  | 10,705,600  |
| November  | Total Flow | (cu ft)    | 1,872,480  | 6,061,770  | 7,934,250   |
| October   | Total Flow | (tj no)    | 2,206,560  | 7,029,120  | 9,235,680   |
| September | Total Flow | (cn ff)    | 2,491,120  | 8,255,050  | 10,746,170  |
| August    | Total Flow | (cn ff)    | 2,357,090  | 7,749,810  | 10,106,900  |
| July      | Total Flow | (the fite) | 2,334,040  | 7,520,690  | 9,854,730   |
| June      | Total Flow | (cu ft)    | 2,621,170  | 8,370,700  | 10,991,870  |
| May       | Total Flow | (tj no)    | 3,590,110  | 11,442,590 | 15,032,700  |
| April     | Total Flow | (if u)     | 2,754,640  | 8,862,580  | 11,617,220  |
| March     | Total Flow | (cu ft)    | 3,077,710  | 10,084,980 | 13,162,690  |
| February  | Total Flow | (cu ft)    | 2,517,580  | 7,807,080  | 10,324,660  |
| January   | Total Flow | (cu ft)    | 2,481,270  | 7,653,490  | 10,134,760  |
|           |            | Outfall    | WRTP       | 2nd & Dock | Total       |

# Summary of Storm Frequency Analysis for Each Regulator

|           | Frontal   | Design Stor | m per NJDE | P (1994)  | Typic     | al Storm Fro | m Historic I | Record    |
|-----------|-----------|-------------|------------|-----------|-----------|--------------|--------------|-----------|
|           | 2-Month   | 1-Year      | 2-Year     | 5-Year    | 2-Month   | 1-Year       | 2-Year       | 5-Year    |
|           | Event     | Event       | Event      | Event     | Event     | Event        | Event        | Event     |
| Regulator | Discharge | Discharge   | Discharge  | Discharge | Discharge | Discharge    | Discharge    | Discharge |
| 2         | Х         | Х           | X          | Х         | X         | Х            | Х            | Х         |
| 3         | Х         | Х           | Х          | Х         | X         | Х            | Х            | Х         |
| 4         | X         | Х           | Х          | Х         | X         | Х            | Х            | Х         |
| 5         | X         | Х           | Х          | Х         | X         | Х            | Х            | Х         |
| 6         | X         | Х           | Х          | Х         | Х         | Х            | Х            | Х         |
| 7         | X         | X           | Х          | Х         | Х         | Х            | Х            | Х         |
| 8         | X         | X           | X          | Х         | Х         | Х            | Х            | Х         |
| 9         | Х         | Х           | X          | Х         | Х         | Х            | Х            | Х         |
| 10        | X         | X           | Х          | Х         | Х         | Х            | Х            | Х         |
| 12        | X         | Х           | Х          | Х         | Х         | Х            | Х            | Х         |
| 13        | Х         | Х           | Х          | Х         | Х         | Х            | Х            | Х         |
| 14        | Х         | X           | X          | Х         | Х         | Х            | Х            | Х         |
| 15        | X         | X           | X          | X         | Х         | Х            | Х            | Х         |
| 16        | Х         | Х           | X          | X         | Х         | Х            | Х            | Х         |
| 17        | Х         | X           | Х          | Х         | Х         | Х            | Х            | Х         |
| 18        | Х         | Х           | Х          | Х         | X         | Х            | Х            | Х         |
| 19        | Х         | Х           | X          | Х         | Х         | Х            | Х            | Х         |
| 20        | Х         | Х           | Х          | Х         | Х         | Х            | Х            | Х         |
| 21        | X         | X           | Х          | Х         | Х         | Х            | Х            | Х         |
| 22        | Х         | Х           | Х          | Х         | Х         | Х            | Х            | Х         |
| 23        | Х         | Х           | Х          | Х         | Х         | Х            | Х            | Х         |
| 24        | Х         | Х           | X          | X         | Х         | Х            | Х            | Х         |
| 25        | Х         | X           | Х          | Х         | Х         | Х            | Х            | Х         |
| 26        | Х         | Х           | Х          | Х         | X         | Х            | Х            | Х         |

(0) Ē (11) (0) (0) (10) (10) (1) (12) (11) (E) **Concentrations for** 6 Characterization 6 Storm Water Selected (l/gm) 17.56 0.3970 0.1050 0.1820 0.0003 0.0100 2.8276 1.08 180 8.51 I63 7.2 2 0 Concentrations | Characterization 9 9 Ś 9) 5 19 2 9 ષ્ટ 9 9 2 9 2 for Sewage Selected 1,000,000 (mg/l) 171.22 119.23 358.17 0.1737 0.0417 1.4114 0.0003 0.0080 11.99 0.0173 22.30 6.21 1.68 Concentrations ΰ  $\mathfrak{D}$ Average DELCORA Composite SSO (mg/l) 115.36 104.00 0.0430 0.0440 0.0003 0.0100 35.80 79,091 0.1369 1.9087 9.15 7,42 1.09 4.71 Concentrations 5 3 Ż Average DELCORA First Flush (Wg/l) SS 193.46 0.1000 0.0002 0.0100 55.67 75,795 3.7465 205.31 0.3305 0.1407 27.70 7.87 7.75 1.51 Concentrations at 2<sup>nd</sup> and Dock 3 n DELCORA Composite and EPS-1 Average Sewage (mg/l) 200.29 0.0107 2.5593 0.0392 0.0005 286.71 0.1779 0.0844 81.79 25.71 9.64 SZ 2.24 SN at 2<sup>nd</sup> and Dock Concentrations t 5 ΰ Average DELCORA and EPS-1 First Flush Sewage (mg/i) 282.46 102.77 369.62 0.0528 0.0228 0.0003 0.0100 0.1620 1.9069 23.61 11.94 2.55 6.21 SZ Concentrations<sup>(3)</sup> WRTP Influent Average DELCORA 000,000 Sewage 171.22 119.23 (I/gm) 358.17 0.1737 0.0417 1.4134 0.0173 0.0003 0.0080 22.30 11.99 1.68 SZ EMC For Older (Baltimore)<sup>(2)</sup> Urban Areas (l/gm) 0.389 0.397 0.105 163 1.08 ЯX ЯX NR RR ЯX NR NR NR 7.2 Concentration<sup>(1)</sup> NURP EMC Mcan (mg/l) 0.202 0.043 180 0,42 0.182 NR R NR NR 1.9 NR NR 12 22 Fotal Kjeldahl Nitrogen Fecal Coliform (#/100 ml) Fotal Suspended Solids Dissolved Oxygen Pollutant **Fotal Phosphorus** Fotal Aluminum Fotal Copper Dil & Grease Fotal Zinc Fotal Lead Mercury BOD, Silver COD

Summary of Event Mean Concentration (EMC) Values, Sampling Results, and Selected Concentrations

<sup>(1)</sup> EPA (1983)

(2) Metropolitan Washington Council of Governments (MWCOG, 1987)

Ē

0.0719

2

0.1538

E

0.0778

2

0.0660

÷.

0.0648

z

0.1538

3.78

ЛR

Å

**Fotal Phenols** 

(3) Includes Sun Oil and Kimberly Clark industrial discharges

<sup>(4)</sup> Corrected using Aitchison's Adjustment for less than 50% non-detect samples as per EPA (1992)

<sup>(5)</sup> Corrected using detection limit at value for samples reporting non-detect as per EPA (1992)

(6) From average DELCORA WRTP influent sewage concentrations

(7) From average DELCORA sewage concentrations at 2nd and Dock and EPS-1 for first flush.

(8) From average DELCORA sewage concentrations at 2nd and Dock and EPS-1 for first flush since WRTP influent contains Sun Oil Co. and Kimberly-Clark industrial discharges.

(9) From Nationwide Urban Runoff Program (NURP) concentrations for storm water (EPA, 1983). <sup>(19)</sup> From Baltimore study for older urban areas (MWCOG, 1987).

(11) Average of DELCORA CSO first flush and composite samples.

(12) Based on observed sample results and removal of lead from gasoline, NURP concentration for storm water was selected

NS - No samples collected. NR - No value reported.

Regloads wis EMC's

|                |                  | Sewage    | T        | Selected      | Stormwater | [        | Selected Storm |           |
|----------------|------------------|-----------|----------|---------------|------------|----------|----------------|-----------|
|                | Sewage           | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                | <b>Base Flow</b> | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall        | (cfs)            | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002            | 0.20             | 4.84E+05  | 6.2%     | 171.2         | 7.39E+06   | 93.8%    | 180.00         | 88,197    |
| 003            | 0.24             | 2.81E+05  | 3.3%     | 171.2         | 8.33E+06   | 96.7%    | 180.00         | 96,661    |
| 004            | 0.11             | 1.34E+05  | 3.4%     | 171.2         | 3.80E+06   | 96.6%    | 180.00         | 44,165    |
| 005            | 0.41             | 2.17E+06  | 12.6%    | 171.2         | 1.51E+07   | 87.4%    | 180.00         | 192,438   |
| 006            | 0.04             | 3.80E+04  | 3.0%     | 171.2         | 1.24E+06   | 97.0%    | 180.00         | 14,371    |
| 007            | 0.11             | 1.74E+05  | 3.8%     | 171.2         | 4.36E+06   | 96.2%    | 180.00         | 50,879    |
| 008            | 0.57             | 2.91E+06  | 12.7%    | 171.2         | 1.99E+07   | 87.3%    | 180.00         | 255,209   |
| 009            | 0.25             | 3.53E+05  | 4.5%     | 171.2         | 7.49E+06   | 95.5%    | 180.00         | 87,977    |
| 011            | 0.13             | 9.70E+04  | 2.6%     | 171.2         | 3.62E+06   | 97.4%    | 180.00         | 41,765    |
| 012            | 0.01             | 8.10E+02  | 1.6%     | 171.2         | 4.99E+04   | 98.4%    | 180.00         | 569       |
| 013            | 0.21             | 3.45E+05  | 3.8%     | 171.2         | 8.75E+06   | 96.2%    | 180.00         | 102,050   |
| 014            | 0.14             | 6.93E+04  | 2.7%     | 171.2         | 2.48E+06   | 97.3%    | 180.00         | 28,619    |
| 015            | 0.05             | 7.96E+04  | 5.1%     | 171.2         | 1.47E+06   | 94.9%    | 180.00         | 17,381    |
| 016            | 0.07             | 8.34E+04  | 1.8%     | 171.2         | 4.57E+06   | 98.2%    | 180.00         | 52,271    |
| 017            | 0.27             | 1.31E+06  | 22.5%    | 171.2         | 4.50E+06   | 77.5%    | 180.00         | 64,543    |
| 018            | 0.33             | 1.57E+06  | 10.9%    | 171.2         | 1.28E+07   | 89.1%    | 180.00         | 160,820   |
| 019            | 0.67             | 1.04E+06  | 5.8%     | 171.2         | 1.68E+07   | 94.2%    | 180.00         | 200,295   |
| 020            | 0.05             | 3.76E+04  | 3.6%     | 171.2         | 9.96E+05   | 96.4%    | 180.00         | 11,592    |
| 021            | 0.03             | 1.53E+04  | 2.7%     | 171.2         | 5.50E+05   | 97.3%    | 180.00         | 6,344     |
| 022            | 0.08             | 6.60E+04  | 3.1%     | 171.2         | 2.09E+06   | 96.9%    | 180.00         | 24,247    |
| 023            | 0.02             | 4.84E+03  | 2.1%     | 171.2         | 2.26E+05   | 97.9%    | 180.00         | 2,590     |
| 024            | 0.06             | 5.26E+04  | 2.7%     | 171.2         | 1.92E+06   | 97.3%    | 180.00         | 22,154    |
| 025            | 0.03             | 1.80E+04  | 3.0%     | 171.2         | 5.79E+05   | 97.0%    | 180.00         | 6,697     |
| 026            | 0.07             | 5.54E+04  | 3.0%     | 171.2         | 1.80E+06   | 97.0%    | 180.00         | 20,785    |
| Ridley Creek   | 0.72             | 3.04E+06  | 11.5%    | 171.2         | 2.34E+07   | 88.5%    | 180.00         | 295,015   |
| Chester Creek  | 0.95             | 1.24E+06  | 4.7%     | 171.2         | 2.51E+07   | 95.3%    | 180.00         | 295,305   |
| Delaware River | 2.41             | 7.05E+06  | 7.9%     | 171.2         | 8.25E+07   | 92.1%    | 180.00         | 1,002,331 |
| Total          | 4,08             | 1.13E+07  | 8.0%     | 171.2         | 1.31E+08   | 92.0%    | 180.00         | 1,592,651 |

### Total Suspended Solids Annual Load for Baseline Typical Year

 $\kappa_2^{-1} \sim$ 

|                        |                  | Sewage    |          | Selected      | Stormwater |          | Selected Storm |           |
|------------------------|------------------|-----------|----------|---------------|------------|----------|----------------|-----------|
|                        | Sewage           | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                        | <b>Base Flow</b> | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall                | (cfs)            | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002                    | 0.20             | 4.84E+05  | 6.2%     | 119.2         | 7.39E+06   | 93.8%    | 12             | 9,139     |
| 003                    | 0.24             | 2.81E+05  | 3.3%     | 119.2         | 8.33E+06   | 96.7%    | 12             | 8,337     |
| 004                    | 0.11             | 1.34E+05  | 3.4%     | 119.2         | 3.80E+06   | 96.6%    | 12             | 3,843     |
| 005                    | 0.41             | 2.17E+06  | 12.6%    | 119.2         | 1.51E+07   | 87.4%    | 12             | 27,448    |
| 006                    | 0.04             | 3.80E+04  | 3.0%     | 119.2         | 1.24E+06   | 97.0%    | 12             | 1,214     |
| 007                    | 0.11             | 1.74E+05  | 3.8%     | 119.2         | 4.36E+06   | 96.2%    | 12             | 4,562     |
| 008                    | 0.57             | 2.91E+06  | 12.7%    | 119.2         | 1.99E+07   | 87.3%    | 12             | 36,577    |
| 009                    | 0.25             | 3.53E+05  | 4.5%     | 119.2         | 7.49E+06   | 95.5%    | 12             | 8,244     |
| 011                    | 0.13             | 9.70E+04  | 2.6%     | 119.2         | 3.62E+06   | 97.4%    | 12             | 3,437     |
| 012                    | 0.01             | 8.10E+02  | 1.6%     | 119.2         | 4.99E+04   | 98.4%    | 12             | 43        |
| 013                    | 0.21             | 3.45E+05  | 3.8%     | 119.2         | 8.75E+06   | 96.2%    | 12             | 9,128     |
| 014                    | 0.14             | 6.93E+04  | 2.7%     | 119.2         | 2.48E+06   | 97.3%    | 12             | 2,375     |
| 015                    | 0.05             | 7.96E+04  | 5.1%     | 119.2         | 1.47E+06   | 94.9%    | 12             | 1,695     |
| 016                    | 0.07             | 8.34E+04  | 1.8%     | 119.2         | 4.57E+06   | 98.2%    | 12             | 4,046     |
| 017                    | 0.27             | 1.31E+06  | 22.5%    | 119.2         | 4.50E+06   | 77.5%    | 12             | 13,092    |
| 018                    | 0.33             | 1.57E+06  | 10.9%    | 119.2         | 1.28E+07   | 89.1%    | 12             | 21,318    |
| 019                    | 0.67             | 1.04E+06  | 5.8%     | 119.2         | 1.68E+07   | 94.2%    | 12             | 20,386    |
| 020                    | 0.05             | 3.76E+04  | 3.6%     | 119.2         | 9.96E+05   | 96.4%    | 12             | 1,026     |
| 021                    | 0.03             | 1.53E+04  | 2.7%     | 119.2         | 5.50E+05   | 97.3%    | 12             | 526       |
| 022                    | 0.08             | 6.60E+04  | 3.1%     | 119.2         | 2.09E+06   | 96.9%    | 12             | 2,061     |
| 023                    | 0.02             | 4.84E+03  | 2.1%     | 119.2         | 2.26E+05   | 97.9%    | 12             | 205       |
| 024                    | 0.06             | 5.26E+04  | 2.7%     | 119.2         | 1.92E+06   | 97.3%    | 12             | 1,831     |
| 025                    | 0.03             | 1.80E+04  | 3.0%     | 119.2         | 5.79E+05   | 97.0%    | 12             | 568       |
| 026                    | 0.07             | 5.54E+04  | 3.0%     | 119.2         | 1.80E+06   | 97.0%    | 12             | 1,759     |
| Ridley Creek           | 0.72             | 3.04E+06  | 11.5%    | 119.2         | 2.34E+07   | 88.5%    | 12             | 40.150    |
| Chester Cr <b>ee</b> k | 0.95             | 1.24E+06  | 4.7%     | 119.2         | 2.51E+07   | 95.3%    | 12             | 28.034    |
| Delaware River         | 2.41             | 7.05E+06  | 7.9%     | 119.2         | 8.25E+07   | 92.1%    | 12             | 114,306   |
| Total                  | 4.08             | 1.13E+07  | 8.0%     | ` 119.2       | 1.31E+08   | 92.0%    | 12             | 182,490   |

# Total Biochemical Oxygen Demand Annual Load for Baseline Typical Year

|                |           | Sewage    |          | Selected      | Stormwater |          | Selected Storm |           |
|----------------|-----------|-----------|----------|---------------|------------|----------|----------------|-----------|
|                | Sewage    | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                | Base Flow | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall        | (cfs)     | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002            | 0.20      | 4.84E+05  | 6.2%     | 358.2         | 7.39E+06   | 93.8%    | 163            | 86,008    |
| 003            | 0.24      | 2.81E+05  | 3.3%     | 358.2         | 8.33E+06   | 96.7%    | 163            | 91,099    |
| 004            | 0.11      | 1.34E+05  | 3.4%     | 358.2         | 3.80E+06   | 96.6%    | 163            | 41,688    |
| 005            | 0.41      | 2.17E+06  | 12.6%    | 358.2         | 1.51E+07   | 87.4%    | 163            | 201,805   |
| 006            | 0.04      | 3.80E+04  | 3.0%     | 358.2         | 1.24E+06   | 97.0%    | 163            | 13,496    |
| 007            | 0.11      | 1.74E+05  | 3.8%     | 358.2         | 4.36E+06   | 96.2%    | 163            | 48,279    |
| 008            | 0.57      | 2.91E+06  | 12.7%    | 358.2         | 1.99E+07   | 87.3%    | 163            | 267,964   |
| 009            | 0.25      | 3.53E+05  | 4.5%     | 358.2         | 7.49E+06   | 95.5%    | 163            | 84,150    |
| 011            | 0.13      | 9.70E+04  | 2.6%     | 358.2         | 3.62E+06   | 97.4%    | 163            | 39,050    |
| 012            | 0.01      | 8.10E+02  | 1.6%     | 358.2         | 4.99E+04   | 98.4%    | 163            | 526       |
| 013            | 0.21      | 3.45E+05  | 3.8%     | 358.2         | 8.75E+06   | 96.2%    | 163            | 96,792    |
| 014            | 0.14      | 6.93E+04  | 2.7%     | 358.2         | 2.48E+06   | 97.3%    | 163            | 26,796    |
| 015            | 0.05      | 7.96E+04  | 5.1%     | 358.2         | 1.47E+06   | 94.9%    | 163            | 16,749    |
| 016            | 0.07      | 8.34E+04  | 1.8%     | 358.2         | 4.57E+06   | 98.2%    | 163            | 48,392    |
| 017            | 0.27      | 1.31E+06  | 22.5%    | 358.2         | 4.50E+06   | 77.5%    | 163            | 75,006    |
| 018            | 0.33      | 1.57E+06  | 10.9%    | 358.2         | 1.28E+07   | 89.1%    | 163            | 165,596   |
| 019            | 0.67      | 1.04E+06  | 5.8%     | 358.2         | 1.68E+07   | 94.2%    | 163            | 194,629   |
| 020            | 0.05      | 3.76E+04  | 3.6%     | 358.2         | 9.96E+05   | 96.4%    | 163            | 10,974    |
| 021            | 0.03      | 1.53E+04  | 2.7%     | 358.2         | 5.50E+05   | 97.3%    | 163            | 5,939     |
| 022            | 0.08      | 6.60E+04  | 3.1%     | 358.2         | 2.09E+06   | 96.9%    | 163            | 22,794    |
| 023            | 0.02      | 4.84E+03  | 2.1%     | 358.2         | 2.26E+05   | 97.9%    | 163            | 2,407     |
| 024            | 0.06      | 5.26E+04  | 2.7%     | 358.2         | 1.92E+06   | 97.3%    | 163            | 20,729    |
| 025            | 0.03      | 1.80E+04  | 3.0%     | 358.2         | 5.79E+05   | 97.0%    | 163            | 6,293     |
| 026            | 0.07      | 5.54E+04  | 3.0%.    | 358.2         | 1.80E+06   | 97.0%    | 163            | 19,524    |
| Ridley Creek   | 0.72      | 3.04E+06  | 11.5%    | 358.2         | 2.34E+07   | 88.5%    | 163            | 305,743   |
| Chester Creek  | 0.95      | 1.24E+06  | 4.7%     | 358.2         | 2.51E+07   | 95.3%    | 163            | 283,141   |
| Delaware River | 2.41      | 7.05E+06  | 7.9%     | 358.2         | 8.25E+07   | 92.1%    | 163            | 997,128   |
| Total          | 4.08      | 1.13E+07  | 8.0%     | 358.2         | 1.31E+08   | 92.0%    | 163            | 1,586,012 |

# Total Chemical Oxygen Demand Annual Load for Baseline Typical Year

|                | <b>T</b>  | Sewage    | <b></b>  | Selected      | Stormwater | Γ        | Selected Storm | 1          |
|----------------|-----------|-----------|----------|---------------|------------|----------|----------------|------------|
|                | Sewage    | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge  |
| l              | Base Flow | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load       |
| Outfall        | (cfs)     | (cu. ft.) | Flow     | (#/100 ml)    | (cu. ft.)  | Flow     | (#/100 ml)     | (colonies) |
| 002            | 0.20      | 4.84E+05  | 6.2%     | 1,000,000     | 7.39E+06   | 93.8%    | 0.00           | 3.02E+08   |
| 003            | 0.24      | 2.81E+05  | 3.3%     | 1,000,000     | 8.33E+06   | 96.7%    | 0.00           | 1.76E+08   |
| 004            | 0.11      | 1.34E+05  | 3.4%     | 1,000,000     | 3.80E+06   | 96.6%    | 0.00           | 8.34E+07   |
| 005            | 0.41      | 2.17E+06  | 12.6%    | 1,000,000     | 1.51E+07   | 87.4%    | 0.00           | 1.36E+09   |
| 006            | 0.04      | 3.80E+04  | 3.0%     | 1,000,000     | 1.24E+06   | 97.0%    | 0.00           | 2.37E+07   |
| 007            | 0.11      | 1.74E+05  | 3.8%     | 1,000,000     | 4.36E+06   | 96.2%    | 0.00           | 1.09E+08   |
| 008            | 0.57      | 2.91E+06  | 12.7%    | 1,000,000     | 1.99E+07   | 87.3%    | 0.00           | 1.81E+09   |
| 009            | 0.25      | 3.53E+05  | 4.5%     | 1,000,000     | 7.49E+06   | 95.5%    | 0.00           | 2.21E+08   |
| 011            | 0.13      | 9.70E+04  | 2.6%     | 1,000,000     | 3.62E+06   | 97.4%    | 0.00           | 6.05E+07   |
| 012            | 0.01      | 8.10E+02  | 1.6%     | 1,000,000     | 4.99E+04   | 98.4%    | 0.00           | 5.06E+05   |
| 013            | 0.21      | 3.45E+05  | 3.8%     | 1,000,000     | 8.75E+06   | 96.2%    | 0.00           | 2.16E+08   |
| 014            | 0.14      | 6.93E+04  | 2.7%     | 1,000,000     | 2.48E+06   | 97.3%    | 0.00           | 4.33E+07   |
| 015            | 0.05      | 7.96E+04  | 5.1%     | 1,000,000     | 1.47E+06   | 94.9%    | 0.00           | 4.97E+07   |
| 016            | 0.07      | 8.34E+04  | 1.8%     | 1,000,000     | 4.57E+06   | 98.2%    | 0.00           | 5.21E+07   |
| 017            | 0.27      | 1.31E+06  | 22.5%    | 1,000,000     | 4.50E+06   | 77.5%    | 0.00           | 8.15E+08   |
| 018            | 0.33      | 1.57E+06  | 10.9%    | 1,000,000     | 1.28E+07   | 89.1%    | 0.00           | 9.83E+08   |
| 019            | 0.67      | 1.04E+06  | 5.8%     | 1,000,000     | 1.68E+07   | 94.2%    | 0.00           | 6.52E+08   |
| 020            | 0.05      | 3.76E+04  | 3.6%     | 1,000,000     | 9.96E+05   | 96.4%    | 0.00           | 2.35E+07   |
| 021            | 0.03      | 1.53E+04  | 2.7%     | 1,000,000     | 5.50E+05   | 97.3%    | 0.00           | 9.55E+06   |
| 022            | 0.08      | 6.60E+04  | 3.1%     | 1,000,000     | 2.09E+06   | 96.9%    | 0.00           | 4.12E+07   |
| 023            | 0.02      | 4.84E+03  | 2.1%     | 1,000,000     | 2.26E+05   | 97.9%    | 0.00           | 3.02E+06   |
| 024            | 0.06      | 5.26E+04  | 2.7%     | 1,000,000     | 1.92E+06   | 97.3%    | 0.00           | 3.28E+07   |
| 025            | 0.03      | 1.80E+04  | 3.0%     | 1,000,000     | 5.79E+05   | 97.0%    | 0.00           | 1.13E+07   |
| 026            | 0.07      | 5.54E+04  | 3.0%     | 1,000,000     | 1.80E+06   | 97.0%    | 0.00           | 3.46E+07   |
| Ridley Creek   | 0.72      | 3.04E+06  | 11.5%    | 1,000,000     | 2.34E+07   | 88.5%    | 0.00           | 1.90E+09   |
| Chester Creek  | 0.95      | 1.24E+06  | 4.7%     | 1,000,000     | 2.51E+07   | 95.3%    | 0.00           | 7.74E+08   |
| Delaware River | 2.41      | 7.05E+06  | 7.9%     | 1,000,000     | 8.25E+07   | 92.1%    | 0.00           | 4.40E+09   |
| Total          | 4.08      | 1.13E+07  | 8.0%     | 1,000,000     | 1.31E+08   | 92.0%    | 0.00           | 7.08E+09   |

# Fecal Coliform Bacteria Annual Load for Baseline Typical Year

|                |           | Sewage    |          | Selected      | Stormwater |          | Selected Storm |           |
|----------------|-----------|-----------|----------|---------------|------------|----------|----------------|-----------|
|                | Sewage    | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                | Base Flow | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall        | (cfs)     | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002            | 0.20      | 4.84E+05  | 6.2%     | 6.21          | 7.39E+06   | 93.8%    | 8.51           | 4,111     |
| 003            | 0.24      | 2.81E+05  | 3.3%     | 6.21          | 8.33E+06   | 96.7%    | 8.51           | 4,535     |
| 004            | 0.11      | 1.34E+05  | 3.4%     | 6.21          | 3.80E+06   | 96.6%    | 8.51           | 2,071     |
| 005            | 0.41      | 2.17E+06  | 12.6%    | 6.21          | 1.51E+07   | 87.4%    | 8.51           | 8,838     |
| 006            | 0.04      | 3.80E+04  | 3.0%     | 6.21          | 1.24E+06   | 97.0%    | 8.51           | 675       |
| 007            | 0.11      | 1.74E+05  | 3.8%     | 6.21          | 4.36E+06   | 96.2%    | 8.51           | 2,384     |
| 008            | 0.57      | 2.91E+06  | 12.7%    | 6.21          | 1.99E+07   | 87.3%    | 8.51           | 11,718    |
| 009            | 0.25      | 3.53E+05  | 4.5%     | 6.21          | 7.49E+06   | 95.5%    | 8.51           | 4,116     |
| 011            | 0.13      | 9.70E+04  | 2.6%     | 6.21          | 3.62E+06   | 97.4%    | 8.51           | 1,962     |
| 012            | 0.01      | 8.10E+02  | 1.6%     | 6.21          | 4.99E+04   | 98.4%    | 8.51           | 27        |
| 013            | 0.21      | 3.45E+05  | 3.8%     | 6.21          | 8.75E+06   | 96.2%    | 8.51           | 4,782     |
| 014            | 0.14      | 6.93E+04  | 2.7%     | 6.21          | 2.48E+06   | 97.3%    | 8.51           | 1,344     |
| 015            | 0.05      | 7.96E+04  | 5.1%     | 6.21          | 1.47E+06   | 94.9%    | 8.51           | 812       |
| 016            | 0.07      | 8.34E+04  | 1.8%     | 6.21          | 4.57E+06   | 98.2%    | 8.51           | 2,460     |
| 017            | 0.27      | 1.31E+06  | 22.5%    | 6.21          | 4.50E+06   | 77.5%    | 8.51           | 2,896     |
| 018            | 0.33      | 1.57E+06  | 10.9%    | 6.21          | 1.28E+07   | 89.1%    | 8.51           | 7,415     |
| 019            | 0.67      | 1.04E+06  | 5.8%     | 6.21          | 1.68E+07   | 94.2%    | 8.51           | 9,342     |
| 020            | 0.05      | 3.76E+04  | 3.6%     | 6.21          | 9.96E+05   | 96.4%    | 8.51           | 543       |
| 021            | 0.03      | 1.53E+04  | 2.7%     | 6.21          | 5.50E+05   | 97.3%    | 8.51           | 298       |
| 022            | 0.08      | 6.60E+04  | 3.1%     | 6.21          | 2.09E+06   | 96.9%    | 8.51           | 1,138     |
| 023            | 0.02      | 4.84E+03  | 2.1%     | 6.21          | 2.26E+05   | 97.9%    | 8.51           | 122       |
| 024            | 0.06      | 5.26E+04  | 2.7%     | 6.21          | 1.92E+06   | 97.3%    | 8.51           | 1,041     |
| 025            | 0.03      | 1.80E+04  | 3.0%     | 6.21          | 5.79E+05   | 97.0%    | 8.51           | 314       |
| 026            | 0.07      | 5.54E+04  | 3.0%     | 6.21          | 1.80E+06   | 97.0%    | 8.51           | 976       |
| Ridley Creek   | 0.72      | 3.04E+06  | 11.5%    | 6.21          | 2.34E+07   | 88.5%    | 8.51           | 13,583    |
| Chester Creek  | 0.95      | 1.24E+06  | 4.7%     | 6.21          | 2.51E+07   | 95.3%    | 8.51           | 13,809    |
| Delaware River | 2.41      | 7.05E+06  | 7.9%     | 6.21          | 8.25E+07   | 92.1%    | 8.51           | 46,537    |
| Total          | 4.08      | 1.13E+07  | 8.0%     | 6.21          | 1.31E+08   | 92.0%    | 8.51           | 73,929    |

# Total Dissolved Oxygen Annual Load for Baseline Typical Year

۰. <u>د</u>

|                |                  | Sewage    |          | Selected      | Stormwater |          | Selected Storm |           |
|----------------|------------------|-----------|----------|---------------|------------|----------|----------------|-----------|
|                | Sewage           | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                | <b>Base Flow</b> | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall        | (cfs)            | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002            | 0.20             | 4.84E+05  | 6.2%     | 22.30         | 7.39E+06   | 93.8%    | 17.56          | 8,774     |
| 003            | 0.24             | 2.81E+05  | 3.3%     | 22.30         | 8.33E+06   | 96.7%    | 17.56          | 9,529     |
| 004            | 0.11             | 1.34E+05  | 3.4%     | 22.30         | 3.80E+06   | 96.6%    | 17.56          | 4,356     |
| 005            | 0.41             | 2.17E+06  | 12.6%    | 22.30         | 1.51E+07   | 87.4%    | 17.56          | 19,534    |
| 006            | 0.04             | 3.80E+04  | 3.0%     | 22.30         | 1.24E+06   | 97.0%    | 17.56          | 1,415     |
| 007            | 0.11             | 1.74E+05  | 3.8%     | 22.30         | 4.36E+06   | 96.2%    | 17.56          | 5,025     |
| 008            | 0.57             | 2.91E+06  | 12.7%    | 22.30         | 1.99E+07   | 87.3%    | 17.56          | 25,915    |
| 009            | 0.25             | 3.53E+05  | 4.5%     | 22.30         | 7.49E+06   | 95.5%    | 17.56          | 8,707     |
| 011            | 0.13             | 9.70E+04  | 2.6%     | 22.30         | 3.62E+06   | 97.4%    | 17.56          | 4,109     |
| 012            | 0.01             | 8.10E+02  | 1.6%     | 22.30         | 4.99E+04   | 98.4%    | 17.56          | ,<br>56   |
| 013            | 0.21             | 3.45E+05  | 3.8%     | 22.30         | 8.75E+06   | 96.2%    | 17.56          | 10,077    |
| 014            | 0.14             | 6.93E+04  | 2.7%     | 22.30         | 2.48E+06   | 97.3%    | 17.56          | 2,816     |
| 015            | 0.05             | 7.96E+04  | 5.1%     | 22.30         | 1.47E+06   | 94.9%    | 17.56          | 1,724     |
| 016            | 0.07             | 8.34E+04  | 1.8%     | 22.30         | 4.57E+06   | 98.2%    | 17.56          | 5,129     |
| 017            | 0.27             | 1.31E+06  | 22.5%    | 22.30         | 4.50E+06   | 77.5%    | 17.56          | 6,753     |
| 018            | 0.33             | 1.57E+06  | 10.9%    | 22.30         | 1.28E+07   | 89.1%    | 17.56          | 16,240    |
| 019            | 0.67             | 1.04E+06  | 5.8%     | 22.30         | 1.68E+07   | 94.2%    | 17.56          | 19,906    |
| 020            | 0.05             | 3.76E+04  | 3.6%     | 22.30         | 9.96E+05   | 96.4%    | 17.56          | 1,144     |
| 021            | 0.03             | 1.53E+04  | 2.7%     | 22.30         | 5.50E+05   | 97.3%    | 17.56          | ,<br>624  |
| 022            | 0.08             | 6.60E+04  | 3.1%     | 22.30         | 2.09E+06   | 96.9%    | 17.56          | 2,389     |
| 023            | 0.02             | 4.84E+03  | 2.1%     | 22.30         | 2.26E+05   | 97.9%    | 17.56          | 254       |
| 024            | 0.06             | 5.26E+04  | 2.7%     | 22.30         | 1.92E+06   | 97.3%    | 17.56          | 2,180     |
| 025            | 0.03             | 1.80E+04  | 3.0%     | 22.30         | 5.79E+05   | 97.0%    | 17.56          | 660       |
| 026            | 0.07             | 5.54E+04  | 3.0%     | 22.30         | 1.80E+06   | 97.0%    | 17.56          | 2,047     |
| Ridley Creek   | 0.72             | 3.04E+06  | 11.5%    | 22.30         | 2.34E+07   | 88.5%    | 17.56          | 29.846    |
| Chester Creek  | 0.95             | 1.24E+06  | 4.7%     | 22.30         | 2.51E+07   | 95.3%    | 17.56          | 29.244    |
| Delaware River | 2.41             | 7.05E+06  | 7.9%     | 22.30         | 8.25E+07   | 92.1%    | 17.56          | 100.255   |
| Total          | 4.08             | 1.13E+07  | 8.0%     | 22.30         | 1.31E+08   | 92.0%    | 17.56          | 159.345   |

# Total Oil and Grease Annual Load for Baseline Typical Year

.

\*

|                |                  | Sewage    |          | Selected      | Stormwater |          | Selected Storm |           |
|----------------|------------------|-----------|----------|---------------|------------|----------|----------------|-----------|
|                | Sewage           | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                | <b>Base Flow</b> | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall        | (cfs)            | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002            | 0.20             | 4.84E+05  | 6.2%     | 11.99         | 7.39E+06   | 93.8%    | 7.20           | 3,683     |
| 003            | 0.24             | 2.81E+05  | 3.3%     | 11.99         | 8.33E+06   | 96.7%    | 7.20           | 3,957     |
| 004            | 0.11             | 1.34E+05  | 3.4%     | 11.99         | 3.80E+06   | 96.6%    | 7.20           | 1,809     |
| 005            | 0.41             | 2.17E+06  | 12.6%    | 11.99         | 1.51E+07   | 87.4%    | 7.20           | 8,394     |
| 006            | 0.04             | 3.80E+04  | 3.0%     | 11.99         | 1.24E+06   | 97.0%    | 7.20           | 587       |
| 007            | 0.11             | 1.74E+05  | 3.8%     | 11.99         | 4.36E+06   | 96.2%    | 7.20           | 2,091     |
| 008            | 0.57             | 2.91E+06  | 12.7%    | 11.99         | 1.99E+07   | 87.3%    | 7.20           | 11,141    |
| 009            | 0.25             | 3.53E+05  | 4.5%     | 11.99         | 7.49E+06   | 95.5%    | 7.20           | 3,632     |
| 011            | 0.13             | 9.70E+04  | 2.6%     | 11.99         | 3.62E+06   | 97.4%    | 7.20           | 1,702     |
| 012            | 0.01             | 8.10E+02  | 1.6%     | 11.99         | 4.99E+04   | 98.4%    | 7.20           | 23        |
| 013            | 0.21             | 3.45E+05  | 3.8%     | 11.99         | 8.75E+06   | 96.2%    | 7.20           | 4,193     |
| 014            | 0.14             | 6.93E+04  | 2.7%     | 11.99         | 2.48E+06   | 97.3%    | 7.20           | 1,167     |
| 015            | 0.05             | 7.96E+04  | 5.1%     | 11.99         | 1.47E+06   | 94.9%    | 7.20           | 721       |
| 016            | 0.07             | 8.34E+04  | 1.8%     | 11.99         | 4.57E+06   | 98.2%    | 7.20           | 2,118     |
| 017            | 0.27             | 1.31E+06  | 22.5%    | 11.99         | 4.50E+06   | 77.5%    | 7.20           | 3,001     |
| 018            | 0.33             | 1.57E+06  | 10.9%    | 11.99         | 1.28E+07   | 89.1%    | 7.20           | 6,938     |
| 019            | 0.67             | 1.04E+06  | 5.8%     | 11.99         | 1.68E+07   | 94.2%    | 7.20           | 8,347     |
| 020            | 0.05             | 3.76E+04  | 3.6%     | 11.99         | 9.96E+05   | 96.4%    | 7.20           | 476       |
| 021            | 0.03             | 1.53E+04  | 2.7%     | 11.99         | 5.50E+05   | 97.3%    | 7.20           | 259       |
| 022            | 0.08             | 6.60E+04  | 3.1%     | 11.99         | 2.09E+06   | 96.9%    | 7.20           | 991       |
| 023            | 0.02             | 4.84E+03  | 2.1%     | 11.99         | 2.26E+05   | 97.9%    | 7.20           | 105       |
| 024            | 0.06             | 5.26E+04  | 2.7%     | 11.99         | 1.92E+06   | 97.3%    | 7.20           | 903       |
| 025            | 0.03             | 1.80E+04  | 3.0%     | 11.99         | 5.79E+05   | 97.0%    | 7.20           | 274       |
| 026            | 0.07             | 5.54E+04  | 3.0%     | 11.99         | 1.80E+06   | 97.0%    | 7.20           | 849       |
| Ridley Creek   | 0.72             | 3.04E+06  | 11.5%    | 11.99         | 2.34E+07   | 88.5%    | 7.20           | 12,777    |
| Chester Creek  | 0.95             | 1.24E+06  | 4.7%     | 11.99         | 2.51E+07   | 95.3%    | 7.20           | 12,210    |
| Delaware River | 2.41             | 7.05E+06  | 7.9%     | 11.99         | 8.25E+07   | 92.1%    | 7.20           | 42,357    |
| Total          | 4.08             | 1.13E+07  | 8.0%     | 11.99         | 1.31E+08   | 92.0%    | 7.20           | 67,344    |

# Total Kjeldahl Nitrogen Annual Load for Baseline Typical Year

e 8'

|                |                  | Sewage    |          | Selected      | Stormwater |          | Selected Storm | 1         |
|----------------|------------------|-----------|----------|---------------|------------|----------|----------------|-----------|
|                | Sewage           | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                | <b>Base Flow</b> | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall        | (cfs)            | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002            | 0.20             | 4.84E+05  | 6.2%     | 1.68          | 7.39E+06   | 93.8%    | 1.08           | 549       |
| 003            | 0.24             | 2.81E+05  | 3.3%     | 1.68          | 8.33E+06   | 96.7%    | 1.08           | 591       |
| 004            | 0.11             | 1.34E+05  | 3.4%     | 1.68          | 3.80E+06   | 96.6%    | 1.08           | 270       |
| 005            | 0.41             | 2.17E+06  | 12.6%    | 1.68          | 1.51E+07   | 87.4%    | 1.08           | 1,243     |
| 006            | 0.04             | 3.80E+04  | 3.0%     | 1.68          | 1.24E+06   | 97.0%    | 1.08           | 88        |
| 007            | 0.11             | 1.74E+05  | 3.8%     | 1.68          | 4.36E+06   | 96.2%    | 1.08           | 312       |
| 008            | 0.57             | 2.91E+06  | 12.7%    | 1.68          | 1.99E+07   | 87.3%    | 1.08           | 1,649     |
| 009            | 0.25             | 3.53E+05  | 4.5%     | 1.68          | 7.49E+06   | 95.5%    | 1.08           | 542       |
| 011            | 0.13             | 9.70E+04  | 2.6%     | 1.68          | 3.62E+06   | 97.4%    | 1.08           | 255       |
| 012            | 0.01             | 8.10E+02  | 1.6%     | 1.68          | 4.99E+04   | 98.4%    | 1.08           | 3         |
| 013            | 0.21             | 3.45E+05  | 3.8%     | 1.68          | 8.75E+06   | 96.2%    | 1.08           | 626       |
| 014            | 0.14             | 6.93E+04  | 2.7%     | 1.68          | 2.48E+06   | 97.3%    | 1.08           | 175       |
| 015            | 0.05             | 7.96E+04  | 5.1%     | 1.68          | 1.47E+06   | 94.9%    | 1.08           | 108       |
| 016            | 0.07             | 8.34E+04  | 1.8%     | 1.68          | 4.57E+06   | 98.2%    | 1.08           | 317       |
| 017            | 0.27             | 1.31E+06  | 22.5%    | 1.68          | 4.50E+06   | 77.5%    | 1.08           | 440       |
| 018            | 0.33             | 1.57E+06  | 10.9%    | 1.68          | 1.28E+07   | 89.1%    | 1.08           | 1,029     |
| 019            | 0.67             | 1.04E+06  | 5.8%     | 1.68          | 1.68E+07   | 94.2%    | 1.08           | 1,244     |
| 020            | 0.05             | 3.76E+04  | 3.6%     | 1.68          | 9.96E+05   | 96.4%    | 1.08           | 71        |
| 021            | 0.03             | 1.53E+04  | 2.7%     | 1.68          | 5.50E+05   | 97.3%    | 1.08           | 39        |
| 022            | 0.08             | 6.60E+04  | 3.1%     | 1.68          | 2.09E+06   | 96,9%    | 1.08           | 148       |
| 023            | 0.02             | 4.84E+03  | 2.1%     | 1.68          | 2.26E+05   | 97.9%    | 1.08           | 16        |
| 024            | 0.06             | 5.26E+04  | 2.7%     | 1.68          | 1.92E+06   | 97.3%    | 1.08           | 135       |
| 025            | 0.03             | 1.80E+04  | 3.0%     | 1.68          | 5.79E+05   | 97.0%    | 1.08           | 41        |
| 026            | 0.07             | 5.54E+04  | 3.0%     | 1.68          | 1.80E+06   | 97.0%    | 1.08           | 127       |
| Ridley Creek   | 0.72             | 3.04E+06  | 11.5%    | 1.68          | 2.34E+07   | 88.5%    | 1.08           | 1,894     |
| Chester Creek  | 0.95             | 1.24E+06  | 4.7%     | 1.68          | 2.51E+07   | 95.3%    | 1.08           | 1,822     |
| Delaware River | 2.41             | 7.05E+06  | 7.9%     | 1.68          | 8.25E+07   | 92.1%    | 1.08           | 6,301     |
| Total          | 4.08             | 1.13E+07  | 8.0%     | 1.68          | 1.31E+08   | 92.0%    | 1.08           | 10,016    |

# Total Phosphorus Annual Load for Baseline Typical Year

### Total Zinc Annual Load for Baseline Typical Year

| <b></b>        |                  | Sewage    |          | Selected      | Stormwater |          | Selected Storm |           |
|----------------|------------------|-----------|----------|---------------|------------|----------|----------------|-----------|
|                | Sewage           | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                | <b>Base Flow</b> | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall        | (cfs)            | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002            | 0.20             | 4.84E+05  | 6.2%     | 0.1737        | 7.39E+06   | 93.8%    | 0.3970         | 188       |
| 003            | 0.24             | 2.81E+05  | 3.3%     | 0.1737        | 8.33E+06   | 96.7%    | 0.3970         | 210       |
| 004            | 0.11             | 1.34E+05  | 3.4%     | 0.1737        | 3.80E+06   | 96.6%    | 0.3970         | 96        |
| 005            | 0.41             | 2.17E+06  | 12.6%    | 0.1737        | 1.51E+07   | 87.4%    | 0.3970         | 397       |
| 006            | 0.04             | 3.80E+04  | 3.0%     | 0.1737        | 1.24E+06   | 97.0%    | 0.3970         | 31        |
| 007            | 0.11             | 1.74E+05  | 3.8%     | 0.1737        | 4.36E+06   | 96.2%    | 0.3970         | 110       |
| 008            | 0.57             | 2.91E+06  | 12.7%    | 0.1737        | 1.99E+07   | 87.3%    | 0.3970         | 526       |
| 009            | 0.25             | 3.53E+05  | 4.5%     | 0.1737        | 7.49E+06   | 95.5%    | 0.3970         | 190       |
| 011            | 0.13             | 9.70E+04  | 2.6%     | 0.1737        | 3.62E+06   | 97.4%    | 0.3970         | 91        |
| 012            | 0.01             | 8.10E+02  | 1.6%     | 0.1737        | 4.99E+04   | 98.4%    | 0.3970         | 1         |
| 013            | 0.21             | 3.45E+05  | 3.8%     | 0.1737        | 8.75E+06   | 96.2%    | 0.3970         | 221       |
| 014            | 0.14             | 6.93E+04  | 2.7%     | 0.1737        | 2.48E+06   | 97.3%    | 0.3970         | 62        |
| 015            | 0.05             | 7.96E+04  | 5.1%     | 0.1737        | 1.47E+06   | 94.9%    | 0.3970         | 37        |
| 016            | 0.07             | 8.34E+04  | 1.8%     | 0.1737        | 4.57E+06   | 98.2%    | 0.3970         | 114       |
| 017            | 0.27             | 1.31E+06  | 22.5%    | 0.1737        | 4.50E+06   | 77.5%    | 0.3970         | 126       |
| 018            | 0.33             | 1.57E+06  | 10.9%    | 0.1737        | 1.28E+07   | 89.1%    | 0.3970         | 335       |
| 019            | 0.67             | 1.04E+06  | 5.8%     | 0.1737        | 1.68E+07   | 94.2%    | 0.3970         | 428       |
| 020            | 0.05             | 3.76E+04  | 3.6%     | 0.1737        | 9.96E+05   | 96.4%    | 0.3970         | 25        |
| 021            | 0.03             | 1.53E+04  | 2.7%     | 0.1737        | 5.50E+05   | 97.3%    | 0.3970         | 14        |
| 022            | 0.08             | 6.60E+04  | 3.1%     | 0.1737        | 2.09E+06   | 96.9%    | 0.3970         | 53        |
| 023            | 0.02             | 4.84E+03  | 2.1%     | 0.1737        | 2.26E+05   | 97.9%    | 0.3970         | 6         |
| 024            | 0.06             | 5.26E+04  | 2.7%     | 0.1737        | 1.92E+06   | 97.3%    | 0.3970         | 48        |
| 025            | 0.03             | 1.80E+04  | 3.0%     | 0.1737        | 5.79E+05   | 97.0%    | 0.3970         | 15        |
| 026            | 0.07             | 5.54E+04  | 3.0%     | 0.1737        | 1.80E+06   | 97.0%    | 0.3970         | 45        |
| Ridley Creek   | 0.72             | 3.04E+06  | 11.5%    | 0.1737        | 2.34E+07   | 88.5%    | 0.3970         | 612       |
| Chester Creek  | 0.95             | 1.24E+06  | 4.7%     | 0.1737        | 2.51E+07   | 95.3%    | 0.3970         | 636       |
| Delaware River | 2.41             | 7.05E+06  | 7.9%     | 0.1737        | 8.25E+07   | 92.1%    | 0.3970         | 2,121     |
| Total          | 4.08             | 1.13E+07  | 8.0%     | 0.1737        | 1.31E+08   | 92.0%    | 0.3970         | 3,368     |

|                |           | Sewage    |          | Selected      | Stormwater |          | Selected Storm | 1 7       |
|----------------|-----------|-----------|----------|---------------|------------|----------|----------------|-----------|
|                | Sewage    | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                | Base Flow | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall        | (cfs)     | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002            | 0.20      | 4.84E+05  | 6.2%     | 0.0417        | 7.39E+06   | 93.8%    | 0.1050         | 50        |
| 003            | 0.24      | 2.81E+05  | 3.3%     | 0.0417        | 8.33E+06   | 96.7%    | 0.1050         | 55        |
| 004            | 0.11      | 1.34E+05  | 3.4%     | 0.0417        | 3.80E+06   | 96.6%    | 0.1050         | 25        |
| 005            | 0.41      | 2.17E+06  | 12.6%    | 0.0417        | 1.51E+07   | 87.4%    | 0.1050         | 104       |
| 006            | 0.04      | 3.80E+04  | 3.0%     | 0.0417        | 1.24E+06   | 97.0%    | 0.1050         | 8         |
| 007            | 0.11      | 1.74E+05  | 3.8%     | 0.0417        | 4.36E+06   | 96.2%    | 0.1050         | 29        |
| 008            | 0.57      | 2.91E+06  | 12.7%    | 0.0417        | 1.99E+07   | 87.3%    | 0.1050         | 138       |
| 009            | 0.25      | 3.53E+05  | 4.5%     | 0.0417        | 7.49E+06   | 95.5%    | 0.1050         | 50        |
| 011            | 0.13      | 9.70E+04  | 2.6%     | 0.0417        | 3.62E+06   | 97.4%    | 0.1050         | 24        |
| 012            | 0.01      | 8.10E+02  | 1.6%     | 0.0417        | 4.99E+04   | 98.4%    | 0.1050         | 0         |
| 013            | 0.21      | 3.45E+05  | 3.8%     | 0.0417        | 8.75E+06   | 96.2%    | 0.1050         | 58        |
| 014            | 0.14      | 6.93E+04  | 2.7%     | 0.0417        | 2.48E+06   | 97.3%    | 0.1050         | 16        |
| 015            | 0.05      | 7.96E+04  | 5.1%     | 0.0417        | 1.47E+06   | 94.9%    | 0.1050         | 10        |
| 016            | 0.07      | 8.34E+04  | 1.8%     | 0.0417        | 4.57E+06   | 98.2%    | 0.1050         | 30        |
| 017            | 0.27      | 1.31E+06  | 22.5%    | 0.0417        | 4.50E+06   | 77.5%    | 0.1050         | 33        |
| 018            | 0.33      | 1.57E+06  | 10.9%    | 0.0417        | 1.28E+07   | 89.1%    | 0.1050         | 88        |
| 019            | 0.67      | 1.04E+06  | 5.8%     | 0.0417        | 1.68E+07   | 94.2%    | 0.1050         | 113       |
| 020            | 0.05      | 3.76E+04  | 3.6%     | 0.0417        | 9.96E+05   | 96.4%    | 0.1050         | 7         |
| 021            | 0.03      | 1.53E+04  | 2.7%     | 0.0417        | 5.50E+05   | 97.3%    | 0.1050         | 4         |
| 022            | 0.08      | 6.60E+04  | 3.1%     | 0.0417        | 2.09E+06   | 96.9%    | 0.1050         | 14        |
| 023            | 0.02      | 4.84E+03  | 2.1%     | 0.0417        | 2.26E+05   | 97.9%    | 0.1050         | 1         |
| 024            | 0.06      | 5.26E+04  | 2.7%     | 0.0417        | 1.92E+06   | 97.3%    | 0.1050         | 13        |
| 025            | 0.03      | 1.80E+04  | 3.0%     | 0.0417        | 5.79E+05   | 97.0%    | 0.1050         | 4         |
| 026            | 0.07      | 5.54E+04  | 3.0%     | 0.0417        | 1.80E+06   | 97.0%    | 0.1050         | 12        |
| Ridley Creek   | 0.72      | 3.04E+06  | 11.5%    | 0.0417        | 2.34E+07   | 88.5%    | 0.1050         | 161       |
| Chester Creek  | 0.95      | 1.24E+06  | 4.7%     | 0.0417        | 2.51E+07   | 95.3%    | 0.1050         | 168       |
| Delaware River | 2.41      | 7.05E+06  | 7.9%     | 0.0417        | 8.25E+07   | 92.1%    | 0.1050         | 559       |
| Total          | 4.08      | 1.13E+07  | 8.0%     | 0.0417        | 1.31E+08   | 92.0%    | 0.1050         | 888       |

# Total Copper Annual Load for Baseline Typical Year

.

.

|                | 1                | Sewage    | T        | Selected      | Stormwater | I        | Selected Storm |           |
|----------------|------------------|-----------|----------|---------------|------------|----------|----------------|-----------|
|                | Sewage           | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                | <b>Base Flow</b> | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall        | (cfs)            | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002            | 0.20             | 4.84E+05  | 6.2%     | 1.4114        | 7.39E+06   | 93.8%    | 2.8276         | 1,347     |
| 003            | 0.24             | 2.81E+05  | 3.3%     | 1.4114        | 8.33E+06   | 96.7%    | 2.8276         | 1,496     |
| 004            | 0.11             | 1.34E+05  | 3.4%     | 1.4114        | 3.80E+06   | 96.6%    | 2.8276         | 683       |
| 005            | 0.41             | 2.17E+06  | 12.6%    | 1.4114        | 1.51E+07   | 87.4%    | 2.8276         | 2,850     |
| 006            | 0.04             | 3.80E+04  | 3.0%     | 1.4114        | 1.24E+06   | 97.0%    | 2.8276         | 223       |
| 007            | 0.11             | 1.74E+05  | 3.8%     | 1.4114        | 4.36E+06   | 96.2%    | 2.8276         | 785       |
| 008            | 0.57             | 2.91E+06  | 12.7%    | 1.4114        | 1.99E+07   | 87.3%    | 2.8276         | 3,777     |
| 009            | 0.25             | 3.53E+05  | 4.5%     | 1.4114        | 7.49E+06   | 95.5%    | 2.8276         | 1,354     |
| 011            | 0.13             | 9.70E+04  | 2.6%     | 1.4114        | 3.62E+06   | 97.4%    | 2.8276         | 648       |
| 012            | 0.01             | 8.10E+02  | 1.6%     | 1.4114        | 4.99E+04   | 98.4%    | 2.8276         | 9         |
| 013            | 0.21             | 3.45E+05  | 3.8%     | 1.4114        | 8.75E+06   | 96.2%    | 2.8276         | 1,576     |
| 014            | 0.14             | 6.93E+04  | 2.7%     | 1.4114        | 2.48E+06   | 97.3%    | 2.8276         | 444       |
| 015            | 0.05             | 7.96E+04  | 5.1%     | 1.4114        | 1.47E+06   | 94.9%    | 2.8276         | 267       |
| 016            | 0.07             | 8.34E+04  | 1.8%     | 1.4114        | 4.57E+06   | 98.2%    | 2.8276         | 814       |
| 017            | 0.27             | 1.31E+06  | 22.5%    | 1.4114        | 4.50E+06   | 77.5%    | 2.8276         | 910       |
| 018            | 0.33             | 1.57E+06  | 10.9%    | 1.4114        | 1.28E+07   | 89.1%    | 2.8276         | 2,401     |
| 019            | 0.67             | 1.04E+06  | 5.8%     | 1.4114        | 1.68E+07   | 94.2%    | 2.8276         | 3,063     |
| 020            | 0.05             | 3.76E+04  | 3.6%     | 1.4114        | 9.96E+05   | 96.4%    | 2.8276         | 179       |
| 021            | 0.03             | 1.53E+04  | 2.7%     | 1.4114        | 5.50E+05   | 97.3%    | 2.8276         | 98        |
| 022            | 0.08             | 6.60E+04  | 3.1%     | 1.4114        | 2.09E+06   | 96.9%    | 2.8276         | 376       |
| 023            | 0.02             | 4.84E+03  | 2.1%     | 1.4114        | 2.26E+05   | 97.9%    | 2.8276         | 40        |
| 024            | 0.06             | 5.26E+04  | 2.7%     | 1.4114        | 1.92E+06   | 97.3%    | 2.8276         | 344       |
| 025            | 0.03             | 1.80E+04  | 3.0%     | 1.4114        | 5.79E+05   | 97.0%    | 2.8276         | 104       |
| 026            | 0.07             | 5.54E+04  | 3.0%     | 1.4114        | 1.80E+06   | 97.0%    | 2.8276         | 322       |
| Ridley Creek   | 0.72             | 3.04E+06  | 11.5%    | 1.4114        | 2.34E+07   | 88.5%    | 2.8276         | 4.392     |
| Chester Creek  | 0.95             | 1.24E+06  | 4.7%     | 1.4114        | 2.51E+07   | 95.3%    | 2.8276         | 4,540     |
| Delaware River | 2.41             | 7.05E+06  | 7.9%     | 1.4114        | 8.25E+07   | 92.1%    | 2.8276         | 15,183    |
| Total          | 4.08             | 1.13E+07  | 8.0%     | 1.4114        | 1.31E+08   | 92.0%    | 2.8276         | 24.114    |

# Total Aluminum Annual Load for Baseline Typical Year

ι.

| Total | Lead | Annual | Load | for | Baseline | Typical | Year |
|-------|------|--------|------|-----|----------|---------|------|
|-------|------|--------|------|-----|----------|---------|------|

|                |                  | Sewage    |          | Selected      | Stormwater |          | Selected Storm |           |
|----------------|------------------|-----------|----------|---------------|------------|----------|----------------|-----------|
|                | Sewage           | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                | <b>Base Flow</b> | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall        | (cfs)            | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002            | 0.20             | 4.84E+05  | 6.2%     | 0.0173        | 7.39E+06   | 93.8%    | 0.1820         | 84        |
| 003            | 0.24             | 2.81E+05  | 3.3%     | 0.0173        | 8.33E+06   | 96.7%    | 0.1820         | 95        |
| 004            | 0.11             | 1.34E+05  | 3.4%     | 0.0173        | 3.80E+06   | 96.6%    | 0.1820         | 43        |
| 005            | 0.41             | 2.17E+06  | 12.6%    | 0.0173        | 1.51E+07   | 87.4%    | 0.1820         | 173       |
| 006            | 0.04             | 3.80E+04  | 3.0%     | 0.0173        | 1.24E+06   | 97.0%    | 0.1820         | 14        |
| 007            | 0.11             | 1.74E+05  | 3.8%     | 0.0173        | 4.36E+06   | 96.2%    | 0.1820         | 50        |
| 008            | 0.57             | 2.91E+06  | 12.7%    | 0.0173        | 1.99E+07   | 87.3%    | 0.1820         | 230       |
| 009            | 0.25             | 3.53E+05  | 4.5%     | 0.0173        | 7.49E+06   | 95.5%    | 0.1820         | 86        |
| 011            | 0.13             | 9.70E+04  | 2.6%     | 0.0173        | 3.62E+06   | 97.4%    | 0.1820         | 41        |
| 012            | 0.01             | 8.10E+02  | 1.6%     | 0.0173        | 4.99E+04   | 98.4%    | 0.1820         | I         |
| 013            | 0.21             | 3.45E+05  | 3.8%     | 0.0173        | 8.75E+06   | 96.2%    | 0.1820         | 100       |
| 014            | 0.14             | 6.93E+04  | 2.7%     | 0.0173        | 2.48E+06   | 97.3%    | 0.1820         | 28        |
| 015            | 0.05             | 7.96E+04  | 5.1%     | 0.0173        | 1.47E+06   | 94.9%    | 0.1820         | 17        |
| 016            | 0.07             | 8.34E+04  | 1.8%     | 0.0173        | 4.57E+06   | 98.2%    | 0.1820         | 52        |
| 017            | 0.27             | 1.31E+06  | 22.5%    | 0.0173        | 4.50E+06   | 77.5%    | 0.1820         | 53        |
| 018            | 0.33             | 1.57E+06  | 10.9%    | 0.0173        | 1.28E+07   | 89.1%    | 0.1820         | 147       |
| 019            | 0.67             | 1.04E+06  | 5.8%     | 0.0173        | 1.68E+07   | 94.2%    | 0.1820         | 192       |
| 020            | 0.05             | 3.76E+04  | 3.6%     | 0.0173        | 9.96E+05   | 96.4%    | 0.1820         | 11        |
| 021            | 0.03             | 1.53E+04  | 2.7%     | 0.0173        | 5.50E+05   | 97.3%    | 0.1820         | 6         |
| 022            | 0.08             | 6.60E+04  | 3.1%     | 0.0173        | 2.09E+06   | 96.9%    | 0.1820         | 24        |
| 023            | 0.02             | 4.84E+03  | 2.1%     | 0.0173        | 2.26E+05   | 97.9%    | 0.1820         | 3         |
| 024            | 0.06             | 5.26E+04  | 2.7%     | 0.0173        | 1.92E+06   | 97.3%    | 0.1820         | 22        |
| 025            | 0.03             | 1.80E+04  | 3.0%     | 0.0173        | 5.79E+05   | 97.0%    | 0.1820         | 7         |
| 026            | 0.07             | 5.54E+04  | 3.0%     | 0.0173        | 1.80E+06   | 97.0%    | 0.1820         | 20        |
| Ridley Creek   | 0.72             | 3.04E+06  | 11.5%    | 0.0173        | 2.34E+07   | 88.5%    | 0.1820         | 269       |
| Chester Creek  | 0.95             | 1.24E+06  | 4.7%     | 0.0173        | 2.51E+07   | 95.3%    | 0.1820         | 287       |
| Delaware River | 2.41             | 7.05E+06  | 7.9%     | 0.0173        | 8.25E+07   | 92.1%    | 0.1820         | 945       |
| Total          | 4.08             | 1.13E+07  | 8.0%     | 0.0173        | 1.31E+08   | 92.0%    | 0.1820         | 1,500     |

| Total Mercury Annual Load for Baseline Typical | Year |
|------------------------------------------------|------|
|------------------------------------------------|------|

|                |                  | Sewage    |          | Selected      | Stormwater |          | Selected Storm |           |
|----------------|------------------|-----------|----------|---------------|------------|----------|----------------|-----------|
|                | Sewage           | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                | <b>Base Flow</b> | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall        | (cfs)            | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002            | 0.20             | 4.84E+05  | 6.2%     | 0.0003        | 7.39E+06   | 93.8%    | 0.0003         | 0.13      |
| 003            | 0.24             | 2.81E+05  | 3.3%     | 0.0003        | 8.33E+06   | 96.7%    | 0.0003         | 0.14      |
| 004            | 0.11             | 1.34E+05  | 3.4%     | 0.0003        | 3.80E+06   | 96.6%    | 0.0003         | 0.06      |
| 005            | 0.41             | 2.17E+06  | 12.6%    | 0.0003        | 1.51E+07   | 87.4%    | 0.0003         | 0.28      |
| 006            | 0.04             | 3.80E+04  | 3.0%     | 0.0003        | 1.24E+06   | 97.0%    | 0.0003         | 0.02      |
| 007            | 0.11             | 1.74E+05  | 3.8%     | 0.0003        | 4.36E+06   | 96.2%    | 0.0003         | 0.07      |
| 008            | 0.57             | 2.91E+06  | 12.7%    | 0.0003        | 1.99E+07   | 87.3%    | 0.0003         | 0.37      |
| 009            | 0.25             | 3.53E+05  | 4.5%     | 0.0003        | 7.49E+06   | 95.5%    | 0.0003         | 0.13      |
| 011            | 0.13             | 9.70E+04  | 2.6%     | 0.0003        | 3.62E+06   | 97.4%    | 0.0003         | 0.06      |
| 012            | 0.01             | 8.10E+02  | 1.6%     | 0.0003        | 4.99E+04   | 98.4%    | 0.0003         | 0.00      |
| 013            | 0.21             | 3.45E+05  | 3.8%     | 0.0003        | 8.75E+06   | 96.2%    | 0.0003         | 0.15      |
| 014            | 0.14             | 6.93E+04  | 2.7%     | 0.0003        | 2.48E+06   | 97.3%    | 0.0003         | 0.04      |
| 015            | 0.05             | 7.96E+04  | 5.1%     | 0.0003        | 1.47E+06   | 94.9%    | 0.0003         | 0.02      |
| 016            | 0.07             | 8.34E+04  | 1.8%     | 0.0003        | 4.57E+06   | 98.2%    | 0.0003         | 0.07      |
| 017            | 0.27             | 1.31E+06  | 22.5%    | 0.0003        | 4.50E+06   | 77.5%    | 0.0003         | 0.09      |
| 018            | 0.33             | 1.57E+06  | 10.9%    | 0.0003        | 1.28E+07   | 89.1%    | 0.0003         | 0.23      |
| 019            | 0.67             | 1.04E+06  | 5.8%     | 0.0003        | 1.68E+07   | 94.2%    | 0.0003         | 0.29      |
| 020            | 0.05             | 3.76E+04  | 3.6%     | 0.0003        | 9.96E+05   | 96.4%    | 0.0003         | 0.02      |
| 021            | 0.03             | 1.53E+04  | 2.7%     | 0.0003        | 5.50E+05   | 97.3%    | 0.0003         | 0.01      |
| 022            | 0.08             | 6.60E+04  | 3.1%     | 0.0003        | 2.09E+06   | 96.9%    | 0.0003         | 0.03      |
| 023            | 0.02             | 4.84E+03  | 2.1%     | 0.0003        | 2.26E+05   | 97.9%    | 0.0003         | 0.00      |
| 024            | 0.06             | 5.26E+04  | 2.7%     | 0.0003        | 1.92E+06   | 97.3%    | 0.0003         | 0.03      |
| 025            | 0.03             | 1.80E+04  | 3.0%     | 0.0003        | 5.79E+05   | 97.0%    | 0.0003         | 0.01      |
| 026            | 0.07             | 5.54E+04  | 3.0%     | 0.0003        | 1.80E+06   | 97.0%    | 0.0003         | 0.03      |
| Ridley Creek   | 0.72             | 3.04E+06  | 11.5%    | 0.0003        | 2.34E+07   | 88.5%    | 0.0003         | 0.43      |
| Chester Creek  | 0.95             | 1.24E+06  | 4.7%     | 0.0003        | 2.51E+07   | 95.3%    | 0.0003         | 0.42      |
| Delaware River | 2.41             | 7.05E+06  | 7.9%     | 0.0003        | 8.25E+07   | 92.1%    | 0.0003         | 1.45      |
| Total          | 4.08             | 1.13E+07  | 8.0%     | 0.0003        | 1.31E+08   | 92.0%    | 0.0003         | 2.30      |

| Total Silver Annua | l Load fo | r Baseline | Typical ` | Year |
|--------------------|-----------|------------|-----------|------|
|--------------------|-----------|------------|-----------|------|

|                |                  | Sewage    |          | Selected      | Stormwater |          | Selected Storm |           |
|----------------|------------------|-----------|----------|---------------|------------|----------|----------------|-----------|
|                | Sewage           | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                | <b>Base Flow</b> | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall        | (cfs)            | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002            | 0.20             | 4.84E+05  | 6.2%     | 0.0080        | 7.39E+06   | 93.8%    | 0.0100         | 4.85      |
| 003            | 0.24             | 2.81E+05  | 3.3%     | 0.0080        | 8.33E+06   | 96.7%    | 0.0100         | 5.34      |
| 004            | 0.11             | 1.34E+05  | 3.4%     | 0.0080        | 3.80E+06   | 96.6%    | 0.0100         | 2.44      |
| 005            | 0.41             | 2.17E+06  | 12.6%    | 0.0080        | 1.51E+07   | 87.4%    | 0.0100         | 10.49     |
| 006            | 0.04             | 3.80E+04  | 3.0%·    | 0.0080        | 1.24E+06   | 97.0%    | 0.0100         | 0.79      |
| 007            | 0.11             | 1.74E+05  | 3.8%     | 0.0080        | 4.36E+06   | 96.2%    | 0.0100         | 2.81      |
| 008            | 0.57             | 2.91E+06  | 12.7%    | 0.0080        | 1.99E+07   | 87.3%    | 0.0100         | 13.91     |
| 009            | 0.25             | 3.53E+05  | 4.5%     | 0.0080        | 7.49E+06   | 95.5%    | 0.0100         | 4.85      |
| 011            | 0.13             | 9.70E+04  | 2.6%     | 0.0080        | 3.62E+06   | 97.4%    | 0.0100         | 2.31      |
| 012            | 0.01             | 8.10E+02  | 1.6%     | 0.0080        | 4.99E+04   | 98.4%    | 0.0100         | 0.03      |
| 013            | 0.21             | 3.45E+05  | 3.8%     | 0.0080        | 8.75E+06   | 96.2%    | 0.0100         | 5.64      |
| 014            | 0.14             | 6.93E+04  | 2.7%     | 0.0080        | 2.48E+06   | 97.3%    | 0.0100         | 1.58      |
| 015            | 0.05             | 7.96E+04  | 5.1%     | 0.0080        | 1.47E+06   | 94.9%    | 0.0100         | 0.96      |
| 016            | 0.07             | 8.34E+04  | 1.8%     | 0.0080        | 4.57E+06   | 98.2%    | 0.0100         | 2.90      |
| 017            | 0.27             | 1.31E+06  | 22.5%    | 0.0080        | 4.50E+06   | 77.5%    | 0.0100         | 3.46      |
| 018            | 0.33             | 1.57E+06  | 10.9%    | 0.0080        | 1.28E+07   | 89.1%    | 0.0100         | 8.79      |
| 019            | 0.67             | 1.04E+06  | 5.8%     | 0.0080        | 1.68E+07   | 94.2%    | 0.0100         | 11.03     |
| 020            | 0.05             | 3.76E+04  | 3.6%     | 0.0080        | 9.96E+05   | 96.4%    | 0.0100         | 0.64      |
| 021            | 0.03             | 1.53E+04  | 2.7%     | 0.0080        | 5.50E+05   | 97.3%    | 0.0100         | 0.35      |
| 022            | 0.08             | 6.60E+04  | 3.1%     | 0.0080        | 2.09E+06   | 96.9%    | 0.0100         | 1.34      |
| 023            | 0.02             | 4.84E+03  | 2.1%     | 0.0080        | 2.26E+05   | 97.9%    | 0.0100         | 0.14      |
| 024            | 0.06             | 5.26E+04  | 2.7%     | 0.0080        | 1.92E+06   | 97.3%    | 0.0100         | 1.23      |
| 025            | 0.03             | 1.80E+04  | 3.0%     | 0.0080        | 5.79E+05   | 97.0%    | 0.0100         | 0.37      |
| 026            | 0.07             | 5.54E+04  | 3.0%     | 0.0080        | 1.80E+06   | 97.0%    | 0.0100         | 1.15      |
| Ridley Creek   | 0.72             | 3.04E+06  | 11.5%    | 0.0080        | 2.34E+07   | 88.5%    | 0.0100         | 16.11     |
| Chester Creek  | 0.95             | 1.24E+06  | 4.7%     | 0.0080        | 2.51E+07   | 95.3%    | 0.0100         | 16.29     |
| Delaware River | 2.41             | 7.05E+06  | 7.9%     | 0.0080        | 8.25E+07   | 92.1%    | 0.0100         | 55.03     |
| Total          | 4.08             | 1.13E+07  | 8.0%     | 0.0080        | 1.31E+08   | 92.0%    | 0.0100         | 87.43     |

.

|                |                  | Sewage    |          | Selected      | Stormwater |          | Selected Storm | ·····     |
|----------------|------------------|-----------|----------|---------------|------------|----------|----------------|-----------|
|                | Sewage           | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                | <b>Base</b> Flow | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall        | (cfs)            | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002            | 0.20             | 4.84E+05  | 6.2%     | 0.1538        | 7.39E+06   | 93.8%    | 0.0719         | 38        |
| 003            | 0.24             | 2.81E+05  | 3.3%     | 0.1538        | 8.33E+06   | 96.7%    | 0.0719         | 40        |
| 004            | 0.11             | 1.34E+05  | 3.4%     | 0.1538        | 3.80E+06   | 96.6%    | 0.0719         | 18        |
| 005            | 0.41             | 2.17E+06  | 12.6%    | 0.1538        | 1.51E+07   | 87.4%    | 0.0719         | 88        |
| 006            | 0.04             | 3.80E+04  | 3.0%     | 0.1538        | 1.24E+06   | 97.0%    | 0.0719         | 6         |
| 007            | 0.11             | 1.74E+05  | 3.8%     | 0.1538        | 4.36E+06   | 96.2%    | 0.0719         | 21        |
| 008            | 0.57             | 2.91E+06  | 12.7%    | 0.1538        | 1.99E+07   | 87.3%    | 0.0719         | 117       |
| 009            | 0.25             | 3.53E+05  | 4.5%     | 0.1538        | 7.49E+06   | 95.5%    | 0.0719         | 37        |
| 011            | 0.13             | 9.70E+04  | 2.6%     | 0.1538        | 3.62E+06   | 97.4%    | 0.0719         | 17        |
| 012            | 0.01             | 8.10E+02  | 1.6%     | 0.1538        | 4.99E+04   | 98.4%    | 0.0719         | 0         |
| 013            | 0.21             | 3.45E+05  | 3.8%     | 0.1538        | 8.75E+06   | 96.2%    | 0.0719         | 43        |
| 014            | 0.14             | 6.93E+04  | 2.7%     | 0.1538        | 2.48E+06   | 97.3%    | 0.0719         | 12        |
| 015            | 0.05             | 7.96E+04  | 5.1%     | 0.1538        | 1.47E+06   | 94.9%    | 0.0719         | 7         |
| 016            | 0.07             | 8.34E+04  | 1.8%     | 0.1538        | 4.57E+06   | 98.2%    | 0.0719         | 21        |
| 017            | 0.27             | 1.31E+06  | 22.5%    | 0.1538        | 4.50E+06   | 77.5%    | 0.0719         | 33        |
| 018            | 0.33             | 1.57E+06  | 10.9%    | 0.1538        | 1.28E+07   | 89.1%    | 0.0719         | 73        |
| 019            | 0.67             | 1.04E+06  | 5.8%     | 0.1538        | 1.68E+07   | 94.2%    | 0.0719         | 86        |
| 020            | 0.05             | 3.76E+04  | 3.6%     | 0.1538        | 9.96E+05   | 96.4%    | 0.0719         | 5         |
| 021            | 0.03             | 1.53E+04  | 2.7%     | 0.1538        | 5.50E+05   | 97.3%    | 0.0719         | 3         |
| 022            | 0.08             | 6.60E+04  | 3.1%     | 0.1538        | 2.09E+06   | 96.9%    | 0.0719         | 10        |
| 023            | 0.02             | 4.84E+03  | 2.1%     | 0.1538        | 2.26E+05   | 97.9%    | 0.0719         | 1         |
| 024            | 0.06             | 5.26E+04  | 2.7%     | 0.1538        | 1.92E+06   | 97.3%    | 0.0719         | 9         |
| 025            | 0.03             | 1.80E+04  | 3.0%     | 0.1538        | 5.79E+05   | 97.0%    | 0.0719         | 3         |
| 026            | 0.07             | 5.54E+04  | 3.0%     | 0.1538        | 1.80E+06   | 97.0%    | 0.0719         | 9         |
| Ridley Creek   | 0.72             | 3.04E+06  | 11.5%    | 0.1538        | 2.34E+07   | 88.5%    | 0.0719         | 134       |
| Chester Creek  | 0.95             | 1.24E+06  | 4.7%     | 0.1538        | 2.51E+07   | 95.3%    | 0.0719         | 125       |
| Delaware River | 2.41             | 7.05E+06  | 7.9%     | 0.1538        | 8.25E+07   | 92.1%    | 0.0719         | 438       |
| Total          | 4.08             | 1.13E+07  | 8.0%     | 0.1538        | 1.31E+08   | 92.0%    | 0.0719         | 697       |

### Total Phenols Annual Load for Baseline Typical Year

### **SECTION 3**

### **RECEIVING WATER QUALITY AND CSO IMPACTS**

### 3.1 WATER QUALITY CRITERIA AND EXISTING WATER QUALITY

To assess the impact of the CSOs on receiving waters, the water quality of the receiving waters must be evaluated. This assessment is accomplished by reviewing the water quality criteria for the receiving waters and summarizing the existing water quality based on previously reported sampling efforts.

The water quality for the Delaware River and its tributaries is detailed in the Administrative Manual - Part III Water Quality Regulations published by the Delaware River Basin Commission (DRBC), Title 25 Chapter 93 - Water Quality Standards of the Pennsylvania Code, and Title 25 Chapter 16 - Water Quality Toxics Management Strategy of the Pennsylvania Code. Table 3.1-1 presents a summary of the water quality criteria for the receiving waters, Chester Creek, Ridley Creek, and the Delaware River. It is important to note that for the tidal portions of Chester Creek, Ridley Creek, and the Delaware River that potable water supply, livestock water supply, and industrial water supply are not protected uses and that above River Mile 81.8 (Commodore Barry Bridge) water contact sports (swimming and related activities) are not protected uses.

Tables 3.1-2 through 3.1-4 present a summary of the previously reported water quality sampling for the receiving waters as found in the EPA's STORET database. A copy of the STORET data can be found in Appendix E. DRBC regulations allow the use of water quality data obtained from other sites in the same ecoregion if the available data are insufficient to determine the existing water quality. Instances where this occurred are noted on the tables.

### 3.2 IMPACTS OF CSOs ON RECEIVING WATERS

Since the purpose of this plan is to develop a long-term strategy to control the impact of CSOs, this analysis is a gross scale annual estimate of the impact of the total annual CSO load on the total annual receiving water flows. The DRBC has not yet completed the wet weather modeling; thus,

there is no valid way to estimate the CSO impact on wet weather receiving water conditions. This approached was agreed to by the PADEP.

The impacts of the CSOs on the receiving waters were evaluated by comparing the total annual load of selected parameters to the background load in the receiving water during the typical year. The mass of a parameter found in the receiving water was calculated by multiplying the background concentration by the harmonic mean flow annual volume. Additionally, an average concentration for selected parameters is predicted for the receiving water during the annual overflows. To aid in the selection of alternatives to evaluate, the mass balance for Ridley and Chester Creeks was also applied incrementally to analyze the impact of each successive outfall. Tables 3.2-1 through 3.2-3 present the results of this mass balance analysis with the lettered tables being the incremental analysis.

Tables 3.2-1 through 3.2-3 provide estimates of projected impacts of CSO discharges on the Chester and Ridley Creeks, and on the Delaware River. These tables show mass loading impacts as well as resultant estimated pollutant concentrations and comparisons with the existing Water Quality Criteria. This data demonstrates that the impact of pollutants of concern upon the Delaware River is negligible, and that while greater impacts are evident upon the smaller streams, the loadings from the sanitary sewage portion of the discharges are relatively insignificant. If we factor in the percentages of the total stream flow that comprise the overflow component, the volume of sanitary sewage discharged to the receiving streams is only 0.075% of the total flow for Chester Creek and 0.334% for Ridley Creek. Also, in all cases where exceedances of water quality criteria are indicated, those parameters are already elevated above the criteria due to receiving water background conditions.

These factors, as well as the limited additional capacity in the system indicated by the frequent and widespread surcharging, were carefully considered in determining what actions DELCORA should consider in developing its LTCP.

April 1999

### 3.3 IMPACT ON SENSITIVE AREAS

A search for sensitive areas along Chester Creek, Ridley Creek, and the Delaware River in the vicinity of the CSO outfalls was conducted by reviewing the Environmental Sensitivity Index Map for Delaware, New Jersey, and Pennsylvania as well as contacting the John Heinz National Wildlife Refuge, Delaware Bay Estuary Committee (DBEC), PADEP Coastal Zone Program, Delaware River Basin Commission (DRBC), and the Delaware County Planning Commission. The Environmental Sensitivity Index was prepared by Research Planning, Inc. for the National Oceanic and Atmospheric Administration (NOAA) in Seattle, Washington. A copy of the index is contained in Appendix F.

There are no areas along the Chester waterfront that support primary contact recreation but there is a public boat launch 1.25 miles south of the Chester Creek mouth. Three water intakes along the Chester waterfront were identified but all are used for industrial water supply only. No public water supply intakes were identified. The index also identifies two historical sites and one archaeological site along Chester Creek within 0.5 miles of the mouth. Blue crab is common in the area but the index did not identify any specific beds. The peregrine falcon, a state and federal endangered species, has a habitat identified along the New Jersey side of the Delaware River on Raccoon Island. This habitat, however, is located across the river from Chester and the habitat should not be affected by the CSO discharge.

The information the DBEC has on environmentally sensitive areas was provided to NOAA and incorporated into the Environmental Sensitivity Index. The DRBC has a Regional Information Management System (RIMS) database that was reviewed for additional information. The database indicated that a Natural Areas Inventory was prepared for Delaware County by the Nature Conservancy. A review of the inventory revealed that no sensitive areas near the CSO outfalls exist.

Based on the review of the above sources, there are no environmentally sensitive areas near the CSO outfalls.

April 1999

# Summary of Water Quality Criteria for Receiving Waters<sup>(1)</sup> (Delaware River and Tidal Portions of Chester and Ridley Creeks)

| Parameter <sup>(2)</sup>        | Units     | Chester<br>Creek | Ridley Creek | Delaware<br>River and<br>Tidal<br>Tributaries |
|---------------------------------|-----------|------------------|--------------|-----------------------------------------------|
| Total Suspended Solids          | mg/l      | No Criteria      | No Criteria  | No Criteria                                   |
| BOD <sub>5</sub>                | mg/l      | No Criteria      | No Criteria  | No Criteria                                   |
| COD                             | mg/l      | No Criteria      | No Criteria  | No Criteria                                   |
| Fecal Coliform <sup>(3,4</sup>  | ) #/100ml | 770              | 770          | 770                                           |
| Enterococcus <sup>(3,4</sup>    | ) #/100ml | 88               | 88           | 88                                            |
| Fecal Coliform <sup>(3,5</sup>  | ) #/100ml | $\geq$           | $\searrow$   | 200                                           |
| Enterococcus <sup>(3,5</sup>    | ) #/100ml | $\searrow$       | $\sum$       | 33                                            |
| Dissolved Oxygen <sup>(6)</sup> | mg/l      | > 6.5            | > 6.5        | >6.5                                          |
| Oil & Grease                    | mg/l      | No Criteria      | No Criteria  | No Criteria                                   |
| Total Kjeldahl Nitrogen         | mg/l      | No Criteria      | No Criteria  | No Criteria                                   |
| Total Phosphorus                | mg/l      | No Criteria      | No Criteria  | No Criteria                                   |
| Total Zinc (7)                  | mg/l      | 0.1012           | 0.0866       | 0.0810                                        |
| Total Copper <sup>(7)</sup>     | mg/l      | 0.0110           | 0.0094       | 0.0088                                        |
| Total Aluminum                  | mg/l      | 0.0870           | 0.0870       | 0.0870                                        |
| Lead (Total) (7)                | mg/l      | 0.0024           | 0.0020       | 0.0018                                        |
| Mercury (Total)                 | mg/l      | 0.000012         | 0.000012     | 0.000012                                      |
| Silver                          | mg/l      | No Criteria      | No Criteria  | No Criteria                                   |
| Total Phenols                   | mg/l      | 0.02             | 0.02         | 0.02                                          |

<sup>(1)</sup> Fish and aquatic life criteria continuous concentrations.

<sup>(2)</sup> Selected parameters of interest.

<sup>(3)</sup> Maximum geometric average.

<sup>(4)</sup> Above River Mile 81.8.

<sup>(5)</sup> Below River Mile 81.8.

<sup>(6)</sup> Seasonal average. 24-hour average limit is 3.5 mg/l.

(7) Criteria for is based on hardness. As per 27 June 1997 letter from PADEP, average of values provided was used for Ridley and Chester Creeks. A hardness of 74 mg/l of CaCO3 was used for the Delaware River and tidal portions of tributaries.

## Summary of Water Quality Sampling on Chester Creek (Station 422094 - Chester Creek at Route 291)

|                         | Reporting |          | # of    |          |          |
|-------------------------|-----------|----------|---------|----------|----------|
| Parameter               | Units     | Mean     | Samples | Period o | f Record |
| Total Suspended Solids  | mg/L      | 27.99    | 111     | 81/07/21 | 97/09/17 |
| BOD <sub>5</sub>        | mg/L      | 3.1389   | 113     | 81/07/21 | 96/09/16 |
| COD                     | ) mg/L    | 10       | 1       | 85/08/15 | 85/08/15 |
| Fecal Coliform          | #/100ml   | 9,877    | 70      | 81/10/15 | 97/09/17 |
| Dissolved Oxygen        | mg/L      | 7.863    | 46      | 83/06/27 | 94/06/28 |
| Oil & Grease            | ) mg/L    | 2        | 1       | 86/06/24 | 86/06/24 |
| Total Kjeldahl Nitrogen | mg/L      | 1.432    | 111     | 81/07/21 | 97/08/19 |
| Total Phosphorus        | mg/L      | 0.7178   | 114     | 81/07/21 | 97/09/17 |
| Total Zinc              | mg/L      | 0.0334   | 99      | 81/08/17 | 97/09/17 |
| Total Copper            | mg/L      | 0.0272   | 78      | 81/07/21 | 97/09/17 |
| Total Aluminum (1       | ) mg/L    | 0.302    | 10      | 80/08/18 | 87/08/12 |
| Lead Total              | mg/L      | 0.0149   | 66      | 81/07/21 | 97/09/17 |
| Mercury Total           | mg/L      | 0.0011   | 19      | 92/07/15 | 96/09/16 |
| Silver <sup>(3</sup>    | ) mg/L    | 0.03792  | 25      | 80/02/28 | 91/06/25 |
| Total Phenols (3        | mg/L      | 0.005315 | 153     | 80/02/28 | 88/06/14 |

<sup>(1)</sup> Value from upstream Station WQN0158 - Ridley Crk-150yds dwn jct Watervl/Cobbl .

<sup>(2)</sup> From Station 422120 - Ridley Creek at Route 291

<sup>(3)</sup> From Station 892062 - Delaware River at Eddystone, PA, RM 83.98

## Summary of Water Quality Sampling on Ridley Creek (Station 422120 - Ridley Creek at Route 291)

|                               | Reporting |           | # of    |                  |          |
|-------------------------------|-----------|-----------|---------|------------------|----------|
| Parameter                     | Units     | Mean      | Samples | Period of Record |          |
| Total Suspended Solids        | mg/l      | 35.477    | 109     | 81/07/21         | 97/09/17 |
| BOD₅                          | mg/L      | 3.1228    | 108     | 81/07/21         | 96/09/17 |
| COD Hi Level <sup>(1)</sup>   | mg/L      | 10        | 1       | 85/08/15         | 85/08/15 |
| Fecal Coliform                | #/100ml   | 16,104    | 64      | 81/12/15         | 97/09/17 |
| Dissolved Oxygen              | mg/L      | 8.1312    | 48      | 82/07/07         | 94/06/28 |
| Oil & Grease                  | mg/L      | 2         | 1       | 86/06/24         | 86/06/24 |
| Total Kjeldahl Nitrogen       | mg/L      | 0.98057   | 105     | 81/07/21         | 96/09/17 |
| Total Phosphorus              | mg/L      | 0.37348   | 112     | 81/07/21         | 97/09/17 |
| Total Zinc                    | mg/L      | 0.034589  | 97      | 81/08/17         | 97/09/17 |
| Total Copper                  | mg/L      | 0.02753   | 66      | 81/07/21         | 97/08/19 |
| Total Aluminum <sup>(1)</sup> | mg/L      | 0.302     | 10      | 80/08/18         | 87/08/12 |
| Total Lead                    | mg/L      | 0.016369  | 74      | 81/07/21         | 97/09/17 |
| Mercury Total                 | mg/L      | 0.0014364 | 11      | 92/05/18         | 96/03/25 |
| Silver <sup>(2)</sup>         | mg/L      | 0.03792   | 25      | 80/02/28         | 91/06/25 |
| Total Phenols (2)             | mg/L      | 0.005315  | 153     | 80/02/28         | 88/06/14 |

<sup>(1)</sup> Value from upstream Station WQN0158 - Ridley Crk-150yds dwn jct Watervl/Cobbl .

<sup>(2)</sup> From Station 892062 - Delaware River at Eddystone, PA, RM 83.98

# Summary of Water Quality Sampling on Delaware River (Station 892062 - Delaware River at Eddystone, PA, RM 83.98)

|                         | Reporting          |          | # of    |                  |          |
|-------------------------|--------------------|----------|---------|------------------|----------|
| Parameter               | Units              | Mean     | Samples | Period of Record |          |
| Total Suspended Solids  | mg/L               | 19.8     | 333     | 80/04/22         | 98/09/17 |
| BOD <sub>5</sub>        | mg/L               | 2.6375   | 176     | 80/02/28         | 95/11/20 |
| COD Hi Level (          | <sup>1)</sup> mg/L | 25.678   | 12      | 80/01/17         | 81/06/25 |
| Fecal Coliform          | #/100ml            | 834      | 135     | 80/02/28         | 87/06/18 |
| Dissolved Oxygen        | mg/L               | 6.4632   | 332     | 80/02/28         | 98/09/17 |
| Oil & Grease            | ng/L               | 2        | 5       | 80/10/06         | 81/06/25 |
| Total Kjeldahl Nitrogen | mg/L               | 0.7097   | 288     | 80/02/28         | 98/09/17 |
| Total Phosphorus        | mg/L               | 0.1652   | 277     | 81/07/14         | 98/09/17 |
| Total Zinc              | mg/L               | 0.03655  | 234     | 80/02/28         | 98/08/24 |
| Total Copper            | mg/L               | 0.016193 | 238     | 80/02/28         | 98/08/24 |
| Total Aluminum          | mg/L               | 0.42     | 6       | 80/04/25         | 81/07/30 |
| Total Lead              | mg/L               | 0.02036  | 245     | 80/02/28         | 95/11/27 |
| Total Mercury           | mg/L               | 0.00111  | 71      | 80/02/28         | 92/11/17 |
| Total Silver            | mg/L               | 0.03792  | 25      | 80/02/28         | 91/06/25 |
| Total Phenols           | mg/L               | 0.00532  | 153     | 80/02/28         | 88/06/14 |

<sup>(1)</sup> From Station 0422107 - Delaware River at Walnut Street.

Table 3.2-1

No Criteria No Criteria No Criteria No Criteria No Criteria No Criteria 0.0109878 0.0024145 No Criteria 0.1011924 Standard 0.000012 Quality Water (mg/l) > 6.5 0.087 770 0.02 Background Background Concentration Estimated 0.0390 0.3410 0.0375 10,467 0.0284 0.0174 0.0011 0.0064 (l/gm) 30.39 12.57 0.724 3.36 7.87 2.25 1.53 Percent of 18.7% 21.7% 15.7% 12.8% 12.5% 15.9% Load 9.4% 8.0% 7.1% 7.7% 2.4% 5.7% 0.4%0.4% CSO 1.7%Percent of Volume 1.6% 1.6%1.6%1.6%1.6%1.6% 1.6%1.6% 1.6%CSO 1.6%1.6%1.6% 1.6% 1.6%1.6%Background Load<sup>(3)</sup> 2,857,019 Stream 1,020,692 1.0E+10 802,570 146,163 (lbs/yr) 320,385 204,138 73,265 2,775 30,825 1,519 3,870 3,411 111 542 Average Stream 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 I.634,837.317 1,634,837,317 1,634,837,317 (cu.ft./yr) Volume Harmonic  $\mathrm{Flow}^{(2)}$ Mean 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 (cfs) CSO Volume Concentration<sup>(1)</sup> Background 0.005315 Stream 0.3020 0.0379 0.7178 0.0334 0.0149 (mg/l) 0.0272 0.0011 27.99 9,877 7.863 1.43 2.00 3.14 <u></u> 26,337,608 26,337,608 26,337,608 26,337,608 26,337,608 26,337,608 26,337,608 26,337,608 26,337,608 26,337,608 26,337,608 26,337,608 26,337,608 26,337,608 26,337,608 (cu.ft/yr) 7.74E+08 Loading 295,305 283,141 (lbs/yr) 28,034 13,809 29,244 12,210 CSO 4,540 1,822 636 0.42 168 125 287 16 Fecal Coliform (#/100ml) **Fotal Kjeldahl Nitrogen Total Suspended Solids** Dissolved Oxygen **Fotal Phosphorus** Pollutant Fotal Aluminum Oil & Grease Total Phenols **Fotal Copper Total Lead Fotal Zinc** Mercury BOD<sub>5</sub> Silver COD

Impact of CSO Discharge on Chester Creek Water Quality for Baseline Typical Year

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Chester Creek near Chester, PA (01477000) transfered to mouth.

<sup>(3)</sup> Background load based on total annual flow = 525,600 min

April 1999

Table 3.2-1a

No Criteria No Criteria No Criteria No Criteria No Criteria 0.0109878 0.0024145 No Criteria Standard No Criteria 0.1011924 Quality 0.000012 Water (I/gm) > 6.5 0.087 *0LL* 0.02 Background Background Concentration Estimated 0.0336 0.0272 0.3036 0.0379 0.0150 0.0054 0.0011 (l/gm) 28.09 10.10 0.718 9,894 3.15 1.44 7.86 2.01 Percent of  $\cos 0$ Load 0.4% 0.3%1.1% 0.2%0.1% 0.6% 0.3% 0.1% 0.7% 0.2% 0.6% 0.7%0.0% 0.0% 0.9%Background Percent of Volume CSO 0.1%0.1% 0.1% 0.1% 0.1%0.1% 0.1% 0.1% 0.1% 0.1%0.1% 0.1% 0.1% 0.1% 0.1% 2,857,019 Load<sup>(3)</sup> 320,385 1,020,692 1.0E+10 (lbs/yr) 146,163 802,570 204,138 Stream 73,265 30,825 2,775 1,519 3,411 3,870 111 542 Average Stream 1,634,837,317 1,634,837,317 1.634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 (cu.ft./yr) Volume Harmonic Flow<sup>(2)</sup> Mean (cfs) 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 CSO Volume Concentration<sup>(1)</sup> Background Stream 0.005315 (l/gm) 0.0272 0.3020 0.0149 0.0379 0.7178 0.0334 0.0011 27.99 9,877 7.863 3.14 2.00 1.43 10 1,033,310 1,033,310 1,033,310 1,033,310 1,033,310 1,033,310 1,033,310 1,033,310 1,033,310 1,033,310 1,033,310 1,033,310 1,033,310 1,033,310 1,033,310 (cu.ft/yr) 2.35E+07 Loading (Ibs/yr) 10,974 11,592 CSO 1,026 1,144 543 476 71.1 25.1 179.1 11.4 0.02 0.6 6.6 4.8 Fecal Coliform (#/100ml) Fotal Suspended Solids **Fotal Kjeldahl Nitrogen** Dissolved Oxygen Total Phosphorus Pollutant Fotal Aluminum **Total Phenols** Oil & Grease Total Copper Fotal Lead **Fotal Zinc** Mercury BOD, COD Silver

Impact of CSO Discharge on Chester Creek Water Quality for Baseline Typical Year at Regulator 20

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Chester Creek near Chester, PA (01477000) transfered to mouth.

<sup>(3)</sup> Background load based on total annual flow = 525,600 min

Watqual.xls Chester Creek Annual Impact

3-9

Table 3.2-1b

No Criteria No Criteria No Criteria 0.0024145 No Criteria Standard No Criteria No Criteria No Criteria 0.1011924 0.0109878 Quality 0.000012 (l/gm) Water > 6.5 0.087 770 0.02 Background Background Concentration Estimated 10,419 0.0376 0.0374 0.0280 0.3299 0.0167 0.0011 (l/gm) 29.72 11.88 0.722 0.0061 2.18 1.50 3.31 7.87 Percent of 12.5% 18.9% 12.6% 15.6% CSO Load 7.0% 6.3% 6.5% 1.2%9.7% 5.7% 1.7%4.1% 9.9% 0.3% 0.3% Percent of Volume 1.1% l.1% 1.1%1.1% 1.1% 1.1% 1.1% 1.1% 1.1% 1.1% CSO 1.1% 1.1% 1.1% I.1% 1.1% Background Load<sup>(3)</sup> Stream 1,031,667 1.0E+10 803,114 205,282 146,639 (lbs/yr) 2,868,611 321,411 73,336 31,004 3,436 2,782 1,531 3,871 547 111 Average Stream 1,635,870,627 1,635,870,627 1,635,870,627 1,635,870,627 1,635,870,627 1,635,870,627 1,635,870,627 1,635,870,627 1,635,870,627 1,635,870,627 1,635,870,627 1,635,870,627 1,635,870,627 1.635.870.627 1,635,870,627 (cu.ft./yr) Volume Harmonic Flow<sup>(2)</sup> Mean 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 (cfs) CSO Volume Concentration<sup>(1)</sup> Background 0.005359 0.7180 0.0336 Stream 0.0272 0.3036 0.0150 0.0379 (l/gm) 0.0011 28.09 10.10 9,894 3.15 7.86 2.01 1.44 17,873,866 17,873,866 17,873,866 17,873,866 17,873,866 17,873,866 17,873,866 17,873,866 17,873,866 17,873,866 17,873,866 17,873,866 17,873,866 17,873,866 17,873,866 (cu.ft/yr) 6.52E+08 Loading 200,295 (lbs/yr) 194,629 20,386 19,906 1,244.2 3,063.1 CSO 9,342 8,347 428.5 113.0 192.4 0.29 11.0 85.6 Fecal Coliform (#/100ml) **Fotal Kjeldahl Nitrogen Fotal Suspended Solids** Dissolved Oxygen Pollutant **Fotal Phosphorus Fotal Aluminum Total Phenols** Oil & Grease **Fotal Copper Fotal Zinc Fotal Lead** Mercury BOD COD Silver

Impact of CSO Discharge on Chester Creek Water Quality for Baseline Typical Year at Regulator 19

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Chester Creek near Chester, PA (01477000) transfered to mouth.

<sup>(3)</sup> Background load based on total annual flow = 525,600 min

3-10

April 1999

Table 3.2-1c

No Criteria No Criteria No Criteria No Criteria No Criteria No Criteria No Criteria 0.1011924 0.0109878 0.0024145 Standard Quality 0.000012 Water (l/gm) > 6.5 0.087 0.02 770 Background Background Concentration Estimated 10,425 0.0375 0.3308 0.0167 0.0376 0.0062 (Il/gm) 29.77 0.0281 0.0011 11.93 0.722 2.19 3.31 7.87 1.50 Percent of 0.2% CSO Load 0.2%0.5% 0.1% 0.0% 0.3% 0.1%0.1% 0.4% 0.3% 0.0% 0.4% 0.2% 0.4% 0.0% Percent of Volume CSO 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%0.0% 0.0% 0.0% 0.0% 0.0% Background 3,068,906 1,226,296 Stream Load<sup>(3)</sup> (lbs/yr) 341,797 812,456 225,189 154,986 1.1E+10 74,581 34,067 2,895 3,864 1,723 3,882 111 633 Average Stream 1,653,744,493 1,653,744,493 1,653,744,493 1,653,744,493 1,653,744,493 1,653,744,493 1,653,744,493 1,653,744,493 1,653,744,493 1,653,744,493 1,653,744,493 1,653,744,493 1,653,744,493 1,653,744,493 1,653,744,493 Volume (cu.ft./yr) Harmonic Flow<sup>(2)</sup> Mean (cfs) 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 CSO Volume Concentration<sup>(1)</sup> Background 0.006130 Stream 10,419 0.0374 0.0376 (I/gm) 0.7223 0.0280 0.3299 0.0167 0.0011 29.72 11.88 I.50 3.31 7.87 2.18 565,233 565,233 565,233 565,233 565,233 565,233 (cu.ft/yr) 565,233 565,233 565,233 565,233 565,233 565,233 565,233 565,233 565,233 Loading 9.55E+06 (lbs/yr) CSO 6,344 5,939 13.8 526 298 38.7 624 259 3.6 98.4 0.01 2.6 6.3 0.4 Fecal Coliform (#/100ml) Total Kjeldahl Nitrogen **Cotal Suspended Solids** Dissolved Oxygen Pollutant Total Phosphorus **Fotal Aluminum Total Phenols** Oil & Grease **Fotal Copper Fotal Zinc [otal Lead** Mercury BOD, COD Silver

Impact of CSO Discharge on Chester Creek Water Quality for Baseline Typical Year at Regulator 21

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Chester Creek near Chester, PA (01477000) transfered to mouth.

<sup>(3)</sup> Background load based on total annual flow = 525,600 min

Table 3.2-1d

No Criteria No Criteria No Criteria No Criteria No Criteria 0.0024145 No Criteria No Criteria 0.1011924 0.0109878 Standard Quality 0.000012 Water (mg/l) > 6.5 0.087 0.02 *77*0 Concentration Estimated 10,446 0.0379 0.0169 0.0376 0.0062 0.3335 (Il/gm) 29.94 0.723 0.0281 0.0011 12.11 3.33 7.87 2.20 1.51 Background Percent of Load 0.1% CS0 0.7% 0.5% 1.6% 0.3% 0.9% 0.5% 0.2% 1.2%0.4% 0.9% 1.2% 0.0%0.0% 1.3% Background Percent of Volume 0.1% 0.1% 0.1% 0.1%0.1%0.1% 0.1% 0.1% 0.1% 0.1%0.1%CSO 0.1% 0.1% 0.1% 0.1%Background Load<sup>(3)</sup> Stream 3,075,250 1,232,234 225,813 342,323 155,245 (lbs/yr) 1.1E+10 812,754 74,619 34,165 3,878 2,898 1,729 3,882 636 111 Average Stream 1,654,309,726 1,654,309,726 1,654,309,726 1,654,309,726 1,654,309,726 1,654,309,726 1,654,309,726 1,654,309,726 1,654,309,726 1,654,309,726 1,654,309,726 1,654,309,726 1,654,309,726 1,654,309,726 1,654,309,726 (cu.ft./yr) Volume Harmonic Flow<sup>(2)</sup> Mean (cfs) 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 CSO Volume Concentration<sup>(1)</sup> Background 0.006153 Stream 0.3308 0.0376 (mg/l) 10,425 0.7225 0.0375 0.0167 0.0011 0.0281 11.93 29.77 3.31 7.87 2.19 1.50 1,852,210 1,852,210 1,852,210 1,852,210 1,852,210 (,852,210 1,852,210 1,852,210 1,852,210 1,852,210 ,852,210 1,852,210 1,852,210 1,852,210 1,852,210 (cu.ft/yr) Loading 3.46E+07 (Ibs/yr) 20,785 19,524 CSO 1,759 127.0 2,047 11.9 976 849 45.1 322.1 20.5 0.03 8.6 1.1 Fecal Coliform (#/100ml) otal Kjeldahl Nitrogen **Fotal Suspended Solids** Dissolved Oxygen Pollutant Total Phosphorus **fotal** Aluminum **Total Phenols** Oil & Grease **fotal Copper** Total Zinc **Fotal Lead** Mercury BOD, Silver COD

# Impact of CSO Discharge on Chester Creek Water Quality for Baseline Typical Year at Regulator 26

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Chester Creek near Chester, PA (01477000) transfered to mouth.

<sup>(3)</sup> Background load based on total annual flow = 525,600 min

3-12

April 1999

į,

Watqual.xls Chester Creek Annual Impact

Table 3.2-1e

No Criteria No Criteria No Criteria No Criteria No Criteria 0.0109878 0.0024145 No Criteria Standard No Criteria 0.1011924 Quality 0.000012 Water (mg/l) > 6.5 0.087 770 0.02 Background Background Concentration Estimated 10,473 0.0282 0.0375 (l/gm) 0.0384 0.3367 0.0171 0.0063 30.14 0.0011 12.31 3.34 0.723 7.87 2.22 1.52 Percent of Load1.5% CS0 0.8% 0.6% 1.8%0.4% 0.1%1.0%0.6% 0.2% 1.3%0.5% 1.1% 1.3%0.0% 0.0%Background Percent of Volume 0.1%0.1%0.1%0.1%0.1% 0.1% 0.1% 0.1%0.1%CS0 0.1%0.1% 0.1% 0.1%0.1% 0.1%Load<sup>(3)</sup> 3,096,035 1,251,759 344,082 813,730 156,094 (lbs/yr) Stream 1.1E+10 227,860 74,746 34,488 3,923 2,910 1,750 3,884 644 111 Average Stream 1,656,161,935 1,656,161,935 1,656,161,935 1,656,161,935 1,656,161,935 1,656,161,935 1,656,161,935 1,656,161,935 1,656,161,935 1,656,161,935 1,656,161,935 1,656,161,935 1,656,161,935 1,656,161,935 1,656,161,935 (cu.ft./yr) Volume Harmonic Flow<sup>(2)</sup> Mean (cfs) 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 CSO Volume Concentration<sup>(I)</sup> Background 0.006230 Stream 10,446 0.7229 0.0379 0.0376 (I/gm) 0.3335 0.0169 29.94 12.11 0.0281 0.0011 3.33 7.87 2.20 1.51 2,160,832 2,160,832 2,160,832 2,160,832 2,160,832 2,160,832 2,160,832 2,160,832 2,160,832 2,160,832 2,160,832 2,160,832 2,160,832 2,160,832 2,160,832 (cu.ft/yr) Loading 4.12E+07 (lbs/yr) 24,247 22,794 CSO 2,061 1,138 2,389 148.2 375.6 52.6 10.0 13.9 23.9 0.03 166 1.3 **Fotal Suspended Solids** Fecal Coliform (#/100ml) Fotal Kjeldahl Nitrogen Dissolved Oxygen otal Phosphorus Pollutant **Fotal Aluminum Total Phenols** Oil & Grease **Fotal Copper** Total Zinc Total Lead Mercury BOD, COD Silver

Impact of CSO Discharge on Chester Creek Water Quality for Baseline Typical Year at Regulator 22

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Chester Creek near Chester, PA (01477000) transfered to mouth.

<sup>(3)</sup> Background load based on total annual flow = 525,600 min

Table 3.2-1f

No Criteria No Criteria No Criteria No Criteria No Criteria No Criteria 0.0109878 0.0024145 No Criteria 0.1011924 Standard 0.000012 Quality Water (I/gm) > 6.5 0.087 0.02 770Background Background Concentration Estimated 0.0385 0.0375 0.3376 0.0172 0.0063 (I/gm) 30.19 10,480 0.0283 0.0011 0.72412.37 1.52 3.35 7.87 2.23 Percent of Load CSO 0.2% 0.2%0.1%0.0% 0.3% 0.2% 0.1% 0.4% 0.1%0.3% 0.4%0.0% 0.0% 0.4% 0.5% Percent of Volume 0.0% CSO 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%0.0% 0.0% 0.0% 0.0%0.0%0.0% Average Stream Background Load<sup>(3)</sup> Stream 3,120,283 346,143 1,274,553 814,868 (lbs/yr) 157,085 1.1E+10 230,249 74,894 3,976 34,863 1,774 2,924 3,885 654 111 1,658,322,767 1,658,322,767 1,658,322,767 1,658,322,767 1,658,322,767 1,658,322,767 1,658,322,767 1,658,322,767 1,658,322,767 1,658,322,767 1,658,322,767 1,658,322,767 1,658,322,767 1,658,322,767 1,658,322,767 (cu.ft./yr) Volume Flow<sup>(2)</sup> Harmonic Mean (cfs) 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 Concentration<sup>(I)</sup> Background 0.006319 Stream (Ing/I) 10,473 0.7234 0.0384 0.0282 0.3367 0.0375 30.14 0.0171 0.0011 3.34 12.31 7.87 2.221.52 CSO Volume 596,799 (cu.ft/yr) 596,799 596,799 596,799 596,799 596,799 596,799 596,799 596,799 596,799 596,799 596,799 596,799 596,799 596,799 I.13E+07 Loading (lbs/yr) 6,697 6,293 103.8 CSO 568 314 660 274 40.9 14.5 3.8 0.01 2.8 6.6 0.4 Fecal Coliform (#/100ml) **Total Suspended Solids Fotal Kjeldahl Nitrogen** Dissolved Oxygen Pollutant l'otal Phosphorus **Fotal Aluminum Total Phenols** Oil & Grease **Fotal Copper Fotal Zinc** Total Lead Mercury BOD COD Silver

# Impact of CSO Discharge on Chester Creek Water Quality for Baseline Typical Year at Regulator 25

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Chester Creck near Chester, PA (01477000) transfered to mouth. <sup>(3)</sup> Background load based on total annual flow =

525,600 min

3-14

April 1999

Table 3.2-1g

No Criteria No Criteria No Criteria No Criteria No Criteria 0.0109878 0.0024145 No Criteria Standard No Criteria 0.1011924 Quality 0.000012 Water (l/gm) > 6.5 0.087 0.02 770 Background Background Concentration Estimated 0.0386 0.0172 0.0375 0.3380 0.0011 0.0064 0.0283 (I/gm) 12.39 10,481 0.724 30.21 3.35 7.87 2.23 1.52 Percent of Load CSO 0.1% 0.1% 0.2%0.0% 0.0% 0.1% 0.1%0.0% 0.1% 0.1%0.1% 0.1% 0.0% 0.0% 0.2% Percent of Volume 0.0% 0.0% 0.0% 0.0% CSO 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%Background Load<sup>(3)</sup> 3,126,979 1,280,846 230,909 157,359 (lbs/yr) 346,710 1.1E+10 Stream 815,182 74,935 34,967 2,928 1,780 3,885 3,991 111 657 Average Stream 1,658,919,566 1,658,919,566 1,658,919,566 1,658,919,566 1,658,919,566 1,658,919,566 1,658,919,566 1,658,919,566 1,658,919,566 1,658,919,566 1,658,919,566 1,658,919,566 1,658,919,566 1,658,919,566 1,658,919,566 (cu.ft./yr) Volume Harmonic Flow<sup>(2)</sup> Mean 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 (cfs) 51.8 51.8 51.8 CSO Volume Concentration<sup>(1)</sup> Background Stream 0.006343 0.7235 0.3376 0.0172 0.0375 (l/gm) 10,480 0.0385 0.0283 30.19 0.0011 12.37 3.35 7.87 2.23 1.52 230,735 230,735 230,735 230,735 230,735 230,735 230,735 230,735 230,735 230,735 (cu.ft/yr) 230,735 230,735 230,735 230,735 230,735 Loading 3.02E+06 (lbs/yr) 2,590 CSO 2,407 205 122 254 105 15.7 1.5 40.3 0.00 5.7 2.6 1.1 0.1 Fecal Coliform (#/100ml) **Fotal Kjeldahl Nitrogen fotal Suspended Solids** Dissolved Oxygen **Fotal Phosphorus** Pollutant Fotal Aluminum Total Phenols Oil & Grease Fotal Copper **Fotal Lead Fotal Zinc** Mercury BOD, COD Silver

Impact of CSO Discharge on Chester Creek Water Quality for Baseline Typical Year at Regulator 23

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Chester Creek near Chester, PA (01477000) transfered to mouth.

<sup>(3)</sup> Background load based on total annual flow = 525,600 min

Table 3.2-1h

No Criteria No Criteria No Criteria No Criteria No Criteria No Criteria 0.0109878 0.0024145 No Criteria 0.1011924 Standard 0.000012 Quality Water (I/gm) > 6.5 0.087 770 0.02 Background Background Concentration Estimated 0.0174 10,500 0.0390 0.0375 (mg/l) 30.39 0.724 0.0284 0.3409 0.0011 0.0064 12.57 3.36 2.25 1.53 7.87 Percent of Load CSO 0.7% 0.5% 0.3% 0.1% 0.9%0.2% 1.2%0.0% 1.4%1.6%0.6% 1.2%0.4% 1.0%0.0% Average Stream Background Percent of Volume 0.1% 0.1%0.1%0.1%0.1%0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% CSO 0.1% 0.1% 0.1% Load<sup>(3)</sup> 3,129,570 1,283,254 231,163 346,916 157,464 (lbs/yr) 1.1E+10 815,304 Stream 74,951 2,930 35,007 3,996 1,783 3,885 []] 658 1,659,150,301 1,659,150,301 1,659,150,301 1,659,150,301 1,659,150,301 1,659,150,301 1,659,150,301 1,659,150,301 1,659,150,301 1,659,150,301 1,659,150,301 1,659,150,301 1,659,150,301 1,659,150,301 1,659,150,301 (cu.ft./yr) Volume Flow<sup>(2)</sup> Mean Harmoni (cfs) 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 CSO Volume Concentration<sup>(1)</sup> Background 0.006352 Stream (mg/l) 0.7236 0.0386 0.0283 0.3380 0.0172 0.0375 12.39 10,481 0.0011 30.21 3.35 1.52 7.87 2.23 1,973,915 1,973,915 1,973,915 1,973,915 1,973,915 1,973,915 1,973,915 1,973,915 1,973,915 1,973,915 1,973,915 1,973,915 1,973,915 1,973,915 (cu.ft/yr) 1,973,915 Loading 3.28E+07 (lbs/yr) 22,154 20,729 1,831 343.8 CS0 2,180 1,041 135.1 48.2 12.7 21.9 903 0.03 1.2 9.1 **Fotal Suspended Solids** Fecal Coliform (#/100mt) **Fotal Kjeldahl Nitrogen** Dissolved Oxygen Fotal Phosphorus Pollutant Fotal Aluminum **Fotal Phenols** Oil & Grease Fotal Copper **Fotal Zinc Fotal Lead** Mercury BOD, Silver COD

Impact of CSO Discharge on Chester Creek Water Quality for Baseline Typical Year at Regulator 24

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Chester Creek near Chester, PA (01477000) transfered to mouth.

<sup>(3)</sup> Background load based on total annual flow = 525,600 min

3-16

April 1999
Table 3.2-1i

No Criteria No Criteria No Criteria No Criteria No Criteria No Criteria Standard 0.0109878 0.0024145 No Criteria 0.1011924 Quality 0.000012 Water (l/gm) > 6.5 0.087 770 0.02 Background Background Concentration Estimated 0.0284 0.0375 10,500 0.0390 0.3409 0.0174 0.0064 (l/gm) 30.39 12.58 0.0011 0.724 3.36 1.53 7.87 2.25 Percent of CS0 Load 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Average Stream Background Percent of Volume  $\cos 0$ 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Load<sup>(3)</sup> 3,151,724 Stream 348,747 1,303,982 816,345 158,367 (lbs/yr) 1.1E+10 233,343 75,086 4,044 2,942 35,351 1,805 3,887 111 667 1,661,124,216 1,661,124,216 1,661,124,216 1,661,124,216 1,661,124,216 1,661,124,216 1,661,124,216 1,661,124,216 1,661,124,216 1,661,124,216 1,661,124,216 1,661,124,216 1,661,124,216 1,661,124,216 1,661,124,216 (cu.ft./yr) Volume Harmonic Flow<sup>(2)</sup> Mean (cfs) 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 CSO Volume Concentration<sup>(1)</sup> Background Stream 0.006433 (l/gm) 0.3409 10,500 0.7240 0.0390 0.0284 0.0174 0.0375 12.57 30.39 0.0011 3.36 7.87 2.25 1.53 (cu.ft/yr) 50,710 50,710 50,710 50,710 50,710 50,710 50,710 50,710 50,710 50,710 50,710 50,710 50,710 50,710 50,710 Loading 5.06E+05 (lbs/yr) CSO 526 569 0.3 8.9 0.00 0.2 43 3.4 27 56 1.2 0.6 0.0 23 Fecal Coliform (#/100ml) **Fotal Kjeldahl Nitrogen Fotal Suspended Solids** Dissolved Oxygen Pollutant Fotal Phosphorus Total Aluminum **Fotal Phenols** Oil & Grease Total Copper Total Zinc **Fotal Lead** Mercury BOD, COD Silver

Impact of CSO Discharge on Chester Creek Water Quality for Baseline Typical Year at Regulator 12

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Chester Creek near Chester, PA (01477000) transfered to mouth. <sup>(3)</sup> Background load based on total annual flow =

525,600 min

3-17

Table 3.2-2

Impact of CSO Discharge on Ridley Creek Water Quality for Baseline Typical Year

|                          |          |            | Stream                       | Harmonic            |                | Stream              | cso        | CS0        |               | Water       |
|--------------------------|----------|------------|------------------------------|---------------------|----------------|---------------------|------------|------------|---------------|-------------|
|                          | cso      |            | Background                   | Mean                | Average Stream | Background          | Percent of | Percent of | Estimated     | Quality     |
|                          | Loading  | CSO Volume | Concentration <sup>(1)</sup> | Flow <sup>(2)</sup> | Volume         | Load <sup>(3)</sup> | Background | Background | Concentration | Standard    |
| Pollutant                | (Ibs/yr) | (cu.ft/yr) | (mg/l)                       | (cfs)               | (cu.ft./yr)    | (lbs/yr)            | Volume     | Load       | (mg/l)        | (mg/l)      |
| Total Suspended Solids   | 295,015  | 26,399,804 | 35.48                        | 27.6                | 870,621,189    | 1,928,396           | 2.9%       | 13.3%      | 39.70         | No Criteria |
| BOD <sub>5</sub>         | 40,150   | 26,399,804 | 3.12                         | 27.6                | 870,621,189    | 169,744             | 2.9%       | 19.1%      | 3.75          | No Criteria |
| COD                      | 305,743  | 26,399,804 | 10                           | 27.6                | 870,621,189    | 543,562             | 2.9%       | 36.0%      | 15.16         | No Criteria |
| Fecal Coliform (#/100ml) | 1.90E+09 | 26,399,804 | 16,104                       | 27.6                | 870,621,189    | 8.8E+09             | 2.9%       | 17.8%      | 19,022        | 770         |
| Dissolved Oxygen         | 13,583   | 26,399,804 | 8.1312                       | 27.6                | 870,621,189    | 441,981             | 2.9%       | 3.0%       | 8.13          | > 6.5       |
| Oil & Grease             | 29,846   | 26,399,804 | 2.00                         | 27.6                | 870,621,189    | 108,712             | 2.9%       | 21.5%      | 2.47          | No Criteria |
| Total Kjeldahl Nitrogen  | 12,777   | 26,399,804 | 0.98                         | 27.6                | 870,621,189    | 53,300              | 2.9%       | 19.3%      | 1.18          | No Criteria |
| Total Phosphorus         | 1,894    | 26,399,804 | 0.3735                       | 27.6                | 870,621,189    | 20,301              | 2.9%       | 8.5%       | 0.396         | No Criteria |
| Total Zinc               | 612      | 26,399,804 | 0.0346                       | 27.6                | 870,621,189    | 1,880               | 2.9%       | 24.6%      | 0.0445        | 0.0866451   |
| Total Copper             | 161      | 26,399,804 | 0.0275                       | 27.6                | 870,621,189    | 1,496               | 2.9%       | 9.7%       | 0.0296        | 0.0093958   |
| Total Aluminum           | 4,392    | 26,399,804 | 0.3020                       | 27.6                | 870,621,189    | 16,416              | 2.9%       | 21.1%      | 0.3715        | 0.087       |
| Total Lead               | 269      | 26,399,804 | 0.0164                       | 27.6                | 870,621,189    | 890                 | 2.9%       | 23.2%      | 0.0207        | 0.0019764   |
| Mercury                  | 0.43     | 26,399,804 | 0.00144                      | 27.6                | 870,621,189    | 78                  | 2.9%       | 0.5%       | 0.0014        | 0.000012    |
| Silver                   | 16       | 26,399,804 | 0.0379                       | 27.6                | 870,621,189    | 2,061               | 2.9%       | 0.8%       | 0.0371        | No Criteria |
| Total Phenols            | 134      | 26,399,804 | 0.005315                     | 27.6                | 870,621,189    | 289                 | 2.9%       | 31.7%      | 0.0076        | 0.02        |

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Ridley Creek at Media, PA (01476480) transfered to mouth.

(3) Background load based on total annual flow = 525,600 min

April 1999

3-18

Table 3.2-2a

Impact of CSO Discharge on Ridley Creek Water Quality for Baseline Typical Year at Regulator 18

|                          |          |            | Stream                       | Harmonic            |                | Stream              | CS0        | CS0        |               | Water       |
|--------------------------|----------|------------|------------------------------|---------------------|----------------|---------------------|------------|------------|---------------|-------------|
|                          | CSO      |            | Background                   | Mean                | Average Stream | Background          | Percent of | Percent of | Estimated     | Quality     |
|                          | Loading  | CSO Volume | Concentration <sup>(1)</sup> | Flow <sup>(2)</sup> | Volume         | Load <sup>(3)</sup> | Background | Background | Concentration | Standard    |
| Pollutant                | (lbs/yr) | (cu.ft/yr) | (I/gm)                       | (cfs)               | (cu.ft./yr)    | (lbs/yr)            | Volume     | Load       | (Il/gm)       | (I/gm)      |
| Total Suspended Solids   | 160,820  | 14,387,055 | 35.48                        | 27.6                | 870,621,189    | 1,928,396           | 1.6%       | 7.7%       | 37.81         | No Criteria |
| BOD <sub>5</sub>         | 21,318   | 14,387,055 | 3.12                         | 27.6                | 870,621,189    | 169,744             | 1.6%       | 11.2%      | 3.46          | No Criteria |
| coD                      | 165,596  | 14,387,055 | 10                           | 27.6                | 870,621,189    | 543,562             | 1.6%       | 23.4%      | 12.83         | No Criteria |
| Fecal Coliform (#/100ml) | 9.83E+08 | 14,387,055 | 16,104                       | 27.6                | 870,621,189    | 8.8E+09             | I.6%       | 10.1%      | 17,621        | 770         |
| Dissolved Oxygen         | 7,415    | 14,387,055 | 8.1312                       | 27.6                | 870,621,189    | 441,981             | 1.6%       | 1.6%       | 8.13          | > 6.5       |
| Oil & Grease             | 16,240   | 14,387,055 | 2.00                         | 27.6                | 870,621,189    | 108,712             | 1.6%       | 13.0%      | 2.26          | No Criteria |
| Total Kjeldahl Nitrogen  | 6,938    | 14,387,055 | 0.98                         | 27.6                | 870,621,189    | 53,300              | 1.6%       | 11.5%      | 1.09          | No Criteria |
| Total Phosphorus         | 1,029    | 14,387,055 | 0.3735                       | 27.6                | 870,621,189    | 20,301              | 1.6%       | 4.8%       | 0.386         | No Criteria |
| Total Zinc               | 335      | 14,387,055 | 0.0346                       | 27.6                | 870,621,189    | 1,880               | 1.6%       | 15.1%      | 0.0401        | 0.0866451   |
| Total Copper             | 88       | 14,387,055 | 0.0275                       | 27.6                | 870,621,189    | 1,496               | 1.6%       | 5.6%       | 0.0287        | 0.0093958   |
| Total Aluminum           | 2,401    | 14,387,055 | 0.3020                       | 27.6                | 870,621,189    | 16,416              | 1.6%       | 12.8%      | 0.3405        | 0.087       |
| Total Lead               | 147      | 14,387,055 | 0.0164                       | 27.6                | 870,621,189    | 890                 | 1.6%       | 14.2%      | 0.0188        | 0.0019764   |
| Mercury                  | 0.23     | 14,387,055 | 0.0014                       | 27.6                | 870,621,189    | 78                  | 1.6%       | 0.3%       | 0.0014        | 0.000012    |
| Silver                   | 8.8      | 14,387,055 | 0.0379                       | 27.6                | 870,621,189    | 2,061               | 1.6%       | 0.4%       | 0.0375        | No Criteria |
| Total Phenols            | 73       | 14,387,055 | 0.00532                      | 27.6                | 870,621,189    | 289                 | 1.6%       | 20.1%      | 0.0065        | 0.02        |

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Ridley Creek at Media, PA (01476480) transfered to mouth.

(3) Background load based on total annual flow = 525,600 min

Table 3.2-2b

Impact of CSO Discharge on Ridley Creek Water Quality for Baseline Typical Year at Regulator 17

|                          |          |            | Stream                       | Harmonic            |                | Stream              | cso        | CS0        |               | Water       |
|--------------------------|----------|------------|------------------------------|---------------------|----------------|---------------------|------------|------------|---------------|-------------|
|                          | CSO      |            | Background                   | Mean                | Average Stream | Background          | Percent of | Percent of | Estimated     | Ouality     |
|                          | Loading  | CSO Volume | Concentration <sup>(1)</sup> | Flow <sup>(2)</sup> | Volume         | Load <sup>(3)</sup> | Background | Background | Concentration | Standard    |
| Pollutant                | (lbs/yr) | (cu.ft/yr) | (mg/l)                       | (cfs)               | (cu.ft./yr)    | (lbs/yr)            | Volume     | Load       | (l/gm)        | (I/gm)      |
| Total Suspended Solids   | 64,543   | 5,806,898  | 37.81                        | 27.6                | 885,008,244    | 2,089,216           | 0.7%       | 3.0%       | 38.72         | No Criteria |
| BODs                     | 13,092   | 5,806,898  | 3.46                         | 27.6                | 885,008,244    | 191,062             | 0.7%       | 6.4%       | 3.67          | No Criteria |
| COD                      | 75,006   | 5,806,898  | 12.83                        | 27.6                | 885,008,244    | 709,158             | 0.7%       | 9.6%       | 14.10         | No Criteria |
| Fecal Coliform (#/100mt) | 8.15E+08 | 5,806,898  | 17,621                       | 27.6                | 885,008,244    | 9.7E+09             | 0.7%       | 7.7%       | 18,972        | 770         |
| Dissolved Oxygen         | 2,896    | 5,806,898  | 8.13                         | 27.6                | 885,008,244    | 449,396             | 0.7%       | 0.6%       | 8.13          | > 6.5       |
| Oil & Grease             | 6,753    | 5,806,898  | 2.26                         | 27.6                | 885,008,244    | 124,953             | 0.7%       | 5.1%       | 2.37          | No Criteria |
| Total Kjeldahl Nitrogen  | 3,001    | 5,806,898  | 1.09                         | 27.6                | 885,008,244    | 60,238              | 0.7%       | 4.7%       | 1.14          | No Criteria |
| Total Phosphorus         | 440      | 5,806,898  | 0.386                        | 27.6                | 885,008,244    | 21,330              | 0.7%       | 2.0%       | 0.391         | No Criteria |
| Total Zinc               | 126      | 5,806,898  | 0.0401                       | 27.6                | 885,008,244    | 2,215               | 0.7%       | 5.4%       | 0.0421        | 0.0866451   |
| Total Copper             | 33       | 5,806,898  | 0.0287                       | 27.6                | 885,008,244    | 1,585               | 0.7%       | 2.0%       | 0.0291        | 0.0093958   |
| Total Aluminum           | 910      | 5,806,898  | 0.3405                       | 27.6                | 885,008,244    | 18,816              | 0.7%       | 4.6%       | 0.3547        | 0.087       |
| Total Lead               | 53       | 5,806,898  | 0.0188                       | 27.6                | 885,008,244    | 1,037               | 0.7%       | 4.8%       | 0.0196        | 0.0019764   |
| Mercury                  | 0.09     | 5,806,898  | 0.0014                       | 27.6                | 885,008,244    | 78                  | 0.7%       | 0.1%       | 0.0014        | 0.000012    |
| Silver                   | 3.5      | 5,806,898  | 0.0375                       | 27.6                | 885,008,244    | 2,070               | 0.7%       | 0.2%       | 0.0373        | No Criteria |
| Total Phenols            | 33       | 5,806,898  | 0.00654                      | 27.6                | 885,008,244    | 362                 | 0.7%       | 8.3%       | 0.0071        | 0.02        |

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Ridley Creek at Media, PA (01476480) transfered to mouth.

(3) Background load based on total annual flow =

525,600 min

3-20

April 1999

4

Watqual.xls Ridley Creek Annual Impact

Table 3.2-2c

Impact of CSO Discharge on Ridley Creek Water Quality for Baseline Typical Year at Regulator 16

|                          |          |            | Stream                       | Harmonic            |                | Stream              | cso        | CSO        |               | Water       |
|--------------------------|----------|------------|------------------------------|---------------------|----------------|---------------------|------------|------------|---------------|-------------|
|                          | cso      |            | Background                   | Mean                | Average Stream | Background          | Percent of | Percent of | Estimated     | Quality     |
|                          | Loading  | CSO Volume | Concentration <sup>(1)</sup> | Flow <sup>(2)</sup> | Volume         | Load <sup>(3)</sup> | Background | Background | Concentration | Standard    |
| Pollutant                | (lbs/yr) | (cu.ft/yr) | (mg/l)                       | (cfs)               | (cu.ft./yr)    | (lbs/yr)            | Volume     | Load       | (I/gm)        | (mg/l)      |
| Total Suspended Solids   | 52,271   | 4,655,316  | 38.72                        | 27.6                | 890,815,142    | 2,153,759           | 0.5%       | 2.4%       | 39.46         | No Criteria |
| BOD5                     | 4,046    | 4,655,316  | 3.67                         | 27.6                | 890,815,142    | 204,153             | 0.5%       | 1.9%       | 3.72          | No Criteria |
| COD                      | 48,392   | 4,655,316  | 14.10                        | 27.6                | 890,815,142    | 784,164             | 0.5%       | 5.8%       | 14.89         | No Criteria |
| Fecal Coliform (#/100ml) | 5.21E+07 | 4,655,316  | 18,972                       | 27.6                | 890,815,142    | 1.1E+10             | 0.5%       | 0.5%       | 18,966        | 770         |
| Dissolved Oxygen         | 2,460    | 4,655,316  | 8.13                         | 27.6                | 890,815,142    | 452,292             | 0.5%       | 0.5%       | 8.13          | > 6.5       |
| Oil & Grease             | 5,129    | 4,655,316  | 2.37                         | 27.6                | 890,815,142    | 131,706             | 0.5%       | 3.7%       | 2.45          | No Criteria |
| Total Kjeldahl Nitrogen  | 2,118    | 4,655,316  | 1.14                         | 27.6                | 890,815,142    | 63,239              | 0.5%       | 3.2%       | 1.17          | No Criteria |
| Total Phosphorus         | 317      | 4,655,316  | 0.391                        | 27.6                | 890,815,142    | 21,770              | 0.5%       | 1.4%       | 0.395         | No Criteria |
| Total Zinc               | 114      | 4,655,316  | 0.0421                       | 27.6                | 890,815,142    | 2,341               | 0.5%       | 4.7%       | 0.0439        | 0.0866451   |
| Total Copper             | 30       | 4,655,316  | 0.0291                       | 27.6                | 890,815,142    | 1,617               | 0.5%       | 1.8%       | 0.0295        | 0.0093958   |
| Total Aluminum           | 814      | 4,655,316  | 0.3547                       | 27.6                | 890,815,142    | 19,726              | 0.5%       | 4.0%       | 0.3674        | 0.087       |
| Total Lead               | 52       | 4,655,316  | 0.0196                       | 27.6                | 890,815,142    | 1,090               | 0.5%       | 4.6%       | 0.0204        | 0.0019764   |
| Mercury                  | 0.07     | 4,655,316  | 0.0014                       | 27.6                | 890,815,142    | 78                  | 0.5%       | 0.1%       | 0.0014        | 0.000012    |
| Silver                   | 2.9      | 4,655,316  | 0.0373                       | 27.6                | 890,815,142    | 2,073               | 0.5%       | 0.1%       | 0.0371        | No Criteria |
| Total Phenols            | 21       | 4,655,316  | 0.00709                      | 27.6                | 890,815,142    | 394                 | 0.5%       | 5.1%       | 0.0074        | 0.02        |

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Ridley Creek at Media, PA (01476480) transfered to mouth.

 $^{(3)}$  Background load based on total annual flow = 525,600 min

Table 3.2-2d

Impact of CSO Discharge on Ridley Creek Water Quality for Baseline Typical Year at Regulator 15

|                          |          |            | Stream                       | Harmonic            |                | Stream              | cs0        | CS0        |               | Water       |
|--------------------------|----------|------------|------------------------------|---------------------|----------------|---------------------|------------|------------|---------------|-------------|
|                          | cso      |            | Background                   | Mean                | Average Stream | Background          | Percent of | Percent of | Estimated     | Ouality     |
|                          | Loading  | CSO Volume | Concentration <sup>(1)</sup> | Flow <sup>(2)</sup> | Volume         | Load <sup>(3)</sup> | Background | Background | Concentration | Standard    |
| Pollutant                | (lbs/yr) | (cu.ft/yr) | (I/gm)                       | (cfs)               | (cu.ft./yr)    | (lbs/yr)            | Volume     | Load       | (Il/gm)       | (mg/l)      |
| Total Suspended Solids   | 17,381   | 1,550,536  | 39.46                        | 27.6                | 895,470,458    | 2,206,030           | 0.2%       | 0.8%       | 39.70         | No Criteria |
| BOD <sub>5</sub>         | 1,695    | 1,550,536  | 3.72                         | 27.6                | 895,470,458    | 208,199             | 0.2%       | 0.8%       | 3.75          | No Criteria |
| COD                      | 16,749   | 1,550,536  | 14.89                        | 27.6                | 895,470,458    | 832,556             | 0.2%       | 2.0%       | 15.16         | No Criteria |
| Fecal Coliform (#/100ml) | 4.97E+07 | 1,550,536  | 18,966                       | 27.6                | 895,470,458    | 1.1E+10             | 0.2%       | 0.5%       | 19,022        | 770         |
| Dissolved Oxygen         | 812      | 1,550,536  | 8.13                         | 27.6                | 895,470,458    | 454,753             | 0.2%       | 0.2%       | 8.13          | > 6.5       |
| Oil & Grease             | 1,724    | 1,550,536  | 2.45                         | 27.6                | 895,470,458    | 136,835             | 0.2%       | 1.2%       | 2.47          | No Criteria |
| Total Kjeldahl Nitrogen  | 721      | 1,550,536  | 1.17                         | 27.6                | 895,470,458    | 65,356              | 0.2%       | 1.1%       | 1.18          | No Criteria |
| Total Phosphorus         | 108      | 1,550,536  | 0.395                        | 27.6                | 895,470,458    | 22,087              | 0.2%       | 0.5%       | 0.396         | No Criteria |
| Total Zinc               | 37       | 1,550,536  | 0.0439                       | 27.6                | 895,470,458    | 2,455               | 0.2%       | 1.5%       | 0.0445        | 0.0866451   |
| Total Copper             | 10       | 1,550,536  | 0.0295                       | 27.6                | 895,470,458    | 1,648               | 0.2%       | 0.6%       | 0.0296        | 0.0093958   |
| Total Aluminum           | 267      | 1,550,536  | 0.3674                       | 27.6                | 895,470,458    | 20,540              | 0.2%       | 1.3%       | 0.3715        | 0.087       |
| Total Lead               | 17       | 1,550,536  | 0.0204                       | 27.6                | 895,470,458    | 1,142               | 0.2%       | 1.5%       | 0.0207        | 0.0019764   |
| Mercury                  | 0.02     | 1,550,536  | 0.0014                       | 27.6                | 895,470,458    | 78                  | 0.2%       | 0.0%       | 0.0014        | 0.000012    |
| Silver                   | 1.0      | 1,550,536  | 0.0371                       | 27.6                | 895,470,458    | 2,076               | 0.2%       | 0.0%       | 0.0371        | No Criteria |
| Total Phenols            | 7.4      | 1,550,536  | 0.00743                      | 27.6                | 895,470,458    | 416                 | 0.2%       | 1.7%       | 0.0076        | 0.02        |

<sup>(1)</sup> Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Ridley Creek at Media, PA (01476480) transfered to mouth.

 $^{(3)}$  Background load based on total annual flow =

525,600 min

Watqual.xls Ridley Creek Annual Impact

April 1999

3-22

Table 3.2-3

Impact of CSO Discharge on Delaware River Water Quality for Baseline Typical Year

|                                         |           |            | Stream                       | Harmonic            |                    | Stream              | CSO Percent | CS0        |               | Water       |
|-----------------------------------------|-----------|------------|------------------------------|---------------------|--------------------|---------------------|-------------|------------|---------------|-------------|
|                                         | CS0       |            | Background                   | Mean                |                    | Background          | of          | Percent of | Estimated     | Quality     |
|                                         | Loading   | CSO Volume | Concentration <sup>(1)</sup> | Flow <sup>(2)</sup> | Average Stream     | Load <sup>(3)</sup> | Background  | Background | Concentration | Standard    |
| Pollutant                               | (lbs/yr)  | (cu.ft/yr) | (hg/l)                       | (cfs)               | Volume (cu.ft./yr) | (lbs/yr)            | Volume      | Load       | (Il/gm)       | (l/gm)      |
| Total Suspended Solids                  | 1,002,331 | 89,534,625 | 19.82                        | 8711.0              | 274,710,096,000    | 339,988,482         | 0.0%        | 0.3%       | 19.87         | No Criteria |
| BOD <sub>5</sub>                        | 114,306   | 89,534,625 | 2.64                         | 8711.0              | 274,710,096,000    | 45,236,323          | 0.0%        | 0.3%       | 2.64          | No Criteria |
| COD                                     | 997,128   | 89,534,625 | 25.678                       | 8711.0              | 274,710,096,000    | 440,408,831         | 0.0%        | 0.2%       | 25.73         | No Criteria |
| Fecal Coliform (#/100ml) <sup>(4)</sup> | 4.40E+09  | 89,534,625 | 834                          | 8711.0              | 274,710,096,000    | 1.4E+11             | 0.0%        | 3.0%       | 859           | 770/200     |
| Dissolved Oxygen                        | 46,537    | 89,534,625 | 6.4632                       | 8711.0              | 274,710,096,000    | 110,851,716         | 0.0%        | 0.0%       | 6.46          | >6.5        |
| Oil & Grease                            | 100,255   | 89,534,625 | 2.00                         | 8711.0              | 274,710,096,000    | 34,302,425          | 0.0%        | 0.3%       | 2.01          | No Criteria |
| Total Kjeldahl Nitrogen                 | 42,357    | 89,534,625 | 0.71                         | 8711.0              | 274,710,096,000    | 12,171,701          | %0.0        | 0.3%       | 0.71          | No Criteria |
| Total Phosphorus                        | 6,301     | 89,534,625 | 0.1652                       | 8711.0              | 274,710,096,000    | 2,833,380           | %0.0        | 0.2%       | 0.166         | No Criteria |
| Total Zinc                              | 2,121     | 89,534,625 | 0.0365                       | 8711.0              | 274,710,096,000    | 626,808             | 0.0%        | 0.3%       | 0.0367        | 0.0809746   |
| Total Copper                            | 559       | 89,534,625 | 0.0162                       | 8711.0              | 274,710,096,000    | 277,730             | 0.0%        | 0.2%       | 0.0162        | 0.0087758   |
| Total Aluminum                          | 15,183    | 89,534,625 | 0.4200                       | 8711.0              | 274,710,096,000    | 7,203,509           | 0.0%        | 0.2%       | 0.4207        | 0.087       |
| Total Lead                              | 945       | 89,534,625 | 0.0204                       | 8711.0              | 274,710,096,000    | 349,130             | 0.0%        | 0.3%       | 0.0204        | 0.0018105   |
| Mercury                                 | 1.45      | 89,534,625 | 0.0011                       | 8711.0              | 274,710,096,000    | 19,036              | 0.0%        | 0.0%       | 0.0011        | 0.000012    |
| Silver                                  | 55        | 89,534,625 | 0.0379                       | 8711.0              | 274,710,096,000    | 650,374             | %0.0        | 0.0%       | 0.0379        | No Criteria |
| Total Phenols                           | 438       | 89,534,625 | 0.005315                     | 8711.0              | 274,710,096,000    | 91,159              | 0.0%        | 0.5%       | 0.0053        | 0.02        |

(1) Based on STORET retrieved actual data.

(2) Harmonic mean flow is sum from USGS gages Delaware River at Trenton (01463500) and Schuykill River at Philadelphia (01474500) transfered to mouth.

<sup>(3)</sup> Background load based on total annual flow = 525,600 min

<sup>(4)</sup> Criteria below RM 81.8 is 200 #/100ml and 770 #/100ml above RM 81.8.

3-23

ν.

# **SECTION 4**

# PROPOSED CONTROL ALTERNATIVES

# 4.1 INTRODUCTION

The development and evaluation of alternatives for CSO control in the DELCORA system was based on a review of the previously presented characterization of the DELCORA system and of CSO impacts upon receiving waters. This section of the LTCP provides site-specific analysis of various CSO control alternatives. The following steps were taken during the development of alternatives to meet CSO control goals:

- Identification of control alternatives.
- Preliminary sizing of control alternatives.
- Preliminary development of benefit/cost/performance relationships.
- Identification of preliminary site options and issues.
- Identification of preliminary operating strategies.
- Implementation timetables.
- Review of affordability to customers.

# 4.1.1 Identification of Control Alternatives

Control measures can include technologies, operating strategies, public policies and regulations, or other measures that would contribute to CSO control. A successful CSO control alternative will include combinations of various measures that provide the desired control, yet are technically, economically, and politically feasible. Control measures have been classified by US EPA (1995) as follows:

- Source controls--actions that affect the quantity or quality of runoff that enters the collection system.
- Collection system controls--actions that reduce CSO volume and frequency by removing or diverting runoff, maximizing the volume of flow stored in the collection system, or maximizing the capacity of the system to convey flow to a POTW.
- Storage technologies--actions that provide temporary storage of wet weather flows for subsequent treatment at the POTW.

• Treatment technologies--actions intended to reduce the pollutant loading to the receiving waters.

In selecting specific alternatives for consideration by DELCORA, the following observations from the previously presented sewer system characterization and baseline water quality impact analysis were considered:

- As discussed in Section 3.3, no environmentally sensitive areas were identified in the areas around the CSO outfalls.
- Water quality impacts from CSOs discharging to the Delaware River are negligible as indicated in Table 3.2-3.
- Based on the information presented in the Tables 3.2-1, 3.2-2, and 3.2-3, the potential for water quality improvement from CSO control is greatest along Ridley Creek given that the CSO discharge is a larger percentage of the flow and load. Lesser potential exists along Chester Creek.
- Based on the information presented in the Tables 3.2-1, 3.2-2, and 3.2-3, loadings from the sanitary sewage component of CSO discharges are minimal in comparison to stormwater loadings.
- In-system storage capacity is minimal, and isolated to certain portions of the sewer system.
- The potential to deliver more CSO to the WRTP is limited by sewer system capacity as depicted in Figure 2.5-1.
- The combination of the rapidly rising flow rates from the urban areas and the lack of additional interceptor capacity cause many of the regulators to close quickly in the modeled storms and slowly re-open as flows drop following a storm because of the limited interceptor capacity.
- Based on the information presented in the Tables 3.2-1, 3.2-2, and 3.2-3, the CSOs do not create any water use impairments that do not already exist based on background concentrations exceeding the specific water quality standard.

# 4.2 SOURCE CONTROL ALTERNATIVES

As stated above, source controls are actions that affect the quantity or quality of runoff that enters the collection system. Source controls are typically non-structural control measures and include street sweeping, solid waste/litter management, catch basin cleaning, and soil erosion control. Due to the highly urbanized development of the area, soil erosion is not considered to be significant, thus soil erosion control was not evaluated.

## 4.2.1 Street Sweeping

Street sweeping can be used to address two CSO pollution control concerns, pollutant removal and floatables control. The effectiveness of street sweeping corresponds to a number of factors including: the frequency of sweeping, particle size/type of equipment used, condition of the streets, the accumulation rate, and parking controls. The particle size is important since pound per pound, more pollutants are bound to fine particles than large particles. A study conducted by the EPA entitled Characterizing and Controlling Urban Runoff Through Street and Sewerage Cleaning (Pitt, 1985) indicated that street cleaning improved the quality of urban runoff by a maximum of only 10 percent. It should be noted however, that new equipment has been refined to collect a higher percentage of fine material than older equipment. The study examined the effectiveness of various types of cleaners and concluded that regenerative air street cleaners performed better at removing fine particles than mechanical-broom street cleaners. Mechanical-broom street cleaners were effective, however, in removing the larger particles and litter from the streets.

It is also important to note that this study was conducted in Bellevue, Washington, where the precipitation patterns are different. Subsequent studies in other areas of the country, including Wisconsin and California, have indicated that street cleaning has little or no impact on stormwater runoff quality. A study conducted by the City of Portland entitled Combined Sewer Overflow SFO Compliance: Interim Control Measures Study (Portland, 1993) found that a light-spray flusher truck immediately preceding a broom sweeper resulted in an average pickup efficiency of 39.4 percent while following the flusher truck and broom sweeper with a vacuum-type sweeper increased the pickup efficiency to 74.2 percent.

Based on these facts, there are two possible alternatives for street sweeping. The first alternative, which is based solely on contributing to the control of floatables, would be a sweeping program that covers the entire city at least once every three weeks. The second alternative, based on the study conducted in Portland, would involve a sweeping program employing a three-vehicle sweeping train that covers the entire city at least once a month. This will help to control floatables as well as to potentially improve runoff water quality.

## **4.2.1.1 Current Practices**

All street sweeping falls under the jurisdiction of the City of Chester. Current sweeping practices of the City utilize two mechanical sweepers each with a designated area and route. This program, weather permitting, is designed to clean all the City streets once each week. This current practice should be sufficient to reduce floatables.

# 4.2.1.2 Cost of Additional Street Sweeping

A sweeping program focusing on both floatable/litter control and runoff quality improvement would require one sweeping train needing 9 days to cover the entire City. This alternative, coupled with the need to have a spare sweeper, would require the purchase of one vacuum sweeper at the cost of approximately \$150,000, the purchase of a light-spray flush truck at a cost of \$100,000, and the hiring of one additional employee to operate the sweepers full time at an annual cost of approximately \$45,000 (salary plus benefits). The Portland study estimated sweeping costs using the three vehicle train to be \$46.01 per curb mile swept, which for the City of Chester would translate to approximately \$75,000, assuming nine sweepings per year.

Additionally, sweeping equipment has high maintenance requirements and would require between \$10,000 and \$15,000 annually per sweeper for operation and maintenance. Additional debris disposal costs were not estimated.

#### 4.2.2 Inlet Cleaning

As with street sweeping, regular inlet cleaning can potentially improve CSO discharge quality. Pitt (1985) estimated that cleaning catch basins and sewers twice a year can reduce TSS and some heavy metals by 10 to 25 percent and reduce COD, nutrients, and light metals by 5 to 10 percent as compared to not cleaning at all. The study observed that sump inlets collected a greater amount of solids than those inlets with the outlet located on the bottom of the structure but it is important to note that catch basins will trap the larger particles which, as stated above, contain fewer pollutants than fine particles.

1.5

A benefit of the trapping and removal of the larger particles is that removal of this material will lessen the potential of deposition and blockages in the collectors and interceptors. As more debris is deposited, more pollutants will accumulate that can be washed out of the system during a large storm event. An additional benefit is the capture of additional floatable material.

#### **4.2.2.1 Current Practices**

Inlet cleaning in the City of Chester is conducted on a limited as-needed basis and concentrates on blocked or poor performing inlets. All inlets are inspected twice a year and those with significant accumulation are cleaned. The City of Chester has one vacuum truck available for inlet cleaning but personnel are not always available to field the required 3-man crew.

#### 4.2.2.2 Cost of Additional Inlet Cleaning

The City of Chester contains approximately 1,200 inlets that require cleaning, of which 1,140 are curb open types and 60 are PADOT Type M inlets. If an additional cleaning crew is fielded, each crew would need to clean approximately 6 inlets per day in order to clean each inlet twice a year. One additional crew would require the purchase of an additional vacuum truck at a cost of \$180,000, the hiring of three employees (at \$45,000 each), and approximately \$10,000 for annual operation and maintenance costs.

All inlet cleaning falls under the jurisdiction of the City of Chester. DELCORA can only encourage more frequent inlet cleaning.

#### 4.2.3 Inlet Replacement

One proposal to reduce the floatables being discharged through the CSO system is to replace the curb opening inlets with grate inlets. In the City of Chester there are approximately 1,140 inlets that would need to be replaced. The inlet change would not only require the installation of a new inlet, but would necessitate replacement of curbing to facilitate easier turning and incorporate

April 1999

depressed curbing for handicapped access. To increase the effectiveness of the inlets to remove sediments, a one-foot-deep sump is recommended for all new inlets.

Based on correspondence with the City (see Appendix G), 100 inlets have been replaced in the last three years.

## 4.2.3.1 Typical Design

Figure 4.2-1 shows a typical PADOT inlet with a 1-foot sump. The sump and elbow function to keep sewer gases from escaping.

## 4.2.3.2 Cost of Improvements

The replacement of an existing open-face inlet with a PADOT inlet with a Type M, bicycle-safe grate, sidewalk, and curbing improvements would cost approximately \$12,120 per inlet. This alternative would need to be coupled with increased street sweeping to collect accumulated floatables. The total project cost of program to replace all open-face inlets in the City would be approximately \$13,816,800. This program would need to be coupled with increased street sweeping to collect the floatables accumulating on the grates.

All inlet replacement or repair falls under the jurisdiction of the City of Chester.

# 4.3 COLLECTION SYSTEM CONTROL ALTERNATIVES

Collection system controls, storage and treatment technologies are typically referred to as structural control measures since they require structural changes to the system to implement. These controls include maximizing use of the existing system, sewer separation, infiltration/inflow control, coarse screening, and disinfection.

4-6

### 4.3.1 Sewer Cleaning

DELCORA maintains the interceptors, combined sewers, and separated sanitary sewers. The storm sewers and all storm drain interconnects are maintained by the City of Chester. Sewer cleaning is important in that a number of the interceptors and combined sewers have flat slopes that accelerate sediment accumulation in the lines.

### **4.3.1.1 Current Practices**

DELCORA has two vacuum trucks equipped to clean sewer lines. The procedure to clean the lines typically consists of jet washing the line and trapping the solids for removal with the vacuum truck. For sewers that have a particularly large amount of deposited material, a bucket on a cable is run through the sewer to remove the material. DELCORA currently cleans most of the sewers for which it is responsible approximately once a year.

## 4.3.1.2 Cost of Additional Sewer Cleaning

In order to clean the sewers twice a year on average, DELCORA would need one additional crew (three employees at \$45,000 each) and would need to purchase an additional vacuum truck equipped to clean sewers at a cost of \$180,000. Additionally approximately \$10,000 would be required for annual operation and maintenance costs.

# 4.3.2 Regulator Replacement

Reliable, functioning regulators and tide gates at all outfalls help to eliminate the possibility of dry-weather overflows and river water intrusion into the interceptor system and to maximize flow to the WRTP during storms. An option to achieve this is to replace all McNulty regulators with Brown & Brown regulators. Figure 4.3-1 shows a typical Brown & Brown design. The new Brown & Brown design incorporates an orifice plate that can be changed as future conditions allow more flow to be directed to the interceptors. Incorporated with this replacement of the regulators and tide gates would be the installation of a remote monitoring system. The

system's sensors would relay status information to WRTP for each regulator. This would enable plant operation personnel to monitor the regulator and tide gate conditions during storms, quickly identify malfunctioning equipment, and to dispatch a repair crew.

#### 4.3.2.1 Prioritizing of Regulator Replacement

The ranking of the regulators for replacement is based on replacing the McNulty regulators first. The ranking also establishes priority based upon the modeled CSO water quality impacts. Beginning with Ridley Creek, followed by Chester Creek and the Delaware River, the ranking on each receiving water is set by replacing those receiving the most flow first. The ranking begins with Regulator 16 on Ridley Creek then moves to Regulators 26, 22, 20, 25, 21, 24, and 12 on Chester Creek. After Regulators 8, 5, 3, 2, 9, 13, 10, 11, 14, 4, and 6 on the Delaware River have been replaced, the ranking of the regulators concludes with the replacement of the existing Brown & Brown regulators, specifically Regulators 18, 17, and 15 on Ridley Creek, Regulator 7 on the Delaware River, and Regulator 19 on Chester Creek. Regulator 23 will be combined with Regulator 12.

## 4.3.2.2 Cost of Regulator Replacement

Table 4.3-1 lists the type of regulators that will be replaced/rehabilitated, assesses the access difficulties, and notes the type of tide gate present, if any. A typical regulator replacement is estimated to cost \$75,000. The total regulator replacement program is estimated to be \$1,875,000. This cost includes the regulator mechanism, installation, and the remote monitoring system. Annual O&M costs should remain approximately the same since the monitoring system will allow better targeting of maintenance work.

#### 4.3.3 Sewer Separation

There are currently two major projects underway in the City of Chester that incorporates the separation of sanitary sewage and stormwater flows. The first project, currently under construction, is a new prison complex for Delaware County. The new complex incorporates new

4-8

20

storm sewers on a site of approximately 4.24 acres. The second project is the reconstruction of the S.R. 0291 (Industrial Highway), which will incorporate new storm sewers and replace sanitary sewers. The first section stretches from Ridley Creek to Franklin Street and is currently under construction. The remaining portion, while not yet designed, is expected to be completed within the next ten years. Figure 4.3-2 shows the extent of the separation expected from these projects. Only the projects currently being planned are being taken into account in this plan. No new projects are being considered. Costs are not included for sewer separation since this work is already funded by Delaware County and PADOT.

#### 4.3.4 Consolidation/Elimination of Regulators

A close examination of the sanitary/storm water flow separation projects currently underway or planned for completion in the twenty-year planning period of the LTCP reveals that the potential exists to eliminate several regulators and outfalls. The reconstruction of SR 0291 (Industrial Highway) and the new Delaware County prison complex will separate a large portion of the flows being generated tributary to Regulator 15. The reduction of flow, however, is not sufficient to eliminate the regulator given the current capacity of the Ridley Creek Interceptor and it cannot be combined with another regulator without a significant sewer reconstruction. The Industrial Highway work will also eliminate significant combined portions of the areas draining to Regulators 04, 12, and 23. The reduction of flow, however, is not sufficient to immediately eliminate any regulators given the current capacity of the interceptors and they cannot be combined with other regulators without a significant sewer reconstruction. Coupling the separation work with the diversion of the area draining to Regulator 06 may allow the removal of the regulator mechanism at Outfall 06, however, other system wide hydraulic constraints on the western side of the collection system preclude the diversion of these areas.

Given the current capacity of EPS-1 (through which all gravity sewers on the west side of the City of Chester flow), the limited capacity of the interceptor under the railroad tracks leading into EPS-1, and the peak capacity of the WRTP, any project that will increase flow from the west side of the City to the WRTP must incorporate conveyance system improvements, EPS-1 capacity expansion and provisions for bypassing secondary treatment. Secondary treatment bypassing

and the changes to the WRTP that are required to incorporate this are discussed in more detail in Subsection 4.6.

#### 4.3.5 Outfall Interceptor Along Ridley Creek

Since Ridley Creek has the lowest harmonic mean flow, the CSO discharge to Ridley Creek has the largest impact of all receiving waters. To alleviate the impact, an alternative consisting of an outfall interceptor was evaluated. The purpose of this outfall interceptor is to divert CSO away from Ridley Creek, which has a limited assimilative capacity, to the Delaware River, which has a larger assimilative capacity.

# 4.3.5.1 Conceptual Design and Siting

The proposed outfall interceptor will run from Regulator 17 on 9<sup>th</sup> Street to the confluence of Ridley Creek with the Delaware River. Figure 4.3-4 shows the approximate alignment of the interceptor. Initial investigations indicate that the interceptor can possibly run under the three railroad bridges as well as under the Essington Avenue and 2<sup>nd</sup> Street Bridges. Using the flows generated from Storm #73, the interceptor would be 42" in diameter for the 500 feet from Regulator 17 to Regulator 16 and 66" diameter for the remaining 2,200 feet to the discharge point. It is not economically feasible to extend the outfall interceptor to Regulator 18, which would still discharge to Ridley Creek.

#### 4.3.5.2 Cost of Outfall Interceptor

The cost of constructing the Ridley Creek outfall interceptor is estimated to be \$1,247,800. Appendix H provides a breakdown of the expected costs associated with this project. Annual O&M cost associated with the Outfall interceptor is estimated at 1% of project costs.

# 4.3.6 Maximizing Capacity of the Existing System

In an effort to take advantage of the available capacity in the West End Interceptor, the diversion of Subareas 6A, 4A, and a portion of 4B were evaluated to direct more flow toward the WRTP without impairing the operation of the West End Interceptor. An examination of the SWMM model results indicate that these diversions will not impair the West End Interceptor; however, they will increase the peak flow rate to the WRTP, and such increases will necessitate improvements to eliminate downstream bottlenecks and provide a secondary treatment bypass at WRTP. This is further described in Subsection 4.6.

# 4.3.6.1 Conceptual Design of Potential Areas for Directing Additional Flow to the Interceptors

Figures 4.3-5 and 4.3-6 show schematics of the intersections where insertion of a manhole would provide the connection needed to divert these areas. Before these connections can be considered, downstream capacity issues must be resolved and a more detailed hydraulic assessment of the system should be conducted.

# 4.3.6.2 Cost of Connections

The cost of the connection of Subarea 6A is estimated to be \$19,300 and the connection of Subareas 4A and a portion of 4B is estimated to be \$20,600. Appendix H provides a breakdown of the expected costs associated with this project. For purposes of program planning these costs must be added to the costs in Subsection 4.6.

# 4.3.7 Floatables Containment

The primary purpose of the below alternatives is the reduction of floatables to receiving waters to improve water quality and aesthetics. The installed traps are considered for the 12 outfalls on Ridley and Chester Creeks only at this time.

# 4.3.7.1 Outfall Containment Booms

One alternative to floatables control is to install floating collection nets and containment booms around the outfalls to contain floatables. The floating containment boom technology has been used across the waterways around the Fresh Kills Landfill on Staten Island, NY. These systems have no moving parts and a typical trap efficiency in excess of 90%. The problems with these types of systems are as follows:

- 1) Requires an in-stream construction that would result in an impediment to creek flow or navigation on the Delaware River.
- 2) Such an installation may be susceptible to ice damage during the winter and large debris damage during large storm events.
- 3) In-stream devices cannot be easily used under bridges because of the difficulty in removing the collected debris.

The floating types of systems (i.e., Fresh Creek Technologies, Inc. Netting TrashTrap system) cost approximately \$214,900 per outfall to install. Annual maintenance of this system is approximately \$10,800 exclusive of the disposal of the collected material. Assuming that three of this type will be needed, the total project cost for the outfall boom portion is estimated to be \$644,600.

## 4.3.7.2 In-Line Netting

Another alternative for floatables control is to install a chamber in the sewer between the regulator and the outfall. Fresh Creek Technologies, Inc., has developed a product with a lifting basket in a precast concrete chamber. These systems have no moving parts and a typical trap efficiency in excess of 90%. The difficulty with using this type of technology in the City of Chester CSO system is that many regulators are located in the center of streets and that periodic removal of the basket for cleaning would be difficult. The City of Philadelphia is currently undertaking a pilot study to determine the effectiveness of this type of control.

A typical in-street, in-line netting chamber costs approximately \$168,200 with approximately \$11,100 needed for annual maintenance exclusive of the cost of disposing of the collected debris. The debris removed can be disposed of with the grit from the WRTP. Assuming that four chambers of this type will be needed, the total project cost for the end-of-pipe netting portion is estimated to be \$672,800.

# 4.3.7.3 End-of-Pipe Netting

A third alternative for floatables control is to install a collection device at the outfall. This type of system attaches directly to the headwall. These systems have no moving parts and a typical trap efficiency in excess of 90%. The difficulty with this type of system is that access for debris removal can be very difficult if the outfall is under a bridge, as is the case with a number of the outfalls in the City of Chester. These systems could also impede creek flow and navigation (Delaware River).

A typical end-of-pipe system, such as the product developed by Fresh Creek Technologies, Inc., costs approximately \$154,200 with approximately \$11,300 needed for annual maintenance exclusive of the cost of disposing of the collected debris. Assuming that five of this type will be needed, the total project cost for the end-of-pipe netting portion is estimated to be \$770,900.

# 4.3.7.4 Skimming of Public Areas

The City of Philadelphia is undertaking a pilot study to determine if operating a skimming boat is effective in controlling floatables in public areas such as Penns Landing and the Schuylkill River Park. If this study determines that skimming is an effective control method, the City may implement skimming as a permanent control.

DELCORA's most impacted waters are the shallow creeks in which a skimmer boat cannot operate. It is cost prohibitive for DELCORA to consider owning/operating its own boat for the limited value of skimming the Delaware River waterfront.

#### 4.3.8 Summary of Collection System Control Alternatives

In summary, seven collection system control alternatives were evaluated.

| Alternative                             | <u>Capital Cost</u> | <u>Annual Cost</u> |
|-----------------------------------------|---------------------|--------------------|
| Increased Sewer Cleaning                | 180,000             | 145,000            |
| Regulator Replacement                   | 1,875,000           | -                  |
| Sewer Separation                        | Not Estimated       | Not Estimated      |
| Consolidation/Elimination of Regulators | Not Estimated       | Not Estimated      |
| Ridley Creek Outfall Interceptor        | 1,247,800           | 12,478             |
| Maximizing Collection System            | 39,900              | -                  |
| Floatables Containment                  | 2,095,300           | 133,300            |

# 4.4 STORAGE CONTROL ALTERNATIVES

Storage control alternatives are based on storing wet weather flows for subsequent treatment at the WRTP. Typical technologies used to accomplish storage include in-line measures, off-line near surface structures, and deep tunnel storage. The consideration of the in-line storage measures was immediately discounted since lateral connections to residences and businesses exist in all interceptors, so purposeful surcharging of the interceptors may cause property damage. Based on the estimated cost information presented in Manual - Combined Sewer Overflow Control (EPA, 1993), off-line storage for all four outfalls to Ridley Creek for the peak volume observed during the typical year for Regulators 15-18, would cost approximately \$21 million dollars and a deep tunnel project would cost in more than of \$27 million dollars (see Table 4.4-1). The alternatives are very capital intensive and thus completely unaffordable by the customer base in the City of Chester.

# 4.5 REMOTE TREATMENT CONTROL ALTERNATIVES

Treatment control alternatives are based on reducing the pollutant loads to the receiving waters during wet weather flows. Typical technologies used to accomplish treatment include coarse screening, off-line near surface sedimentation structures, swirl/vortex separators, and disinfection. Table 4.5-1 shows the estimated costs for the remote treatment control alternatives for CSOs to Ridley Creek for the peak flow rate observed during the typical year for Regulators 15-18, based on US EPA (1993). As with the storage control alternatives, the remote treatment control alternatives are very capital intensive and thus completely unaffordable by the customer base in the City of Chester.

# 4.6 WRTP TREATMENT CAPACITY

# 4.6.1 Impact of the Proposed CDPS Diversion Project

DELCORA has entered a peak flow reduction agreement with the Philadelphia Water Department that calls for the diversion of the Central Delaware County Authority's service area flows to DELCORA's WRTP. While the project focuses on peak (storm) flow reduction, it also results in the diversion of additional dry-weather flow to the WRTP as well. Projected flow quantities are a maximum of 12 MGD dry-weather to the WRTP and wet weather peak flow above 12 MGD will be diverted to PSWPCP.

This diversion will be accomplished by modifying DELCORA'S Central Delaware County Pumping Station (CDPS), constructing a new force main from CDPS to DELCORA's existing Chester Force Main, and using available capacity in that force main to convey the flow to WRTP. Previous studies by WESTON, Feasibility Study, Partial Diversion of Eastern Service Area Flows to WRTP-Phase 3 Report, February 1997, determined that both the Chester Force Main and WRTP have capacity for the additional volumes and loadings related to this project.

This project will not increase combined sewer overflows tributary to the CPS since:

- (1) The CPS will not re-pump the flow,
- (2) the CPS will still have capacity to pump up to a 30 MGD rate to the force main before activating the bypass pumps, and
- (3) flow split to PSWPCP can be increases during peak events.

Also, it will not increase combined sewer overflows tributary to WRTP, since it will not use influent pumping capacity at WRTP, and since sewer system flows to WRTP are primarily limited by conveyance capacity, not in-plant treatment capacity. The project will also shift the treated effluent loading to the Delaware River from the Philadelphia area southward.

Additional benefits of this project include reducing the potential for storm-related sewer backups in the CDCA Service Area, and making additional capacity available in the Philadelphia Southwest Water Pollution Control Plant (PSWPCP) for treatment of City of Philadelphia CSO.

# 4.6.2 Maximum Treatment Capacity And Potential Secondary Bypassing At The WRTP

US EPA's LTCP Guidance states:

Third, the CSO Control Policy addresses the specific case where existing primary treatment capacity at a POTW exceeds secondary treatment capacity and it is not possible to utilize the full primary treatment capacity without overloading the secondary facilities. For such cases, the CSO Control Policy states that at the request of the municipality, EPA may allow an NPDES permit "...to authorize a CSO-related bypass of the secondary treatment portion of the POTW treatment plant for combined sewer flows in certain identified circumstances" (II.C.7.). Under this provision, flows to the POTW within the capacity of primary treatment facilities but in excess of the capacity of secondary treatment facilities may be diverted around the secondary facilities, provided that "...all wet weather flows passing the headworks of the POTW treatment plant will receive at least primary clarification and solids and floatables removal and disposal, and disinfection, where necessary, and any other treatment that can reasonably be provided" (II.C.7). In addition, the CSO-related bypass should not cause exceedance of WQS.

This evaluation includes an examination of the grit chamber, primary settling tanks and chlorination facilities (with the assumption that post-aeration facilities may be converted to chlorine contact tanks). Previously it has been established that the aeration/clarification system could handle a peak flow of 85 MGD. At this flow rate, the surface loading rate of the secondary clarifiers would be the limiting factor per the PADEP "Domestic Wastewater Facilities Manual" (August 1991). The surface overflow rate per the manual is 1,200 gpd/ft<sup>2</sup>, which is the surface overflow rate of the WRTP at a peak flow of 85 MGD. For this evaluation, it is assumed that up

to 85 MGD can be treated in the WRTP. The rest needs to be bypassed from the effluent channels of the primaries to the existing post-aeration facilities.

# 4.6.2.1 Primary Tanks

Per "Greeley and Hanson's (G&H) "Plant Operations and Re-Rating Study", June 1984, there are 8 primary tanks, each 155.5 ft by 41.5 ft wide by 8.75 ft in depth. The total surface area is 51,626 ft<sup>2</sup>. The total weir in length is 1,400 ft. The "Wastewater Facility Manual" states:

"Surface overflow rates for primary tanks not receiving waste activated sludge should not exceed 1,000 gallons per day per square foot at maximum monthly average flow (including recirculation flows) or 2,500 gallons per day per square foot for peak hourly flow (including recirculation flows)."

Therefore, the primaries could handle a peak hourly flow of  $(2500 \text{ gpd/ft}^2) \times (51,624 \text{ ft}^2) = 129.06 \text{ MGD}$  (including recycle flows), and still meet the State Criteria for the primary treatment.

The hydraulics of the primaries were checked to confirm that they can handle this flow without overflowing. This analysis assumed a flow of 129 MGD.

Per drawing of WRTP Plot Plan, the wall evaluation of the primary tanks is 27.00 ft, and the water level evaluation is 24.75 ft at a flow rate to the plant of 42 MGD. If we assume that the existing V-Notch weirs would be flowing full, then additional flows will behave similarly to the discharge from rectangular weirs with end contractions. The incremental flow is:

129 MGD - 42 MGD = 87 MGD

 $\frac{87 \text{ MGD x } 10^6}{1440 \text{ mm/day}} = 60,417 \text{ gpm}$ 

The flow per ft of weir length is :

$$\frac{60,417 \text{ gpm}}{1400 \text{ ft}} = 43 \text{ gpm/ft}$$

Per "Cameron Hydraulic Data" (sheet 9) this equates to an additional  $\sim 1\frac{1}{4}$  inches over the weir. Therefore, the new water surface evaluation would be

$$24.75 + 1.25$$
" = 24.854 ft  
12"/ft

which is well below the wall elevation of 27 ft.

According to DELCORA, the primaries have overflowed on one occasion when flow exceeded 85 MGD. According to this analysis, this would not be due to hydraulic head over the weirs of the primary tanks or the grit chamber. The outlet structure from the primaries to the secondary system was not evaluated or inspected as part of this evaluation; but this may be a potential cause of the overflow. If it was the cause, then this bottleneck may be corrected as part of the project to construct the bypass from the primaries to the secondary system.

#### 4.6.2.2 Aerated Grit Chamber (Upstream of Primary Clarifiers)

At the 129 MGD, the flow through velocity would be,

 $487.5 \text{ ft}^2 \ge 2 \text{ Tanks} = 975 \text{ ft}^2$ 

 $\frac{129 \text{ MGD x } 10^6}{(7.489 \text{ gal/ft}^3) (1440 \text{ min/day}) (60 \text{ sec/min})} = 199.4 \text{ cfs}$   $\frac{199.4 \text{ ft}^3/\text{sec}}{975 \text{ ft}^2} = 0.204 \text{ ft/sec}$ 

This is almost two times the design peak flow - through velocity per Greeley and Hanson's 1994 report. Therefore, for accepting CSO flows at 129 MGD, while maintaining the same amount of

4-18

flexibility as with a present peak flow of 90 MGD, we can assume that a third aerated grit chamber (similar in design to the two existing aerated grit and pre-aeration tanks) will be needed to maintain existing operating flexibility.

### 4.6.2.3 Chlorine Contact Tanks

There are two chlorine contact tanks. Each tank is 116 ft long by 36 ft wide by 12.5 ft SWD. The total volume is 780,912 gallons.

As 129 MGD the detention time is:

 $\frac{129 \times 10^{6}}{1,440} = 89,583 \text{ gpm}$   $\frac{780,912 \text{ gal}}{1,800} = 8.72 \text{ minutes}$   $\frac{780,912 \text{ gal}}{1,800} = 8.72 \text{ minutes}$ 

This is substantially less than the PADEP criteria which states, "A minimum contact period of 15 minutes at <u>peak hourly flow</u> or a maximum rate of pumpage...". An option to resolve this is to consider the post-aeration tanks to chlorine contact tanks.

There are two tanks, each  $48.5 \times 48.5 \times 11.5 \times 7.48 = 202,340$  gal. Total volume = 202,340 x 2 = 404,681 gal.

Total volume for chlorine contact tanks and post-aeration tanks is 750,912 gal + 404,681 gal = 1,185,593 gal.

With both tanks converted from post aeration to chlorine contact tanks detention time would be

This is only marginally less than the 15 minutes required per the State criteria.

Limiting forward flow to 113.8 MGD would be needed to meet the 15-minute contact period.

$$\frac{13.23}{15}$$
 x 129 = 113.8 MGD

Hydraulically, using a similar analysis as that used for the primaries and grit chamber, there should be ample freeboard to accept 113.8 MGD through the post aeration and chlorine contact tanks. At a flow of 42 MGD there is now 4 feet at free board.

#### 4.6.2.4 Solids Handling

Sludge processing facilities include dissolved air floatation units for waste activated sludge, belt filter presses for dewatering, and sludge incineration. These facilities were previously reviewed by WESTON ("Feasibility Study, Partial Diversion of Eastern Service Area Flows to WRTP - Phase 3 Report, February 1997") and deemed adequate for the projected additional loadings associated with the diversion of CDPS flows to WRTP under average and peak flow (85 MGD) conditions.

A secondary treatment bypass to accommodate additional flow to the WRTP, will not increase waste activated sludge volumes, but will increase primary sludge volume. Given the short-term nature of such peaks and the reserved capacity previously determined to be available, we do not project the need for additional solids processing facilities.

#### 4.6.2.5 Conclusions

- 1. Primaries can handle up to 129 MGD as a peak hourly flow and still meet the State criteria for primary treatment.
- 2. Grit removal will require a third tank to maintain the operational flexibility that presently exists. Cost = \$923,200, plus additional annual costs for grit disposal.
- 3. A previous analysis indicated that the existing secondary system could handle a peak hourly flow of 85 MGD influent. This requires replacement of aerators, which is a planned capital improvement and therefore not considered as an incremental cost in this analysis.

- 4. The chlorine contact tanks will require additional capacity. By converting the postaeration tanks to chlorine contact tanks, a peak hourly flow of 113.8 could be treated. Cost = \$991,800.
- 5. The cost to construct a bypass from the primary effluent to the post-aeration tanks is \$460,900.
- 6. The limiting factor for the secondary bypass is chlorine contact tank capacity, which after modification would be approximately 113.8 MGD. This indicates that a secondary bypass of 21.2 MGD (113.8 MGD 92.6 MGD) could be provided, with an associated construction cost of \$2,395,900.

Cost documentation is presented in Appendix H.

# 4.6.3 Preliminary Operating Strategies

Installation of a secondary bypass will not be effective unless additional conveyance capacity is provided in the tributary sewer system and at EPS-1. At this time, peak delivery (without system surcharging) of key system components is estimated as follows:

- Chester Force Main 58.5 MGD (CPS-30 MGD, Kimberly Clark –16.5 MGD, CDPS - 12 MGD)
- Marcus Hook Force Main 20.35 MGD (MHPS - 1.5 MGD, SUN - 18 MGD, FMC - 0.85 MGD)
- EPS-1 2.3 MGD
  - TOTAL 75.5 MGD

This is less than the functional treatment capacity of 85 MGD.

If cost-effective means of delivering more CSO flow to the WRTP were identified and the secondary bypass system was installed, the operating strategy for the plant would be to provide full treatment for flow rates up approximately 85 MGD, and to activate the bypass for flows above 85 MGD to a maximum of approximately 114 MGD. Further modeling would need to be done to determine how much additional CSO could actually be diverted to the plant.

In-plant construction costs to accommodate this have been estimated at approximately \$2.4 million and external costs for sewer system expansion and pumping upgrades may equal that amount. This would need to be determined through further study and is not included in the cost estimate.



April 1999



.


| TASK DESCRIPTION LTCP                  | - DRELIMINARY DESIGN                                                                                                                                                                                                                | W.O. NO                               |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| PREPARED BY R.W. Lehm                  | 4-1 DEPT 01/31 DATE 6/26                                                                                                                                                                                                            | APPROVED BY                           |
| MATH CHECK BY                          | DEPT DATE                                                                                                                                                                                                                           |                                       |
| METHOD REV. BY                         | DEPT DATE                                                                                                                                                                                                                           | DEPTDATE                              |
| SUBAREA GA IN                          | ITER COUNECT                                                                                                                                                                                                                        |                                       |
|                                        | YARWELL                                                                                                                                                                                                                             |                                       |
|                                        | STREET                                                                                                                                                                                                                              |                                       |
|                                        |                                                                                                                                                                                                                                     |                                       |
|                                        | (6-N\$2) E:16,77                                                                                                                                                                                                                    |                                       |
|                                        | 50' 36" BP                                                                                                                                                                                                                          |                                       |
|                                        | R: 29.90                                                                                                                                                                                                                            | NEW MH                                |
| R:28.89<br>WEST I:13.04                | Ž; 13.07                                                                                                                                                                                                                            | R: 30,49<br>T: 13,49                  |
| 4th (NO9) 5                            | 35 (NØ8A) × 341<br>4" RC (NØ8A) × 54" RC                                                                                                                                                                                            | $-(N \cdot l \phi)^{-1}$              |
|                                        |                                                                                                                                                                                                                                     |                                       |
|                                        |                                                                                                                                                                                                                                     | NE                                    |
|                                        | R:26.18                                                                                                                                                                                                                             |                                       |
|                                        | (4-014) F: 648                                                                                                                                                                                                                      |                                       |
|                                        |                                                                                                                                                                                                                                     |                                       |
|                                        |                                                                                                                                                                                                                                     |                                       |
|                                        |                                                                                                                                                                                                                                     |                                       |
|                                        |                                                                                                                                                                                                                                     |                                       |
|                                        |                                                                                                                                                                                                                                     |                                       |
|                                        |                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · · |
|                                        |                                                                                                                                                                                                                                     |                                       |
| · :<br>                                |                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · · |
|                                        |                                                                                                                                                                                                                                     |                                       |
| ······································ | no o conservatione en la fina de la conservation de la conservation de la conservation de la conservation de la<br>Conservation de la conservation de l |                                       |
|                                        |                                                                                                                                                                                                                                     |                                       |
| · · · · · · · · · · · · · · · · · · ·  | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                               | •                                     |
|                                        |                                                                                                                                                                                                                                     |                                       |
| RFW 10-05-003/A-5/85<br>512-5643       | · · · · · ·                                                                                                                                                                                                                         |                                       |
|                                        |                                                                                                                                                                                                                                     |                                       |
|                                        |                                                                                                                                                                                                                                     |                                       |

|                        | ED BY    | <u>R.L</u>                             | <u>V. Le</u>                           | HMM                | <u></u> D       | ЕРТ <u>с</u>    | 0/13 /                                | DA          | TE <u>6</u>    | 126/9       | 97              |                                        | A       | PPRC        | VEC         | ) BY                                    |           |
|------------------------|----------|----------------------------------------|----------------------------------------|--------------------|-----------------|-----------------|---------------------------------------|-------------|----------------|-------------|-----------------|----------------------------------------|---------|-------------|-------------|-----------------------------------------|-----------|
| MATH CH                | REV.     | BY                                     |                                        | <u></u> .          | D<br>D          | EPT             |                                       | DA<br>DA    | TE             |             |                 | DEP                                    | т       | D           |             |                                         |           |
| su                     | BARE     | که:                                    | 4A                                     | 4B                 |                 | enco            | งงมร                                  | c7-         |                |             |                 |                                        |         |             |             |                                         |           |
|                        | i        |                                        |                                        |                    |                 |                 |                                       |             |                |             |                 |                                        |         |             |             |                                         |           |
|                        |          |                                        |                                        |                    |                 |                 |                                       |             |                |             |                 | :                                      |         |             |             |                                         |           |
|                        |          |                                        |                                        |                    |                 |                 |                                       |             |                |             |                 |                                        |         |             |             |                                         |           |
|                        |          |                                        |                                        |                    |                 |                 | HA                                    | YES<br>REET | -              |             |                 | -                                      |         |             |             |                                         |           |
|                        |          |                                        |                                        |                    |                 |                 |                                       |             |                |             |                 |                                        |         |             |             |                                         |           |
|                        |          |                                        |                                        |                    |                 |                 | 4.7                                   | 14          | R 24.<br>E 14, | 61<br>36    |                 |                                        |         |             |             |                                         | •         |
|                        |          |                                        |                                        |                    |                 |                 | <u> </u>                              |             |                |             |                 |                                        |         |             | lew         | mн                                      |           |
| *******                |          |                                        |                                        |                    |                 |                 | 25'                                   | 36          | s" B           | 2           |                 | T                                      |         |             |             |                                         |           |
|                        | R:z      | 4,23                                   |                                        |                    | 1               | K:24.2<br>210.6 | لم ج                                  |             |                |             |                 | /                                      |         | R: 28       | <b>.</b> 7/ |                                         |           |
| STREET                 | - 11<br> | مرمی ان                                | ( ף )                                  | 6}<                | <u>25</u><br>54 | Rr              | -(P/                                  | 647         |                | (06)<br>1 E | <del>,</del> -( | Þ1                                     | 7)      | I'] [       | <b>Ø</b> [  |                                         |           |
|                        |          |                                        |                                        |                    |                 |                 |                                       |             |                |             |                 |                                        |         |             |             |                                         |           |
|                        |          |                                        |                                        |                    |                 |                 |                                       | <u> </u>    | -рги           | 5.4         | INE             |                                        | :<br>   | :<br>       |             |                                         |           |
|                        |          |                                        |                                        |                    |                 |                 | <u>د</u>                              | 022         | R:24           | .61         |                 |                                        |         |             |             |                                         |           |
|                        |          |                                        |                                        |                    |                 |                 | 4                                     | 2           | I: 15          | 25          |                 |                                        |         | :           |             |                                         |           |
|                        |          |                                        |                                        |                    |                 |                 | ,                                     |             |                |             |                 |                                        | ····· ; | :           |             |                                         |           |
|                        |          |                                        |                                        |                    |                 |                 |                                       |             |                |             |                 |                                        |         |             |             |                                         |           |
|                        |          |                                        |                                        | :<br>              |                 |                 |                                       |             |                |             |                 |                                        |         |             | ·<br>•      | :<br>:<br>                              |           |
|                        |          |                                        | •                                      |                    |                 | •               |                                       |             |                |             |                 | •••••••••••••••••••••••••••••••••••••• |         |             |             |                                         |           |
|                        |          |                                        |                                        | ··· ·· ··· ··· ··· |                 |                 |                                       |             |                | :           |                 |                                        | •••••   | · · · · · · | · · ·       | ······                                  |           |
|                        |          |                                        |                                        |                    |                 |                 | · · · · · · · · · · · · · · · · · · · |             |                |             |                 | ;;;;                                   |         |             |             |                                         | · · · · · |
|                        |          |                                        |                                        |                    | ······          |                 | :                                     | <u>.</u>    |                | :           | ······          |                                        |         |             | : ···       |                                         | ······    |
|                        |          | <u> </u>                               |                                        |                    |                 |                 |                                       |             |                | :           |                 |                                        | ·       | ••••        |             |                                         |           |
|                        |          |                                        |                                        |                    |                 | <br>            |                                       |             | ··· .          |             |                 |                                        |         |             |             | • · · · · · · · · · · · · · · · · · · · |           |
|                        |          | ······································ | ······································ |                    | :               |                 |                                       |             |                | :           | . :             |                                        |         |             | •••         |                                         |           |
| RFW 10-05-<br>512-5643 | 003/A-5/ | /85                                    |                                        |                    |                 |                 |                                       |             |                |             |                 |                                        |         |             |             |                                         |           |

## Table 4.3-1

# Regulators for Replacement/Rehabilitation

| Regulator | Туре                         | Accessibility<br>Difficulty <sup>(1)</sup> | Tide Gate |
|-----------|------------------------------|--------------------------------------------|-----------|
| 02        | 8" McNulty                   | Low                                        | None      |
| 03        | 12" McNulty                  | Low                                        | None      |
| 04        | 8" McNulty                   | Low                                        | None      |
| 05        | 8" McNulty                   | Low                                        | Double    |
| 06        | 8" McNulty                   | Low                                        | Double    |
| 07        | 7.5" x 7.5" Brown & Brown    | Low                                        | Double    |
| 08        | 8" McNulty                   | Medium                                     | Double    |
| 09        | 8" McNulty                   | Medium                                     | Double    |
| 10        | 12" McNulty                  | High                                       | None      |
| 11        | 12" McNulty                  | Medium                                     | ·None     |
| 12        | 8" McNulty                   | High                                       | Double    |
| 13        | 8" McNulty                   | High                                       | Double    |
| 14        | 15" McNulty                  | Low                                        | Double    |
| 15        | 5" x 6" Brown & Brown        | High                                       | Single    |
| 16        | 12" McNulty                  | Medium                                     | Double    |
| 17        | 5" x 6" Brown & Brown        | Medium                                     | Single    |
| 18        | 5" x 6" Brown & Brown        | Low                                        | None      |
| 19        | 7.5" x 15.375" Brown & Brown | Low                                        | None      |
| 20        | 8" McNulty                   | High                                       | None      |
| 21        | 8" McNulty                   | Low                                        | Double    |
| 22        | 8" McNulty                   | High                                       | None      |
| 23        | 8" McNulty                   | Medium                                     | Double    |
| 24        | 8" McNulty                   | Low                                        | Double    |
| 25        | 8" McNulty                   | High                                       | Double    |
| 26        | 8" McNulty                   | Medium                                     | None      |

<sup>(1)</sup> Accessibility difficulty is based primarily on traffic conditions.

# Table 4.4-1

# Cost of Storage Alternatives for Ridley Creek

| Alternative      | Volume<br>(MG) | Cost         |
|------------------|----------------|--------------|
| Off-Line Storage | 6.6            | \$21,100,000 |
| Deep Tunnels     | 6.6            | \$27,200,000 |

# Table 4.5-1

## **Cost of Remote Treatment Control Alternatives**

| Alternative         | Flow Rate<br>(MGD) | Cost        |
|---------------------|--------------------|-------------|
| Swirl Concentrators | 135.5              | \$4,300,000 |
| Screens             | 135.5              | \$5,500,000 |
| Sedimentation       | 135.5              | \$8,100,000 |
| Disinfection        | 135.5              | \$1,500,000 |

<sub>6</sub>974

## SECTION 5

## **EVALUATION OF ALTERNATIVES**

### 5.1 EVALUATION OF ALTERNATIVES

Several factors must be considered in selecting the LTCP for DELCORA's CSO system in the City of Chester. These include:

- As discussed in Section 3.3, no environmentally sensitive areas were identified in the areas around the CSO outfalls.
- Water quality impacts from CSOs discharging to the Delaware River are negligible as indicated in Table 3.2-3.
- Based on the information presented in the Tables 3.2-1, 3.2-2, and 3.2-3, the potential for water quality improvement from CSO control is greatest along Ridley Creek given that the CSO discharge is a larger percentage of the flow and load. Lesser potential exists along Chester Creek.
- Based on the information presented in the Tables 3.2-1, 3.2-2, and 3.2-3, loadings from the sanitary sewage component of CSO discharges are minimal in comparison to stormwater loadings.
- In-system storage capacity is minimal, and isolated to certain portions of the sewer system.
- The potential to deliver more CSO to the WRTP is limited by sewer system capacity as depicted in Figure 2.5-1.
- The combination of the rapidly rising flow rates from the urban areas and the lack of additional interceptor capacity cause many of the regulators to close quickly in the modeled storms and slowly re-open as flows drop following a storm because of the limited interceptor capacity.
- Based on the information presented in the Tables 3.2-1, 3.2-2, and 3.2-3, the CSOs do not create any water use impairments that do not already exist based on background concentrations exceeding the specific water quality standard.
- No "wet weather" water quality standards are in place for receiving streams, but DRBC is currently conducting "wet weather" studies and such standards may be implemented in the future.
- "Affordability" of CSO improvements is low, based upon current and projected future conditions (see Section 5.2).

Section 4 has identified three potential source control alternatives, seven potential collection system control alternatives, two storage control alternatives, and four remote treatment control alternatives. These alternatives are evaluated in this section.

#### 5.1.1 Summary of Alternative Benefits

#### 5.1.1.1 Source Control Alternatives

Street sweeping can be a benefit to surface water quality. In particular, sweeping can help control litter and other floatable material. The effectiveness of sweeping on improving runoff quality is of considerable debate. Various studies have indicated little or no benefit to improved water quality and some studies have suggested that improper sweeping can increase runoff loads. The Portland study found that it was better to sweep thoroughly infrequently than to sweep poorly frequently.

Inlet cleaning can help remove large particles from the system. In systems such as the one in the City of Chester where interceptors have flat slopes, the removal of the larger particles may help reduce deposition in the interceptors that are flushed out in larger storms. Reducing deposition of large particles in the interceptors can help in reducing the deposition of finer particles, which bond more pollutants, by eliminating pooling areas and blockages.

Inlet grate replacement benefits the removal of litter and other floatables that can discharge during storms and cause operational problems at the regulators. Litter and other large floatables cause blockages in collector sewers and trap pollutants that would otherwise flow to the interceptors. An inlet replacement program has an added benefit of improving handicap access through the curb improvements.

#### 5.1.1.2 Collection System Control Alternatives

Sewer cleaning has several benefits including increased efficiency of the collector and interceptors and the removal of obstructions and blockages that trap pollutants for discharge during storm events. At this time, DELCORA sewers are cleaned once per year on average, and sewer maintenance personnel have not reported significant build-ups that would suggest that the overall sewer cleaning frequency should be increased.

Regulator replacement has several benefits. New regulators will ensure that the maximum amount of flow is sent to the WRTP. Additionally, the proposed monitoring system will notify operators if a problem develops at a regulator that could cause a dry weather discharge, early regulator closure, or extended overflow following storm events. The current design of the regulators allows for a changeable orifice plate so additional flows can be added to the interceptors as more capacity becomes available.

Sewer separation benefits are obvious in that sanitary flows are removed from the stormwater runoff flows.

An outfall interceptor along Ridley Creek has the primary benefit of redirecting the CSO discharge from Ridley Creek, which has a limited assimilative capacity, to the Delaware River that has a large assimilative capacity.

Maximizing capacity of the existing system ensures that the maximum volume of combined stormwater/sanitary sewage as well as the first flush of pollutant laden stormwater runoff is directed to the WRTP for treatment.

Floatables containment at the outfall improves the esthetics of the receiving waters. Floatables control at the source helps to eliminate blockages, accelerated pollutant accumulation in the collectors and interceptors, and reduces regulator malfunction due to debris buildup.

#### 5.1.1.3 Storage Control Alternatives

Off-Line storage has a benefit in that CSO discharges are sharply curtailed since the CSO volume is detained until capacity is available in the interceptors to send the stored volume to the WRTP for treatment.

Deep tunnel storage has a similar benefit.

#### 5.1.1.4 Remote Treatment Control Alternatives

Swirl concentrators are designed to remove settleable solids and floatables from the CSO prior to discharge to the receiving water. Swirl concentrators operate without moving parts, thus maintenance costs are minimized.

Screening of the CSO discharge is an effective means to remove floatables and large solids. A typical screen device will require a mechanical means to clean the screen as well as disposal of the screenings.

Sedimentation basins, as with swirl concentrators, operate without moving parts, thus maintenance costs are minimized.

Disinfection will remove the pathogens from CSO discharge prior to release into the receiving stream. Disinfection would be included with each remote treatment alternative.

Secondary bypassing is designed to effectively screen the discharge for floatables, remove some of the coarse grit material, and treat for pathogens as it bypasses the secondary treatment processes.

#### 5.1.1.5 Summary

It is difficult to precisely quantify specific health, water quality, and environmental benefits from each alternative, particularly in cases where current impacts of CSOs appear minimal. This being the case, we have prepared Table 5.1-1, which depicts but does not quantify the types of benefits anticipated for each alternative. The range of benefits must be carefully considered along with the related costs in developing an LTCP. Costs are presented in Subsection 5.1.2 and the cost/benefit relationships are discussed in Subsection 5.1.3.

#### 5.1.2 Summary of Alternatives Costs

Conceptual cost estimates have been developed for the alternatives discussed in Subsection 5.1.1. Project cost totals include construction cost estimates in 1997 dollars (including contingency) plus a 20% allowance to reflect associated engineering, legal, and financial costs. Bond financing has been assumed and Annual Debt Service Costs have been calculated pursuant to *Combined Sewer Overflows – Guidance for Financial Capability Assessment and Schedule Development* (EPA, 1997). Annual O&M costs related to each alternative have also been estimated. These costs are summarized in Table 5.1-2.

The cost estimates included the activities and assumptions described in Subsection 4.2 through 4.6 of this report.

### 5.1.3 Selection of Alternatives

Both environmental and financial issues must be considered in selecting the LTCP. No major environmental issues related to DELCORA's CSOs have been identified, overflows do not impact sensitive areas, and the CSO discharges do not appear to be the critical difference between attainment and non-attainment of water quality standards. It is also clear that the impacts of DELCORA's CSO discharges to the Delaware River are negligible. DELCORA's CSO discharges have the most impact upon Ridley Creek and a lesser impact upon Chester Creek.

Financial capability issues related to existing sewer service and the proposed DELCORA CSO program area presented in Subsection 5.2. In selecting alternatives, existing economic conditions must be considered and the ability of the customer base to bear additional program costs is very limited. DELCORA's service agreements require recovery of all Chester sewer system costs from the City of Chester customers, and this customer base is already in the "high burden" financial category without considering additional CSO program costs. This is discussed further in Subsection 5.2. In addition, DELCORA's industrial user base is declining and service area flows have dropped approximately 25% over the past 15 years. This shifts more fixed costs to the

municipal (including City of Chester) users and elevates the importance of the diversion of additional flows from the Center Delaware County Service Area.

Considering these factors and the potential for future "wet weather" water quality standards when DRBC's studies are completed, a phased, non-capital intensive approach to CSO control for DELCORA's system has been developed. Capital-intensive alternatives eliminated from further consideration at this time include:

| Alternative                                                           | <u>Capital Cost</u> |
|-----------------------------------------------------------------------|---------------------|
| Conveyance system expansion and secondary treatment bypassing at WRTP | 2,400,000           |
| Off-line storage                                                      | 21,100,000          |
| Deep tunnel storage                                                   | 27,200,000          |
| Swirl concentration                                                   | 4,300,000           |
| Screens                                                               | 5,500,000           |
| Sedimentation                                                         | 8,100,000           |
| Disinfection                                                          | 1,500,000           |
| Ridley Creek outfall interceptor                                      | 1,247,800           |

A screening was conducted based upon the benefits associated with each remaining alternative (see Table 5.1-1) and the associated annual costs (see Table 5.1-2). The ranking presented in Table 5.1-3 reflects those with broadest benefit, their associated annual costs, and the cumulative annual costs.

After considering cost and benefit issues, and the fact that results of initial steps should be evaluated before proceeding with subsequent actions, the program shown in Table 5.1-4 was selected.

In addition, several other potential actions will be evaluated as part of the long-term program. These are described in Subsection 6.1.

### 5.2 FINANCIAL CAPABILITY

The CSO Policy recognizes the need to address the relative importance of environmental and financial issues when developing an implementation schedule for CSO controls. To assist in reviewing this, a series of guidance manuals have been developed. We have applied the elements of one of these manuals, (EPA, 1997), in determining financial capability for DELCORA and its customers.

DELCORA's CSOs are all within the City of Chester and under their service agreements they cannot distribute City of Chester sewer system costs to other users. The City of Chester is somewhat distressed economically, as evidenced by the high unemployment rate and low, median household income. DELCORA's City of Chester customers are generally stressed to support existing service charges and other municipal levies, let alone additional charges related to CSO abatement. The unemployment rate is almost twice the national average, the median household income is 31% less than the national average, and approximately 30% of the households are below the poverty level. The Residential Indicator (sewer charges/MHI) is at 1% without considering CSO additions. This is based on the EPA-prescribed escalation formula and we believe it unlikely that income in City of Chester has risen at the same rate as the regional CPI. If current sewer charges are considered as a percent of the last surveyed MHI, the Residential Indicator increases to 1.2% without any CSO abatement additions.

EPA's guidance document includes other indicators regarding the permittee's capability to bond additional debt. We have not completed all of these analyses since DELCORA's bonding strength is based upon its entire service area, includes County guarantees, and reflects bond insurance. The driving issues in determining affordability and financial capability related to improvements to the City of Chester CSO system focused upon the following factors:

- Residential indicator.
- Unemployment rate.
- Median household income.

These are calculated on worksheets numbered 1, 2, 5, 6, 9, and 10 (Tables 5.2-1 through 5.2-7) and the results are discussed in the following subsections.

#### 5.2.1 Residential Indicator

Worksheets 1 and 2 were used to calculate a Residential Indicator of 1.05% with the recommended CSO abatement program. Based upon EPA's guidance this falls into the category of "mid-range" financial impact. If the assumption that MHI in the City of Chester has not escalated at the regional rate is accurate, then the Residential Indicator would rise to 1.29%. Table 5.2-2 provides the basis for determining the current cost burden upon the City of Chester.

#### 5.2.2 Unemployment Rate

Worksheet 5 shows the current (5/97) unemployment rate to be 9.2%. This is nearly twice the national rate of 4.7% for the same time period. An employment rate of more than one point above the national average is viewed as a "weak" indicator; the variance in the City of Chester is well beyond the criteria.

#### 5.2.3 Median Household Income

Worksheets 2 and 6 calculate the median household income for the City of Chester. The adjusted value of \$25,725 (which may be skewed upwards, as previously discussed) is 31% below the adjusted national average of \$37,059. An MHI more than 25% below the national MHI, is viewed at a "weak" indicator; again, the variance in the City of Chester is well beyond that criteria.

#### 5.2.4 Summary of Financial Capacity Indicators

Worksheet 9 only partially applies to DELCORA's situation since DELCORA is a municipal authority utilizing revenue bonds, and the tax and market property value criteria do not apply. Also, DELCORA's bond ratings are based upon additional factors extending beyond its service to the

City of Chester customers (as discussed in Subsection 5.2). Therefore, only the Unemployment Rate and Median Household Income criteria apply. Both of these are "weak".

# 5.2.5 Financial Capability Matrix Score

Worksheet 10 has been completed, and the Financial Capability has been determined to be in the "high burden" category.

This poor financial picture is a major factor in selecting the alternatives to be implemented and in developing the implementation schedule.

# Table 5.1-1

# Summary of Benefits for Various Alternatives

|                                 |              |              |              | Diversion | Elimination    |
|---------------------------------|--------------|--------------|--------------|-----------|----------------|
|                                 | Volumo       | Dollutont    | Flootables   | to Lower  | Dry<br>Weather |
| Alternative                     | Reduction    | Reduction    | Reduction    | Areas     | Overflows      |
| Increased Street Sweeping       |              |              |              |           |                |
|                                 |              | $\checkmark$ | $\checkmark$ |           |                |
| Increased Inlet Cleaning        |              |              |              |           |                |
|                                 |              | √            | √            |           |                |
| Inlet Replacement               |              |              | 1            |           |                |
|                                 |              |              | ν            |           |                |
| Increased Sewer Cleaning        |              | al           | 2            |           |                |
| Regulator Replacement and       |              | v            | Y            |           |                |
| Monitoring                      | $\checkmark$ | $\checkmark$ |              |           | $\checkmark$   |
| Sewer Separation <sup>(1)</sup> |              |              |              |           |                |
| *                               | $\checkmark$ | $\checkmark$ |              |           | $\checkmark$   |
| Regulator Consolidation         |              |              |              |           |                |
|                                 | √            |              | √            |           | $\checkmark$   |
| Ridley Creek CSO Interceptor    |              |              |              | 1         |                |
| ~                               |              |              |              | √         |                |
| Secondary Bypass and            | .1           | .1           | .1           |           |                |
| Maximizing Existing System      | N            | N            | N            |           |                |
| Electables Containment          |              |              |              |           |                |
| (any alternative)               |              |              |              |           |                |
| Remote Treatment Options        |              |              | Y            |           |                |
| (any alternative)               |              |              |              |           |                |
| Off-line or Tunnel Storage      |              |              |              |           |                |
|                                 | $\checkmark$ | $\checkmark$ | $\checkmark$ |           |                |

<sup>(1)</sup> No new projects planned other than SR0291 and the prison complex.

ъ<sup>1</sup>

### Table 5.1-2

### Summary of Costs for Various Alternatives

|                                                           |    |                            | A  | nnual Debt           |    |                       |
|-----------------------------------------------------------|----|----------------------------|----|----------------------|----|-----------------------|
|                                                           |    | (4)                        |    | Service              | An | nual O&M              |
| Alternative                                               | Pı | roject Cost <sup>(1)</sup> |    | Costs <sup>(2)</sup> |    | Cost                  |
| Source Control                                            |    |                            |    |                      |    |                       |
| Street sweeping                                           | \$ | 300,000                    | \$ | 26,160               | \$ | 60,000                |
| Inlet Cleaning                                            | \$ | 216,000                    | \$ | 18,835               | \$ | 145,000               |
| Inlet Replacement (25-Year Program)                       | \$ | 75,000                     | \$ | 75,000               |    | N/A                   |
| Public Education/Information Program                      | \$ | 10,000                     | \$ | 10,000               |    | N/A                   |
| Collection System Control                                 |    |                            |    |                      |    |                       |
| Sewer Cleaning                                            | \$ | 216,000                    | \$ | 18,835               | \$ | 10,000                |
| Regulator Replacement (25-Year Program)                   | \$ | 1,875,000                  | \$ | 75,000               |    | N/A                   |
| Sewer Separation <sup>(4)</sup>                           |    | N/A                        |    | N/A                  |    | N/A                   |
| Consolidation/Elimination of Regulators <sup>(5)</sup>    |    | N/A                        |    | N/A                  |    | N/A                   |
| Outfall Interceptor Along Ridley Creek                    | \$ | 1,497,360                  | \$ | 130,570              | \$ | 7,487 <sup>(3</sup>   |
| Secondary Bypass at WRTP and                              |    |                            |    |                      |    | ·····                 |
| Maximizing Capacity of the Existing System <sup>(6)</sup> | \$ | 2,875,080                  | \$ | 250,707              | \$ | 14,375 <sup>(3)</sup> |
| Floatables Containment                                    |    |                            |    |                      |    |                       |
| Floating Booms (3 assumed)                                | \$ | 644,627                    | \$ | 56,211               | \$ | 10,800                |
| End of Pipe Netting (4 assumed)                           | \$ | 672,804                    | \$ | 58,669               | \$ | 11,100                |
| In-Line Netting (5 assumed)                               | \$ | 770,929                    | \$ | 67,225               | \$ | 11,300                |
| Storage Control Alternatives                              |    |                            |    |                      |    |                       |
| Off-Line Storage <sup>(7)</sup>                           | \$ | 25,320,000                 | \$ | 2,207,904            | \$ | 126,600 (3)           |
| Deep Tunnels <sup>(7)</sup>                               | \$ | 32,640,000                 | \$ | 2,846,208            | \$ | 163,200 (3)           |
| Treatment Control Alternatives                            |    |                            |    |                      |    |                       |
| Swirl Concentrators <sup>(7)</sup>                        | \$ | 5,160,000                  | \$ | 449,952              | \$ | 25,800 (3)            |
| Screens <sup>(7)</sup>                                    | \$ | 6,600,000                  | \$ | 575,520              | \$ | 33,000 (3)            |
| Sedimentation <sup>(7)</sup>                              | \$ | 9,720,000                  | \$ | 847,584              | \$ | 220,000               |
| Disinfection <sup>(7)</sup>                               | \$ | 1,800,000                  | \$ | 156,960              | \$ | 185,000               |

<sup>(1)</sup> Reflects estimated construction costs, contingency and a 20% allowance for engineering, legal and finance costs.

<sup>(2)</sup> Based upon 20 yr., 6% bonds, and annualization factor in EPA CSO Financial Capability and Schedule Development Guidance.
<sup>(3)</sup> Based upon 0.5% of construction costs.

<sup>(4)</sup> No new projects are planned other than SR 0291 and the prison complex.

<sup>(5)</sup> No projects planned until after solution of hydraulic capacity limitations.

<sup>(6)</sup> Does not include costs of additional sewer system expansion to relieve bottlenecks.

<sup>(7)</sup> Based upon EPA (1993) escalated to 1997 costs.

| 1 able 5.1-5 | Table | 5.1-3 |
|--------------|-------|-------|
|--------------|-------|-------|

|                                      |    |           | Cι | umulative |
|--------------------------------------|----|-----------|----|-----------|
| Alternative                          | An | nual Cost | An | nual Cost |
| Regulator Replacement and Monitoring | \$ | 75,000    | \$ | 75,000    |
| Inlet Replacement                    | \$ | 75,000    | \$ | 150,000   |
| Public Education/Information Program | \$ | 10,000    | \$ | 160,000   |
| WQ Monitoring Program                | \$ | 10,000    | \$ | 170,000   |
| Sewer Separation <sup>(1)</sup>      | \$ | -         | \$ | 170,000   |
| Increased Sewer Cleaning             | \$ | 28,835    | \$ | 198,835   |
| Increased Inlet Cleaning             | \$ | 163,835   | \$ | 362,670   |
| Increased Street Sweeping            | \$ | 86,160    | \$ | 448,830   |
| Floatables Containment               | \$ | 215,305   | \$ | 664,135   |

# Summary of Remaining Alternatives and Associated Annual Costs

<sup>(1)</sup> No new projects planned other than SR0291 and the prison complex.

### Table 5.1-4

### Selected Program Annual Costs and Cumulative Costs

| Action                                | Anı | nual Cost | Cu<br>An | imulative<br>nual Cost |
|---------------------------------------|-----|-----------|----------|------------------------|
| Regulator Replacement with Monitoring | \$  | 75,000    | \$       | 75,000                 |
| Inlet Replacement                     | \$  | 75,000    | \$       | 150,000                |
| Public Education/Information Program  | \$  | 10,000    | \$       | 160,000                |
| WQ Monitoring Program                 | \$  | 10,000    | \$       | 170,000                |
| Sewer Separation <sup>(1)</sup>       | \$  | -         | \$       | 170,000                |
| Increased Sewer Cleaning              | \$  | 28,835    | \$       | 198,835                |

<sup>(1)</sup> No new projects planned other than SR0291 and the prison complex.

60000

# Cost per Household (Worksheet 1)

| Current WWT Costs                     |                 | Line Number |
|---------------------------------------|-----------------|-------------|
|                                       | 60000           |             |
| Annual Operations and                 |                 |             |
| Maintenance Expenses (Excluding       | ana Table 6 0 0 | 100         |
| Depreciation                          | see Table 5.2-2 | 100         |
| Annual Debt Service (Principal        |                 |             |
| and Interest)                         | see Table 5.2-2 | 101         |
|                                       |                 |             |
| *Subtotal*                            | \$ 4,323,475    | 102         |
| (Line 100 + Line 101)                 |                 |             |
| Projected WWT and CSO Costs           |                 |             |
| (Current Dollars)                     |                 |             |
| Estimated Annual Operations and       |                 |             |
| Maintenance Expenses (Excluding       |                 |             |
| Depreciation)                         | \$ 10,000       | 103         |
|                                       |                 |             |
| Annual Debt Service (Principal        |                 |             |
| and Interest)                         | \$ 188,835      | 104         |
| *Subtotal*                            |                 |             |
| (Line 103 + Line 104)                 | \$ 198,835      | 105         |
|                                       |                 |             |
| Total Current and Projected WWT and   |                 |             |
| CSO Costs (Line 102 + Line 105)       | \$ 4,522,310    | 106         |
| Residential Share of Total WWT and    | 100%            | 107         |
| CSO Costs                             |                 | 107         |
| Total number of Households in Service | 14 527          | 109         |
| Area                                  | 1+,,,,,,,       | 108         |
| Cost Per Household                    | \$ 311.09       | 109         |
| (Line 107 / Line 108)                 |                 |             |

| Expense Item       | Western -<br>Share | Less Major<br>Industry<br>Share        | Less Non-<br>Chester<br>Retail<br>Share <sup>(1)</sup> | Net to<br>Chester |  |  |  |  |  |
|--------------------|--------------------|----------------------------------------|--------------------------------------------------------|-------------------|--|--|--|--|--|
| Administration     |                    |                                        |                                                        |                   |  |  |  |  |  |
| (Exhibit II-A)     | \$555,694          | (\$353,200)                            | (\$60,749)                                             | \$141,745         |  |  |  |  |  |
| Debt Service       |                    |                                        |                                                        |                   |  |  |  |  |  |
| (Exhibit II-B)     | \$4,509,969        | (\$2,653,196)                          | \$60,000                                               | \$1,916,773       |  |  |  |  |  |
| WRTP O&M           |                    |                                        |                                                        |                   |  |  |  |  |  |
| (Exhibit I-C)      | \$7,019,563        | (\$4,284,458)                          | (\$820,532)                                            | \$1,914,573       |  |  |  |  |  |
| Chester P.S.       |                    |                                        |                                                        |                   |  |  |  |  |  |
| (Section II)       | \$462,839          | \$0                                    | (\$138,851)                                            | \$323,988         |  |  |  |  |  |
| Sewer              |                    |                                        |                                                        |                   |  |  |  |  |  |
| Maintenance        |                    |                                        |                                                        |                   |  |  |  |  |  |
| (Section II)       | \$939,892          | \$0                                    | (\$281,968)                                            | \$657,924         |  |  |  |  |  |
| Chester Lift       |                    |                                        |                                                        |                   |  |  |  |  |  |
| Stations           |                    |                                        |                                                        |                   |  |  |  |  |  |
| (Section II)       | \$147,098          | \$0                                    | (\$44,129)                                             | \$102,969         |  |  |  |  |  |
| Customer Billing   |                    |                                        |                                                        |                   |  |  |  |  |  |
| (Section II)       | \$275,244          | \$0                                    | (\$82,573)                                             | \$192,671         |  |  |  |  |  |
| Allowance for      |                    |                                        |                                                        | · · · ·           |  |  |  |  |  |
| Uncollectables     |                    |                                        |                                                        |                   |  |  |  |  |  |
| (Section II)       | \$110,000          | \$0                                    | (\$33,000)                                             | \$77,000          |  |  |  |  |  |
| Sub-Total          |                    | ······································ |                                                        | \$5,327,643       |  |  |  |  |  |
| Less: Costs Alloca | ited to Wholes:    | ale                                    |                                                        | (0120.702)        |  |  |  |  |  |
| Municipal C        | ustomers (Exh      | ibit I-B)                              | Trainer                                                | (\$139,580)       |  |  |  |  |  |
|                    |                    | Other                                  | (\$864,588)                                            |                   |  |  |  |  |  |
|                    | r                  |                                        |                                                        |                   |  |  |  |  |  |
| Net to City of Che |                    | \$4,323,475                            |                                                        |                   |  |  |  |  |  |

Summary of 1997 Budget Expenses Allocated to City of Chester System Users

<sup>(1)</sup> Based upon flow based shares for Parkside, Upland, Chester Twp., and permitted industries (526,630/1,751,230 = 0.30) per Exhibit 1-B of DELCORA Budget.

# Residential Indicator (Worksheet 2)

| Median Household Income (MHI)       |                  | Line Number |
|-------------------------------------|------------------|-------------|
|                                     | 60000            |             |
| Census Year MHI                     | \$ 20,864 (1990) | 201         |
| MHI Adjustment Factor               | 1.233            | 202         |
| Adjusted MHI (Line 201 x Line 202)  | \$ 25,725        | 203         |
| Annual WWT and CSO Control Cost     |                  |             |
| Per Household (CPH)                 | \$ 311.09        | 204         |
| (Line 109)                          | <u> </u>         | 201         |
|                                     |                  |             |
| Residential Indicator:              |                  |             |
| Annual Wastewater and CSO Control   |                  |             |
| Costs per Household as a percent of |                  |             |
| Adjusted Median Household Income    |                  |             |
| (CPH as % MHI)                      |                  |             |
| (Line 204 / Line 203 x 100)         | 1.21%            | 205         |

CPI - 5/90 = 134.6 CPI - 5/97 = 166.0 Adjustment Factor = 166/134.6 = 1.233

# Unemployment Rate (Worksheet 5)

|          |                                                           |            | Line Number |
|----------|-----------------------------------------------------------|------------|-------------|
|          |                                                           |            | 60000       |
|          | Unemployment Rate - Permittee                             | 9.20%      | 501         |
|          | Source:                                                   | BLS (5/97) |             |
|          | Unemployment Rate - County<br>(use if permittee's rate is |            |             |
|          | unavailable)                                              | <b>_</b>   | 502         |
|          | Source:                                                   |            |             |
| ~ .      |                                                           |            |             |
| Benchmar | ·k:                                                       |            |             |
|          | Average National                                          |            |             |
|          | Unemployment Rate:                                        | 4.70%      | 503         |

Source:

BLS (5/97)

# Medial Household income (Worksheet 6)

|         |                           |                    |        | Line Number |
|---------|---------------------------|--------------------|--------|-------------|
|         |                           |                    | 60000  |             |
|         | Median Household Income - |                    |        |             |
|         | Permittee (Line 203)      | \$25,725           |        | 601         |
|         | Source:                   | U.S. Census Bureau |        |             |
| Benchma | rk                        |                    |        |             |
|         | Census Year National MHI  | \$30,056           | (1990) | 602         |
|         | MHI Adjustment Factor     |                    |        |             |
|         | (Line 202)                | 1.233              |        | 603         |
|         | Adjusted National MHI:    |                    |        |             |
|         | (Line 602 x Line 603)     | \$37,059           |        | 604         |
|         | Source:                   | U.S. Census Bureau |        |             |

.

### Table 2.5-6

# Summary of Permittee Financial Capability Indicators (Worksheet 9)

|                            | Column A:    | Column B:   |             |
|----------------------------|--------------|-------------|-------------|
| Indicator                  | Actual Value | 60000 Score | Line Number |
| Bond Rating (Line 303)     | (1)          |             | 901         |
| Overall Net Debt as a      |              |             |             |
| Percent of Full Market     |              |             |             |
| Property Value             |              |             |             |
| (Line 405)                 | NA           | <b>**</b>   | 902         |
| Unemployment Rate (Line    |              |             |             |
| 501)                       | 9.20%        | 1           | 903         |
| Median Household Income    |              |             |             |
| (Line 601)                 | \$25,725     | 1           | 904         |
| Property Tax Revenues as   |              |             |             |
| a Percent of Full Market   |              |             |             |
| Property Value (Line 703)  | NA           | NA          | 905         |
| Property Tax Revenue       |              |             |             |
| Collection Rate            |              |             |             |
| (Line 803)                 | NA           | NA          | 906         |
| Permittee Indicators Score |              |             |             |
| (Sum of Column B /         |              |             |             |
| Number of Entries)         |              | 1           | 907         |

<sup>(1)</sup> Not representative of City of Chester service area. Current ratings reflect countywide conditions, county guarantees, and bond insurance.

# Financial Capability Matrix Score (Worksheet 10)

|                                   |             | <u>Line Number</u> |
|-----------------------------------|-------------|--------------------|
|                                   | 60000       | )                  |
| Residential Indicator Score (Line |             |                    |
| 205)                              | 1.21%       | 1001               |
| Permittee Financial Capability    |             |                    |
| Indicators Score (Line 907)       | 1           | 1002               |
| Financial Capability Matrix       |             |                    |
| Category (see matrix below)       | High Burden | 1003               |

# FINANCIAL CAPABILITY MATRIX

Table 3

| Permittee Financial<br>Capability Indicators<br>Score | <b>Residential Indicator</b><br>(Cost Per Household as a % of MHI) |                                         |                      |  |  |  |  |  |  |  |  |  |  |
|-------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------|----------------------|--|--|--|--|--|--|--|--|--|--|
| (Socioeconomic, Debt<br>and Financial<br>Indicators)  | Low<br>(Below 1.0%)                                                | Mid-Range<br>(Between 1.0% and<br>2.0%) | High<br>(Above 2.0%) |  |  |  |  |  |  |  |  |  |  |
| Weak<br>(Below 1.5)                                   | Medium Burden                                                      | Hign Burden                             | Hign Burden          |  |  |  |  |  |  |  |  |  |  |
| Mid-Range<br>(Between 1.5 and 2.5)                    | Low Burden                                                         | Medium Burden                           | Hign Burden          |  |  |  |  |  |  |  |  |  |  |
| Strong<br>(Above 2.5)                                 | Low Burden                                                         | Low Burden                              | Medium Burden        |  |  |  |  |  |  |  |  |  |  |

### **SECTION 6**

### ALTERNATIVES SELECTED FOR IMPLEMENTATION

## 6.1 PROGRAM AND IMPLEMENTATION SCHEDULE OF SELECTED ALTERNATIVES

Subsection 5.1.3 of this report identified the initial list of programs that would be undertaken as part of the CSO LTCP. These programs, plus additional actions to be taken by DELCORA, are further described in this section, as is the overall implementation schedule. The overall program of system improvements and management actions comprising the LTCP is:

- Regulator and tide gate monitoring
- Regulator replacement
- Sewer separation
- Inlet replacement
- Modified sewer cleaning program
- Ongoing monitoring of program impacts and modifications to water quality standards
- Public information/education program

Specific actions to be undertaken for each of these activities, along with implementation schedules are described in the following subsections.

### 6.1.1 Regulator and Tide Gate Monitoring

A remote monitoring system will be designed in 1999 and a pilot system installed in 2000. It is anticipated that the monitoring system will sense regulator and tide gate status and transmit this information to WRTP. Status alarms will identify closed regulators or open tide gates. Anticipated benefits of this system are described in Subsection 5.1.1.2.

The initial system, currently in the planning stages, will be installed in selected chambers that currently have Brown & Brown regulators (15, 17, 18, 7, and 19), and monitoring will subsequently be installed in other regulators as they are converted from McNulty regulators to Brown & Brown regulators over a 20-year period (see Subsection 6.1.2).

#### 6.1.2 Regulator Replacement

A program to replace all McNulty regulators with Brown & Brown regulators, and to subsequently evaluate the condition and recondition/replace the existing Brown & Brown regulators will begin in 1999, and be completed over a 25-year period. All McNulty regulators will be replaced over the first 20 years of the program. The schedule for replacement/rehabilitation is based upon modeled CSO Impacts (as described in Subsection 4.3.2.1) and is as follows:

| Year | Regulator                          | Year | Regulator                           |
|------|------------------------------------|------|-------------------------------------|
| 1999 | Regulator #16 on Ridley Creek      | 2012 | Regulator #9 on the Delaware River  |
| 2000 | Regulator #26 on Chester Creek     | 2013 | Regulator #13 on the Delaware River |
| 2001 | Regulator #22 on Chester Creek     | 2014 | Regulator #10 on the Delaware River |
| 2002 | Regulator #20 on Chester Creek     | 2015 | Regulator #11 on the Delaware River |
| 2003 | Regulator #25 on Chester Creek     | 2016 | Regulator #14 on the Delaware River |
| 2004 | Regulator #21 on Chester Creek     | 2017 | Regulator #4 on the Delaware River  |
| 2005 | Regulator #24 on Chester Creek     | 2018 | Regulator #6 on the Delaware River  |
| 2006 | Regulator #23 on Chester Creek     | 2019 | Regulator #18 on Ridley Creek       |
| 2007 | Regulator #12 on Chester Creek     | 2020 | Regulator #17 on Ridley Creek       |
| 2008 | Regulator #8 on the Delaware River | 2021 | Regulator #15 on Ridley Creek       |
| 2009 | Regulator #5 on the Delaware River | 2022 | Regulator #7 on the Delaware River  |
| 2010 | Regulator #3 on the Delaware River | 2023 | Regulator #19 on Ridley Creek       |
| 2011 | Regulator #2 on the Delaware River |      |                                     |

The sequencing of regulators will be subject to adjustment based upon additional information collected over the duration of the program.

#### 6.1.3 Regulator Consolidation and Sewer Separation

The regulator consolidation and sewer separation planning efforts described in Subsection 4.3.3 and 4.3.4 will be implemented over a ten-year period in parallel with sewer-related activities at the Delaware County Prison in Chester and the Route 0291 reconstruction project. At this time, the elimination of any regulators is not being contemplated primarily due to severe hydraulic constraints in the system. There is the potential for the future diversion of flows from a regulator to

an interceptor, (i.e., Subarea 6A being directed to the West End Interceptor) but at the current time the same hydraulic constraints that prevent regulator elimination also prohibit diversions. The potential to implement regulator consolidation and diversions will be reviewed as part of the ongoing monitoring program and re-examined after the completion of the Route 0291 reconstruction project.

#### 6.1.4 Inlet Replacement

The City of Chester has on-going program to replace the open curb-face inlets with grated inlets as discussed in Section 4.2.3. After discussions with PADEP and USEPA, DELCORA plans to augment this program by reimbursing the City for inlets it replaces beyond those currently funded up to an amount not to exceed \$75,000 per year for a period of twelve years. This corresponds to the period of time in which DELCORA had originally planned to replace all McNulty regulators. It is intended that the inlets replaced with these funds be located in areas with severe debris problems or in areas tributary to Chester and Ridley Creeks.

#### 6.1.5 Modified Sewer-Cleaning Program

DELCORA currently cleans combined and separate sanitary sewers on an average frequency of once per year. This does not mean that each stretch of sewer is cleaned once per year since some segments require more frequent cleaning and some segments require less frequent cleaning.

Beginning in 1999, DELCORA will modify its sewer-cleaning program to give highest priority to cleaning of sewer segments that have the most potential impact upon CSO. The program will be developed by mid 2000, and supplemented in 2001. It will be monitored and adjusted periodically over the planning period as additional information on debris accumulation and water quality impacts are collected.

#### 6.1.6 Ongoing Monitoring of Program Impacts

This program is described in Subsection 6.3.

### 6.1.7 Public Information/Education Program

DELCORA will initiate public information and public participation programs related to CSOs in 1999. By the end of 1999, DELCORA anticipates the development a newsletter describing CSO issues, the LTCP, and the projected benefits of the program. This newsletter will encourage public input, and will include forms and contact information to encourage such input. Subsequent newsletters describing programs and related program issues will be prepared annually and distributed with customer billings. Public input will be considered in annual program reviews conducted by DELCORA. Any resultant program modification plans will be reviewed with PADEP and other regulatory agencies.

### 6.2 IMPACT OF THE IMPLEMENTATION OF THE SELECTED ALTERNATIVES

A reanalysis of the typical year precipitation events was performed using a revised SWMM model. The revisions included in the analysis incorporated the diversion of Subarea 6A to the West End Interceptor, the diversion of Subareas 4A and 4B to the West End Interceptor, removal of runoff from the area where separation of the stormwater and sanitary sewage flows are planned, and the combination of flows from the area draining to Regulator 23 with the flow through Regulator 12. The revised model also included clarified information on the interceptors leading into EPS-1 at the WRTP.

Benefits from regulator replacement and monitoring, and from expanded sewer cleaning are not reflected in the model analysis and will yield benefits beyond that described in Subsection 6.2.1. These benefits include:

Ltcpdft6.doc

April 1999

- Rapid detection and response to malfunctions that could cause dry weather overflow.
- Rapid detection and response to conditions that result in early closure or late opening of regulators during storms.
- Increase "first flush" capture.
- Reduce total volumes and loadings to receiving streams.
- Reduced floatable discharges.

It is important to note however, that the improvements included in the future year modeling will need to be preceded by interceptor improvements to remove bottlenecks and other improvements to ease hydraulic constraints.

### 6.2.1 Combined Sewer Overflow Hydraulic Characterization for Future Typical Year

The re-analysis of the 87 events in a typical year clearly show constraints/bottlenecks in the interceptor system, however, the implementation of the selected alternatives does show improvement over the baseline analysis. Overall, the modeled improvements reduce overflow volume by 18.6%, TSS loadings by 18.5%, and BOD<sub>5</sub> loading by 12.8%. Reductions in parameters that exceed Water Quality Standards were 90.5 % reduction in fecal coliform 19.1% reduction in copper, 19.0% reduction in aluminum, 19.5% in lead and 18.3% reduction in mercury. Table 6.2-1 shows the junctions and the corresponding interceptors that are subject to frequent surcharging and Figure 6.2-1 shows the interceptor reaches that frequently surcharge. The frequency and widespread nature of the surcharging clearly demonstrates that little or no additional capacity is available in most of the system to store combined flows. The potential storage and additional capacity in the West End Interceptor was evaluated and in fact overfilled the interceptor. Table 6.2-2 shows a monthly and annual summary by outfall of the overflows experienced in a typical year. Table 6.2-3 summarizes the annual overflow by receiving water.

Table 6.2-4 summarizes the monthly and annual of the flows from the interceptor system to CPS and to EPS-1 at the WRTP for the future typical year.

### 6.2.2 Combined Sewer Overflow Quality Characterization for Future Typical Year

Using the same methodology as outlined in Subsection 2.5.3, the total load of a specified pollutant to the receiving water was estimated. Using the selected concentrations for wastewater and stormwater from Table 2.5-6 and the CSO discharge volumes from Table 6.2-2, the annual load was computed by outfall and by receiving water for the specified pollutants as presented in Tables 6.2-5 through 6.2-22.

### 6.3 POST-IMPLEMENTATION MONITORING PROGRAM

An ongoing monitoring program will be implemented in 1999. This monitoring program will address:

- Further quantification of CSO frequency and volume.
- Further quantification of CSO quality and loadings.
- Sampling of the system will occur annually during wet weather months. Samples will be collected once a year at EPS-1 and the CPS.
- Ability to divert additional flow to the West End Interceptor and WRTP.
- Further sewer separation or regulator consolidation related to highway reconstruction projects.
- DRBC's review of CSO impacts and potential development of "wet-weather" water quality standards.
- Periodic review of other CSO abatement options (including those identified and not selected in this plan) if additional CSO abatement is warranted.
- Further development of CSO abatement technology and "lessons learned" in other CSO programs.

A detailed monitoring program will be completed in 1999 following review of this LTCP by PADEP, EPA, and DRBC.

ſ. .

# 6.4 IMPLEMENTATION SCHEDULE

| Action                                                  | Date                   |
|---------------------------------------------------------|------------------------|
| Identify and prioritize areas for inlet replacement.    | PID + 2 mo.            |
| Complete an agreement with the City regarding           | PID + 3 mo.            |
| reimbursement for inlet replacement.                    |                        |
| Coordinate candidate inlets with the City.              | PID + 3 mo.            |
| <u> </u>                                                | annually thereafter    |
| Develop the on-going monitoring program including       | PID + 5 mo.            |
| selection of monitoring locations.                      |                        |
| Preparation of plans and specifications for regulator   | PID + 6 mo.            |
| replacement/rehabilitation.                             | annually thereafter    |
| Commence implementation of the on-going monitoring      | PID + 6 mo.            |
| program.                                                | annually thereafter    |
| Complete design and specification for regulator         | PID + 9 mo.            |
| monitoring system.                                      |                        |
| Complete regulator replacement/rehabilitation.          | PID + 12 mo.           |
|                                                         | annually thereafter    |
| Track and review sanitary sewer cleaning records.       | PID + 12 mo.           |
| Identify areas needing more or less cleaning.           | annually thereafter    |
| Develop and commence implementation of the public       | PID + 12 mo.           |
| information/education program.                          |                        |
| Complete installation of pilot for regulator monitoring | PID + 15 mo.           |
| system.                                                 |                        |
| Complete evaluation of regulator monitoring system and  | PID + 21 mo.           |
| adjust design as necessary.                             |                        |
| Re-examine potential for regulator consolidation and    | Completion of Rt. 0291 |
| subarea diversion.                                      | project + 12 mo.       |
|                                                         |                        |

£



.

et al

# Table 6.2-1

# Interceptor Surcharging During Future Typical Year Storm Events

| Junction |                        | 1        | 1      |                           |                 |                        |              |                |       |                 |                         |            |           |                |                 |          |       |          |           |                |                  | *****                   |                          |                | Star          | m Nur          | mher                    |                      |                     |                   |                                    |                  |                |                |                     |                        |          |          |                |                                  |        |                   |                      |                                                       |                   |                           |                                                           |              |                         | - T 7    | _                                                 |      |
|----------|------------------------|----------|--------|---------------------------|-----------------|------------------------|--------------|----------------|-------|-----------------|-------------------------|------------|-----------|----------------|-----------------|----------|-------|----------|-----------|----------------|------------------|-------------------------|--------------------------|----------------|---------------|----------------|-------------------------|----------------------|---------------------|-------------------|------------------------------------|------------------|----------------|----------------|---------------------|------------------------|----------|----------|----------------|----------------------------------|--------|-------------------|----------------------|-------------------------------------------------------|-------------------|---------------------------|-----------------------------------------------------------|--------------|-------------------------|----------|---------------------------------------------------|------|
| Name     | Interceptor Name       | Conduit  | 1 2    | 3 4                       | 5 6             | 7 8                    | 9            | 10 11          | 12 13 | 14 15           | 16 17                   | 18 19      | 20 2      | 1 22 2         | 3 24 2          | 5 26     | 27 28 | 29 30    | 31 32     | 2 33 3         | 4 35 3           | 16 37                   | 38 39                    | 40 4           | 1424          | 3 44 4         | 45 46                   | 47 48                | 49 5                | 0 51 5            | 2 53 5                             | 4 55 5           | 6 57           | 58 50          | 60 61               | 626                    | 2 64 6   | 5 66     | 67 69          | 60 7                             | 0 71 7 | 2 2 2 2 2         | 1175                 | 76 77                                                 | 90 70             |                           | 1030                                                      | 2 04         | 00 00                   | 07       | reque                                             | ency |
| C15      | Front St.              | A        |        |                           |                 |                        |              |                |       |                 |                         |            |           |                |                 |          |       |          |           |                |                  | +++                     |                          |                |               |                |                         | 1/ 10                | 1                   |                   |                                    |                  | 13/1           | 50 57          | 00 01               |                        |          | 3 00     | 0/ 00          | 05 7                             | 0/11/  | 2 73 7            | + /3                 | 10 11                                                 | 10 /9             | 10010                     | 1 02 03                                                   | 104          | 05 00                   | 0/       | #                                                 | 70   |
| C10      | Front St.; West End    | B;10F    |        |                           |                 | x                      | +            |                |       |                 |                         |            | $\vdash$  | ╈              |                 | ++       |       |          | ┝╴┠┈      | ┿╼┿╸           | ╋                | ++                      |                          | $\vdash$       | ++            | ++             |                         | v                    | +                   |                   |                                    | <del>,    </del> |                |                |                     |                        | +-+-     |          |                |                                  |        |                   | <u> </u>             | -+'                                                   |                   | ╧                         |                                                           | ++           |                         |          | ÷+                                                |      |
| C12      | Front St.              | С        | x x    | x x                       | x               | xx                     |              | xx             | x     | xx              | xx                      | xх         | x x       | $ \mathbf{x} $ | xx              | x x      | x x   | xx       | xx        |                |                  | $\frac{1}{x + x}$       | XX                       | V V            |               |                |                         | Ŷ V                  |                     |                   |                                    |                  |                | vv             | VŶ                  | <del> } </del>         |          |          | <del>.</del>   | $-\frac{1}{\sqrt{2}}$            |        | <del> </del> \$ , |                      |                                                       |                   |                           |                                                           |              |                         | <u> </u> | *                                                 | 9%   |
| D16      | Front St.              | D        | x x    | xx                        | x               | x x                    | 1 x          | xx             | x     | xx              | xx                      | xx         | XX        | x              | x x             |          | x x   |          | X X       | X V            |                  | <del>v v</del>          |                          |                |               |                | V V                     | v v                  |                     |                   |                                    | <del>] [ [</del> | 귀쉬             |                |                     | <del>l</del> ÷l:       | 144      | <u>}</u> |                |                                  |        |                   | 44                   |                                                       |                   |                           |                                                           | 귀쉬           | 취직                      |          | 54                                                | 9/%  |
| D17      | Front St.              | E        |        | xx                        | x               | x                      | txt          | xx             | x     | x x             | xx                      | хx         | x         |                |                 |          | x x   |          | V V       |                |                  | <del>, i , i</del>      | 윗수                       | <del>ê î</del> |               | ++++           | 귀쉬                      | $\frac{1}{\sqrt{2}}$ |                     |                   |                                    | <u>}</u>         | 44             | <u> </u>       |                     |                        |          |          |                | $\frac{\lambda}{\sqrt{\lambda}}$ |        |                   | $+\frac{\lambda}{2}$ | $\frac{\mathbf{X} \mathbf{X}}{\mathbf{X} \mathbf{X}}$ |                   |                           | $\frac{ \mathbf{X}  \mathbf{X}}{ \mathbf{X}  \mathbf{X}}$ |              | ×                       | X        | 31                                                | 93%  |
| A9       | Front St.              | F        | ┠━╂━╂  | xx                        | x               | x                      | + +          | XX             | x     | VV              | VV                      | V V        |           |                | <u>}</u>        | 귀쉬       |       |          |           | 110            |                  | 귀쉬                      | 44                       |                |               |                | 14                      |                      |                     |                   |                                    |                  |                |                | XX                  |                        |          | XX       | XX             | XX                               |        | X                 |                      | XX                                                    | XX                | X                         | XX                                                        |              | X                       | X e      | 57                                                | 77%  |
| A16      | Front St               | Gl       |        |                           |                 | x                      | ╉╧╋          | <u> </u>       |       | <u> </u>        | <u> </u>                | <u>^ ^</u> | <u> ^</u> | ┼┼┼            | <del>`   </del> | ₩+       | 쉬쉬    | <u>^</u> | <u> </u>  |                | 44               | 44                      |                          |                | 4 <u>-</u>    | 14             |                         | Χλ                   |                     | <u> x </u>        |                                    |                  | <u> </u>       |                | XX                  |                        |          | XX       | XX             | XX                               |        | X                 |                      | XX                                                    |                   |                           | XX                                                        |              | X                       | X e      | 51                                                | 70%  |
| B18      | Front St.              | 62       |        | ┝╍╂╸╂                     | -+-+-           | $\frac{1}{\sqrt{1-1}}$ | ╉╍╌╉         | -+-+-          |       | -+\$+           |                         |            |           | ┿╋             | ++              | ┽┽       |       |          |           | ╋┉╋╍           | ┿                | -+-+                    |                          | <u> </u>       |               | ++             |                         |                      |                     |                   |                                    |                  |                |                |                     |                        | <u>_</u> |          |                |                                  |        |                   | 44                   |                                                       | $\square$         | $\downarrow$              |                                                           | $\square$    |                         |          | 4                                                 | 5%   |
| B19      | Front St               | 62       | ┝╍┝╸┤  |                           |                 | x -                    | ┿┯╋          |                |       |                 |                         |            | ┝─┥─      | ┿╋             |                 |          |       | _        | $\square$ |                | ++               | ++                      |                          | ┢╍┨┻           | +             | ++             |                         | <u>X</u>             | <u> </u>            |                   | XX                                 |                  | +              |                |                     |                        |          |          |                |                                  |        |                   |                      |                                                       | $\square$         |                           |                                                           | -            |                         |          | 6                                                 | 7%   |
| 028      | West Fnd               | 105      | -++    | ┉╀╶╂                      |                 | <u>^</u>               | ┿┯╋          |                |       |                 | +                       |            |           | ┼╌┼            |                 | ++       |       |          |           | <u>       </u> | ╇                | ++                      |                          | <u> </u>       | <u>    -</u>  | ++             |                         |                      |                     |                   | XX                                 |                  |                |                |                     |                        |          |          |                |                                  |        |                   | $\square$            |                                                       | $\square$         |                           |                                                           |              |                         |          | 3                                                 | 3%   |
| 012      | West End Stoney Cr     | 100-501  |        |                           |                 | -                      | ╋            |                |       |                 |                         |            |           | ╉╌┼╴           |                 | ++       |       |          |           |                | 1                | ++                      |                          | <u> </u>       |               |                | -++                     |                      |                     |                   |                                    |                  |                |                |                     |                        |          |          |                |                                  |        |                   |                      |                                                       | $\Box \Box'$      |                           |                                                           |              |                         |          | 0                                                 | 0%   |
| P13      | West End               | 100,501  |        |                           | <del>- - </del> | ^                      | ╉╌╋          |                |       | -+-+            |                         |            |           | ++             | ++              | +-+      |       |          |           | +              | +                | ++                      | -                        | <u> </u>       |               |                |                         |                      |                     |                   |                                    |                  |                |                |                     |                        |          |          |                |                                  |        |                   |                      | '                                                     | $\Box \Box'$      |                           |                                                           |              |                         |          | 2                                                 | 2%   |
| NOS      | West End               | 100      |        |                           |                 | _                      | +            | <del>_}_</del> | ┉┼┈┼  |                 |                         |            |           | +              |                 | +        |       |          |           |                |                  | $\square$               |                          | <u> </u>       |               |                |                         |                      |                     |                   |                                    |                  |                |                |                     |                        |          |          |                |                                  |        |                   |                      |                                                       | $\Box \Box'$      |                           |                                                           |              |                         |          | 1                                                 | 1%   |
| P12      | West End               |          |        |                           | -+-+            |                        | ╉┯╋          | <u>_</u>       |       |                 |                         |            |           | ++             |                 |          |       |          | $\square$ | $\downarrow$   |                  | $\rightarrow$           |                          |                |               |                |                         |                      |                     |                   |                                    |                  |                |                |                     |                        |          |          |                |                                  |        |                   |                      |                                                       |                   |                           |                                                           |              |                         |          | 0                                                 | 0%   |
| 10-201   | West End               | 105      | ┝╼╂╼╂  |                           |                 |                        | ╂┉┠          |                | _     |                 |                         |            |           | ┨↓_            | _               | +        |       |          |           |                |                  | $\square$               |                          |                |               |                |                         |                      |                     |                   |                                    |                  |                |                |                     |                        |          |          |                |                                  |        |                   |                      |                                                       | $\square \square$ |                           |                                                           |              |                         |          | 0                                                 | 0%   |
| G17      | Stopau Cr.             |          | ┝━╃━┛╉ |                           |                 |                        | ╀┈╄          |                |       |                 |                         | _          |           | _              | ++              | +        |       |          |           | <b> </b>       |                  | $\downarrow \downarrow$ |                          |                |               |                |                         |                      |                     |                   |                                    |                  |                |                |                     |                        |          |          |                |                                  |        |                   |                      |                                                       | $\square$         |                           |                                                           | П            |                         |          | 0                                                 | 0%   |
| 005      | Stoney Cr.             | SC2      | ╺╼╋╼╍╄ |                           |                 |                        | ╇╦╋          |                |       |                 |                         |            |           |                |                 |          |       |          |           |                |                  |                         |                          |                |               |                |                         |                      |                     |                   |                                    |                  |                |                |                     |                        |          |          |                |                                  |        |                   |                      |                                                       | $\square$         |                           | T                                                         | $\Pi$        |                         |          | 0                                                 | 0%   |
| K03      | Stoney Cr.             | <u> </u> |        | $\frac{\lambda}{\lambda}$ |                 | ×–                     |              |                |       | XX              | XX                      | X          |           |                |                 |          |       |          |           |                | )                | ( )                     | XX                       |                |               |                | X X                     | XX                   | X                   | $\langle \rangle$ | X X X                              | X X              | $(\mathbf{x})$ | X              | X                   | XX                     |          | 4        | X              | XX                               |        | X                 | X                    |                                                       | XX                | X                         | X                                                         | TT           | хT                      | 4        | 46                                                | 53%  |
| R03      | Stolley Gr.            | - 303    |        | <u>×   </u>               |                 | x                      |              |                |       | X               | XX                      | <u> </u>   |           |                |                 | (X       |       |          |           |                |                  | (1)                     | XX                       |                | X             |                | X X                     | X                    | X                   |                   | $ \mathbf{x}  \mathbf{x}$          | ( X              |                | X              | X                   | XX                     |          |          | X              | XX                               |        | x                 | X                    |                                                       | XX                | X                         | X                                                         | T            | хŢŢ                     | 4        | 42                                                | 48%  |
| D17      | 200 St.                | P 0.11   |        | <del>.  </del>            | _               |                        | <u>   </u>   |                |       |                 |                         |            |           |                |                 |          |       |          |           |                |                  |                         |                          |                |               |                |                         |                      |                     |                   |                                    |                  |                |                |                     |                        |          |          |                |                                  |        |                   | T                    |                                                       |                   |                           |                                                           |              |                         | (        | 0                                                 | 0%   |
| D13      | 210 St.                | 0;N      |        | 4+                        |                 | X                      | +            |                |       |                 |                         |            |           |                | 1.1             | X        |       |          |           |                |                  | <u> </u>                | X                        |                | X             |                |                         | X                    |                     |                   | $\mathbf{x} \mathbf{x} \mathbf{x}$ |                  |                | X              | X                   |                        |          |          |                |                                  |        | X                 | X                    |                                                       | XX                | Π                         | X                                                         | TT           |                         | 2        | 23                                                | 26%  |
| N41      | 2nd St.                |          |        |                           |                 | X                      | $\square$    |                |       |                 |                         |            |           |                |                 |          |       |          |           |                |                  |                         |                          |                |               |                |                         | X                    |                     |                   |                                    |                  |                |                | X                   |                        |          |          |                |                                  | TT     | X                 |                      |                                                       | $\square$         |                           |                                                           | $\square$    |                         |          | 5                                                 | 6%   |
|          | Chester Crw;2nd St.    | MI;J     |        | <u>×   </u>               |                 | x                      | $\square$    |                |       |                 |                         |            |           |                |                 | X        |       |          |           |                |                  |                         | X                        |                | X             |                |                         | X                    | X                   |                   | x x                                |                  |                | X              | X                   | XX                     |          |          |                |                                  |        | X                 | X                    | $\square$                                             | XX                |                           | X                                                         | $\mathbf{T}$ |                         | 2        | 20                                                | 23%  |
| N18      | Chester CrW            | M2       |        |                           |                 | X                      | $\downarrow$ |                |       |                 |                         |            |           |                |                 | X        |       |          |           |                |                  |                         | X                        |                | X             | X              |                         | X                    | X                   |                   | ( X                                |                  |                | X              | X                   | XX                     |          |          |                |                                  |        | X                 | X                    |                                                       | XX                |                           |                                                           | TT           | 11                      | 1        | 18                                                | 21%  |
| N15      | Chester CrW            | L        |        |                           | ?               | X                      |              |                |       |                 |                         |            |           |                |                 | X        |       |          |           |                |                  |                         |                          |                |               | X              |                         | X                    | X                   | ( )               |                                    |                  | ТТ             |                | X                   |                        |          |          |                | _                                | $\top$ | X                 | TT                   |                                                       |                   |                           |                                                           | 11           | 11                      | 1        | 10                                                | 11%  |
| 107      | Chester CrW            | K2       |        |                           |                 | X                      |              |                |       |                 |                         |            | ·         |                |                 | X        |       |          |           |                |                  |                         |                          |                |               |                |                         | X                    | X                   |                   |                                    |                  | TT             |                | X                   |                        |          |          |                |                                  |        | X                 | TT                   | -                                                     | $\square$         | <b>F</b>                  |                                                           | ++           |                         |          | 8                                                 | 9%   |
| F04      | Chester CrW            | K3;K1A   |        |                           | '               | X .                    |              |                |       |                 |                         |            |           |                |                 | X        |       |          |           |                |                  |                         |                          |                |               |                |                         | X                    |                     |                   | XX                                 |                  | TT             |                | X                   |                        |          |          |                |                                  |        | X                 | TT                   | +++                                                   |                   |                           |                                                           | ++           |                         |          | 8                                                 | 9%   |
| 018      | Chester CrW            | K3       |        |                           |                 |                        |              |                |       |                 |                         |            |           |                |                 |          |       |          |           |                |                  | T                       |                          |                |               |                |                         |                      |                     |                   | X                                  |                  |                |                |                     |                        |          |          |                |                                  |        |                   |                      |                                                       | $\square$         |                           |                                                           |              |                         |          | ī                                                 | 1%   |
| B02      | Chester CrW            | KIB      |        | ·                         | 2               | X _                    |              |                |       |                 |                         |            |           |                |                 | X        |       |          |           |                |                  | TT                      |                          | ·              | X             | X              |                         | X                    | X                   |                   |                                    |                  |                | X              | X                   | X                      |          |          |                | -                                |        | X                 | ++                   | ++                                                    |                   |                           |                                                           |              | ++                      | 1        | 14                                                | 16%  |
| N05      | Chester CrW            | KIC      |        | x                         |                 | X                      | X            |                |       | XX              | X X                     | X          | X         | X              | XX              | X        | X     |          |           | X              | X                | $( \neg )$              | $\mathbf{x}[\mathbf{x}]$ | Т              | X             |                | $\mathbf{x} \mathbf{x}$ | XX                   | X                   | (   X             | XXX                                |                  |                | X              | X                   | XX                     |          |          | X              | XX                               |        | X                 | X                    |                                                       | XX                | x                         | x                                                         |              | $\mathbf{x}$            | 4        | 46                                                | 53%  |
| 118      | Chester CrW            | K        |        | x                         | ,               | K                      | X            | X              |       | X X             | x x                     | X          | X         | X              | XX              | X        | X     |          |           | X              | X                | 4 5                     | XX                       | T              | X             | $ \mathbf{x} $ | XXX                     | XX                   |                     |                   | XX                                 |                  |                | X              | X                   | XX                     |          |          | X              | XX                               |        | x                 | x                    |                                                       | XX                | X                         | x                                                         | 1-1-         | xtt                     | 4        | 46                                                | 53%  |
| M02      | Chester CrW            | K        |        | X                         |                 | X                      |              |                |       | x               | X                       |            | X         | X              | X               | X        |       |          |           | X              |                  | 15                      | XX                       |                | X             | x              | X                       | x                    | X                   |                   |                                    |                  |                | x              | X                   | XX                     |          |          | X              | xx                               |        | x                 | x                    |                                                       | xx                |                           | x                                                         | +++          | $\overline{\mathbf{x}}$ | 3        | 32                                                | 37%  |
| A07      | 2nd St.                | I        | _      | x                         | >               | <                      |              |                |       |                 |                         |            |           | X              | X               | X        |       |          |           | X              |                  | 1                       |                          |                | X             | X              | X                       | x                    | X                   | X                 | XX                                 | X                |                | X              | X                   | XX                     |          | ++       | X              | x x                              |        | x                 | x                    | ++                                                    | xx                |                           | X                                                         | +++          |                         | 2        | 28                                                | 32%  |
| P56      | 2nd St.                | Hì       |        | x                         | )               | <                      |              |                |       |                 |                         |            |           | X              | X               | X        |       |          |           | X              |                  | 17                      | XT                       |                | X             | X              | X                       | x                    |                     |                   |                                    |                  |                | x              | X                   | XX                     |          | ++       | X              | XX                               |        | x                 | x                    |                                                       | xx                | <b></b>                   | x                                                         | ++           |                         | 2        | 28                                                | 32%  |
| P50      | 2nd St.                | H2       |        | x                         |                 | K                      |              |                |       | X               | X                       |            | X         | X              | X               | X        |       |          |           | X              |                  | 17                      | XX                       |                | X             | X              | X                       | x                    | X                   |                   |                                    |                  | x              |                | X                   | XX                     |          | 1-+      | x              | x x                              |        | TX T              | x                    | ++                                                    | xx                |                           | 1x                                                        | <b>†</b>     | $\overline{\mathbf{x}}$ | 3        | 34                                                | 39%  |
| O38      | 2nd St.                | H2       |        | x                         | )               | <                      |              |                | ·     |                 |                         |            |           | X              | X               | X        |       |          |           | X              |                  | 15                      | X T                      | -              | X             | X              | X                       | X                    | X                   |                   |                                    |                  |                |                | X                   | XX                     | 1-1-     | +-+      |                | XX                               |        | 1x                | TX T                 | +                                                     | xx                | <u></u>                   | 1x                                                        | ++           |                         | 2        | 28                                                | 32%  |
| B22      | 2nd St.                |          |        |                           |                 |                        |              |                |       |                 |                         |            |           |                |                 |          |       |          |           | П              |                  | $\mathbf{T}$            | $\square$                |                |               | TT             |                         |                      |                     |                   |                                    |                  | ++             |                |                     |                        | ++-      | 1-+      |                |                                  |        | 1-                | ++                   | ++                                                    |                   | <u> </u>                  | +                                                         | ++           |                         |          | 0                                                 | 0%   |
| B27      | 2nd St.                | Z        |        |                           |                 |                        |              |                |       |                 |                         |            |           |                |                 |          |       |          |           |                |                  | TT                      | 17                       |                |               |                |                         |                      |                     |                   |                                    |                  | ++             |                |                     |                        | 1-1-     |          |                |                                  |        | +                 | ++                   | ++                                                    | $\dashv$          |                           | +-+                                                       | ++           | ++                      |          | 0                                                 | 0%   |
| BISE     | Chester CrE;Ridley Cr. | Y;V      |        |                           |                 |                        |              |                |       |                 |                         |            |           |                |                 | П        |       |          |           |                |                  |                         |                          |                |               |                |                         |                      |                     |                   |                                    |                  |                |                |                     |                        |          |          |                |                                  |        | 1-1-              | +                    | +-+                                                   | -+-               |                           | +                                                         | ++           | ++                      |          | 0                                                 | 0%   |
| N31      | Chester CrE            | X        |        |                           |                 |                        |              |                |       |                 |                         |            |           |                |                 |          |       |          |           |                |                  |                         | 11                       |                |               | 1 1            |                         |                      |                     |                   |                                    |                  |                |                |                     |                        |          |          |                |                                  | ++     | +-+-              |                      |                                                       |                   | <u> </u>                  | +-+-                                                      | +-+          | -+-+                    |          | <del>0</del>                                      | 0%   |
| K33      | Chester CrE            | W        |        | x                         |                 |                        | X            | X              |       | XX              | $\mathbf{x} \mathbf{x}$ | XX         | XX        | X              | XX              | X        | X X   |          | X         | XX             | XX               | 1 5                     | XX                       | X              | X             | X X            | x x x                   | x x                  | XX                  | xx                |                                    |                  | x              | x              | x                   | xx                     | x x      |          | x              | $\mathbf{x} \mathbf{x}$          |        | tx                | x                    | +x                                                    | xx                | IX                        | TX X                                                      | 1-+          | x + t                   | 5        | 57                                                | 66%  |
| G05      | Chester CrE            | W        |        | x                         |                 |                        |              |                |       | TT              |                         |            | X         | X              | X               | X        |       |          |           | X              |                  | 17                      | x x                      |                | X             | x              |                         | x 🕇                  | X                   |                   | 1-1-                               |                  |                | x              | X                   | xx                     |          | ┽╾┽      | $-\mathbf{x}$  | xx                               |        |                   | $\frac{1}{x}$        | ++                                                    | xx                | <u> </u>                  | TX -                                                      | +-+-         | ++                      | 2        | 28                                                | 37%  |
| C14      | Ridley Cr.             | U        |        | x                         |                 | П                      |              |                |       | x               | X                       |            | X         | x              | x               |          | 11    |          |           | x              |                  | ++-                     | TX                       |                | ++            | ++             |                         |                      | $-\mathbf{x}$       |                   | ++-                                | + +-             |                |                |                     | $\mathbf{x}\mathbf{x}$ | +-+-     | ┿╍╋      | X              | xx                               |        |                   | 1x                   | ++                                                    | x                 | <u>h-h-</u>               | 1                                                         | ++-          | $\overline{x}$          |          | <del>, , , , , , , , , , , , , , , , , , , </del> | 23%  |
| P38      | Ridley Cr.             | Т        |        | X                         |                 |                        |              | X              |       | x               | X                       |            | X         | x              | 1x              | X        | 11    | -1-      |           | x              |                  | 15                      | xtxt                     | +              |               | txt            | - <u> x </u>            | $\mathbf{x}$         |                     |                   | txix                               | t tx             | txt            | +x+            | $-\mathbf{x}$       | xx                     | ++       | ┿╋       | - x            | XX                               |        |                   |                      |                                                       | xx                |                           |                                                           | ++           | $\frac{1}{x}$           |          | <u>, , , , , , , , , , , , , , , , , , , </u>     | 41%  |
| M10      | Ridley Cr.             | S1       |        | x                         |                 |                        | X            | x              |       | x               |                         | X          | X         | x              | x               | X        |       |          |           | x              |                  | 击ち                      | xtxt                     | +              | 1 x           | $ \mathbf{x} $ |                         | $\mathbf{x}$         |                     | t tx              | txtx                               | $+ \mathbf{x}$   |                | - x            | x                   | xx                     |          | ┽┽       | x              | xx                               | ++-    | $\frac{1}{x}$     | $\frac{1}{x}$        |                                                       | XX                | <u> </u> − <u>+</u> −     |                                                           | ++           | $\frac{1}{\sqrt{1+1}}$  |          | 18                                                | 44%  |
| 132      | Ridley Cr.             | S2       |        | X                         |                 | 1                      |              | x              |       | x  +            |                         |            | X         | x              | x               | x        | ++    |          |           | x              |                  | <b>†</b> †;             | <u>ztxt</u>              | +              | x             | $ \mathbf{x} $ |                         | x 1                  |                     | + + x             | xx                                 |                  |                |                | x                   | XX                     |          | ++       | x              | XX                               | +-+-   |                   | $\frac{1}{x}$        | +                                                     | $\frac{1}{X}$     | <u>├</u> ─ <del> </del> ─ |                                                           | ++           | $\frac{1}{x+1}$         |          | ž –                                               | 40%  |
| 125      | Ridley Cr.             | RT1      |        | X                         |                 | 11                     |              |                |       | $\mathbf{x}$    |                         |            | X         | x              | $ \mathbf{x} $  | x        |       | +        |           |                |                  | d fr                    | xtxt                     | +              | x             | $ \mathbf{x} $ |                         | $\mathbf{x}$         |                     |                   |                                    |                  |                |                | x                   | XX                     | +        | +        | $-\frac{n}{x}$ | XX                               | ++     |                   | + <del>x</del> +     | ++                                                    |                   | ┢╌╋╼                      | $\frac{1}{x}$                                             | ┿            | $\frac{1}{x}$           |          | <del>.</del>                                      | 41%  |
| 127      | Ridley Cr.             | 16C;RT2  |        | x                         |                 |                        |              |                | 1 :   | x +             |                         | -          | x         | x              | tx -            | 1x       | ┥╋    |          |           | x              | <del>     </del> | ++                      |                          | '              | +-+           | +              |                         | x                    | $-\frac{x}{x}$      |                   |                                    | $+\frac{n}{x}$   | +              |                |                     | XX                     | +        | +        | - X            | XX                               |        |                   | $\frac{1}{x}$        |                                                       | <del>. (</del>    | <u>⊢</u> +–               | X                                                         | ++           | $\frac{2}{\sqrt{1-1}}$  |          | $\frac{2}{5}$                                     | 70%  |
| J12      | Ridley Cr.             | QI       |        | x                         |                 | 1                      |              |                |       | $\mathbf{x}$    |                         | ++         | X         | x              |                 | 1x       | ++    |          | -         |                |                  | ++;                     | xx                       | +              | x             | x -            |                         | x                    | - x                 |                   |                                    |                  | + x +          |                | - x                 | XX                     | +        | +        | - <del>î</del> | $\frac{1}{x}$                    | +      | +++               | +÷+                  |                                                       |                   | ⊢–––                      |                                                           | ++           | <del>}  </del>          |          | <u>.</u>                                          | 200/ |
| G02      | Ridley Cr.             | Q2       |        | x T                       |                 | <u>d 1</u>             |              |                |       | $\overline{x}$  | x                       |            | x         | x              | 1x1             | 1x       | ┽╍┼   |          |           |                | ┟╌┨╌             | ++                      |                          | -+?            |               | x-             |                         | x +                  |                     |                   |                                    |                  | +÷+            | 10             | $-\hat{\mathbf{v}}$ | x v                    | ┼╍┥      | ╉┯╋      |                | ÷l÷                              | +-+-   | +++               | +÷+                  |                                                       |                   | ┢─┼─                      |                                                           | ┽┽           | ++                      | ,        |                                                   | 200/ |
| C04      | Ridley Cr.             | Q3       |        | x T                       |                 | 1                      | $\vdash$     | ╉┋╋            | +     | $\overline{x+}$ |                         | +          | x         | x              | txt             | tx-      | ┽╌┼   |          |           |                | ┝╌┼╌             | ++                      |                          | -+'            |               |                | $-\frac{1}{x}$          | x                    |                     | ++                |                                    | ++               | +++            | - <del> </del> | - <del>Î</del>      |                        |          | ╆╋       | -12-           |                                  | ╂╍╋╍   | +++               | +\$+-                |                                                       |                   | ┢━╋━                      |                                                           | ++           | 3                       |          | <del>,</del>                                      | 27%  |
| C02      | Ridley Cr.             | Q3       |        | x 🕇                       | ++              | 1                      |              | ╉╾┼┈           |       | $\mathbf{x}$    |                         | + †        | x         | x              | tx-             |          | ┥┥    |          |           |                |                  | ++                      | 17                       |                | $\frac{1}{y}$ | x-             |                         | $\frac{1}{x}$        | $+\hat{\mathbf{v}}$ |                   | +++                                | ++               | ++-            | +              | $-\hat{\mathbf{v}}$ | Y V                    |          | +        |                | ÷÷                               | ++     | +                 | +\$-                 |                                                       |                   | ┢─┥─                      |                                                           | ++           | 31                      |          | <u>~</u>                                          | 2701 |
|          |                        |          |        |                           | _11             | 1                      | ll           | <u>i i</u>     | 1     | لمساسر          |                         |            |           |                |                 | <u> </u> |       |          |           |                |                  |                         | 1 <u>.</u>               |                | L1^           | 1              | 1^12                    | <u>^</u>             | ^                   | 1                 | 1 1 4                              |                  | <u>L 1</u>     | 1^             | 1                   |                        |          |          | ^              |                                  |        | 14                | A                    |                                                       | <u>^ </u>         | <u>L</u>                  | <u> </u>                                                  | $\Box T_{2}$ | <u>^   </u>             | 3        | 2                                                 | 51%  |

.

....
#### Monthly and Annual Summary of Overflows by Outfall for Future Typical Year

|         | Jan       | wary           | Feb       | ruary          | M         | larch          | A         | April          | M         | lay        | Ju        | une        | Ju        | llv.       | Au        | enst       | Sente     | mber       | Oct       | oher       | Nove      | mber       | Daca      | mbor       | Ån        |             |
|---------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|----------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|------------|-----------|-------------|
|         | Length of |                | Length of |                | Length of |                | Length of |                | Length of |            | Length of |            | Length of |            | Length of | 1          | Length of |            | Length of |            | Length of |            | Length of |            | Length of | ituai       |
| 0       | Wet Flow  | Total Flow (cu | Wet Flow  | Total Flow (cu | Wct Flow  | Total Flow (cu | Wet Flow  | Total Flow (cu | Wet Flow  | Total Flow  |
| Outrail | (min)     | II)            | (min)     | II)            | (min)     | ft)            | (min)     | ft)            | (min)     | (cu ft)    | (min)     | (cu ft)    | (min)     | (cu ft)    | (min)     | (cu ft)    | (min)     | (cu ft)    | (min)     | (cu ft)    | (min)     | (cu ft)    | (min)     | (cu ft)    | (min)     | (cu ft)     |
| 002     | 2,759.9   | 577,605        | 2,832.7   | 487,779        | 4,524.9   | 693,787        | 3,261.8   | 629,954        | 4,504.0   | 600,393    | 3,539.6   | 616,165    | 3,238.6   | 724,850    | 4,012.9   | 886,017    | 3,593.3   | 647,423    | 2,320.0   | 459,780    | 2,727.1   | 562,912    | 3,556.4   | 682,487    | 40,871.3  | 7,569,152   |
| 003     | 818.5     | 674,330        | 1,516.7   | 488,017        | 2,429.0   | 710,369        | 2,033.6   | 686,669        | 1,947.4   | 596,074    | 1,200.8   | 749,104    | 1,025.7   | 853,332    | 1,921.0   | 1,071,745  | I,696.1   | 718,952    | 1,072.8   | 599,307    | 1,561.1   | 697,253    | 2,036.9   | 722,535    | 19,259.7  | 8,567,686   |
| . 004   | 684.9     | 62,811         | 236.5     | 84 I           | 292.5     | 2,080          | 395.7     | 17,363         | 409.2     | 12,151     | 531.2     | 55,955     | 625,1     | 84,272     | 1,332.1   | 80,917     | 322.2     | 4,330      | 656.1     | 33,839     | 600.6     | 61,020     | 503.6     | 18,146     | 6,589,8   | 433,723     |
| 005     | 4,742.8   | 1,186,809      | 5,388.1   | 947,907        | 10,285.5  | 1,402,056      | 7,388.4   | 1,204,900      | 11,689.9  | 1,214,902  | 9,049.7   | 1,230,224  | 7,268.2   | 1,478,826  | 7,033,1   | 1,618,231  | 6,795.7   | 1,259,222  | 5,697.2   | 999,460    | 5,574.5   | 1,191,216  | 6,178.9   | 1,296,414  | 87,091.8  | 15,030,166  |
| 006     | 624.3     | 29,802         | 104,2     | 771            | 153.9     | 4,341          | 239.9     | 9,201          | 242.9     | 8,093      | 464.1     | 24,401     | 554.7     | 37,153     | 816.5     | 35,678     | \$50.2    | 15,912     | 605.4     | 20,106     | 496.4     | 26,028     | 328.2     | 8,017      | 5,180.6   | 219,502     |
| 007     | 936.7     | 231,677        | 1,899.9   | 176,460        | 3,044.7   | 238,128        | 2,343.3   | 227,169        | 2,433.9   | 199,372    | 1,552.8   | 232,653    | 1,328.2   | 303,290    | 2,063.7   | 330,912    | 1,938.7   | 231,538    | 1,276.3   | 187,405    | I,842.4   | 228,740    | 2,381.4   | 248,099    | 23,041.9  | 2,835,443   |
| 008     | 3,220.0   | 1,332,724      | 5,428.0   | 1,163,973      | 10,305,7  | 1,662,992      | 7,434.4   | 1,507,348      | 11,766.1  | 1,448,972  | 9,063.1   | 1,603,441  | 6,501.7   | 1,777,141  | 6,296.7   | 2,152,033  | 6,835.8   | 1,530,397  | 5,110.0   | 1,262,762  | 5,599.5   | 1,550,391  | 5,450.1   | 1,606,435  | 83,010.9  | 18,598,609  |
| 009     | 850.9     | 574,050        | 1,670.8   | 276,907        | 2,674.1   | 400,019        | 2,200.7   | 410,187        | I,849.0   | 393,233    | 1,379.1   | 546,215    | 1,144.7   | 735,438    | 2,075.5   | 799,696    | 1,791.7   | 500,606    | I,143.7   | 456,795    | 1,671.8   | 531,261    | 2,092.0   | 451,031    | 20,543.9  | 6,075,438   |
| 011     | 683.4     | 417,780        | 926.4     | 194,545        | 1,485.9   | 252,609        | 1,303.3   | 265,966        | 1,088.4   | 267,961    | 793,4     | 373,480    | 771.3     | 526,159    | 1,598,8   | 550,384    | 1,416.6   | 341,442    | 905.9     | 322,100    | 1,103.4   | 377,294    | 1,558.1   | 335,022    | 13,634.9  | 4,224,742   |
| 012     | 373.1     | 56,800         | 375.1     | 5,527          | 403.7     | 8,328          | 252.8     | 18,324         | 457.7     | 17,482     | 341.2     | 44.982     | 453,1     | 81,768     | 556.7     | 56,178     | 625,9     | 13,276     | 415.5     | 26,746     | 423.0     | 37,853     | 631.1     | 12,202     | 5,309.0   | 379,467     |
| 013     | 912.8     | 452,738        | 1,956.6   | 354,919        | 3,045.1   | 477,080        | 2,408.2   | 453,732        | 2,506.4   | 394,463    | 1,563,8   | 469,819    | 1,310.2   | 582,596    | 2,111.7   | 667,277    | 1,890.4   | 456,534    | 1,270.3   | 367,769    | 1,850.2   | 436,872    | 2,364.0   | 477,173    | 23,189.8  | 5,590,973   |
| 014     | 400,3     | 197,360        | 184.9     | 12,516         | 303.3     | 22,558         | 346.9     | 51,363         | 375,4     | 52,908     | 518.4     | 178,779    | 613.5     | 294,547    | 1,202.5   | 244,640    | 354.4     | 38,504     | 465.5     | 100,857    | 517.9     | 195,776    | 295.4     | 28,324     | 5,578.2   | 1,418,132   |
| 015     | 751.2     | 19,953         | 883.0     | 2,477          | 1,178.7   | 3,767          | 1,020.8   | 5,507          | 827.1     | 5,408      | 743.7     | 13,111     | 700.5     | 26,249     | 1,454.7   | 17,838     | 1,135.3   | 5,754      | 680.5     | 9,184      | 583.8     | 12,596     | 1,190.1   | 4,870      | 11,149.3  | 126,715     |
| 016     | 871.3     | 384,730        | 1,613.9   | 157,520        | 2,009.0   | 205,499        | 1,999.2   | 248,959        | 1,515.6   | 204,646    | 1,145,7   | 334,405    | 1,148.8   | 500,970    | 1,832.9   | 481,017    | 1,776.6   | 269,504    | 963.3     | 272,342    | 1,095.0   | 314,028    | 1,830.7   | 265,736    | 17,802.0  | 3,639,355   |
| 017     | 3,807.7   | 344,419        | 5,735.8   | 293,674        | 9,661.9   | 437,680        | 6,768.7   | 397,227        | 8,699.5   | 351,863    | 8,268.1   | 389,218    | 5,773.0   | 437,688    | 6,420,2   | 539,111    | 6,148.4   | 405,286    | 4,058.3   | 310,262    | 5,392.1   | 377,049    | 5,084.0   | 411,557    | 75,817,8  | 4,695,033   |
| 018     | 3,933.0   | 1,023,859      | 5,806,5   | 801,735        | 9,678.6   | 1,159,423      | 6,818.1   | 1,051,060      | 11,194.3  | 1,031,739  | 8,327.7   | 1,105,658  | 5,828.9   | 1,335.352  | 6,439.3   | 1,472,677  | 6,145.5   | 1,056,832  | 4,290,8   | 846,993    | 5,411.2   | 1,031,676  | 5,201.9   | 1,093,689  | 79,075.8  | 13,010,692  |
| 019     | 974.5     | 1,415,710      | 2,191.0   | 1,332,910      | 3,254.4   | 1,780,211      | 2,587,9   | 1,494,554      | 2,752.9   | 1,348,589  | 1,730.9   | 1,410,261  | 1,579.5   | 1,018,796  | 2,440.6   | 1,884,912  | 2,164.5   | 1,689,854  | 1,151.5   | 1,025,141  | 2,000.7   | 1,025,862  | 2,488.3   | 1,841,365  | 25,316.8  | 17,268,166  |
| 020     | 734.2     | 100,106        | 898.9     | 29,377         | 1,194.1   | 39,476         | 1,024.5   | 49,487         | 869.6     | 48,015     | 739.6     | 86,180     | 652.9     | 137,531    | 1,177.1   | 112,066    | 1,121.3   | 55,072     | 683.8     | 60,934     | 574.1     | 78,880     | 1,203.8   | 49,735     | 10,873.9  | 846,860     |
| 021     | 703.9     | 74,080         | 763.4     | 31,633         | 1,023.2   | 41,723         | 897.6     | 47,397         | 582.9     | 42,139     | 615.5     | 70,032     | 585.9     | 98,101     | 1,136.5   | 96,638     | 1,031.8   | 54,838     | 662.7     | 53,730     | 540.3     | 65,740     | 1,111.7   | 52,747     | 9,655.5   | 728,798     |
| 022     | 784.1     | 214,838        | 1,169.7   | 82,067         | 1,578.2   | 110,548        | 1,172.1   | 125,153        | 912.7     | 115,876    | 817.3     | 191,669    | 764.5     | 288,653    | 1,271.6   | 253,130    | 1,152.1   | 139,934    | 742.1     | 140,406    | 639.9     | 176,072    | 1,386.1   | 129,485    | 12,390.4  | 1,967,830   |
| 023     | -         |                |           | · · · ·        | -         | ·····          |           |                |           |            |           | -          |           |            | -         |            |           | -          | -         | -          |           | -          | -         | -          | -         | -           |
| 024     | 663.1     | 56,678         | 143.3     | 56             | 221.0     | 648            | 406.2     | 17,852         | 476.3     | 18,508     | 491.5     | 52,402     | 541.3     | 75,810     | 1,155.9   | 75,668     | 546.0     | 20,539     | 715.2     | 37,520     | 544.5     | 53,657     | 361.6     | 16,446     | 6,265.9   | 425,782     |
| 025     | 667.2     | 78,505         | 517.3     | 8,344          | 792.5     | 12,639         | 1,109.9   | 29,917         | 545.2     | 23,997     | 660,9     | 67,334     | 684.1     | 103,961    | [,441.0   | 100,672    | 967.4     | 19,114     | 728.2     | 49,892     | 896.9     | 71,376     | 925.3     | 29,449     | 9,935.9   | 595.201     |
| 026     | 735.1     | 202,700        | 899.0     | 53,881         | 1,191.1   | 72,073         | 1,321.1   | 114,808        | 1,083.7   | 110,783    | 805.1     | 180,286    | 739.6     | 258,481    | 1,621.9   | 276,737    | 1,173.1   | 134,535    | 937.4     | 153,120    | 1,087.7   | 185,267    | 1,324.3   | 114,257    | 12,919.2  | 1,856,926   |
| Total   | 31,632.7  | 9,710,064      | 43,141.7  | 6,903,833      | 70,730.9  | 9,738,034      | 54,735.1  | 9,064,095      | 68,730.0  | 8,507,565  | 54,343.0  | 10,025,772 | 43,833.9  | 11,760,963 | 57,413.2  | 13,804,174 | 51,173.1  | 9,609,398  | 36,552.5  | 7,796,452  | 42,734.1  | 9,288,817  | 49,483.9  | 9,895,221  | 604,504.1 | 116,104,390 |

#### Table 6.2-3

### Monthly and Annual Summary of Overflows by Receiving Water for Future Typical Year

|           | Ja        | nuary              | Fcb       | ruary          | M         | larch             | A         | April          | M         | av         | h         | me          | Ţ,        | dv                    | A.,         | auct        | Sant      | mba-       | 0.        | - h           | N         |            | n         |            |                    |             |
|-----------|-----------|--------------------|-----------|----------------|-----------|-------------------|-----------|----------------|-----------|------------|-----------|-------------|-----------|-----------------------|-------------|-------------|-----------|------------|-----------|---------------|-----------|------------|-----------|------------|--------------------|-------------|
|           | Length of | 1                  | Length of |                | Length of |                   | Length of |                | Length of |            | Length of |             | Longth of |                       | Langeh of   | gust        | J such of | l          | UCI UCI   | ober          | ivove     | mber       | Dece      | ember      | Ar                 | inual       |
| Receiving | Wet Flow  | Total Flow (cu     | Wet Flow  | Total Flow (cu | Wet Flow  | Total Flow (cu    | Wet Flow  | Total Flow (ou | Wat Flow  | Total Flow | Wet Flow  | Tetal Elan  | Dength of | Tradina in the second | LACINGUI OF | T . 1 D     | Length of |            | Length of |               | Length of |            | Length of |            | Length of          |             |
| Water     | (min)     | ft)                | (min)     | Ω\             | (min)     | - 0000 F 1000 (CU | (min)     | rocal Flow (Cu | (min)     | Total Flow | weiriow   | I otal Flow | werrlow   | Total Flow            | wet Flow    | I otal Flow | Wet Flow  | Total Flow | Wet Flow  | Total Flow    | Wet Flow  | Total Flow | Wet Flow  | Total Flow | Wet Flow           | Total Flow  |
|           | (         | •••)               | (mm)      |                | (1111)    | 1()               | (min)     | 11)            | (min)     | (cu tt)    | (min)     | (cu ft)     | (min)     | (cu ft)               | (min)       | (cu ft)     | (min)     | (cu ft)    | (min)     | (cu ft)       | (min)     | (cu ft)    | (min)     | (cu ft)    | (min)              | (cu ft)     |
| Kidley    |           |                    |           |                |           |                   |           | ] [            |           |            |           |             |           |                       | l .         |             |           |            |           | 1             |           |            |           |            |                    | 1           |
| Creek     | 9,363.2   | 1,772,961          | 14,039.2  | 1,255,407      | 22,528.2  | 1,806,369         | 16,606.9  | 1,702,752      | 22,236.5  | 1,593,656  | 18,485,3  | 1.842.392   | 13.451.2  | 2 300 259             | 16 147 3    | 2 510 642   | 15 205 8  | 1 737 376  | 9 997 9   | 1 4 3 8 7 8 1 | 12 482 1  | 1 735 340  | 12 204 7  | 1 775 851  | 102 044 0          | 21 471 705  |
| Chester   |           |                    |           |                |           | 1                 |           |                |           | ······     |           |             |           |                       |             | 2,210,012   | 10,200.0  | 1,757,570  | 7,772.7   | 1,450,701     | 12,402.1  | 1,755,549  | 13,300.7  | 1,775,051  | 103,044.0          | 21,4/1,795  |
| Creek     | 5,635.3   | 2,199,417          | 6,957.8   | 1,543,794      | 9,658.2   | 2,065,647         | 8,772.1   | 1,897,492      | 7,681.0   | 1,725,387  | 6,201.9   | 2,103,145   | 6.000.9   | 2.063.101             | 10.801.5    | 2,856.001   | 8 782 2   | 2 127 163  | 6.036.4   | 1 547 490     | 6 707 1   | 1 694 706  | 0 433 3   | 2 245 686  | 97 666 7           | 24.069.030  |
| Delaware  |           |                    |           |                |           |                   |           |                |           |            |           |             |           |                       |             | -,          |           | 2,127,105  | 0,050.4   | 1 1,547,470   | 0,707.1   | 1,094,700  | 7,456.5   | 2,245,000  | 72,000,7           | 24,007,030  |
| River     | 16,634.3  | 5,737, <b>6</b> 86 | 22,144.7  | 4,104,633      | 38,544.5  | 5,866,019         | 29,356.1  | 5,463,850      | 38,812.5  | 5,188,522  | 29,655.8  | 6,080,234   | 24,381.9  | 7,397,603             | 30.464.6    | 8,437,531   | 27,185,1  | 5,744,860  | 20,523,2  | 4,810,181     | 23,545.0  | 5,858,762  | 26,745.0  | 5,873,683  | 327, <b>9</b> 92.6 | 70,563,565  |
| Total     | 31,632.7  | 9,710,064          | 43,141.7  | 6,903,833      | 70,730.9  | 9,738,034         | 54,735,1  | 9,064,095      | 68,730.0  | 8,507,565  | 54,343.0  | 10,025,772  | 43,833,9  | 11,760,963            | 57,413.2    | 13,804,174  | 51,173.1  | 9,609,398  | 36,552.5  | 7,796,452     | 42,734.1  | 9,288,817  | 49,483.9  | 9,895,221  | 604,504,1          | 116.104.390 |

· .

 •

Monthly and Annual Summary of Wet Weather Flows to 2<sup>nd</sup> and Dock Pump Station and EPS-1 at WRTP for Future Typical Year

| Annual    | Total Flow<br>(cu ft) | 36 813 380 | 97.321.400 | 134,154,780 |
|-----------|-----------------------|------------|------------|-------------|
| December  | Total Flow<br>(cu ft) | 3 088 870  | 8,075,790  | 11,164,610  |
| November  | Total Flow<br>(cu ft) | 2,338,280  | 6,012.590  | 8,350,870   |
| October   | Total Flow<br>(cu ft) | 2.643.130  | 6,989,550  | 9,632,680   |
| September | Total Flow<br>(cu ft) | 2.759.310  | 7,378,500  | 10,137,810  |
| August    | Total Flow<br>(cu ft) | 3,054,960  | 7,689,750  | 10,744,710  |
| July      | Total Flow<br>(cu ft) | 3,020,150  | 7,608,620  | 10,628,770  |
| June      | Total Flow<br>(cu ft) | 3,105,350  | 8,306,590  | 11,411,940  |
| May       | Total Flow<br>(cu ft) | 4,051,030  | 11,349,870 | 15,400,900  |
| April     | Total Flow<br>(cu ft) | 3,253,830  | 8,656,610  | 11,910,440  |
| March     | Total Flow<br>(cu ft) | 3,618,400  | 9,926,500  | 13,544,900  |
| February  | Total Flow<br>(cu ft) | 2,910,510  | 7,738,790  | 10,649,300  |
| January   | Total Flow<br>(cu ft) | 2,989,610  | 7,588,240  | 10,577,850  |
|           | Outfall               | WRTP       | 2nd & Dock | Total       |

.....

| ·              |           | Sewage    |          | Selected      | Stormwater |          | Selected Storm |           |
|----------------|-----------|-----------|----------|---------------|------------|----------|----------------|-----------|
|                | Sewage    | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                | Base Flow | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall        | (cfs)     | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002            | 0.20      | 4.90E+05  | 6.5%     | 171.2         | 7.08E+06   | 93.5%    | 180.00         | 84,794    |
| 003            | 0.24      | 2.77E+05  | 3.2%     | 171.2         | 8.29E+06   | 96.8%    | 180.00         | 96,132    |
| 004            | 0.11      | 4.35E+04  | 10.0%    | 171.2         | 3.90E+05   | 90.0%    | 180.00         | 4,850     |
| 005            | 0.41      | 2.14E+06  | 14.3%    | 171.2         | 1.29E+07   | 85.7%    | 180.00         | 167,736   |
| 006            | 0.04      | 1.24E+04  | 5.7%     | 171.2         | 2.07E+05   | 94.3%    | 180.00         | 2,460     |
| 007            | 0.11      | 1.52E+05  | 5.4%     | 171.2         | 2.68E+06   | 94.6%    | 180.00         | 31,782    |
| 008            | 0.57      | 2.84E+06  | 15.3%    | 171.2         | 1.58E+07   | 84.7%    | 180.00         | 207,456   |
| 009            | 0.25      | 3.08E+05  | 5.1%     | 171.2         | 5.77E+06   | 94.9%    | 180.00         | 68,107    |
| 011            | 0.13      | 1.06E+05  | 2.5%     | 171.2         | 4.12E+06   | 97.5%    | 180.00         | 47,420    |
| 012            | 0.03      | 9.56E+03  | 2.5%     | 171.2         | 3.70E+05   | 97.5%    | 180.00         | 4,259     |
| 013            | 0.21      | 2.92E+05  | 5.2%     | 171.2         | 5.30E+06   | 94.8%    | 180.00         | 62,672    |
| 014            | 0.14      | 4.69E+04  | 3.3%     | 171.2         | 1.37E+06   | 96.7%    | 180.00         | 15,911    |
| 015            | 0.05      | 3.34E+04  | 26.4%    | 171.2         | 9.33E+04   | 73.6%    | 180.00         | 1,406     |
| 016            | 0.07      | 7.48E+04  | 2.1%     | 171.2         | 3.56E+06   | 97.9%    | 180.00         | 40,858    |
| 017            | 0.27      | 1.23E+06  | 26.2%    | 171.2         | 3.47E+06   | 73.8%    | 180.00         | 52,090    |
| 018            | 0.33      | 1.57E+06  | 12.0%    | 171.2         | 1.14E+07   | 88.0%    | 180.00         | 145,357   |
| 019            | 0.67      | 1.02E+06  | 5.9%     | 171.2         | 1.63E+07   | 94.1%    | 180.00         | 193,503   |
| 020            | 0.05      | 3.26E+04  | 3.9%     | 171.2         | 8.14E+05   | 96.1%    | 180.00         | 9,499     |
| 021            | 0.03      | 1.74E+04  | 2.4%     | 171.2         | 7.11E+05   | 97.6%    | 180.00         | 8,181     |
| 022            | 0.08      | 5.95E+04  | 3.0%     | 171.2         | 1.91E+06   | 97.0%    | 180.00         | 22,082    |
| 024            | 0.06      | 2.26E+04  | 5.3%     | 171.2         | 4.03E+05   | 94.7%    | 180.00         | 4,773     |
| 025            | 0.03      | 1.79E+04  | 3.0%     | 171.2         | 5.77E+05   | 97.0%    | 180.00         | 6,679     |
| 026            | 0.07      | 5.43E+04  | 2.9%     | 171.2         | 1.80E+06   | 97.1%    | 180.00         | 20,839    |
| Ridley Creek   | 0.72      | 2.90E+06  | 13.5%    | 171.2         | 1.86E+07   | 86.5%    | 180.00         | 239,711   |
| Chester Creek  | 0.95      | 1.18E+06  | 4.9%     | 171.2         | 2.29E+07   | 95.1%    | 180.00         | 269,845   |
| Delaware River | 2.41      | 6.71E+06  | 9.5%     | 171.2         | 6.39E+07   | 90.5%    | 180.00         | 789,321   |
| Total          | 4.08      | 1.08E+07  | 9.3%     | 171.2         | 1.05E+08   | 90.7%    | 180.00         | 1,298,877 |

### Total Suspended Solids Annual Load for Future Typical Year

----

|                |                  | Sewage    |          | Selected      | Stormwater |          | Selected Storm |           |
|----------------|------------------|-----------|----------|---------------|------------|----------|----------------|-----------|
|                | Sewage           | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                | <b>Base Flow</b> | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall        | (cfs)            | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002            | 0.20             | 4.90E+05  | 6.5%     | 119.2         | 7.08E+06   | 93.5%    | 12             | 8,954     |
| 003            | 0.24             | 2.77E+05  | 3.2%     | 119.2         | 8.29E+06   | 96.8%    | 12             | 8,276     |
| 004            | 0.11             | 4.35E+04  | 10.0%    | 119.2         | 3.90E+05   | 90.0%    | 12             | 616       |
| 005            | 0.41             | 2.14E+06  | 14.3%    | 119.2         | 1.29E+07   | 85.7%    | 12             | 25.604    |
| 006            | 0.04             | 1.24E+04  | 5.7%     | 119.2         | 2.07E+05   | 94.3%    | 12             | 248       |
| 007            | 0.11             | 1.52E+05  | 5.4%     | 119.2         | 2.68E+06   | 94.6%    | 12             | 3.142     |
| 008            | 0.57             | 2.84E+06  | 15.3%    | 119.2         | 1.58E+07   | 84.7%    | 12             | 32,940    |
| 009            | 0.25             | 3.08E+05  | 5.1%     | 119.2         | 5.77E+06   | 94.9%    | 12             | 6,615     |
| 011            | 0.13             | 1.06E+05  | 2.5%     | 119.2         | 4.12E+06   | 97.5%    | 12             | 3.877     |
| 012            | 0.03             | 9.56E+03  | 2.5%     | 119.2         | 3.70E+05   | 97.5%    | 12             | 348       |
| 013            | 0.21             | 2.92E+05  | 5.2%     | 119.2         | 5.30E+06   | 94.8%    | 12             | 6.145     |
| 014            | 0.14             | 4.69E+04  | 3.3%     | 119.2         | 1.37E+06   | 96.7%    | 12             | 1.376     |
| 015            | 0.05             | 3.34E+04  | 26.4%    | 119.2         | 9.33E+04   | 73.6%    | 12             | 319       |
| 016            | 0.07             | 7.48E+04  | 2.1%     | 119.2         | 3.56E+06   | 97.9%    | 12             | 3.227     |
| 017            | 0.27             | 1.23E+06  | 26.2%    | 119.2         | 3.47E+06   | 73.8%    | 12             | 11.740    |
| 018            | 0.33             | 1.57E+06  | 12.0%    | 119.2         | 1.14E+07   | 88.0%    | 12             | 20.229    |
| 019            | 0.67             | 1.02E+06  | 5.9%     | 119.2         | 1.63E+07   | 94.1%    | 12             | 19.751    |
| 020            | 0.05             | 3.26E+04  | 3.9%     | 119.2         | 8.14E+05   | 96.1%    | 12             | 853       |
| 021            | 0.03             | 1.74E+04  | 2.4%     | 119.2         | 7.11E+05   | 97.6%    | 12             | 662       |
| 022            | 0.08             | 5.95E+04  | 3.0%     | 119.2         | 1.91E+06   | 97.0%    | 12             | 1.872     |
| 024            | 0.06             | 2.26E+04  | 5.3%     | 119.2         | 4.03E+05   | 94.7%    | 12             | 470       |
| 025            | 0.03             | 1.79E+04  | 3.0%     | 119.2         | 5.77E+05   | 97.0%    | 12             | 566       |
| 026            | 0.07             | 5.43E+04  | 2.9%     | 119.2         | 1.80E+06   | 97.1%    | 12             | 1,754     |
| Ridley Creek   | 0.72             | 2.90E+06  | 13.5%    | 119.2         | 1.86E+07   | 86.5%    | 12             | 35.516    |
| Chester Creek  | 0.95             | 1.18E+06  | 4.9%     | 119.2         | 2.29E+07   | 95.1%    | 12             | 25.914    |
| Delaware River | 2.41             | 6.71E+06  | 9.5%     | 119.2         | 6.39E+07   | 90.5%    | 12             | 97.793    |
| Total          | 4.08             | 1.08E+07  | 9.3%     | 119.2         | 1.05E+08   | 90.7%    | 12             | 159.222   |

## Total Biochemical Oxygen Demand Annual Load for Future Typical Year

|                |                  | Sewage    |          | Selected      | Stormwater |          | Selected Storm |           |
|----------------|------------------|-----------|----------|---------------|------------|----------|----------------|-----------|
|                | Sewage           | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                | <b>Base Flow</b> | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall        | (cfs)            | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002            | 0.20             | 4.90E+05  | 6.5%     | 358.2         | 7.08E+06   | 93.5%    | 163            | 83,005    |
| 003            | 0.24             | 2.77E+05  | 3.2%     | 358.2         | 8.29E+06   | 96.8%    | 163            | 90,570    |
| 004            | 0.11             | 4.35E+04  | 10.0%    | 358.2         | 3.90E+05   | 90.0%    | 163            | 4,944     |
| 005            | 0.41             | 2.14E+06  | 14.3%    | 358.2         | 1.29E+07   | 85.7%    | 163            | 179,064   |
| 006            | 0.04             | 1.24E+04  | 5.7%     | 358.2         | 2.07E+05   | 94.3%    | 163            | 2,385     |
| 007            | 0.11             | 1.52E+05  | 5.4%     | 358.2         | 2.68E+06   | 94.6%    | 163            | 30,709    |
| 008            | 0.57             | 2.84E+06  | 15.3%    | 358.2         | 1.58E+07   | 84.7%    | 163            | 223,866   |
| 009            | 0.25             | 3.08E+05  | 5.1%     | 358.2         | 5.77E+06   | 94.9%    | 163            | 65,583    |
| 011            | 0.13             | 1.06E+05  | 2.5%     | 358.2         | 4.12E+06   | 97.5%    | 163            | 44,290    |
| 012            | 0.03             | 9.56E+03  | 2.5%     | 358.2         | 3.70E+05   | 97.5%    | 163            | 3,978     |
| 013            | 0.21             | 2.92E+05  | 5.2%     | 358.2         | 5.30E+06   | 94.8%    | 163            | 60,458    |
| 014            | 0.14             | 4.69E+04  | 3.3%     | 358.2         | 1.37E+06   | 96.7%    | 163            | 15,003    |
| 015            | 0.05             | 3.34E+04  | 26.4%    | 358.2         | 9.33E+04   | 73.6%    | 163            | 1,697     |
| 016            | 0.07             | 7.48E+04  | 2.1%     | 358.2         | 3.56E+06   | 97.9%    | 163            | 37,948    |
| 017            | 0.27             | 1.23E+06  | 26.2%    | 358.2         | 3.47E+06   | 73.8%    | 163            | 62,747    |
| 018            | 0.33             | 1.57E+06  | 12.0%    | 358.2         | 1.14E+07   | 88.0%    | 163            | 151,485   |
| 019            | 0.67             | 1.02E+06  | 5.9%     | 358.2         | 1.63E+07   | 94.1%    | 163            | 188,135   |
| 020            | 0.05             | 3.26E+04  | 3.9%     | 358.2         | 8.14E+05   | 96.1%    | 163            | 9,016     |
| 021            | 0.03             | 1.74E+04  | 2.4%     | 358.2         | 7.11E+05   | 97.6%    | 163            | 7,629     |
| 022            | 0.08             | 5.95E+04  | 3.0%     | 358.2         | 1.91E+06   | 97.0%    | 163            | 20,751    |
| 024            | 0.06             | 2.26E+04  | 5.3%     | 358.2         | 4.03E+05   | 94.7%    | 163            | 4,608     |
| 025            | 0.03             | 1.79E+04  | 3.0%     | 358.2         | 5.77E+05   | 97.0%    | 163            | 6,275     |
| 026            | 0.07             | 5.43E+04  | 2.9%     | 358.2         | 1.80E+06   | 97.1%    | 163            | 19,559    |
| Ridley Creek   | 0.72             | 2.90E+06  | 13.5%    | 358.2         | 1.86E+07   | 86.5%    | 163            | 253,876   |
| Chester Creek  | 0.95             | 1.18E+06  | 4.9%     | 358.2         | 2.29E+07   | 95.1%    | 163            | 259,288   |
| Delaware River | 2.41             | 6.71E+06  | 9.5%     | 358.2         | 6.39E+07   | 90.5%    | 163            | 799,878   |
| Total          | 4.08             | 1.08E+07  | 9.3%     | 358.2         | 1.05E+08   | 90.7%    | 163            | 1,313,042 |

### Total Chemical Oxygen Demand Annual Load for Future Typical Year

ŝ

|                |                  | Sewage    |          | Selected      | Stormwater |          | Selected Storm |            |
|----------------|------------------|-----------|----------|---------------|------------|----------|----------------|------------|
|                | Sewage           | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge  |
|                | <b>Base Flow</b> | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load       |
| Outfall        | (cfs)            | (cu. ft.) | Flow     | (#/100ml)     | (cu. ft.)  | Flow     | (#/100ml)      | (colonies) |
| 002            | 0.20             | 4.90E+05  | 6.5%     | 1,000,000     | 7.08E+06   | 93.5%    | 0.00           | 3.06E+07   |
| 003            | 0.24             | 2.77E+05  | 3.2%     | 1,000,000     | 8.29E+06   | 96.8%    | 0.00           | 1.73E+07   |
| 004            | 0.11             | 4.35E+04  | 10.0%    | 1,000,000     | 3.90E+05   | 90.0%    | 0.00           | 2.72E+06   |
| 005            | 0.41             | 2.14E+06  | 14.3%    | 1,000,000     | 1.29E+07   | 85.7%    | 0.00           | 1.34E+08   |
| 006            | 0.04             | 1.24E+04  | 5.7%     | 1,000,000     | 2.07E+05   | 94.3%    | 0.00           | 7.76E+05   |
| 007            | 0.11             | 1.52E+05  | 5.4%     | 1,000,000     | 2.68E+06   | 94.6%    | 0.00           | 9.49E+06   |
| 008            | 0.57             | 2.84E+06  | 15.3%    | 1,000,000     | 1.58E+07   | 84.7%    | 0.00           | 1.77E+08   |
| 009            | 0.25             | 3.08E+05  | 5.1%     | 1,000,000     | 5.77E+06   | 94.9%    | 0.00           | 1.92E+07   |
| 011            | 0.13             | 1.06E+05  | 2.5%     | 1,000,000     | 4.12E+06   | 97.5%    | 0.00           | 6.64E+06   |
| 012            | 0.03             | 9.56E+03  | 2.5%     | 1,000,000     | 3.70E+05   | 97.5%    | 0.00           | 5.97E+05   |
| 013            | 0.21             | 2.92E+05  | 5.2%     | 1,000,000     | 5.30E+06   | 94.8%    | 0.00           | 1.82E+07   |
| 014            | 0.14             | 4.69E+04  | 3.3%     | 1,000,000     | 1.37E+06   | 96.7%    | 0.00           | 2.93E+06   |
| 015            | 0.05             | 3.34E+04  | 26.4%    | 1,000,000     | 9.33E+04   | 73.6%    | 0.00           | 2.09E+06   |
| 016            | 0.07             | 7.48E+04  | 2.1%     | 1,000,000     | 3.56E+06   | 97.9%    | 0.00           | 4.67E+06   |
| 017            | 0.27             | 1.23E+06  | 26.2%    | 1,000,000     | 3.47E+06   | 73.8%    | 0.00           | 7.67E+07   |
| 018            | 0.33             | 1.57E+06  | 12.0%    | 1,000,000     | 1.14E+07   | 88.0%    | 0.00           | 9.78E+07   |
| 019            | 0.67             | 1.02E+06  | 5.9%     | 1,000,000     | 1.63E+07   | 94.1%    | 0.00           | 6.35E+07   |
| 020            | 0.05             | 3.26E+04  | 3.9%     | 1,000,000     | 8.14E+05   | 96.1%    | 0.00           | 2.04E+06   |
| 021            | 0.03             | 1.74E+04  | 2.4%     | 1,000,000     | 7.11E+05   | 97.6%    | 0.00           | 1.09E+06   |
| 022            | 0.08             | 5.95E+04  | 3.0%     | 1,000,000     | 1.91E+06   | 97.0%    | 0.00           | 3.71E+06   |
| 024            | 0.06             | 2.26E+04  | 5.3%     | 1,000,000     | 4.03E+05   | 94.7%    | 0.00           | 1.41E+06   |
| 025            | 0.03             | 1.79E+04  | 3.0%     | 1,000,000     | 5.77E+05   | 97.0%    | 0.00           | 1.12E+06   |
| 026            | 0.07             | 5.43E+04  | 2.9%     | 1,000,000     | 1.80E+06   | 97.1%    | 0.00           | 3.39E+06   |
| Ridley Creek   | 0.72             | 2.90E+06  | 13.5%    | 1,000,000     | 1.86E+07   | 86.5%    | 0.00           | 1.81E+08   |
| Chester Creek  | 0.95             | 1.18E+06  | 4.9%     | 1,000,000     | 2.29E+07   | 95.1%    | 0.00           | 7.35E+07   |
| Delaware River | 2.41             | 6.71E+06  | 9.5%     | 1,000,000     | 6.39E+07   | 90.5%    | 0.00           | 4.19E+08   |
| Total          | 4.08             | 1.08E+07  | 9.3%     | 1,000,000     | 1.05E+08   | 90.7%    | 0.00           | 6.74E+08   |

### Fecal Coliform Bacteria Annual Load for Future Typical Year

|                |           | Sewage    |          | Selected      | Stormwater |               | Selected Storm |           |
|----------------|-----------|-----------|----------|---------------|------------|---------------|----------------|-----------|
|                | Sewage    | Overflow  | Percent  | Sewage        | Overflow   | Percent       | Water          | Discharge |
|                | Base Flow | Volume    | of Total | Concentration | Volume     | of Total      | Concentration  | Load      |
| Outfall        | (cfs)     | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow          | (mg/l)         | (lbs)     |
| 002            | 0.20      | 4.90E+05  | 6.5%     | 6.21          | 7.08E+06   | 93.5%         | 8.51           | 3,949     |
| 003            | 0.24      | 2.77E+05  | 3.2%     | 6.21          | 8.29E+06   | 96.8%         | 8.51           | 4,510     |
| 004            | 0.11      | 4.35E+04  | 10.0%    | 6.21          | 3.90E+05   | 90.0%         | 8.51           | 224       |
| 005            | 0.41      | 2.14E+06  | 14.3%    | 6.21          | 1.29E+07   | 85.7%         | 8.51           | 7,675     |
| 006            | 0.04      | 1.24E+04  | 5.7%     | 6.21          | 2.07E+05   | 94.3%         | 8.51           | 115       |
| 007            | 0.11      | 1.52E+05  | 5.4%     | 6.21          | 2.68E+06   | 94.6%         | 8.51           | 1,484     |
| 008            | 0.57      | 2.84E+06  | 15.3%    | 6.21          | 1.58E+07   | 84.7%         | 8.51           | 9,470     |
| 009            | 0.25      | 3.08E+05  | 5.1%     | 6.21          | 5.77E+06   | 94.9%         | 8.51           | 3,182     |
| 011            | 0.13      | 1.06E+05  | 2.5%     | 6.21          | 4.12E+06   | 97.5%         | 8.51           | 2,228     |
| 012            | 0.03      | 9.56E+03  | 2.5%     | 6.21          | 3.70E+05   | 97.5%         | 8.51           | 200       |
| 013            | 0.21      | 2.92E+05  | 5.2%     | 6.21          | 5.30E+06   | 94.8%         | 8.51           | 2,927     |
| 014            | 0.14      | 4.69E+04  | 3.3%     | 6.21          | 1.37E+06   | 96.7%         | 8.51           | 746       |
| 015            | 0.05      | 3.34E+04  | 26.4%    | 6.21          | 9.33E+04   | 73.6%         | 8.51           | 62        |
| 016            | 0.07      | 7.48E+04  | 2.1%     | 6.21          | 3.56E+06   | 97.9%         | 8.51           | 1,922     |
| 017            | 0.27      | 1.23E+06  | 26.2%    | 6.21          | 3.47E+06   | 73.8%         | 8.51           | 2,317     |
| 018            | 0.33      | 1.57E+06  | 12.0%    | 6.21          | 1.14E+07   | 88.0%         | 8.51           | 6,685     |
| 019            | 0.67      | 1.02E+06  | 5.9%     | 6.21          | 1.63E+07   | 94.1%         | 8.51           | 9,025     |
| 020            | 0.05      | 3.26E+04  | 3.9%     | 6.21          | 8.14E+05   | 96.1%         | 8.51           | 445       |
| 021            | 0.03      | 1.74E+04  | 2.4%     | 6.21          | 7.11E+05   | 97.6%         | 8.51           | 385       |
| 022            | 0.08      | 5.95E+04  | 3.0%     | 6.21          | 1.91E+06   | 97.0%         | 8.51           | 1,037     |
| 024            | 0.06      | 2.26E+04  | 5.3%     | 6.21          | 4.03E+05   | 94.7%         | 8.51           | 223       |
| 025            | 0.03      | 1.79E+04  | 3.0%     | 6.21          | 5.77E+05   | 97.0%         | 8.51           | 314       |
| 026            | 0.07      | 5.43E+04  | 2.9%     | 6.21          | 1.80E+06   | 97.1%         | 8.51           | 978       |
| Ridley Creek   | 0.72      | 2.90E+06  | 13.5%    | 6.21          | 1.86E+07   | 86.5%         | 8.51           | 10,986    |
| Chester Creek  | 0.95      | 1.18E+06  | 4.9%     | 6.21          | 2.29E+07   | 95.1%         | 8.51           | 12,613    |
| Delaware River | 2.41      | 6.71E+06  | 9.5%     | 6.21          | 6.39E+07   | 90.5%         | 8.51           | 36,511    |
| Total          | 4.08      | 1.08E+07  | 9.3%     | 6.21          | 1.05E+08   | <b>90.</b> 7% | 8.51           | 60,111    |

### Total Dissolved Oxygen Annual Load for Future Typical Year

|                | -                | Sewage    | T        | Selected      | Stormwater |          | Selected Storm | 1         |
|----------------|------------------|-----------|----------|---------------|------------|----------|----------------|-----------|
|                | Sewage           | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                | <b>Base Flow</b> | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall        | (cfs)            | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002            | 0.20             | 4.90E+05  | 6.5%     | 22.30         | 7.08E+06   | 93.5%    | 17.56          | 8,444     |
| 003            | 0.24             | 2.77E+05  | 3.2%     | 22.30         | 8.29E+06   | 96.8%    | 17.56          | 9,476     |
| 004            | 0.11             | 4.35E+04  | 10.0%    | 22.30         | 3.90E+05   | 90.0%    | 17.56          | 488       |
| 005            | 0.41             | 2.14E+06  | 14.3%    | 22.30         | 1.29E+07   | 85.7%    | 17.56          | 17.114    |
| 006            | 0.04             | 1.24E+04  | 5.7%     | 22.30         | 2.07E+05   | 94.3%    | 17.56          | 244       |
| 007            | 0.11             | 1.52E+05  | 5.4%     | 22.30         | 2.68E+06   | 94.6%    | 17.56          | 3,154     |
| 008            | 0.57             | 2.84E+06  | 15.3%    | 22.30         | 1.58E+07   | 84.7%    | 17.56          | 21.232    |
| 009            | 0.25             | 3.08E+05  | 5.1%     | 22.30         | 5.77E+06   | 94.9%    | 17.56          | 6.752     |
| 011            | 0.13             | 1.06E+05  | 2.5%     | 22.30         | 4.12E+06   | 97.5%    | 17.56          | 4.664     |
| 012            | 0.03             | 9.56E+03  | 2.5%     | 22.30         | 3.70E+05   | 97.5%    | 17.56          | 419       |
| 013            | 0.21             | 2.92E+05  | 5.2%     | 22.30         | 5.30E+06   | 94.8%    | 17.56          | 6.216     |
| 014            | 0.14             | 4.69E+04  | 3.3%     | 22.30         | 1.37E+06   | 96.7%    | 17.56          | 1,569     |
| 015            | 0.05             | 3.34E+04  | 26.4%    | 22.30         | 9.33E+04   | 73.6%    | 17.56          | 149       |
| 016            | 0.07             | 7.48E+04  | 2.1%     | 22.30         | 3.56E+06   | 97.9%    | 17.56          | 4,012     |
| 017            | 0.27             | 1.23E+06  | 26.2%    | 22.30         | 3.47E+06   | 73.8%    | 17.56          | 5,511     |
| 018            | 0.33             | 1.57E+06  | 12.0%    | 22.30         | 1.14E+07   | 88.0%    | 17.56          | 14,729    |
| 019            | 0.67             | 1.02E+06  | 5.9%     | 22.30         | 1.63E+07   | 94.1%    | 17.56          | 19,234    |
| 020            | 0.05             | 3.26E+04  | 3.9%     | 22.30         | 8.14E+05   | 96.1%    | 17.56          | 938       |
| 021            | 0.03             | 1.74E+04  | 2.4%     | 22.30         | 7.11E+05   | 97.6%    | 17.56          | 804       |
| 022            | 0.08             | 5.95E+04  | 3.0%     | 22.30         | 1.91E+06   | 97.0%    | 17.56          | 2,175     |
| 024            | 0.06             | 2.26E+04  | 5.3%     | 22.30         | 4.03E+05   | 94.7%    | 17.56          | 474       |
| 025            | 0.03             | 1.79E+04  | 3.0%     | 22.30         | 5.77E+05   | 97.0%    | 17.56          | 658       |
| 026            | 0.07             | 5.43E+04  | 2.9%     | 22.30         | 1.80E+06   | 97.1%    | 17.56          | 2,052     |
| Ridley Creek   | 0.72             | 2.90E+06  | 13.5%    | 22.30         | 1.86E+07   | 86.5%    | 17.56          | 24,401    |
| Chester Creek  | 0.95             | 1.18E+06  | 4.9%     | 22.30         | 2.29E+07   | 95.1%    | 17.56          | 26.738    |
| Delaware River | 2.41             | 6.71E+06  | 9.5%     | 22.30         | 6.39E+07   | 90.5%    | 17.56          | 79,353    |
| Total          | 4.08             | 1.08E+07  | 9.3%     | 22.30         | 1.05E+08   | 90.7%    | 17.56          | 130.492   |

## Oil and Grease Annual Load for Future Typical Year

| <u> </u>       |           | Sewage    |          | Selected      | Stormwater |          | Selected Storm |           |
|----------------|-----------|-----------|----------|---------------|------------|----------|----------------|-----------|
|                | Sewage    | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                | Base Flow | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall        | (cfs)     | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002            | 0.20      | 4.90E+05  | 6.5%     | 11.99         | 7.08E+06   | 93.5%    | 7.20           | 3,549     |
| 003            | 0.24      | 2.77E+05  | 3.2%     | 11.99         | 8.29E+06   | 96.8%    | 7.20           | 3,934     |
| 004            | 0.11      | 4.35E+04  | 10.0%    | 11.99         | 3.90E+05   | 90.0%    | 7.20           | 208       |
| 005            | 0.41      | 2.14E+06  | 14.3%    | 11.99         | 1.29E+07   | 85.7%    | 7.20           | 7,397     |
| 006            | 0.04      | 1.24E+04  | 5.7%     | 11.99         | 2.07E+05   | 94.3%    | 7.20           | 102       |
| 007            | 0.11      | 1.52E+05  | 5.4%     | 11.99         | 2.68E+06   | 94.6%    | 7.20           | 1,320     |
| 008            | 0.57      | 2.84E+06  | 15.3%    | 11.99         | 1.58E+07   | 84.7%    | 7.20           | 9,209     |
| 009            | 0.25      | 3.08E+05  | 5.1%     | 11.99         | 5.77E+06   | 94.9%    | 7.20           | 2,823     |
| 011            | 0.13      | 1.06E+05  | 2.5%     | 11.99         | 4.12E+06   | 97.5%    | 7.20           | 1,931     |
| 012            | 0.03      | 9.56E+03  | 2.5%     | 11.99         | 3.70E+05   | 97.5%    | 7.20           | 173       |
| 013            | 0.21      | 2.92E+05  | 5.2%     | 11.99         | 5.30E+06   | 94.8%    | 7.20           | 2,601     |
| 014            | 0.14      | 4.69E+04  | 3.3%     | 11.99         | 1.37E+06   | 96.7%    | 7.20           | 651       |
| 015            | 0.05      | 3.34E+04  | 26.4%    | 11.99         | 9.33E+04   | 73.6%    | 7.20           | 67        |
| 016            | 0.07      | 7.48E+04  | 2.1%     | 11.99         | 3.56E+06   | 97.9%    | 7.20           | 1,658     |
| 017            | 0.27      | 1.23E+06  | 26.2%    | 11.99         | 3.47E+06   | 73.8%    | 7.20           | 2,478     |
| 018            | 0.33      | 1.57E+06  | 12.0%    | 11.99         | 1.14E+07   | 88.0%    | 7.20           | 6,317     |
| 019            | 0.67      | 1.02E+06  | 5.9%     | 11.99         | 1.63E+07   | 94.1%    | 7.20           | 8,067     |
| 020            | 0.05      | 3.26E+04  | 3.9%     | 11.99         | 8.14E+05   | 96.1%    | 7.20           | 390       |
| 021            | 0.03      | 1.74E+04  | 2.4%     | 11.99         | 7.11E+05   | 97.6%    | 7.20           | 333       |
| 022            | 0.08      | 5.95E+04  | 3.0%     | 11.99         | 1.91E+06   | 97.0%    | 7.20           | 902       |
| 024            | 0.06      | 2.26E+04  | 5.3%     | 11.99         | 4.03E+05   | 94.7%    | 7.20           | 198       |
| 025            | 0.03      | 1.79E+04  | 3.0%     | 11.99         | 5.77E+05   | 97.0%    | 7.20           | 273       |
| 026            | 0.07      | 5.43E+04  | 2.9%     | 11.99         | 1.80E+06   | 97.1%    | 7.20           | 851       |
| Ridley Creek   | 0.72      | 2.90E+06  | 13.5%    | 11.99         | 1.86E+07   | 86.5%    | 7.20           | 10,520    |
| Chester Creek  | 0.95      | 1.18E+06  | 4.9%     | 11.99         | 2.29E+07   | 95.1%    | 7.20           | 11,172    |
| Delaware River | 2.41      | 6.71E+06  | 9.5%     | 11.99         | 6.39E+07   | 90.5%    | 7.20           | 33,726    |
| Total          | 4.08      | 1.08E+07  | 9.3%     | 11.99         | 1.05E+08   | 90.7%    | 7.20           | 55,418    |

### Total Kjeldahl Nitrogen Annual Load for Future Typical Year

| · · · · · · · · · · · · · · · · · · · |                  |           |         |               |            |          |                |           |
|---------------------------------------|------------------|-----------|---------|---------------|------------|----------|----------------|-----------|
|                                       |                  | Sewage    |         | Selected      | Stormwater |          | Selected Storm |           |
|                                       | Sewage           | Overflow  | Percent | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                                       | <b>Base Flow</b> | Volume    | ofTotal | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall                               | (cfs)            | (cu. ft.) | Flow    | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002                                   | 0.20             | 4.90E+05  | 6.5%    | 1.68          | 7.08E+06   | 93.5%    | 1.08           | 529       |
| 003                                   | 0.24             | 2.77E+05  | 3.2%    | 1.68          | 8.29E+06   | 96.8%    | 1.08           | 588       |
| 004                                   | 0.11             | 4.35E+04  | 10.0%   | 1.68          | 3.90E+05   | 90.0%    | 1.08           | 31        |
| 005                                   | 0.41             | 2.14E+06  | 14.3%   | 1.68          | 1.29E+07   | 85.7%    | 1.08           | 1.093     |
| 006                                   | 0.04             | 1.24E+04  | 5.7%    | 1.68          | 2.07E+05   | 94.3%    | 1.08           | 15        |
| 007                                   | 0.11             | 1.52E+05  | 5.4%    | 1.68          | 2.68E+06   | 94.6%    | 1.08           | 197       |
| 008                                   | 0.57             | 2.84E+06  | 15.3%   | 1.68          | 1.58E+07   | 84.7%    | 1.08           | 1.360     |
| 009                                   | 0.25             | 3.08E+05  | 5.1%    | 1.68          | 5.77E+06   | 94.9%    | 1.08           | 421       |
| 011                                   | 0.13             | 1.06E+05  | 2.5%    | 1.68          | 4.12E+06   | 97.5%    | 1.08           | 289       |
| 012                                   | 0.03             | 9.56E+03  | 2.5%    | 1.68          | 3.70E+05   | 97.5%    | 1.08           | 26        |
| 013                                   | 0.21             | 2.92E+05  | 5.2%    | 1.68          | 5.30E+06   | 94.8%    | 1.08           | 388       |
| 014                                   | 0.14             | 4.69E+04  | 3.3%    | 1.68          | 1.37E+06   | 96.7%    | 1.08           | 97        |
| 015                                   | 0.05             | 3.34E+04  | 26.4%   | 1.68          | 9.33E+04   | 73.6%    | 1.08           | 10        |
| 016                                   | 0.07             | 7.48E+04  | 2.1%    | 1.68          | 3.56E+06   | 97.9%    | 1.08           | 248       |
| 017                                   | 0.27             | 1.23E+06  | 26.2%   | 1.68          | 3.47E+06   | 73.8%    | 1.08           | 362       |
| 018                                   | 0.33             | 1.57E+06  | 12.0%   | 1.68          | 1.14E+07   | 88.0%    | 1.08           | 936       |
| 019                                   | 0.67             | 1.02E+06  | 5.9%    | 1.68          | 1.63E+07   | 94.1%    | 1.08           | 1.202     |
| 020                                   | 0.05             | 3.26E+04  | 3.9%    | 1.68          | 8.14E+05   | 96.1%    | 1.08           | 58        |
| 021                                   | 0.03             | 1.74E+04  | 2.4%    | 1.68          | 7.11E+05   | 97.6%    | 1.08           | 50        |
| 022                                   | 0.08             | 5.95E+04  | 3.0%    | 1.68          | 1.91E+06   | 97.0%    | 1.08           | 135       |
| 024                                   | 0.06             | 2.26E+04  | 5.3%    | 1.68          | 4.03E+05   | 94.7%    | 1.08           | 30        |
| 025                                   | 0.03             | 1.79E+04  | 3.0%    | 1.68          | 5.77E+05   | 97.0%    | 1.08           | 41        |
| 026                                   | 0.07             | 5.43E+04  | 2.9%    | 1.68          | 1.80E+06   | 97.1%    | 1.08           | 127       |
| lidley Creek                          | 0.72             | 2.90E+06  | 13.5%   | 1.68          | 1.86E+07   | 86.5%    | 1.08           | 1.556     |
| hester Creek                          | 0.95             | 1.18E+06  | 4.9%    | 1.68          | 2.29E+07   | 95.1%    | 1.08           | 1,667     |
| elaware River                         | 2.41             | 6.71E+06  | 9.5%    | 1.68          | 6.39E+07   | 90.5%    | 1.08           | 5.008     |
| Total                                 | 4.08             | 1.08E+07  | 9.3%    | 1.68          | 1.05E+08   | 90.7%    | 1.08           | 8,232     |

### Total Phosphorus Annual Load for Future Typical Year

.

### Total Zinc Annual Load for Future Typical Year

|                |                  | Sewage    | ]        | Selected      | Stormwater |          | Selected Storm |           |
|----------------|------------------|-----------|----------|---------------|------------|----------|----------------|-----------|
| ł              | Sewage           | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                | <b>Base Flow</b> | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall        | (cfs)            | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002            | 0.20             | 4.90E+05  | 6.5%     | 0.1737        | 7.08E+06   | 93.5%    | 0.3970         | 181       |
| 003            | 0.24             | 2.77E+05  | 3.2%     | 0.1737        | 8.29E+06   | 96.8%    | 0.3970         | 208       |
| 004            | 0.11             | 4.35E+04  | 10.0%    | 0.1737        | 3.90E+05   | 90.0%    | 0.3970         | 10        |
| 005            | 0.41             | 2.14E+06  | 14.3%    | 0.1737        | 1.29E+07   | 85.7%    | 0.3970         | 343       |
| 006            | 0.04             | 1.24E+04  | 5.7%     | 0.1737        | 2.07E+05   | 94.3%    | 0.3970         | 5         |
| 007            | 0.11             | 1.52E+05  | 5.4%     | 0.1737        | 2.68E+06   | 94.6%    | 0.3970         | 68        |
| 008            | 0.57             | 2.84E+06  | 15.3%    | 0.1737        | 1.58E+07   | 84.7%    | 0.3970         | 421       |
| 009            | 0.25             | 3.08E+05  | 5.1%     | 0.1737        | 5.77E+06   | 94.9%    | 0.3970         | 146       |
| 011            | 0.13             | 1.06E+05  | 2.5%     | 0.1737        | 4.12E+06   | 97.5%    | 0.3970         | 103       |
| 012            | 0.03             | 9.56E+03  | 2.5%     | 0.1737        | 3.70E+05   | 97.5%    | 0.3970         | 9         |
| 013            | 0.21             | 2.92E+05  | 5.2%     | 0.1737        | 5.30E+06   | 94.8%    | 0.3970         | 135       |
| 014            | 0.14             | 4.69E+04  | 3.3%     | 0.1737        | 1.37E+06   | 96.7%    | 0.3970         | 34        |
| 015            | 0.05             | 3.34E+04  | 26.4%    | 0.1737        | 9.33E+04   | 73.6%    | 0.3970         | 3         |
| 016            | 0.07             | 7.48E+04  | 2.1%     | 0.1737        | 3.56E+06   | 97.9%    | 0.3970         | 89        |
| 017            | 0.27             | 1.23E+06  | 26.2%    | 0.1737        | 3.47E+06   | 73.8%    | 0.3970         | 99        |
| 018            | 0.33             | 1.57E+06  | 12.0%    | 0.1737        | 1.14E+07   | 88.0%    | 0.3970         | 301       |
| 019            | 0.67             | 1.02E+06  | 5.9%     | 0.1737        | 1.63E+07   | 94.1%    | 0.3970         | 414       |
| 020            | 0.05             | 3.26E+04  | 3.9%     | 0.1737        | 8.14E+05   | 96.1%    | 0.3970         | 21        |
| 021            | 0.03             | 1.74E+04  | 2.4%     | 0.1737        | 7.11E+05   | 97.6%    | 0.3970         | 18        |
| 022            | 0.08             | 5.95E+04  | 3.0%     | 0.1737        | 1.91E+06   | 97.0%    | 0.3970         | 48        |
| 024            | 0.06             | 2.26E+04  | 5.3%     | 0.1737        | 4.03E+05   | 94.7%    | 0.3970         | 10        |
| 025            | 0.03             | 1.79E+04  | 3.0%     | 0.1737        | 5.77E+05   | 97.0%    | 0.3970         | 15        |
| 026            | 0.07             | 5.43E+04  | 2.9%     | 0.1737        | 1.80E+06   | 97.1%    | 0.3970         | 45        |
| Ridley Creek   | 0.72             | 2.90E+06  | 13.5%    | 0.1737        | 1.86E+07   | 86.5%    | 0.3970         | 492       |
| Chester Creek  | 0.95             | 1.18E+06  | 4.9%     | 0.1737        | 2.29E+07   | 95.1%    | 0.3970         | 580       |
| Delaware River | 2.41             | 6.71E+06  | 9.5%     | 0.1737        | 6.39E+07   | 90.5%    | 0.3970         | 1,655     |
| Total          | 4.08             | 1.08E+07  | 9.3%     | 0.1737        | 1.05E+08   | 90.7%    | 0.3970         | 2,727     |

|             |           | Sewage    |          | Selected      | Stormwater |          | Selected Storm |           |
|-------------|-----------|-----------|----------|---------------|------------|----------|----------------|-----------|
|             | Sewage    | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|             | Base Flow | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall     | (cfs)     | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002         | 0.20      | 4.90E+05  | 6.5%     | 0.0417        | 7.08E+06   | 93.5%    | 0.1050         | 48        |
| 003         | 0.24      | 2.77E+05  | 3.2%     | 0.0417        | 8.29E+06   | 96.8%    | 0.1050         | 55        |
| 004         | 0.11      | 4.35E+04  | 10.0%    | 0.0417        | 3.90E+05   | 90.0%    | 0.1050         | 3         |
| 005         | 0.41      | 2.14E+06  | 14.3%    | 0.0417        | 1.29E+07   | 85.7%    | 0.1050         | 90        |
| 006         | 0.04      | 1.24E+04  | 5.7%     | 0.0417        | 2.07E+05   | 94.3%    | 0.1050         | 1         |
| 007         | 0.11      | 1.52E+05  | 5.4%     | 0.0417        | 2.68E+06   | 94.6%    | 0.1050         | 18        |
| 008         | 0.57      | 2.84E+06  | 15.3%    | 0.0417        | 1.58E+07   | 84.7%    | 0.1050         | 111       |
| 009         | 0.25      | 3.08E+05  | 5.1%     | 0.0417        | 5.77E+06   | 94.9%    | 0.1050         | 39        |
| 011         | 0.13      | 1.06E+05  | 2.5%     | 0.0417        | 4.12E+06   | 97.5%    | 0.1050         | 27        |
| 012         | 0.03      | 9.56E+03  | 2.5%     | 0.0417        | 3.70E+05   | 97.5%    | 0.1050         | 2         |
| 013         | 0.21      | 2.92E+05  | 5.2%     | 0.0417        | 5.30E+06   | 94.8%    | 0.1050         | 35        |
| 014         | 0.14      | 4.69E+04  | 3.3%     | 0.0417        | 1.37E+06   | 96.7%    | 0.1050         | 9         |
| 015         | 0.05      | 3.34E+04  | 26.4%    | 0.0417        | 9.33E+04   | 73.6%    | 0.1050         | 1         |
| 016         | 0.07      | 7.48E+04  | 2.1%     | 0.0417        | 3.56E+06   | 97.9%    | 0.1050         | 24        |
| 017         | 0.27      | 1.23E+06  | 26.2%    | 0.0417        | 3.47E+06   | 73.8%    | 0.1050         | 26        |
| 018         | 0.33      | 1.57E+06  | 12.0%    | 0.0417        | 1.14E+07   | 88.0%    | 0.1050         | 79        |
| 019         | 0.67      | 1.02E+06  | 5.9%     | 0.0417        | 1.63E+07   | 94.1%    | 0.1050         | 109       |
| 020         | 0.05      | 3.26E+04  | 3.9%     | 0.0417        | 8.14E+05   | 96.1%    | 0.1050         | 5         |
| 021         | 0.03      | 1.74E+04  | 2.4%     | 0.0417        | 7.11E+05   | 97.6%    | 0.1050         | 5         |
| 022         | 0.08      | 5.95E+04  | 3.0%     | 0.0417        | 1.91E+06   | 97.0%    | 0.1050         | 13        |
| 024         | 0.06      | 2.26E+04  | 5.3%     | 0.0417        | 4.03E+05   | 94.7%    | 0.1050         | 3         |
| 025         | 0.03      | 1.79E+04  | 3.0%     | 0.0417        | 5.77E+05   | 97.0%    | 0.1050         | 4         |
| 026         | 0.07      | 5.43E+04  | 2.9%     | 0.0417        | 1.80E+06   | 97.1%    | 0.1050         | 12        |
| dley Creek  | 0.72      | 2.90E+06  | 13.5%    | 0.0417        | 1.86E+07   | 86.5%    | 0.1050         | 129       |
| ester Creek | 0.95      | 1.18E+06  | 4.9%     | 0.0417        | 2.29E+07   | 95.1%    | 0.1050         | 153       |
| aware River | 2.41      | 6.71E+06  | 9.5%     | 0.0417        | 6.39E+07   | 90.5%    | 0.1050         | 436       |
| Total       | 4.08      | 1.08E+07  | 9.3%     | 0.0417        | 1.05E+08   | 90.7%    | 0.1050         | 719       |

### Total Copper Annual Load for Future Typical Year

| ·····          | Sawaga    | Sewage   | Darcont  | Selected      | Stormwater | Domoont  | Selected Storm | Discharge |
|----------------|-----------|----------|----------|---------------|------------|----------|----------------|-----------|
|                | Boso Flow | Volume   | of Total | Concentration | Volume     | of Total | Concentration  | Lood      |
| Outfall        | Cofs)     | (cn ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lhs)     |
| 002            | 0.20      | 4.005+05 | 6 50/    | 1 4114        | 7.085+06   | 03 50%   | 2 8276         | 1 203     |
| 002            | 0.20      | 2.775+05 | 2.20/    | 1.4114        | 9.20E+00   | 93.370   | 2.0270         | 1,295     |
| 003            | 0.24      | 2.77E+03 | 3.270    | 1.4114        | 2.00E+05   | 90.0%    | 2.0270         | 1,488     |
| 004            | 0.11      | 4.35E+04 | 10.0%    | 1.4114        | 3.90E+03   | 90.0%    | 2.8270         | 2464      |
| 005            | 0.41      | 2.148+06 | 14.3%    | 1.4114        | 1.296407   | 03.7%    | 2.8270         | 2,404     |
| 006            | 0.04      | 1.24£+04 | 5.7%     | 1.4114        | 2.07E+05   | 94.3%    | 2.8276         | 38        |
| 007            | 0.11      | 1.52E+05 | 5.4%     | 1.4114        | 2.68E+06   | 94.6%    | 2.8276         | 487       |
| 008            | 0.57      | 2.84E+06 | 15.3%    | 1.4114        | 1.58E+07   | 84.7%    | 2.8276         | 3,032     |
| 009            | 0.25      | 3.08E+05 | 5.1%     | 1.4114        | 5.77E+06   | 94.9%    | 2.8276         | 1,045     |
| 011            | 0.13      | 1.06E+05 | 2.5%     | 1.4114        | 4.12E+06   | 97.5%    | 2.8276         | 736       |
| 012            | 0.03      | 9.56E+03 | 2.5%     | 1.4114        | 3.70E+05   | 97.5%    | 2.8276         | 66        |
| 013            | 0.21      | 2.92E+05 | 5.2%     | 1.4114        | 5.30E+06   | 94.8%    | 2.8276         | 961       |
| 014            | 0.14      | 4.69E+04 | 3.3%     | 1.4114        | 1.37E+06   | 96.7%    | 2.8276         | 246       |
| 015            | 0.05      | 3.34E+04 | 26.4%    | 1.4114        | 9.33E+04   | 73.6%    | 2.8276         | 19        |
| 016            | 0.07      | 7.48E+04 | 2.1%     | 1.4114        | 3.56E+06   | 97.9%    | 2.8276         | 636       |
| 017            | 0.27      | 1.23E+06 | 26.2%    | 1.4114        | 3.47E+06   | 73.8%    | 2.8276         | 720       |
| 018            | 0.33      | 1.57E+06 | 12.0%    | 1.4114        | 1.14E+07   | 88.0%    | 2.8276         | 2,158     |
| 019            | 0.67      | 1.02E+06 | 5.9%     | 1.4114        | 1.63E+07   | 94.1%    | 2.8276         | 2,959     |
| 020            | 0.05      | 3.26E+04 | 3.9%     | 1.4114        | 8.14E+05   | 96.1%    | 2.8276         | 147       |
| 021            | 0.03      | 1.74E+04 | 2.4%     | 1.4114        | 7.11E+05   | 97.6%    | 2.8276         | 127       |
| 022            | 0.08      | 5.95E+04 | 3.0%     | 1.4114        | 1.91E+06   | 97.0%    | 2.8276         | 342       |
| 024            | 0.06      | 2.26E+04 | 5.3%     | 1.4114        | 4.03E+05   | 94.7%    | 2.8276         | 73        |
| 025            | 0.03      | 1.79E+04 | 3.0%     | 1.4114        | 5.77E+05   | 97.0%    | 2.8276         | 103       |
| 026            | 0.07      | 5.43E+04 | 2.9%     | 1.4114        | 1.80E+06   | 97.1%    | 2.8276         | 323       |
| Ridley Creek   | 0.72      | 2.90E+06 | 13.5%    | 1.4114        | 1.86E+07   | 86.5%    | 2.8276         | 3,534     |
| Chester Creek  | 0.95      | 1.18E+06 | 4.9%     | 1.4114        | 2.29E+07   | 95.1%    | 2.8276         | 4,145     |
| Delaware River | 2.41      | 6.71E+06 | 9.5%     | 1.4114        | 6.39E+07   | 90.5%    | 2.8276         | 11,864    |
| Total          | 4.08      | 1.08E+07 | 9.3%     | 1.4114        | 1.05E+08   | 90.7%    | 2.8276         | 19,543    |

# Total Aluminum Annual Load for Future Typical Year

2

### Total Lead Annual Load for Future Typical Year

|                |                  | Sewage    |          | Selected      | Stormwater |          | Selected Storm |           |
|----------------|------------------|-----------|----------|---------------|------------|----------|----------------|-----------|
|                | Sewage           | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                | <b>Base Flow</b> | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall        | (cfs)            | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002            | 0.20             | 4.90E+05  | 6.5%     | 0.0173        | 7.08E+06   | 93.5%    | 0.1820         | 81        |
| 003            | 0.24             | 2.77E+05  | 3.2%     | 0.0173        | 8.29E+06   | 96.8%    | 0.1820         | 95        |
| 004            | 0.11             | 4.35E+04  | 10.0%    | 0.0173        | 3.90E+05   | 90.0%    | 0.1820         | 4         |
| 005            | 0.41             | 2.14E+06  | 14.3%    | 0.0173        | 1.29E+07   | 85.7%    | 0.1820         | 149       |
| 006            | 0.04             | 1.24E+04  | 5.7%     | 0.0173        | 2.07E+05   | 94.3%    | 0.1820         | 2         |
| 007            | 0.11             | 1.52E+05  | 5.4%     | 0.0173        | 2.68E+06   | 94.6%    | 0.1820         | 31        |
| 008            | 0.57             | 2.84E+06  | 15.3%    | 0.0173        | 1.58E+07   | 84.7%    | 0.1820         | 182       |
| 009            | 0.25             | 3.08E+05  | 5.1%     | 0.0173        | 5.77E+06   | 94.9%    | 0.1820         | 66        |
| 011            | 0.13             | 1.06E+05  | 2.5%     | 0.0173        | 4.12E+06   | 97.5%    | 0.1820         | 47        |
| 012            | 0.03             | 9.56E+03  | 2.5%     | 0.0173        | 3.70E+05   | 97.5%    | 0.1820         | 4         |
| 013            | 0.21             | 2.92E+05  | 5.2%     | 0.0173        | 5.30E+06   | 94.8%    | 0.1820         | 61        |
| 014            | 0.14             | 4.69E+04  | 3.3%     | 0.0173        | 1.37E+06   | 96.7%    | 0.1820         | 16        |
| 015            | 0.05             | 3.34E+04  | 26.4%    | 0.0173        | 9.33E+04   | 73.6%    | 0.1820         | 1         |
| 016            | 0.07             | 7.48E+04  | 2.1%     | 0.0173        | 3.56E+06   | 97.9%    | 0.1820         | 41        |
| 017            | 0.27             | 1.23E+06  | 26.2%    | 0.0173        | 3.47E+06   | 73.8%    | 0.1820         | 41        |
| 018            | 0.33             | 1.57E+06  | 12.0%    | 0.0173        | 1.14E+07   | 88.0%    | 0.1820         | 132       |
| 019            | 0.67             | 1.02E+06  | 5.9%     | 0.0173        | 1.63E+07   | 94.1%    | 0.1820         | 186       |
| 020            | 0.05             | 3.26E+04  | 3.9%     | 0.0173        | 8.14E+05   | 96.1%    | 0.1820         | 9         |
| 021            | 0.03             | 1.74E+04  | 2.4%     | 0.0173        | 7.11E+05   | 97.6%    | 0.1820         | 8         |
| 022            | 0.08             | 5.95E+04  | 3.0%     | 0.0173        | 1.91E+06   | 97.0%    | 0.1820         | 22        |
| 024            | 0.06             | 2.26E+04  | 5.3%     | 0.0173        | 4.03E+05   | 94.7%    | 0.1820         | 5         |
| 025            | 0.03             | 1.79E+04  | 3.0%     | 0.0173        | 5.77E+05   | 97.0%    | 0.1820         | 7         |
| 026            | 0.07             | 5.43E+04  | 2.9%     | 0.0173        | 1.80E+06   | 97.1%    | 0.1820         | 21        |
| Ridley Creek   | 0.72             | 2.90E+06  | 13.5%    | 0.0173        | 1.86E+07   | 86.5%    | 0.1820         | 214       |
| Chester Creek  | 0.95             | 1.18E+06  | 4.9%     | 0.0173        | 2.29E+07   | 95.1%    | 0.1820         | 261       |
| Delaware River | 2.41             | 6.71E+06  | 9.5%     | 0.0173        | 6.39E+07   | 90.5%    | 0.1820         | 733       |
| Total          | 4.08             | 1.08E+07  | 9.3%     | 0.0173        | 1.05E+08   | 90.7%    | 0.1820         | 1,208     |

# Total Mercury Annual Load for Future Typical Year

|                |                  | Sewage    |          | Selected      | Stormwater |          | Selected Storm |           |
|----------------|------------------|-----------|----------|---------------|------------|----------|----------------|-----------|
|                | Sewage           | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                | <b>Base Flow</b> | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall        | (cfs)            | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002            | 0.20             | 4.90E+05  | 6.5%     | 0.0003        | 7.08E+06   | 93.5%    | 0.0003         | 0.12      |
| 003            | 0.24             | 2.77E+05  | 3.2%     | 0.0003        | 8.29E+06   | 96.8%    | 0.0003         | 0.14      |
| 004            | 0.11             | 4.35E+04  | 10.0%    | 0.0003        | 3.90E+05   | 90.0%    | 0.0003         | 0.01      |
| 005            | 0.41             | 2.14E+06  | 14.3%    | 0.0003        | 1.29E+07   | 85.7%    | 0.0003         | 0.24      |
| 006            | 0.04             | 1.24E+04  | 5.7%     | 0.0003        | 2.07E+05   | 94.3%    | 0.0003         | 0.00      |
| 007            | 0.11             | 1.52E+05  | 5.4%     | 0.0003        | 2.68E+06   | 94.6%    | 0.0003         | 0.05      |
| 008            | 0.57             | 2.84E+06  | 15.3%    | 0.0003        | 1.58E+07   | 84.7%    | 0.0003         | 0.30      |
| 009            | 0.25             | 3.08E+05  | 5.1%     | 0.0003        | 5.77E+06   | 94.9%    | 0.0003         | 0.10      |
| 011            | 0.13             | 1.06E+05  | 2.5%     | 0.0003        | 4.12E+06   | 97.5%    | 0.0003         | 0.07      |
| 012            | 0.03             | 9.56E+03  | 2.5%     | 0.0003        | 3.70E+05   | 97.5%    | 0.0003         | 0.01      |
| 013            | 0.21             | 2.92E+05  | 5.2%     | 0.0003        | 5.30E+06   | 94.8%    | 0.0003         | 0.09      |
| 014            | 0.14             | 4.69E+04  | 3.3%     | 0.0003        | 1.37E+06   | 96.7%    | 0.0003         | 0.02      |
| 015            | 0.05             | 3.34E+04  | 26.4%    | 0.0003        | 9.33E+04   | 73.6%    | 0.0003         | 0.00      |
| 016            | 0.07             | 7.48E+04  | 2.1%     | 0.0003        | 3.56E+06   | 97.9%    | 0.0003         | 0.06      |
| 017            | 0.27             | 1.23E+06  | 26.2%    | 0.0003        | 3.47E+06   | 73.8%    | 0.0003         | 0.08      |
| 018            | 0.33             | 1.57E+06  | 12.0%    | 0.0003        | 1.14E+07   | 88.0%    | 0.0003         | 0.21      |
| 019            | 0.67             | 1.02E+06  | 5.9%     | 0.0003        | 1.63E+07   | 94.1%    | 0.0003         | 0.28      |
| 020            | 0.05             | 3.26E+04  | 3.9%     | 0.0003        | 8.14E+05   | 96.1%    | 0.0003         | 0.01      |
| 021            | 0.03             | 1.74E+04  | 2.4%     | 0.0003        | 7.11E+05   | 97.6%    | 0.0003         | 0.01      |
| 022            | 0.08             | 5.95E+04  | 3.0%     | 0.0003        | 1.91E+06   | 97.0%    | 0.0003         | 0.03      |
| 024            | 0.06             | 2.26E+04  | 5.3%     | 0.0003        | 4.03E+05   | 94.7%    | 0.0003         | 0.01      |
| 025            | 0.03             | 1.79E+04  | 3.0%     | 0.0003        | 5.77E+05   | 97.0%    | 0.0003         | 0.01      |
| 026            | 0.07             | 5.43E+04  | 2.9%     | 0.0003        | 1.80E+06   | 97.1%    | 0.0003         | 0.03      |
| Ridley Creek   | 0.72             | 2.90E+06  | 13.5%    | ، 0.0003      | 1.86E+07   | 86.5%    | 0.0003         | 0.35      |
| Chester Creek  | 0.95             | 1.18E+06  | 4.9%     | 0.0003        | 2.29E+07   | 95.1%    | 0.0003         | 0.39      |
| Delaware River | 2.41             | 6.71E+06  | 9.5%     | 0.0003        | 6.39E+07   | 90.5%    | 0.0003         | 1.14      |
| Total          | 4.08             | 1.08E+07  | 9.3%     | 0.0003        | 1.05E+08   | 90.7%    | 0.0003         | 1.88      |

---

| <b>Total Silver</b> | Annual | Load | for | Future | Typical | Year |
|---------------------|--------|------|-----|--------|---------|------|
|---------------------|--------|------|-----|--------|---------|------|

|                |                  | Sewage    |          | Selected      | Stormwater |          | Selected Storm |           |
|----------------|------------------|-----------|----------|---------------|------------|----------|----------------|-----------|
|                | Sewage           | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                | <b>Base Flow</b> | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall        | (cfs)            | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002            | 0.20             | 4.90E+05  | 6.5%     | 0.0080        | 7.08E+06   | 93.5%    | 0.0100         | 4.67      |
| 003            | 0.24             | 2.77E+05  | 3.2%     | 0.0080        | 8.29E+06   | 96.8%    | 0.0100         | 5.31      |
| 004            | 0.11             | 4.35E+04  | 10.0%    | 0.0080        | 3.90E+05   | 90.0%    | 0.0100         | 0.27      |
| 005            | 0.41             | 2.14E+06  | 14.3%    | 0.0080        | 1.29E+07   | 85.7%    | 0.0100         | 9.12      |
| 006            | 0.04             | 1.24E+04  | 5.7%     | 0.0080        | 2.07E+05   | 94.3%    | 0.0100         | 0.14      |
| 007            | 0.11             | 1.52E+05  | 5.4%     | 0.0080        | 2.68E+06   | 94.6%    | 0.0100         | 1.75      |
| 008            | 0.57             | 2.84E+06  | 15.3%    | 0.0080        | 1.58E+07   | 84.7%    | 0.0100         | 11.26     |
| 009            | 0.25             | 3.08E+05  | 5.1%     | 0.0080        | 5.77E+06   | 94.9%    | 0.0100         | 3.76      |
| 011            | 0.13             | 1.06E+05  | 2.5%     | 0.0080        | 4.12E+06   | 97.5%    | 0.0100         | 2.62      |
| 012            | 0.03             | 9.56E+03  | 2.5%     | 0.0080        | 3.70E+05   | 97.5%    | 0.0100         | 0.24      |
| 013            | 0.21             | 2.92E+05  | 5.2%     | 0.0080        | 5.30E+06   | 94.8%    | 0.0100         | 3.45      |
| 014            | 0.14             | 4.69E+04  | 3.3%     | 0.0080        | 1.37E+06   | 96.7%    | 0.0100         | 0.88      |
| 015            | 0.05             | 3.34E+04  | 26.4%    | 0.0080        | 9.33E+04   | 73.6%    | 0.0100         | 0.07      |
| 016            | 0.07             | 7.48E+04  | 2.1%     | 0.0080        | 3.56E+06   | 97.9%    | 0.0100         | 2.26      |
| 017            | 0.27             | 1.23E+06  | 26.2%    | 0.0080        | 3.47E+06   | 73.8%    | 0.0100         | 2.78      |
| 018            | 0.33             | 1.57E+06  | 12.0%    | 0.0080        | 1.14E+07   | 88.0%    | 0.0100         | 7.93      |
| 019            | 0.67             | 1.02E+06  | 5.9%     | 0.0080        | 1.63E+07   | 94.1%    | 0.0100         | 10.66     |
| 020            | 0.05             | 3.26E+04  | 3.9%     | 0.0080        | 8.14E+05   | 96.1%    | 0.0100         | 0.52      |
| 021            | 0.03             | 1.74E+04  | 2.4%     | 0.0080        | 7.11E+05   | 97.6%    | 0.0100         | 0.45      |
| 022            | 0.08             | 5.95E+04  | 3.0%     | 0.0080        | 1.91E+06   | 97.0%    | 0.0100         | 1.22      |
| 024            | 0.06             | 2.26E+04  | 5.3%     | 0.0080        | 4.03E+05   | 94.7%    | 0.0100         | 0.26      |
| 025            | 0.03             | 1.79E+04  | 3.0%     | 0.0080        | 5.77E+05   | 97.0%    | 0.0100         | 0.37      |
| 026            | 0.07             | 5.43E+04  | 2.9%     | 0.0080        | 1.80E+06   | 97.1%    | 0.0100         | 1.15      |
| Ridley Creek   | 0.72             | 2.90E+06  | 13.5%    | 0.0080        | 1.86E+07   | 86.5%    | 0.0100         | 13.05     |
| Chester Creek  | 0.95             | 1.18E+06  | 4.9%     | 0.0080        | 2.29E+07   | 95.1%    | 0.0100         | 14.88     |
| Delaware River | 2.41             | 6.71E+06  | 9.5%     | 0.0080        | 6.39E+07   | 90.5%    | 0.0100         | 43.23     |
| Total          | 4.08             | 1.08E+07  | 9.3%     | 0.0080        | 1.05E+08   | 90.7%    | 0.0100         | 71.16     |

|                | 1                | Sewage    |          | Selected      | Stormwater | l        | Selected Storm |           |
|----------------|------------------|-----------|----------|---------------|------------|----------|----------------|-----------|
|                | Sewage           | Overflow  | Percent  | Sewage        | Overflow   | Percent  | Water          | Discharge |
|                | <b>Base Flow</b> | Volume    | of Total | Concentration | Volume     | of Total | Concentration  | Load      |
| Outfall        | (cfs)            | (cu. ft.) | Flow     | (mg/l)        | (cu. ft.)  | Flow     | (mg/l)         | (lbs)     |
| 002            | 0.20             | 4.90E+05  | 6.5%     | 0.1538        | 7.08E+06   | 93.5%    | 0.0719         | 36        |
| 003            | 0.24             | 2.77E+05  | 3.2%     | 0.1538        | 8.29E+06   | 96.8%    | 0.0719         | 40        |
| 004            | 0.11             | 4.35E+04  | 10.0%    | 0.1538        | 3.90E+05   | 90.0%    | 0.0719         | 2         |
| 005            | 0.41             | 2.14E+06  | 14.3%    | 0.1538        | 1.29E+07   | 85.7%    | 0.0719         | 78        |
| 006            | 0.04             | 1.24E+04  | 5.7%     | 0.1538        | 2.07E+05   | 94.3%    | 0.0719         | 1         |
| 007            | 0.11             | 1.52E+05  | 5.4%     | 0.1538        | 2.68E+06   | 94.6%    | 0.0719         | 14        |
| 008            | 0.57             | 2.84E+06  | 15.3%    | 0.1538        | 1.58E+07   | 84.7%    | 0.0719         | 98        |
| 009            | 0.25             | 3.08E+05  | 5.1%     | 0.1538        | 5.77E+06   | 94.9%    | 0.0719         | 29        |
| 011            | 0.13             | 1.06E+05  | 2.5%     | 0.1538        | 4.12E+06   | 97.5%    | 0.0719         | 20        |
| 012            | 0.03             | 9.56E+03  | 2.5%     | 0.1538        | 3.70E+05   | 97.5%    | 0.0719         | 2         |
| 013            | 0.21             | 2.92E+05  | 5.2%     | 0.1538        | 5.30E+06   | 94.8%    | 0.0719         | 27        |
| 014            | 0.14             | 4.69E+04  | 3.3%     | 0.1538        | 1.37E+06   | 96.7%    | 0.0719         | 7         |
| 015            | 0.05             | 3.34E+04  | 26.4%    | 0.1538        | 9.33E+04   | 73.6%    | 0.0719         | 1         |
| 016            | 0.07             | 7.48E+04  | 2.1%     | 0.1538        | 3.56E+06   | 97.9%    | 0.0719         | 17        |
| 017            | 0.27             | 1.23E+06  | 26.2%    | 0.1538        | 3.47E+06   | 73.8%    | 0.0719         | 27        |
| 018            | 0.33             | 1.57E+06  | 12.0%    | 0.1538        | 1.14E+07   | 88.0%    | 0.0719         | 66        |
| 019            | 0.67             | 1.02E+06  | 5.9%     | 0.1538        | 1.63E+07   | 94.1%    | 0.0719         | 83        |
| 020            | 0.05             | 3.26E+04  | 3.9%     | 0.1538        | 8.14E+05   | 96.1%    | 0.0719         | 4         |
| 021            | 0.03             | 1.74E+04  | 2.4%     | 0.1538        | 7.11E+05   | 97.6%    | 0.0719         | 3         |
| 022            | 0.08             | 5.95E+04  | 3.0%     | 0.1538        | 1.91E+06   | 97.0%    | 0.0719         | 9         |
| 024            | 0.06             | 2.26E+04  | 5.3%     | 0.1538        | 4.03E+05   | 94.7%    | 0.0719         | 2         |
| 025            | 0.03             | 1.79E+04  | 3.0%     | 0.1538        | 5.77E+05   | 97.0%    | 0.0719         | 3         |
| 026            | 0.07             | 5.43E+04  | 2.9%     | 0.1538        | 1.80E+06   | 97.1%    | 0.0719         | 9         |
| Ridley Creek   | 0.72             | 2.90E+06  | 13.5%    | 0.1538        | 1.86E+07   | 86.5%    | 0.0719         | 111       |
| Chester Creek  | 0.95             | 1.18E+06  | 4.9%     | 0.1538        | 2.29E+07   | 95.1%    | 0.0719         | 114       |
| Delaware River | 2.41             | 6.71E+06  | 9.5%     | 0.1538        | 6.39E+07   | 90.5%    | 0.0719         | 351       |
| Total          | 4.08             | 1.08E+07  | 9.3%     | 0.1538        | 1.05E+08   | 90.7%    | 0.0719         | 577       |

### Total Phenols Annual Load for Future Typical Year

No Criteria No Criteria No Criteria No Criteria No Criteria No Criteria No Criteria 0.1011924 0.0109878 0.0024145 Standard 0.000012 Quality Water (I/gm) > 6.5 0.087 770 0.02 Background Background Concentration Estimated 0.0375 0.0385 0.3376 0.0172 0.0063 (Ing/I) 30.19 0.0283 0.0011 12.36 9,805 0.723 2.23 1.52 3.34 7.87 Percent of 17.4% 11.6% 14.7% 20.3% 11.9% Load 14.5% 0.4% CSO 8.6% 0.7% 1.5% 7.1% 2.2% 5.2% 0.3% 7.5% Background Percent of Volume 1.5% 1.5% 1.5% 1.5% 1.5% 1.5%1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5%1.5% 1.5%CSO  $Load^{(3)}$ Stream 2,857,019 320,385 1,020,692 (lbs/yr) 204,138 1.0E+10 802,570 146,163 30,825 73,265 1,519 2,775 3,870 3,411 111 542 Average Stream 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 (cu.ft./yr) Volume Harmonic  $\mathrm{Flow}^{(2)}$ Mean 51.8 51.8 51.8 51.8 51.8 51.8 51.8 (cts) 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 CSO Volume Concentration<sup>(1)</sup> Background Stream 0.005315 (l/gm) 0.7178 0.0334 0.0149 0.0272 0.3020 0.0379 0.0011 27.99 9,877 3.14 7.863 2.00 I.43 10 24,069,030 24,069,030 24,069,030 24,069,030 24,069,030 24,069,030 24,069,030 24,069,030 24,069,030 24,069,030 24,069,030 24,069,030 24,069,030 24,069,030 24,069,030 (cu.ft/yr) Loading 7.35E+07 269,845 259,288 (lbs/yr) 25,914 12,613 26,738 11,172 CSO 1,667 4,145 580 0.39 114 261 153 15 Fecal Coliform (#/100ml) **Total Kjeldahl Nitrogen Fotal Suspended Solids** Dissolved Oxygen Pollutant **Fotal Phosphorus Fotal Aluminum Fotal Phenols** Oil & Grease Fotal Copper **Fotal Lead** Fotal Zinc Mercury BOD, Silver COD

Impact of CSO Discharge on Chester Creek Water Quality for Future Typical Year

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Chester Creek near Chester, PA (01477000) transfered to mouth.

 $^{(3)}$  Background load based on total annual flow =

525,600 min

Table 6.2-20a

No Criteria No Criteria No Criteria No Criteria No Criteria No Criteria 0.0109878 No Criteria 0.1011924 0.0024145 Standard Quality 0.000012 (I/gm) Water 0.087 > 6.5 *0LL* 0.02 Background Background Concentration Estimated 0.0336 0.0150 (mg/l) 0.0272 0.3033 0.0379 0.0054 10.08 0.718 0.0011 28.07 3.15 9,874 7.86 1.44 2.01Percent of Load 0.3% 0.3% 0.9% 0.0% 0.5% 0.6% 0.2%0.5% 0.6% 0.7%0.1% 0.3% 0.1% 0.0% 0.0% CSO Percent of Volume 0.1% CSO 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% Average Stream Background Load<sup>(3)</sup> 2,857,019 (lbs/yr) 1,020,692 802,570 146,163 Stream 320,385 1.0E+10 204,138 73,265 30,825 3,411 2,775 1,519 3,870 111 542 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 1,634,837,317 (cu.ft./yr) Volume Flow<sup>(2)</sup> Harmoni Mean 51.8 (cfs) 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 CSO Volume Concentration<sup>(1)</sup> Background 0.005315 Stream 0.7178 0.0334 0.0272 0.3020 0.0149 0.0011 0.0379 (I/gm) 27.99 9,877 7.863 1.43 3.14 2.00 10 846,860 846,860 846,860 846,860 (cu.ft/yr) 846,860 846,860 846,860 846,860 846,860 846,860 846,860 846,860 846,860 846,860 846,860 Loading 2.04E+06 (lbs/yr) CS0 9,016 9,499 853 445 390 0.01 938 58 21 147 Ś δ 4 Fecal Coliform (#/100ml) **Fotal Kjeldahl Nitrogen Fotal Suspended Solids** Dissolved Oxygen Pollutant Fotal Phosphorus **Fotal Aluminum Fotal Phenols** Oil & Grease **Fotal Copper Fotal Zine** Fotal Lead Mercury BOD Silver COD

Impact of CSO Discharge on Chester Creek Water Quality for Future Typical Year at Regulator 20

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Chester Creek near Chester, PA (01477000) transfered to mouth.

<sup>(3)</sup> Background load based on total annual flow =

525,600 min

Future Watqual.xls Chester Creek Annual Impact

6-28

Table 6.2-20b

No Criteria No Criteria No Criteria No Criteria No Criteria No Criteria 0.0024145 No Criteria 0.1011924 0.0109878 Standard 0.000012 Quality Water (l/gm) > 6.5 0.087 770 0.02 Concentration Estimated 0.3288 0.0166 0.0376 0.0373 0.0280 (l/gm) 0.0061 29.65 11.80 9,832 0.722 0.0011 3.30 7.87 2.17 1.50 Background Background Percent of 18.3% 12.1% 12.2% 15.1% Load 0.6% 1.1% 5.5% 1.6%0.3%0.3% 6.8% 6.1% 9.4% 3.9% 9.6% CSO Percent of Volume 1.0%1.0%1.0%1.0%1.0%1.0%1.0% 1.0% 1.0%1.0%1.0% 1.0%1.0%1.0%1.0% CSO Background  $Load^{(3)}$ 2,866,518 321,238 1,029,708 803,015 205,077 (Ibs/yr) 1.0E+10 146,554 Stream 30,972 73,324 1,529 3,431 2,781 111 3,871 546 Average Stream I,635,684,177 1,635,684,177 1,635,684,177 1,635,684,177 1,635,684,177 1,635,684,177 1,635,684,177 1,635,684,177 1,635,684,177 1,635,684,177 1,635,684,177 1,635,684,177 1,635,684,177 1,635,684,177 1,635,684,177 (cu.ft./yr) Volume Harmonic Flow<sup>(2)</sup> Mean 51.8 51.8 51.8 (cfs) 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 Concentration<sup>(1)</sup> Background 10.08310669 0.717999449 0.005351121 7.863287171 Stream 0.0150 0.0379 (mg/l) 0.0336 0.0272 0.3033 0.0011 9,874 28.07 1,44 3.15 2.01 CSO Volume 17,268,166 17,268,166 17,268,166 17,268,166 17,268,166 17,268,166 17,268,166 17,268,166 17,268,166 17,268,166 17,268,166 17,268,166 17.268,166 17,268,166 17,268,166 (cu.ft/yr) Loading 188,135 6.35E+07 193,503 (lbs/yr) 19,234 19,751 9,025 CSO 8,067 1,202 2,959 0.28 414 186 109 83 Ξ Fecal Coliform (#/100ml) **Fotal Kjeldahl Nitrogen Otal Suspended Solids** Dissolved Oxygen Pollutant **Fotal Phosphorus Fotal Aluminum Fotal Phenols** Oil & Grease **Fotal Copper Fotal Zinc [otal Lead** Mercury Silver BOD<sub>5</sub> COD

Impact of CSO Discharge on Chester Creek Water Quality for Future Typical Year at Regulator 19

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Chester Creek near Chester, PA (01477000) transfered to mouth.

<sup>(3)</sup> Background load based on total annual flow =

mual flow = 525,600 min

Table 6.2-20c

No Criteria No Criteria No Criteria No Criteria No Critcria No Criteria No Criteria 0.0109878 0.0024145 0.1011924 Standard 0.000012 Quality Water 0.087 (I/gm) > 6.5 770 0.02 Background Background Concentration Estimated 0.0280 0.3299 0.0376 0.0374 0.0167 (I/gm) 0.0011 0.0061 29.72 11.87 9,829 2.18 1.50 0.722 7.87 3.31 Percent of Load 0.3%0.2%0.6% 0.0% 0.0% 0.4% 0.2% 0.2% 0.4% 0.5% 0.0% 0.5% CSO 0.1%0.5% 0.0% Percent of Volume 0.0% 0.0% 0.0% 0.0%0.0% 0.0% 0.0% 0.0%  $\cos 0$ 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Average Stream Background  $Load^{(3)}$ 1.217.842 3,060,022 340,989 154,620 1.0E+10 812,040 (Ibs/yr) 224,311 Stream 74,526 3,845 33,930 2,890 1,714 3,882 629 111 1.652,952,343 1,652,952,343 1,652,952,343 1,652,952,343 1,652,952,343 1,652,952,343 1,652,952,343 1,652,952,343 1,652,952,343 1,652,952,343 1,652,952,343 1,652,952,343 1,652,952,343 1,652,952,343 1,652,952,343 (cu.ft./yr) Volume Jarmonic Flow<sup>(2)</sup> Mean 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 (cfs) CSO Volume Concentration<sup>(1)</sup> 11.80077619 0.722149328 Background 7.868588004 0.006097063 0.0376 0.0280 Stream 0.3288 (mg/l) 9,832 0.0373 0.0166 29.65 0.0011 3.30 2.17 1.50 (cu.ft/yr) 728,798 728,798 728,798 728,798 728,798 728,798 728,798 728,798 728,798 728,798 728,798 728,798 728,798 728,798 728,798 Loading 1.09E+06 (Ibs/yr) 7,629 CSO 8,181 385 804 333 662 0.01 50 127 8 Ś  $\infty$ 0 ŝ ccal Coliform (#/100ml) otal Kjeldahl Nitrogen **fotal Suspended Solids** Dissolved Oxygen Pollutant Cotal Phosphorus fotal Aluminum **Fotal Phenols** Oil & Grease Fotal Copper **Otal Zinc Cotal Lead** Mercury BOD<sub>5</sub> Silver COD

Impact of CSO Discharge on Chester Creek Water Quality for Future Typical Year at Regulator 21

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Chester Creek near Chester, PA (01477000) transfered to mouth.

525,600 min

<sup>(3)</sup> Background load based on total annual flow =

FutureWatqual.xls Chester Creek Annual Impact

6-30

. .

**Table 6.2-20d** 

No Criteria No Criteria No Criteria No Criteria No Criteria No Criteria 0.0109878 0.0024145 No Criteria Quality Standard 0.1011924 0.000012 Water (mg/l) > 6.5 0.087 770 0.02 Background Background Concentration Estimated (mg/l) 0.0378 0.3326 0.0376 0.0169 29.89 12.05 0.0062 3.32 9,821 0.723 0.0281 0.0011 2.20 7.87 1.51 Percent of CSO 0.7% 1.6%0.0% Load 0.5% 0.1%0.9% 0.5% 0.2%1.2% 0.4%0.9% 1.2% 0.0% 0.0% 1.3%Background Percent of Volume CSO 0.1%0.1% 0.1% 0.1%0.1%0.1%0.1% 0.1% 0.1%0.1% 0.1%0.1% 0.1% 0.1%0.1%  $L_{0ad}^{(3)}$ 3,068,203 341,651 1,225,471 812,424 (Ibs/yr) 225,115 1.0E+10 154,953 Stream 74,576 34,057 2,894 1,723 3,863 3,882 111 633 Average Stream 1,653,681,141 1,653,681,141 1,653,681,141 1,653,681,141 1,653,681,141 1,653,681,141 1,653,681,141 1,653,681,141 1,653,681,141 1,653,681,141 1,653,681,141 1,653,681,141 1,653,681,141 1,653,681,141 1,653,681,141 (cu.ft./yr) Volume Harmonic  $Flow^{(2)}$ Mean (cfs) 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 Concentration<sup>(1)</sup> Background 11.86946279 7.868844864 0.006126936 0.722313321 Stream (I/gm) 0.0374 0.0280 0.3299 0.0376 29.72 0.0167 9,829 0.0011 3.31 2.18 1.50 CSO Volume 1,856,926 1,856,926 1,856,926 1,856,926 1,856,926 1,856,926 1,856,926 1,856,926 1,856,926 1,856,926 1,856,926 1,856,926 1,856,926 I,856,926 1,856,926 (cu.ft/yr) Loading 3.39E+06 (lbs/yr) 20,839 19,559 CSO 1,754 2,052 978 851 0.03 127 45 323 12 21 6 ecal Coliform (#/100mt) **Fotal Kjeldahl Nitrogen** otal Suspended Solids **Dissolved Oxygen** Pollutant **Fotal Phosphorus Fotal Aluminum Total Phenols** Oil & Grease Total Copper **Fotal Zinc Fotal Lead** Mercury BOD, COD Silver

Impact of CSO Discharge on Chester Creek Water Quality for Future Typical Year at Regulator 26

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Chester Creek near Chester, PA (01477000) transfered to mouth.

525,600 min

<sup>(3)</sup> Background load based on total annual flow =

FutureWatqual.xls Chester Creek Annual Impact

6-31

**Table 6.2-20e** 

No Criteria No Criteria No Criteria No Criteria No Criteria No Criteria 0.1011924 0.0109878 0.0024145 No Criteria 0.000012 Quality Standard Water (l/gm) 0.087 > 6.5 770 0.02 Background Background Concentration Estimated 0.0375 0.0382 0.0282 0.3355 0.0063 (l/gm) 30.06 12.23 0.723 0.0171 9,813 0.0011 3.34 7.87 2.22 1.51 Percent of 1.4% Load 0.7% 0.5% 1.6%0.0% 0.1% 0.9% 0.6% 0.2% 1.2%0.4%1.0%1.2%0.0% 0.0% **CSO** Percent of Volume 0.1%0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%0.1% 0.1% 0.1% **CSO** 0.1% 0.1%0.1%Background Load<sup>(3)</sup> 1,245,030 343,405 227,167 (lbs/yr) 3,089,041 1.0E+10 155,804 74,703 Stream 813,403 34,380 3,908 2,906 1.743 3,883 641 111 Average Stream 1,655,538,067 1.655,538,067 1,655,538,067 1,655,538,067 1,655,538,067 1,655,538,067 1,655,538,067 1,655,538,067 1,655,538,067 1,655,538,067 1,655,538,067 1,655,538,067 1,655,538,067 1,655,538,067 1,655,538,067 (cu.ft./yr) Volume Harmonic Flow<sup>(2)</sup> Mean 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 (cfs) CSO Volume Concentration<sup>(1)</sup> 0.722734114 0.006203425 Background 12.04537435 7.86948444 Stream 0.0169 0.0376 0.0378 0.3326 (I/gm) 0.0281 0.0011 29.89 3.32 9,821 2.20 1.51 1,967,830 1,967,830 1,967,830 1,967,830 1,967,830 1,967,830 1,967,830 1,967,830 1,967,830 1,967,830 1,967,830 1,967,830 1,967,830 1,967,830 1,967,830 (cu.ft/yr) Loading | 3.71E+06 (fbs/yr) 22,082 20,751 CSO 1,872 1,037 2,175 135 0.03 902 342 48 13 22 6 Fecal Coliform (#/100ml) **Fotal Kjeldahl Nitrogen Cotal Suspended Solids Dissolved Oxygen** Pollutant otal Phosphorus fotal Aluminum **Fotal Phenols** Oil & Grease Cotal Copper otal Zinc Cotal Lead Mercury BOD, Silver COD

Impact of CSO Discharge on Chester Creek Water Quality for Future Typical Year at Regulator 22

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Chester Creek near Chester, PA (01477000) transfered to mouth.

525,600 min

<sup>(3)</sup> Background load based on total annual flow =

6-32

April 1999

FutureWatquaf.xls Choster Creek Annual Impact

**Table 6.2-20f** 

No Criteria No Criteria No Criteria No Criteria No Criteria No Criteria 0.0109878 0.0024145 No Criteria 0.1011924 Standard 0.000012 Water Quality (I/gm) > 6.5 0.087 770 0.02 Background Background Concentration Estimated (l/gm) 0.0375 30.12 12.29 0.0384 0.0282 0.3364 0.0063 3.34 0.723 0.0171 0.0011 9,811 2.22 7.87 1.52 Percent of CSO Load 0.2% 0.2% 0.5% 0.0% 0.0% 0.3% 0.2% 0.1% 0.4% 0.1%0.3%0.4% 0.0% 0.0% 0.4% Percent of Volume CSO 0.0% 0.0%0.0% 0.0% 0.0% 0.0% 0.0%0.0%0.0% 0.0%0.0% 0.0% 0.0% 0.0% 0.0% Background Stream Load<sup>(3)</sup> (lbs/yr) 3,111,123 1,265,780 814,439 229,342 345,278 1.0E+10 156,706 74,838 34,722 3,956 2,919 1,765 3,884 111 650 Average Stream 1,657,505,897 1,657,505,897 1,657,505,897 1,657,505,897 1,657,505,897 1,657,505,897 1,657,505,897 1,657,505,897 1,657,505,897 1,657,505,897 1,657,505,897 1,657,505,897 1,657,505,897 1,657,505,897 1,657,505,897 (cu.ft./yr) Volume Harmonic Flow<sup>(2)</sup> Mean 51.8 (cfs) 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 CSO Volume Concentration<sup>(1)</sup> Background 12.23159426 7.870157912 0.006284392 0.72317972 Stream (l/gm) 0.3355 0.0382 0.0282 0.0375 30.06 0.0171 9,813 0.0011 3.34 2.22 1.51 (cu.ft/yr) 595,201 595,201 595,201 595,201 595,201 595,201 595,201 595,201 595,201 595,201 595,201 595,201 595,201 595,201 595,201 Loading 1.12E+06 (lbs/yr) CSO 6,679 6,275 566 314 658 273 0.01 4] 15 103 4 ŝ ~ 0 **Otal Suspended Solids** Fecal Coliform (#/100mt) **Fotal Kjeldahl Nitrogen Dissolved Oxygen** Pollutant **fotal** Phosphorus **Fotal Aluminum Fotal Phenols** Oil & Grease **Total Copper Fotal Zinc** Cotal Lead Mercury BOD, COD Silver

Impact of CSO Discharge on Chester Creek Water Quality for Future Typical Year at Regulator 25

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Chester Creek near Chester, PA (01477000) transfered to mouth.  $^{(3)}$ Background load based on total annual flow =

- 444

525,600 min

Table 6.2-20g

No Criteria No Criteria No Criteria 0.0109878 0.0024145 No Criteria No Criteria No Criteria No Criteria 0.1011924 0.000012 Standard Quality (mg/l) Water 0.087 > 6.5 770 0.02 Background Background Concentration Estimated 0.0375 0.0384 0.0283 0.3370 0.0172 0.0063 (Il/gm) 0.723 0.0011 30.16 12.33 9,810 3.34 1.52 2.23 7.87 Percent of Load 0.1% 0.4%0.0% 0.0%0.1% 0.0% 0.3% 0.1% 0.2% 0.3% 0.0% 0.0% 0.3% 0.2% 0.2% CSO Percent of Volume 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% CS0 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Background Load<sup>(3)</sup> 3,117,802 1,272,055 345,844 814,753 230,000 (Ibs/yr) 156,979 1.0E+10 34,826 74,879 Stream 2,923 3,885 3,971 1.771 111 653 Average Stream 1,658,101,098 1,658,101,098 1,658,101,098 1,658,101,098 1,658,101,098 1,658,101,098 1,658,101,098 1,658,101,098 1,658,101,098 1,658,101,098 1,658,101,098 1,658,101,098 1,658,101,098 1,658,101,098 1,658,101,098 (cu.ft./yr) Volume Flow<sup>(2)</sup> Mean Harmoni 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 (cfs) 51.8 51.8 51.8 51.8 51.8 CSO Volume Concentration<sup>(1)</sup> 0.006308839 Background 0.723314255 12.28782005 7.870361444 Stream 0.0375 0.3364 0.0011 (l/gm) 0.0384 0.0282 0.0171 30.12 3.34 9,811 1.52 2.22 425,782 425,782 425,782 425,782 425,782 425,782 (cu.ft/yr) 425,782 425,782 425,782 425,782 425,782 425,782 425,782 425,782 425,782 Loading 1.41E+06 (lbs/yr) 4,773 4,608 CSO 470 0.01 198 223 474 30 10 3 2 ŝ Ś 0 **Fotal Kjeldahl Nitrogen Total Suspended Solids** Cecal Coliform (#/100ml) Dissolved Oxygen Pollutant **Fotal Phosphorus otal** Aluminum **Total Phenols Dil & Grease** Total Copper **Fotal Lead** otal Zinc Mercury BOD<sub>5</sub> Silver COD

Impact of CSO Discharge on Chester Creek Water Quality for Future Typical Year at Regulator 24

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Chester Creek near Chester, PA (01477000) transfered to mouth.

525,600 min

<sup>(3)</sup> Background load based on total annual flow =

FutureWatqual.xls Chester Creek Annual Impact

6-34

Table 6.2-20h

No Criteria No Criteria No Criteria No Criteria No Criteria No Criteria 0.1011924 0.0109878 0.0024145 No Criteria Standard Quality 0.000012 Water (l/gm) 0.087 > 6.5 770 0.02 Concentration Estimated 0.0375 (mg/l) 30.19 12.36 0.0385 0.0283 0.3376 0.0063 9,808 0.723 0.0172 0.0011 3.35 1.52 7.87 2.23 Background Background Percent of Load 0.1% 0.1% 0.3% 0.0% 0.1% 0.0% 0.2% 0.1%0.2% 0.0% CSO 0.0%0.2% 0.2% 0.0% 0.3% Percent of Volume 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%0.0% 0.0%0.0% 0.0%0.0% 0.0% 0.0% CSO 0.0% Background Load<sup>(3)</sup> 3,122,575 1.276,663 814,976 230,474 346,314 (lbs/yr) 157,177 Stream 1.0E+10 74,908 34,899 2,926 3,885 3,981 1,776 111 655 Average Stream 1,658,526,880 I,658,526,880 1,658,526,880 1,658,526,880 1,658,526,880 1,658,526,880 1,658,526,880 1,658,526,880 1,658,526,880 1,658,526,880 1,658,526,880 1,658,526,880 1,658,526,880 1,658,526,880 1,658,526,880 (cu.ft./yr) Volume Harmonic Flow<sup>(2)</sup> Mean 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 51.8 (cfs) CSO Volume Concentration<sup>(1)</sup> Background 0.006326799 12.32916585 0.723413956 7.870493411 Stream 30.16 0.0172 0.0375 (mg/l) 0.0384 0.0283 0.3370 0.0011 9,810 2.23 1.52 3.34 379,467 (cu.ft/yr) 379,467 379,467 379,467 379,467 379,467 379,467 379,467 379,467 379,467 379,467 379,467 379,467 379,467 379,467 Loading 5.97E+05 (Ibs/yr) 3,978 CSO 4,259 348 200 419 173 0.01 26 66 δ 4 3 0 2 **Total Suspended Solids** Fecal Coliform (#/100ml) **Fotal Kjeldahl Nitrogen** Dissolved Oxygen Pollutant l'otal Phosphorus **Fotal Aluminum Fotal Phenols** Oil & Grease **[otal Copper** fotal Zinc [otal Lead Mercury BOD, Silver COD

Impact of CSO Discharge on Chester Creek Water Quality for Future Typical Year at Regulator 12

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Chester Creek near Chester, PA (01477000) transfered to mouth.

525,600 min

<sup>(3)</sup> Background load based on total annual flow =

FutureWatequal.xis Chester Creek Annual Impact

6-35

No Criteria No Criteria No Criteria No Criteria No Criteria No Criteria No Criteria 0.0093958 0.0019764 Quality Standard 0.0866451 0.000012 Water (l/gm) 0.087 > 6.5 7700.02 Background Background Concentration Estimated 16,042 0.0426 0.0198 0.0014 0.0372 0.0072 (mg/l) 38.93 14.32 0.392 0.0292 0.3582 1.15 3.69 8.13 2.39 Percent of 27.8% 11.1% 17.3% 31.8% 18.3% 16.5% 20.7% 17.7% 19.4% Load CSO 2.0% 2.4% 7.1% 8.0% 0.4% 0.6% Percent of Volume 2.4% 2.4% 2.4% 2.4% 2.4% 2.4% 2.4% 2.4% 2.4% 2.4% CS0 2.4% 2.4% 2.4% 2.4% 2.4% Background Load<sup>(3)</sup> 1,928,396 Stream (lbs/yr) 169,744 543,562 8.8E+09 108,712 53,300 16,416 441.981 20,301 1,880 1,496 2,061 890 289 78 Average Stream 870,621,189 870,621,189 870.621.189 870,621,189 870,621,189 870,621,189 870,621,189 870,621,189 870,621,189 870,621,189 870,621,189 870,621,189 870,621,189 870,621,189 870,621,189 (cu.ft./yr) Volume Harmonic Mean Flow<sup>(2)</sup> 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 (cfs) 27.6 27.6 27.6 27.6 CSO Volume Concentration<sup>(1)</sup> Background Stream 0.005315 0.37348 16,104 8.1312 0.0346 0.0275 0.0379 (mg/l) 0.3020 0.0164 0.0014 35.48 3.12 2.00 0.98 2 21,471,795 21,471,795 21,471,795 21,471,795 21,471,795 21,471,795 21,471,795 21,471,795 21,471,795 21,471,795 21,471,795 21,471,795 21,471,795 21,471,795 21,471,795 (cu.ft/yr) Loading 1.81E+08 (Ibs/yr) 253,876 35,516 10,986 239,711 24,401 10,520 CSO 1,556 3,534 0.35 492 129 214 111 13 Fecal Coliform (#/100ml) **Fotal Kjeldahl Nitrogen** otal Suspended Solids Dissolved Oxygen Pollutant Fotal Phosphorus Fotal Aluminum **Fotal Phenols** Oil & Grease Fotal Copper Total Lead otal Zinc Mercury BOD, Silver COD

Impact of CSO Discharge on Ridley Creek Water Quality for Future Typical Year

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Ridley Creek at Media, PA (01476480) transfered to mouth.

<sup>(3)</sup> Background load based on total annual flow = 525,600 min

6-36

April 1999

ķ.:

FutureWatqual.xls Ridley Creek Annual Impact

Table 6.2-21a

No Criteria No Criteria No Criteria No Criteria No Criteria 0.0093958 No Criteria No Criteria 0.0866451 0.0019764 Standard 0.000012 Water Quality ([/gm) > 6.5 0.087 0.02 770 Concentration Estimated 16,044 0.0395 0.0286 0.0185 0.0014 0.0375 0.0064 (mg/l) 0.3367 37.59 12.60 0.385 3.44 8.13 2.24 1.08 Background Background Volume Load Percent of 10.6% 11.9% 13.8% 12.9% 18.7% 21.8% 10.6% 11.6% CSO 7.0% 1.1%1.5% 4.4% 5.0% 0.3%0.4% Background Percent of CSO 1.5% 1.5% 1.5% 1.5% 1.5%1.5% 1.5%1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% Load<sup>(3)</sup> Stream 1,928,396 169,744 543,562 8.8E+09 108,712 (lbs/yr) 16,416 441,981 53,300 20,301 1,880 1,496 2,061 289 890 78 Average Stream 870,621,189 870,621,189 870,621,189 870,621,189 870,621,189 870,621,189 870,621,189 870,621,189 870,621,189 870,621,189 870,621,189 870,621,189 870,621,189 870,621,189 870,621,189 (cu.ft./yr) Volume Harmonic Flow<sup>(2)</sup> Mean (cts) 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 Concentration<sup>(1)</sup> Background Stream 0.005315 0.37348 (mg/l) 16,104 8.1312 0.0346 0.0275 0.3020 0.0164 0.0014 0.0379 35.48 3.12 2.00 0.98 10 CSO Volume 13,010,692 13,010,692 13,010,692 13,010,692 13,010,692 13,010,692 13,010,692 13,010,692 13,010,692 13,010,692 13,010,692 13,010,692 13,010,692 13,010,692 13,010,692 (cu.ft/yr) Loading 145,357 151,485 9.78E+07 (Ibs/yr) 20,229 14,729 6,685 6,317 CSO 2,158 936 301 0.21 132 79 8 99 'ecal Coliform (#/100ml) **Fotal Kjeldahl Nitrogen Cotal Suspended Solids** Dissolved Oxygen Pollutant **Fotal Phosphorus Fotal Aluminum Fotal Phenols** Oil & Grease **Fotal Copper Fotal Lead Fotal Zinc** Mercury Silver BOD<sub>5</sub> COD

Impact of CSO Discharge on Ridley Creek Water Quality for Future Typical Year at Regulator 18

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Ridley Creek at Media, PA (01476480) transfered to mouth.

<sup>(3)</sup> Background load based on total annual flow = 525,600 min

Table 6.2-21b

No Criteria No Criteria No Criteria No Criteria No Criteria No Criteria 0.0866451 0.0093958 0.0019764 No Criteria 0.000012 Standard Ouality Water (mg/l) > 6.5 0.087 0.02 770Background Background Concentration Estimated 0.0289 0.0374 0.0069 16,098 0.0192 (I/gm) 0.0411 0.3479 0.0014 38.33 13.66 0.389 8.13 2.33 1.12 3.64 Percent of Load CSO 2.5% 5.8% 8.3% 0.9% 0.5% 4.3% 4.0% 1.7% 4.4% 1.6% 3.7% 0.1% 0.1% 7.2% 3.8% Background Percent of Volume **CSO** 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% 0.5% Load<sup>(3)</sup> 2,073,753 695,047 Stream (Ibs/yr) 189,973 123,441 8.9E+09 448,666 59,617 21,237 18,574 1,576 2,069 2,181 1,021 355 78 Average Stream 883,631,881 883.631.881 883,631,881 883,631,881 883,631,881 883,631,881 883,631,881 883,631,881 883,631,881 883,631,881 883,631,881 883,631,881 883,631,881 883,631,881 883,631,881 (cu.ft./yr) Volume Harmonic Flow<sup>(2)</sup> Mean 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 (cfs) CSO Volume Concentration<sup>(1)</sup> Background 12.59860876 8.132646547 0.384942226 0.006440947 0.0185 Stream (l/gm) 16,044 0.0395 0.0286 0.3367 0.00140.0375 37.59 1.083.44 2.24 4,695,033 4,695,033 4,695,033 4,695,033 4,695,033 4,695,033 4,695,033 4,695,033 4,695,033 4,695,033 4,695,033 4,695,033 4,695,033 4,695,033 4,695,033 (cu.ft/yr) Loading 7.67E+07 (Ibs/yr) 62,747 52,090 11,740 2,317 2,478 CSO 5,511 362 720 0.08 66 26 41 27 ŝ Fecal Coliform (#/100ml) Cotal Suspended Solids **Fotal Kjeldahl Nitrogen** Dissolved Oxygen Pollutant **Fotal Phosphorus** Fotal Aluminum **Total Phenols** Oil & Grease **Fotal Copper fotal Lead Fotal Zinc** Mercury BOD, Silver COD

Impact of CSO Discharge on Ridley Creek Water Quality for Future Typical Year at Regulator 17

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Ridley Creek at Media, PA (01476480) transfered to mouth.

(3) Background load based on total annual flow =

525,600 min

FutureWatqual.xls Ridley Crock Amual Impact

6-38

Table 6.2-21c

No Criteria No Criteria No Criteria No Criteria No Criteria No Criteria 0.0093958 No Criteria Standard 0.0866451 0.0019764 Quality 0.000012 Water (l/gm) > 6.5 0.087 770 0.02 Background Background Concentration Estimated (mg/l) 16,040 0.0425 0.3579 0.0198 0.0372 0.0072 38.91 14.29 0.392 0.0292 0.0014 3.68 8.13 2.39 1.14 Percent of CSO Load 1.9% 4.8% 0.1% 0.4%1.6%3.0% 2.6% 1.1% 3.8% 1.4% 3.2% 3.7% 0.1% 0.1%4.2% Background Percent of Volume CSO 0.4% 0.4%0.4%0.4%0.4%0.4%0.4%0.4% 0.4% 0.4% 0.4%0.4% 0.4%0.4%0.4% Load<sup>(3)</sup> (Ibs/yr) 2,125,843 201,713 757,793 450,983 128,952 Stream 8.9E+09 62,095 21,599 19,294 2,280 1,062 2,072 1,601 383 78 Average Stream 888,326,914 888,326,914 888,326,914 888,326,914 888,326,914 888, 326, 914 888,326,914 888,326,914 888,326,914 888,326,914 888,326,914 888,326,914 888,326,914 888,326,914 888,326,914 (cu.ft./yr) Volume Harmonic Flow<sup>(2)</sup> Mean (cfs) 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 CSO Volume Concentration<sup>(1)</sup> Background 13.66337063 8.131440567 0.38944242 0.006900321 Stream 16,098 0.3479 0.0192 (l/gm) 0.0289 0.0014 38.33 0.0411 0.0374 1.12 3.64 2.33 3,639,355 3,639,355 3,639,355 3,639,355 3,639,355 3,639,355 3,639,355 3,639,355 3,639,355 3,639,355 3,639,355 3,639,355 3,639,355 (cu.ft/yr) 3,639,355 3,639,355 Loading 4.67E+06 (lbs/yr) 40,858 37,948 CSO 1,922 4,012 3,227 1,658 248 636 0.06 89 24 4] 5 3 Fecal Coliform (#/100ml) Fotal Kjeldahl Nitrogen **Fotal Suspended Solids** Dissolved Oxygen Pollutant fotal Phosphorus fotal Aluminum Oil & Grease **Total Phenols** Cotal Copper Fotal Zinc Fotal Lead Mercury BOD5 COD Silver

Impact of CSO Discharge on Ridley Creek Water Quality for Future Typical Year at Regulator 16

(i) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Ridley Creek at Media, PA (01476480) transfered to mouth.

 $^{(3)}$  Background load based on total annual flow = 525,600 min

**Fable 6.2-21d** 

No Criteria No Criteria No Criteria No Criteria No Criteria No Criteria No Criteria 0.0093958 0.0019764 Standard 0.0866451 0.000012 Quality (l/gm) 0.087 Water > 6.5 770 0.02 Background Background Concentration Estimated 0.0426 0.0198 0.0072 (mg/l) 16,042 0.0292 0.3582 0.0014 0.0372 38.93 14.32 1.15 0.392 3.69 8.13 2.39 Percent of 0.1% 0.1% 0.0% 0.0% 0.2%Load 0.1% 0.2% 0.0% 0.1% 0.0% 0.0% 0.1% 0.2% 0.0% 0.1% CS0 Percent of Volume 0.0%CSO 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% Background  $Load^{(3)}$ 2,166,702 (lbs/yr) 204,940 795,741 452,905 132,965 8.9E+09 63,753 19,930 Stream 21,847 2,369 1,103 1,625 2,074 399 78 **Average Stream** 891,966,269 891,966,269 891,966,269 891,966,269 891,966,269 891,966,269 891,966,269 891,966,269 891,966,269 891,966,269 891,966,269 891,966,269 891,966,269 891,966,269 891,966,269 (cu.ft./yr) Volume Flow<sup>(2)</sup> Harmoni Mean (cfs) 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 27.6 CSO Volume Concentration<sup>(1)</sup> 0.392310113 0.007172504 Background 8.132777126 14.2890462 0.0198 16,040 0.0425 0.3579 0.0014 0.0372 (mg/l) 0.0292 Stream 2.39 1.14 38.91 3.68 126,715 126,715 126,715 126,715 126,715 126,715 126,715 126,715 126,715 126,715 126,715 (cu.ft/yr) 126,715 126,715 126,715 126,715 Loading | 2.09E+06 (lbs/yr) 1,406 CS0 1,697 0.00 319 149 63 10 1<u>0</u> 62 ŝ 0 Fotal Kjcldahl Nitrogen Tecal Coliform (#/100ml) **Otal Suspended Solids** Dissolved Oxygen Pollutant l'otal Phosphorus **Fotal Aluminum** Total Phenols Oil & Grease **Total Copper Fotal Zinc fotal** Lead Mercury Silver BOD<sub>5</sub> COD

Impact of CSO Discharge on Ridley Creek Water Quality for Future Typical Year at Regulator 15

(1) Based on STORET retrieved actual data.

<sup>(2)</sup> Harmonic mean flow from USGS gage Ridley Creek at Media, PA (01476480) transfered to mouth.

(3) Background load based on total annual flow =

525,600 min

FutureWatqual.xls Ridley Creek Annual Impact

6-40

No Criteria No Criteria No Criteria No Criteria No Criteria No Criteria Standard 0.0809746 0.0018105 No Criteria 770/200 0.0087758 Quality 0.000012 (l/gm) > 6.5 Water 0.087 0.02 Background Concentration Estimated (I/gm) 0.0366 0.0162 0.0379 19.86 0.0053 0.165 0.4206 0.0204 0.0011 25.72 2.64 836 6.46 2.00 0.71 Percent of Load 0.2% 0.2% 0.2%0.3% 0.0% 0.2% 0.3% SSO 0.2%0.3%0.2% 0.2% 0.4% 0.2% 0.0% 0.0% Background CSO Percent Volume 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%0.0% 0.0% 0.0% 0.0% 0.0% 5 Background 110,851,716 339,988,482 45,236,323 440,408,831 34,302,425 12,171,701 2,833,380 Stream Load<sup>(3)</sup> 7,203,509 (lbs/yr) 277,730 349,130 1.4E+11 626,808 19,036 650,374 91,159 Volume (cu.ft./yr) 274,710,096,000 274,710,096,000 274,710,096,000 274,710,096,000 274,710,096,000 274,710,096,000 274,710,096,000 274,710,096,000 Average Stream 274,710,096,000 274,710,096,000 274,710,096,000 274,710,096,000 274,710,096,000 274,710,096,000 274,710,096,000 Flow<sup>(2)</sup> 8711.0 8711.0 8711.0 8711.0 8711.0 8711.0 8711.0 8711.0 8711.0 8711.0 8711.0 8711.0 8711.0 8711.0 8711.0 Harmon Mean (cfs) CSO Volume Concentration<sup>(1)</sup> Background 0.005315 (I/gm) Stream 25.678 6.4632 0.1652 0.0365 0.0162 0.4200 19.82 0.0204 0.0379 2.64 0.0011 2.00 0.71 834 70,563,565 70,563,565 70,563,565 70,563,565 70,563,565 70,563,565 70,563,565 70,563,565 70,563,565 70,563,565 70,563,565 70,563,565 70,563,565 70,563,565 70,563,565 (cu.ft/yr) Loading 799,878 4.19E+08 789,321 (lbs/yr) 33,726 97,793 79,353 CSO 36,511 5,008 11,864 1,655 I.14 436 733 351 43 Fecal Coliform (#/100m1)<sup>(4)</sup> Fotal Kjeldahl Nitrogen **Fotal Suspended Solids** Dissolved Oxygen Pollutant **Fotal Phosphorus Fotal Aluminum Fotal** Phenols Fotal Copper Oil & Grease Fotal Zinc otal Lead Mercury BOD, COD Silver

Impact of CSO Discharge on Delaware River Water Quality for Future Typical Year

Based on STORET retrieved actual data.

<sup>2</sup> Harmonic mean flow is sum from USGS gages Delaware River at Trenton (01463500) and Schuykill River at Philadelphia (01474500) transfered to mouth.

<sup>3</sup> Background load based on total annual flow = 525,600 min

<sup>(4)</sup> Criteria below RM 81.8 is 200 #/100ml and 770 #/100ml above RM 81.8

### APPENDIX A

### **CSO SAMPLING RESULTS**


| Pollutant               | 1995 Sewage<br>Concentrations<br>(mg/l) | 1996 Sewage<br>Concentrations<br>(mg/l) | Flow Weighted<br>Sewage<br>Concentrations<br>(mg/l) |
|-------------------------|-----------------------------------------|-----------------------------------------|-----------------------------------------------------|
| Flow                    | 27.09                                   | 29.28                                   | 28.19                                               |
| Total Suspended Solids  | 182.08                                  | 161.17                                  | 171.22                                              |
| Ammonia as N            | 8.71                                    | 4.96                                    | 6.76                                                |
| BOD₅                    | 125.33                                  | 113.58                                  | 119.23                                              |
| CBOD₅                   | N/A                                     | N/A                                     | N/A                                                 |
| COD                     | N/A                                     | 358.17                                  | 358.17                                              |
| Fecal Coliform          | N/A                                     | N/A                                     | 1,000,000                                           |
| Oil & Grease            | 23.82                                   | 20.9                                    | 22.30                                               |
| Total Kjeldahl Nitrogen | 13.89                                   | 10.23                                   | 11.99                                               |
| Total Phosphorus        | 1.735                                   | 1.625                                   | 1.68                                                |
| pН                      | N/A                                     | N/A                                     | N/A                                                 |
| Total Hardness          | N/A                                     | N/A                                     | N/A                                                 |
| Total Zinc              | 0.17833                                 | 0.1695                                  | 0.1737                                              |
| Total Copper            | 0.047                                   | 0.03675                                 | 0.0417                                              |
| Total Aluminum          | 0.84917                                 | 1.93167                                 | 1.41                                                |
| Total Lead              | 0.025                                   | 0.01017                                 | 0.0173                                              |
| Mercury                 | 0.00033                                 | 0.00023                                 | 0.00028                                             |
| Silver                  | 0.005                                   | 0.01083                                 | 0.0080                                              |
| Total Phenols           | 3.2125                                  | 4.31111                                 | 3.78                                                |

#### Summary of WRTP Influent Sampling

Notes: 1. Sampling conducted at grit removal station.

- 2. Waste stream included industrial discharge for Sun Oil Company and Kimberly-Clark.
- 3. Grab sample for fecal coliform taken 7 July 1997.

# Storm Event Sampling Results (mg/l) (1 March 1997 - rain amount = 0.27")

|                         | 2nd & Dock PS | 2nd & Dock PS | EPS-1                   | EPS-1                  | Regulator 5<br>Front & Townsend | Regulator 5<br>Front & Townsend |
|-------------------------|---------------|---------------|-------------------------|------------------------|---------------------------------|---------------------------------|
| Pollutant               | First Hour    | Composite     | First Hour <sup>1</sup> | Composite <sup>1</sup> | First Hour                      | Composite                       |
| Total Suspended Solids  | 162           | 259           | 267                     | 221                    | 147                             | 80                              |
| BOD,                    | 144           | 150           | 127                     | 139                    | 80                              | 64                              |
| COD                     | 391           | 427           | 409                     | 518                    | 183                             | 159                             |
| Fecal Coliform          | SN            | SN            | SN                      | SN                     | SN                              | SN                              |
| Dissolved Oxygen        | 6.16          | SN            | 6.24                    | SN                     | 8.6                             | 8.82                            |
| Oil & Grease            | 21.5          | 57            | 48.5                    | 54.5                   | 16.4                            | 14.8                            |
| Total Kjeldahl Nitrogen | 7.56          | 6.23          | 18.32                   | 13.5                   | 24.32                           | 13.86                           |
| Total Phosphorus        | 3.8           | 2.5           | 4.6                     | 2                      | 1.6                             | 0.94                            |
| pH                      | 6.9           | NS            | 6.89                    | SN                     | 6.68                            | 6.79                            |
| Total Hardness          | 140           | 100           | 170                     | 120                    | 120                             | 83                              |
| Total Zinc              | 0.123         | 0.237         | 0.177                   | 0.282                  | 0.243                           | 0.115                           |
| Total Copper            | 0.046         | 0.08          | 0.074                   | 0.066                  | 0.085                           | 0.032                           |
| Total Aluminum          | 11.1          | 4.1           | 1.75                    | 3.03                   | 3.56                            | 1.99                            |
| Total Lead              | 0.03          | 0.079         | 0.032                   | 0.042                  | 0.088                           | <0.024                          |
| Mercury                 | <0.0002       | 100'0         | <0.0002                 | 0.002                  | <0.0002                         | <0.0002                         |
| Silver                  | <0.01         | <0.01         | 10'0>                   | <0.01                  | <0.01                           | <0.01                           |
| <b>Total Phenols</b>    | 0.29          | <0.05         | 0.07                    | 0.09                   | 0.07                            | 0.07                            |
|                         |               |               |                         |                        |                                 |                                 |

<sup>1</sup> Waste stream includes industrial discharge from Medford Meats and American Re-Fuel.

NS - No sample collected.

Regioads xis DELCORA Sampling

A-2

April 1999

. x <sup>`</sup>

# Storm Event Sampling Results (mg/l)

(10 March 1997 - rain amount = 0.54")

|                         |               |               |                         |                        | D 1 1                   |                        |
|-------------------------|---------------|---------------|-------------------------|------------------------|-------------------------|------------------------|
|                         | 2nd & Dock PS | 2nd & Dock PS | EPS-1                   | EPS-1                  | 5th & Penn              | sth & Penn             |
| Pollutant               | First Hour    | Composite     | First Hour <sup>1</sup> | Composite <sup>1</sup> | First Hour <sup>2</sup> | Composite <sup>2</sup> |
| Total Suspended Solids  | 208           | 188           | 448                     | 166                    | 20                      | 62                     |
| BOD <sub>5</sub>        | 76            | 33            | 115                     | 29                     | <20                     | <20                    |
| COD                     | 159           | 22            | 371                     | 116                    | 0                       | 13                     |
| Fecal Coliform          | SN            | SN            | NS                      | SN                     | NS                      | NS                     |
| Dissolved Oxygen        | 7.84          | SN            | SN                      | NS                     | 11.48                   | 11.53                  |
| Oil & Grease            | 14.6          | 37.9          | 21.2                    | 23.8                   | 1.5                     | 16.1                   |
| Total Kjeldahl Nitrogen | 9.72          | 7.25          | 8.23                    | 6.85                   | 1.21                    | 2.28                   |
| Total Phosphorus        | NS            | NS            | SN                      | SN                     | NS                      | NS                     |
| pH                      | 6.93          | SN            | 6.95                    | NS                     | 9.04                    | 6.89                   |
| Fotal Hardness          | 110           | 75            | 120                     | 80                     | 95                      | 48                     |
| Total Zinc              | 0.094         | 0.124         | 0.144                   | 0.155                  | 0.029                   | 0.184                  |
| Total Copper            | 0.035         | 0.041         | 0.041                   | 0.032                  | 0,012                   | 0.057                  |
| Total Aluminum          | 1.39          | 2.05          | 1.22                    | 1.24                   | 0.772                   | 1.49                   |
| Total Lead              | <0.024        | <0.024        | <0.024                  | <0.024                 | <0.024                  | <0.024                 |
| Mercury                 | <0.0002       | <0.0002       | <0.0002                 | 0,0003                 | <0.0002                 | <0.0002                |
| Silver                  | <0.01         | <0.01         | <0.01                   | <0.01                  | <0.01                   | <0.01                  |
| Total Phenols           | 0.18          | 0.16          | <0.05                   | <0.05                  | 0.05                    | <0.05                  |
|                         |               |               |                         |                        |                         |                        |

<sup>1</sup> Waste stream includes industrial discharge from Medford Meats and American Re-Fucl.

<sup>2</sup> Sample believed to be contaminated with river water.

NS - No sample collected.

Regloads xls DELCORA Sampling

# Storm Event Sampling Results (mg/l) (14 March 1997 - rain amount = 0.89")

| Ē                       | 2nd & Dock PS | 2nd & Dock PS | EPS-1      | EPS-1    | Regulator 5<br>Front & Townsend | Regulator 5<br>Front & Townsend | Regulator 25<br>5th & Penn | Regulator 25<br>5th & Penn |
|-------------------------|---------------|---------------|------------|----------|---------------------------------|---------------------------------|----------------------------|----------------------------|
| Pollutant               | FILSU MOUL    | composue      | FITST HOUF | composue | FIISU INUUE                     | Composite                       | FILSE MOUF                 | Composite                  |
| Total Suspended Solids  | 210           | 123           | 192        | 177      | 105                             | 50                              | 162                        | 63                         |
| BOD,                    | 104           | 49            | 66         | 77       | <27                             | 21                              | 42                         | 61>                        |
| COD                     | 277           | 150           | 438        | 371      | ]41                             | 60                              | 132                        | 85                         |
| Fecal Coliform          | SN            | SN            | SN         | NS       | SN                              | SN                              | SN                         | NS                         |
| Dissolved Oxygen        | 6.93          | NS            | 7.97       | NS       | 9.63                            | 69.6                            | 10.41                      | 10.53                      |
| Oil & Grease            | 30.3          | 16.4          | 28.6       | 34       | 13.3                            | 8.5                             | 5.6                        | 6.7                        |
| Totał Kjeldahł Nitrogen | 13.51         | 8.23          | 12.38      | 10.02    | 4.74                            | 3.57                            | 4.44                       | 2.23                       |
| Total Plosphorus        | 2.7           | 1.9           | 2.2        | 1.82     | 1.1                             | 0.63                            | 2.1                        | 0.54                       |
| pH                      | 6.99          | NS            | 6.72       | NS       | 7                               | 7.1                             | 6.9                        | 6.98                       |
| Total Hardness          | 011           | 98            | 100        | 98       | 85                              | 90                              | 83                         | 85                         |
| Total Zinc              | 0.195         | 0.115         | 0.182      | 0.169    | 0.15                            | 160.0                           | 0.364                      | 0.198                      |
| Total Copper            | 0.059         | 0.036         | 0.068      | 0.048    | 0.032                           | 0.013                           | 0.214                      | 0.169                      |
| Fotal Aluminum          | 2.65          | 2.47          | 2.91       | 2.54     | 2.7                             | 86.1                            | 3,45                       | 2.64                       |
| Total Lead              | 0.051         | <0.024        | 0.032      | <0.024   | 0.027                           | <0.024                          | 0.088                      | 0.089                      |
| Mercury                 | 0.0003        | <0.0002       | 0.0006     | 0.0003   | <0.0002                         | <0.0002                         | 0.0002                     | <0.0002                    |
| Silver                  | <0.01         | <0.01         | <0.01      | <0.01    | <0.01                           | <0.01                           | 0.01                       | <0,01                      |
| Fotal Phenols           | 0.1           | 0.06          | 0.19       | <0.05    | 0.11                            | 0.08                            | 0.05                       | 0.1                        |
|                         |               |               |            |          |                                 |                                 |                            |                            |

<sup>1</sup> Waste stream includes industrial discharge from Medford Meats and American Re-Fuel.

. .

.

NS - No sample collected.

Regioads xis DELCORA Sampling

A-4

April 1999

. .

•

•

# Storm Event Sampling Results (mg/l) (26 March 1997 - rain amount = 0.44")

| Pollutant               | 2nd & Dock PS<br>First Hour | 2nd & Dock PS<br>Comnosite | EPS-1<br>First Hour <sup>f</sup> | EPS-1<br>Comnosite <sup>1</sup> | Regulator 5<br>Front & Townsend | Regulator 5<br>Front & Townsend | Regulator 25<br>5th & Penn<br>Eiser Home | Regulator 25<br>5th & Penn | Regulator 19<br>12th & Crozer | Regulator 19<br>14th & Crozer |
|-------------------------|-----------------------------|----------------------------|----------------------------------|---------------------------------|---------------------------------|---------------------------------|------------------------------------------|----------------------------|-------------------------------|-------------------------------|
| Total Suspended Solids  | No sampics                  | No samples                 | No samples                       | No samples                      | 110                             | 54 54                           | 374                                      | enterophico.               | FIIST RUUT                    | Vio composite                 |
| BOD,                    |                             |                            | -                                | _                               | 15                              | 5U2                             | 011                                      | 561                        | C1C                           | CONTINUE OVI                  |
| COD                     |                             |                            |                                  |                                 | 1001                            | 162                             | 104                                      | 761                        | 7/1                           |                               |
| Fecal Coliform          |                             |                            |                                  |                                 | NC                              | NC                              | olv                                      | 070                        | 684                           |                               |
| Dissolved Oxygen        |                             |                            |                                  |                                 | ISN                             | SN                              | SN N                                     | CN NC                      | CNI                           |                               |
| Oil & Grease            |                             |                            |                                  |                                 | 25.6                            | 94                              | 34.8                                     | 6                          | 12.6                          |                               |
| Total Kjeldahl Nitrogen |                             |                            |                                  |                                 | 3.98                            | 4.99                            | 10.14                                    | 9.22                       | 6.91                          |                               |
| Total Phosphorus        |                             |                            |                                  |                                 | 1.6                             | 0.64                            | 4.7                                      | 4                          | NSN                           |                               |
| pH                      |                             |                            |                                  |                                 | SN                              | NS                              | NS                                       | NS                         | NS                            |                               |
| Totai Hardness          |                             |                            |                                  |                                 | 120                             | 68                              | 120                                      | 93                         | 140                           |                               |
| Total Zinc              |                             |                            |                                  |                                 | 616.0                           | 0.104                           | 0.851                                    | 0.442                      | 0.764                         |                               |
| Total Copper            |                             |                            |                                  |                                 | 0.561                           | 0.022                           | 0.379                                    | 0.073                      | 0.232                         |                               |
| Total Aluminum          |                             |                            |                                  |                                 | 7.95                            | 1.1                             | 9.32                                     | 5.69                       | 18.8                          |                               |
| Total Lead              |                             |                            |                                  |                                 | 0.349                           | 0.028                           | 0.273                                    | 0.133                      | 0.325                         |                               |
| Mercury                 |                             |                            |                                  |                                 | 0.0003                          | <0.0002                         | <0.0002                                  | 0.0002                     | 0.0004                        |                               |
| Silver                  |                             |                            |                                  |                                 | <0.01                           | <0.01                           | 10:0>                                    | <0.01                      | 10.0>                         |                               |
| Total Phenols           |                             |                            |                                  |                                 | <0.05                           | <0.05                           | 0.26                                     | 0.13                       | SN                            |                               |

<sup>1</sup> Waste stream includes industrial discharge from Medford Meats and American Re-Fuel.

. .

NS - No sample collected.

## Storm Event Sampling Results (mg/l) (12 April 1997 - rain amount = 0.48")

|                         | 2nd & Dock PS | 2nd & Dock PS | EPS-1      | EPS-1     | Regulator 5<br>Front & Townsend | Regulator 5<br>Front & Townsend | Regulator 25<br>5th & Penn | Regulator 25<br>5th & Penn |
|-------------------------|---------------|---------------|------------|-----------|---------------------------------|---------------------------------|----------------------------|----------------------------|
| Pollutant               | First Hour    | Composite     | Furst Hour | Composite | FIRST MOUF                      | Composite                       | First Hour                 | Composite                  |
| Total Suspended Solids  | 2437          | 60            | 116        | 21        | 143                             | 87                              | 20                         | 13                         |
| BOD5                    | >228          | >227          | >226       | 142       | 82                              | 42                              | 39                         | <20                        |
| COD                     | 1300          | 199           | 1265       | 226       | 248                             | 127                             | 36                         | 13                         |
| Fecal Coliform          | NS            | NS            | NS         | NS        | 93,636                          | 270,000                         | 606'09                     | 5,456                      |
| Dissolved Oxygen        | 5.42          | NS            | 6.12       | NS        | 7.64                            | 7.63                            | 8.21                       | 16.9                       |
| Oil & Grease            | 35.5          | 45.5          | 17.9       | 24.1      | NS                              | NS                              | SN                         | NS                         |
| Total Kjeldahl Nitrogen | 21.79         | 8.76          | 18.49      | 8.3       | 5.15                            | 3.93                            | 3.37                       | 0.16                       |
| Total Phosphorus        | 3.5           | 1.7           | 2.7        | 1.3       | 1.2                             | 1.2                             | 0.68                       | 0.71                       |
| pH                      | 6.86          | NS            | 6.78       | SN        | 6.68                            | 6.71                            | 1                          | 7.41                       |
| Total Hardness          | 011           | 93            | 120        | 180       | 78                              | 72                              | 110                        | 120                        |
| Total Zinc              | 0.302         | 0.096         | 0.336      | 0.111     | 0.169                           | 0.128                           | 0.03                       | 0.024                      |
| Total Copper            | 0.125         | 0.042         | 0.139      | 0.035     | 0.043                           | 0.032                           | 0.017                      | 0.014                      |
| Total Aluminum          | 4.7           | 1.41          | 3.92       | 1.31      | 3.09                            | 1.88                            | 0.387                      | 0.343                      |
| Total Lead              | 0.107         | <0.024        | 0.075      | <0.024    | 0.06                            | 0.042                           | <0.024                     | 0.032                      |
| Mercury                 | <0.0002       | 0.0013        | 0.0021     | <0.0002   | <0.0002                         | <0.0002                         | <0.0002                    | <0.0002                    |
| Silver                  | <0.01         | <0.01         | <0.01      | <0.01     | <0.01                           | <0.01                           | 10.0>                      | 10.0>                      |
| Total Phenols           | 0.13          | 0.14          | <0.05      | 0.09      | 0.06                            | 0.14                            | <0.05                      | 0.09                       |
|                         |               |               |            |           |                                 |                                 |                            |                            |

<sup>1</sup> Sample results believed to be influenced by an industrial discharge slug load.

<sup>2</sup> Waste stream includes industrial discharge from Medford Meats and American Re-Fuel.

<sup>3</sup> Sample believed to be contaminated with river water.

NS - No sample collected.

A-6

April 1999

# Storm Event Sampling Results (mg/l)

(27-28 April 1997 - rain amount = 1.35")

| Pollutant               | 2nd & Dock PS<br>First Hour | 2nd & Dock PS<br>Composite | EPS-1<br>First Hour <sup>1</sup> | EPS-1<br>Composite <sup>1</sup> | Regulator 5<br>Front & Townsend<br>First Hour | Regulator 5<br>Front & Townsend<br>Composite | Regulator 25<br>5th & Penn<br>First Hour | Regulator 25<br>5th & Penn<br>Composite |
|-------------------------|-----------------------------|----------------------------|----------------------------------|---------------------------------|-----------------------------------------------|----------------------------------------------|------------------------------------------|-----------------------------------------|
| Total Suspended Solids  | 543                         | 318                        | 397                              | 317                             | 83                                            | 70                                           | 80                                       | 47                                      |
| BOD,                    | 136                         | 43                         | 84                               | 87                              | 61                                            | 51                                           | 21                                       | ~21                                     |
| COD                     | 757                         | 210                        | 465                              | 614                             | 118                                           | 71                                           | 47                                       | 40                                      |
| Fecal Coliform          | SN                          | SN                         | SN                               | SN                              | 28,182                                        | 13,636                                       | 606'01                                   | 12,727                                  |
| Dissolved Oxygen        | 5.84                        | SN                         | 5.88                             | SN                              | 8,19                                          | 9.82                                         | 9.89                                     | 00'6                                    |
| Oil & Grease            | 23.9                        | 14.5                       | [6:6]                            | 19.0                            | 129.6                                         | 6.4                                          | 11,6                                     | 4,9                                     |
| Total Kjeldahl Nitrogen | 17.41                       | 7.95                       | 13.26                            | 12.53                           | 6.66                                          | 4.06                                         | 1.11                                     | 1.29                                    |
| Total Phosphorus        | 2.7                         | 1.7                        | 1.5                              | 2                               | 0.77                                          | 1.2                                          | 6.0                                      | 0.65                                    |
| pH                      | 6.9                         | SN                         | 6.84                             | NS                              | 6.82                                          | 7.02                                         | 6.98                                     | 7.03                                    |
| Total Hardness          | 110                         | 73                         | 120                              | 85                              | 105                                           | 0/                                           | 58                                       | 45                                      |
| Total Zinc              | 0.211                       | 0.246                      | 0.16                             | 0.251                           | 0.102                                         | 0.111                                        | 0.177                                    | 0.12                                    |
| Total Copper            | 0.075                       | 0.07                       | 0.053                            | 0.071                           | 0.023                                         | 0.026                                        | 0.104                                    | 0.079                                   |
| Total Aluminum          | 5.49                        | 5.87                       | 1.68                             | 4.09                            | 616.0                                         | 1.38                                         | 3.59                                     | 2.5                                     |
| Total Lead              | 0.031                       | 0.073                      | 0.05                             | 0.06                            | <0.024                                        | <0.024                                       | 0.06                                     | 0.028                                   |
| Mercury                 | <0.0002                     | <0.0002                    | <0.0002                          | <0.0002                         | <0.0002                                       | <0.0002                                      | <0.0002                                  | <0.0002                                 |
| Silver                  | 10.0>                       | <0.01                      | <0.01                            | <0.01                           | 10.0>                                         | 10:0>                                        | <0.01                                    | 10.0>                                   |
| Total Phenols           | 0.27                        | 0.07                       | 0.15                             | 0.15                            | 0.11                                          | 60.0                                         | <0.05                                    | <0.05                                   |
|                         |                             |                            |                                  |                                 |                                               |                                              |                                          |                                         |

<sup>1</sup> Waste stream includes industrial discharge from Medford Meats and American Re-Fuel. NS - No sample collected. April 1999

# Storm Event Sampling Results (mg/l) (3 May 1997 - rain amount = 0.48")

|                         | 2nd & Dock PS | 2nd & Dock PS | EPS-1                   | EPS-1                  | Regulator 5<br>Front & Townsend | Regulator 5<br>Front & Townsend | Regulator 25<br>5th & Penn             | Regulator 25<br>5th & Penn |
|-------------------------|---------------|---------------|-------------------------|------------------------|---------------------------------|---------------------------------|----------------------------------------|----------------------------|
| Pollutant               | First Hour    | Composite     | First Hour <sup>1</sup> | Composite <sup>1</sup> | First Hour                      | Composite                       | First Hour                             | Composite                  |
| Total Suspended Solids  | 220           | 108           | 312                     | 176                    | 264                             | 64                              | No samples                             | No samples                 |
| BOD,                    | 63            | 51            | 84                      | 87                     | 16                              | 56                              |                                        |                            |
| COD                     | 167           | 219           | 451                     | 297                    | 210                             | 601                             | a da a d |                            |
| Fccal Coliform          | SN            | SN            | NS                      | SN                     | 111,818                         | 133,636                         |                                        |                            |
| Dissolved Oxygen        | 7.78          | NS            | 6.74                    | SN                     | 4.42                            | 8.46                            |                                        |                            |
| Oil & Grease            | 10.1          | 23.5          | 23.9                    | 21.3                   | 14.2                            | 4.5                             |                                        |                            |
| Total Kjeldahl Nitrogen | 7.64          | 8.05          | 9.53                    | 10.9                   | 7.64                            | 4.89                            |                                        |                            |
| Total Phosphorus        | 1.9           | 1.8           | 2                       | 2,4                    | 1,8                             | 0.92                            |                                        |                            |
| pli                     | 6.78          | NS            | 6.86                    | NS                     | 69.9                            | 6.79                            |                                        |                            |
| Total Hardness          | 83            | 80            | 100                     | 100                    | 78                              | 80                              |                                        |                            |
| Total Zinc              | 0.156         | 0.106         | 0.191                   | 0.131                  | 0.166                           | 0.074                           |                                        |                            |
| Total Copper            | 0.039         | 0.019         | 0.061                   | 0.036                  | 0.033                           | 0.00                            |                                        |                            |
| Total Aluminum          | 1.78          | 1.12          | 1.11                    | 1.2                    | 1.5                             | 0.423                           |                                        |                            |
| Total Lead              | <0.024        | <0.024        | <0.024                  | <0.024                 | <0.024                          | <0.024                          |                                        |                            |
| Mercury                 | <0.0002       | 0.0003        | 0.0003                  | <0.0002                | <0.0002                         | <0.0002                         |                                        |                            |
| Silver                  | <0.01         | <0.01         | 10.0>                   | <0.01                  | 10.0>                           | 10.0>                           |                                        |                            |
| Total Phenols           | 0.1           | 0.11          | 0.17                    | 0.13                   | 0.13                            | 0.13                            |                                        |                            |
|                         |               |               |                         |                        |                                 |                                 |                                        |                            |

<sup>1</sup> Waste stream includes industrial discharge from Medford Meats and American Re-Fuel. NS - No sample collected.

Regloads xls DELCORA Sampling

A--8

April 1999

.

# Storm Event Sampling Results (mg/l) (9 May 1997 - rain amount = 0.31")

|                                               |                        |                  | _   |                |                  |              |                         |                  |      |                |            | _            |                |            |         | -      |               |
|-----------------------------------------------|------------------------|------------------|-----|----------------|------------------|--------------|-------------------------|------------------|------|----------------|------------|--------------|----------------|------------|---------|--------|---------------|
| Regulator 25<br>5th & Penn<br>Composite       | No samples             |                  |     |                |                  |              |                         |                  |      |                |            |              |                |            |         |        |               |
| Regulator 25<br>5th & Penn<br>First Hour      | No samples             |                  |     |                |                  |              |                         |                  |      |                |            |              |                |            |         |        |               |
| Regulator 5<br>Front & Townsend<br>Composite  | 62                     | <25              | 87  | 39,091         | 8.45             | 4.6          | 3.62                    | 0.52             | 6.78 | 75             | 0.099      | 0.005        | 1.07           | <0.024     | 0.0013  | 10.0>  | <0.05         |
| Regulator 5<br>Front & Townsend<br>First Hour | 51                     | 38               | 136 | 30,909         | 8.18             | 12.3         | 4.89                    | 0.76             | 6.86 | 55             | 0.087      | 0.008        | 0.666          | <0.024     | 0.004   | 10'0>  | 0.054         |
| EPS-1<br>Composite <sup>f</sup>               | 163                    | 132              | 310 | NS             | NS               | 13.7         | 14.46                   | 1.6              | NS   | 06             | 0.128      | 0.5          | 1.65           | <0.024     | 6000.0  | 10.0>  | 0.082         |
| EPS-1<br>First Hour <sup>1</sup>              | 155                    | 69               | 308 | SN             | 6.5              | 21.4         | 9.27                    | 1.3              | 6.84 | 85             | 0.12       | 0.02         | 1.14           | <0.024     | <0.0002 | <0.01  | 0.14          |
| 2nd & Dock PS<br>Composite                    | 153                    | 80               | 172 | SN             | NS               | 16.1         | 6.83                    | 4.9              | NS   | 120            | 0.136      | 0.028        | 1.36           | <0.024     | <0.0002 | 0.02   | 0.055         |
| 2nd & Dock PS<br>First Hour                   | 195                    | 611              | 176 | SN             | 4.89             | 27.5         | 11.71                   | 3.4              | 6.78 | 103            | 0.131      | 0.035        | 0.83           | <0.024     | 0.0006  | <0.01  | 0,18          |
| Pollutant                                     | Total Suspended Solids | BOD <sub>5</sub> | COD | Fecal Coliform | Dissolved Oxygen | Oil & Greasc | Total Kjeldahl Nitrogen | Total Phosphorus | pH   | Total Hardness | Total Zinc | Total Copper | Total Aluminum | Total Lead | Mercury | Silver | Total Phenois |

<sup>1</sup> Waste stream includes industrial discharge from Medford Meats and American Re-Fuel. ... NS - No sample collected.

# Storm Event Sampling Results (mg/l) (25 May 1997 - rain amount = 0.85")

| Pollutant               | 2nd & Dock PS<br>First Hour <sup>1</sup> | 2nd & Dock PS<br>Composite | EPS-1<br>First Hour <sup>2</sup> | EPS-1<br>Composite <sup>2</sup> | Regulator 5<br>Front & Townsend<br>First Hour | Regulator 5<br>Front & Townsend<br>Composite | Regulator 25<br>5th & Penn<br>First Hour | Regulator 25<br>5th & Penn<br>Composite |
|-------------------------|------------------------------------------|----------------------------|----------------------------------|---------------------------------|-----------------------------------------------|----------------------------------------------|------------------------------------------|-----------------------------------------|
| Total Suspended Solids  | 905                                      | 242                        | 363                              | 193                             | 135                                           | No samples                                   | 119                                      | No samples                              |
| BOD,                    | >245                                     | 76                         | 116                              | 112                             | 73                                            |                                              | 34                                       |                                         |
| COD                     | 1271                                     | 266                        | 436                              | 322                             | 205                                           |                                              | 103                                      |                                         |
| Fecal Coliform          | SN                                       | SN                         | NS                               | SN                              | 224,545                                       |                                              | 45,455                                   |                                         |
| Dissolved Oxygen        | 3.7                                      | NS                         | 1.7                              | SN                              | 4.99                                          |                                              | 6.72                                     |                                         |
| Oil & Grease            | 56.8                                     | 18.4                       | 16.1                             | 6.6                             | SN                                            |                                              | SN                                       |                                         |
| Total Kjeldahl Nitrogen | . 22.2                                   | 11.12                      | 16.7                             | 11.05                           | 7.23                                          |                                              | 3.57                                     |                                         |
| Total Phosphorus        | 3.1                                      | 2.6                        | 2                                | 1.7                             | 1.5                                           |                                              | 0.66                                     |                                         |
| pH                      | 7                                        | SN                         | 6.79                             | NS                              | 6.75                                          |                                              | 7.03                                     |                                         |
| Total Hardness          | 130                                      | 85                         | 170                              | 120                             | 85                                            |                                              | 95                                       |                                         |
| Total Zinc              | 0.344                                    | 0.212                      | 0.222                            | 0.199                           | 0.158                                         |                                              | 0.147                                    |                                         |
| Total Copper            | 0.142                                    | 0.094                      | 0.081                            | 0.061                           | 0.043                                         |                                              | 0.072                                    |                                         |
| Total Aluminum          | 3.7                                      | 2,44                       | 1.73                             | 2.67                            | 19.1                                          |                                              | 1.54                                     |                                         |
| Total Lead              | 0.108                                    | 0.071                      | 0.033                            | 0.032                           | 0.064                                         |                                              | 0.041                                    |                                         |
| Mercury                 | 0.0004                                   | <0.0002                    | 0.0002                           | <0.0002                         | <0.0002                                       |                                              | <0.0002                                  |                                         |
| Silver                  | 0.02                                     | <0.01                      | 10'0>                            | <0.01                           | <0.01                                         |                                              | <0.01                                    |                                         |
| Total Phenols           | 0.12                                     | <0.05                      | 0.16                             | <0.05                           | 0.09                                          |                                              | <0.05                                    |                                         |
|                         |                                          |                            |                                  |                                 |                                               |                                              |                                          |                                         |

<sup>1</sup> Sample results believed to be influenced by an industrial discharge slug load.

<sup>2</sup> Waste stream includes industrial discharge from Medford Meats and American Re-Fucl.

NS - No sample collected.

April 1999

•

..

Regloads xis DELCORA Sampling

April 1999

έ.,

#### APPENDIX B

#### TYPICAL YEAR PRECIPITATION EVENTS



#### Table B-1

#### **Typical Year Precipitation Events**

| Event | Year | Month    | Day      | Hour       | Precip.   | Total Precip                          |
|-------|------|----------|----------|------------|-----------|---------------------------------------|
| 1     | 98   | 1        | 1        | 0          | 0.04      | 1                                     |
| 1     | 98   | 1        | 1        | 1          | 0.01      | **                                    |
| 1     | 98   | 1        | 1        | 3          | 0.03      |                                       |
| 1     | 98   | 1        | 1        | 4          | 0.03      |                                       |
| 1     | 98   | 1        | I        | 5          | 0.02      | 0.13                                  |
| 2     | 98   | I        | 2        | 4          | 0.04      |                                       |
| 2     | 98   | 1        | 2        | 5          | 0.02      |                                       |
| 2     | 98   | 1        | 2        | 6          | 0.01      | 0.07                                  |
| 3     | 98   | 1        | 6        | 17         | 0.05      |                                       |
| 3     | 98   | 1        | 6        | 18         | 0.06      |                                       |
| 3     | 98   | 1        | 6        | 19         | 0.07      |                                       |
| 3     | 98   | 1        | 6        | 20         | 0.2       |                                       |
| 3     | 98   | 1        | 6        | 21         | 0.27      |                                       |
| 3     | 98   | 1        | 6        | 22         | 0.25      |                                       |
| 3     | 98   | 1        | 6        | 23         | 0.23      |                                       |
| 3     | 98   | 1        | 7        | 0          | 011       |                                       |
| 3     | 98   | 1        | 7        | 1          | 0.11      |                                       |
| 3     | 98   | 1        | 7        | 2          | 0.07      |                                       |
| 3     | 98   | 1        | 7        | 3          | 0.01      | 1 4 3                                 |
| 4     | 98   | 1        | 11       | 15         | 0.03      | 1.45                                  |
| 4     | 98   | 1        | 11       | 16         | 0.05      | · · · · · · · · · · · · · · · · · · · |
| 4     | 98   | I        | 11       | 17         | 0.01      |                                       |
| 4     | 98   |          | 11       | 18         | 0.01      | 0.06                                  |
| 5     | 98   | 1        | 14       | 0          | 0.01      | 0.00                                  |
| 5     | 98   | T        | 14       | 1          | 0.05      | 0.05                                  |
| 6     | 98   | 1        | 15       | 15         | 0.02      | 0.05                                  |
| 6     | 98   | 1        | 15       | 15         | 0.01      |                                       |
| 6     | 98   | 1        | 15       | 10         | 0.01      |                                       |
| 6     | 98   | 1        | 15       | 20         | 0.01      | 0.04                                  |
| 7     | 98   | 1        | 20       | 4          | 0.01      | 0.04                                  |
| 7     | 98   | 1        | 20       | 5          | 0.01      |                                       |
| 7     | 98   | 1        | 20       | 6          | 0.01      |                                       |
| 7     | 98   | ·····    | 20       | 7          | 1         |                                       |
| 7     | 98   | 1        | 20       | /<br>8     | ۱<br>۹۱ ۸ | 1.04                                  |
| 8     | 98   | 1        | 20       | 21         | 0.10      | 1.24                                  |
| 8     | 98   | 1        | 20       |            | 0.01      |                                       |
| 8     | 98   | 1        | 20       | 22         | 0.02      |                                       |
| 8     | 98   | 1        | 20<br>21 | <u>23</u>  | 0.01      | Madd francisco                        |
| 8     | 08   | ,        | 21       | U<br>1     | 0.02      | 0.02                                  |
| 9     | 98   | 2        | 21       | 1          | 0.01      | 0.07                                  |
| 0     | 08   | 2        | <u>ک</u> | 20         | 0.03      | ·····                                 |
| 0     | 70   | 2        | 3        | 21 :<br>20 | 0.07      |                                       |
| 7     | 70   | <u> </u> | ز ز      | 22         | 0.09      |                                       |

.

| Event     | Year     | Month           | Day              | Hour           | Precip.      | Total Precip. |
|-----------|----------|-----------------|------------------|----------------|--------------|---------------|
| 9         | 98       | 2 ·             | 4                | 0              | 0.01         | 0.34          |
| 10        | 98       | 2               | 11               | 4              | 0.02         |               |
| 10        | 98       | 2               | 11               | 5              | 0.03         | 0.05          |
| 11        | 98       | 2               | 14               | 17             | 0.02         |               |
| 11        | 98       | 2               | 14               | 18             | 0.01         |               |
| 11        | 98       | 2               | 14               | 19             | 0            |               |
| 11        | 98       | 2               | 14               | 20             | 0            |               |
| 11        | 98       | 2               | 14               | 21             | 0.07         |               |
| 11        | 98       | 2               | 14               | 22             | 0.07         |               |
| 11        | 98       | 2               | 14               | 23             | 0.06         |               |
| 11        | 98       | 2               | 15               | 0              | 0.01         |               |
| 11        | 98       | 2               | 15               | 1              | 0.01         |               |
| 11        | 98       | 2               | 15               | 2              | 0.13         |               |
| 11        | 98       | 2               | 15               | 3              | 0.09         |               |
| 11        | 98       | 2               | 15               | 4              | 0            |               |
| 11        | 98       | 2               | 15               | 5              | 0.01         |               |
| 11        | 98       | 2               | 15               | 6              | 0.06         |               |
| 11        | 98       | 2               | 15               | 7              | 0.1          |               |
| 11        | 98       | 2               | 15               | 8              | 0.09         |               |
| 11        | 98       | 2               | 15               | 9              | 0.17         |               |
| 11        | 98       | 2               | 15               | 10             | 0.01         |               |
| 11        | 98       | 2               | 15               | 11             | 0.05         | 0.96          |
| 12        | 98       | 2               | 15               | 18             | 0.01         |               |
| 12        | 98       | 2               | 15               | 19             | 0.01         |               |
| 12        | 98       | 2               | 15               | 22             | 0.03         |               |
| 12        | 98       | 2               | 15               | 22             | 0.01         | 0.06          |
| 12        | 90       | 2               | 18               | 0              | 0.01         | 0.00          |
| 13        | 08       | 2               | 18               | 1              | 0.01         |               |
| 13        | 00       | 2               | 18               | 2              | 0.01         | 0.03          |
| 1.0       | 08       | 2               | 23               | 10             | 0.01         | 0.05          |
| 14        | 08       | 2               | 23               | 20             | 0.15         |               |
| 14        | 90<br>08 | 2               | 23               | 20             | 0.19         |               |
| 14        | 70<br>00 | 2               | 23               | 21             | 0.17         | 0.7           |
| 14        | 20       | 2               | 25               | 22             | 0.17         |               |
| 15        | 20<br>00 | ໍ <i>ພ</i><br>ົ | 21               | <i>دم</i><br>۵ | 0.01<br>0.07 |               |
| 15        | 70       | 2               | 20<br>20         | 1              | 0.02<br>0.04 | ·<br>·        |
| 15        | 70       | 2               | 20<br>20         | 1<br>; 7       | 0.00         |               |
| 15        | 70<br>00 | 2               | 20<br>20         | 1 2            | 0.00         |               |
| 10        | 70       | 2               | 20               | 2              | 0.05         |               |
| 15        | 78<br>00 | 2               | <u>ل</u> ک<br>مر | 4<br>. c       | 0.00         |               |
| 15        | 98<br>00 | 2               | 2ð<br>20         | <u> </u>       | 0.05         |               |
| iD<br>۲ م | 78<br>00 | <u> </u>        | 28               | 0              | 0.00         |               |
| 15        | · 98     | 2               | 28               | · /            | 0.05         | 1             |

| Table B-1                           |        |
|-------------------------------------|--------|
| (continued)                         |        |
| <b>Typical Year Precipitation I</b> | Events |

| Event | Year | Month | Day           | Hour   | Precip. | Total Precip.                         |
|-------|------|-------|---------------|--------|---------|---------------------------------------|
| 15    | 98   | 2     | 28            | 8      | 0.04    | 1                                     |
| 15    | 98   | 2     | 28            | 9      | 0.09    |                                       |
| 15    | 98   | 2     | 28            | 10     | 0.1     | 0.6                                   |
| 16    | 98   | 3     | 4             | 18     | 0.09    |                                       |
| 16    | 98   | 3     | 4             | 19     | 0.1     |                                       |
| 16    | 98   | 3     | 4             | 20     | 0.12    |                                       |
| 16    | 98   | 3     | 4             | 21     | 0.07    |                                       |
| 16    | 98   | 3     | 4             | 22     | 0.02    |                                       |
| 16    | 98   | 3     | 4             | 23     | 0.01    | 0.41                                  |
| 17    | 98   | 3     | 12            | 15     | 0.1     |                                       |
| 17    | 98   | 3 .   | 12            | 16     | 0.09    |                                       |
| 17    | 98   | 3     | 12            | 17     | 0.18    |                                       |
| 17    | 98   | 3     | 12            | 18     | 0.06    |                                       |
| 17    | 98   | 3     | 12            | 19     | 0       |                                       |
| 17    | 98   | 3     | 12            | 20     | 0       |                                       |
| 17    | 98   | 3     | 12            | 21     | 0.01    |                                       |
| 17    |      |       | 999 11-11 - 1 | 22 - 5 | 0       | 1                                     |
| 17    | 98   | 3     | 13            | 6      | 0.01    |                                       |
| 17    | 98   | 3     | 13            | . 7    | 0.01    | 0.46                                  |
| 18    | 98   | 3     | 18            | 6      | 0.01    |                                       |
| 18    |      |       |               | 7 - 10 | 0       |                                       |
| 18    | 98   | 3     | 18            | 11     | 0.01    |                                       |
| 18    | 98   | 3     | 18            | 12     | 0.06    |                                       |
| 18    | 98   | 3     | 18            | 13     | 0.07    | • • • • • • • • • • • • • • • • • • • |
| 18    | 98   | 3     | 18            | 14     | 0.06    |                                       |
| 18    | 98   | 3     | 18            | 15     | 0.05    |                                       |
| 18    | 98   | 3     | 18            | 16     | 0.01    | 1 min d d                             |
| 18    | 98   | 3     | 18            | 17     | 0.08    |                                       |
| 18    | 98   | 3     | 18            | 18     | 0.04    |                                       |
| 18    | 98   | 3     | 18            | 19     | 0.02    | 0.41                                  |
| 19    | 98   | 3     | 20            | 12     | 0.08    |                                       |
| 19    | 98   | 3     | 20            | 13     | 0.05    | 1                                     |
| 19    | 98   | 3     | 20            | 14     | 0.1     |                                       |
| 19    | 98   | 3     | 20            | 15     | 0.14    |                                       |
| 19    | 98   | 3     | 20            | 16     | 0.01    |                                       |
| 19    | 98   | 3     | 20            | 17     | 0.06    |                                       |
| 19    | 98   | 3     | 20            | 18     | 0.01    |                                       |
| 19    | 98   | 3     | 20            | 19     | 0.03    |                                       |
| 19    | 98   | 3     | 20            | 20     | 0.03    |                                       |
| 19    | 98   | 3     | 20            | 21     | 0.01    | 0.52                                  |
| 20    | 98   | 3     | 22            | 12     | 0.09    |                                       |
| 20    | 98   | 3     | 22            | 13     | 0.07    |                                       |

| Event | Year | Month | Day | Hour | Precip. | Total Precip.                         |
|-------|------|-------|-----|------|---------|---------------------------------------|
| 20    | 98   | 3     | 22  | 14   | 0.04    |                                       |
| 20    | 98   | 3 ·   | 22  | 15   | 0.01    | :                                     |
| 20    | 98   | 3     | 22  | 16   | 0.01    |                                       |
| 20    | 98   | 3     | 22  | 17   | 0.06    |                                       |
| 20    | 98   | 3     | 22  | 18   | 0.03    |                                       |
| 20    | 98   | 3     | 22  | 19   | 0.01    |                                       |
| 20    | 98   | 3     | 22  | 20   | 0.01    |                                       |
| 20    | 98   | 3     | 22  | 21   | 0.01    |                                       |
| 20    | 98   | 3     | 22  | 22   | 0.01    | 0.35                                  |
| 21    | 98   | 3     | 26  | 19   | 0.21    |                                       |
| 21    | 98   | 3     | 26  | 20   | 0.1     | · · · · · · · · · · · · · · · · · · · |
| 21    | 98   | 3     | 26  | 21   | 0,01    | 0.32                                  |
| 22    | 98   | 3     | 29  | 4    | 0.01    |                                       |
| 22    | 98   | 3     | 29  | 5    | 0.01    |                                       |
| 22    | 98   | 3     | 29  | 6    | 0.01    |                                       |
| 22    | 98   | 3     | 29  | 7    | 0.05    |                                       |
| 22    | 98   | 3     | 29  | 8    | 0.1     |                                       |
| 22    | 98   | 3     | 29  | 9    | 0.13    |                                       |
| 22    | 98   | 3     | 29  | 10   | 0.2     |                                       |
| 22    | 98   | 3     | 29  | 11   | 0.2     |                                       |
| 22    | 98   | 3     | 29  | 12   | 0.18    |                                       |
| 22    | 98   | 3     | 29  | 13   | 0.11    |                                       |
| 22    | 98   | 3     | 29  | 14   | 0.03    |                                       |
| 22    | 98   | 3     | 29  | 15   | 0.06    |                                       |
| 22    | 98   | 3     | 29  | 16   | 0.06    |                                       |
| 22    | 98   | 3     | 29  | 17   | 0.03    |                                       |
| 22    | 98   | 3     | 29  | 18   | 0.01    | 1.19                                  |
| 23    | 98   | 3     | 31  | 2    | 0.05    |                                       |
| 23    | 98   | 3     | 31  | 3    | 0.04    |                                       |
| 23    | 98   | 3     | 31  | 4    | 0.02    |                                       |
| 23    | 98   | 3     | 31  | 5    | 0.01    |                                       |
| 23    | 98   | 3     | 31  | 6    | 0.02    |                                       |
| 23    | 98   | 3     | 31  | 7    | 0.02    |                                       |
| 23    | 98   | 3     | 31  | 8    | 0.01    | 0.17                                  |
| 24    | 98   | 4     | 1   | 0    | 0.04    | <u>.</u>                              |
| 24    | 98   | 4     | 1   | 1    | 0.11    | 1                                     |
| 24    | 98   | 4     | 1   | 2    | 0.2     |                                       |
| 24    | 98   | 4     | 1   | 3    | 0.1     |                                       |
| 24    | 98   | 4     | 1   | 4    | 0.18    |                                       |
| 24    | 98   | 4     | 1   | 5    | 0.01    |                                       |
| 24    | 98   | 4     | 1   | 6    | 0.01    | i                                     |
| 24    | 98   | 4     | ]   | 7    | 0.27    |                                       |

.

| Event | Year | Month | Day | Hour | Precip. | Total Precip.                         |
|-------|------|-------|-----|------|---------|---------------------------------------|
| 24    | 98   | 4     | 1   | 8    | 0.1     | ^                                     |
| 24    | 98   | 4     | 1   | 9    | 0.01    |                                       |
| 24    | 98   | 4     | 1   | 10   | 0       |                                       |
| 24    | 98   | 4     | 1   | 11   | 0.02    |                                       |
| 24    | 98   | 4     | 1   | 12   | 0.06    |                                       |
| 24    | 98   | 4     | 1   | 13   | 0.01    | 1.12                                  |
| 25    | 98   | 4     | 7   | 7    | 0.06    |                                       |
| 25    | 98   | 4     | 7   | 8    | 0.1     |                                       |
| 25    | 98   | 4     | 7   | 9    | 0.12    |                                       |
| 25    | 98   | 4     | 7   | 10   | 0.1     |                                       |
| 25    | 98   | 4     | 7   | 11   | 0.05    | 0.43                                  |
| 26    | 98   | 4     | 7   | 19   | 0.51    |                                       |
| 26    | 98   | 4     | 7   | 20   | 0.1     |                                       |
| 26    | 98   | 4     | 7   | 21   | 0.04    |                                       |
| 26    | 98   | 4     | 7   | 22   | 0.02    |                                       |
| 26    | 98   | 4     | 7   | 23   | 0.06    |                                       |
| 26    | 98   | 4     | 8   | 0    | 0.02    |                                       |
| 26    | 98   | 4     | 8   | 1    | 0.04    | 1                                     |
| 26    | 98   | 4     | 8   | 2    | 0       |                                       |
| 26    | 98   | 4     | 8   | 3    | 0.01    | 0.8                                   |
| 27    | 98   | 4     | 11  | 8    | 0.02    |                                       |
| 27    | 98   | 4     | 11  | 9    | 0.06    |                                       |
| 27    | 98   | 4     | 11  | 10   | 0.08    |                                       |
| 27    | 98   | 4     | 11  | 11   | 0.05    | 0.21                                  |
| 28    | 98   | 4     | 12  | 14   | 0.04    | · · · · · · · · · · · · · · · · · · · |
| 28    | 98   | 4     | 12  | 15   | 0.1     |                                       |
| 28    | 98   | 4     | 12  | 16   | 0.11    |                                       |
| 28    | 98   | 4     | 12  | 17   | 0.1     |                                       |
| 28    | 98   | 4     | 12  | 18   | 0.04    |                                       |
| 28    | 98   | 4     | 12  | 19   | 0.03    |                                       |
| 28    | 98   | 4     | 12  | 20   | 0.03    |                                       |
| 28    | 98   | 4     | 12  | 21   | 0.04    |                                       |
| 28    | 98   | 4 ;   | 12  | 22   | 0.04    |                                       |
| 28    | 98   | 4     | 12  | 23   | 0.07    |                                       |
| 28    | 98   | 4     | 13  | 0    | 0.1     |                                       |
| 28    | 98   | 4     | 13  | l    | 0.01    | 0.71                                  |
| 29    | 98   | 4     | 13  | 12   | 0.02    |                                       |
| 29    | 98   | 4     | 13  | 13   | 0       |                                       |
| 29    | 98   | 4     | 13  | 14   | 0       | ·                                     |
| 29 ;  | 98   | 4     | 13  | 15   | 0.01    | ······                                |
| 29    | 98   | 4     | 13  | 16   | 0       |                                       |
| 29 ;  | 98   | 4     | 13  | 17   | 0       |                                       |

| Event | Year     | Month | Day      | Hour   | Precip.            | Total Precip |
|-------|----------|-------|----------|--------|--------------------|--------------|
| 29    | 98       | 4     | 13       | 18     | 0.01               | 0.04         |
| 30    | 98       | 4     | 15       | 9      | 0.01               |              |
| 30    | 98       | 4     | 15       | 10     | 0.03               | 0.04         |
| 31    | 98       | 4.    | 20       | 14     | 0.03               |              |
| 31    | 98       | 4     | 20       | 15     | 0.05               | 0.08         |
| 32    | 98       | 5     | 2        | 3      | 0.02               |              |
| 32    |          |       |          | 4 - 22 | 0                  |              |
| 32    | 98       | 5     | 2        | 23     | 0.01               |              |
| 32    | 98       | 5     | 3        | 0      | 0                  |              |
| 32    | 98       | 5     | 3        | 1      | 0.05               |              |
| 32    | 98       | 5     | 3        | 2      | 0.07               | 0.15         |
| 33    | 98       | 5     | 6        | 6      | 0.06               |              |
| 33    | 98       | 5     | 6        | 7      | 0.02               |              |
| 33    | 98       | 5     | б        | 8      | 0.02               |              |
| 33    | 98       | 5     | 6        | 9      | 0.07               |              |
| 33    | 98       | 5     | 6        | 10     | 0.03               | 0.2          |
| 34    | 98       | 5     | 7        | 4      | 0.06               |              |
| 34    | 98       | 5     | 7        | 5      | 0.01               |              |
| 34    | 98       | 5     | 7        | 6      | 0.01               |              |
| 34    | 98       | 5     | 7        | 7      | 0.04               |              |
| 34    | 98       | 5     | 7        | 8      | 0.19               |              |
| 34    | 98       | 5     | 7        | 9      | 0.17               |              |
| 34    | 98       | 5     | 7        | 10     | 0.19               |              |
| 34    | 98       | 5     | 7        | 11     | 0.24               |              |
| 34    | 98       | 5     | 7        | 12     | 0.04               |              |
| 34    | 98       | 5     | 7        | 13     | 0.07               |              |
| 34    | 98       | 5     | 7        | 14     | 0.11               |              |
| 34    | 98       | 5     | 7        | 15     | 0                  |              |
| 34    | 98       | 5     | 7        | 16     | 0.15               | 1            |
| 34    | 98       | 5     | 7        | 17     | 0.02               |              |
| 34    | 98       | 5     | 7        | 18     | 0                  |              |
| 34    | 98       | 5     | ,<br>7   | 19     | 0                  |              |
| 34    | 98       | 5     | ,<br>7   | 20     | 0.05               |              |
| 34    | 98       | 5     | 7        | 21     | 0.04               |              |
| 34    | 98       | 5     | 7        | 21     | 0.01               | 14           |
| 35    | 98       | 5     |          | 14     | 0.01               | J T          |
| 35    | 98       | 5     | 8        | 15     | 0.02               |              |
| 35    | 98       | 5     | 8        | 16     | 0.02               | <u>.</u>     |
| 35    | 98       | 5     | 8        | 17     | n n                |              |
| 35    | 98       | 5     | 8        | 18     | <u> </u>           |              |
| 35    | 98       | 5     | <u> </u> | 10     | 0.00               |              |
| 35    | <br><br> | 5     | 0<br>Q   | 20     | <u>0.02</u><br>ΔΔ1 | 0.12         |

 $\mathbf{u}^{i} \in \mathcal{L}$ 

| Table B-1                         |
|-----------------------------------|
| (continued)                       |
| Typical Year Precipitation Events |

| Event | Year | Month | Day | Hour | Precip.   | Total Preci |
|-------|------|-------|-----|------|-----------|-------------|
| 36    | 98   | 5     | 11  | 10   | 0.02      |             |
| 36    | 98   | 5     | 11  | 11   | 0.07      |             |
| 36    | 98   | 5     | 11  | 12   | 0.16      |             |
| 36    | 98   | 5     | 11  | 13   | 0.03      |             |
| 36    | 98   | 5     | 11  | 14   | 0.03      |             |
| 36    | 98   | 5     | 11  | 15   | 0.02      |             |
| 36    | 98   | 5     | 11  | 16   | 0         | ;           |
| 36    | 98   | 5     | 11  | 17   | 0         |             |
| 36    | 98   | 5     | 11  | 18   | 0         | ***         |
| 36    | 98   | 5     | 11  | 19   | 0.04      | 0.37        |
| 37    | 98   | 5     | 14  | 14   | 0.01      |             |
| 37    | 98   | 5     | 14  | 15   | 0         |             |
| 37    | 98   | 5     | 14  | 16   | 0         |             |
| 37    | 98   | 5     | 14  | 17   | 0.02      |             |
| 37    | 98   | 5     | 14  | 18   | 0.03      |             |
| 37    | 98   | 5     | 14  | 19   | 0.04      |             |
| 37    | 98   | 5     | 14  | 20   | 0.01      | 0.11        |
| 38    | 98   | 5     | 15  | 17   | 0.01      |             |
| 38    | 98   | 5     | 15  | 18   | 0.39      |             |
| 38    | 98   | 5     | 15  | 19   | 0.01      | 0.41        |
| 39    | 98   | 5     | 19  | 17   | 0.22      | }           |
| 39    | 98   | 5     | 19  | 18   | 0.02      |             |
| 39    | 98   | 5     | 19  | 19   | 0         |             |
| 39    | 98   | 5     | 19  | 20   | 0         |             |
| 39    | 98   | 5     | 19  | 21   | 0         |             |
| 39    | 98   | 5     | 19  | 22   | 0         | •           |
| 39    | 98   | 5     | 19  | 23   | 0         |             |
| 39    | 98   | 5     | 20  | 0    | 0.02      |             |
| 39    | 98   | 5     | 20  | 1    | 0.05      | 0.31        |
| 40    | 98   | 5     | 22  | 2    | 0.02      | 1           |
| 40    | 98   | 5     | 22  | 3    | 0.03      |             |
| 40    | 98   | 5     | 22  | 4    | 0.01      |             |
| 40    | 98   | 5     | 22  | 5    | 0.02      | 0.08        |
| 41    | 98   | 5     | 29  | 7    | 0.02      | 0.00        |
| 41    | 98   | 5     | 29  | 8    | 0.03      |             |
| 41    | 98   | 5     | 29  | 9    | 0.07      | <u>.</u>    |
| 41    | 98   | 5     | 29  | 10   | 0.04      | \$          |
| 41    | 98   | 5     | 29  | 11   | 0         |             |
| 41    | 98   | 5     | 29  | 12   | 0.02      |             |
| 41    | 98   | 5     | 29  | 13   | 0.02<br>N |             |
| 41    | 98   | 5     | 29  | 14   | 0         |             |
| 41    | 98   | 5     | 20  | 15   | 0.01      |             |

| Table B-1                                |
|------------------------------------------|
| (continued)                              |
| <b>Typical Year Precipitation Events</b> |

-

| Event | Year | Month | Day | Hour | Precip. | Total Precip. |
|-------|------|-------|-----|------|---------|---------------|
| 41    | 98   | . 5   | 29  | 16   | 0.01    | į             |
| 41    | 98   | 5     | 29  | 17   | 0.03    |               |
| 41    | 98   | 5     | 29  | 18   | 0.07    |               |
| 41    | 98   | 5     | 29  | 19   | 0.02    | 0.32          |
| 42    | 98   | 6     | 3   | 20   | 0.07    |               |
| 42    | 98   | 6     | 3   | 21   | 0.05    |               |
| 42    | 98   | 6     | 3   | 22   | 0       |               |
| 42    | 98   | 6     | 3   | 23   | 0       |               |
| 42    | 98   | 6     | 4   | 0    | 0.01    | 0.13          |
| 43    | 98   | 6     | 6   | 13   | 0.44    | 0.44          |
| 44    | 98   | 6     | 10  | 19   | 0.01    |               |
| 44    | 98   | 6     | 10  | 20   | 0       |               |
| 44    | 98   | 6     | 10  | 21   | 0       |               |
| 44    | 98   | 6     | 10  | 22   | 0.01    |               |
| 44    | 98   | 6     | 10  | 23   | 0.02    |               |
| 44    | 98   | 6     | 11  | 0    | 0       |               |
| 44    | 98   | 6     | 11  | 1    | 0       |               |
| 44    | 98   | 6     | 11  | 2    | 0.02    |               |
|       | 98   | 6     | 11  | 3    | 0.01    |               |
|       | 98   | 6     | 11  | 4    | 0.02    |               |
| 44    | 98   | 6     | 11  | 5    | 0.03    | ]             |
| 44    | 98   | 6     | 11  | 6    | 0.41    |               |
| - 44  | 98   | 6     | 11  | 7    | 0.11    |               |
| 44    | 98   | 6     | 11  | 8    | 0.1     |               |
| 44    | 98   | 6     | 11  | 9    | 0.06    |               |
|       | 98   | 6     | 11  | 10   | 0.01    | 0.81          |
|       | 98   | 6     | 13  | 23   | 0.02    |               |
| 45    | 98   | 6     | 14  | 20   | 0.14    | 0.14          |
| 46    | 98   | 6     | 17  | 11   | 0.09    |               |
| 46    | 98   | 6     | 17  | 12   | 0       |               |
| 46    | 98   | 6     | 17  | 13   | 0       |               |
| 46    | 98   | 6     | 17  | 14   | 0       |               |
| 46    | 98   | 6     | 17  | 15   | 0       |               |
| 46    | 98   | 6     | 17  | 16   | 0       |               |
| 46    | 98   | 6     | 17  | 17   | 0.01    |               |
| 46    | 98   | 6     | 17  | 18   | 0       |               |
| 46    | 98   | 6     | 17  | 19   | 0.03    |               |
| 46    | 98   | 6     | 17  | 20   | 0       |               |
| 46    | 98   | 6     | 17  | 21   | 0.1     |               |
| 46    | 98   | 6     | 17  | 2.2  | 0.22    | 0.45          |
| 47    | 98   | 6     | 21  | 21   | 0.53    |               |
| 47    | 98   | 6     | 21  | 22   | 0.49    | 1.02          |

ė. .'

| Event | Year | Month | Day | Hour | Precip. | Total Precip. |
|-------|------|-------|-----|------|---------|---------------|
| 48    | 98   | 6     | 28  | 4    | 0.04    |               |
| 48    | 98   | 6     | 28  | 5    | 0.01    |               |
| 48    | 98   | 6     | 28  | 6    | 0.03    |               |
| 48    | 98   | 6     | 28  | 7    | 0.03    |               |
| 48    | 98   | 6     | 28  | 8    | 0.09    |               |
| 48    | 98   | 6     | 28  | 9    | 0.11    |               |
| 48    | 98   | 6     | 28  | 10   | 0.02    | -             |
| 48    | 98   | 6     | 28  | 11   | 0       |               |
| 48    | 98   | 6     | 28  | 12   | 0.01    | 1             |
| 48    | 98   | 6     | 28  | 13   | 0.01    |               |
| 48    | 98   | 6     | 28  | 14   | 0       |               |
| 48    | 98   | 6     | 28  | 15   | 0.01    | 0.36          |
| 49    | 98   | 6     | 30  | 17   | 0.02    |               |
| 49    | 98   | 6     | 30  | 18   | 0.08    | -             |
| 49    | 98   | 6     | 30  | 19   | 0.02    | >             |
| 49    | 98   | 6     | 30  | 20   | 0.01    |               |
| 49    | 98   | 6     | 30  | 21   | 0       | P             |
| 49    | 98   | 6     | 30  | 22   | 0       |               |
| 49    | 98   | 6     | 30  | 23   | 0.01    | 0.14          |
| 50    | 98   | 7     | 2   | 0    | 0.05    |               |
| 50    | 98   | 7     | 2   | 1    | 0.27    |               |
| 50    | 98   | 7     | 2   | 2    | 0.41    |               |
| 50    | 98   | 7     | 2   | 3    | 0.02    |               |
| 50    | 98   | 7     | 2   | 4    | 0.44    |               |
| 50    | 98   | 7     | 2   | 5    | 0.06    |               |
| 50    | 98   | 7     | 2   | 6    | 0.08    | 1.33          |
| 51    | 98   | 7     | 9   | 16   | 0.06    |               |
| 51    | 98   | 7     | 9   | 17   | 0.06    |               |
| 51    | 98   | 7     | 9   | 18   | 0.01    | 0.13          |
|       | 98   | 7     | 11  | 16   | 0.01    |               |
| 52    | 98   | 7     | 13  | 17   | 0.51    | 0.51          |
|       | 98   | 7     | 16  | 18   | 0.01    |               |
| 53    | 98   | 7     | 18  | 1    | 0.14    |               |
| 53    | 98   | 7     | 18  | 2    | 0       |               |
| 53    | 98   | 7     | 18  | 3    | 0.08    | 0.22          |
| 54    | 98   | 7     | 18  | 23   | 0.05    |               |
| 54    | 98   | 7     | 19  | 0    | 0.04    | <u>.</u>      |
| 54    | 98   | 7     | 19  | 1    | 1.05    |               |
| 54    | 98   | 7     | 19  | 2    | 0       |               |
| 54    | 98   | 7     | 19  | 3    | 0       | :             |
| 54    | 98   | 7     | 19  | 4    | 0.01    |               |
| 54    | 98   | 7     | 19  | 5    | 0       |               |

| Table B-1                           |        |
|-------------------------------------|--------|
| (continued)                         |        |
| <b>Typical Year Precipitation I</b> | Events |

| Event | Year | Month | Day | Hour | Precip.            | Total Precip.                         |
|-------|------|-------|-----|------|--------------------|---------------------------------------|
| 54    | 98   | 7     | 19  | 6    | 0.01               | 1.16                                  |
| 55    | 98   | 7     | 20  | 19   | 0.04               |                                       |
| 55    | 98   | 7     | 20  | 20   | 0.02               |                                       |
| 55    | 98   | 7     | 20  | 21   | 0.01               | 0.07                                  |
| 56    | 98   | 7     | 26  | 12   | 0.34               |                                       |
| 56    | 98   | 7     | 26  | 13   | 0.02               |                                       |
| 56    | 98   | 7     | 26  | 14   | 0.01               | 0.37                                  |
| 57    | 98   | 7     | 26  | 22   | 0.19               |                                       |
| 57    | 98   | 7     | 26  | 23   | 0.05               | 1                                     |
| 57    | 98   | 7     | 27  | 0    | 0.01               | 0.25                                  |
| 58    | 98   | 8     | 1   | 13   | 0.01               | 1                                     |
| 58    | 98   | 8     | 1   | 14   | 0.04               | 0.05                                  |
| 59    | 98   | 8     | 5   | 12   | 0.41               |                                       |
| 59    | 98   | 8     | 5   | 13   | 0.07               |                                       |
| 59    | 98   | 8     | 5   | 14   | 0.17               |                                       |
| 59    | 98   | 8     | 5   | 15   | 0.02               |                                       |
| 59    | 98   | 8     | 5   | 16   | 0.01               | 0.68                                  |
| 60    | 98   | 8     | 11  | 21   | 0.02               |                                       |
| 60    | 98   | 8     | 11  | 22   | 0.03               |                                       |
| 60    | 98   | 8     | 11  | 23   | 0.01               |                                       |
| 60    | 98   | 8     | 12  | 0    | 0.01               | 0.07                                  |
| 61    | 98   | 8     | 14  | 14   | 0.05               | · · · · · · · · · · · · · · · · · · · |
| 61    | 98   | 8     | 14  | 15   | 0.65               |                                       |
| 61    | 98   | 8     | 14  | 16   | 0.05               | - <u>i</u>                            |
| 61    | 98   | 8     | 14  | 17   | 0.02               |                                       |
| 61    | 98   | 8     | 14  | 18   | 0                  |                                       |
| 61    | 98   | 8     | 14  | 19   | 0.05               | ·<br>·                                |
| 61    | 98   | 8     | 14  | 20   | 0.03               | 0.85                                  |
|       | 98   | 8     | 16  | 22   | 0.01               |                                       |
| 62    | 98   | 8     | 17  | 12   | 0.12               | 1                                     |
| 62    | 98   | 8     | 17  | 13   | 0.23               |                                       |
| 62    | 98   | 8     | 17  | 14   | 0.26               |                                       |
| 62    | 98   | 8     | 17  | 15   | 0.32               |                                       |
| 62    | 98   | 8     | 17  | 16   | 0.08               | ]                                     |
| 62    | 98   | 8     | 17  | 21   | 0.01               | 1.02                                  |
| 63    | 98   | 8     | 21  | 18   | 0.49               |                                       |
| 63    | 98   | 8     | 21  | 19   | 0.21               |                                       |
| 63    | 98   | 8     | 21  | 20   | 0.08               | +                                     |
| 63    | 98   | 8     | 21  | 20   | 0.03               | · · · · · · · · · · · · · · · · · · · |
| 63    | 98   | 8     | 21  | 21   | 0.05               | ;                                     |
| 63    | 98   | 8     | 21  | 22   | 0.00               |                                       |
| 63    | 08   | 8     | 21  | <br> | <u>ν</u><br>1 0 02 |                                       |

| Table B-1                  |        |
|----------------------------|--------|
| (continued)                |        |
| Typical Year Precipitation | Events |

| Event | Year | Month | Day | Hour | Precip. | Total Precip.                         |
|-------|------|-------|-----|------|---------|---------------------------------------|
| 63    | 98   | 8     | 22  | 1    | 0.02    |                                       |
| 63    | 98   | 8     | 22  | 2    | 0       |                                       |
| 63    | 98   | 8     | 22  | 3    | 0.04    | *********                             |
| 63    | 98   | 8     | 22  | 4    | 0.09    |                                       |
| 63    | 98   | 8     | 22  | 5    | 0.09    |                                       |
| 63    | 98   | 8     | 22  | 6    | 0.06    |                                       |
| 63    | 98   | 8     | 22  | 7    | 0.08    |                                       |
| 63    | 98   | 8     | 22  | 8    | 0.1     |                                       |
| 63    | 98   | 8     | 22  | 9    | 0.08    |                                       |
| 63    | 98   | 8     | 22  | 10   | 0.25    |                                       |
| 63    | 98   | 8     | 22  | 11   | 0.07    | 1.76                                  |
| 64    | 98   | 8     | 29  | 12   | 0.1     | 0.1                                   |
| 65    | 98   | 9     | 8   | 16   | 0.11    |                                       |
| 65    | 98   | 9     | 8   | 17   | 0.09    | 0.2                                   |
| 66    | 98   | 9     | 9   | 22   | 0.03    |                                       |
| 66    | 98   | 9     | 9   | 23   | 0.01    | 0.04                                  |
| 67    | 98   | 9     | 13  | 19   | 0.04    |                                       |
| 67    | 98   | 9     | 13  | 20   | 0.05    | 0.09                                  |
| 68    | 98   | 9     | 16  | 21   | 0.04    |                                       |
| 68    | 98   | 9     | 16  | 22   | 0.1     |                                       |
| 68    | 98   | 9     | 16  | 23   | 0.1     |                                       |
| 68    | 98   | 9     | 17  | 0    | 0.07    | · · · · · · · · · · · · · · · · · · · |
| 68    | 98   | 9     | 17  | 1    | 0.14    |                                       |
| 68    | 98   | 9     | 17  | 2    | 0.24    |                                       |
| 68    | 98   | 9     | 17  | 3    | 0.22    |                                       |
| 68    | 98   | 9     | 17  | 4    | 0.11    |                                       |
| 68    | 98   | 9     | 17  | 5    | 0.17    |                                       |
| 68    | 98   | 9     | 17  | 6    | 0.12    |                                       |
| 68    | 98   | 9     | 17  | 7    | 0.1     | · · · · · · · · · · · · · · · · · · · |
| 68    | 98   | 9     | 17  | 8    | 0.14    |                                       |
| 68    | 98   | 9     | 17  | 9    | 0.05    | 16                                    |
| 69    | 98   | 9     | 22  | 6    | 0.02    |                                       |
| 69    | 98   | 9     | 22  | 7    | 0.04    |                                       |
| 69    | 98   | 9     | 22  | 8    | 0.02    |                                       |
| 69    | 98   | 9     | 22  | 9    | 0.04    | ····                                  |
| 69    | 98   | 9     | 22  | 10   | 0.15    | l                                     |
| 69    | 98   | 9     | 22  | 11   | 0.02    | i<br>                                 |
| 69    | 98   | 9     | 22  | 12   | 0.02    |                                       |
| 69    | 98   | 9     | 22  | 12   | 0.04    |                                       |
| 69    | 98   | 9     | 22  | 14   | Λ<br>   |                                       |
| 69    | 98   | 9     | 22  | 15   | 0       |                                       |
| 60    | 98   |       | 22  | 16   | ر<br>۱۵ |                                       |

| Table B-1                         |
|-----------------------------------|
| (continued)                       |
| Typical Year Precipitation Events |

| Event | Year | Month   | Day     | Hour    | Precip.   | Total Precip                          |
|-------|------|---------|---------|---------|-----------|---------------------------------------|
| 69    | 98   | 9       | 22      | 17      | 0.22      |                                       |
| 69    | 98   | 9       | 22      | 18      | 0         |                                       |
| 69    | 98   | 9       | 22      | 19      | 0         |                                       |
| 69    | 98   | 9       | 22      | 20      | 0         |                                       |
| 69    | 98   | 9       | 22      | 21      | 0.01      | 0.73                                  |
| 70    | 98   | 9       | 24      | 18      | 0.01      |                                       |
| 70    | 98   | 9       | 24      | 19      | 0         | · · · · · · · · · · · · · · · · · · · |
| 70    | 98   | 9       | 24      | 20      | 0         |                                       |
| 70    | 98   | 9       | 24      | 21      | 0.01      |                                       |
| 70    | 98   | 9       | 24      | 22      | 0         |                                       |
| 70    | 98   | 9       | 24      | 23      | 0         |                                       |
| 70    | 98   | 9       | 25      | 0       | 0.01      |                                       |
| 70    | 98   | 9       | 25      | 1       | 0         |                                       |
| 70    | 98   | 9       | 25      | 2       | 0.01      |                                       |
| 70    |      |         |         | 3 - 11  | 0         | -                                     |
| 70    | 98   | 9       | 25      | 12      | 0.02      |                                       |
| 70    | 98   | 9       | 25      | 13      | 0.12      |                                       |
| 70    | 98   | 9       | 25      | 14      | 0.06      | <u>.</u>                              |
| 70    | 98   | 9       | 25      | 15      | 0         |                                       |
| 70    | 98   | 9       | 25      | 16      | 0         |                                       |
| 70    | 98   | 9       | 25      | 17      | 0.01      |                                       |
| 70    | 98   | 9       | 25      | 18      | 0.01      |                                       |
| 70    | 98   | 9       | 25      | 19      | 0.09      |                                       |
| 70    | 98   | 9       | 25      | 20      | 0.14      | 1                                     |
| 70    | 98   | 9       | 25      | 21      | 0.25      |                                       |
| 70    | 98   | 9       | 25      | 21      | 0.02      | 1                                     |
| 70    | 98   | 9       | 25      | 22      | 0.02      |                                       |
| 70    | 98   | 9       | 25      | 0       | 0.05      |                                       |
| 70    | /0   | <u></u> |         | 1 - 10  | 0.02      |                                       |
| 70    | 98   | 0       | 26      | 1 - 10  | 0.05      |                                       |
| 70    | 98   | 9       | 20      | 17      | 0.05      |                                       |
| 70    | 98   | 9       | 20      | 12      | 0.02      | 0.89                                  |
| 71    | 08   | 10      | 20<br>2 | 15      | 0.01      | 0.89                                  |
| 72    | 08   | 10      | 6       | 6       | 0.07      | 0.07                                  |
| 72    | 08   | 10      | 6       | 7       | 0.01      |                                       |
| 72    | 20   | 10      | 6       | 0       | 0.01      | -                                     |
| 72    | 00   | 10      | ں<br>د  | 0       | 0<br>0.01 | 0.02                                  |
| 73    | 70   | 10      | 10      | 7       | 0.01      | 0.05                                  |
| 72    | 70   | 10      | 19      | 12      | 0.03      | •                                     |
| 13    | ንሪ   | 10      | 13      | 14 00   | 0.02      |                                       |
| 13    | 0.9  | 10      | 20      | 14 - 25 | 0         |                                       |
| /3    | 98   | 10      | 20      | Ŭ       | 0.25      |                                       |
| 73    | 98   | 10      | 20      | 1       | 0.06      |                                       |

. .

| Table B-1                         |
|-----------------------------------|
| (continued)                       |
| Typical Year Precipitation Events |

.

| Event | Year | Month | Day | Hour        | Precip. | Total Precip. |  |
|-------|------|-------|-----|-------------|---------|---------------|--|
| 73    | 98   | 10    | 20  | 2           | 0.15    |               |  |
| 73    | 98   | 10    | 20  | 3           | 0.17    |               |  |
| 73    | 98   | 10    | 20  | 4           | 0.54    |               |  |
| 73    | 98   | 10    | 20  | 5           | 0.1     |               |  |
| 73    | 98   | 10    | 20  | 6           | 0.04    |               |  |
| 73    | 98   | 10    | 20  | 7           | 0.08    |               |  |
| 73    | 98   | 10    | 20  | 8           | 0.03    |               |  |
| 73    | 98   | 10    | 20  | 9           | 0.01    | 1.5           |  |
| 74    | 98   | 10    | 23  | 14          | 0.02    |               |  |
| 74    |      |       |     | 15 - 23     | 0       |               |  |
| 74    | 98   | 10    | 24  | 0           | 0.02    |               |  |
| 74    | 98   | 10    | 24  | 1           | 0.01    | 0.05          |  |
|       | 98   | 10    | 27  | 20          | 0.01    |               |  |
| 75    | 98   | 10    | 28  | 13          | 0.03    |               |  |
| 75    | 98   | 10    | 28  | 14          | 0.01    |               |  |
| 75    | 98   | 10    | 28  | 15          | 0       |               |  |
| 75    | 98   | 10    | 28  | 16          | 0.01    | ·····         |  |
| 75    | 98   | 10    | 28  | 17          | 0.01    |               |  |
| 75    | 98   | 10    | 28  | 18          | 0.01    |               |  |
| 75    | 98   | 10    | 28  | 19          | 0.01    | ······        |  |
| 75    | 98   | 10    | 28  | 20          | 0.01    |               |  |
| 75    | 98   | 10    | 28  | 21          | 0.04    |               |  |
| 75    | 98   | 10    | 28  | 22          | 0.23    |               |  |
| 75    | 98   | 10    | 28  | 23          | 0.29    |               |  |
| 75    | 98   | 10    | 29  | 0           | 0.13    |               |  |
| 75    | 98   | 10    | 29  | 1           | 0.1     |               |  |
| 75    | 98   | 10    | 29  | 2           | 0.07    |               |  |
| 75    | 98   | 10    | 29  | 3           | 0.02    |               |  |
| 75    | 98   | 10    | 29  | 4           | 0.03    |               |  |
| 75    |      |       |     | 5 - 10      | 0       |               |  |
| 75    | 98   | 10    | 29  | 11          | 0.03    | 1.03          |  |
| 76    | 98   | 10    | 31  | 20          | 0.01    | 1.05          |  |
| 76    | 98   | 10    | 31  | 21          | 0.04    |               |  |
| 76    | 98   | 10    | 31  | 22          | 0       |               |  |
| 76    | 98   | 10    | 31  | 23          | 0.05    | 0.1           |  |
| 77    | 98   | 11    | 8   | 3           | 0.08    |               |  |
| 77    | 98   | 11    | 8   | 4           | 0.03    | 0.11          |  |
| 78    | 98   | 11    | 10  | 10          | 0.06    |               |  |
| 78    | 98   | 11 :  | 10  | 11          | 0.05    |               |  |
| 78    | 98   | 11    | 10  | 12          | 0.01    | *****         |  |
| 78    | 98   | 11    | 10  | <br>13 - 17 | 0       | ~~~~~         |  |
| 78    | 98   | 11    | 10  | 18          | 0.36    | 0.48          |  |

| Event    | Year | Month | Day                 | Hour | Precip. | Total Precip.                         |
|----------|------|-------|---------------------|------|---------|---------------------------------------|
| 79       | 98   | 11    | 12                  | 14   | 0.02    | · · · · · · · · · · · · · · · · · · · |
| 79       | 98   | 11    | 12                  | 15   | 0.38    |                                       |
| 79       | 98   | 11    | 12                  | 16   | 0.1     |                                       |
| 79       | 98   | 11    | 12                  | 17   | 0.14    |                                       |
| 79       | 98   | 11    | 12                  | 18   | 0.36    |                                       |
| 79       | 98   | 11    | 12                  | 19   | 0.34    |                                       |
| 79       | 98   | 11    | 12                  | 20   | 0.22    |                                       |
| 79       | 98   | 11    | 12                  | 21   | 0.3     |                                       |
| 79       | 98   | 11    | 12                  | 22   | 0.04    |                                       |
| 79       | 98   | 11    | 12                  | 23   | 0       |                                       |
| 79       | 98   | 11    | 13                  | 0    | 0.04    |                                       |
| 79       | 98   | 11    | 13                  | 1    | 0.01    |                                       |
| 79       | 98   | 11    | 13                  | 2    | 0.04    |                                       |
| 79       | 98   | 11    | 13                  | 3    | 0.03    |                                       |
| 79       | 98   | 11    | 13                  | 4    | 0.01    |                                       |
| 79       | 98   | 11    | 13                  | 5    | 0.03    |                                       |
| 79       | 98   | 11    | 13                  | 6    | 0.04    |                                       |
| 79       | 98   | 11    | 13                  | 7    | 0.02    |                                       |
| 79       | 98   | 11    | 13                  | 8    | 0.04    |                                       |
| 79       | 98   | 11    | 13                  | 9    | 0.06    |                                       |
| 79       | 98   | 11    | 13                  | 10   | 0.02    | 2.24                                  |
| 80       | 98   | 11    | 21                  | 7    | 0.01    |                                       |
| 80       | 98   | 11    | 21                  | 8    | 0.01    |                                       |
| 80       | 98   | 11    | 21                  | 9    | 0.04    |                                       |
| 80       | 98   | 11    | 21                  | 10   | 0.12    |                                       |
| 80       | 98   | 11    | 21                  | 11   | 0.04    |                                       |
| 80       | 98   | 11    | 21                  | 12   | 0       |                                       |
| 80       | 98   | 11    | 21                  | 13   | 0       | ·:                                    |
| 80       | 98   | 11    | 21                  | 14   | 0.02    |                                       |
| 80       | 98   | 11    | 21                  | 15   | 0.02    |                                       |
| 80       | 98   | 11    | 21                  | 16   | 0       |                                       |
| 80       | 98   | 11    | 21                  | 17   | 0.02    | 0.28                                  |
| 81       | 98   | 11    | 27                  | 9    | 0.03    | 0.03                                  |
| 82       | 98   | 12    | 4                   | 11   | 0.01    | . 0.05                                |
| 82       | 98   | 12    | 4                   | 12   | 0.03    |                                       |
| 82       | 98   | 12    | 4                   | 13   | 0.04    |                                       |
| 82       |      | 12    | <u> </u>            | 14   | 0.07    |                                       |
| 82       | 98   | 12    | <u>т</u><br>        | 15   | 0.02    |                                       |
| 82       | 98   | 12    | - <del>-</del><br>4 | 16   | 0.00    |                                       |
| 02<br>80 | 02   | 12    | -τ<br>Δ             | 17   | 0.04    |                                       |
| 82<br>87 | 90   | 12    |                     | 19   | 0.07    | 1                                     |
| 87       | 90   | 12    |                     | 10   | 0.04    |                                       |

April 1999

| Table B-1                  |        |
|----------------------------|--------|
| (continued)                |        |
| Typical Year Precipitation | Events |
|                            |        |

| Event | Year | Month | Day | Hour | Precip. | Total Precip.                                                                                                  |
|-------|------|-------|-----|------|---------|----------------------------------------------------------------------------------------------------------------|
| 82    | 98   | 12    | 4   | 20   | 0.13    | 1                                                                                                              |
| 82    | 98   | 12    | 4   | 21   | 0.11    |                                                                                                                |
| 82    | 98   | 12    | 4   | 22   | 0.13    |                                                                                                                |
| 82    | 98   | 12    | 4   | 23   | 0.08    |                                                                                                                |
| 82    | 98   | 12    | 5   | 0    | 0.13    | ******                                                                                                         |
| 82    | 98   | 12    | 5   | 1    | 0.17    | ······································                                                                         |
| 82    | 98   | 12    | 5   | 2    | 0.07    |                                                                                                                |
| 82    | 98   | 12    | 5   | 3    | 0.03    |                                                                                                                |
| 82    | 98   | 12    | 5   | 4    | 0.02    |                                                                                                                |
| 82    | 98   | 12    | 5   | 5    | 0.04    |                                                                                                                |
| 82    | 98   | 12    | 5   | 6    | 0.06    |                                                                                                                |
| 82    | 98   | 12    | 5   | 7    | 0       |                                                                                                                |
| 82    | 98   | 12    | 5   | 8    | 0.04    |                                                                                                                |
| 82    | 98   | 12    | 5   | 9    | 0.31    |                                                                                                                |
| 82    | 98   | 12    | 5   | 10   | 0.1     |                                                                                                                |
| 82    | 98   | 12    | 5   | 11   | 0.03    |                                                                                                                |
| 82    | 98   | 12    | 5   | 12   | 0.05    |                                                                                                                |
| 82    | 98   | 12    | 5   | 13   | 0.13    |                                                                                                                |
| 82    | 98   | 12    | 5   | 14   | 0.25    |                                                                                                                |
| 82    | 98   | 12    | 5   | 15   | 0.08    |                                                                                                                |
| 82    | 98   | 12    | 5   | 16   | 0       | · · · · · · · · · · · · · · · · · · ·                                                                          |
| 82    | 98   | 12    | 5   | 17   | 0.01    | 2.36                                                                                                           |
| 83    | 98   | 12    | 10  | 17   | 0.03    |                                                                                                                |
| 83    | 98   | 12    | 10  | 18   | 0.01    | 4<br>5<br>5                                                                                                    |
| 83    | 98   | 12    | 10  | 19   | 0.02    | <u>.</u>                                                                                                       |
| 83    | 98   | 12    | 10  | 20   | 0       | ······································                                                                         |
| 83    | 98   | 12    | 10  | 21   | 0.06    |                                                                                                                |
| 83    | 98   | 12    | 10  | 22   | 0.06    |                                                                                                                |
| 83    | 98   | 12    | 10  | 23   | 0.02    | 1117-1777 (Antonio Landa Antonio Constanti Antonio Constanti Antonio Constanti Antonio Constanti Antonio Const |
| 83    | 98   | 12    | 11  | 0    | 0.02    |                                                                                                                |
| 83    | 98   | 12    | 11  | 1    | 0.01    | 0.23                                                                                                           |
| 84    | 98   | 12    | 18  | 22   | 0.01    |                                                                                                                |
| 84    | 98   | 12    | 18  | 23   | 0.01    |                                                                                                                |
| 84    | 98   | 12    | 19  | 1    | 0.01    |                                                                                                                |
| 84    | 98   | 12    | 19  | 2    | 0.02    |                                                                                                                |
| 84    | 98   | 12    | 19  | 3    | 0.03    |                                                                                                                |
| 84    | 98   | 12    | 19  | 4    | 0.01    | 0.08                                                                                                           |
| 85    | 98   | 12    | 20  | 21   | 0.01    |                                                                                                                |
| 85    | 98   | 12    | 20  | 22   | 0.04    |                                                                                                                |
| 85    | 98   | 12    | 20  | 23   | 0.05    |                                                                                                                |
| 85    | 98   | 12    | 21  | 0    | 0.08    |                                                                                                                |
| 85    | 98   | 12    | 21  | 1    | 0.08    |                                                                                                                |

| Event | Year | Month | Day | Hour         | Precip. | Total Precip |
|-------|------|-------|-----|--------------|---------|--------------|
| 85    | 98   | 12    | 21  | 2            | 0.15    |              |
| 85    | 98   | 12    | 21  | 3            | 0.13    |              |
| 85    | 98   | 12    | 21  | 4            | 0.19    |              |
| 85    | 98   | 12    | 21  | 5            | 0.14    |              |
| 85    | 98   | 12    | 21  | 6            | 0.03    |              |
| 85    | 98   | 12    | 21  | 7            | 0.02    | 0.92         |
| 86    | 98   | 12    | 25  | 23           | 0.02    | 0.02         |
| 87    | 98   | 12    | 29  | 16           | 0.01    |              |
| 87    | 98   | 12    | 29  | 17           | 0.03    |              |
| 87    | 98   | 12    | 29  | 18           | 0.01    |              |
| 87    | 98   | 12    | 29  | 19           | 0.01    |              |
| 87    | 98   | , 12  | 29  | 20           | 0.01    | 0.07         |
| ··· / |      |       | Tot | al Precipita | tion    | 41.78        |

6 A.

#### APPENDIX C

#### SWMM SUMMARY OUTPUT FOR BASELINE TYPICAL YEAR



#### STORM 1

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1451.27                          | 348.67                                   | 0.07                                         | 348.74                           |                       | 1.84F+04                  |
| R03               | 1800                             | 0                                        | 0                                            | 0                                | 0,                    | 0.00E+00                  |
| R04               | 1800                             | 0                                        | 0                                            | 0                                | Õ                     | 0.00E+00                  |
| R05               | 735.8                            | 1064.2                                   | 0                                            | 1064.2                           | 049                   | 5.35E+04                  |
| R06               | 1800                             | 0                                        | 0                                            | 0                                | 0.19                  | 0.005+04                  |
| R07               | 1586.93                          | 213.07                                   | 0                                            | 213.07                           | 0.06                  | 6.42E+02                  |
| R08               | 752.6                            | 1047.33                                  | 0.07                                         | 1047.4                           | 0.00                  | 4.77E+0.4                 |
| R09               | 1800                             | 0                                        | 0                                            | 0                                | 0.44                  | 0.005+00                  |
| RII               | 1800                             | 0                                        | 0                                            | Ő                                | 0                     | 0.000100                  |
| R12               | 1800                             | 0                                        | 0                                            | 0<br>0                           | 0                     | 0.0000+00                 |
| R13               | 1609.53                          | 190.4                                    | 0.07                                         | 190 47                           | 0.02                  | 2.025+00                  |
| R14               | 1800                             | 0                                        | 0                                            | 0                                | 0.02                  | 0.00E+03                  |
| R15               | 1581.4                           | 218.6                                    | 0                                            | 2186                             | 0                     | 3 40E±00                  |
| R16               | 1800                             | 0                                        | Ő                                            | 2.0.0                            | 0                     | 0.00E+02                  |
| R17               | 1476.2                           | 323.8                                    | 0                                            | 323.8                            | 0.06                  | 6 85E±02                  |
| R18               | 1458.6                           | 341.4                                    | 0                                            | 341.4                            | 0.00                  | 2 205+03                  |
| R19               | 1800                             | 0                                        | 0                                            | 0                                | 0.21                  | 0.005+00                  |
| R20               | 1800                             | 0                                        | 0                                            | ů<br>0                           | 0                     | 0.00E+00                  |
| R21               | 1800                             | 0                                        | 0                                            | 0                                | Ő                     | 0.0000+00                 |
| R22               | 1800                             | 0                                        | 0<br>0                                       | 0                                | 0                     | 0.002+00                  |
| R23               | 1800                             | 0                                        | 0<br>0                                       | 0                                | 0                     | 0.0000000                 |
| R24               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.002+00                  |
| R25               | 1800                             | 0                                        | Ő                                            | 0                                | 0                     | 0.0000000                 |
| R26               | 1800                             | 0                                        | 0<br>0                                       | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1800                             | 0                                        | ů<br>0                                       | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 1800                                     | 0                                            | 1800                             | 267                   | 2 80E 105                 |
| PS                | 0                                | 1800                                     | 0                                            | 1800                             | 8.69                  | 2.89E+05<br>9.39E+05      |

,

| OI OAMA = | ST | 'ORM | 2 |
|-----------|----|------|---|
|-----------|----|------|---|

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>R02           | 1471.53                          | 208.4                                    | 0.07                                         | 208.47                           | 0.06                  | 6.55E+03                  |
| R03               | 1680                             | . 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 735.8                            | 944.2                                    | 0                                            | 944.2                            | 0.26                  | 2.67E+04                  |
| R06               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1640.47                          | 39.53                                    | 0                                            | 39.53                            | 0                     | 3.07E+01                  |
| R08               | 1494.73                          | 185.2                                    | 0.07                                         | 185.27                           | 0.06                  | 5.89E+03                  |
| R09               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1640.2                           | 39.8                                     | 0                                            | 39.8                             | 0                     | 4.66E+01                  |
| R14               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1621.93                          | 58.07                                    | 0                                            | 58.07                            | 0                     | 2.97E+01                  |
| R16               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1486.87                          | 193.13                                   | 0                                            | 193.13                           | 0.02                  | 1.83E+03                  |
| R18               | 1469.4                           | 210.6                                    | 0                                            | 210.6                            | 0.08                  | 7.57E+03                  |
| R19               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R23               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1680                             | . 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1680                                     | 0                                            | 1680                             | 2.47                  | 2.49E+05                  |
| PS                | 0                                | 1680                                     | 0                                            | 1680                             | 7.73                  | 7.79E+05                  |

#### STORM 3

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1405.47                          | 814.53                                   | 0                                            | 814.53                           | 2.11                  | 2.81E+05                  |
| R03               | 1551.47                          | 668.53                                   | 0                                            | 668.53                           | 3.06                  | 4.07E+05                  |
| R04               | 1543.13                          | 676.87                                   | 0                                            | 676.87                           | 1.34                  | 1.79E+05                  |
| R05               | 732.33                           | 1487.67                                  | 0                                            | 1487.67                          | 5.37                  | 7.16E+05                  |
| R06               | 1566.07                          | 653.87                                   | 0.07                                         | 653.94                           | 0.45                  | 6.06E+04                  |
| R07               | 1474                             | 746                                      | 0                                            | 746                              | 1.48                  | 1.97E+05                  |
| R08               | 728.07                           | 1491.87                                  | 0.07                                         | 1491.94                          | 7.5                   | 9.99E+05                  |
| R09               | 1525                             | 694.93                                   | 0.07                                         | 695                              | 2.81                  | 3.74E+05                  |
| R11               | 1671.67                          | 548.27                                   | 0.07                                         | 548.34                           | 1.45                  | 1.93E+05                  |
| R12               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1472                             | 748                                      | 0                                            | 748                              | 2.95                  | 3.94E+05                  |
| R14               | 1665                             | 554.93                                   | 0.07                                         | 555                              | 1.1                   | 1.47E+05                  |
| R15               | 1454.2                           | 765.8                                    | 0                                            | 765.8                            | 0.57                  | 7.60E+04                  |
| R16               | 1534.93                          | 684.93                                   | 0.13                                         | 685.06                           | 1.64                  | 2.18E+05                  |
| R17               | 729.4                            | 1490.6                                   | 0                                            | 1490.6                           | 1.88                  | 2.50E+05                  |
| R18               | 737.67                           | 1482.33                                  | 0                                            | 1482.33                          | 4.45                  | 5.93E+05                  |
| R19               | 1516.47                          | 703.47                                   | 0.07                                         | 703.54                           | 6.5                   | 8.65E+05                  |
| R20               | 1576.73                          | 643.27                                   | 0                                            | 643.27                           | 0.34                  | 4.48E+04                  |
| R21               | 1782.47                          | 437.53                                   | 0                                            | 437.53                           | 0.2                   | 2.61E+04                  |
| R22               | 1569.6                           | 650.4                                    | 0                                            | 650.4                            | 0.73                  | 9.76E+04                  |
| R23               | 1979.67                          | 240.33                                   | 0                                            | 240.33                           | 0.05                  | 6.88E+03                  |
| R24               | 1620.8                           | 599.2                                    | 0                                            | 599.2                            | 0.72                  | 9.64E+04                  |
| R25               | 1677.47                          | 542.53                                   | 0                                            | 542.53                           | 0.26                  | 3.47E+04                  |
| R26               | 1614.67                          | 605.33                                   | 0                                            | 605.33                           | 0.74                  | 9.80E+04                  |
| 9A                | 1672.53                          | 547.47                                   | 0                                            | 547.47                           | 1.08                  | 1.43E+05                  |
| A                 | 0                                | 2220                                     | 0                                            | 2220                             | 3.9                   | 5.20E+05                  |
| P <b>S</b>        | 0                                | 2220                                     | 0                                            | 2220                             | 13.55                 | 1.80E+06                  |

STORM 4

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
|                   |                                  |                                          | <br>0                                        | 228 27                           | 0.02                  | 1.59E+03                  |
| R03               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1740                             | · 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1661.73                          | 78.27                                    | 0                                            | 78.27                            | 0.01                  | 1.17E+03                  |
| R06               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1653.33                          | 86.67                                    | 0                                            | 86.67                            | 0.02                  | 2.16E+03                  |
| R09               | 1740                             | 0                                        | 0                                            | 0                                | . 0                   | 0.00E+00                  |
| R11               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1715.53                          | 24.47                                    | 0                                            | 24.47                            | 0                     | 2.28E-01                  |
| R16               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1499.4                           | 240.6                                    | 0                                            | 240.6                            | 0.01                  | 7.56E+02                  |
| R18               | 1485.13                          | 254.87                                   | 0                                            | 254.87                           | 0.04                  | 4.11E+03                  |
| R19               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R23               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1740                                     | 0                                            | 1740                             | 2.61                  | 2.73E+05                  |
| PS                | 0                                | 1740                                     | 0                                            | 1740                             | 7.47                  | 7.80E+05                  |

 $x^{+}$
| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1468.2                           | 151.8                                    | 0                                            |                                  | 0.03                  | <br>3 24E+03              |
| R03               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1500.93                          | 119.07                                   | 0                                            | 119.07                           | 0.02                  | 1.73E+03                  |
| R06               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1493.53                          | 126.47                                   | 0                                            | 126.47                           | 0.03                  | 3.16E+03                  |
| R09               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1594.73                          | 25.27                                    | 0                                            | 25.27                            | 0                     | 2.36E-01                  |
| R16               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1485.2                           | 134.8                                    | 0                                            | 134.8                            | 0.01                  | 1.05E+03                  |
| R18               | 1469.07                          | 150.93                                   | 0                                            | 150.93                           | 0.05                  | 4.53E+03                  |
| R19               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R23               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 1620                                     | 0                                            | 1620                             | 2.59                  | 2.52E+05                  |
| PS                | 0                                | 1620                                     | 0                                            | 1620                             | 7.44                  | 7.23E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>R02           | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R03               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R06               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R09               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| <b>R</b> 16       | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1534.87                          | 205.13                                   | 0                                            | 205.13                           | 0                     | 5.73E+01                  |
| R18               | 1521.93                          | 218.07                                   | 0                                            | 218.07                           | 0.01                  | 1.34E+03                  |
| R19               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R23               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1740                                     | 0                                            | 1740                             | 2.5                   | 2.61E+05                  |
| PS                | 0                                | 1740                                     | 0                                            | 1740                             | 7.2                   | 7.51E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1163.47                          | 636.53                                   | 0                                            | 636 53                           |                       |                           |
| R03               | 1649.93                          | 150                                      | 0.07                                         | 150.07                           | 2.48                  | 2.55 <u>C</u> +05         |
| R04               | 1647.8                           | 152.2                                    | 0                                            | 152.2                            | 1 49                  | 1.61E+05                  |
| R05               | 848.07                           | 951.87                                   | 0.07                                         | 951.94                           | 4.98                  | 5 38E+05                  |
| R06               | 1645.13                          | 154.8                                    | 0.07                                         | 154.87                           | 0.51                  | 5.48E+04                  |
| R07               | 1592.4                           | 207.6                                    | 0                                            | 207.6                            | 1.54                  | 1.66E+05                  |
| R08               | 845.13                           | 954.87                                   | 0                                            | 954.87                           | 4.93                  | 5 33E+05                  |
| R09               | 1631.27                          | 168.73                                   | 0                                            | 168.73                           | 3.09                  | 3.34E+05                  |
| R11               | 1666.53                          | 133.47                                   | 0                                            | 133.47                           | 1.72                  | 1.86E+05                  |
| R12               | 1737.4                           | 62.6                                     | 0                                            | 62.6                             | 0.1                   | 1.05E+04                  |
| R13               | 1591.47                          | 208.53                                   | 0                                            | 208.53                           | 2.98                  | 3.22E+05                  |
| R14               | 1654.53                          | 145.47                                   | 0                                            | 145.47                           | 1.79                  | 1.94E+05                  |
| R15               | 1571                             | 229                                      | 0                                            | 229                              | 0.72                  | 7.79E+04                  |
| R16               | 1598.27                          | 201.73                                   | 0                                            | 201.73                           | 2.43                  | 2.62E+05                  |
| R17               | 769                              | 1031                                     | 0                                            | 1031                             | 1.42                  | 1.53E+05                  |
| R18               | 781.07                           | 1018.93                                  | 0                                            | 1018.93                          | 4.58                  | 4.94E+05                  |
| R19               | 1547.33                          | 252.67                                   | 0                                            | 252.67                           | 5.34                  | 5.77E+05                  |
| R20               | 1662.87                          | 137.13                                   | 0                                            | 137.13                           | 0.66                  | 7.16E+04                  |
| R21               | 1673                             | 127                                      | 0                                            | 127                              | 0.34                  | 3 62E+04                  |
| R22               | 1664.27                          | 135.73                                   | 0                                            | 135.73                           | 1.23                  | 1.33E+05                  |
| R23               | 1680                             | 120                                      | 0                                            | 120                              | 0.22                  | 2 37E+04                  |
| R24               | 1668.47                          | 131.53                                   | 0                                            | 131.53                           | 0.82                  | 8 89E+04                  |
| R25               | 1675.33                          | 124.67                                   | 0                                            | 124.67                           | 0.4                   | 4 37E+04                  |
| R26               | 1670.47                          | 129.53                                   | 0                                            | 129.53                           | 0.92                  | 9.98E+04                  |
| 9A                | 1663.87                          | 136.07                                   | 0.07                                         | 136.14                           | 1.24                  | 1 34E+05                  |
| A                 | 0                                | 1800                                     | 0                                            | 1800                             | 3 2 3                 | 3 49E+05                  |
| PS                | 0                                | 1800                                     | 0                                            | 1800                             | 9.82                  | 1.06E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>R02           | 1660.13                          |                                          | 0.13                                         | 139.86                           | <u>-</u> 0            | 2.52E+01                  |
| R03               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1658                             | 142                                      | 0                                            | 142                              | 0                     | 4.67E+02                  |
| R06               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1634.8                           | 165.2                                    | 0                                            | 165.2                            | 0.01                  | 1.18E+03                  |
| R09               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| RII               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1533.73                          | 266.27                                   | 0                                            | 266.27                           | 0.01                  | 6.69E+02                  |
| R18               | 1520.8                           | 279.2                                    | 0                                            | 279.2                            | 0.04                  | 4.60E+03                  |
| R19               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R23               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 1800                                     | 0                                            | 1800                             | 2.67                  | 2.88E+05                  |
| PS                | 0                                | 1800                                     | 0                                            | 1800                             | 7.55                  | 8.15E+05                  |

•

. ..

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1456.6                           | 343.4                                    | 0                                            | 343.4                            | 0.59                  | <br>6.37E+04              |
| R03               | 1612.2                           | 187.8                                    | 0                                            | 187.8                            | 0.61                  | 6.63E+04                  |
| R04               | 1597.87                          | 202.13                                   | 0                                            | 202.13                           | 0.26                  | 2.75E+04                  |
| R05               | 740.73                           | 1059.27                                  | 0                                            | 1059.27                          | 1.31                  | 1.42E+05                  |
| R06               | 1625.4                           | 174.6                                    | 0                                            | 174.6                            | 0.09                  | 9.82E+03                  |
| R07               | 1552.93                          | 247.07                                   | 0                                            | 247.07                           | 0.31                  | 3.36E+04                  |
| R08               | 733.4                            | 1066.6                                   | 0                                            | 1066.6                           | 1.66                  | 1.79E+05                  |
| R09               | 1558.8                           | 241.13                                   | 0.07                                         | 241.2                            | 0.46                  | 4.99E+04                  |
| R11               | 1671.53                          | 128.47                                   | 0                                            | 128.47                           | 0.16                  | 1.71E+04                  |
| R12               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1537.13                          | 262.87                                   | 0                                            | 262.87                           | 0.64                  | 6.93E+04                  |
| R14               | 1744.33                          | 55.6                                     | 0.07                                         | 55.67                            | 0                     | 0.00E+00                  |
| R15               | 1569.87                          | 230.13                                   | 0                                            | 230.13                           | 0.07                  | 7.42E+03                  |
| R16               | 1587.07                          | 212.87                                   | 0.07                                         | 212.94                           | 0.24                  | 2.61E+04                  |
| R17               | 733.53                           | 1066.47                                  | 0                                            | 1066.47                          | 0.45                  | 4.90E+04                  |
| R18               | 744.27                           | 1055.73                                  | 0                                            | 1055.73                          | 1.06                  | 1.14E+05                  |
| R19               | 1522.8                           | 277.13                                   | 0.07                                         | 277.2                            | 1.61                  | 1.74E+05                  |
| R20               | 1643.27                          | 156.73                                   | 0                                            | 156.73                           | 0.04                  | 4.59E+03                  |
| R21               | 1700.8                           | 99.2                                     | 0                                            | 99.2                             | 0.02                  | 2.19E+03                  |
| R22               | 1640.13                          | 159.87                                   | 0                                            | 159.87                           | 0.11                  | 1.14E+04                  |
| R23               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1646.6                           | 153.4                                    | 0                                            | 153.4                            | 0.09                  | 9.96E+03                  |
| R25               | 1739                             | 61                                       | 0                                            | 61                               | 0.01                  | 6.08E+02                  |
| R26               | 1646.4                           | 153.6                                    | 0                                            | 153.6                            | 0.06                  | 6.24E+03                  |
| 9A                | 1726.4                           | 73.6                                     | 0                                            | 73.6                             | 0.12                  | 1.28E+04                  |
| А                 | 0                                | 1800                                     | 0                                            | 1800                             | 2.9                   | 3.14E+05                  |
| PS                | 0                                | 1800                                     | 0                                            | 1800                             | 9.51                  | 1.03E+06                  |

| CONDUIT | LENGTH<br>OF<br>DRV | LENGTH<br>OF<br>SUBCRITICAL | LENGTH<br>OF UPSTR.<br>CRITICAL | LENGTH<br>OF<br>WFT | MEAN<br>FLOW | TOTAL<br>FLOW |
|---------|---------------------|-----------------------------|---------------------------------|---------------------|--------------|---------------|
| NUMBER  | FLOW(MIN)           | FLOW(MIN)                   | FLOW(MIN)                       | FLOW(MIN)           | (CFS)        | CUBIC FT      |
| <br>R02 | 1550.47             |                             | <br>0.07                        | 129.54              | 0.03         | 2.80E+03      |
| R03     | 1680                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R04     | 1680                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R05     | 1566.67             | 113.33                      | 0                               | 113.33              | 0.02         | 1.82E+03      |
| R06     | 1680                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R07     | 1680                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R08     | 1556.8              | 123.2                       | 0                               | 123.2               | 0.03         | 3.20E+03      |
| R09     | 1680                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R11     | 1680                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R12     | 1680                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R13     | 1680                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R14     | 1680                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R15     | 1643.8              | 36.2                        | 0                               | 36.2                | 0            | 4.28E-01      |
| R16     | 1680                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R17     | 1546.13             | 133.87                      | 0                               | 133.87              | 0.01         | 1.05E+03      |
| R18     | 1531.87             | 148.13                      | 0                               | 148.13              | 0.04         | 4.53E+03      |
| R19     | 1680                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R20     | 1680                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R21     | 1680                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R22     | 1680                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R23     | 1680                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R24     | 1680                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R25     | 1680                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R26     | 1680                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| 9A      | 1680                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| А       | 0                   | 1680                        | 0                               | 1680                | 2.59         | 2.61E+05      |
| PS      | 0                   | 1680                        | 0                               | 1680                | 7.42         | 7.48E+05      |

• • •

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR,<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1656.93                          | 983                                      | 0.07                                         | 983.07                           | 1.2                   | 1.89E+05                  |
| R03               | 1980.13                          | 659.87                                   | 0                                            | 659.87                           | 1.26                  | 1.99E+05                  |
| R04               | 1974.13                          | 665.87                                   | 0                                            | 665.87                           | 0.49                  | 7.75E+04                  |
| R05               | 912.6                            | 1727.4                                   | 0                                            | 1727.4                           | 2.52                  | 3.99E+05                  |
| R06               | 2024.07                          | 615.93                                   | 0                                            | 615.93                           | 0.17                  | 2.73E+04                  |
| R07               | 1787.27                          | 852.73                                   | 0                                            | 852.73                           | 0.64                  | 1.01E+05                  |
| R08               | 894.53                           | 1745.4                                   | 0.07                                         | 1745.47                          | 3.3                   | 5.23E+05                  |
| R09               | 1825.6                           | 814.33                                   | 0.07                                         | 814.4                            | 0.84                  | 1.33E+05                  |
| R11               | 2204.47                          | 435.53                                   | 0                                            | 435.53                           | 0.4                   | 6.39E+04                  |
| R12               | 2640                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1752.87                          | 887.13                                   | 0                                            | 887.13                           | 1.32                  | 2.09E+05                  |
| R14               | 2571.67                          | 68.27                                    | 0.07                                         | 68.34                            | 0.01                  | 1.93E+03                  |
| R15               | 1970.53                          | 669.47                                   | 0                                            | 669.47                           | 0.13                  | 2.12E+04                  |
| R16               | 1875.4                           | 764.53                                   | 0.07                                         | 764.6                            | 0.48                  | 7.58E+04                  |
| R17               | 851.4                            | 1788.6                                   | 0                                            | 1788.6                           | 0.9                   | I.43E+05                  |
| R18               | 844.67                           | 1795.33                                  | 0                                            | 1795.33                          | 2.05                  | 3.25E+05                  |
| R19               | 1726.4                           | 913.53                                   | 0.07                                         | 913.6                            | 3.44                  | 5.44E+05                  |
| R20               | 2148.8                           | 491.2                                    | 0                                            | 491.2                            | 0.07                  | 1.17E+04                  |
| R21               | 2385.67                          | 254.33                                   | 0                                            | 254.33                           | 0.03                  | 5.07E+03                  |
| R22               | 2094                             | 546                                      | 0                                            | 546                              | 0.19                  | 3.02E+04                  |
| R23               | 2583.27                          | 56.73                                    | 0                                            | 56.73                            | 0                     | 1.15E+02                  |
| R24               | 2131.53                          | 508.47                                   | 0                                            | 508.47                           | 0.24                  | 3.81E+04                  |
| R25               | 2461                             | 179                                      | 0                                            | 179                              | 0.01                  | 1.73E+03                  |
| R26               | 2254.33                          | 385.67                                   | 0                                            | 385.67                           | 0.1                   | 1.59E+04                  |
| 9A                | 2447.07                          | 192.93                                   | 0                                            | 192.93                           | 0.12                  | 1.88E+04                  |
| A                 | 0                                | 2640                                     | 0                                            | 2640                             | 3.68                  | 5.83E+05                  |
| PS                | 0                                | 2640                                     | 0                                            | 2640                             | 11.89                 | 1.88E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>R02           | 1597.07                          | 142.93                                   | 0                                            | 142.93                           | 0.02                  | 2.28E+03                  |
| R03               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1651.8                           | 88.2                                     | 0                                            | 88.2                             | 0.01                  | 1.44E+03                  |
| R06               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1646.4                           | 93.6                                     | 0                                            | 93.6                             | 0.02                  | 2.49E+03                  |
| R09               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1710.2                           | 29.8                                     | 0                                            | 29.8                             | 0                     | 3.14E-01                  |
| R16               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1533.2                           | 206.8                                    | 0                                            | 206.8                            | 0.01                  | 8.58E+02                  |
| R18               | 1520.33                          | 219.67                                   | 0                                            | 219.67                           | 0.04                  | 4.29E+03                  |
| R19               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R23               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1740                                     | 0                                            | 1740                             | 2.61                  | 2.72E+05                  |
| PS                | 0                                | 1740                                     | 0                                            | 1740                             | 7.46                  | 7.79E+05                  |

d sur

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R03               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R06               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R09               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1534.87                          | 145.13                                   | 0                                            | 145.13                           | 0                     | 3.74E+01                  |
| R18               | 1521.93                          | 158.07                                   | 0                                            | 158.07                           | 0.01                  | 8.92E+02                  |
| R19               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R23               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1680                                     | 0                                            | 1680                             | 2.47                  | 2.49E+05                  |
| PS                | 0                                | 1680                                     | 0                                            | 1680                             | 7.11                  | 7.17E+05                  |

|                   | LENGTH<br>OF     | LENGTH<br>OF             | LENGTH<br>OF UPSTR.   | LENGTH<br>OF     | MEAN          | TOTAL            |
|-------------------|------------------|--------------------------|-----------------------|------------------|---------------|------------------|
| CONDUIT<br>NUMBER | DRY<br>FLOW(MIN) | SUBCRITICAL<br>FLOW(MIN) | CRITICAL<br>FLOW(MIN) | WET<br>FLOW(MIN) | FLOW<br>(CFS) | FLOW<br>CUBIC FT |
| <br>R02           | 1131.13          | 608.87                   | 0                     | 608.87           | <br>1.41      | 1.47E+05         |
| R03               | 1482             | 257.93                   | 0.07                  | 258              | 1.64          | 1.71E+05         |
| R04               | 1475.53          | 264.47                   | 0                     | 264.47           | 0.73          | 7.66E+04         |
| R05               | 844.87           | 895.13                   | 0                     | 895.13           | 2.74          | 2.86E+05         |
| R06               | 1491.8           | 248.2                    | 0                     | 248.2            | 0.23          | 2.43E+04         |
| R07               | 1455.73          | 284.27                   | 0                     | 284.27           | 0.77          | 8.07E+04         |
| R08               | 843.6            | 896.4                    | 0                     | 896.4            | 3.86          | 4.03E+05         |
| R09               | 1458             | 281.93                   | 0.07                  | 282              | 1.57          | 1.64E+05         |
| R11               | 1507.07          | 232.87                   | 0.07                  | 232.94           | 0.82          | 8.60E+04         |
| R12               | 1740             | 0                        | 0                     | 0                | 0             | 0.00E+00         |
| R13               | 1453.53          | 286.47                   | 0                     | 286.47           | 1.59          | 1.66E+05         |
| R14               | 1517.2           | 222.8                    | 0                     | 222.8            | 0.37          | 3.87E+04         |
| R15               | 1443.07          | 296.93                   | 0                     | 296.93           | 0.22          | 2.33E+04         |
| R16               | 1443.93          | 296                      | 0.07                  | 296.07           | 0.83          | 8.67E+04         |
| R17               | 844.93           | 895.07                   | 0                     | 895.07           | 1.01          | 1.06E+05         |
| R18               | 849.47           | 890.53                   | 0                     | 890.53           | 2.38          | 2.49E+05         |
| R19               | 1398.07          | 341.93                   | 0                     | 341.93           | 3.48          | 3.64E+05         |
| R20               | 1500.8           | 239.2                    | 0                     | 239.2            | 0.19          | 1.99E+04         |
| R21               | 1522             | 218                      | 0                     | 218              | 0.11          | 1.12E+04         |
| R22               | 1500.4           | 239.6                    | 0                     | 239.6            | 0.4           | 4.18E+04         |
| R23               | 1559.87          | 180.13                   | 0                     | 180.13           | 0.01          | 1.10E+03         |
| R24               | 1497.73          | 242.27                   | 0                     | 242.27           | 0.41          | 4.30E+04         |
| R25               | 1519.07          | 220.93                   | 0                     | 220.93           | 0.06          | 5.99E+03         |
| R26               | 1501.33          | <u>2</u> 38.67           | 0                     | 238.67           | 0.26          | 2.77E+04         |
| 9A                | 1507.53          | 232.47                   | 0                     | 232.47           | 0.67          | 6.97E+04         |
| А                 | 0                | 1740                     | 0                     | 1740             | 2.94          | 3.07E+05         |
| PS                | 0                | 1740                     | 0                     | 1740             | 10.82         | 1.13E+06         |

i = 1

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1511.2                           | 708.8                                    |                                              | 708.8                            | 0.89                  | 1 19F+05                  |
| R03               | 1811.27                          | 408.67                                   | 0.07                                         | 408.74                           | 0.39                  | 5.14E+04                  |
| R04               | 1786.07                          | 433.93                                   | 0                                            | 433,93                           | 0.18                  | 2.43E+04                  |
| R05               | 800.13                           | 1419.87                                  | 0                                            | 1419.87                          | 1.91                  | 2.54E+05                  |
| R06               | 1798.67                          | 421.27                                   | 0.07                                         | 421.34                           | 0.12                  | 1.56E+04                  |
| R07               | 1584.07                          | 635.93                                   | 0                                            | 635.93                           | 0.48                  | 6.39E+04                  |
| R08               | 790.93                           | 1429.07                                  | 0                                            | 1429.07                          | 2.43                  | 3.24E+05                  |
| R09               | 1606.2                           | 613.8                                    | 0                                            | 613.8                            | 0.49                  | 6.57E+04                  |
| R11               | 2106.13                          | 113.8                                    | 0.07                                         | 113.87                           | 0.01                  | 7.87E+02                  |
| R12               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1578.47                          | 641.47                                   | 0.07                                         | 641.54                           | 0.97                  | 1.30E+05                  |
| R14               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1605.27                          | 614.73                                   | 0                                            | 614.73                           | 0.08                  | 1.01E+04                  |
| R16               | 1613.2                           | 606.73                                   | 0.07                                         | 606.8                            | 0.21                  | 2.85E+04                  |
| R17               | 769                              | 1451                                     | 0                                            | 1451                             | 0.66                  | 8.82E+04                  |
| R18               | 781.07                           | 1438.93                                  | 0                                            | 1438.93                          | 1.38                  | 1.84E+05                  |
| R19               | 1601.6                           | 618.4                                    | 0                                            | 618.4                            | 2.4                   | 3.20E+05                  |
| R20               | 1963.8                           | 256.2                                    | 0                                            | 256.2                            | 0.02                  | 2.53E+03                  |
| R21               | 2140.13                          | 79.87                                    | 0                                            | 79.87                            | 0.01                  | 8.37E+02                  |
| R22               | 1844.6                           | 375.4                                    | 0                                            | 375.4                            | 0.07                  | 8.66E+03                  |
| R23               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 2100.73                          | 119.27                                   | 0                                            | 119.27                           | 0.01                  | 1.95E+03                  |
| R25               | 2163.67                          | 56.33                                    | 0                                            | 56.33                            | 0                     | 1.52E+01                  |
| R26               | 2100.07                          | 119.93                                   | 0                                            | 119.93                           | 0.03                  | 3.36E+03                  |
| 9A                | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 2220                                     | 0                                            | 2220                             | 3.99                  | 5.32E+05                  |
| PS                | 0                                | 2220                                     | 0                                            | 2220                             | 11.43                 | 1.52E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
|                   |                                  |                                          |                                              |                                  |                       |                           |
| R02               | 1449                             | 410.93                                   | 0.07                                         | 411                              | 0.71                  | 7.94E+04                  |
| R03               | 1565.13                          | 294.87                                   | 0                                            | 294.87                           | 0.74                  | 8.30E+04                  |
| R04               | 1545.47                          | 314.53                                   | 0                                            | 314.53                           | 0.33                  | 3.74E+04                  |
| R05               | 727.47                           | 1132.47                                  | 0.07                                         | 1132.54                          | 1.57                  | 1.75E+05                  |
| R06               | 1635.73                          | 224.27                                   | 0                                            | 224.27                           | 0.1                   | 1.17E+04                  |
| R07               | 1502.73                          | 357.27                                   | 0                                            | 357.27                           | 0.38                  | 4.22E+04                  |
| R08               | 725                              | 1134.93                                  | 0.07                                         | 1135                             | 2                     | 2.23E+05                  |
| R09               | 1503                             | 357                                      | 0                                            | 357                              | 0.42                  | 4.74E+04                  |
| R11               | 1717.2                           | 142.73                                   | 0.07                                         | 142.8                            | 0.03                  | 3.20E+03                  |
| R12               | 1860                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1484.93                          | 375.07                                   | 0                                            | 375.07                           | 0.79                  | 8.83E+04                  |
| R14               | 1860                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1555.8                           | 304.2                                    | 0                                            | 304.2                            | 0.08                  | 8,78E+03                  |
| R16               | 1579.73                          | 280.27                                   | 0                                            | 280.27                           | 0.3                   | 3.35E+04                  |
| R17               | 726.6                            | 1133.4                                   | 0                                            | 1133.4                           | 0.55                  | 6.13E+04                  |
| R18               | 732.53                           | 1127.47                                  | 0                                            | 1127.47                          | 1.26                  | 1.41E+05                  |
| R19               | 1493.93                          | 366                                      | 0.07                                         | 366.07                           | 2.02                  | 2.26E+05                  |
| R20               | 1654.13                          | 205.87                                   | 0                                            | 205.87                           | 0.04                  | 4.70E+03                  |
| R21               | 1735.2                           | 124.8                                    | 0                                            | 124.8                            | 0.02                  | 1.96E+03                  |
| R22               | 1650.53                          | 209.47                                   | 0                                            | 209.47                           | 0.11                  | 1.26E+04                  |
| R23               | 1860                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1639.27                          | 220.73                                   | 0                                            | 220.73                           | 0.11                  | 1.27E+04                  |
| R25               | 1741.27                          | 118.73                                   | 0                                            | 118.73                           | 0                     | 2.73E+02                  |
| R26               | 1656.47                          | 203.53                                   | 0                                            | 203.53                           | 0.06                  | 6.26E+03                  |
| 9A                | 1795.73                          | 64.27                                    | 0                                            | 64.27                            | 0                     | 4.25E+02                  |
| А                 | 0                                | 1860                                     | 0                                            | 1860                             | 3.08                  | 3.44E+05                  |
| PS                | 0                                | 1860                                     | 0                                            | 1860                             | 9.99                  | 1.12E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1986.6                           | 473 33                                   |                                              | <br>173 1                        | 0.58                  |                           |
| R03               | 2214.4                           | 245.53                                   | 0.07                                         | 245.6                            | 0.50                  | 0.51E+04                  |
| R04               | 2206,67                          | 253.33                                   | 0.07                                         | 240.0                            | 0.00                  | 4.25E+04                  |
| R05               | 816.87                           | 1643.13                                  | 0                                            | 1643.13                          | 1 29                  | 191E+05                   |
| R06               | 2237.6                           | 222.4                                    | 0<br>0                                       | 222.4                            | 0.09                  | 1.37E+04                  |
| R07               | 2188.27                          | 271.73                                   | 0                                            | 271.73                           | 0.31                  | 4.63E+04                  |
| R08               | 814.67                           | 1645.33                                  | 0                                            | 1645.33                          | 1.67                  | 2.46E+05                  |
| R09               | 2188.27                          | 271.73                                   | 0                                            | 271,73                           | 0.5                   | 7.32E+04                  |
| R11               | 2250.27                          | 209.73                                   | 0                                            | 209,73                           | 0.19                  | 2.77E+04                  |
| R12               | 2460                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 2182.67                          | 277.27                                   | 0.07                                         | 277.34                           | 0.65                  | 9.63E+04                  |
| R14               | 2386.87                          | 73.07                                    | 0.07                                         | 73.14                            | 0.03                  | 4.25E+03                  |
| R15               | 2208.6                           | 251.4                                    | 0                                            | 251.4                            | 0.07                  | 1.08E+04                  |
| R16               | 2194.07                          | 265.87                                   | 0.07                                         | 265.94                           | 0.28                  | 4.19E+04                  |
| R17               | 816.27                           | 1643.73                                  | 0                                            | 1643.73                          | 0.46                  | 6.72E+04                  |
| R18               | 821.87                           | 1638.13                                  | 0                                            | 1638.13                          | 1.07                  | 1.58E+05                  |
| R19               | 2152.07                          | 307.87                                   | 0.07                                         | 307.94                           | 1.59                  | 2.35E+05                  |
| R20               | 2250.73                          | 209.27                                   | 0                                            | 209.27                           | 0.05                  | 7.21E+03                  |
| R21               | 2336.27                          | 123.73                                   | 0                                            | 123.73                           | 0.02                  | 3.66E+03                  |
| R22               | 2231                             | 229                                      | 0                                            | 229                              | 0.12                  | 1.71E+04                  |
| R23               | 2402.27                          | 57.73                                    | 0                                            | 57.73                            | 0                     | 2.65E+02                  |
| R24               | 2247                             | 213                                      | 0                                            | 213                              | 0.11                  | 1.58E+04                  |
| R25               | 2374.33                          | 85.67                                    | 0                                            | 85.67                            | 0.01                  | 1.59E+03                  |
| R26               | 2301.13                          | 158.87                                   | 0                                            | 158.87                           | 0.07                  | 9.88E+03                  |
| 9A                | 2332.8                           | 127.2                                    | 0                                            | 127.2                            | 0.14                  | 2.06E+04                  |
| A                 | 0                                | 2460                                     | 0                                            | 2460                             | 2.72                  | 4.01E+05                  |
| PS                | 0                                | 2460                                     | 0                                            | 2460                             | 9.08                  | 1.34E+06                  |

.

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
|                   | 1796.8                           | 543.2                                    | 0                                            | 543.2                            | 0.54                  | 7.61E+04                  |
| R03               | 1942.33                          | 397.6                                    | 0.07                                         | 397.67                           | 0.45                  | 6.35E+04                  |
| R04               | 1954.67                          | 385.33                                   | 0                                            | 385.33                           | 0.1                   | 1.47E+04                  |
| R05               | 1086.2                           | 1253.73                                  | 0.07                                         | 1253.8                           | 1.21                  | 1.70E+05                  |
| R06               | 2030.73                          | 309.27                                   | 0                                            | 309.27                           | 0.07                  | 9.21E+03                  |
| R07               | 1845.47                          | 494.53                                   | 0                                            | 494.53                           | 0.28                  | 3.95E+04                  |
| R08               | 1083.8                           | 1256.2                                   | 0                                            | 1256.2                           | 1.51                  | 2.12E+05                  |
| R09               | 1878.13                          | 461.87                                   | 0                                            | 461.87                           | 0.29                  | 4.09E+04                  |
| RH                | 2340                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 2340                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1836.4                           | 503.6                                    | 0                                            | 503.6                            | 0.57                  | 7.98E+04                  |
| R14               | 2340                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1900.47                          | 439.53                                   | 0                                            | 439.53                           | 0.04                  | 6.00E+03                  |
| R16               | 1947.47                          | 392.47                                   | 0.07                                         | 392.54                           | 0.13                  | 1.80E+04                  |
| R17               | 1047.13                          | 1292.87                                  | 0                                            | 1292.87                          | 0.42                  | 5.87E+04                  |
| R18               | 1048.93                          | 1291.07                                  | 0                                            | 1291.07                          | 0.95                  | 1.33E+05                  |
| R19               | 1863.73                          | 476.2                                    | 0.07                                         | 476.27                           | 1.47                  | 2.06E+05                  |
| R20               | 2157.2                           | 182.8                                    | 0                                            | 182.8                            | 0.01                  | 8.64E+02                  |
| R21               | 2340                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 2094.27                          | 245.73                                   | 0                                            | 245.73                           | 0.03                  | 4.29E+03                  |
| R23               | 2340                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 2237.2                           | 102.8                                    | 0                                            | 102.8                            | 0                     | 2.61E+02                  |
| R25               | 2340                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 2220.67                          | 119.33                                   | 0                                            | 119.33                           | 0.01                  | 9.79E+02                  |
| 9A                | 2340                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 2340                                     | 0                                            | 2340                             | 3.13                  | 4.39E+05                  |
| PS                | 0                                | 2340                                     | 0                                            | 2340                             | 9.65                  | 1.36E+06                  |

.

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1450.67                          | 649.33                                   | 0                                            | 649.33                           | 0.81                  | 1.03E+05                  |
| R03               | 1647.6                           | 452.4                                    | 0                                            | 452.4                            | 0.7                   | 8.82E+04                  |
| R04               | 1584.67                          | 515.33                                   | 0                                            | 515.33                           | 0.33                  | 4.18E+04                  |
| R05               | 728.27                           | 1371.73                                  | 0                                            | 1371.73                          | 1.78                  | 2.24E+05                  |
| R06               | 1818.33                          | 281.67                                   | 0                                            | 281.67                           | 0.09                  | 1,19E+04                  |
| R07               | 1503.07                          | 596.93                                   | 0                                            | 596.93                           | 0.42                  | 5.32E+04                  |
| R08               | 725.47                           | 1374.47                                  | 0.07                                         | 1374.54                          | 2.25                  | 2.83E+05                  |
| R09               | 1503.53                          | 596.47                                   | 0                                            | 596.47                           | 0.55                  | 6.98E+04                  |
| R11               | 1906.4                           | 193.6                                    | 0                                            | 193.6                            | 0.16                  | 2.03E+04                  |
| R12               | 2100                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1485.8                           | 614.2                                    | 0                                            | 614.2                            | 0.86                  | 1.08E+05                  |
| R14               | 2043.4                           | 56.53                                    | 0.07                                         | 56.6                             | 0                     | 0.00E+00                  |
| R15               | 1627.93                          | 472.07                                   | 0                                            | 472.07                           | 0.08                  | 9.79E+03                  |
| R16               | 1747.93                          | 352.07                                   | 0                                            | 352.07                           | 0.23                  | 2.89E+04                  |
| R17               | 727.07                           | 1372.93                                  | 0                                            | 1372.93                          | 0.61                  | 7.71E+04                  |
| R18               | 733.4                            | 1366.6                                   | 0                                            | 1366.6                           | 1.39                  | 1.76E+05                  |
| R19               | 1501.13                          | 598.8                                    | 0.07                                         | 598.87                           | 2.04                  | 2.57E+05                  |
| R20               | 1903.87                          | 196.13                                   | 0                                            | 196.13                           | 0.04                  | 5.03E+03                  |
| R21               | 2002.33                          | 97.67                                    | 0                                            | 97.67                            | 0.02                  | 2.32E+03                  |
| R22               | 1842.67                          | 257.33                                   | 0                                            | 257.33                           | 0.1                   | 1.28E+04                  |
| R23               | 2100                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1769.53                          | 330.47                                   | 0                                            | 330.47                           | 0.11                  | 1.34E+04                  |
| R25               | 1983.2                           | 116.8                                    | 0                                            | 116.8                            | 0.01                  | 8.82E+02                  |
| R26               | 1958                             | 142                                      | 0                                            | 142                              | 0.05                  | 6.87E+03                  |
| 9A                | 1963.4                           | 136.6                                    | 0                                            | 136.6                            | 0.11                  | 1.41E+04                  |
| A                 | 0                                | 2100                                     | 0                                            | 2100                             | 3.21                  | 4.05E+05                  |
| PS                | 0                                | 2100                                     | 0                                            | 2100                             | 10.75                 | 1.36E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>R02           | 1461 6                           | 698.33                                   | <br>0.07                                     | 698.4                            | 0.49                  | 6.29E+04                  |
| R03               | 1835.47                          | 324.53                                   | 0                                            | 324.53                           | 0.34                  | 4.36E+04                  |
| R04               | 1802.47                          | 357.53                                   | 0                                            | 357.53                           | 0.16                  | 2.11E+04                  |
| R05               | 727.47                           | 1432.47                                  | 0.07                                         | 1432.54                          | 1.12                  | 1.46E+05                  |
| R06               | 1950.07                          | 209.93                                   | 0                                            | 209.93                           | 0.04                  | 4.92E+03                  |
| R07               | 1504.8                           | 655.2                                    | 0                                            | 655.2                            | 0.23                  | 2.94E+04                  |
| R08               | 725                              | 1434.93                                  | 0.07                                         | 1435                             | 1.38                  | 1.78E+05                  |
| R09               | 1700.6                           | 459.33                                   | 0.07                                         | 459.4                            | 0.23                  | 2.96E+04                  |
| R11               | 2141.2                           | 18.73                                    | 0.07                                         | 18.8                             | 0                     | 2.11E+01                  |
| R12               | 2160                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1485.47                          | 674.53                                   | 0                                            | 674.53                           | 0.5                   | 6.49E+04                  |
| R14               | 2160                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1830.93                          | 329.07                                   | 0                                            | 329.07                           | 0.03                  | 4.40E+03                  |
| R16               | 1848.07                          | 311.87                                   | 0.07                                         | 311.94                           | 0.07                  | 9.61E+03                  |
| R17               | 726.6                            | 1433.4                                   | 0                                            | 1433.4                           | 0.38                  | 4.98E+04                  |
| R18               | 732.53                           | 1427.47                                  | 0                                            | 1427.47                          | 0.88                  | 1.14E+05                  |
| R19               | 1516.87                          | 643.13                                   | 0                                            | 643.13                           | 1.15                  | 1.49E+05                  |
| R20               | 2026.73                          | 133.27                                   | 0                                            | 133.27                           | 0.01                  | 6.66E+02                  |
| R21               | 2159.47                          | 0.53                                     | 0                                            | 0.53                             | 0                     | 2.46E+00                  |
| R22               | 2013                             | 147                                      | 0                                            | 147                              | 0.02                  | 3.20E+03                  |
| R23               | 2160                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 2079.6                           | 80.4                                     | 0                                            | 80.4                             | 0                     | 2.46E+02                  |
| R25               | 2160                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 2075.8                           | 84.2                                     | 0                                            | 84.2                             | 0.01                  | 7.85E+02                  |
| 9A                | 2160                             | . 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 2160                                     | 0                                            | 2160                             | 3.02                  | 3.91E+05                  |
| PS                | 0                                | 2160                                     | 0                                            | 2160                             | 9.56                  | 1.24E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>R02           | 1380 33                          |                                          |                                              | 200 67                           | 0.61                  | 6 19E + 04                |
| R02               | 1533 47                          | 146 47                                   | 0.07                                         | 299.07                           | 0.01                  | 6.18E+04                  |
| R04               | 1519.87                          | 140.47                                   | 0.07                                         | 140.54                           | 0.09                  | 2 17E+04                  |
| R05               | 843.67                           | 836.27                                   | 0.07                                         | 836.34                           | 1 20                  | 1 20E+05                  |
| R06               | 1546.93                          | 133.07                                   | 0.07                                         | 133.07                           | 1.2.9                 | 9.05E+03                  |
| R07               | 1493                             | 187                                      | 0                                            | 187                              | 0.09                  | 3.36E+04                  |
| R08               | 842.93                           | 837                                      | 0.07                                         | 837.07                           | 1 73                  | 1.74E+05                  |
| R09               | 1490.33                          | 189.6                                    | 0.07                                         | 189.67                           | 0.61                  | 6.14E+04                  |
| R11               | 1554                             | 125.93                                   | 0.07                                         | 126                              | 0.34                  | 3 39E+04                  |
| R12               | 1680                             | 0                                        | 0                                            | 0                                | 0.54                  | 0.00E+00                  |
| R13               | 1478.53                          | 201.4                                    | 0.07                                         | 201.47                           | 0.69                  | 6 95E+04                  |
| R14               | 1610.87                          | 69.13                                    | 0                                            | 69.13                            | 0.03                  | 3.33E+03                  |
| R15               | 1463.07                          | 216.93                                   | 0                                            | 216.93                           | 0.12                  | 1.19E+04                  |
| R16               | 1483.53                          | 196.4                                    | 0.07                                         | 196.47                           | 0.33                  | 3.30E+04                  |
| R17               | 844.13                           | 835.87                                   | 0                                            | 835.87                           | 0.46                  | 4.65E+04                  |
| R18               | 847.93                           | 832.07                                   | 0                                            | 832.07                           | 1.09                  | 1.10E+05                  |
| R19               | 1446.07                          | 233.93                                   | 0                                            | 233.93                           | 1.63                  | 1.64E+05                  |
| R20               | 1559.73                          | 120.27                                   | 0                                            | 120.27                           | 0.07                  | 7.01E+03                  |
| R21               | 1571.07                          | 108.93                                   | 0                                            | 108.93                           | 0.03                  | 3.25E+03                  |
| R22               | 1559.87                          | 120.13                                   | 0                                            | 120.13                           | 0.15                  | 1.55E+04                  |
| R23               | 1634.33                          | 45.67                                    | 0                                            | 45.67                            | 0.01                  | 6.39E+02                  |
| R24               | 1551.47                          | 128.53                                   | 0                                            | 128.53                           | 0.17                  | 1.72E+04                  |
| R25               | 1564.67                          | 115.33                                   | 0                                            | 115.33                           | 0.02                  | 1.89E+03                  |
| R26               | 1561.07                          | 118.93                                   | 0                                            | 118.93                           | 0.1                   | 9.77E+03                  |
| 9A                | 1560.07                          | 119.93                                   | 0                                            | 119.93                           | 0.22                  | 2.24E+04                  |
| A                 | 0                                | 1680                                     | 0                                            | 1680                             | 2.68                  | 2.70E+05                  |
| PS                | 0                                | 1680                                     | 0                                            | 1680                             | 8.88                  | 8.96E+05                  |

| CONDUIT | LENGTH<br>OF<br>DRY | LENGTH<br>OF<br>SUBCRITICAL | LENGTH<br>OF UPSTR.<br>CRITICAL | LENGTH<br>OF<br>WET | MEAN<br>FLOW | TOTAL<br>FLOW |
|---------|---------------------|-----------------------------|---------------------------------|---------------------|--------------|---------------|
| NUMBER  | FLOW(MIN)           | FLOW(MIN)                   | FLOW(MIN)                       | FLOW(MIN)           | (CFS)        | CUBIC FT      |
| <br>P02 | 1396 87             | 823 13                      | <br>0                           |                     | 171          | 2 28E+05      |
| R02     | 1595 53             | 624.4                       | 0.07                            | 624.47              | 2.02         | 2.20E+05      |
| R04     | 1576.53             | 643.47                      | 0.07                            | 643.47              | 0.92         | 1.23E+05      |
| R05     | 906.47              | 1313 47                     | 0.07                            | 1313.54             | 3.8          | 5.06E+05      |
| R06     | 1691 73             | 528.2                       | 0.07                            | 528.27              | 0.28         | 3.73E+04      |
| R07     | 1508.07             | 711.93                      | 0                               | 711.93              | 1.02         | 1.36E+05      |
| R08     | 904.33              | 1315.67                     | 0                               | 1315.67             | 5.18         | 6.90E+05      |
| R09     | 1538                | 681.93                      | 0.07                            | 682                 | 1.77         | 2.36E+05      |
| R11     | 1685.87             | 534.13                      | 0                               | 534.13              | 0.9          | 1.19E+05      |
| R12     | 2220                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R13     | 1489.87             | 730.13                      | 0                               | 730.13              | 2.08         | 2.77E+05      |
| R14     | 2003.2              | 216.8                       | 0                               | 216.8               | 0.36         | 4.80E+04      |
| R15     | 1469.07             | 750.93                      | 0                               | 750.93              | 0.34         | 4.53E+04      |
| R16     | 1594.47             | 625.53                      | 0                               | 625.53              | 1.04         | 1.39E+05      |
| R17     | 769                 | 1451                        | 0                               | 1451                | 1.36         | 1.81E+05      |
| R18     | 781.07              | 1438.93                     | 0                               | 1438.93             | 3.15         | 4.20E+05      |
| R19     | 1513.2              | 706.73                      | 0.07                            | 706.8               | 4.91         | 6.55E+05      |
| R20     | 1744.27             | 475.73                      | 0                               | 475.73              | 0.2          | 2.65E+04      |
| R21     | 1891.07             | 328.93                      | 0                               | 328.93              | 0.11         | 1.50E+04      |
| R22     | 1733.33             | 486.67                      | 0                               | 486.67              | 0.44         | 5.85E+04      |
| R23     | 2039.4              | 180.6                       | 0                               | 180.6               | 0.01         | 1.78E+03      |
| R24     | 1616.47             | 603.53                      | 0                               | 603.53              | 0.47         | 6.32E+04      |
| R25     | 1863.93             | 356.07                      | 0                               | 356.07              | 0.06         | 7.71E+03      |
| R26     | 1857.6              | 362.4                       | 0                               | 362.4               | 0.27         | 3.66E+04      |
| 9A      | 1766.87             | 453.13                      | 0                               | 453.13              | 0.6          | 8.03E+04      |
| А       | 0                   | 2220                        | 0                               | 2220                | 3.8          | 5.06E+05      |
| PS      | 0                   | 2220                        | 0                               | 2220                | 13.06        | 1.74E+06      |

,

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1463.2                           | 456.8                                    | 0                                            | 456.8                            | 0.24                  | 2 79F+04                  |
| R03               | 1920                             | 0                                        | 0                                            | 0                                | 0.24                  | 0.00E+00                  |
| R04               | 1920                             | 0                                        | 0                                            | ů<br>0                           | õ                     | 0.00E+00                  |
| R05               | 732.33                           | 1187.67                                  | 0                                            | 1187.67                          | 0.62                  | 7 11F+04                  |
| R06               | 1920                             | 0                                        | 0                                            | 0                                | 0.02                  | 0.00E+00                  |
| R07               | 1512.73                          | 407.27                                   | 0                                            | 407.27                           | 0.08                  | 9.11E+03                  |
| R08               | 728.07                           | 1191.87                                  | 0.07                                         | 1191.94                          | 0.65                  | 7.49E+04                  |
| R09               | 1866.67                          | 53.33                                    | 0                                            | 53.33                            | 0                     | 1.01E+02                  |
| R11               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1494.47                          | 425,53                                   | 0                                            | 425.53                           | 0.14                  | 1.56E+04                  |
| R14               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1625.27                          | 294.73                                   | 0                                            | 294.73                           | 0                     | 5.40E+02                  |
| R16               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1484.87                          | 435.13                                   | 0                                            | 435.13                           | 0.08                  | 9.58E+03                  |
| R18               | 1466.6                           | 453.4                                    | 0                                            | 453.4                            | 0.28                  | 3.23E+04                  |
| R19               | 1880.73                          | 39.27                                    | 0                                            | 39.27                            | 0                     | 3.85E+02                  |
| R20               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R23               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 1920                                     | 0                                            | 1920                             | 2.79                  | 3,22E+05                  |
| PS                | 0                                | 1920                                     | 0                                            | 1920                             | 9.08                  | 1.05E+06                  |

.

,

| CONDUIT | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>EL OW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|---------|----------------------------------|------------------------------------------|-----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| NUMBER  |                                  |                                          |                                               |                                  |                       |                           |
| R02     | 1415                             | 924.93                                   | 0.07                                          | 925                              | 1.65                  | 2.31E+05                  |
| R03     | 1804.07                          | 535.87                                   | 0.07                                          | 535.94                           | 1.8                   | 2.53E+05                  |
| R04     | 1757.2                           | 582.8                                    | 0                                             | 582.8                            | 0.81                  | 1.14E+05                  |
| R05     | 735.8                            | 1604.2                                   | 0                                             | 1604.2                           | 3.25                  | 4.57E+05                  |
| R06     | 1873.27                          | 466.73                                   | 0                                             | 466.73                           | 0.26                  | 3.60E+04                  |
| R07     | 1588.07                          | 751.93                                   | 0                                             | 751.93                           | 0.88                  | 1.23E+05                  |
| R08     | 729.8                            | 1610.13                                  | 0.07                                          | 1610.2                           | 4.48                  | 6.30E+05                  |
| R09     | 1639.8                           | 700.07                                   | 0.13                                          | 700.2                            | 1.62                  | 2.27E+05                  |
| R11     | 1900.2                           | 439.67                                   | 0.13                                          | 439.8                            | 0.83                  | 1.17E+05                  |
| R12     | 2340                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R13     | 1555.07                          | 784.93                                   | 0                                             | 784.93                           | 1.81                  | 2.55E+05                  |
| R14     | 1983.33                          | 356.53                                   | 0.13                                          | 356.66                           | 0.33                  | 4.65E+04                  |
| R15     | 1596.73                          | 743.27                                   | 0                                             | 743.27                           | 0.27                  | 3.83E+04                  |
| R16     | 1725.33                          | 614.67                                   | 0                                             | 614.67                           | 0.87                  | 1.23E+05                  |
| R17     | 730.93                           | 1609.07                                  | 0                                             | 1609.07                          | 1.18                  | 1.66E+05                  |
| R18     | 740.27                           | 1599.73                                  | 0                                             | 1599.73                          | 2.78                  | 3.91E+05                  |
| R19     | 1520.2                           | 819.8                                    | 0                                             | 819.8                            | 4.39                  | 6.17E+05                  |
| R20     | 1930.6                           | 409.4                                    | 0                                             | 409.4                            | 0.19                  | 2.66E+04                  |
| R21     | 2011.4                           | 328.6                                    | 0                                             | 328.6                            | 0.1                   | 1.43E+04                  |
| R22     | 1922.53                          | 417.47                                   | 0                                             | 417.47                           | 0.41                  | 5,70E+04                  |
| R23     | 2161.4                           | 178.6                                    | 0                                             | 178.6                            | 0.02                  | 3.24E+03                  |
| R24     | 1894.53                          | 445.47                                   | 0                                             | 445.47                           | 0.43                  | 6.03E+04                  |
| R25     | 1927.07                          | 412.93                                   | 0                                             | 412.93                           | 0.08                  | 1.09E+04                  |
| R26     | 1907.07                          | 432.93                                   | 0                                             | 432.93                           | 0.35                  | 4.87E+04                  |
| 9A      | 1907.33                          | 432.67                                   | 0                                             | 432.67                           | 0.61                  | 8.56E+04                  |
| А       | 0                                | 2340                                     | 0                                             | 2340                             | 3.4                   | 4.77E+05                  |
| PS      | 0                                | 2340                                     | 0                                             | 2340                             | 12.12                 | 1.70E+06                  |

...

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1393.53                          | 406.4                                    | 0.07                                         | 406 47                           | 0.78                  | ****<br>8 40E±04          |
| R03               | 1540.27                          | 259.73                                   | 0.07                                         | 259.73                           | 0.70                  | 8.40E+04                  |
| R04               | 1533.6                           | 266.4                                    | ů                                            | 266.4                            | 0.32                  | 4.00E+04                  |
| R05               | 730.47                           | 1069.53                                  | 0                                            | 1069.53                          | 17                    | 1.84E+05                  |
| R06               | 1547.93                          | 252.07                                   | 0                                            | 252.07                           | 0.12                  | 1.34E+05                  |
| R07               | 1475.07                          | 324.93                                   | 0                                            | 324.93                           | 0.42                  | 4 51F+04                  |
| R08               | 726.93                           | 1073.07                                  | 0                                            | 1073.07                          | 2.19                  | 2 37E+05                  |
| R09               | 1514.8                           | 285.2                                    | 0                                            | 285.2                            | 0.48                  | 5.14E+04                  |
| R11               | 1620.6                           | 179.4                                    | 0                                            | 179.4                            | 0.04                  | 3.88E+03                  |
| R12               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1470.13                          | 329.87                                   | 0                                            | 329.87                           | 0.86                  | 9.25E+04                  |
| R14               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1493.4                           | 306.6                                    | 0                                            | 306.6                            | 0.09                  | 9.67E+03                  |
| R16               | 1505.8                           | 294.2                                    | 0                                            | 294.2                            | 0.35                  | 3.79E+04                  |
| R17               | 728.4                            | 1071.6                                   | 0                                            | 1071.6                           | 0.6                   | 6.44E+04                  |
| R18               | 735.87                           | 1064.13                                  | 0                                            | 1064.13                          | 1.37                  | 1.48E+05                  |
| R19               | 1466.93                          | 333.07                                   | 0                                            | 333.07                           | 2.22                  | 2.40E+05                  |
| R20               | 1609.87                          | 190.13                                   | 0                                            | 190.13                           | 0.05                  | 5.49E+03                  |
| R21               | 1650.73                          | 149.27                                   | 0                                            | 149.27                           | 0.02                  | 2.42E+03                  |
| R22               | 1560.93                          | 239.07                                   | 0                                            | 239.07                           | 0.13                  | 1.41E+04                  |
| R23               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1555.4                           | 244.6                                    | 0                                            | 244.6                            | 0.16                  | 1.74E+04                  |
| R25               | 1624.53                          | 175.47                                   | 0                                            | 175.47                           | 0                     | 2.94E+02                  |
| R26               | 1616.6                           | 183.4                                    | 0                                            | 183.4                            | 0.07                  | 7.46E+03                  |
| 9A                | 1726.6                           | 73.4                                     | 0                                            | 73.4                             | 0                     | 4.45E+02                  |
| A                 | 0                                | 1800                                     | 0                                            | 1800                             | 3.17                  | 3.43E+05                  |
| PS                | 0                                | 1800                                     | 0                                            | 1800                             | 10.23                 | 1.10E+06                  |

|         | LENGTH<br>OF | LENGTH<br>OF | LENGTH<br>OF UPSTR. | LENGTH<br>OF | MEAN    | TOTAL    |
|---------|--------------|--------------|---------------------|--------------|---------|----------|
| CONDUIT | DRY          | SUBCRITICAL  | CRITICAL            | WET          | FLOW    | FLOW     |
| NUMBER  | FLOW(MIN)    | FLOW(MIN)    | FLOW(MIN)           | FLOW(MIN)    | (CFS)   | CUBIC FT |
|         | 1240.12      |              |                     | 601.07       | <br>1 / | 1.71E:05 |
| R02     | 1348.13      | 091.87       | 0                   | 091.87       | 1.4     | 1.71E+05 |
| R03     | 1603.27      | 430.07       | 0.07                | 430.74       | 1.45    | 1.77ET03 |
| R04     | 1598.07      | 441.93       | 0                   | 441.95       | 0.07    | 0.22E±04 |
| RUS     | 121.93       | 1518         | 0.07                | 1318.07      | 2.02    | 3.21E+03 |
| R06     | 1 /48.6      | 291.33       | 0.07                | 291.4        | 0.2     | 2.43E+04 |
| R07     | 1584.6       | 455.4        | U                   | 400.4        | 0.70    | 9.20E+04 |
| R08     | /21.93       | 1318.07      | 0                   | 1318.07      | 3.83    | 4.68E+05 |
| R09     | 1584.73      | 455.27       | 0                   | 455.27       | 1.37    | 1.07E+05 |
| RH      | 1723.47      | 316.47       | 0.07                | 316.54       | 0.69    | 8.48E+04 |
| R12     | 1983.6       | 56.4         | 0                   | 56.4         | 0.01    | 1.83E+03 |
| R13     | 1533.53      | 506.47       | 0                   | 506.47       | 1.52    | 1.86E+05 |
| R14     | 1819.6       | 220.33       | 0.07                | 220.4        | 0.59    | 7.24E+04 |
| R15     | 1488.33      | 551.67       | 0                   | 551.67       | 0.29    | 3.59E+04 |
| R16     | 1608.67      | 431.27       | 0.07                | 431.34       | 0.8     | 9.84E+04 |
| R17     | 722.67       | 1317.33      | 0                   | 1317.33      | 0.92    | 1.13E+05 |
| R18     | 725.13       | 1314.87      | . 0                 | 1314.87      | 2.34    | 2.87E+05 |
| R19     | 1481.33      | 558.67       | 0                   | 558.67       | 3.28    | 4.01E+05 |
| R20     | 1866.33      | 173.67       | 0                   | 173.67       | 0.19    | 2.36E+04 |
| R21     | 1917.4       | 122.6        | 0                   | 122.6        | 0.11    | 1.37E+04 |
| R22     | 1858.53      | 181.47       | 0                   | 181.47       | 0.38    | 4.66E+04 |
| R23     | 1978.47      | 61.53        | 0                   | 61.53        | 0.07    | 8.16E+03 |
| R24     | 1702.93      | 337.07       | 0                   | 337.07       | 0.36    | 4.45E+04 |
| R25     | 1739.6       | 300.4        | 0                   | 300.4        | 0.15    | 1.85E+04 |
| R26     | 1694.53      | 345.47       | 0                   | 345.47       | 0.39    | 4.81E+04 |
| 9A      | 1746.4       | 293.6        | 0                   | 293.6        | 0.52    | 6.36E+04 |
| А       | 0            | 2040         | 0                   | 2040         | 3.13    | 3.84E+05 |
| PS      | 0            | 2040         | 0                   | 2040         | 10.18   | 1.25E+06 |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1472.2                           | 267.8                                    | 0                                            |                                  | 0.35                  |                           |
| R03               | 1586.07                          | 153.93                                   | ů<br>0                                       | 153.93                           | 0.35                  | 2.03E+04                  |
| R04               | 1576.93                          | 163.07                                   | 0                                            | 163.07                           | 0.12                  | 1 29E+04                  |
| R05               | 753.07                           | 986.93                                   | 0                                            | 986.93                           | 0.83                  | 8.62E+04                  |
| R06               | 1598.07                          | 141.93                                   | 0                                            | 141.93                           | 0.04                  | 4 69E+03                  |
| R07               | 1529.13                          | 210.87                                   | 0                                            | 210.87                           | 0.18                  | 1.84E+04                  |
| R08               | 741.53                           | 998.47                                   | 0                                            | 998.47                           | 1                     | 1.04E+05                  |
| R09               | 1556.93                          | 183.07                                   | 0                                            | 183.07                           | 0.18                  | 1.88E+04                  |
| R11               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1523.53                          | 216.47                                   | 0                                            | 216.47                           | 0.36                  | 3.73E+04                  |
| R14               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1548.67                          | 191.33                                   | 0                                            | 191.33                           | 0.03                  | 3.13E+03                  |
| R16               | 1569.53                          | 170.4                                    | 0.07                                         | 170.47                           | 0.11                  | 1.10E+04                  |
| R17               | 739                              | 1001                                     | 0                                            | 1001                             | 0.27                  | 2.84E+04                  |
| R18               | 751.8                            | 988.2                                    | 0                                            | 988.2                            | 0.65                  | 6.76E+04                  |
| R19               | 1518.93                          | 221                                      | 0.07                                         | 221.07                           | 0.85                  | 8.88E+04                  |
| R20               | 1661.87                          | 78.13                                    | 0                                            | 78.13                            | 0.01                  | 6.19E+02                  |
| R21               | 1739.27                          | 0.73                                     | 0                                            | 0.73                             | 0                     | 2.97E+00                  |
| R22               | 1605.73                          | 134.27                                   | 0                                            | 134.27                           | 0.02                  | 2.51E+03                  |
| R23               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1679.6                           | 60.4                                     | 0                                            | 60.4                             | 0                     | 2.89E+02                  |
| R25               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1677.13                          | 62.87                                    | 0                                            | 62.87                            | 0.01                  | 7.90E+02                  |
| 9A                | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 1740                                     | 0                                            | 1740                             | 2.79                  | 2.91E+05                  |
| PS                | 0                                | 1740                                     | 0                                            | 1740                             | 8.77                  | 9.16E+05                  |

·

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>R02           | 1462.33                          |                                          | 0.07                                         | 757.67                           | 1.06                  | 1.41E+05                  |
| R03               | 1596.4                           | 623.53                                   | 0.07                                         | 623.6                            | 1.04                  | 1.38E+05                  |
| R04               | 1582.47                          | 637.53                                   | 0                                            | 637.53                           | 0.47                  | 6.31E+04                  |
| R05               | 735.8                            | 1484.2                                   | 0                                            | 1484.2                           | 2.29                  | 3.05E+05                  |
| R06               | 1739.07                          | 480.93                                   | 0                                            | 480.93                           | 0.13                  | 1.73E+04                  |
| R07               | 1515.33                          | . 704.67                                 | 0                                            | 704.67                           | 0.57                  | 7.63E+04                  |
| R08               | 729.8                            | 1490.13                                  | 0.07                                         | 1490.2                           | 2.93                  | 3.91E+05                  |
| R09               | 1550.53                          | 669.4                                    | 0.07                                         | 669.47                           | 0.61                  | 8.14E+04                  |
| R11               | 1991.87                          | 228.13                                   | 0                                            | 228.13                           | 0.03                  | 3.46E+03                  |
| R12               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1503.93                          | 716.07                                   | 0                                            | 716.07                           | 1.19                  | 1.58E+05                  |
| R14               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1549.07                          | 670.93                                   | 0                                            | 670.93                           | 0.1                   | 1.38E+04                  |
| R16               | 1557.87                          | 662.07                                   | 0.07                                         | 662.14                           | 0.37                  | 4.89E+04                  |
| R17               | 730.93                           | 1489.07                                  | 0                                            | 1489.07                          | 0.81                  | 1.08E+05                  |
| R18               | 740.27                           | 1479.73                                  | 0                                            | 1479.73                          | 1.84                  | 2.45E+05                  |
| R19               | 1518.87                          | 701.07                                   | 0.07                                         | 701.14                           | 2.89                  | 3.85E+05                  |
| R20               | 1922.07                          | 297.93                                   | 0                                            | 297.93                           | 0.05                  | 6.40E+03                  |
| R21               | 2030.73                          | 189.27                                   | 0                                            | 189.27                           | 0.02                  | 2.51E+03                  |
| R22               | 1917.07                          | 302.93                                   | 0                                            | 302.93                           | 0.13                  | 1.78E+04                  |
| R23               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1939.67                          | 280.33                                   | 0                                            | 280.33                           | 0.04                  | 5.38E+03                  |
| R25               | 1999.13                          | 220.87                                   | 0                                            | 220.87                           | 0                     | 1.64E+02                  |
| R26               | 1929.73                          | 290.27                                   | 0                                            | 290.27                           | 0.06                  | 8.66E+03                  |
| 9A                | 2150.6                           | 69.4                                     | 0                                            | 69.4                             | 0                     | 1.28E+02                  |
| А                 | 0                                | 2220                                     | 0                                            | 2220                             | 3.59                  | 4.78E+05                  |
| PS                | 0                                | 2220                                     | 0                                            | 2220                             | 11.97                 | 1.59E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R03               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1874.07                          | 45.93                                    | 0                                            | 45.93                            | 0                     | 1.09E+02                  |
| R06               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0,00E+00                  |
| R08               | 1861.8                           | 58.2                                     | 0                                            | 58.2                             | 0                     | 3.65E+02                  |
| R09               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1807.2                           | 112.8                                    | 0                                            | 112.8                            | 0                     | 1.90E+02                  |
| R18               | 1764.27                          | 155.73                                   | 0                                            | 155.73                           | 0.01                  | 1.23E+03                  |
| R19               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1920                             | . 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R23               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 1920                                     | 0                                            | 1920                             | 2.5                   | 2.88E+05                  |
| PS                | 0                                | 1920                                     | 0                                            | 1920                             | 7.17                  | 8.26E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1513.07                          | 106.87                                   | 0.07                                         | 106.94                           | 0.01                  | 1.39E+03                  |
| R03               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1545,47                          | 74.53                                    | 0                                            | 74.53                            | 0.01                  | 1.30E+03                  |
| R06               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1542.13                          | 77.87                                    | 0                                            | 77.87                            | 0.02                  | 2.32E+03                  |
| R09               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1620                             | . 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1590.67                          | 29.33                                    | 0                                            | 29.33                            | 0                     | 3.08E-01                  |
| R16               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0,00E+00                  |
| R17               | 1516.2                           | 103.8                                    | 0                                            | 103.8                            | 0.01                  | 7.37E+02                  |
| R18               | 1501.13                          | 118.87                                   | 0                                            | 118.87                           | 0.03                  | 3.19E+03                  |
| R19               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R23               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1620                                     | 0                                            | 1620                             | 2.54                  | 2.47E+05                  |
| PS                | 0                                | 1620                                     | 0                                            | 1620                             | 7.29                  | 7.09E+05                  |

. .

đ

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1451.6                           | 168.4                                    | 0                                            | 168.4                            | 0.09                  | 8.86E+03                  |
| R03               | 1606.47                          | 13.53                                    | 0                                            | 13.53                            | 0                     | 1.00E+01                  |
| R04               | 1596.13                          | 23.87                                    | 0                                            | 23.87                            | 0                     | 4.90E+01                  |
| R05               | 740.73                           | 879.27                                   | 0                                            | 879.27                           | 0.3                   | 2.96E+04                  |
| R06               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1526.87                          | 93.13                                    | 0                                            | 93.13                            | 0.03                  | 3.06E+03                  |
| R08               | 733.4                            | 886.6                                    | 0                                            | 886.6                            | 0.28                  | 2.74E+04                  |
| R09               | 1585.87                          | 34.07                                    | 0.07                                         | 34.14                            | 0                     | 1.63E+02                  |
| R11               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1521.33                          | 98.67                                    | 0                                            | 98.67                            | 0.04                  | 4.37E+03                  |
| R14               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1521.73                          | 98.27                                    | 0                                            | 98.27                            | 0                     | 3.40E+02                  |
| R16               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1470.33                          | 149.67                                   | 0                                            | 149.67                           | 0.04                  | 3.92E+03                  |
| R18               | 1453.4                           | 166.6                                    | 0                                            | 166.6                            | 0.13                  | 1.26E+04                  |
| R19               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1608.2                           | 11.8                                     | 0                                            | 11.8                             | 0                     | 8.05E+00                  |
| R23               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 1620                                     | 0                                            | 1620                             | 2,53                  | 2.46E+05                  |
| PS                | 0                                | 1620                                     | 0                                            | 1620                             | 7.87                  | 7.65E+05                  |

| CONDUIT | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW/MIN | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|---------|----------------------------------|------------------------------------------|---------------------------------------------|----------------------------------|-----------------------|---------------------------|
|         |                                  |                                          |                                             |                                  | (010)                 |                           |
| R02     | 2752.6                           | 187.4                                    | 0                                           | 187.4                            | 0.1                   | 1.83E+04                  |
| R03     | 2866.4                           | 73.53                                    | 0.07                                        | 73.6                             | 0.07                  | 1.27E+04                  |
| R04     | 2877.13                          | 62.87                                    | 0                                           | 62.87                            | 0.01                  | 1.62E+03                  |
| R05     | 2006.4                           | 933.6                                    | 0                                           | 933.6                            | 0.29                  | 5.05E+04                  |
| R06     | 2882.33                          | 57.67                                    | 0                                           | 57.67                            | 0.01                  | 1.71E+03                  |
| R07     | 2798.53                          | 141.47                                   | 0                                           | 141.47                           | 0.05                  | 8.40E+03                  |
| R08     | 1989.87                          | 950.07                                   | 0.07                                        | 950.14                           | 0.32                  | 5.66E+04                  |
| R09     | 2841.67                          | 98.33                                    | 0                                           | 98.33                            | 0.05                  | 8.00E+03                  |
| R11     | 2940                             | . 0                                      | 0                                           | 0                                | 0                     | 0.00E+00                  |
| R12     | 2940                             | 0                                        | 0                                           | 0                                | 0                     | 0.00E+00                  |
| R13     | 2792                             | 148                                      | 0                                           | 148                              | 0.09                  | 1.63E+04                  |
| R14     | 2940                             | 0                                        | 0                                           | 0                                | 0                     | 0.00E+00                  |
| R15     | 2813.6                           | 126.4                                    | 0                                           | 126.4                            | 0.01                  | 1.42E+03                  |
| R16     | 2871.67                          | 68.33                                    | 0                                           | 68.33                            | 0                     | 0.00E+00                  |
| R17     | 1958.47                          | 981.53                                   | 0                                           | 981.53                           | 0.08                  | 1.48E+04                  |
| R18     | 1937.2                           | 1002.8                                   | 0                                           | 1002.8                           | 0.22                  | 3.90E+04                  |
| R19     | 2831.67                          | 108.27                                   | 0.07                                        | 108.34                           | 0.17                  | 3.00E+04                  |
| R20     | 2887.8                           | 52.2                                     | 0                                           | 52.2                             | 0                     | 2.17E+02                  |
| R21     | 2940                             | 0                                        | 0                                           | 0                                | 0                     | 0.00E+00                  |
| R22     | 2885.2                           | 54.8                                     | 0                                           | 54.8                             | 0.01                  | 1.18E+03                  |
| R23     | 2940                             | 0                                        | 0                                           | 0                                | 0                     | 0.00E+00                  |
| R24     | 2901.13                          | 38.87                                    | 0                                           | 38.87                            | 0                     | 9.00E+00                  |
| R25     | 2940                             | 0                                        | 0                                           | 0                                | 0                     | 0.00E+00                  |
| R26     | 2 <b>8</b> 89.87                 | 50.13                                    | 0                                           | 50.13                            | 0                     | 2.19E+02                  |
| 9A      | 2940                             | 0                                        | 0                                           | 0                                | 0                     | 0.00E+00                  |
| А       | 0                                | 2940                                     | 0                                           | 2940                             | 2.59                  | 4.57E+05                  |
| PS      | 0                                | 2940                                     | 0                                           | 2940                             | 7.77                  | 1.37E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1433.87                          | 366.07                                   | <br>0 07                                     | 366.14                           | 0.32                  |                           |
| R03               | 1672,4                           | 127.6                                    | 0.07                                         | 127.6                            | 0.52                  | 1.72E±04                  |
| R04               | 1728.87                          | 71.13                                    | Ő                                            | 71.13                            | 0.10                  | 1.72E+04                  |
| R05               | 730.47                           | 1069.53                                  | 0                                            | 1069.53                          | 0.02                  | 8 59E+04                  |
| R06               | 1730.8                           | 69.2                                     | 0                                            | 69.2                             | 0.02                  | 1.91E+03                  |
| R07               | 1483.27                          | 316.73                                   | 0                                            | 316.73                           | 0.16                  | 1.73E+04                  |
| R08               | 726.93                           | 1073.07                                  | 0                                            | 1073.07                          | 0.93                  | 9.99E+04                  |
| R09               | 1632.4                           | 167.6                                    | 0                                            | 167.6                            | 0.1                   | 1.09E+04                  |
| R11               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1474.87                          | 325.13                                   | 0                                            | 325,13                           | 0.23                  | 2.47E+04                  |
| R14               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1497.07                          | 302.93                                   | 0                                            | 302.93                           | 0.02                  | 1.91E+03                  |
| R16               | 1685.53                          | 114.4                                    | 0.07                                         | 114.47                           | 0.02                  | 2.62E+03                  |
| R17               | 728.4                            | 1071.6                                   | 0                                            | 1071.6                           | 0.22                  | 2.32E+04                  |
| R18               | 735.87                           | 1064.13                                  | 0                                            | 1064.13                          | 0.56                  | 6.01E+04                  |
| R19               | 1610.13                          | 189.8                                    | 0.07                                         | 189.87                           | 0.52                  | 5.60E+04                  |
| R20               | 1743.6                           | 56.4                                     | 0                                            | 56.4                             | 0                     | 2.36E+02                  |
| R21               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1741.13                          | 58.87                                    | 0                                            | 58.87                            | 0.01                  | 1.27E+03                  |
| R23               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1757.87                          | 42.13                                    | 0                                            | 42.13                            | 0                     | 9.90E+00                  |
| R25               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1747                             | 53                                       | 0                                            | 53                               | 0                     | 2.35E+02                  |
| 9A                | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 1800                                     | 0                                            | 1800                             | 2.86                  | 3.09E+05                  |
| PS                | 0                                | 1800                                     | 0                                            | 1800                             | 9.07                  | 9.79E+05                  |

.

•

|                   | LENGTH<br>OF     | LENGTH<br>OF             | LENGTH<br>OF UPSTR.   | LENGTH<br>OF     | MEAN          | TOTAL            |
|-------------------|------------------|--------------------------|-----------------------|------------------|---------------|------------------|
| CONDUIT<br>NUMBER | DRY<br>FLOW(MIN) | SUBCRITICAL<br>FLOW(MIN) | CRITICAL<br>FLOW(MIN) | WET<br>FLOW(MIN) | FLOW<br>(CFS) | FLOW<br>CUBIC FT |
|                   |                  | ********                 | ***                   |                  |               |                  |
| R02               | 1405.33          | 1234.6                   | 0.07                  | 1234.67          | 1.79          | 2.83E+05         |
| R03               | 1934.47          | 705.53                   | 0                     | 705.53           | 1.98          | 3.13E+05         |
| R04               | 1905.47          | 734.53                   | 0                     | 734.53           | 0.89          | 1.41E+05         |
| R05               | 730.47           | 1909.53                  | 0                     | 1909.53          | 3.8           | 6.01E+05         |
| R06               | 1998.8           | 641.2                    | 0                     | 641.2            | 0.28          | 4.51E+04         |
| R07               | 1625.53          | 1014.47                  | 0                     | 1014.47          | 1.01          | 1.60E+05         |
| R08               | 726.93           | 1913.07                  | 0                     | 1913.07          | 5.21          | 8.25E+05         |
| R09               | 1786.67          | 853.27                   | 0.07                  | 853.34           | 1.85          | 2.92E+05         |
| R11               | 2024.07          | 615.93                   | 0                     | 615.93           | 0.91          | 1.45E+05         |
| R12               | 2640             | 0                        | 0                     | 0                | 0             | 0.00E+00         |
| R13               | 1702.47          | 937.33                   | 0.2                   | 937.53           | 2             | 3.18E+05         |
| R14               | 2132.13          | 507.73                   | 0.13                  | 507.86           | 0.52          | 8.22E+04         |
| R15               | 1649.33          | 990.67                   | 0                     | 990.67           | 0.34          | 5.39E+04         |
| R16               | 1878.13          | 761.87                   | 0                     | 761.87           | 1             | 1.58E+05         |
| R17               | 728.4            | 1911.6                   | 0                     | 1911.6           | 1.33          | 2.10E+05         |
| R18               | 735.87           | 1904.13                  | 0                     | 1904.13          | 3.13          | 4.95E+05         |
| R19               | 1729.07          | 910.93                   | 0                     | 910.93           | 4.58          | 7.25E+05         |
| R20               | 2082.2           | 557.8                    | 0                     | 557.8            | 0.22          | 3.49E+04         |
| R21               | 2238.87          | 401.13                   | 0                     | 401.13           | 0.11          | 1.76E+04         |
| R22               | 2079.27          | 560.73                   | 0                     | 560.73           | 0.47          | 7.51E+04         |
| R23               | 2401.33          | 238.67                   | 0                     | 238.67           | 0.02          | 2.89E+03         |
| R24               | 2012.4           | 627.6                    | 0                     | 627.6            | 0.48          | 7.65E+04         |
| R25               | 2172.87          | 467.13                   | 0                     | 467.13           | 0.07          | 1.11E+04         |
| R26               | 2011.4           | 628.6                    | 0                     | 628.6            | 0.43          | 6.74E+04         |
| 9A                | 2032.6           | 607.4                    | 0                     | 607.4            | 0.73          | 1.15E+05         |
| А                 | 0                | 2640                     | 0                     | 2640             | 3.66          | 5.79E+05         |
| PS                | 0                | 2640                     | 0                     | 2640             | 12.95         | 2.05E+06         |

 $\mathbf{F}_{i}$ 

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1726.67                          | 193.33                                   | 0                                            | 193 33                           | 0.13                  | 1 51F+04                  |
| R03               | 1847.2                           | 72.8                                     | 0                                            | 72.8                             | 0.09                  | 1.06E+04                  |
| R04               | 1831.87                          | 88.13                                    | 0                                            | 88.13                            | 0.04                  | 4 59E+03                  |
| R05               | 968.2                            | 951.73                                   | 0.07                                         | 951.8                            | 0.38                  | 441E+04                   |
| R06               | 1874.07                          | 45.87                                    | 0.07                                         | 45.94                            | 0.01                  | 1.60E+03                  |
| R07               | 1800                             | 120                                      | 0                                            | 120                              | 0.06                  | 7.01E+03                  |
| R08               | 956.13                           | 963.8                                    | 0.07                                         | 963.87                           | 0.42                  | 4.87E+04                  |
| R09               | 1798.2                           | 121.8                                    | 0                                            | 121.8                            | 0.06                  | 6.70E+03                  |
| RH                | 1897.33                          | 22.6                                     | 0.07                                         | 22,67                            | 0                     | 3.30E+01                  |
| R12               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1784                             | 136                                      | 0                                            | 136                              | 0.14                  | 1.56E+04                  |
| R14               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1840.27                          | 79.73                                    | 0                                            | 79.73                            | 0.01                  | 1.31E+03                  |
| R16               | 1850.93                          | 69                                       | 0.07                                         | 69.07                            | 0                     | 0.00E+00                  |
| R17               | 927.4                            | 992.6                                    | 0                                            | 992.6                            | 0.12                  | 1.34E+04                  |
| R18               | 918.07                           | 1001.93                                  | 0                                            | 1001.93                          | 0.31                  | 3.52E+04                  |
| R19               | 1772.47                          | 147.53                                   | 0                                            | 147.53                           | 0.36                  | 4.19E+04                  |
| R20               | 1886.93                          | 33.07                                    | 0                                            | 33.07                            | 0                     | 3.97E+02                  |
| R21               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1882.33                          | 37.67                                    | 0                                            | 37.67                            | 0.01                  | 1.41E+03                  |
| R23               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1891.27                          | 28.73                                    | 0                                            | 28.73                            | 0                     | 2.75E+02                  |
| R25               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1889.4                           | 30.6                                     | 0                                            | 30.6                             | 0.01                  | 5.95E+02                  |
| 9A                | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1920                                     | 0                                            | 1920                             | 2.6                   | 3.00E+05                  |
| PS                | 0                                | 1920                                     | 0                                            | 1920                             | 7.94                  | 9.14E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>R02           | 1595.8                           | 504.2                                    | 0                                            | 504.2                            | 0.52                  | 6.57E+04                  |
| R03               | 1768.4                           | 331.6                                    | 0                                            | 331.6                            | 0.44                  | 5.54E+04                  |
| R04               | 1745.8                           | 354.2                                    | 0                                            | 354.2                            | 0.21                  | 2.60E+04                  |
| R05               | 753.07                           | 1346.93                                  | 0                                            | 1346.93                          | 1.2                   | 1.52E+05                  |
| R06               | 1964.93                          | 135.07                                   | 0                                            | 135.07                           | 0.06                  | 7.32E+03                  |
| R07               | 1711.33                          | 388.67                                   | 0                                            | 388.67                           | 0.27                  | 3.46E+04                  |
| R08               | 741.53                           | 1358.47                                  | 0                                            | 1358.47                          | 1.52                  | 1.91E+05                  |
| R09               | 1699.93                          | 400                                      | 0.07                                         | 400.07                           | 0.4                   | 5.10E+04                  |
| R11               | 1968.4                           | 131.6                                    | 0                                            | 131.6                            | 0.16                  | 2.04E+04                  |
| R12               | 2100                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1678.67                          | 421.27                                   | 0.07                                         | 421.34                           | 0.56                  | 7.11E+04                  |
| R14               | 2034.67                          | 65.33                                    | 0                                            | 65.33                            | 0                     | 0.00E+00                  |
| R15               | 1687.87                          | 412.13                                   | 0                                            | 412.13                           | 0.06                  | 7.32E+03                  |
| R16               | 1850.87                          | 249.07                                   | 0.07                                         | 249.14                           | 0.18                  | 2.22E+04                  |
| R17               | 739                              | 1361                                     | 0                                            | 1361                             | 0.41                  | 5.14E+04                  |
| R18               | 751.8                            | 1348.2                                   | 0                                            | 1348.2                           | 0.97                  | 1.23E+05                  |
| R19               | 1674.87                          | 425.07                                   | 0.07                                         | 425.14                           | 1.31                  | 1.65E+05                  |
| R20               | 1957                             | 143                                      | 0                                            | 143                              | 0.04                  | 5.02E+03                  |
| R21               | 2037.6                           | 62.4                                     | 0                                            | 62.4                             | 0.02                  | 2.12E+03                  |
| R22               | 1952.33                          | 147.67                                   | 0                                            | 147.67                           | 0.09                  | 1.13E+04                  |
| R23               | 2047.93                          | 52.07                                    | 0                                            | 52.07                            | 0                     | 1.12E+01                  |
| R24               | 1851.93                          | 248.07                                   | 0                                            | 248.07                           | 0.1                   | 1.23E+04                  |
| R25               | 2001.4                           | 98.6                                     | 0                                            | 98.6                             | 0.01                  | 1.13E+03                  |
| R26               | 1965.47                          | 134.53                                   | 0                                            | 134.53                           | 0.06                  | 7.01E+03                  |
| 9A                | 1993.73                          | 106.27                                   | 0                                            | 106.27                           | 0.13                  | 1.65E+04                  |
| А                 | 0                                | 2100                                     | 0                                            | 2100                             | 2.93                  | 3.70E+05                  |
| PS                | 0                                | 2100                                     | 0                                            | 2100                             | 9.4                   | 1.18E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1684                             | 236                                      | 0                                            | 236                              | 0.11                  | 1 24E+04                  |
| R03               | 1920                             | . 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 933.07                           | 986.93                                   | 0                                            | 986.93                           | 0.29                  | 3.37E+04                  |
| R06               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1800.33                          | 119.67                                   | 0                                            | 119.67                           | 0.03                  | 3.60E+03                  |
| R08               | 921.53                           | 998.47                                   | 0                                            | 998.47                           | 0.28                  | 3.17E+04                  |
| R09               | 1877.33                          | 42.67                                    | 0                                            | 42.67                            | 0                     | 6.84E+01                  |
| R11               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1785.4                           | 134.6                                    | 0                                            | 134.6                            | 0.04                  | 4.58E+03                  |
| R14               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1804.8                           | 115.2                                    | 0                                            | 115.2                            | 0                     | 2.98E+02                  |
| R16               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1652.13                          | 267.87                                   | 0                                            | 267.87                           | 0.04                  | 4.53E+03                  |
| R18               | 1626.07                          | 293.93                                   | 0                                            | 293.93                           | 0.14                  | 1.57E+04                  |
| R19               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R23               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 1920                                     | 0                                            | 1920                             | 2.62                  | 3.01E+05                  |
| PS                | 0                                | 1920                                     | 0                                            | 1920                             | 8.1                   | 9.33E+05                  |

.

|         | LENGTH<br>OF | LENGTH<br>OF | LENGTH<br>OF UPSTR. | LENGTH<br>OF | MEAN  | TOTAL    |
|---------|--------------|--------------|---------------------|--------------|-------|----------|
| CONDUIT | DRY          | SUBCRITICAL  | CRITICAL            | WET          | FLOW  | FLOW     |
| NUMBER  | FLOW(MIN)    | FLOW(MIN)    | FLOW(MIN)           | FLOW(MIN)    | (CFS) | CUBIC FT |
|         | *****        | *****        |                     |              |       |          |
| R02     | 1309.33      | 370.6        | 0.07                | 370.67       | 0.82  | 8.25E+04 |
| R03     | 1583.67      | 96.33        | 0                   | 96.33        | 0.93  | 9.39E+04 |
| R04     | 1573.13      | 106.87       | 0                   | 106.87       | 0.42  | 4.25E+04 |
| R05     | 781.4        | 898.53       | 0.07                | 898.6        | 1.48  | 1.50E+05 |
| R06     | 1586.4       | 93.53        | 0.07                | 93.6         | 0.14  | 1.38E+04 |
| R07     | 1549         | 131          | 0                   | 131          | 0.44  | 4.45E+04 |
| R08     | 781.4        | 898.53       | 0.07                | 898.6        | 2.25  | 2.27E+05 |
| R09     | 1546.47      | 133.53       | 0                   | 133.53       | 0.9   | 9.10E+04 |
| R11     | 1606         | 73.93        | 0.07                | 74           | 0.48  | 4.88E+04 |
| R12     | 1630.4       | 49.6         | 0                   | 49.6         | 0     | 3.71E+02 |
| R13     | 1535.27      | 144.67       | 0.07                | 144.74       | 0.91  | 9.20E+04 |
| R14     | 1595.33      | 84.6         | 0.07                | 84.67        | 0.39  | 3.94E+04 |
| R15     | 1521.4       | 158.6        | 0                   | 158.6        | 0.18  | 1.77E+04 |
| R16     | 1533.47      | 146.47       | 0.07                | 146.54       | 0.57  | 5.70E+04 |
| R17     | 769          | 911          | 0                   | 911          | 0.54  | 5.45E+04 |
| R18     | 780.93       | 899.07       | 0                   | 899.07       | 1.42  | 1.44E+05 |
| R19     | 1480.53      | 199.47       | 0                   | 199.47       | 1.94  | 1.96E+05 |
| R20     | 1612.8       | 67.2         | 0                   | 67.2         | 0.15  | 1.48E+04 |
| R21     | 1613.6       | 66.4         | 0                   | 66.4         | 0.08  | 8.43E+03 |
| R22     | 1613.4       | 66.6         | 0                   | 66.6         | 0.28  | 2.82E+04 |
| R23     | 1620.47      | 59.53        | 0                   | 59.53        | 0.05  | 4.87E+03 |
| R24     | 1605.33      | 74.67        | 0                   | 74.67        | 0.24  | 2.45E+04 |
| R25     | 1616.33      | 63.67        | 0                   | 63.67        | 0.09  | 9.36E+03 |
| R26     | 1608.27      | 71.73        | 0                   | 71.73        | 0.26  | 2.65E+04 |
| 9A      | 1604         | 76           | 0                   | 76           | 0.39  | 3.91E+04 |
| А       | 0            | 1680         | 0                   | 1680         | 2.6   | 2.62E+05 |
| PS      | 0            | 1680         | 0                   | 1680         | 8.47  | 8.54E+05 |

~

ί.

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1609.07                          | 430.93                                   | 0                                            | 430.93                           | 0.45                  | 5 56E+04                  |
| R03               | 1842.73                          | 197.27                                   | 0                                            | 197.27                           | 0.45                  | 5.47E+04                  |
| R04               | 1824.47                          | 215.53                                   | 0                                            | 215.53                           | 0.21                  | 2.57E+04                  |
| R05               | 723.53                           | 1316.47                                  | 0                                            | 1316.47                          | 1.03                  | 1.26E+05                  |
| R06               | 1905.07                          | 134.93                                   | 0                                            | 134.93                           | 0.05                  | 6.35E+03                  |
| R07               | 1765.27                          | 274.73                                   | 0                                            | 274.73                           | 0.24                  | 2.96E+04                  |
| R08               | 722.87                           | 1317.07                                  | 0.07                                         | 1317.14                          | 1.34                  | 1.63E+05                  |
| R09               | 1767                             | 272.93                                   | 0.07                                         | 273                              | 0.42                  | 5.14E+04                  |
| RI1               | 1908.8                           | 131.13                                   | 0.07                                         | 131.2                            | 0.19                  | 2.38E+04                  |
| R12               | 2040                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1743.33                          | 296.6                                    | 0.07                                         | 296.67                           | 0.5                   | 6.14E+04                  |
| R14               | 1982.87                          | 57.13                                    | 0                                            | 57.13                            | 0.04                  | 4.64E+03                  |
| R15               | 1707.53                          | 332.47                                   | 0                                            | 332.47                           | 0.09                  | 1.06E+04                  |
| R16               | 1818.47                          | 221.47                                   | 0.07                                         | 221.54                           | 0.19                  | 2.35E+04                  |
| R17               | 724.07                           | 1315.93                                  | 0                                            | 1315.93                          | 0.35                  | 4.32E+04                  |
| R18               | 727.73                           | 1312.27                                  | 0                                            | 1312.27                          | 0.86                  | 1.06E+05                  |
| R19               | 1711.87                          | 328.13                                   | 0                                            | 328.13                           | 1.13                  | 1.38E+05                  |
| R20               | 1975.8                           | 64.2                                     | 0                                            | 64.2                             | 0.05                  | 5.87E+03                  |
| R21               | 1986                             | 54                                       | 0                                            | 54                               | 0.02                  | 2.69E+03                  |
| R22               | 1937.07                          | 102.93                                   | 0                                            | 102.93                           | 0.1                   | 1.22E+04                  |
| R23               | 1994.33                          | 45.67                                    | 0                                            | 45.67                            | 0.01                  | 8.16E+02                  |
| R24               | 1898.53                          | 141.47                                   | 0                                            | 141.47                           | 0.11                  | 1.34E+04                  |
| R25               | 1981.4                           | 58.6                                     | 0                                            | 58.6                             | 0.02                  | 2.09E+03                  |
| R26               | 1978.73                          | 61.27                                    | 0                                            | 61.27                            | 0.07                  | 8.27E+03                  |
| 9A                | 1917.67                          | 122.33                                   | 0                                            | 122.33                           | 0.15                  | 1.89E+04                  |
| А                 | 0                                | 2040                                     | 0                                            | 2040                             | 2.63                  | 3.22E+05                  |
| PS                | 0                                | 2040                                     | 0                                            | 2040                             | 8.65                  | 1.06E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1494.4                           | 245.53                                   | 0.07                                         | 245.6                            | 0.06                  | 6.76E+03                  |
| R03               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 789.93                           | 950.07                                   | 0                                            | 950.07                           | 0.17                  | 1.73E+04                  |
| R06               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1524.67                          | 215.33                                   | 0                                            | 215.33                           | 0.06                  | 6.09E+03                  |
| R09               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1663.87                          | 76.13                                    | 0                                            | 76.13                            | 0                     | 8.50E+00                  |
| R16               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1484.6                           | 255.4                                    | 0                                            | 255.4                            | 0.02                  | 1.96E+03                  |
| R18               | 1470.2                           | 269.8                                    | 0                                            | 269.8                            | 0.08                  | 8.67E+03                  |
| R19               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R23               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1740                                     | 0                                            | 1740                             | 2.63                  | 2.74E+05                  |
| PS                | 0                                | 1740                                     | 0                                            | 1740                             | 7.86                  | 8.21E+05                  |

.

ŝ
| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1594.8                           | 685.13                                   | 0.07                                         | 685.2                            | 0.39                  | 5.29E+04                  |
| R03               | 1940.93                          | 339                                      | 0.07                                         | 339.07                           | 0.27                  | 3.65E+04                  |
| R04               | 2122.87                          | 157.13                                   | 0                                            | 157.13                           | 0.02                  | 3.37E+03                  |
| R05               | 753.07                           | 1526.93                                  | 0                                            | 1526.93                          | 0.93                  | 1.27E+05                  |
| R06               | 2095.8                           | 184.2                                    | 0                                            | 184.2                            | 0.03                  | 4.63E+03                  |
| R07               | 1861.4                           | 418.6                                    | 0                                            | 418.6                            | 0.18                  | 2.50E+04                  |
| R08               | 741.53                           | 1538.47                                  | 0                                            | 1538.47                          | 1.1                   | 1.51E+05                  |
| R09               | 1855.67                          | 424.13                                   | 0.2                                          | 424.33                           | 0.18                  | 2.44E+04                  |
| R11               | 2280                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 2280                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1772.33                          | 507.67                                   | 0                                            | 507.67                           | 0.38                  | 5.14E+04                  |
| R14               | 2280                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1892.73                          | 387.27                                   | 0                                            | 387.27                           | 0.02                  | 3.37E+03                  |
| R16               | 2118.93                          | 160.4                                    | 0.67                                         | 161.07                           | 0.02                  | 2.81E+03                  |
| R17               | 739                              | 1541                                     | 0                                            | 1541                             | 0.31                  | 4.25E+04                  |
| R18               | 751.8                            | 1528.2                                   | 0                                            | 1528.2                           | 0.73                  | 1.00E+05                  |
| R19               | 1794.4                           | 485.47                                   | 0.13                                         | 485.6                            | 0.95                  | 1.31E+05                  |
| R20               | 2173.33                          | 106.67                                   | 0                                            | 106.67                           | 0                     | 4.39E+02                  |
| R21               | 2280                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 2166.47                          | 113.53                                   | 0                                            | 113.53                           | 0.02                  | 2.40E+03                  |
| R23               | 2280                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 2202.8                           | 77.2                                     | 0                                            | 77.2                             | 0                     | 1.79E+01                  |
| R25               | 2280                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 2180                             | 100                                      | 0                                            | 100                              | 0                     | 4.35E+02                  |
| 9A                | 2280                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 2280                                     | 0                                            | 2280                             | 3.04                  | 4.16E+05                  |
| PS                | 0                                | 2280                                     | 0                                            | 2280                             | 9.34                  | 1.28E+06                  |

.

|        | LENGTH<br>OF     | LENGTH<br>OF             | LENGTH<br>OF UPSTR. | LENGTH<br>OF     | MEAN   | TOTAL    |
|--------|------------------|--------------------------|---------------------|------------------|--------|----------|
| NUMBER | DRY<br>FLOW(MIN) | SUBCRIFICAL<br>FLOW(MIN) | FLOW(MIN)           | WE1<br>FLOW(MIN) | (CFS)  | CUBIC FT |
|        |                  |                          |                     |                  | ****** |          |
| R02    | 1586.4           | 213.6                    | 0                   | 213.6            | 0.17   | 1.85E+04 |
| R03    | 1727.8           | 72.2                     | 0                   | 72.2             | 0.01   | 5.82E+02 |
| R04    | 1720.53          | 79.47                    | 0                   | 79.47            | 0.01   | 6.93E+02 |
| R05    | 729.2            | 1070.8                   | 0                   | 1070.8           | 0.5    | 5.45E+04 |
| R06    | 1731.2           | 68.8                     | 0                   | 68.8             | 0.02   | 1.89E+03 |
| R07    | 1652.8           | 147.2                    | 0                   | 147.2            | 0.08   | 8.82E+03 |
| R08    | 726.07           | 1073.87                  | 0.07                | 1073.94          | 0.55   | 5.98E+04 |
| R09    | 1658.87          | 141.07                   | 0.07                | 141.14           | 0.07   | 7.75E+03 |
| R11    | 1800             | 0                        | 0                   | 0                | 0      | 0.00E+00 |
| R12    | 1800             | 0                        | 0                   | 0                | 0      | 0.00E+00 |
| R13    | 1647.8           | 152.2                    | 0                   | 152.2            | 0.16   | 1.74E+04 |
| R14    | 1800             | 0                        | 0                   | 0                | 0      | 0.00E+00 |
| R15    | 1672.07          | 127.93                   | 0                   | 127.93           | 0.01   | 1.29E+03 |
| R16    | 1773.87          | 26                       | 0.13                | 26.13            | 0      | 0.00E+00 |
| R17    | 1620.53          | 179.47                   | 0                   | 179.47           | 0.08   | 9.16E+03 |
| R18    | 1584.47          | 215.53                   | 0                   | 215.53           | 0.24   | 2.64E+04 |
| R19    | 1711.13          | 88.87                    | 0                   | 88.87            | 0.1    | 1.08E+04 |
| R20    | 1786.27          | 13.73                    | 0                   | 13.73            | 0      | 1.56E+01 |
| R21    | 1800             | 0                        | 0                   | 0                | 0      | 0.00E+00 |
| R22    | 1731             | 69                       | 0                   | 69               | 0      | 2.75E+02 |
| R23    | 1800             | 0                        | 0                   | 0                | 0      | 0.00E+00 |
| R24    | 1800             | 0                        | 0                   | 0                | 0      | 0.00E+00 |
| R25    | 1800             | 0                        | 0                   | 0                | 0      | 0.00E+00 |
| R26    | 1791.67          | 8.33                     | 0                   | 8.33             | 0      | 1.70E+01 |
| 9A     | 1800             | 0                        | 0                   | 0                | 0      | 0.00E+00 |
| А      | 0                | 1800                     | 0                   | 1800             | 2.67   | 2.89E+05 |
| PS     | 0                | 1800                     | 0                   | 1800             | 8.4    | 9.07E+05 |

•

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
|                   | *******                          |                                          |                                              |                                  |                       |                           |
| R02               | 1154.6                           | 405.4                                    | 0                                            | 405.4                            | 0.98                  | 9.16E+04                  |
| R03               | 1471.07                          | 88.87                                    | 0.07                                         | 88.94                            | 1.15                  | 1.07E+05                  |
| R04               | 1467.93                          | 92.07                                    | 0                                            | 92.07                            | 0.51                  | 4.79E+04                  |
| R05               | 722.13                           | 837.8                                    | 0.07                                         | 837.87                           | 1.71                  | 1.60E+05                  |
| R06               | 1468.27                          | 91.73                                    | 0                                            | 91.73                            | 0.17                  | 1.56E+04                  |
| R07               | 1451                             | 109                                      | 0                                            | 109                              | 0.53                  | 4.96E+04                  |
| R08               | 722.07                           | 837.93                                   | 0                                            | 837.93                           | 2.68                  | 2.51E+05                  |
| R09               | 1450.93                          | 109.07                                   | 0                                            | 109.07                           | 1.1                   | 1.03E+05                  |
| R11               | 1487.4                           | 72.6                                     | 0                                            | 72.6                             | 0.57                  | 5.37E+04                  |
| R12               | 1507.27                          | 52.73                                    | 0                                            | 52.73                            | 0.01                  | 8.44E+02                  |
| R13               | 1445.67                          | 114.33                                   | 0                                            | 114.33                           | 1.09                  | 1.02E+05                  |
| R14               | 1476.87                          | 83.07                                    | 0.07                                         | 83.14                            | 0.52                  | 4.88E+04                  |
| R15               | 1438.27                          | 121.73                                   | 0                                            | 121.73                           | 0.21                  | 1.99E+04                  |
| R16               | 1421.07                          | 138.93                                   | 0                                            | 138.93                           | 0.7                   | 6.54E+04                  |
| R17               | 722.87                           | 837.13                                   | 0                                            | 837.13                           | 0.62                  | 5.85E+04                  |
| R18               | 725.47                           | 834.53                                   | 0                                            | 834.53                           | 1.68                  | 1.57E+05                  |
| R19               | 1366.47                          | 193.53                                   | 0                                            | 193.53                           | 1.22                  | 1.14E+05                  |
| R20               | 1493.2                           | 66.8                                     | 0                                            | 66.8                             | 0.18                  | 1.73E+04                  |
| R21               | 1493.8                           | 66.2                                     | 0                                            | 66.2                             | 0.11                  | 1.00E+04                  |
| R22               | 1493.67                          | 66.33                                    | 0                                            | 66.33                            | 0.35                  | 3.28E+04                  |
| R23               | 1499.87                          | 60.13                                    | 0                                            | 60.13                            | 0.07                  | 6.14E+03                  |
| R24               | 1488                             | 72                                       | 0                                            | 72                               | 0.3                   | 2.78E+04                  |
| R25               | 1490.87                          | 69.13                                    | 0                                            | 69.13                            | 0.12                  | 1.13E+04                  |
| R26               | 1490.87                          | 69.13                                    | 0                                            | 69.13                            | 0.32                  | 3.00E+04                  |
| 9A                | 1484.73                          | 75.27                                    | 0                                            | 75.27                            | 0.47                  | 4.44E+04                  |
| А                 | 0                                | 1560                                     | 0                                            | 1560                             | 2.58                  | 2.42E+05                  |
| PS                | 0                                | 1560                                     | 0                                            | 1560                             | 8.56                  | 8.01E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>ΦΛΊ           | 1027.07                          | 500 02                                   |                                              | <br>500 02                       |                       | 1 200 05                  |
| R02               | 212873                           | 322.93<br>271 27                         | 0                                            | 322.93                           | 10.9                  | 1.32E+03                  |
| R04               | 2100.75                          | 271.27                                   | 0                                            | 2/1.2/                           | 1.21                  | 1.70ETUS<br>2.04E+04      |
| R05               | 1162.27                          | 1297 73                                  | 0                                            | 1207 73                          | 2.04                  | 3.04E+04                  |
| R06               | 2193 73                          | 266.27                                   | 0                                            | 266.27                           | 2.04<br>0.18          | 2.50E+04                  |
| R07               | 2102.53                          | 357.47                                   | 0                                            | 200.27                           | 0.18                  | 2.59C+04<br>8.54E+04      |
| R08               | 1129.73                          | 1330.27                                  | ů<br>Û                                       | 1330.27                          | 2.96                  | 4.37E+05                  |
| R09               | 2146 47                          | 313 53                                   | Ô                                            | 313 53                           | 1.09                  | 1.62E+05                  |
| R11               | 2211.27                          | 248.67                                   | 0.07                                         | 248.74                           | 0.59                  | 8 77E+04                  |
| R12               | 2401.53                          | 58.47                                    | 0                                            | 58.47                            | 0.01                  | 7.77E+02                  |
| R13               | 2086.73                          | 373.27                                   | 0                                            | 373.27                           | 1.17                  | 1.73E+05                  |
| R14               | 2207.27                          | 252.73                                   | 0                                            | 252.73                           | 0.43                  | 6.37E+04                  |
| R15               | 2065.87                          | 394.13                                   | 0                                            | 394.13                           | 0.22                  | 3.27E+04                  |
| R16               | 2144.27                          | 315.73                                   | 0                                            | 315.73                           | 0.67                  | 9.84E+04                  |
| R17               | 1037.93                          | 1422.07                                  | 0                                            | 1422.07                          | 0.73                  | 1.08E+05                  |
| R18               | 1019.6                           | 1440.4                                   | 0                                            | 1440.4                           | 1.84                  | 2.72E+05                  |
| R19               | 2101.93                          | 358.07                                   | 0                                            | 358.07                           | 2.07                  | 3.05E+05                  |
| R20               | 2219.13                          | 240.87                                   | 0                                            | 240.87                           | 0.15                  | 2.15E+04                  |
| R21               | 2271.6                           | 188.4                                    | 0                                            | 188.4                            | 0.08                  | 1.25E+04                  |
| R22               | 2217.27                          | 242.73                                   | 0                                            | 242.73                           | 0.3                   | 4.40E+04                  |
| R23               | 2397.27                          | 62.73                                    | 0                                            | 62.73                            | 0.04                  | 6.04E+03                  |
| R24               | 2210.07                          | 249.93                                   | 0                                            | 249.93                           | 0.3                   | 4.43E+04                  |
| R25               | 2217.4                           | 242.6                                    | 0                                            | 242.6                            | 0.12                  | 1.72E+04                  |
| R26               | 2211.53                          | 248.47                                   | 0                                            | 248.47                           | 0.32                  | 4.65E+04                  |
| 9A                | 2212.07                          | 247.93                                   | 0                                            | 247.93                           | 0.43                  | 6.31E+04                  |
| А                 | 0                                | 2460                                     | 0                                            | 2460                             | 3.15                  | 4.65E+05                  |
| PS                | 0                                | 2460                                     | 0                                            | 2460                             | 9.94                  | 1.47E+06                  |

•

-

 $e^{-i}$ 

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
|                   |                                  |                                          |                                              | المرجع کا اللہ ہے کہ ا           |                       |                           |
| R02               | 1394                             | 166                                      | 0                                            | 166                              | 0.25                  | 2.29E+04                  |
| R03               | 1483.53                          | 76.4                                     | 0.07                                         | 76.47                            | 0.27                  | 2.55E+04                  |
| R04               | 1476.93                          | 83.07                                    | 0                                            | 83.07                            | 0.11                  | 1.07E+04                  |
| R05               | 725.13                           | 834.8                                    | 0.07                                         | 834.87                           | 0.64                  | 5.95E+04                  |
| R06               | 1499.6                           | 60.4                                     | 0                                            | 60.4                             | 0.03                  | 3.14E+03                  |
| R07               | 1460.47                          | 99.53                                    | 0                                            | 99.53                            | 0.14                  | 1.28E+04                  |
| R08               | 723.73                           | 836.27                                   | 0                                            | 836.27                           | 0.76                  | 7.09E+04                  |
| R09               | 1459.8                           | 100.2                                    | 0                                            | 100.2                            | 0.22                  | 2.03E+04                  |
| R11               | 1511.47                          | 48.47                                    | 0.07                                         | 48.54                            | 0.1                   | 9.22E+03                  |
| R12               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1454.87                          | 105.07                                   | 0.07                                         | 105.14                           | 0.28                  | 2.64E+04                  |
| R14               | 1530.13                          | 29.87                                    | 0                                            | 29.87                            | 0                     | 0.00E+00                  |
| R15               | 1483.53                          | 76.47                                    | 0                                            | 76.47                            | 0.03                  | 2.98E+03                  |
| R16               | 1447,4                           | 112.6                                    | 0                                            | 112.6                            | 0.08                  | 7.57E+03                  |
| R17               | 725.13                           | 834.87                                   | 0                                            | 834.87                           | 0.21                  | 1.96E+04                  |
| R18               | 729.8                            | 830.2                                    | 0                                            | 830.2                            | 0.51                  | 4.76E+04                  |
| R19               | 1411.53                          | 148.4                                    | 0.07                                         | 148.47                           | 0.56                  | 5.20E+04                  |
| R20               | 1502.33                          | 57.67                                    | 0                                            | 57.67                            | 0.02                  | 2.07E+03                  |
| R21               | 1531                             | 29                                       | 0                                            | 29                               | 0.01                  | 5.25E+02                  |
| R22               | 1501.87                          | 58.13                                    | 0                                            | 58.13                            | 0.05                  | 4.99E+03                  |
| R23               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1501.93                          | 58.07                                    | 0                                            | 58.07                            | 0.06                  | 5.33E+03                  |
| R25               | 1521.53                          | 38.47                                    | 0                                            | 38.47                            | 0                     | 3.56E+02                  |
| R26               | 1504.13                          | 55.87                                    | 0                                            | 55.87                            | 0.03                  | 2.91E+03                  |
| 9A                | 1513.13                          | 46.87                                    | 0                                            | 46.87                            | 0.07                  | 6.30E+03                  |
| А                 | 0                                | 1560                                     | 0                                            | 1560                             | 2.48                  | 2.32E+05                  |
| PS                | 0                                | 1560                                     | 0                                            | 1560                             | 7.92                  | 7.41E+05                  |

-

|         | LENGTH<br>OF | LENGTH<br>OF | LENGTH<br>OF UPSTR. | LENGTH<br>OF | MEAN  | TOTAL            |
|---------|--------------|--------------|---------------------|--------------|-------|------------------|
| CONDUIT | DRY          | SUBCRITICAL  | CRITICAL            | WET          | FLOW  | FLOW             |
| NUMBER  | FLOW(MIN)    | FLOW(MIN)    | FLOW(MIN)           | FLOW(MIN)    | (CFS) | CUBIC FT         |
|         |              |              |                     | ······       |       |                  |
| R02     | 1725.2       | 494.73       | 0.07                | 494.8        | 0.5   | 6.66E+04         |
| R03     | 1974.8       | 245.2        | 0                   | 245.2        | 0.57  | 7.59E+04         |
| R04     | 1939.73      | 280.27       | 0                   | 280.27       | 0.27  | 3.63E+04         |
| R05     | 727.47       | 1492.47      | 0.07                | 1492.54      | 1.32  | 1.76E+05         |
| R06     | 2043.47      | 176.53       | 0                   | 176.53       | 0.07  | 9.50E+03         |
| R07     | 1907.27      | 312.73       | 0                   | 312.73       | 0.31  | 4.09E+04         |
| R08     | 725          | 1494.93      | 0.07                | 1495         | 1.78  | 2.37E+05         |
| R09     | 1887.33      | 332.67       | 0                   | 332.67       | 0.52  | 6.88E+04         |
| RH      | 2075.33      | 144.6        | 0.07                | 144.67       | 0.24  | 3.13E+04         |
| R12     | 2156.93      | 63.07        | 0                   | 63.07        | 0.01  | 1.51E+03         |
| R13     | 1864.93      | 355          | 0.07                | 355.07       | 0.66  | 8.86E+04         |
| R14     | 2082.6       | 137.4        | 0                   | 137.4        | 0.17  | 2.31E+04         |
| R15     | 1792.67      | 427.33       | 0                   | 427.33       | 0.12  | 1.54E+04         |
| R16     | 2022.93      | 196.93       | 0.13                | 197.06       | 0.25  | 3.29E+04         |
| R17     | 726.6        | 1493.4       | 0                   | 1493.4       | 0.47  | 6.26E+04         |
| R18     | 732.53       | 1487.47      | 0                   | 1487.47      | 1.15  | 1.53E÷05         |
| R19     | 1921.93      | 298          | 0.07                | 298.07       | 1.26  | 1.67E+05         |
| R20     | 2036.8       | 183.2        | 0                   | 183.2        | 0.11  | 1.48E+04         |
| R21     | 2099.2       | 120.8        | 0                   | 120.8        | 0.05  | 7.25E+03         |
| R22     | 2015.13      | 204.87       | 0                   | 204.87       | 0.21  | 2.82E+04         |
| R23     | 2100.67      | 119.33       | 0                   | 119.33       | 0.05  | 6.00E+03         |
| R24     | 2053.33      | 166.67       | 0                   | 166.67       | 0.13  | 1. <b>79E+04</b> |
| R25     | 2095.07      | 124.93       | 0                   | 124.93       | 0.06  | 7.46E+03         |
| R26     | 2051.2       | 168.8        | 0                   | 168.8        | 0.15  | 2.05E+04         |
| 9A      | 2091.33      | 128.67       | 0                   | 128.67       | 0.17  | 2.32E+04         |
| А       | 0            | 2220         | 0                   | 2220         | 3.05  | 4.06E+05         |
| PS      | 0            | 2220         | 0                   | 2220         | 9.31  | 1.24E+06         |

• •

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 842.8                            | 777.2                                    | 0                                            | 777.2                            | 2 3 3                 | <br>2 27F+05              |
| R03               | 1470.2                           | 149.73                                   | 0.07                                         | 149.8                            | 2.98                  | 2.272+05                  |
| R04               | 1467.27                          | 152.73                                   | 0                                            | 152.73                           | 1.35                  | 1.31E+05                  |
| R05               | 721.93                           | 898.07                                   | 0                                            | 898.07                           | 4.64                  | 4.51E+05                  |
| R06               | 1463.67                          | 156.27                                   | 0.07                                         | 156.34                           | 0.45                  | 4.41E+04                  |
| R07               | 1450.53                          | 169.47                                   | 0                                            | 169.47                           | 1.4                   | 1.36E+05                  |
| R08               | 721.93                           | 898.07                                   | 0                                            | 898.07                           | 6.9                   | 6.71E+05                  |
| R09               | 1450.27                          | 169.73                                   | 0                                            | 169.73                           | 2.96                  | 2.88E+05                  |
| R11               | 1486.93                          | 133.07                                   | 0                                            | 133.07                           | 1.57                  | 1.52E+05                  |
| R12               | 1503.73                          | 116.27                                   | 0                                            | 116.27                           | 0.05                  | 5.26E+03                  |
| R13               | 1444.93                          | 175.07                                   | 0                                            | 175.07                           | 2.72                  | 2.65E+05                  |
| R14               | 1475.73                          | 144.2                                    | 0.07                                         | 144.27                           | 1.62                  | 1.57E+05                  |
| R15               | 1437.73                          | 182.27                                   | 0                                            | 182.27                           | 0.64                  | 6.22E+04                  |
| R16               | 1420.4                           | 199.6                                    | 0                                            | 199.6                            | 1.98                  | 1.92E+05                  |
| R17               | 722.6                            | 897.4                                    | 0                                            | 897.4                            | 1.5                   | 1.46E+05                  |
| R18               | 725.07                           | 894.93                                   | 0                                            | 894.93                           | 4.16                  | 4.05E+05                  |
| R19               | 1373.87                          | 246.13                                   | 0                                            | 246.13                           | 0.06                  | 5.50E+03                  |
| R20               | 1492.6                           | 127,4                                    | 0                                            | 127.4                            | 0.51                  | 4.92E+04                  |
| R21               | 1492.6                           | 127.4                                    | 0                                            | 127.4                            | 0.3                   | 2.94E+04                  |
| R22               | 1492.93                          | 127.07                                   | 0                                            | 127.07                           | 0.99                  | 9.63E+04                  |
| R23               | 1499.2                           | 120.8                                    | 0                                            | 120.8                            | 0.18                  | 1.76E+04                  |
| R24               | 1487.47                          | 132.53                                   | 0                                            | 132.53                           | 0.76                  | 7.35E+04                  |
| R25               | 1483.53                          | 136.47                                   | 0                                            | 136.47                           | 0.37                  | 3.55E+04                  |
| R26               | 1490.47                          | 129.53                                   | 0                                            | 129.53                           | 0.84                  | 8.18E+04                  |
| 9A                | 1483.87                          | 136.13                                   | 0                                            | 136.13                           | 1.29                  | 1.25E+05                  |
| A                 | 0                                | 1620                                     | 0                                            | 1620                             | 3                     | 2.92E+05                  |
| PS                | 0                                | 1620                                     | 0                                            | 1620                             | 10.08                 | 9.79E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
|                   | 1556.6                           | 663 33                                   | <br>0 07                                     | 663.4                            | 0.46                  | 6.13E+04                  |
| R02               | 2033 73                          | 186.2                                    | 0.07                                         | 186.27                           | 0.37                  | 4.99E+04                  |
| R03               | 2000110                          | 195.4                                    | 0                                            | 195.4                            | 0.17                  | 2.29E+04                  |
| R05               | 735.8                            | 1484.2                                   | 0                                            | 1484.2                           | 1.12                  | 1.49E+05                  |
| R06               | 2078 67                          | 141.27                                   | 0.07                                         | 141.34                           | 0.06                  | 7.36E+03                  |
| R07               | 1842.33                          | 377.67                                   | 0                                            | 377.67                           | 0.23                  | 3.01E+04                  |
| R08               | 752.6                            | 1467.33                                  | 0.07                                         | 1467.4                           | 1.3                   | 1.73E+05                  |
| R09               | 2011.07                          | 208.93                                   | 0                                            | 208.93                           | 0.21                  | 2.85E+04                  |
| R11               | 2105.8                           | 114.13                                   | 0.07                                         | 114.2                            | 0.01                  | 1.63E+03                  |
| R12               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1736.8                           | 483.13                                   | 0.07                                         | 483.2                            | 0.42                  | 5.53E+04                  |
| R14               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1881.33                          | 338.67                                   | 0                                            | 338.67                           | 0.04                  | 5.55E+03                  |
| R16               | 2019.87                          | 200.13                                   | 0                                            | 200.13                           | 0.14                  | 1.89E+04                  |
| R17               | 730.93                           | 1489.07                                  | 0                                            | 1489.07                          | 0.34                  | 4.57E+04                  |
| R18               | 740.27                           | 1479.73                                  | 0                                            | 1479.73                          | 0.84                  | 1.12E+05                  |
| R19               | 1836.93                          | 383                                      | 0.07                                         | 383.07                           | 1.07                  | 1.43E+05                  |
| R20               | 2097.67                          | 122.33                                   | 0                                            | 122.33                           | 0.02                  | 2.91E+03                  |
| R21               | 2145.4                           | 74.6                                     | 0                                            | 74.6                             | 0.01                  | 1.10E+03                  |
| R22               | 2096.6                           | 123.4                                    | 0                                            | 123.4                            | 0.06                  | 7.89E+03                  |
| R23               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 2100.6                           | 119.4                                    | 0                                            | 119.4                            | 0.02                  | 2.50E+03                  |
| R25               | 2161                             | 59                                       | 0                                            | 59                               | 0                     | 1.14E+02                  |
| R26               | 2099.93                          | 120.07                                   | 0                                            | 120.07                           | 0.03                  | 4.00E+03                  |
| 9A                | 2162.2                           | 57.8                                     | 0                                            | 57.8                             | 0                     | 1.13E+02                  |
| А                 | 0                                | 2220                                     | 0                                            | 2220                             | 2.99                  | 3.99E+05                  |
| P <b>S</b>        | 0                                | 2220                                     | 0                                            | 2220                             | 9.69                  | 1.29E+06                  |

•

·...

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1674.27                          | 245.73                                   | 0                                            | 245,73                           | 0.17                  | 1.91E+04                  |
| R03               | 1812.87                          | 107.13                                   | 0                                            | 107.13                           | 0.08                  | 9.08E+03                  |
| R04               | 1788.27                          | 131.73                                   | 0                                            | 131.73                           | 0.04                  | 4.28E+03                  |
| R05               | 753.07                           | 1166.93                                  | 0                                            | 1166.93                          | 0.47                  | 5.47E+04                  |
| R06               | 1867.07                          | 52.93                                    | 0                                            | 52.93                            | 0.01                  | 1.48E+03                  |
| R07               | 1739.47                          | 180.53                                   | 0                                            | 180.53                           | 0.07                  | 8.49E+03                  |
| R08               | 741.53                           | 1178.47                                  | 0                                            | 1178.47                          | 0.51                  | 5.92E+04                  |
| R09               | 1742.07                          | 177.93                                   | 0                                            | 177.93                           | 0.06                  | 7.09E+03                  |
| R11               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| RI2               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1720.67                          | 199.33                                   | 0                                            | 199.33                           | 0.15                  | 1.70E+04                  |
| R14               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1793.13                          | 126.87                                   | 0                                            | 126.87                           | 0.01                  | 1.17E+03                  |
| R16               | 1892.93                          | 26.93                                    | 0.13                                         | 27.06                            | 0                     | 0.00E+00                  |
| R17               | 739                              | 1181                                     | 0                                            | 1181                             | 0.14                  | 1.64E+04                  |
| R18               | 751.8                            | 1168.2                                   | 0                                            | 1168.2                           | 0.37                  | 4.23E+04                  |
| R19               | 1836.6                           | 83.4                                     | 0                                            | 83.4                             | 0.09                  | 9.93E+03                  |
| R20               | 1887.67                          | 32.33                                    | 0                                            | 32.33                            | 0                     | 2.40E+02                  |
| R21               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1884                             | 36                                       | 0                                            | 36                               | 0.01                  | 1.03E+03                  |
| R23               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1893.07                          | 26.93                                    | 0                                            | 26.93                            | 0                     | 1.06E+02                  |
| R25               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1890.53                          | 29.47                                    | 0                                            | 29.47                            | 0                     | 3.40E+02                  |
| 9A                | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 1920                                     | 0                                            | 1920                             | 2.58                  | 2.97E+05                  |
| PS                | 0                                | 1920                                     | 0                                            | 1920                             | 8.2                   | 9.44E+05                  |

| CONDUIT | LENGTH<br>OF<br>DRY | LENGTH<br>OF<br>SUBCRITICAL | LENGTH<br>OF UPSTR.<br>CRITICAL | LENGTH<br>OF<br>WET | MEAN<br>FLOW | TOTAL<br>FLOW |
|---------|---------------------|-----------------------------|---------------------------------|---------------------|--------------|---------------|
| NUMBER  | FLOW(MIN)           |                             |                                 |                     | (CFS)        |               |
| R02     | 1167.47             | 752.53                      | 0                               | 752.53              | 2.18         | 2.52E+05      |
| R03     | 1536.13             | 383.87                      | 0                               | 383.87              | 3.11         | 3.58E+05      |
| R04     | 1532.13             | 387.87                      | 0                               | 387.87              | 1.4          | 1.62E+05      |
| R05     | 732.33              | 1187.67                     | 0                               | 1187.67             | 5.08         | 5.85E+05      |
| R06     | 1554.6              | 365.33                      | 0.07                            | 365.4               | 0.47         | 5.41E+04      |
| R07     | 1473.93             | 446.07                      | 0                               | 446.07              | 1.47         | 1.69E+05      |
| R08     | 728.07              | 1191.87                     | 0.07                            | 1191.94             | 7.54         | 8.69E+05      |
| R09     | 1516.87             | 403.13                      | 0                               | 403.13              | 3            | 3.46E+05      |
| R11     | 1592.6              | 327.33                      | 0.07                            | 327.4               | 1.54         | 1.77E+05      |
| R12     | 1800.93             | 119.07                      | 0                               | 119.07              | 0.03         | 3.26E+03      |
| R13     | 1471.07             | 448.93                      | 0                               | 448.93              | 2.9          | 3.34E+05      |
| R14     | 1569.73             | 350.2                       | 0.07                            | 350.27              | 1.44         | 1.66E+05      |
| R15     | 1453.53             | 466.47                      | 0                               | 466.47              | 0.64         | 7.37E+04      |
| R16     | 1490.07             | 429.93                      | 0                               | 429.93              | 1.9          | 2.19E+05      |
| R17     | 729.4               | 1190.6                      | 0                               | 1190.6              | 1.71         | 1.98E+05      |
| R18     | 737.67              | 1182.33                     | 0                               | 1182.33             | 4.42         | 5.09E+05      |
| R19     | 1454.87             | 465.13                      | 0                               | 465.13              | 4.48         | 5.17E+05      |
| R20     | 1607.4              | 312.6                       | 0                               | 312.6               | 0.45         | 5.17E+04      |
| R21     | 1685.4              | 234.6                       | 0                               | 234.6               | 0.26         | 2.99E+04      |
| R22     | 1606.6              | 313.4                       | 0                               | 313.4               | 0.91         | 1.04E+05      |
| R23     | 1737.07             | 182.93                      | 0                               | 182.93              | 0.14         | 1.57E+04      |
| R24     | 1585.07             | 334.93                      | 0                               | 334.93              | 0.76         | 8.79E+04      |
| R25     | 1602.93             | 317.07                      | 0                               | 317.07              | 0.32         | 3.73E+04      |
| R26     | 1584.4              | 335.6                       | 0                               | 335.6               | 0.85         | 9.77E+04      |
| 9A      | 1591.4              | 328.6                       | 0                               | 328.6               | 1.26         | 1.45E+05      |
| А       | 0                   | 1920                        | 0                               | 1920                | 3.42         | 3.93E+05      |
| PS      | 0                   | 1920                        | 0                               | 1920                | 11.79        | 1.36E+06      |

.

• •••

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1451.73                          | 228.2                                    | 0.07                                         | 228.27                           | 0.2                   | <br>2 04E+04              |
| R03               | 1617.07                          | 62.93                                    | 0                                            | 62.93                            | 0.01                  | 1.29E+03                  |
| R04               | 1609.67                          | 70.33                                    | 0                                            | 70,33                            | 0.01                  | 1.06E+03                  |
| R05               | 730.47                           | 949.53                                   | 0                                            | 949.53                           | 0.54                  | 5.49E+04                  |
| R06               | 1622.07                          | 57.93                                    | 0                                            | 57.93                            | 0.02                  | 1.75E+03                  |
| R07               | 1505.87                          | 174.13                                   | 0                                            | 174.13                           | 0.09                  | 9.24E+03                  |
| R08               | 726.93                           | 953.07                                   | 0                                            | 953.07                           | 0.61                  | 6.16E+04                  |
| R09               | 1541.93                          | 138.07                                   | 0                                            | 138.07                           | 0.07                  | 7.44E+03                  |
| R11               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1489.33                          | 190.67                                   | 0                                            | 190.67                           | 0.17                  | 1.75E+04                  |
| R14               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1545.53                          | 134.47                                   | 0                                            | 134.47                           | 0.01                  | 1.34E+03                  |
| R16               | 1607.27                          | 72.67                                    | 0.07                                         | 72.74                            | 0                     | 0.00E+00                  |
| R17               | 728.4                            | 951.6                                    | 0                                            | 951.6                            | 0.15                  | 1.52E+04                  |
| R18               | 1464.47                          | 215.53                                   | 0                                            | 215.53                           | 0.28                  | 2.80E+04                  |
| R19               | 1591.4                           | 88.6                                     | 0                                            | 88.6                             | 0.13                  | 1.32E+04                  |
| R20               | 1627.6                           | 52.4                                     | 0                                            | 52.4                             | 0                     | 3.52E+01                  |
| R21               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1619.47                          | 60.53                                    | 0                                            | 60.53                            | 0.01                  | 6.20E+02                  |
| R23               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1680                                     | 0                                            | 1680                             | 2.73                  | 2.75E+05                  |
| PS                | 0                                | 1680                                     | 0                                            | 1680                             | 8,53                  | 8.60E+05                  |

| CONDUIT    | LENGTH<br>OF<br>DRY | LENGTH<br>OF<br>SUBCRITICAL | LENGTH<br>OF UPSTR.<br>CRITICAL | LENGTH<br>OF<br>WET | MEAN<br>FLOW | TOTAL<br>FLOW |
|------------|---------------------|-----------------------------|---------------------------------|---------------------|--------------|---------------|
| NUMBER     | FLOW(MIN)           | FLOW(MIN)                   | FLOW(MIN)                       | FLOW(MIN)           | (CFS)        | CUBIC FT      |
| P02        | 1079.2              | 480.8                       |                                 | 480.8               | 1 2          | 1 12E+05      |
| R02        | 1079.2              | 480.8                       | 0.07                            | 89.8                | 1 39         | 1.30E+05      |
| R03        | 1467.27             | 92 73                       | 0.07                            | 92.73               | 0.62         | 5.83E+04      |
| R04<br>R05 | 721.93              | 838                         | 0.07                            | 838.07              | 2.05         | 1.92E+05      |
| R05        | 1463.8              | 96.13                       | 0.07                            | 96.2                | 0.21         | 1.93E+04      |
| R07        | 1450.6              | 109.4                       | 0                               | 109.4               | 0.64         | 6.03E+04      |
| R08        | 721,93              | 838,07                      | 0                               | 838.07              | 3.26         | 3.05E+05      |
| R09        | 1450.27             | 109.73                      | 0                               | 109.73              | 1.34         | 1.26E+05      |
| R11        | 1486.93             | 73.07                       | 0                               | 73.07               | 0.72         | 6.72E+04      |
| R12        | 1504                | 56                          | 0                               | 56                  | 0.02         | 1.82E+03      |
| R13        | 1444.87             | 115.13                      | 0                               | 115.13              | 1.31         | 1.22E+05      |
| R14        | 1475.93             | 84                          | 0.07                            | 84.07               | 0.71         | 6.67E+04      |
| R15        | 1437.73             | 122.27                      | 0                               | 122.27              | 0.27         | 2.52E+04      |
| R16        | 1420.47             | .139.47                     | 0.07                            | 139.54              | 0.88         | 8.21E+04      |
| R17        | 722.67              | 837.33                      | 0                               | 837.33              | 0.73         | 6.82E+04      |
| R18        | 725.13              | 834.87                      | 0                               | 834.87              | 2.01         | 1.88E+05      |
| R19        | 1363.4              | 196.6                       | 0                               | 196.6               | 2.56         | 2.40E+05      |
| R20        | 1492.6              | 67.4                        | 0                               | 67.4                | 0.23         | 2.17E+04      |
| R21        | 1492.6              | 67.4                        | 0                               | 67.4                | 0.14         | 1.27E+04      |
| R22        | 1492.93             | 67.07                       | 0                               | 67.07               | 0.44         | 4.15E+04      |
| R23        | 1499.2              | 60.8                        | 0                               | 60.8                | 0.09         | 8.10E+03      |
| R24        | 1487.47             | 72.53                       | 0                               | 72.53               | 0.36         | 3.35E+04      |
| R25        | 1485.73             | 74.27                       | 0                               | 74.27               | 0.16         | 1.53E+04      |
| R26        | 1490.47             | 69.53                       | 0                               | 69.53               | 0.39         | 3.65E+04      |
| 9A         | 1483.87             | 76.13                       | 0                               | 76.13               | 0.58         | 5.45E+04      |
| А          | 0                   | 1560                        | 0                               | 1560                | 2.63         | 2,46E+05      |
| PS         | 0                   | 1560                        | 0                               | 1560                | 8.62         | 8.06E+05      |

ч<u>ы</u> .

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>R02           |                                  | 265.73                                   | 0                                            | 265 73                           | <br>0 39              | <br>3 08E+04              |
| R03               | 1526.67                          | 153.27                                   | 0.07                                         | 153.34                           | 0.32                  | 4.28E+04                  |
| R04               | 1513.8                           | 166.2                                    | 0                                            | 166.2                            | 0.18                  | 1.20E+04                  |
| R05               | 1205.13                          | 474.8                                    | 0.07                                         | 474.87                           | 0.87                  | 8 73E+04                  |
| R06               | 1539.6                           | 140.4                                    | 0                                            | 140.4                            | 0.05                  | 5.46E+03                  |
| R07               | 1479.33                          | 200.67                                   | 0                                            | 200.67                           | 0.21                  | 2.15E+04                  |
| R08               | 1203.73                          | 476.27                                   | 0                                            | 476.27                           | 1.12                  | 1.13E+05                  |
| R09               | 1481.07                          | 198.87                                   | 0.07                                         | 198.94                           | 0.33                  | 3.32E+04                  |
| R11               | 1567.53                          | 112.4                                    | 0.07                                         | 112.47                           | 0.14                  | 1.42E+04                  |
| R12               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1470.47                          | 209.4                                    | 0.13                                         | 209.53                           | 0.44                  | 4.43E+04                  |
| R14               | 1650.13                          | 29.87                                    | 0                                            | 29.87                            | 0                     | 0.00E+00                  |
| R15               | 1530.27                          | 149.73                                   | 0                                            | 149.73                           | 0.05                  | 4.56E+03                  |
| R16               | 1466                             | 214                                      | 0                                            | 214                              | 0.11                  | 1.11E+04                  |
| R17               | 1205.13                          | 474.87                                   | 0                                            | 474.87                           | 0.3                   | 3.06E+04                  |
| R18               | 1209.8                           | 470.2                                    | 0                                            | 470.2                            | 0.7                   | 7.02E+04                  |
| R19               | 1458.07                          | 221.87                                   | 0.07                                         | 221.94                           | 0.98                  | 9.85E+04                  |
| R20               | 1568.2                           | 111.8                                    | 0                                            | 111.8                            | 0.03                  | 2.56E+03                  |
| R21               | 1651                             | 29                                       | 0                                            | 29                               | 0.01                  | 5.25E+02                  |
| R22               | 1567.07                          | 112.93                                   | 0                                            | 112.93                           | 0.07                  | 6.90E+03                  |
| R23               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1557.6                           | 122.4                                    | 0                                            | 122.4                            | 0.09                  | 8.64E+03                  |
| R25               | 1641.53                          | 38.47                                    | 0                                            | 38.47                            | 0                     | 3.56E+02                  |
| R26               | 1571                             | 109                                      | 0                                            | 109                              | 0.04                  | 3.57E+03                  |
| 9A                | 1570.93                          | 109.07                                   | 0                                            | 109.07                           | 0.09                  | 9.31E+03                  |
| A                 | 0                                | 1680                                     | 0                                            | 1680                             | 2.71                  | 2.73E+05                  |
| PS                | 0                                | 1680                                     | 0                                            | 1680                             | 8.62                  | 8.69E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1227.47                          | 752.53                                   | 0                                            | 752.53                           | 2                     | 2.37E+05                  |
| R03               | 1883.53                          | 96.4                                     | 0.07                                         | 96.47                            | 1.83                  | 2.18E+05                  |
| R04               | 1882.67                          | 97.33                                    | 0                                            | 97.33                            | 1.23                  | 1.46E+05                  |
| R05               | 732.33                           | 1247.67                                  | 0                                            | 1247.67                          | 4.08                  | 4.84E+05                  |
| R06               | 1879.33                          | 100.67                                   | 0                                            | 100.67                           | 0.42                  | 5.03E+04                  |
| R07               | 1764.6                           | 215.4                                    | 0                                            | 215.4                            | 1.31                  | 1.56E+05                  |
| R08               | 728.07                           | 1251.87                                  | 0.07                                         | 1251.94                          | 3.73                  | 4.43E+05                  |
| R09               | 1825.87                          | 154.13                                   | 0                                            | 154.13                           | 2.47                  | 2.94E+05                  |
| R11               | 1904.2                           | 75.73                                    | 0.07                                         | 75.8                             | 1.43                  | 1.70E+05                  |
| R12               | 1917.8                           | 62.2                                     | 0                                            | 62.2                             | 0.1                   | 1.14E+04                  |
| R13               | 1716.27                          | 263.73                                   | 0                                            | 263.73                           | 2.48                  | 2.95E+05                  |
| R14               | 1889.93                          | 90                                       | 0.07                                         | 90.07                            | 1.48                  | 1.76E+05                  |
| R15               | 1602.4                           | 377.6                                    | 0                                            | 377.6                            | 0.61                  | 7.24E+04                  |
| R16               | 1837.27                          | 142.67                                   | 0.07                                         | 142.74                           | 2.11                  | 2.50E+05                  |
| R17               | 729.4                            | 1250.6                                   | 0                                            | 1250.6                           | 1.13                  | 1.34E+05                  |
| R18               | 737.67                           | 1242.33                                  | 0                                            | 1242.33                          | 3.91                  | 4.64E+05                  |
| R19               | 1702.33                          | 277.67                                   | 0                                            | 277.67                           | 0.97                  | 1.15E+05                  |
| R20               | 1898.6                           | 81.4                                     | 0                                            | 81.4                             | 0.56                  | 6.60E+04                  |
| R21               | 1908.87                          | 71.13                                    | 0                                            | 71.13                            | 0.3                   | 3.58E+04                  |
| R22               | 1900.33                          | 79.67                                    | 0                                            | 79.67                            | 1.03                  | 1.22E+05                  |
| R23               | 1916.27                          | 63.73                                    | 0                                            | 63.73                            | 0.21                  | 2.48E+04                  |
| R24               | 1904.6                           | 75.4                                     | 0                                            | 75.4                             | 0.68                  | 8.07E+04                  |
| R25               | 1900.4                           | 79.6                                     | 0                                            | 79.6                             | 0.34                  | 4.01E+04                  |
| R26               | 1907.33                          | 72.67                                    | 0                                            | 72.67                            | 0.76                  | 9.08E+04                  |
| 9A                | 1898.87                          | 81.13                                    | 0                                            | 81.13                            | 0.94                  | 1.11E+05                  |
| А                 | 0                                | 1980                                     | 0                                            | 1980                             | 3.13                  | 3.72E+05                  |
| PS                | 0                                | 1980                                     | 0                                            | 1980                             | 9.43                  | 1.12E+06                  |

ż,

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1471.53                          | 208.4                                    | 0.07                                         | 208.47                           | 0.06                  | 6.55E+03                  |
| R03               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 735. <b>8</b>                    | 944.2                                    | 0                                            | 944.2                            | 0.26                  | 2.67E+04                  |
| R06               | 1680                             | . 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1640.47                          | 39.53                                    | 0                                            | 39.53                            | 0                     | 3.07E+01                  |
| R08               | 1494.73                          | 185.2                                    | 0.07                                         | 185.27                           | 0.06                  | 5.89E+03                  |
| R09               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1640.2                           | 39.8                                     | 0                                            | 39.8                             | 0                     | 4.66E+01                  |
| R14               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1621.93                          | 58.07                                    | 0                                            | 58.07                            | 0                     | 2.97E+01                  |
| R16               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 14 <b>8</b> 6.87                 | 193.13                                   | 0                                            | 193.13                           | 0.02                  | 1.83E+03                  |
| R18               | 1469.4                           | 210.6                                    | 0                                            | 210.6                            | 0.08                  | 7.57E+03                  |
| R19               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R23               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1680                                     | 0                                            | 1680                             | 2.47                  | 2.49E+05                  |
| PS                | 0                                | 1680                                     | 0                                            | 1680                             | 7.73                  | 7.79E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <b>-</b>          | 1224 22                          |                                          |                                              | 345.67                           | 0.74                  | 7 45E+04                  |
| R02               | 1534.33                          | 131.13                                   | 0                                            | 131.13                           | 0.74                  | 8 1 1 F+04                |
| R03               | 1532.2                           | 147.8                                    | 0                                            | 147.8                            | 0.37                  | 3 70E+04                  |
| R04               | 722.53                           | 957.4                                    | 0.07                                         | 957.47                           | 1.39                  | 1.40E+05                  |
| R05<br>R06        | 1587.47                          | 92 47                                    | 0.07                                         | 92.54                            | 0.11                  | 1.14E+04                  |
| R07               | 1494.8                           | 185.2                                    | 0.07                                         | 185.2                            | 0.39                  | 3.97E+04                  |
| R08               | 722.33                           | 957.67                                   | 0                                            | 957.67                           | 2.03                  | 2.05E+05                  |
| R09               | 1494                             | 186                                      | 0                                            | 186                              | 0.78                  | 7.90E+04                  |
| R11               | 1603.27                          | 76.67                                    | 0.07                                         | 76.74                            | 0.4                   | 4.04E+04                  |
| R12               | 1634.13                          | 45.87                                    | 0                                            | 45.87                            | 0                     | 3.87E+01                  |
| R13               | 1477.87                          | 202.07                                   | 0.07                                         | 202.14                           | 0.81                  | 8.18E+04                  |
| R14               | 1594                             | 86                                       | 0                                            | 86                               | 0.32                  | 3.25E+04                  |
| R15               | 1462.47                          | 217.53                                   | 0                                            | 217.53                           | 0.15                  | 1.54E+04                  |
| R16               | 1522.73                          | 157.2                                    | 0.07                                         | 157.27                           | 0.46                  | 4.59E+04                  |
| R17               | 723.27                           | 956.73                                   | 0                                            | 956.73                           | 0.5                   | 5.06E+04                  |
| R18               | 726.2                            | 953.8                                    | 0                                            | 953.8                            | 1.29                  | 1.30E+05                  |
| R19               | 1453.2                           | 226.73                                   | 0.07                                         | 226.8                            | 1.36                  | 1.37E+05                  |
| R20               | 1612.93                          | 67.07                                    | 0                                            | 67.07                            | 0.12                  | 1.20E+04                  |
| R21               | 1614.67                          | 65.33                                    | 0                                            | 65.33                            | 0.07                  | 6.60E+03                  |
| R22               | 1613.6                           | 66.4                                     | 0                                            | 66.4                             | 0.23                  | 2.33E+04                  |
| R23               | 1621.2                           | 58.8                                     | 0                                            | 58.8                             | 0.03                  | 3.49E+03                  |
| R24               | 1596.07                          | 83.93                                    | 0                                            | 83.93                            | 0.21                  | 2.10E+04                  |
| R25               | 1616.87                          | 63.13                                    | 0                                            | 63.13                            | 0.07                  | 7.44E+03                  |
| R26               | 1594.2                           | 85.8                                     | 0                                            | 85.8                             | 0.22                  | 2.22E+04                  |
| 9A                | 1602.93                          | 77.07                                    | 0                                            | 77.07                            | 0.33                  | 3.34E+04                  |
| А                 | 0                                | 1680                                     | 0                                            | 1680                             | 2.6                   | 2.63E+05                  |
| PS                | 0                                | 1680                                     | 0                                            | 1680                             | 8.57                  | 8.64E+05                  |

.

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1427.93                          | 252.07                                   | 0                                            | 252.07                           | 0.46                  | 4 67E+04                  |
| R03               | 1539.07                          | 140.87                                   | 0.07                                         | 140.94                           | 0.48                  | 4.87E+04                  |
| R04               | 1524.33                          | 155.67                                   | 0                                            | 155.67                           | 0.22                  | 2.18E+04                  |
| R05               | 724                              | . 956                                    | 0                                            | 956                              | 1.03                  | 1.04E+05                  |
| R06               | 1555.53                          | 124.47                                   | 0                                            | 124.47                           | 0.07                  | 6.62E+03                  |
| R07               | 1494.53                          | 185.47                                   | 0                                            | 185.47                           | 0.25                  | 2.52E+04                  |
| R08               | 723.13                           | 956.87                                   | 0                                            | 956.87                           | 1.33                  | 1.34E+05                  |
| R09               | 1492.33                          | 187.67                                   | 0                                            | 187.67                           | 0.44                  | 4.40E+04                  |
| R11               | 1559.73                          | 120.2                                    | 0.07                                         | 120.27                           | 0.21                  | 2.08E+04                  |
| R12               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 14 <b>79</b> .4                  | 200.53                                   | 0.07                                         | 200.6                            | 0.52                  | 5.20E+04                  |
| R14               | 1624.2                           | 55.73                                    | 0.07                                         | 55.8                             | 0.01                  | 5.46E+02                  |
| R15               | 1540.67                          | 139.33                                   | 0                                            | 139.33                           | 0.06                  | 5.90E+03                  |
| R16               | 1498.53                          | 181.47                                   | 0                                            | 181.47                           | 0.21                  | 2.14E+04                  |
| R17               | 724.4                            | 955.6                                    | 0                                            | 955.6                            | 0.36                  | 3.64E+04                  |
| R18               | 728.33                           | 951.67                                   | 0                                            | 951.67                           | 0.86                  | 8.63E+04                  |
| R19               | 1457.07                          | 222.93                                   | 0                                            | 222 <b>.9</b> 3                  | 1.23                  | 1.24E+05                  |
| R20               | 1610.2                           | 69.8                                     | 0                                            | 69.8                             | 0.04                  | 4.49E+03                  |
| R21               | 1628.33                          | 51.67                                    | 0                                            | 51.67                            | 0.02                  | 1.84E+03                  |
| R22               | 1566.4                           | 113.6                                    | 0                                            | 113.6                            | 0.1                   | 9.75E+03                  |
| R23               | 1638.33                          | 41.67                                    | 0                                            | 41.67                            | 0                     | 2.98E+02                  |
| R24               | 1555.67                          | 124.33                                   | 0                                            | 124.33                           | 0.11                  | 1.13E+04                  |
| R25               | 1631.33                          | 48.67                                    | 0                                            | 48.67                            | 0.01                  | 1.34E+03                  |
| R26               | 1616.47                          | 63.53                                    | 0                                            | 63.53                            | 0.06                  | 6.30E+03                  |
| 9A                | 1568.53                          | 111.47                                   | 0                                            | 111.47                           | 0.15                  | 1.54E+04                  |
| А                 | 0                                | 1680                                     | 0                                            | 1680                             | 2.61                  | 2.63E+05                  |
| PS                | 0                                | 1680                                     | 0                                            | 1680                             | 8.57                  | 8.63E+05                  |

| CONDUIT | LENGTH<br>OF<br>DRY | LENGTH<br>OF<br>SUBCRITICAL | LENGTH<br>OF UPSTR.<br>CRITICAL | LENGTH<br>OF<br>WET | MEAN<br>FLOW | TOTAL<br>FLOW |
|---------|---------------------|-----------------------------|---------------------------------|---------------------|--------------|---------------|
| NUMBER  | FLOW(MIIN)          | FLOW(MIN)                   |                                 |                     | (CFS)        |               |
| R02     | 1503.07             | 116.93                      | 0                               | 116.93              | 0.03         | 3.05E+03      |
| R03     | 1620                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R04     | 1620                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R05     | 788.93              | 831                         | 0.07                            | 831.07              | 0.2          | 1.94E+04      |
| R06     | 1620                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R07     | 1579.4              | 40.6                        | 0                               | 40.6                | 0            | 3.27E+01      |
| R08     | 1538.13             | 81.8                        | 0.07                            | 81.87               | 0.05         | 4.53E+03      |
| R09     | 1620                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R11     | 1620                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R12     | 1620                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R13     | 1578                | 42                          | 0                               | 42                  | 0            | 5.51E+01      |
| R14     | 1620                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R15     | 1563.93             | 56.07                       | 0                               | 56.07               | 0            | 3.08E+01      |
| R16     | 1620                | . 0                         | 0                               | 0                   | 0            | 0.00E+00      |
| R17     | 1513.47             | 106.53                      | 0                               | 106.53              | 0.01         | 1.28E+03      |
| R18     | 1498.4              | 121.6                       | 0                               | 121.6               | 0.05         | 4.78E+03      |
| R19     | 1620                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R20     | 1620                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R21     | 1620                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R22     | 1620                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R23     | 1620                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R24     | 1620                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R25     | 1620                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R26     | 1620                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| 9A      | 1620                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| А       | 0                   | 1620                        | 0                               | 1620                | 2.42         | 2.35E+05      |
| PS      | 0                   | 1620                        | 0                               | 1620                | 7.41         | 7.21E+05      |

ć .

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1214.8                           | 585.2                                    | 0                                            | 585.2                            | 1.31                  |                           |
| R03               | 1548                             | 251.93                                   | 0.07                                         | 252                              | 1.5                   | 1.62E+05                  |
| R04               | 1531.67                          | 268.33                                   | 0                                            | 268.33                           | 0.67                  | 7.28E+04                  |
| R05               | 722.27                           | 1077.73                                  | 0                                            | 1077.73                          | 2,44                  | 2.64E+05                  |
| R06               | 1586.47                          | 213.53                                   | 0                                            | 213.53                           | 0.22                  | 2.36E+04                  |
| R07               | 1494.27                          | 305.73                                   | 0                                            | 305.73                           | 0.71                  | 7.69E+04                  |
| R08               | 722.13                           | 1077.87                                  | 0                                            | 1077.87                          | 3.59                  | 3.87E+05                  |
| R09               | 1493.53                          | 306.47                                   | 0                                            | 306.47                           | 1.41                  | 1.53E+05                  |
| R11               | 1604                             | 195.93                                   | 0.07                                         | 196                              | 0.73                  | 7.91E+04                  |
| R12               | 1749.87                          | 50.13                                    | 0                                            | 50.13                            | 0.01                  | 5.52E+02                  |
| R13               | 1477.4                           | 322.6                                    | 0                                            | 322.6                            | 1.46                  | 1.58E+05                  |
| R14               | 1594.13                          | 205.87                                   | 0                                            | 205.87                           | 0.52                  | 5.62E+04                  |
| R15               | 1462.2                           | 337.8                                    | 0                                            | 337.8                            | 0.27                  | 2.95E+04                  |
| R16               | 1522.07                          | 277.93                                   | 0                                            | 277.93                           | 0.85                  | 9.13E+04                  |
| R17               | 722.93                           | 1077.07                                  | 0                                            | 1077.07                          | 0.9                   | 9.67E+04                  |
| R18               | 725.67                           | 1074.33                                  | 0                                            | 1074.33                          | 2.23                  | 2.41E+05                  |
| R19               | 1452.67                          | 347.33                                   | 0                                            | 347.33                           | 3.42                  | 3.69E+05                  |
| R20               | 1614.4                           | 185.6                                    | 0                                            | 185.6                            | 0.2                   | 2.11E+04                  |
| R21               | 1651.33                          | 148.67                                   | 0                                            | 148.67                           | 0.11                  | 1.20E+04                  |
| R22               | 1614.53                          | 185.47                                   | 0                                            | 185.47                           | 0.39                  | 4.21E+04                  |
| R23               | 1683.13                          | 116.87                                   | 0                                            | 116.87                           | 0.05                  | 5.47E+03                  |
| R24               | 1597.47                          | 202.53                                   | 0                                            | 202.53                           | 0.38                  | 4.06E+04                  |
| R25               | 1617.13                          | 182.87                                   | 0                                            | 182.87                           | 0.14                  | 1.50E+04                  |
| R26               | 1595.4                           | 204.6                                    | 0                                            | 204.6                            | 0.39                  | 4.25E+04                  |
| 9A                | 1603.67                          | 196.33                                   | 0                                            | 196.33                           | 0.59                  | 6.34E+04                  |
| A                 | 0                                | 1800                                     | 0                                            | 1800                             | 2.86                  | 3.09E+05                  |
| PS                | 0                                | 1800                                     | 0                                            | 1800                             | 9.77                  | 1.05E+06                  |

•

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1525.67                          | 214.27                                   | 0.07                                         | 214.34                           | 0.04                  | 3.71E+03                  |
| R03               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1614                             | 126                                      | 0                                            | 126                              | 0.02                  | 1.94E+03                  |
| R06               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1583.93                          | 156.07                                   | 0                                            | 156.07                           | 0.03                  | 3.36E+03                  |
| R09               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1703.4                           | 36.6                                     | 0                                            | 36.6                             | 0                     | 4.33E-01                  |
| R16               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1497.53                          | 242.47                                   | 0                                            | 242.47                           | 0.01                  | 1.19E+03                  |
| R18               | 1483.73                          | 256.27                                   | 0                                            | 256.27                           | 0.06                  | 5.87E+03                  |
| R19               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R23               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1740                                     | 0                                            | 1740                             | 2.67                  | 2.78E+05                  |
| PS                | 0                                | 1740                                     | 0                                            | 1740                             | 7.63                  | 7.96E+05                  |

...

|         | LENGTH<br>OF | LENGTH<br>OF | LENGTH<br>OF UPSTR. | LENGTH<br>OF | MEAN  | TOTAL    |
|---------|--------------|--------------|---------------------|--------------|-------|----------|
| CONDUIT | DRY          | SUBCRITICAL  | CRITICAL            | WET          | FLOW  | FLOW     |
| NUMBER  | FLOW(MIN)    | FLOW(MIN)    | FLOW(MIN)           | FLOW(MIN)    | (CFS) | COBIC FT |
| R02     | 1167.33      | 752.67       | 0                   | 752.67       | 1.65  | 1 90E+05 |
| R03     | 1604.53      | 315.4        | 0.07                | 315.47       | 1.77  | 2.04E+05 |
| R04     | 1589.27      | 330.73       | 0                   | 330.73       | 0.82  | 9.47E+04 |
| R05     | 732.33       | 1187.67      | 0                   | 1187.67      | 3.08  | 3.55E+05 |
| R06     | 1718.6       | 201.4        | 0                   | 201.4        | 0.26  | 3.02E+04 |
| R07     | 1525         | 395          | 0                   | 395          | 0.9   | 1.03E+05 |
| R08     | 728.07       | 1191.87      | 0.07                | 1191.94      | 4.09  | 4.71E+05 |
| R09     | 1562.8       | 357.13       | 0.07                | 357.2        | 1.75  | 2.02E+05 |
| R11     | 1713.47      | 206.53       | 0                   | 206.53       | 0.87  | 1.00E+05 |
| R12     | 1859.4       | 60.6         | 0                   | 60.6         | 0.04  | 4.39E+03 |
| R13     | 1510.53      | 409.47       | 0                   | 409.47       | 1.78  | 2.05E+05 |
| R14     | 1792.67      | 127.27       | 0.07                | 127.34       | 0.87  | 1.01E+05 |
| R15     | 1473.73      | 446.27       | 0                   | 446.27       | 0.38  | 4.41E+04 |
| R16     | 1604.93      | 315          | 0.07                | 315.07       | 1.15  | 1.32E+05 |
| R17     | 729.4        | 1190.6       | 0                   | 1190.6       | 1     | 1.15E+05 |
| R18     | 737.67       | 1182.33      | 0                   | 1182.33      | 2.77  | 3.19E+05 |
| R19     | 1479.33      | 440.67       | 0                   | 440.67       | 3.67  | 4.23E+05 |
| R20     | 1841.13      | 78.87        | 0                   | 78.87        | 0.28  | 3.28E+04 |
| R21     | 1846.13      | 73.87        | 0                   | 73.87        | 0.17  | 1.96E+04 |
| R22     | 1758.53      | 161.47       | 0                   | 161.47       | 0.55  | 6.30E+04 |
| R23     | 1856.87      | 63.13        | 0                   | 63.13        | 0.11  | 1.28E+04 |
| R24     | 1666.27      | 253.73       | 0                   | 253.73       | 0.44  | 5.11E+04 |
| R25     | 1738         | 182          | 0                   | 182          | 0.21  | 2.38E+04 |
| R26     | 1662.47      | 257.53       | 0                   | 257.53       | 0.5   | 5.73E+04 |
| 9A      | 1733.53      | 186.47       | 0                   | 186.47       | 0.72  | 8.26E+04 |
| А       | 0            | 1920         | 0                   | 1920         | 3.15  | 3.63E+05 |
| PS      | 0            | 1920         | 0                   | 1920         | 9.97  | 1.15E+06 |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>R02           | 1090.4                           | 769.6                                    | 0                                            | 769.6                            | 1.93                  | 2.15E+05                  |
| R03               | 1540.8                           | 319.2                                    | 0                                            | 319.2                            | 2.39                  | 2.67E+05                  |
| R04               | 1525.73                          | 334.27                                   | 0                                            | 334.27                           | 1.08                  | 1.20E+05                  |
| R05               | 725.93                           | 1134.07                                  | 0                                            | 1134.07                          | 3.99                  | 4.46E+05                  |
| R06               | 1569.4                           | 290.53                                   | 0.07                                         | 290.6                            | 0.35                  | 3.94E+04                  |
| R07               | 1496.47                          | 363.53                                   | 0                                            | 363.53                           | 1.13                  | 1.27E+05                  |
| R08               | 724.13                           | 1135.87                                  | 0                                            | 1135.87                          | 5.78                  | 6.45E+05                  |
| R09               | 1494.4                           | 365.6                                    | 0                                            | 365.6                            | 2.27                  | 2.53E+05                  |
| R11               | 1578.13                          | 281.87                                   | 0                                            | 281.87                           | 1.14                  | 1.27E+05                  |
| R12               | 1799.6                           | 60.4                                     | 0                                            | 60.4                             | 0                     | 4.42E+02                  |
| R13               | 1481.73                          | 378.27                                   | 0                                            | 378.27                           | 2.26                  | 2.53E+05                  |
| R14               | 1596.27                          | 263.67                                   | 0.07                                         | 263.74                           | 0.93                  | 1.04E+05                  |
| R15               | 1464.8                           | 395.2                                    | 0                                            | 395.2                            | 0.47                  | 5.29E+04                  |
| R16               | 1510.33                          | 349.67                                   | 0                                            | 349.67                           | 1.37                  | 1.53E+05                  |
| R17               | 725.6                            | 1134.4                                   | 0                                            | 1134.4                           | 1.4                   | 1.56E+05                  |
| R18               | 730.73                           | 1129.27                                  | 0                                            | 1129.27                          | 3.44                  | 3.84E+05                  |
| R19               | 1461.67                          | 398.27                                   | 0.07                                         | 398.34                           | 4.04                  | 4.50E+05                  |
| R20               | 1567.4                           | 292.6                                    | 0                                            | 292.6                            | 0.32                  | 3.55E+04                  |
| R21               | 1609                             | 251                                      | 0                                            | 251                              | 0.19                  | 2.10E+04                  |
| R22               | 1565.13                          | 294.87                                   | 0                                            | 294.87                           | 0.66                  | 7.33E+04                  |
| R23               | 1677.53                          | 182.47                                   | 0                                            | 182.47                           | 0.07                  | 7.60E+03                  |
| R24               | 1574.13                          | 285.87                                   | 0                                            | 285.87                           | 0.6                   | 6.68E+04                  |
| R25               | 1584.6                           | 275.4                                    | 0                                            | 275.4                            | 0.2                   | 2.24E+04                  |
| R26               | 1574.67                          | 285.33                                   | 0                                            | 285.33                           | 0.58                  | 6.51E+04                  |
| 9A                | 1582.87                          | 277.13                                   | 0                                            | 277.13                           | 0.93                  | 1.04E+05                  |
| A                 | 0                                | 1860                                     | 0                                            | 1860                             | 3.2                   | 3.57E+05                  |
| PS                | 0                                | 1860                                     | 0                                            | 1860                             | 11.34                 | 1.27E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1378.53                          | 1201.47                                  | <b></b> 0                                    | 1201.47                          | 2.26                  | <br>3 49E+05              |
| R03               | 1616.2                           | 963.73                                   | 0.07                                         | 963.8                            | 2.77                  | 4 29E+05                  |
| R04               | 1586.2                           | 993.8                                    | 0                                            | 993.8                            | 1.26                  | 1.94E+05                  |
| R05               | 722                              | 1858                                     | 0                                            | 1858                             | 4.72                  | 7.31E+05                  |
| R06               | 1764.8                           | 815.13                                   | 0.07                                         | 815.2                            | 0.39                  | 6.02E+04                  |
| R07               | 1548.13                          | 1031.87                                  | 0                                            | 1031.87                          | 1.33                  | 2.06E+05                  |
| R08               | 722                              | 1858                                     | 0                                            | 1858                             | 6.74                  | 1.04E+06                  |
| R09               | 1539.87                          | 1040.13                                  | 0                                            | 1040.13                          | 2.44                  | 3.78E+05                  |
| R11               | 1772                             | 808                                      | 0                                            | 808                              | 1.16                  | 1.80E+05                  |
| R12               | 2523.13                          | 56.87                                    | 0                                            | 56.87                            | 0.01                  | 1.56E+03                  |
| R13               | 1517.4                           | 1062.4                                   | 0.2                                          | 1062.6                           | 2.74                  | 4.25E+05                  |
| R14               | 1875.2                           | 704.8                                    | 0                                            | 704.8                            | 0.84                  | 1.31E+05                  |
| R15               | 1472                             | 1108                                     | 0                                            | 1108                             | 0.52                  | 8.04E+04                  |
| R16               | 1658.67                          | 921.27                                   | 0.07                                         | 921.34                           | 1.43                  | 2.22E+05                  |
| R17               | 722.73                           | 1857.27                                  | 0                                            | 1857.27                          | 1.71                  | 2.65E+05                  |
| R18               | 725.27                           | 1854.73                                  | 0                                            | 1854.73                          | 4.1                   | 6.35E+05                  |
| R19               | 1438.2                           | 1141.8                                   | 0                                            | 1141.8                           | 4.81                  | 7.45E+05                  |
| R20               | 1916.8                           | 663,2                                    | 0                                            | <b>6</b> 63.2                    | 0.28                  | 4.38E+04                  |
| R21               | 2090.67                          | 489.27                                   | 0.07                                         | 489.34                           | 0,16                  | 2.45E+04                  |
| R22               | 1868.73                          | 711.27                                   | 0                                            | 711.27                           | 0.61                  | 9.41E+04                  |
| R23               | 2399.93                          | 180.07                                   | 0                                            | 180.07                           | 0.07                  | 1.05E+04                  |
| R24               | 1737.6                           | 842.4                                    | 0                                            | 842,4                            | 0.64                  | 9.92E+04                  |
| R25               | 1800.33                          | 779.67                                   | 0                                            | 779.67                           | 0.25                  | 3.89E+04                  |
| R26               | 1738.87                          | 841.13                                   | 0                                            | 841.13                           | 0.71                  | 1.09E+05                  |
| 9A                | 1800.07                          | 779.93                                   | 0                                            | 779,93                           | 0.9                   | 1.39E+05                  |
| А                 | 0                                | 2580                                     | 0                                            | 2580                             | 3.75                  | 5.81E+05                  |
| PS                | 0                                | 2580                                     | 0                                            | 2580                             | 13.16                 | 2.04E+06                  |

÷

|                   | LENGTH<br>OF     | LENGTH<br>OF             | LENGTH<br>OF UPSTR.   | LENGTH<br>OF     | MEAN          | TOTAL            |
|-------------------|------------------|--------------------------|-----------------------|------------------|---------------|------------------|
| CONDUIT<br>NUMBER | DRY<br>FLOW(MIN) | SUBCRITICAL<br>FLOW(MIN) | CRITICAL<br>FLOW(MIN) | WET<br>FLOW(MIN) | FLOW<br>(CFS) | FLOW<br>CUBIC FT |
|                   |                  |                          |                       | 145.07           |               | 1 415:04         |
| R02               | 1414.13          | 145.8                    | 0.07                  | 145.87           | 0.15          | 1.41E+04         |
| R03               | 1491.27          | 68.67                    | 0.07                  | 08.74            | 0.12          | 1.126+04         |
| R04               | 1484             | /6                       | 0                     | /6               | 0.05          | 4.88ET03         |
| R05               | 726.87           | 833.13                   | 0                     | 833.13           | 0.45          | 4.19E+04         |
| R06               | 1512.13          | 47.87                    | 0                     | 4/.8/            | 0.02          | 1.67E+03         |
| R07               | 1463.33          | 96.67                    | 0                     | 96.67            | 0.08          | 7.30E+03         |
| R08               | 724.67           | 835.33                   | 0                     | 835.33           | 0.51          | 4.74E+04         |
| R09               | 1464.8           | 95.2                     | 0                     | 95.2             | 0.07          | 6.92E+03         |
| R11               | 1535.47          | 24.53                    | 0                     | 24.53            | 0             | 1.82E+02         |
| R12               | 1560             | 0                        | 0                     | 0                | 0             | 0.00E+00         |
| R13               | 1459.2           | 100.73                   | 0.07                  | 100.8            | 0.17          | 1.55E+04         |
| R14               | 1560             | 0                        | 0                     | 0                | 0             | 0.00E+00         |
| R15               | 1486.27          | + 73.73                  | 0                     | 73.73            | 0.02          | 1.46E+03         |
| R16               | 1482.13          | 77.8                     | 0.07                  | 77.87            | 0.01          | 6.17E+02         |
| R17               | 726.27           | 833.73                   | 0                     | 833.73           | 0.13          | 1.26E+04         |
| R18               | 731.87           | 828.13                   | 0                     | 828.13           | 0.35          | 3.23E+04         |
| R19               | 1438.07          | 121.87                   | 0.07                  | 121.94           | 0.28          | 2.65E+04         |
| R20               | 1526.87          | 33.13                    | 0                     | 33.13            | 0.01          | 5.35E+02         |
| R21               | 1560             | 0                        | 0                     | 0                | 0             | 0.00E+00         |
| R22               | 1508.27          | 51.73                    | 0                     | 51.73            | 0.02          | 1.75E+03         |
| R23               | 1560             | 0                        | 0                     | 0                | 0             | 0.00E+00         |
| R24               | 1532.07          | 27.93                    | 0                     | 27.93            | 0             | 4.40E+02         |
| R25               | 1538.93          | 21.07                    | 0                     | 21.07            | 0             | 5.50E+00         |
| R26               | 1530             | 30                       | 0                     | 30               | 0.01          | 7.99E+02         |
| 9A                | 1560             | 0                        | 0                     | 0                | 0             | 0.00E+00         |
| А                 | 0                | 1560                     | 0                     | 1560             | 2.5           | 2.34E+05         |
| PS                | 0                | 1560                     | 0                     | 1560             | 7.76          | 7.27E+05         |

~

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1403.67                          | 216.33                                   | _ <b></b> 0                                  | 216.33                           | 0.36                  |                           |
| R03               | 1489.67                          | 130.27                                   | 0.07                                         | 130.34                           | 0.38                  | 3.73E+04                  |
| R04               | 1482.4                           | 137.6                                    | 0                                            | 137.6                            | 0.17                  | 1.65E+04                  |
| R05               | 726.33                           | 893.6                                    | 0.07                                         | 893.67                           | 0.88                  | 8.53E+04                  |
| R06               | 1507.53                          | 112.47                                   | 0                                            | 112.47                           | 0.05                  | 5.34E+03                  |
| R07               | 1462.6                           | 157.4                                    | 0                                            | 157.4                            | 0.2                   | 1.96E+04                  |
| R08               | 724.33                           | 895.6                                    | 0.07                                         | 895.67                           | 1.08                  | 1.05E+05                  |
| R09               | 1464.13                          | 155.87                                   | 0                                            | 155.87                           | 0.22                  | 2.17E+04                  |
| R11               | 1531.47                          | 88.47                                    | 0.07                                         | 88.54                            | 0.01                  | 8.12E+02                  |
| R12               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1459.07                          | 160.93                                   | 0                                            | 160.93                           | 0.42                  | 4.04E+04                  |
| R14               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1486.2                           | 133.8                                    | 0                                            | 133.8                            | 0.04                  | 4.08E+03                  |
| R16               | 1463.07                          | 156.93                                   | 0                                            | 156.93                           | 0.13                  | 1.24E+04                  |
| R17               | 725.93                           | 894.07                                   | 0                                            | 894.07                           | 0.3                   | 2.88E+04                  |
| R18               | 731.2                            | 888.8                                    | 0                                            | 888.8                            | 0.7                   | 6.79E+04                  |
| R19               | 1422.67                          | 197.27                                   | 0.07                                         | 197.34                           | 0.95                  | 9.19E+04                  |
| R20               | 1519.6                           | 100.4                                    | 0                                            | 100.4                            | 0.02                  | 1.95E+03                  |
| R21-              | 1553.87                          | 66.13                                    | 0                                            | 66.13                            | 0.01                  | 4.98E+02                  |
| R22               | 1506.33                          | 113.67                                   | 0                                            | 113.67                           | 0.06                  | 5.76E+03                  |
| R23               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1528.27                          | 91.73                                    | 0                                            | 91.73                            | 0.02                  | 1.60E+03                  |
| R25               | 1590                             | 30                                       | 0                                            | 30                               | 0                     | 5.43E+01                  |
| R26               | 1526.8                           | 93.2                                     | 0                                            | 93.2                             | 0.03                  | 2.71E+03                  |
| 9A                | 1594.6                           | 25.4                                     | 0                                            | 25.4                             | 0                     | 3.29E+01                  |
| A                 | 0                                | 1620                                     | 0                                            | 1620                             | 2.7                   | 2.62E+0.5                 |
| PS                | 0                                | 1620                                     | 0                                            | 1620                             | 8.61                  | 8.37E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>R02           | 1493,93                          | 126.07                                   | 0                                            | 126.07                           | 0.01                  | 1.32E+03                  |
| R03               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1541.73                          | 78.27                                    | 0                                            | 78.27                            | 0.01                  | 1.17E+03                  |
| R06               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1533.33                          | 86.67                                    | 0                                            | 86.67                            | 0.02                  | 2.16E+03                  |
| R09               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1595.53                          | 24.47                                    | 0                                            | 24.47                            | 0                     | 2.28E-01                  |
| R16               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1497.73                          | 122.27                                   | 0                                            | 122.27                           | 0.01                  | 7.14E+02                  |
| R18               | 1483.53                          | 136.47                                   | 0                                            | 136.47                           | 0.03                  | 3.22E+03                  |
| R19               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R23               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1620                                     | 0                                            | 1620                             | 2.55                  | 2.48E+05                  |
| PS                | 0                                | 1620                                     | 0                                            | 1620                             | 7.31                  | 7.10E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1437.33                          | 182.6                                    | 0.07                                         | 182.67                           | 0.12                  | <br>1.14E+04              |
| R03               | 1592.87                          | 27.13                                    | 0                                            | 27.13                            | 0                     | 5.92E+01                  |
| R04               | 1582.87                          | 37.13                                    | 0                                            | 37.13                            | 0                     | 1.37E+02                  |
| R05               | 735.8                            | 884.2                                    | 0                                            | 884.2                            | 0.38                  | 3.70E+04                  |
| R06               | 1617.27                          | 2.67                                     | 0.07                                         | 2.74                             | 0                     | 2.76E+00                  |
| R07               | 1486                             | 134                                      | 0                                            | 134                              | 0.05                  | 4.42E+03                  |
| R08               | 729.8                            | 890.13                                   | 0.07                                         | 890.2                            | 0.35                  | 3.39E+04                  |
| R09               | 1572.6                           | 47.4                                     | 0                                            | 47.4                             | 0                     | 3.88E+02                  |
| R11               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1485.07                          | 134.93                                   | 0                                            | 134.93                           | 0.07                  | 7.13E+03                  |
| R14               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1499.53                          | 120.47                                   | 0                                            | 120.47                           | 0.01                  | 5.26E+02                  |
| R16               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1467.47                          | 152.53                                   | 0                                            | 152.53                           | 0.05                  | 5.17E+03                  |
| R18               | 1449.13                          | 170.87                                   | 0                                            | 170.87                           | 0.16                  | 1.60E+04                  |
| R19               | 1588.8                           | 31.2                                     | 0                                            | 31.2                             | 0.01                  | 6.96E+02                  |
| R20               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1595.13                          | 24.87                                    | 0                                            | 24.87                            | 0                     | 1.70E+01                  |
| R23               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1620                                     | 0                                            | 1620                             | 2.56                  | 2.49E+05                  |
| PS                | 0                                | 1620                                     | 0                                            | 1620                             | 8.06                  | 7.84E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1411.33                          | 868.6                                    | 0.07                                         | 868.67                           | 2.09                  | 2.86E+05                  |
| R03               | 1549.13                          | 730.8                                    | 0.07                                         | 730.87                           | 2.98                  | 4.08E+05                  |
| R04               | 1542                             | 738                                      | 0                                            | 738                              | 1.34                  | 1.83E+05                  |
| R05               | 735.8                            | 1544.2                                   | 0                                            | 1544.2                           | 5.22                  | 7.14E+05                  |
| R06               | 1558.13                          | 721.87                                   | 0                                            | 721.87                           | 0.44                  | 5.96E+04                  |
| R07               | 1485.73                          | 794.27                                   | 0                                            | 794.27                           | 1.41                  | 1.93E+05                  |
| R08               | 729.8                            | 1550.13                                  | 0.07                                         | 1550.2                           | 7.09                  | 9.71E+05                  |
| R09               | 1524.67                          | 755.27                                   | 0.07                                         | 755.34                           | 2.64                  | 3.61E+05                  |
| R11               | 1623.4                           | 656.53                                   | 0.07                                         | 656.6                            | 1.29                  | 1.77E+05                  |
| R12               | 2280                             | · 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1485                             | 795                                      | 0                                            | 795                              | 2.85                  | 3.90E+05                  |
| R14               | 1742.73                          | 537.2                                    | 0.07                                         | 537.27                           | 0.74                  | 1.01E+05                  |
| R15               | 1460.07                          | 819.93                                   | 0                                            | 819.93                           | 0.51                  | 7.04E+04                  |
| R16               | 1516.4                           | 763.6                                    | 0                                            | 763.6                            | 1.52                  | 2.07E+05                  |
| R17               | 730.93                           | 1549.07                                  | 0                                            | 1549.07                          | 1.85                  | 2.53E+05                  |
| R18               | 740.27                           | 1539.73                                  | 0                                            | 1539.73                          | 4.28                  | 5.85E+05                  |
| R19               | 1512.13                          | 767.8                                    | 0.07                                         | 767.87                           | 7.01                  | 9.59E+05                  |
| R20               | 1616.8                           | 663.2                                    | 0                                            | 663.2                            | 0.29                  | 4.01E+04                  |
| R21               | 1701.93                          | 578.07                                   | 0                                            | 578.07                           | 0.16                  | 2.24E+04                  |
| R22               | 1569.93                          | 710.07                                   | 0                                            | 710.07                           | 0.65                  | 8.96E+04                  |
| R23               | 2099.13                          | 180.87                                   | 0                                            | 180.87                           | 0.02                  | 3.17E+03                  |
| R24               | 1565.27                          | 714.73                                   | 0                                            | 714.73                           | 0.66                  | 8.99E+04                  |
| R25               | 1693.53                          | 586.47                                   | 0                                            | 586.47                           | 0.08                  | 1.12E+04                  |
| R26               | 1565.07                          | 714.93                                   | 0                                            | 714.93                           | 0.65                  | 8.84E+04                  |
| 9A                | 1736.93                          | 543.07                                   | 0                                            | 543.07                           | 0.99                  | 1.35E+05                  |
| А                 | 0                                | 2280                                     | 0                                            | 2280                             | 3.84                  | 5.25E+05                  |
| PS                | 0                                | 2280                                     | 0                                            | 2280                             | 13.99                 | 1.91E+06                  |

• ••••

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1574.4                           | 885.53                                   | 0.07                                         | 885.6                            | <br>0.98              | <br>1.45E+05              |
| R03               | 2056.73                          | 403.27                                   | 0                                            | 403.27                           | 0.93                  | 1.37E+05                  |
| R04               | 2046.53                          | 413.47                                   | 0                                            | 413.47                           | 0.43                  | 6.27E+04                  |
| R05               | 753.07                           | 1706.93                                  | 0                                            | 1706.93                          | 2.04                  | 3.01E+05                  |
| R06               | 2120.87                          | 339.07                                   | 0.07                                         | 339.14                           | 0.13                  | 1.85E+04                  |
| R07               | 1870.67                          | 589.33                                   | 0                                            | 589.33                           | 0.5                   | 7.45E+04                  |
| R08               | 741.53                           | 1718.47                                  | 0                                            | 1718,47                          | 2.63                  | 3.89E+05                  |
| R09               | 1967.67                          | 492.33                                   | 0                                            | 492.33                           | 0.84                  | 1.24E+05                  |
| R11               | 2135.6                           | 324.33                                   | 0.07                                         | 324.4                            | 0.43                  | 6,35E+04                  |
| R12               | 2460                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1864.8                           | 595.2                                    | 0                                            | 595.2                            | 1.01                  | 1.49E+05                  |
| R14               | 2328.93                          | 131                                      | 0.07                                         | 131.07                           | 0.09                  | 1.28E+04                  |
| R15               | 1786.67                          | 673.33                                   | 0                                            | 673.33                           | 0.14                  | 2.00E+04                  |
| R16               | 2003.87                          | 456.07                                   | 0.07                                         | 456.14                           | 0.41                  | 6.00E+04                  |
| R17               | 739                              | 1721                                     | 0                                            | 1721                             | 0.69                  | 1.02E+05                  |
| R18               | 751.8                            | 1708.2                                   | 0                                            | 1708.2                           | 1.66                  | 2.45E+05                  |
| R19               | 1863.33                          | 596.53                                   | 0.13                                         | 596.66                           | 2.36                  | 3.48E+05                  |
| R20               | 2272.53                          | 187.47                                   | 0                                            | 187.47                           | 0.09                  | 1.38E+04                  |
| R21               | 2310.53                          | 149.47                                   | 0                                            | 149.47                           | 0.05                  | 6.79E+03                  |
| R22               | 2271.4                           | 188.6                                    | 0                                            | 188.6                            | 0.2                   | 2.92E+04                  |
| R23               | 2399.27                          | 60.73                                    | 0                                            | 60.73                            | 0.01                  | 1.11E+03                  |
| R24               | 2124.4                           | 335.6                                    | 0                                            | 335.6                            | 0.23                  | 3.39E+04                  |
| R25               | 2284.53                          | 175.47                                   | 0                                            | 175.47                           | 0.03                  | 3.92E+03                  |
| R26               | 2277.73                          | 182.27                                   | 0                                            | 182.27                           | 0.13                  | 1.92E+04                  |
| 9A                | 2148.73                          | 311.27                                   | 0                                            | 311.27                           | 0.31                  | 4.62E+04                  |
| A                 | 0                                | 2460                                     | 0                                            | 2460                             | 3.18                  | 4.70E+05                  |
| PS                | 0                                | 2460                                     | 0                                            | 2460                             | 10.95                 | 1.62E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 3169                             | 1030.93                                  | 0.07                                         | 1031                             | 0.66                  | 1.65E+05                  |
| R03               | 3583.73                          | 616.27                                   | 0                                            | 616.27                           | 0.67                  | 1.68E+05                  |
| R04               | 3545.47                          | 654.53                                   | 0                                            | 654.53                           | 0.31                  | 7.77E+04                  |
| R05               | 1880.13                          | 2319.87                                  | 0                                            | 2319.87                          | 1.39                  | 3.51E+05                  |
| R06               | 3870                             | 329.93                                   | 0.07                                         | 330                              | 0.09                  | 2.33E+04                  |
| R07               | 3477.67                          | 722.33                                   | 0                                            | 722.33                           | 0.35                  | 8.87E+04                  |
| R08               | 1870.93                          | 2329.07                                  | 0                                            | 2329.07                          | 1.84                  | 4.65E+05                  |
| R09               | 3475.13                          | 724.67                                   | 0.2                                          | 724.87                           | 0.55                  | 1.39E+05                  |
| R11               | 3952.8                           | 247.13                                   | 0.07                                         | 247.2                            | 0.21                  | 5.35E+04                  |
| R12               | 4200                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 3387.73                          | 812.27                                   | 0                                            | 812.27                           | 0.71                  | 1.78E+05                  |
| R14               | 4055.4                           | 144.6                                    | 0                                            | 144.6                            | 0.09                  | 2.38E+04                  |
| R15               | 3443.6                           | 756.4                                    | 0                                            | 756.4                            | 0.1                   | 2.63E+04                  |
| R16               | 3709.93                          | 490                                      | 0.07                                         | 490.07                           | 0.3                   | 7.51E+04                  |
| R17               | 1761.53                          | 2438.47                                  | 0                                            | 2438.47                          | 0.49                  | 1.24E+05                  |
| R18               | 1714.2                           | 2485.8                                   | 0                                            | 2485.8                           | 1.16                  | 2.93E+05                  |
| R19               | 3394.33                          | 805.6                                    | 0.07                                         | 805.67                           | 1.67                  | 4.20E+05                  |
| R20               | 3905.67                          | 294.33                                   | 0                                            | 294.33                           | 0.06                  | 1.55E+04                  |
| R21               | 4038.67                          | 161.33                                   | 0                                            | 161.33                           | 0.03                  | 8.11E+03                  |
| R22               | 3902.4                           | 297.6                                    | 0                                            | 297.6                            | 0.14                  | 3.42E+04                  |
| R23               | 4138                             | 62                                       | 0                                            | 62                               | 0.01                  | 1.89E+03                  |
| R24               | 3753.13                          | 446.87                                   | 0                                            | 446.87                           | 0.15                  | 3.88E+04                  |
| R25               | 4023.13                          | 176.87                                   | 0                                            | 176.87                           | 0.02                  | 5.22E+03                  |
| R26               | 3795.07                          | 404.93                                   | 0                                            | 404.93                           | 0.11                  | 2.81E+04                  |
| 9A                | 4019.6                           | 180.4                                    | 0                                            | 180.4                            | 0.17                  | 4.19E+04                  |
| А                 | 0                                | 4200                                     | 0                                            | 4200                             | 2.92                  | 7.37E+05                  |
| PS                | 0                                | 4200                                     | 0                                            | 4200                             | 9.5                   | 2.40E+06                  |

·- .

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1420.93                          | 139.07                                   | 0                                            | 139.07                           | 0.08                  | 7.64E+03                  |
| R03               | 1544.6                           | 15.4                                     | 0                                            | 15.4                             | 0                     | 9.07E+01                  |
| R04               | 1538                             | 22                                       | 0                                            | 22                               | 0                     | 1.48E+02                  |
| R05               | 729.2                            | 830.8                                    | 0                                            | 830.8                            | 0.31                  | 2.91E+04                  |
| R06               | 1559.13                          | 0.87                                     | 0                                            | 0.87                             | 0                     | 5.26E-02                  |
| R07               | 1472.6                           | 87.4                                     | 0                                            | 87.4                             | 0.03                  | 2.89E+03                  |
| R08               | 726.07                           | 833.87                                   | 0.07                                         | 833.94                           | 0.31                  | 2.86E+04                  |
| R09               | 1477.67                          | 82.27                                    | 0.07                                         | 82.34                            | 0.01                  | 1.04E+03                  |
| R11               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1466.47                          | 93.53                                    | 0                                            | 93.53                            | 0.06                  | 5.38E+03                  |
| R14               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1490.53                          | 69.47                                    | 0                                            | 69.47                            | 0.01                  | 4.71E+02                  |
| R16               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1462.8                           | 97.2                                     | 0                                            | 97.2                             | 0.04                  | 3.80E+03                  |
| R18               | 1441.6                           | 118.4                                    | 0                                            | 118.4                            | 0.12                  | 1.14E+04                  |
| R19               | 1548.53                          | 11.47                                    | 0                                            | 11.47                            | 0                     | 3.28E+01                  |
| R20               | 1551.2                           | 8.8                                      | 0                                            | 8.8                              | 0                     | 8.25E+00                  |
| R21               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1547.07                          | 12.93                                    | 0                                            | 12.93                            | 0                     | 1.45E+02                  |
| R23               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1553.2                           | 6.8                                      | 0                                            | 6.8                              | 0                     | 1.35E+01                  |
| 9A                | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 1560                                     | 0                                            | 1560                             | 2.47                  | 2.31E+05                  |
| PS                | 0                                | 1560                                     | 0                                            | 1560                             | 7.67                  | 7.18E+05                  |

| CONDUIT | LENGTH<br>OF<br>DRY | LENGTH<br>OF<br>SUBCRITICAL | LENGTH<br>OF UPSTR.<br>CRITICAL | LENGTH<br>OF<br>WET | MEAN<br>FLOW | TOTAL<br>FLOW |
|---------|---------------------|-----------------------------|---------------------------------|---------------------|--------------|---------------|
| NUMBER  | FLOW(MIN)           | FLOW(MIN)                   | FLOW(MIN)                       | FLOW(MIN)           | (CFS)        | CUBIC FT      |
|         |                     | 0                           |                                 |                     |              | <br>0 00E±00  |
| R03     | 1740                | 0                           | 0                               | 0                   | 0            | 0.0000000     |
| R04     | 1740                | 0                           | ů<br>O                          | 0                   | 0            | 0.00E+00      |
| R05     | 1740                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R06     | 1740                | 0                           | 0                               | Ő                   | 0            | 0.00E+00      |
| R07     | 1740                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R08     | 1740                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R09     | 1740                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R11     | 1740                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R12     | 1740                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R13     | 1740                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R14     | 1740                | · 0                         | 0                               | 0                   | 0            | 0.00E+00      |
| R15     | 1740                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R16     | 1740                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R17     | 1633.13             | 106.87                      | 0                               | 106.87              | 0            | 1.88E+01      |
| R18     | 1597                | 143                         | 0                               | 143                 | 0.01         | 5.33E+02      |
| R19     | 1740                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R20     | 1740                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R21     | 1740                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R22     | 1740                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R23     | 1740                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R24     | 1740                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R25     | 1740                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R26     | 1740                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| 9A      | 1740                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| A       | 0                   | 1740                        | 0                               | 1740                | 2.46         | 2.56E+05      |
| PS      | 0                   | 1740                        | 0                               | 1740                | 7.09         | 7.40E+05      |

.

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
|                   |                                  |                                          |                                              |                                  | (010)                 |                           |
| R02               | 1868.2                           | 951.73                                   | 0.07                                         | 951.8                            | 1.62                  | 2.75E+05                  |
| R03               | 2262.67                          | 557.33                                   | 0                                            | 557.33                           | 2.23                  | 3.78E+05                  |
| R04               | 2247.13                          | 572.87                                   | 0                                            | 572.87                           | 1.01                  | 1.71E+05                  |
| R05               | 732.33                           | 2087.67                                  | 0                                            | 2087.67                          | 3.94                  | 6.67E+05                  |
| R06               | 2309.07                          | 510.93                                   | 0                                            | 510.93                           | 0.33                  | 5.54E+04                  |
| R07               | 2088.73                          | 731.27                                   | 0                                            | 731.27                           | 1.08                  | 1.83E+05                  |
| R08               | 728.07                           | 2091.87                                  | 0.07                                         | 2091.94                          | 5.31                  | 8.98E+05                  |
| R09               | 2212.87                          | 607.13                                   | 0                                            | 607.13                           | 2.11                  | 3.57E+05                  |
| R11               | 2314.2                           | 505.73                                   | 0.07                                         | 505.8                            | 1.08                  | 1.82E+05                  |
| R12               | 2758.67                          | 61.33                                    | 0                                            | 61.33                            | 0.02                  | 3.67E+03                  |
| R13               | 2143.33                          | 676.67                                   | 0                                            | 676.67                           | 2.13                  | 3.61E+05                  |
| R14               | 2389                             | 430.87                                   | 0.13                                         | 431                              | 0.69                  | 1.16E+05                  |
| R15               | 2081.47                          | 738.53                                   | 0                                            | 738.53                           | 0.44                  | 7.53E+04                  |
| R16               | 2241.93                          | 578.07                                   | 0                                            | 578.07                           | 1.3                   | 2.20E+05                  |
| R17               | 1298.87                          | 1521.13                                  | 0                                            | 1521.13                          | 1.3                   | 2.20E+05                  |
| R18               | 1283.27                          | 1536.73                                  | 0                                            | 1536.73                          | 3.27                  | 5.52E+05                  |
| R19               | 2180                             | 640                                      | 0                                            | 640                              | 3.36                  | 5.69E+05                  |
| R20               | 2393.93                          | 426.07                                   | 0                                            | 426.07                           | 0.28                  | 4.80E+04                  |
| R21               | 2513.47                          | 306.53                                   | 0                                            | 306.53                           | 0.16                  | 2.74E+04                  |
| R22               | 2390.73                          | 429.27                                   | 0                                            | 429.27                           | 0.59                  | 9.92E+04                  |
| R23               | 2645.27                          | 174.73                                   | 0                                            | 174.73                           | 0.07                  | 1.18E+04                  |
| R24               | 2277.87                          | 542.13                                   | 0                                            | 542.13                           | 0.55                  | 9.24E+04                  |
| R25               | 2394.8                           | 425.2                                    | 0                                            | 425.2                            | 0.18                  | 2.97E+04                  |
| R26               | 2278.13                          | 541.87                                   | 0                                            | 541.87                           | 0.58                  | 9.84E+04                  |
| 9A                | 2329.13                          | 490.87                                   | 0                                            | 490.87                           | 0.86                  | 1.45E+05                  |
| А                 | 0                                | 2820                                     | 0                                            | 2820                             | 3.27                  | 5.54E+05                  |
| PS                | 0                                | 2820                                     | 0                                            | 2820                             | 11.5                  | 1.95E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>R02           | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R03               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 2117.47                          | 102.53                                   | 0                                            | 102.53                           | 0                     | 2.47E+02                  |
| R06               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 2090.27                          | 129.73                                   | 0                                            | 129.73                           | 0.01                  | 7.88E+02                  |
| R09               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 2034.67                          | 185.33                                   | 0                                            | 185.33                           | 0                     | 4.38E+02                  |
| R18               | 2008.27                          | 211.73                                   | 0                                            | 211.73                           | 0.02                  | 2.85E+03                  |
| R19               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R23               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 2220                                     | 0                                            | 2220                             | 2.55                  | 3.39E+05                  |
| PS                | 0                                | 2220                                     | 0                                            | 2220                             | 7.28                  | 9.69E+05                  |

•

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1547                             | 1333                                     | 0                                            | 1333                             | 1.2                   | 2.07E+05                  |
| R03               | 2412.47                          | 467.53                                   | 0                                            | 467.53                           | 1.28                  | 2.21E+05                  |
| R04               | 2380.73                          | 499.27                                   | 0                                            | 499.27                           | 0.58                  | 1.00E+05                  |
| R05               | 1104.07                          | 1775.93                                  | 0                                            | 1775.93                          | 2.37                  | 4.09E+05                  |
| R06               | 2553.87                          | 326.07                                   | 0.07                                         | 326.14                           | 0.18                  | 3.15E+04                  |
| R07               | 2314.6                           | 565.4                                    | 0                                            | 565.4                            | 0.64                  | 1.10E+05                  |
| R08               | 1071.07                          | 1808.93                                  | 0                                            | 1808.93                          | 3.29                  | 5.68E+05                  |
| R09               | 2307.07                          | 572.93                                   | 0                                            | 572.93                           | 1.2                   | 2.07E+05                  |
| R11               | 2567.67                          | 312.33                                   | 0                                            | 312.33                           | 0.62                  | 1.08E+05                  |
| R12               | 2858.4                           | 21.6                                     | 0                                            | 21.6                             | 0                     | 3.27E+01                  |
| R13               | 2286.2                           | 593.67                                   | 0.13                                         | 593.8                            | 1.29                  | 2.22E+05                  |
| R14               | 2560.07                          | 319.87                                   | 0.07                                         | 319.94                           | 0.51                  | 8.74E+04                  |
| R15               | 2225.47                          | 654.53                                   | 0                                            | 654.53                           | 0.25                  | 4.30E+04                  |
| R16               | 2455.47                          | 424.53                                   | 0                                            | 424.53                           | 0.68                  | 1.17E+05                  |
| R17               | 826.73                           | 2053.27                                  | 0                                            | 2053.27                          | 0.84                  | 1.45E+05                  |
| R18               | 813.6                            | 2066.4                                   | 0                                            | 2066.4                           | 2.03                  | 3.51E+05                  |
| R19               | 2375.13                          | 504.87                                   | 0                                            | 504.87                           | 2.79                  | 4.82E+05                  |
| R20               | 2576.93                          | 303.07                                   | 0                                            | 303.07                           | 0.15                  | 2.51E+04                  |
| R21               | 2624.2                           | 255.8                                    | 0                                            | 255.8                            | 0.08                  | 1.44E+04                  |
| R22               | 2575.2                           | 304.8                                    | 0                                            | 304.8                            | 0.31                  | 5.29E+04                  |
| R23               | 2758.4                           | 121.6                                    | 0                                            | 121.6                            | 0.03                  | 4.38E+03                  |
| R24               | 2499.2                           | 380.8                                    | 0                                            | 380.8                            | 0.32                  | 5.48E+04                  |
| R25               | 2577                             | 303                                      | 0                                            | 303                              | 0.11                  | 1.96E+04                  |
| R26               | 2493.53                          | 386.47                                   | 0                                            | 386.47                           | 0.31                  | 5.37E+04                  |
| 9A                | 2569.67                          | 310.33                                   | 0                                            | 310.33                           | 0.48                  | 8.24E+04                  |
| А                 | 0                                | 2880                                     | 0                                            | 2880                             | 3.22                  | 5.56E+05                  |
| PS                | 0                                | 2880                                     | 0                                            | 2880                             | 10.48                 | 1.81E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1490.53                          | 249.47                                   | 0                                            | 249.47                           | 0.11                  | 1.15E+04                  |
| R03               | 1710.47                          | 29.53                                    | 0                                            | 29.53                            | 0                     | 6.86E+01                  |
| R04               | 1701.47                          | 38.53                                    | 0                                            | 38.53                            | 0                     | 1.51E+02                  |
| R05               | 788.93                           | 951                                      | 0.07                                         | 951.07                           | 0.37                  | 3.83E+04                  |
| R06               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1617.4                           | 122.6                                    | 0                                            | 122.6                            | 0.03                  | 3.37E+03                  |
| R08               | 826.2                            | 913.67                                   | 0.13                                         | 913.8                            | 0.31                  | 3.20E+04                  |
| R09               | 1691.6                           | 48.33                                    | 0.07                                         | 48.4                             | 0                     | 4.25E+02                  |
| R11               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1611.73                          | 128.2                                    | 0.07                                         | 128.27                           | 0.07                  | 6.97E+03                  |
| R14               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1619.4                           | 120.6                                    | 0                                            | 120.6                            | 0                     | 5.16E+02                  |
| R16               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1539.2                           | 200.8                                    | 0                                            | 200.8                            | 0.05                  | 4.98E+03                  |
| R18               | 1489.93                          | 250.07                                   | 0                                            | 250.07                           | 0.15                  | 1.61E+04                  |
| R19               | 1720.6                           | 19.4                                     | 0                                            | 19.4                             | 0                     | 1.53E+02                  |
| R20               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1712.8                           | 27.2                                     | 0                                            | 27.2                             | 0                     | 1.82E+01                  |
| R23               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 1740                                     | 0                                            | 1740                             | 2.58                  | 2.70E+05                  |
| PS                | 0                                | 1740                                     | 0                                            | 1740                             | 8.1                   | 8.46E+05                  |

ŝ
| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1428                             | 192                                      | 0                                            | 192                              | 0.17                  | 1.63E+04                  |
| R03               | 1524.73                          | 95.27                                    | 0                                            | 95.27                            | 0.08                  | 7.39E+03                  |
| R04               | 1500.67                          | 119.33                                   | 0                                            | 119.33                           | 0.04                  | 3.70E+03                  |
| R05               | 728.27                           | 891.73                                   | 0                                            | 891.73                           | 0.48                  | 4.66E+04                  |
| R06               | 1576                             | 44                                       | 0                                            | 44                               | 0.01                  | 8.53E+02                  |
| R07               | 1479                             | 141                                      | 0                                            | 141                              | 0.08                  | 7.55E+03                  |
| R08               | 725.47                           | 894.47                                   | 0.07                                         | 894.54                           | 0.54                  | 5.21E+04                  |
| R09               | 1479.6                           | 140.4                                    | 0                                            | 140.4                            | 0.06                  | 5.69E+03                  |
| R11               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1470.93                          | 149.07                                   | 0                                            | 149.07                           | 0.17                  | 1.67E+04                  |
| R14               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1494.67                          | 125.33                                   | 0                                            | 125.33                           | 0.01                  | 1.04E+03                  |
| R16               | 1543                             | 76.93                                    | 0.07                                         | 77                               | 0                     | 0.00E+00                  |
| R17               | 727.07                           | 892.93                                   | 0                                            | 892.93                           | 0.14                  | 1.34E+04                  |
| R18               | 733.4                            | 886.6                                    | 0                                            | 886.6                            | 0.36                  | 3.49E+04                  |
| R19               | 1536.27                          | 83.73                                    | 0                                            | 83.73                            | 0.06                  | 5.78E+03                  |
| R20               | 1599.07                          | 20.93                                    | 0                                            | 20.93                            | 0                     | 1.10E+02                  |
| R21               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1595.67                          | 24.33                                    | 0                                            | 24.33                            | 0.01                  | 5.78E+02                  |
| R23               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1605.6                           | 14.4                                     | 0                                            | 14.4                             | 0                     | 4.14E+01                  |
| R25               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1601.87                          | 18.13                                    | 0                                            | 18.13                            | 0                     | 1.72E+02                  |
| 9A                | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1620                                     | 0                                            | 1620                             | 2.57                  | 2.50E+05                  |
| PS                | 0                                | 1620                                     | 0                                            | 1620                             | 8.13                  | 7.90E+05                  |

| CONDUIT | LENGTH<br>OF<br>DRY | LENGTH<br>OF<br>SUBCRITICAL | LENGTH<br>OF UPSTR.<br>CRITICAL | LENGTH<br>OF<br>WET | MEAN<br>FLOW | TOTAL<br>FLOW |
|---------|---------------------|-----------------------------|---------------------------------|---------------------|--------------|---------------|
| NUMBER  | FLOW(MIN)           | FLOW(MIN)                   | FLOW(MIN)                       | FLOW(MIN)           | (CFS)        | CUBIC FT      |
| <br>R02 | 1513 47             | 526.4                       | 0.13                            | 526.53              | 0.73         | 8.92E+04      |
| R03     | 1895.47             | 144.47                      | 0.07                            | 144.54              | 0.73         | 8.97E+04      |
| R04     | 1880.33             | 159.67                      | 0                               | 159.67              | 0.33         | 4.03E+04      |
| R05     | 730.47              | 1309.53                     | 0                               | 1309.53             | 1.5          | 1.83E+05      |
| R06     | 1899.87             | 140.13                      | 0                               | 140.13              | 0.12         | 1.41E+04      |
| R07     | 1757.33             | 282.67                      | 0                               | 282.67              | 0.41         | 4.98E+04      |
| R08     | 726.93              | 1313.07                     | 0                               | 1313.07             | 2.16         | 2.64E+05      |
| R09     | 1852.07             | 187.93                      | 0                               | 187.93              | 0.71         | 8.65E+04      |
| R11     | 1967.73             | 72.27                       | 0                               | 72.27               | 0.36         | 4.46E+04      |
| R12     | 1988.13             | 51.87                       | 0                               | 51.87               | 0            | 1.56E+02      |
| R13     | 1734.87             | 305.13                      | 0                               | 305.13              | 0.82         | 1.01E+05      |
| R14     | 1957.27             | 82.73                       | 0                               | 82.73               | 0.3          | 3.62E+04      |
| R15     | 1785.47             | 254.53                      | 0                               | 254.53              | 0.14         | 1.76E+04      |
| R16     | 1881.87             | 157.87                      | 0.27                            | 158.14              | 0.43         | 5.23E+04      |
| R17     | 1006.2              | 1033.8                      | 0                               | 1033.8              | 0.48         | 5.90E+04      |
| R18     | 990.07              | 1049.93                     | 0                               | 1049.93             | 1.29         | 1.58E+05      |
| R19     | 1770.53             | 269.4                       | 0.07                            | 269.47              | 1.03         | 1.26E+05      |
| R20     | 1973.73             | 66.27                       | 0                               | 66.27               | 0.11         | 1.38E+04      |
| R21     | 1974.4              | 65.6                        | 0                               | 65.6                | 0.06         | 7.73E+03      |
| R22     | 1918.27             | 121.73                      | 0                               | 121.73              | 0.22         | 2.65E+04      |
| R23     | 1980.2              | 59.8                        | 0                               | 59.8                | 0.04         | 4.34E+03      |
| R24     | 1968.47             | 71.53                       | 0                               | 71.53               | 0.19         | 2.32E+04      |
| R25     | 1976.73             | 63.27                       | 0                               | 63.27               | 0.07         | 8.75E+03      |
| R26     | 1971.2              | 68.8                        | 0                               | 68.8                | 0.2          | 2.49E+04      |
| 9A      | 1965.33             | 74.67                       | 0                               | 74.67               | 0.3          | 3.68E+04      |
| А       | 0                   | 2040                        | 0                               | 2040                | 2.85         | 3.49E+05      |
| PS      | 0                   | 2040                        | 0                               | 2040                | 9.49         | 1.16E+06      |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1440.2                           | 1319.8                                   | 0                                            | 1319.8                           | 2 67                  | 4 42F+05                  |
| R03               | 1696.47                          | 1063.47                                  | 0.07                                         | 1063.54                          | 3.42                  | 5 66E±05                  |
| R04               | 1643.87                          | 1116.13                                  | 0                                            | 1116.13                          | 1.57                  | 2.61E+05                  |
| R05               | 753.07                           | 2006.93                                  | 0                                            | 2006.93                          | 6.18                  | 1.02E+06                  |
| R06               | 2047.93                          | 712.07                                   | 0                                            | 712.07                           | 0.48                  | 8.00E+04                  |
| R07               | 1567.4                           | 1192.6                                   | 0                                            | 1192.6                           | 1.72                  | 2.86E+05                  |
| R08               | 741.53                           | 2018.47                                  | 0                                            | 2018.47                          | 8.85                  | 1.47E+06                  |
| R09               | 1563.93                          | 1196                                     | 0.07                                         | 1196.07                          | 3.34                  | 5.53E+05                  |
| R11               | 1957.2                           | 802.8                                    | 0                                            | 802.8                            | 1.69                  | 2.81E+05                  |
| R12               | 2530.73                          | 22 <b>9</b> .27                          | 0                                            | 229.27                           | 0.01                  | 2.24E+03                  |
| R13               | 1550.4                           | 1209.47                                  | 0.13                                         | 1209.6                           | 3.38                  | 5.59E+05                  |
| R14               | 2231.4                           | 528.53                                   | 0.07                                         | 528.6                            | 1.6                   | 2.65E+05                  |
| R15               | 1521.8                           | 1238.2                                   | 0                                            | 1238.2                           | 0,74                  | 1.23E+05                  |
| R16               | 1838.47                          | 921.53                                   | 0                                            | 921.53                           | 1.96                  | 3.25E+05                  |
| R17               | 739                              | 2021                                     | 0                                            | 2021                             | 2.08                  | 3.45E+05                  |
| R18               | 751.8                            | 2008.2                                   | 0                                            | 2008.2                           | 5.15                  | 8.53E+05                  |
| R19               | 1504.87                          | 1255.13                                  | 0                                            | 1255.13                          | 4.95                  | 8.20E+05                  |
| R20               | 2277.4                           | 482.6                                    | 0                                            | 482.6                            | 0.46                  | 7.68E+04                  |
| R21               | 2332.67                          | 427.33                                   | 0                                            | 427.33                           | 0.28                  | 4.57E+04                  |
| R22               | 2270.6                           | 489.4                                    | 0                                            | 489.4                            | 0.95                  | 1.57E+05                  |
| R23               | 2456.6                           | 303.4                                    | 0                                            | 303.4                            | 0.12                  | 1.92E+04                  |
| R24               | 1834.67                          | 925.33                                   | 0                                            | 925.33                           | 0.85                  | 1.41E+05                  |
| R25               | 1987.33                          | 772.67                                   | 0                                            | 772.67                           | 0.38                  | 6.22E+04                  |
| R26               | 1823.93                          | 936.07                                   | 0                                            | 936.07                           | 0.94                  | 1.56E+05                  |
| 9A                | 2030.47                          | 729.53                                   | 0                                            | 729.53                           | 1.36                  | 2.25E+05                  |
| А                 | 0                                | 2760                                     | 0                                            | 2760                             | 4.03                  | 6.67E+05                  |
| PS                | 0                                | 2760                                     | 0                                            | 2760                             | 13.76                 | 2.28E+06                  |

•

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>R02           | 1621.73                          | 538.27                                   | 0                                            | 538.27                           | 0.34                  | 4.40E+04                  |
| R03               | 1905.73                          | 254.27                                   | 0                                            | 254.27                           | 0.27                  | 3.52E+04                  |
| R04               | 1863.47                          | 296.53                                   | 0                                            | 296.53                           | 0.13                  | 1.68E+04                  |
| R05               | 848.07                           | 1311. <b>87</b>                          | 0.07                                         | 1311.94                          | 0.86                  | 1.11E+05                  |
| R06               | 2051.33                          | 108.6                                    | 0.07                                         | 108.67                           | 0.04                  | 4.96E+03                  |
| R07               | 1795.73                          | 364.27                                   | 0                                            | 364.27                           | 0.16                  | 2.03E+04                  |
| R08               | 845.13                           | 1314.87                                  | 0                                            | 1314.87                          | 0.99                  | 1.29E+05                  |
| R09               | 1813.93                          | 346                                      | 0.07                                         | 346.07                           | 0.17                  | 2.22E+04                  |
| R11               | 2101.33                          | 58.67                                    | 0                                            | 58.67                            | 0.02                  | 2.09E+03                  |
| R12               | 2160                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1746.6                           | 413.4                                    | 0                                            | 413.4                            | 0.34                  | 4.44E+04                  |
| R14               | 2160                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1795.13                          | 364.87                                   | 0                                            | 364.87                           | 0.03                  | 4.16E+03                  |
| R16               | 1995.6                           | 164.4                                    | 0                                            | 164.4                            | 0.09                  | 1.23E+04                  |
| R17               | 769                              | 1391                                     | 0                                            | 1391                             | 0.28                  | 3.62E+04                  |
| R18               | 781.07                           | 1378.93                                  | 0                                            | 1378.93                          | 0.67                  | 8.74E+04                  |
| R19               | 1711.27                          | 448.73                                   | 0                                            | 448.73                           | 0.81                  | 1.05E+05                  |
| R20               | 2068.4                           | 91.6                                     | 0                                            | 91.6                             | 0.02                  | 2.24E+03                  |
| R21               | 2125.47                          | 34.53                                    | 0                                            | 34.53                            | 0                     | 5.80E+02                  |
| R22               | 2055.53                          | 104.47                                   | 0                                            | 104.47                           | 0.04                  | 5.62E+03                  |
| R23               | 2160                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 2038.4                           | 121.6                                    | 0                                            | 121.6                            | 0.06                  | 7.84E+03                  |
| R25               | 2103.13                          | 56.87                                    | 0                                            | 56.87                            | 0                     | 2.36E+02                  |
| R26               | 2098.8                           | 61.2                                     | 0                                            | 61.2                             | 0.02                  | 3.10E+03                  |
| 9A                | 2106.93                          | 53.07                                    | 0                                            | 53.07                            | 0                     | 3.42E+02                  |
| A                 | 0                                | 2160                                     | 0                                            | 2160                             | 2.87                  | 3.71E+05                  |
| PS                | 0                                | 2160                                     | 0                                            | 2160                             | 8.92                  | 1.16E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1466.27                          | 93.73                                    | 0                                            | 93.73                            | 0.01                  | 7.03E+02                  |
| R03               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1494.4                           | 65.6                                     | 0                                            | 65.6                             | 0.01                  | 1.05E+03                  |
| R06               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1488.67                          | 71.33                                    | 0                                            | 71.33                            | 0.02                  | 2.00E+03                  |
| R09               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1535.93                          | 24.07                                    | 0                                            | 24.07                            | 0                     | 2.24E-01                  |
| R16               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1480.73                          | 79.27                                    | 0                                            | 79.27                            | 0.01                  | 6.21E+02                  |
| R18               | 1464.33                          | 95.67                                    | 0                                            | 95.67                            | 0.03                  | 2.56E+03                  |
| R19               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R23               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1560                             | . 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1560                                     | 0                                            | 1560                             | 2.52                  | 2.36E+05                  |
| PS                | 0                                | 1560                                     | 0                                            | 1560                             | 7.21                  | 6.75E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1476.53                          | 1883.4                                   | 0.07                                         | 1883.47                          | 2.36                  | 4.76E+05                  |
| R03               | 1953.87                          | 1406.07                                  | 0.07                                         | 1406.14                          | 2.56                  | 5.17E+05                  |
| R04               | 1931.07                          | 1428.93                                  | 0                                            | 1428.93                          | 1.13                  | 2.28E+05                  |
| R05               | 791.87                           | 2568.13                                  | 0                                            | 2568.13                          | 4.92                  | 9.93E+05                  |
| R06               | 2097.67                          | 1262.33                                  | 0                                            | 1262.33                          | 0.36                  | 7.34E+04                  |
| R07               | 1741.53                          | 1618.47                                  | 0                                            | 1618.47                          | 1.35                  | 2.72E+05                  |
| R08               | 786.87                           | 2573.13                                  | 0                                            | 2573.13                          | 6.73                  | 1.36E+06                  |
| R09               | 1823.67                          | 1536.27                                  | 0.07                                         | 1536.34                          | 2.02                  | 4.07E+05                  |
| R11               | 2292.67                          | 1067.27                                  | 0.07                                         | 1067.34                          | 1.08                  | 2.18E+05                  |
| R12               | 3344.8                           | 15.2                                     | 0                                            | 15.2                             | 0                     | 6.14E+01                  |
| R13               | 1676.2                           | 1683.8                                   | 0                                            | 1683.8                           | 2.72                  | 5.48E+05                  |
| R14               | 2927.4                           | 432.53                                   | 0.07                                         | 432.6                            | 0.42                  | 8.40E+04                  |
| R15               | 1628.2                           | 1731.8                                   | 0                                            | 1731.8                           | 0.38                  | 7.67E+04                  |
| R16               | 1976.4                           | 1383.53                                  | 0.07                                         | 1383.6                           | 1.21                  | 2.44E+05                  |
| R17               | 769                              | 2591                                     | 0                                            | 2591                             | 1.75                  | 3.53E+05                  |
| R18               | 781.07                           | 2578.93                                  | 0                                            | 2578.93                          | 4.08                  | 8.23E+05                  |
| R19               | 1721.67                          | 1638.33                                  | 0                                            | 1638.33                          | 6.66                  | 1.34E+06                  |
| R20               | 2456.73                          | 903.27                                   | 0                                            | 903.27                           | 0.23                  | 4.57E+04                  |
| R21               | 2675.27                          | 684.73                                   | 0                                            | 684.73                           | 0.12                  | 2.49E+04                  |
| R22               | 2349.07                          | 1010.93                                  | 0                                            | 1010.93                          | 0.5                   | 1.02E+05                  |
| R23               | 3178.13                          | 181.87                                   | 0                                            | 181.87                           | 0.03                  | 5.41E+03                  |
| R24               | 2161.2                           | 1198.8                                   | 0                                            | 1198.8                           | 0.59                  | 1.19E+05                  |
| R25               | 2675.13                          | 684.87                                   | 0                                            | 684.87                           | 0.13                  | 2.54E+04                  |
| R26               | 2397.87                          | 962.13                                   | 0                                            | 962.13                           | 0.44                  | 8.83E+04                  |
| 9A                | 2450.47                          | 909.53                                   | 0                                            | 909.53                           | 0.56                  | 1.13E+05                  |
| A                 | 0                                | 3360                                     | 0                                            | 3360                             | 4.56                  | 9.20E+05                  |
| PS                | 0                                | 3360                                     | 0                                            | 3360                             | 15.43                 | 3.11E+06                  |

.

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1482.33                          | 557.67                                   | 0                                            | 557.67                           | 0.3                   | 3 67E+04                  |
| R03               | 1931.87                          | 108.13                                   | 0                                            | 108.13                           | 0.02                  | 2.75E+03                  |
| R04               | 1925.4                           | 114.6                                    | 0                                            | 114.6                            | 0.02                  | 1.99E+03                  |
| R05               | 829.93                           | 1210.07                                  | 0                                            | 1210.07                          | 0.68                  | 8.36E+04                  |
| R06               | 1948                             | 91.93                                    | 0.07                                         | 92                               | 0.03                  | 3.07E+03                  |
| R07               | 1745.33                          | 294.67                                   | 0                                            | 294.67                           | 0.14                  | 1.72E+04                  |
| R08               | 810.4                            | 1229.6                                   | 0                                            | 1229.6                           | 0.79                  | 9.73E+04                  |
| R09               | 1744.93                          | 295                                      | 0.07                                         | 295.07                           | 0.13                  | 1.58E+04                  |
| R11               | 2040                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 2040                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1727.8                           | 312.13                                   | 0.07                                         | 312.2                            | 0.27                  | 3.31E+04                  |
| R14               | 2040                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1773.87                          | 266.13                                   | 0                                            | 266.13                           | 0.02                  | 2.10E+03                  |
| R16               | 1894.27                          | 145.73                                   | 0                                            | 145.73                           | 0.02                  | 2.08E+03                  |
| R17               | 773.53                           | 1266.47                                  | 0                                            | 1266.47                          | 0.22                  | 2.70E+04                  |
| R18               | 1485.67                          | 554.33                                   | 0                                            | 554.33                           | 0.41                  | 4.97E+04                  |
| R19               | 1736.73                          | 303.2                                    | 0.07                                         | 303.27                           | 0.58                  | 7.07E+04                  |
| R20               | 1941.87                          | 98.13                                    | 0                                            | 98.13                            | 0                     | 7.23E+01                  |
| R21               | 2040                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1933.07                          | 106.93                                   | 0                                            | 106.93                           | 0.01                  | 1.15E+03                  |
| R23               | 2040                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 2040                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 2040                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 2040                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 2040                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 2040                                     | 0                                            | 2040                             | 3.09                  | 3.78E+05                  |
| PS                | 0                                | 2040                                     | 0                                            | 2040                             | 9.12                  | 1.12E+06                  |

| CONDUIT | LENGTH<br>OF<br>DRV | LENGTH<br>OF<br>SUBCRITICAL | LENGTH<br>OF UPSTR.<br>CRITICAL | LENGTH<br>OF<br>WFT | MEAN<br>FLOW | TOTAL<br>FLOW |
|---------|---------------------|-----------------------------|---------------------------------|---------------------|--------------|---------------|
| NUMBER  | FLOW(MIN)           | FLOW(MIN)                   | FLOW(MIN)                       | FLOW(MIN)           | (CFS)        | CUBIC FT      |
| <br>R02 | 1673.27             | 186.73                      | 0                               | 186.73              | 0.05         | 5.89E+03      |
| R03     | 1860                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R04     | 1860                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R05     | 918.8               | 941.2                       | 0                               | 941.2               | 0.19         | 2.17E+04      |
| R06     | 1860                | . 0                         | 0                               | 0                   | 0            | 0.00E+00      |
| R07     | 1838.93             | 21.07                       | 0                               | 21.07               | 0            | 2.82E+01      |
| R08     | 1674.53             | 185.4                       | 0.07                            | 185.47              | 0.05         | 5.78E+03      |
| R09     | 1860                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R11     | 1860                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R12     | 1860                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R13     | 1834.27             | 25.73                       | 0                               | 25.73               | 0            | 6.56E+01      |
| R14     | 1860                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R15     | 1808.6              | 51.4                        | 0                               | 51.4                | 0            | 2.89E+01      |
| R16     | 1860                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R17     | 1524.27             | 335.73                      | 0                               | 335.73              | 0.02         | 1.88E+03      |
| R18     | 1509.93             | 350.07                      | 0                               | 350.07              | 0.08         | 8.73E+03      |
| R19     | 1860                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R20     | 1860                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R21     | 1860                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R22     | 1860                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R23     | 1860                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R24     | 1860                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R25     | 1860                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| R26     | 1860                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| 9A      | 1860                | 0                           | 0                               | 0                   | 0            | 0.00E+00      |
| А       | 0                   | 1860                        | 0                               | 1860                | 2.6          | 2.91E+05      |
| PS      | 0                   | 1860                        | 0                               | 1860                | 7.87         | 8.79E+05      |

e •

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
|                   | ****                             |                                          |                                              |                                  |                       |                           |
| R02               | 1463.67                          | 696.33                                   | 0                                            | 696.33                           | 1.35                  | 1.75E+05                  |
| R03               | 1638.53                          | 521.4                                    | 0.07                                         | 521.47                           | 1.56                  | 2.03E+05                  |
| R04               | 1624.73                          | 535.27                                   | 0                                            | 535.27                           | 0.7                   | 9.11E+04                  |
| R05               | 788.93                           | 1371                                     | 0.07                                         | 1371.07                          | 3                     | 3.89E+05                  |
| R06               | 1749.47                          | 410.53                                   | 0                                            | 410.53                           | 0.23                  | 2.95E+04                  |
| R07               | 1554.87                          | 605.13                                   | 0                                            | 605.13                           | 0.79                  | 1.03E+05                  |
| R08               | 785.4                            | 1374.53                                  | 0.07                                         | 1374.6                           | 3.99                  | 5.17E+05                  |
| R09               | 1607.87                          | 552.13                                   | 0                                            | 552.13                           | 1.38                  | 1.78E+05                  |
| R11               | 1887.53                          | 272.47                                   | 0                                            | 272.47                           | 0.62                  | 8.07E+04                  |
| R12               | 2160                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1549.33                          | 610.67                                   | 0                                            | 610.67                           | 1.61                  | 2.08E+05                  |
| R14               | 1913.53                          | 246.4                                    | 0.07                                         | 246.47                           | 0.14                  | 1.75E+04                  |
| R15               | 1565.33                          | 594.67                                   | 0                                            | 594.67                           | 0.19                  | 2.45E+04                  |
| R16               | 1679.8                           | 480.13                                   | 0.07                                         | 480.2                            | 0.75                  | 9.77E+04                  |
| R17               | 769                              | . 1391                                   | 0                                            | 1391                             | 1.06                  | 1.38E+05                  |
| R18               | 781.07                           | 1378.93                                  | 0                                            | 1378.93                          | 2.46                  | 3.19E+05                  |
| R19               | 1599.13                          | 560.8                                    | 0.07                                         | 560.87                           | 3.97                  | 5.15E+05                  |
| R20               | 1793.27                          | 366.73                                   | 0                                            | 366.73                           | 0.14                  | 1.81E+04                  |
| R21               | 1852.73                          | 307.27                                   | 0                                            | 307.27                           | 0.08                  | 9.99E+03                  |
| R22               | 1757.8                           | 402.2                                    | 0                                            | 402.2                            | 0.31                  | 4.07E+04                  |
| R23               | 2098.6                           | 61.4                                     | 0                                            | 61.4                             | 0                     | 4.57E+02                  |
| R24               | 1731.67                          | 428.33                                   | 0                                            | 428.33                           | 0.32                  | 4.20E+04                  |
| R25               | 1918.93                          | 241.07                                   | 0                                            | 241.07                           | 0.03                  | 4.03E+03                  |
| R26               | 1798.13                          | 361.87                                   | 0                                            | 361.87                           | 0.19                  | 2.48E+04                  |
| 9A                | 1899.53                          | 260.47                                   | 0                                            | 260.47                           | 0.5                   | 6.51E+04                  |
| A                 | 0                                | 2160                                     | 0                                            | 2160                             | 3.39                  | 4,40E+05                  |
| PS                | 0                                | 2160                                     | 0                                            | 2160                             | 12.2                  | 1.58E+06                  |

i

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>R02           | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R03               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1514.07                          | 45.93                                    | 0                                            | 45.93                            | 0                     | 1.09E+02                  |
| R06               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1501.8                           | 58.2                                     | 0                                            | 58.2                             | 0                     | 3.65E+02                  |
| R09               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1490.93                          | 69.07                                    | 0                                            | 69.07                            | 0                     | 1.88E+02                  |
| R18               | 1476.73                          | 83.27                                    | 0                                            | 83.27                            | 0.01                  | 1.13E+03                  |
| R19               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R23               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1560                                     | 0                                            | 1560                             | 2.46                  | 2.30E+05                  |
| PS                | 0                                | 1560                                     | 0                                            | 1560                             | 7.07                  | 6.62E+05                  |

•

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1562                             | 237.93                                   | 0.07                                         | 238                              | 0.02                  | 2 32E+03                  |
| R03               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1712.8                           | 87.2                                     | 0                                            | 87.2                             | 0.01                  | 1.41E+03                  |
| R06               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1706.8                           | 93.2                                     | 0                                            | 93.2                             | 0.02                  | 2,47E+03                  |
| R09               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1770.27                          | 29.73                                    | 0                                            | 29.73                            | 0                     | 3.12E-01                  |
| R16               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1534.87                          | 265.13                                   | 0                                            | 265.13                           | 0.01                  | 8.73E+02                  |
| R18               | 1521.93                          | 278.07                                   | 0                                            | 278.07                           | 0.04                  | 4.74E+03                  |
| R19               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R23               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0,00E+00                  |
| R25               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 1800                                     | 0                                            | 1800                             | 2.63                  | 2,85E+05                  |
| PS                | 0                                | 1800                                     | 0                                            | 1800                             | 7.54                  | 8.14E+05                  |

 $\{ s, \ell \}$ 

# APPENDIX D

7

# SWMM SUMMARY OUTPUT FOR FUTURE TYPICAL YEAR



| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1455.4                           | 344.6                                    | 0                                            | 344.6                            | 0.15                  | 1.61E+04                  |
| R03               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 7 <b>3</b> 6.73                  | 1063.2                                   | 0.07                                         | 1063.27                          | 0.44                  | 4.71E+04                  |
| R06               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1719.87                          | 80.13                                    | 0                                            | 80.13                            | 0                     | 1.70E+01                  |
| R08               | 1524.07                          | 275.87                                   | 0.07                                         | 275.94                           | 0.16                  | 1.71E+04                  |
| R09               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1733.2                           | 66.8                                     | 0                                            | 66.8                             | 0                     | 8.37E+00                  |
| R14               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1479.8                           | 320.2                                    | 0                                            | 320.2                            | 0.05                  | 4.94E+03                  |
| R18               | 1460.47                          | 339.53                                   | 0                                            | 339.53                           | 0.19                  | 2.05E+04                  |
| R19               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 1800                                     | 0                                            | 1800                             | 2.85                  | 3.08E+05                  |
| PS                | 0                                | 1800                                     | 0                                            | 1800                             | 8.62                  | 9.31E+05                  |

| Storm | 2 |
|-------|---|
|-------|---|

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1487.2                           | 192.8                                    | 0                                            | 192.8                            | 0.05                  | 4.60E+03                  |
| R03               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 736.73                           | 943.2                                    | 0.07                                         | 943.27                           | 0.23                  | 2.30E+04                  |
| R06               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1504.8                           | 175.2                                    | 0                                            | 175.2                            | 0.03                  | 3.41E+03                  |
| R09               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E++00                 |
| R14               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1490.53                          | 189.47                                   | 0                                            | 189.47                           | 0.01                  | 1.23E+03                  |
| R18               | 1471.67                          | 208.33                                   | 0                                            | 208.33                           | 0.07                  | 6.66E+03                  |
| R19               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1680                                     | 0                                            | 1680                             | 2.55                  | 2.58E+05                  |
| PS                | 0                                | 1680                                     | 0                                            | 1680                             | 7.58                  | 7.64E+05                  |

5

 $\cdot$ 

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 774.33                           | 1445.67                                  | 0                                            | 1445.67                          | 2.58                  | 3.44E+05                  |
| R03               | 1551.67                          | 668.27                                   | 0.07                                         | 668.34                           | 3.06                  | 4.07E+05                  |
| R04               | 1673.87                          | 546.13                                   | 0                                            | 546.13                           | 0.2                   | 2.63E+04                  |
| R05               | 733.8                            | 1486.13                                  | 0.07                                         | 1486.2                           | 4.7                   | 6.26E+05                  |
| R06               | 1736.4                           | 483.6                                    | 0                                            | 483.6                            | 0.11                  | 1.45E+04                  |
| R07               | 1524.87                          | 695.13                                   | 0                                            | 695.13                           | 0.94                  | 1.26E+05                  |
| R08               | 728. <b>8</b>                    | 1491.2                                   | 0                                            | 1491.2                           | 6.1                   | 8.13E+05                  |
| R09               | 1535.2                           | 684.73                                   | 0.07                                         | 684.8                            | 2.23                  | 2.98E+05                  |
| R11               | 1670.53                          | . 549.4                                  | 0.07                                         | 549.47                           | 1.61                  | 2.14E+05                  |
| R12               | 1975.27                          | 244.73                                   | 0                                            | 244.73                           | 0.1                   | 1.35E+04                  |
| R13               | 1532.27                          | 687.67                                   | 0.07                                         | 687.74                           | 1.88                  | 2.50E+05                  |
| R14               | 1964.2                           | 255.73                                   | 0.07                                         | 255.8                            | 0.43                  | 5.66E+04                  |
| R15               | 1633.8                           | 586.2                                    | 0                                            | 586.2                            | 0.04                  | 5.15E+03                  |
| R16               | 1545.87                          | 674.13                                   | 0                                            | 674.13                           | 1.3                   | 1.73E+05                  |
| R17               | 729.6                            | 1490.4                                   | 0                                            | 1490.4                           | 1.53                  | 2.04E+05                  |
| R18               | 738                              | 1482                                     | 0                                            | 1482                             | 4.03                  | 5.37E+05                  |
| R19               | 1486.73                          | 733.2                                    | 0.07                                         | 733,27                           | 6.34                  | 8.44E+05                  |
| R20               | 1621.33                          | 598.67                                   | 0                                            | 598.67                           | 0.27                  | 3.65E+04                  |
| R21               | 1643.07                          | 576.93                                   | 0                                            | 576.93                           | 0.27                  | 3.56E+04                  |
| R22               | 1571.07                          | 648.93                                   | 0                                            | 648.93                           | 0.67                  | 8.94E+04                  |
| R24               | 1681.27                          | 538.73                                   | 0                                            | 538.73                           | 0.18                  | 2.46E+04                  |
| R25               | 1677.47                          | 542.53                                   | 0                                            | 542.53                           | 0.26                  | 3.48E+04                  |
| R26               | 1614.47                          | 605.53                                   | 0                                            | 605.53                           | 0.77                  | 1.02E+05                  |
| 9A                | 1672.67                          | 547.33                                   | 0                                            | 547.33                           | 1.08                  | 1.43E+05                  |
| А                 | 0                                | 2220                                     | 0                                            | 2220                             | 5.7 <b>7</b>          | 7.68E+05                  |
| PS                | 0                                | 2220                                     | 0                                            | 2220                             | 13.74                 | 1.83E+06                  |

| S | to | rm | 4 |
|---|----|----|---|
|---|----|----|---|

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1684.53                          | 55.47                                    | 0                                            | 55.47                            | 0                     | 1.74E+01                  |
| R03               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1669.67                          | 70.27                                    | 0.07                                         | 70.34                            | 0.01                  | 7.59E+02                  |
| R06               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1665.47                          | 74.47                                    | 0.07                                         | 74.54                            | 0.01                  | 1.22E+03                  |
| R09               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1505.67                          | 234.33                                   | 0                                            | 234.33                           | 0                     | 4.85E+02                  |
| R18               | 1488.13                          | 251.87                                   | 0                                            | 251.87                           | 0.03                  | 3.54E+03                  |
| R19               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1740                                     | 0                                            | 1740                             | 2.68                  | 2.80E+05                  |
| PS                | 0                                | 1740                                     | 0                                            | 1740                             | 7.34                  | 7.67E+05                  |

. .

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1528.93                          | 91.07                                    | 0                                            | 91.07                            | 0                     | <br>1.85E+02              |
| R03               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1506                             | 113.93                                   | 0.07                                         | 114                              | 0.01                  | 1.07E+03                  |
| R06               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1499.6                           | 120.33                                   | 0.07                                         | 120.4                            | 0.02                  | 1.63E+03                  |
| R09               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1489.07                          | 130.93                                   | 0                                            | 130.93                           | 0.01                  | 6.87E+02                  |
| R18               | 1471.2                           | 148.8                                    | 0                                            | 148.8                            | 0.04                  | 3.96E+03                  |
| R19               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 1620                                     | 0                                            | 1620                             | 2.67                  | 2.60E+05                  |
| PS                | 0                                | 1620                                     | 0                                            | 1620                             | 7.32                  | 7.12E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R03               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R06               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R09               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1558.07                          | 181.93                                   | 0                                            | 181.93                           | 0                     | 1.05E+01                  |
| R18               | 1527.47                          | 212.53                                   | 0                                            | 212.53                           | 0.01                  | 1.08E+03                  |
| R19               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 1740                                     | 0                                            | 1740                             | 2.56                  | 2.67E+05                  |
| PS                | 0                                | 1740                                     | 0                                            | 1740                             | 7.1                   | 7.42E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1169.73                          | 630.27                                   | 0                                            | 630.27                           | 1.97                  | 2.13E+05                  |
| R03               | 1649.87                          | 150.07                                   | 0.07                                         | 150,14                           | 2.48                  | 2.67E+05                  |
| R04               | 1661.27                          | 138.73                                   | 0                                            | 138.73                           | 0.34                  | 3.65E+04                  |
| R05               | 850                              | 950                                      | 0                                            | 950                              | 4.53                  | 4.89E+05                  |
| R06               | 1659.33                          | 140.67                                   | 0                                            | 140.67                           | 0.14                  | 1.53E+04                  |
| R07               | 1638.6                           | 161.4                                    | 0                                            | 161.4                            | 0.98                  | 1.06E+05                  |
| R08               | 847                              | 952.93                                   | 0.07                                         | 953                              | 4.6                   | 4.97E+05                  |
| R09               | 1633.93                          | 166.07                                   | 0                                            | 166.07                           | 2.56                  | 2.76E+05                  |
| R11               | 1666.07                          | 133.93                                   | 0                                            | 133.93                           | 1.89                  | 2.04E+05                  |
| R12               | 1671.6                           | 128.4                                    | 0                                            | 128.4                            | 0.4                   | 4.33E+04                  |
| R13               | 1641.73                          | 158.2                                    | 0.07                                         | 158.27                           | 1.88                  | 2.03E+05                  |
| R14               | 1655.53                          | 144.4                                    | 0.07                                         | 144.47                           | 1.3                   | 1.41E+05                  |
| R15               | 1635                             | 165                                      | 0                                            | 165                              | 0.14                  | 1.48E+04                  |
| R16               | 1602.87                          | 197.13                                   | 0                                            | 197.13                           | 1.96                  | 2.12E+05                  |
| R17               | 786.33                           | 1013.67                                  | 0                                            | 1013.67                          | 1.23                  | 1.33E+05                  |
| R18               | 784.13                           | 1015.87                                  | 0                                            | 1015.87                          | 4.14                  | 4.47E+05                  |
| R19               | 1558.8                           | 241.2                                    | 0                                            | 241.2                            | 5.29                  | 5.72E+05                  |
| R20               | 1664.47                          | 135.53                                   | 0                                            | 135.53                           | 0.59                  | 6.36E+04                  |
| R21               | 1673                             | 127                                      | 0                                            | 127                              | 0.36                  | 3.85E+04                  |
| R22               | 1664.8                           | 135.2                                    | 0                                            | 135.2                            | 1.16                  | 1.25E+05                  |
| R24               | 1675.6                           | 124.4                                    | 0                                            | 124.4                            | 0.3                   | 3.21E+04                  |
| R25               | 1675.33                          | 124.67                                   | 0                                            | 124.67                           | 0.4                   | 4.37E+04                  |
| R26               | 1670.47                          | 129.53                                   | 0                                            | 129.53                           | 0.93                  | 1.00E+05                  |
| 9A                | 1663.6                           | 136.33                                   | 0.07                                         | 136.4                            | 1.29                  | 1.39E+05                  |
| A                 | 0                                | 1800                                     | 0                                            | 1800                             | 5.16                  | 5.58E+05                  |
| PS                | 0                                | 1800                                     | 0                                            | 1800                             | 9.64                  | 1.04E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R03               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1684.33                          | 115.67                                   | 0                                            | 115.67                           | 0                     | 1.65E+02                  |
| R06               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1670.27                          | 129.73                                   | 0                                            | 129.73                           | 0                     | 2.92E+02                  |
| R09               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1800                             | 0                                        | 0                                            | . 0                              | 0                     | 0.00E+00                  |
| R14               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1553.2                           | 246.8                                    | 0                                            | 246.8                            | 0                     | 3.84E+02                  |
| R18               | 1525.93                          | 274.07                                   | 0                                            | 274.07                           | 0.04                  | 3.97E+03                  |
| R19               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1800                             | . 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1800                                     | 0                                            | 1800                             | 2.71                  | 2.92E+05                  |
| PS                | 0                                | 1800                                     | 0                                            | 1800                             | 7.41                  | 8.01E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1460.13                          | 339.87                                   | 0                                            | 339.87                           | 0.55                  | 5.94E+04                  |
| R03               | 1611.87                          | 188.13                                   | 0                                            | 188.13                           | 0.61                  | 6.64E+04                  |
| R04               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 742.2                            | 1057.73                                  | 0.07                                         | 1057.8                           | 1.15                  | 1.24E+05                  |
| R06               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1569.27                          | 230.73                                   | 0                                            | 230.73                           | 0.19                  | 2.08E+04                  |
| R08               | 734.87                           | 1065.07                                  | 0.07                                         | 1065.14                          | 1.33                  | 1.44E+05                  |
| R09               | 1584.93                          | 215                                      | 0.07                                         | 215.07                           | 0.33                  | 3.54E+04                  |
| R11               | 1667.87                          | 132.13                                   | 0                                            | 132.13                           | 0.19                  | 2.06E+04                  |
| R12               | 1745.67                          | 54.33                                    | 0                                            | 54.33                            | 0                     | 1.56E+02                  |
| R13               | 1558.6                           | 241.4                                    | 0                                            | 241.4                            | 0.39                  | 4.26E+04                  |
| R14               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1652.6                           | 147.4                                    | 0                                            | 147.4                            | 0                     | 2.13E+02                  |
| R16               | 1589.67                          | 210.27                                   | 0.07                                         | 210.34                           | 0.18                  | 1.95E+04                  |
| R17               | 734                              | 1066                                     | 0                                            | 1066                             | 0.36                  | 3.92E+04                  |
| R18               | 744.8                            | 1055.2                                   | 0                                            | 1055.2                           | 0.96                  | 1.04E+05                  |
| R19               | 1530.8                           | 269.13                                   | 0.07                                         | 269.2                            | 1.52                  | 1.64E+05                  |
| R20               | 1647.27                          | 152.73                                   | 0                                            | 152.73                           | 0.03                  | 3.30E+03                  |
| R21               | 1682.2                           | 117.8                                    | 0                                            | 117.8                            | 0.04                  | 4.01E+03                  |
| R22               | 1641.4                           | 158.6                                    | 0                                            | 158.6                            | 0.09                  | 1.01E+04                  |
| R24               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1739                             | 61                                       | 0                                            | 61                               | 0.01                  | 6.08E+02                  |
| R26               | 1646.13                          | 153.87                                   | 0                                            | 153.87                           | 0.06                  | 6.35E+03                  |
| 9A                | 1726.47                          | 73.53                                    | 0                                            | 73.53                            | 0.12                  | 1.28E+04                  |
| А                 | 0                                | 1800                                     | 0                                            | 1800                             | 3.39                  | 3.66E+05                  |
| PS                | 0                                | 1800                                     | 0                                            | 1800                             | 9.35                  | 1.01E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1561.87                          | 118.13                                   | 0                                            | 118.13                           | 0.01                  | 1.36E+03                  |
| R03               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1573.4                           | 106.6                                    | 0                                            | 106.6                            | 0.01                  | 1.17E+03                  |
| R06               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1565.13                          | 114.87                                   | 0                                            | 114.87                           | 0.02                  | 1.71E+03                  |
| R09               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1550.47                          | 129.53                                   | 0                                            | 129.53                           | 0.01                  | 7.09E+02                  |
| R18               | 1534.07                          | 145.93                                   | 0                                            | 145.93                           | 0.04                  | 3.96E+03                  |
| R19               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1680                             | · 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1680                                     | 0                                            | 1680                             | 2.65                  | 2.67E+05                  |
| PS                | 0                                | 1680                                     | 0                                            | 1680                             | 7.31                  | 7.36E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>DA2           |                                  |                                          |                                              |                                  |                       |                           |
| R02               | 1031                             | 988.93                                   | 0.07                                         | 989                              | 1.12                  | 1.78E+05                  |
| RUS<br>RO4        | 2596 02                          | 52.07                                    | 0.07                                         | 501                              | 1.26                  | 1.99E+05                  |
| R04               | 2300.93                          | 53.07                                    | 0                                            | 53.07                            | 0                     | 4.99E+01                  |
| RUS               | 924.8                            | 1/15.2                                   | 0                                            | 1/15.2                           | 2.19                  | 3.47E+05                  |
| RUO<br>DOZ        | 2640                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| KU/               | 1800                             | / /4                                     | 0                                            | 774                              | 0.4                   | 6.36E+04                  |
| RU8               | 911.53                           | 1728.47                                  | 0                                            | 1728.47                          | 2.69                  | 4.25E+05                  |
| R09               | 1893.4                           | 746.47                                   | 0.13                                         | 746.6                            | 0.57                  | 8.97E+04                  |
| RII               | 2198.6                           | 441.27                                   | 0.13                                         | 441.4                            | 0.49                  | 7.73E+04                  |
| R12               | 2534.6                           | 105.4                                    | 0                                            | 105.4                            | 0.01                  | 9.07E+02                  |
| R13               | 1812.13                          | 827.8                                    | 0.07                                         | 827.87                           | 0.82                  | 1.31E+05                  |
| R14               | 2640                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 2264.13                          | 375.87                                   | 0                                            | 375.87                           | 0                     | 5.79E+02                  |
| R16               | 1910.73                          | 729.2                                    | 0.07                                         | 729.27                           | 0.35                  | 5.61E+04                  |
| R17               | 857.73                           | 1782.27                                  | 0                                            | 1782.27                          | 0.68                  | 1.08E+05                  |
| R18               | 847.93                           | 1792.07                                  | 0                                            | 1792.07                          | 1.86                  | 2.95E+05                  |
| R19               | 1706.27                          | 933.67                                   | 0.07                                         | 933.74                           | 3.23                  | 5.12E+05                  |
| R20               | 2251.8                           | 388.2                                    | 0                                            | 388.2                            | 0.05                  | 8.37E+03                  |
| R21               | 2315.6                           | 324.4                                    | 0                                            | 324.4                            | 0.06                  | 9.56E+03                  |
| R22               | 2141.6                           | 498.4                                    | 0                                            | 498.4                            | 0.17                  | 2.65E+04                  |
| R24               | 2640                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 2461                             | 179                                      | 0                                            | 179                              | 0.01                  | 1.73E+03                  |
| R26               | 2253.47                          | 386.53                                   | 0                                            | 386.53                           | 0.1                   | 1.62E+04                  |
| 9A                | 2447.07                          | 192.93                                   | 0                                            | 192.93                           | 0.12                  | 1.88E+04                  |
| А                 | 0                                | 2640                                     | 0                                            | 2640                             | 4.55                  | 7.20E+05                  |
| PS                | 0                                | 2640                                     | 0                                            | 2640                             | 11.68                 | 1.85E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1668.33                          | 71.6                                     | 0.07                                         | 71.67                            | 0                     | 1.51E+02                  |
| R03               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1661                             | 79                                       | 0                                            | 79                               | 0.01                  | 9.29E+02                  |
| R06               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1659.8                           | 80.2                                     | 0                                            | 80.2                             | 0.01                  | 1.38E+03                  |
| R09               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1555.47                          | 184.53                                   | 0                                            | 184.53                           | 0.01                  | 5.61E+02                  |
| R18               | 1525.67                          | 214.33                                   | 0                                            | 214.33                           | 0.04                  | 3.72E+03                  |
| R19               | 1740                             | · 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1740                                     | 0                                            | 1740                             | 2.67                  | 2.79E+05                  |
| PS                | 0                                | 1740                                     | 0                                            | 1740                             | 7.34                  | 7.66E+05                  |

April 1999

; ....

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R03               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R06               | 1680                             | · 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1680                             | 0                                        | · 0                                          | 0                                | 0                     | 0.00E+00                  |
| R08               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R09               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| RH                | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1558.07                          | 121.93                                   | 0                                            | 121.93                           | 0                     | 6.37E+00                  |
| R18               | 1527.47                          | 152.53                                   | 0                                            | 152.53                           | 0.01                  | 7.14E+02                  |
| R19               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1680                                     | 0                                            | 1680                             | 2.52                  | 2.54E+05                  |
| PS                | 0                                | 1680                                     | 0                                            | 1680                             | 7.03                  | 7.09E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1133.13                          | 606.87                                   | 0                                            | 606.87                           | 1.32                  | 1.38E+05                  |
| R03               | 1481.8                           | 258.13                                   | 0.07                                         | 258.2                            | 1.64                  | 1.71E+05                  |
| R04               | 1556.53                          | 183.47                                   | 0                                            | 183.47                           | 0.01                  | 7.91E+02                  |
| R05               | 725.07                           | 1014.87                                  | 0.07                                         | 1014.94                          | 2.42                  | 2.53E+05                  |
| R06               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1467                             | 273                                      | 0                                            | 273                              | 0.49                  | 5.13E+04                  |
| R08               | 723.93                           | 1016.07                                  | 0                                            | 1016.07                          | 3.15                  | 3.29E+05                  |
| R09               | 1461.53                          | 278.47                                   | 0                                            | 278.47                           | 1.28                  | 1.34E+05                  |
| R11               | 1504.87                          | 235.13                                   | 0                                            | 235.13                           | 0.91                  | 9.46E+04                  |
| R12               | 1524.6                           | 215.4                                    | 0                                            | 215.4                            | 0.04                  | 4.46E+03                  |
| R13               | 1469.73                          | 270.2                                    | 0.07                                         | 270.27                           | 1.02                  | 1.07E+05                  |
| R14               | 1555.13                          | 184.8                                    | 0.07                                         | 184.87                           | 0.12                  | 1.25E+04                  |
| R15               | 1500.73                          | 239.27                                   | 0                                            | 239.27                           | 0.02                  | 1.61E+03                  |
| R16               | 1446.53                          | 293.4                                    | 0.07                                         | 293.47                           | 0.67                  | 6.95E+04                  |
| R17               | 725.13                           | 1014.87                                  | 0                                            | 1014.87                          | 0.85                  | 8.83E+04                  |
| R18               | 729.6                            | 1010.4                                   | 0                                            | 1010.4                           | 2.18                  | 2.28E+05                  |
| R19               | 1406.67                          | 333.27                                   | 0.07                                         | 333.34                           | 3.45                  | 3.60E+05                  |
| R20               | 1502.27                          | 237.73                                   | 0                                            | 237.73                           | 0.15                  | 1.62E+04                  |
| R21               | 1520.67                          | 219.33                                   | 0                                            | 219.33                           | 0.15                  | 1.59E+04                  |
| R22               | 1501                             | 239                                      | 0                                            | 239                              | 0.37                  | 3.83E+04                  |
| R24               | 1596.67                          | 143.33                                   | 0                                            | 143.33                           | 0                     | 5.57E+01                  |
| R25               | 1519.07                          | 220.93                                   | 0                                            | 220.93                           | 0.06                  | 5.99E+03                  |
| R26               | 1501.33                          | 238.67                                   | 0                                            | 238.67                           | 0.27                  | 2.79E+04                  |
| 9A                | 1507.27                          | 232.73                                   | 0                                            | 232.73                           | 0.67                  | 6.97E+04                  |
| A                 | 0                                | 1740                                     | 0                                            | 1740                             | 4.13                  | 4.31E+05                  |
| PS                | 0                                | 1740                                     | 0                                            | 1740                             | 10.8                  | 1.13E+06                  |

· • .

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENG TH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|-----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1512.8                           | 707.2                                    | 0                                             | 707.2                            | 0.83                  | 1.11E+05                  |
| R03               | 1810.67                          | 409.27                                   | 0.07                                          | 409.34                           | 0.38                  | 5.12E+04                  |
| R04               | 2220                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R05               | 805.47                           | 1414.53                                  | 0                                             | 1414.53                          | 1.66                  | 2.21E+05                  |
| R06               | 2115.8                           | 104.2                                    | 0                                             | 104.2                            | 0.01                  | 7.71E+02                  |
| R07               | 1597.87                          | 622.13                                   | 0                                             | 622.13                           | 0.31                  | 4.07E+04                  |
| R08               | 796.8                            | 1423.2                                   | 0                                             | 1423.2                           | 1.97                  | 2.63E+05                  |
| R09               | 1789.33                          | 430.6                                    | 0.07                                          | 430.67                           | 0.13                  | 1.79E+04                  |
| R11               | 2102.27                          | 117.73                                   | 0                                             | 117.73                           | 0.02                  | 2.08E+03                  |
| R12               | 2220                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R13               | 1602.93                          | 617.07                                   | 0                                             | 617.07                           | 0.56                  | 7.48E+04                  |
| R14               | 2220                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R15               | 2099.53                          | 120.47                                   | 0                                             | 120.47                           | 0                     | 7.99E+01                  |
| R16               | 1839.2                           | 379.2                                    | 1.6                                           | 380.8                            | 0.09                  | 1.24E+04                  |
| R17               | 783.33                           | 1436.67                                  | 0                                             | 1436.67                          | 0.42                  | 5.64E+04                  |
| R18               | 783.93                           | 1436.07                                  | 0                                             | 1436.07                          | 1.25                  | 1.66E+05                  |
| R19               | 1565.27                          | 654.73                                   | 0                                             | 654.73                           | 2.23                  | 2.97E+05                  |
| R20               | 2099.73                          | 120.27                                   | 0                                             | 120.27                           | 0.01                  | 1.54E+03                  |
| R21               | 2118.13                          | 101.87                                   | 0                                             | 101.87                           | 0.02                  | 2.13E+03                  |
| R22               | 1946.27                          | 273.73                                   | 0                                             | 273.73                           | 0.05                  | 7.10E+03                  |
| R24               | 2220                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R25               | 2163.67                          | 56.33                                    | 0                                             | 56.33                            | 0                     | 1.52E+01                  |
| R26               | 2100.07                          | 119.93                                   | 0                                             | 119.93                           | 0.03                  | 3.43E+03                  |
| 9A                | 2220                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 2220                                     | 0                                             | 2220                             | 4.45                  | 5.93E+05                  |
| PS                | 0                                | 2220                                     | 0                                             | 2220                             | 11.57                 | 1.54E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1446 03                          | 412.07                                   |                                              | 412.07                           |                       | 7 445 - 04                |
| R02               | 1440.93                          | 205.33                                   | 0 07                                         | 413.07                           | 0.07                  | 7.44E+04                  |
| R04               | 1860                             | 295.55                                   | 0.07                                         | 293.4                            | 0.75                  | 8.32E+04                  |
| R05               | 777 87                           | 1132 13                                  | 0                                            | 1122 12                          | 127                   | 0.00E+00                  |
| R06               | 1860                             | 1152.15                                  | 0                                            | 1132.13                          | 1.57                  | 1.33E+03                  |
| R07               | 1538 33                          | 321.67                                   | 0                                            | 321.67                           | 0.74                  | 0.00E+00                  |
| R08               | 725.4                            | 1134.53                                  | 0.07                                         | 1134.6                           | 1.62                  | 2.03E+04                  |
| R09               | 1543.4                           | 316.6                                    | 0.07                                         | 316.6                            | 0.28                  | 1.01E+03                  |
| R11               | 1646.27                          | 213.67                                   | 0.07                                         | 213 74                           | 0.20                  | 3.13C+04<br>3.37E±04      |
| R12               | 1860                             | 215.07                                   | 0.07                                         | 215.74                           | 0.21                  | 2.57E+04                  |
| R13               | 1503.33                          | 356.6                                    | 0.07                                         | 356 67                           | 0.49                  | 5.43E+04                  |
| R14               | 1860                             | 0                                        | 0.07                                         | 0                                | 0.42                  | 0.00E+00                  |
| R15               | 1659.6                           | 200.4                                    | ů<br>0                                       | 200 4                            | ů<br>0                | 1.85E+02                  |
| R16               | 1589.47                          | 270.47                                   | 0.07                                         | 270 54                           | 0.22                  | 2.51E+04                  |
| R17               | 726.8                            | 1133.2                                   | 0                                            | 1133.2                           | 0.22                  | 5.04E+04                  |
| R18               | 732.8                            | 1127.2                                   | 0                                            | 1127.2                           | 1.15                  | 1.28E+05                  |
| R19               | 1500.07                          | 359,87                                   | 0.07                                         | 359.94                           | 1.89                  | 2 11E+05                  |
| R20               | 1657.27                          | 202.73                                   | 0                                            | 202.73                           | 0.03                  | 3.12E+03                  |
| R21               | 1678.4                           | 181.6                                    | 0                                            | 181.6                            | 0.04                  | 4.22E+03                  |
| R22               | 1652.33                          | 207.67                                   | 0                                            | 207.67                           | 0.1                   | 1.10E+04                  |
| R24               | 1860                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1741.27                          | 118.73                                   | 0                                            | 118.73                           | 0                     | 2.73E+02                  |
| R26               | 1656.33                          | 203.67                                   | 0                                            | 203.67                           | 0.06                  | 6.39E+03                  |
| 9A                | 1795.8                           | 64.2                                     | 0                                            | 64.2                             | 0                     | 4.26E+02                  |
| A                 | 0                                | 1860                                     | 0                                            | 1860                             | 3.67                  | 4.09E+05                  |
| PS                | 0                                | 1860                                     | 0                                            | 1860                             | 9.65                  | 1.08E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1973.33                          | 486.6                                    | 0,07                                         | 486.67                           | 0.54                  | 7.98E+04                  |
| R03               | 2214.2                           | 245.73                                   | 0.07                                         | 245.8                            | 0.65                  | 9.54E+04                  |
| R04               | 2402.6                           | 57.4                                     | 0                                            | 57.4                             | 0                     | 1.30E+02                  |
| R05               | 817.2                            | 1642.73                                  | 0.07                                         | 1642.8                           | 1.15                  | 1.69E+05                  |
| R06               | 2460                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 2191.53                          | 268.47                                   | 0                                            | 268.47                           | 0.2                   | 2.89E+04                  |
| R08               | 815.07                           | 1644.93                                  | 0                                            | 1644.93                          | 1.36                  | 2.00E+05                  |
| R09               | 2198.13                          | 261.8                                    | 0.07                                         | 261.87                           | 0.38                  | 5.57E+04                  |
| R11               | 2247 <b>.8</b> 7                 | 212.13                                   | 0                                            | 212.13                           | 0.21                  | 3.17E+04                  |
| R12               | 2399.4                           | 60.6                                     | 0                                            | 60.6                             | 0.01                  | 1.17E+03                  |
| R13               | 2198.13                          | 261.8                                    | 0.07                                         | 261.87                           | 0.41                  | 6.08E+04                  |
| R14               | 2408.6                           | 51.33                                    | 0.07                                         | 51.4                             | 0                     | 0.00E+00                  |
| R15               | 2293.6                           | 166.4                                    | 0                                            | 166.4                            | 0                     | 4.41E+02                  |
| R16               | 2204.07                          | 255.87                                   | 0.07                                         | 255.94                           | 0.21                  | 3.15E+04                  |
| R17               | 816.4                            | 1643.6                                   | 0                                            | 1643.6                           | 0.38                  | 5.61E+04                  |
| R18               | 822.07                           | 1637.93                                  | 0                                            | 1637.93                          | 0.99                  | 1.45E+05                  |
| R19               | 2161.13                          | 298.8                                    | 0.07                                         | 298.87                           | 1.52                  | 2.25E+05                  |
| R20               | 2297.53                          | 162.47                                   | 0                                            | 162.47                           | 0.04                  | 5.47E+03                  |
| R21               | 2307.07                          | 152.93                                   | 0                                            | 152.93                           | 0.04                  | 6.03E+03                  |
| R22               | 2233                             | 227                                      | 0                                            | 227                              | 0.1                   | 1.52E+04                  |
| R24               | 2460                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 2374.33                          | 85.67                                    | 0                                            | 85.67                            | 0.01                  | 1.59E+03                  |
| R26               | 2300.47                          | 159.53                                   | 0                                            | 159.53                           | 0.07                  | 1.00E+04                  |
| 9A                | 2332.93                          | 127.07                                   | 0                                            | 127.07                           | 0.14                  | 2.06E+04                  |
| А                 | 0                                | 2460                                     | 0                                            | 2460                             | 3.24                  | 4.79E+05                  |
| PS                | 0                                | 2460                                     | 0                                            | 2460                             | 8.97                  | 1.32E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1793.8                           | 546.2                                    | 0                                            | 546.2                            | 0.51                  | 7.11E+04                  |
| R03               | 1941.73                          | 398.2                                    | 0.07                                         | 398.27                           | 0.45                  | 6.37E+04                  |
| R04               | 2340                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1087.27                          | 1252.73                                  | 0                                            | 1252.73                          | 1.06                  | 1.49E+05                  |
| R06               | 2340                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1867.93                          | 472.07                                   | 0                                            | 472.07                           | 0.17                  | 2.44E+04                  |
| R08               | 1084.93                          | 1255                                     | 0.07                                         | 1255.07                          | 1.22                  | 1.71E+05                  |
| R09               | 1901                             | 438.87                                   | 0.13                                         | 439                              | 0.15                  | 2.07E+04                  |
| R11               | 2292.07                          | 47.87                                    | 0.07                                         | 47.94                            | 0                     | 4.97E+01                  |
| R12               | 2340                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1856.73                          | 483.27                                   | 0                                            | 483.27                           | 0.33                  | 4.70E+04                  |
| R14               | 2340                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 2237.33                          | 102.67                                   | 0                                            | 102.67                           | 0                     | 9.58E+00                  |
| R16               | 2149                             | .190.87                                  | 0.13                                         | 191                              | 0                     | 0.00E+00                  |
| R17               | 1081.93                          | 1258.07                                  | 0                                            | 1258.07                          | 0.27                  | 3.77E+04                  |
| R18               | 1059.13                          | 1280.87                                  | 0                                            | 1280.87                          | 0.86                  | 1.21E+05                  |
| R19               | 1859.33                          | 480.67                                   | 0                                            | 480.67                           | 1.36                  | 1.91E+05                  |
| R20               | 2220.73                          | 119.27                                   | 0                                            | 119.27                           | 0                     | 3.46E+02                  |
| R21               | 2291.8                           | 48.2                                     | 0                                            | 48.2                             | 0                     | 1.75E+02                  |
| R22               | 2146.93                          | 193.07                                   | 0                                            | 193.07                           | 0.02                  | 3.33E+03                  |
| R24               | 2340                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 2340                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 2220                             | 120                                      | 0                                            | 120                              | 0.01                  | 1.03E+03                  |
| 9A                | 2340                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 2340                                     | 0                                            | 2340                             | 3.42                  | 4.81E+05                  |
| PS                | 0                                | 2340                                     | 0                                            | 2340                             | 9.69                  | 1.36E+06                  |

|          | LENGTH    | LENGTH      | LENGTH    | LENGTH       |       |          |
|----------|-----------|-------------|-----------|--------------|-------|----------|
| <u> </u> | OF        | OF          | OF UPSTR. | OF           | MEAN  | TOTAL    |
| CONDUIT  | DRY       | SUBCRITICAL | CRITICAL  | WET          | FLOW  | FLOW     |
| NUMBER   | FLOW(MIN) | FLOW(MIN)   | FLOW(MIN) | FLOW(MIN)    | (CFS) | CUBIC FT |
| R02      | 1//8 73   | 651 07      |           |              | 0.76  | 0.500:04 |
| R03      | 1646 33   | 453.67      | 0         | 453.67       | 0.70  | 9.39E+04 |
| R04      | 2100      | 0.55F       | 0         | 455.07       | 0.7   | 0.00E+00 |
| R05      | 728.67    | 1371.27     | 0.07      | 1371 34      | 1 55  | 1.95E+05 |
| R06      | 2100      | 0           | 0.07      | ۴-۲.۲.۲<br>0 | 1.55  | 0.00E+00 |
| R07      | 1540.4    | 559.6       | 0         | 559 6        | 0.25  | 3 13E+04 |
| R08      | 725.93    | 1374.07     | 0         | 1374.07      | 1.8   | 2.27E+05 |
| R09      | 1565.07   | 534.87      | 0.07      | 534.94       | 0.35  | 4.36E+04 |
| R11      | 1787.4    | 312.53      | 0.07      | 312.6        | 0.2   | 2.51E+04 |
| R12      | 2044.87   | 55.13       | 0         | 55.13        | 0     | 1.58E+02 |
| R13      | 1504.07   | 595.87      | 0.07      | 595.94       | 0.51  | 6.48E+04 |
| R14      | 2100      | 0           | 0         | 0            | 0     | 0.00E+00 |
| R15      | 1956.47   | 143,53      | 0         | 143.53       | 0     | 2.38E+02 |
| R16      | 1836.47   | 263.47      | 0.07      | 263.54       | 0.16  | 2.04E+04 |
| R17      | 727.27    | 1372.73     | 0         | 1372.73      | 0.5   | 6.29E+04 |
| R18      | 733.67    | 1366.33     | 0         | 1366.33      | 1.27  | 1.60E+05 |
| R19      | 1506.8    | 593.13      | 0.07      | 593.2        | 1.9   | 2.39E+05 |
| R20      | 1956.67   | 143.33      | 0         | 143.33       | 0.03  | 3.63E+03 |
| R21      | 1985.87   | 114.13      | 0         | 114.13       | 0.03  | 4.24E+03 |
| R22      | 1892.53   | 207.47      | 0         | 207.47       | 0.09  | 1.12E+04 |
| R24      | 2100      | 0           | 0         | 0            | 0     | 0.00E+00 |
| R25      | 1983.27   | 116.73      | 0         | 116.73       | 0.01  | 1.18E+03 |
| R26      | 1957.8    | 142.2       | 0         | 142.2        | 0.06  | 6.98E+03 |
| 9A       | 1963.6    | 136.4       | 0         | 136.4        | 0.11  | 1.42E+04 |
| А        | 0         | 2100        | 0         | 2100         | 3.82  | 4.81E+05 |
| PS       | 0         | 2100        | 0         | 2100         | 10.58 | 1.33E+06 |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1465.8                           | 694.2                                    | 0                                            | 694.2                            | 0.45                  | 5.89E+04                  |
| R03               | 1834.6                           | 325.33                                   | 0.07                                         | 325.4                            | 0.33                  | 4.33E+04                  |
| R04               | 2160                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 727.87                           | 1432.13                                  | 0                                            | 1432.13                          | 0.99                  | 1.28E+05                  |
| R06               | 2160                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1779.13                          | 380.87                                   | 0                                            | 380.87                           | 0.14                  | 1.76E+04                  |
| R08               | 725.4                            | 1434.53                                  | 0.07                                         | 1434.6                           | 1.11                  | 1.44E+05                  |
| R09               | 1789.33                          | 370.67                                   | 0                                            | 370.67                           | 0.13                  | 1.66E+04                  |
| R11               | 2134.07                          | 25.87                                    | 0.07                                         | 25.94                            | 0                     | 1.45E+02                  |
| R12               | 2160                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1641.2                           | 518.73                                   | 0.07                                         | 518.8                            | 0.26                  | 3.43E+04                  |
| R14               | 2160                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 2079.4                           | 80.6                                     | 0                                            | 80.6                             | 0                     | 1.02E+01                  |
| R16               | 1888.4                           | 271.6                                    | 0                                            | 271.6                            | 0.02                  | 2.96E+03                  |
| R17               | 726.8                            | 1433.2                                   | 0                                            | 1433.2                           | 0.31                  | 4.02E+04                  |
| R18               | 732.8                            | 1427.2                                   | 0                                            | 1427.2                           | 0.8                   | 1.04E+05                  |
| R19               | . 1521.67                        | 638.27                                   | 0.07                                         | 638.34                           | 1.06                  | 1.38E+05                  |
| R20               | 2076.33                          | 83.67                                    | 0                                            | 83.67                            | 0                     | 2.91E+02                  |
| R21               | 2102                             | 58                                       | 0                                            | 58                               | 0                     | 3.16E+02                  |
| R22               | 2017.6                           | 142.4                                    | 0                                            | 142.4                            | 0.02                  | 2.52E+03                  |
| R24               | 2160                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 2160                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 2075.67                          | 84.33                                    | 0                                            | 84.33                            | 0.01                  | 8.18E+02                  |
| 9A                | 2160                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 2160                                     | 0                                            | 2160                             | 3.34                  | 4.33E+05                  |
| PS                | 0                                | 2160                                     | 0                                            | 2160                             | 9.4                   | 1.22E+06                  |

. `

|         | LENGTH<br>OF | LENGTH      | LENGTH    | LENGTH    | MEAN  | TOTAL    |
|---------|--------------|-------------|-----------|-----------|-------|----------|
| CONDUIT | DRY          | SUBCRITICAL | CRITICAL  | WFT       | FLOW  | FLOW     |
| NUMBER  | FLOW(MIN)    | FLOW(MIN)   | FLOW(MIN) | FLOW(MIN) | (CFS) | CUBIC FT |
|         | ********     | ====~=~     |           |           |       |          |
| R02     | 1381.8       | 298.2       | 0         | 298.2     | 0.58  | 5.81E+04 |
| R03     | 1533.2       | 146.8       | 0         | 146.8     | 0.69  | 6.99E+04 |
| R04     | 1630.93      | 49.07       | 0         | 49.07     | 0     | 3.85E+02 |
| R05     | 723.87       | 956.07      | 0.07      | 956.14    | 1.15  | 1.16E+05 |
| R06     | 1680         | 0           | 0         | 0         | 0     | 0.00E+00 |
| R07     | 1502.47      | 177.53      | 0         | 177.53    | 0.21  | 2.15E+04 |
| R08     | 723.27       | 956.67      | 0.07      | 956.74    | 1.41  | 1.42E+05 |
| R09     | 1505.87      | 174.13      | 0         | 174.13    | 0.5   | 5.02E+04 |
| R11     | 1551.73      | 128.27      | 0         | 128.27    | 0.37  | 3.74E+04 |
| R12     | 1629.87      | 50.13       | 0         | 50.13     | 0.02  | 1.54E+03 |
| R13     | 1494         | 185.93      | 0.07      | 186       | 0.44  | 4.47E+04 |
| R14     | 1624.07      | 55.87       | 0.07      | 55.94     | 0     | 0.00E+00 |
| R15     | 1559.87      | 120.13      | 0         | 120.13    | 0.01  | 5.04E+02 |
| R16     | 1490.47      | 189.47      | 0.07      | 189.54    | 0.25  | 2.51E+04 |
| R17     | 724.27       | 955.73      | 0         | 955.73    | 0.39  | 3.91E+04 |
| R18     | 728.07       | 951.93      | 0         | 951.93    | 1.01  | 1.02E+05 |
| R19     | 1454.53      | 225.47      | 0         | 225.47    | 1.56  | 1.57E+05 |
| R20     | 1560.93      | 119.07      | 0         | 119.07    | 0.05  | 5.49E+03 |
| R21     | 1569.2       | 110.8       | 0         | 110.8     | 0.05  | 5.09E+03 |
| R22     | 1560.47      | 119.53      | 0         | 119.53    | 0.14  | 1.41E+04 |
| R24     | 1636.6       | 43.4        | 0         | 43.4      | 0     | 1.60E+02 |
| R25     | 1564.67      | 115.33      | 0         | 115.33    | 0.02  | 1.89E+03 |
| R26     | 1561.07      | 118.93      | 0         | 118.93    | 0.1   | 9.88E+03 |
| 9A      | 1560.2       | 119.8       | 0         | 119.8     | 0.24  | 2.37E+04 |
| А       | 0            | 1680        | 0         | 1680      | 3.18  | 3.20E+05 |
| PS      | 0            | 1680        | 0         | 1680      | 8.79  | 8.87E+05 |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| P02               | 1236.13                          | 083.8                                    | 0.07                                         | 083 87                           | 1 73                  | 2 30F+05                  |
| R02               | 1656 33                          | 563.6                                    | 0.07                                         | 563.67                           | 2.75                  | 2.50E+05                  |
| R04               | 2033.93                          | 186.07                                   | 0.07                                         | 186.07                           | 0.01                  | 1.57E+03                  |
| R05               | 908                              | 1311.93                                  | 0.07                                         | 1312                             | 3.22                  | 4 29E+05                  |
| R06               | 2066.13                          | 153.87                                   | 0                                            | 153.87                           | 0.03                  | 4.34E+03                  |
| R07               | 1629.47                          | 590.53                                   | 0                                            | 590.53                           | 0,63                  | 8.45E+04                  |
| R08               | 905.53                           | 1314.47                                  | 0                                            | 1314.47                          | 4.09                  | 5.44E+05                  |
| R09               | 1643.07                          | 576.93                                   | 0                                            | 576.93                           | 1.37                  | 1.82E+05                  |
| R11               | 1674.73                          | 545.2                                    | 0.07                                         | 545.27                           | 1.01                  | 1.34E+05                  |
| R12               | 1982.2                           | 237.8                                    | 0                                            | 237.8                            | 0.04                  | 5.46E+03                  |
| R13               | 1634.4                           | 585.53                                   | 0.07                                         | 585.6                            | 1.28                  | 1.71E+05                  |
| R14               | 2024.07                          | 195.93                                   | 0                                            | 195.93                           | 0.17                  | 2.26E+04                  |
| R15               | 1855.07                          | 364.93                                   | 0                                            | 364.93                           | 0.02                  | 2.38E+03                  |
| R16               | 1653.13                          | 566.8                                    | 0.07                                         | 566.87                           | 0.75                  | 1.00E+05                  |
| R17               | 786.33                           | 1433.67                                  | 0                                            | 1433.67                          | 1.08                  | 1.44E+05                  |
| R18               | 784.13                           | 1435.87                                  | 0                                            | 1435.87                          | 2.78                  | 3.70E+05                  |
| R19               | 1591.4                           | 628.53                                   | 0.07                                         | 628.6                            | 4.64                  | 6.19E+05                  |
| R20               | 1856.4                           | 363.6                                    | 0                                            | 363.6                            | 0.16                  | 2.11E+04                  |
| R21               | 1862.47                          | 357.53                                   | 0                                            | 357.53                           | 0.16                  | 2.17E+04                  |
| R22               | 1738.93                          | 481.07                                   | 0                                            | 481.07                           | 0.4                   | 5.32E+04                  |
| R24               | 2042.4                           | 177.6                                    | 0                                            | 177.6                            | 0                     | 4.88E+02                  |
| R25               | 1863.93                          | 356.07                                   | 0                                            | 356.07                           | 0.06                  | 7.71E+03                  |
| R26               | 1857.53                          | 362.47                                   | 0                                            | 362.47                           | 0.28                  | 3.70E+04                  |
| 9A                | 1775.13                          | 444.87                                   | 0                                            | 444.87                           | 0.6                   | 8.02E+04                  |
| A                 | 0                                | 2220                                     | 0                                            | 2220                             | 5.11                  | 6.81E+05                  |
| PS                | 0                                | 2220                                     | 0                                            | 2220                             | 12.77                 | 1.70E+06                  |

.
| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1468.6                           | 451.4                                    | 0                                            | 451.4                            | 0.22                  | 2.54E+04                  |
| R03               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 733.8                            | 1186.13                                  | 0.07                                         | 1186.2                           | 0.54                  | 6.25E+04                  |
| R06               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1646.07                          | 273.93                                   | 0                                            | 273.93                           | 0.03                  | 3.71E+03                  |
| R08               | 728.8                            | 1191.2                                   | 0                                            | 1191.2                           | 0.47                  | 5.39E+04                  |
| R09               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1863.07                          | 56.87                                    | 0.07                                         | 56.94                            | 0                     | 4.27E+02                  |
| R14               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1488.33                          | 431.67                                   | 0                                            | 431.67                           | 0.06                  | 6.91E+03                  |
| R18               | 1468.73                          | 451.27                                   | 0                                            | 451.27                           | 0.25                  | 2.87E+04                  |
| R19               | 1890.73                          | 29.27                                    | 0                                            | 29.27                            | 0                     | 1.81E+02                  |
| R20               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 1920                                     | 0                                            | 1920                             | 2.9                   | 3.34E+05                  |
| PS                | 0                                | 1920                                     | 0                                            | 1920                             | 8.93                  | 1.03E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>D00           | 1400.2                           |                                          |                                              |                                  | 1 54                  | 2 17F+05                  |
| RUZ               | 1409.2                           | 527 12                                   | 0.07                                         | 537.2                            | 1.04                  | 2.17E+05                  |
| RU3               | 2151.02                          | 188.07                                   | 0.07                                         | 188.07                           | 0.02                  | 2.55E+03                  |
| R04               | 2131.93                          | 160.07                                   | 0.07                                         | 1603.27                          | 2.83                  | 3.97E+05                  |
| RUS               | 130.73                           | 1003.2                                   | 0.07                                         | 113.74                           | 0.02                  | 3 42E+03                  |
| R00               | 1600 87                          | 640.13                                   | 0.07                                         | 640.13                           | 0.02                  | 7 81E+04                  |
| RU7               | 1099.07                          | 1600.2                                   | 0                                            | 1609.2                           | 3 64                  | 5.12E+05                  |
| RUO               | 1715.02                          | 624.07                                   | 0                                            | 624.07                           | 1 29                  | 1.81E+05                  |
| RU9               | 1715.75                          | 024.07                                   | 0.13                                         | 444 73                           | 0.92                  | 1.012+05                  |
|                   | 2151 72                          | 188 27                                   | 0.15                                         | 188.27                           | 0.05                  | 6 88E+03                  |
| R12<br>D12        | 1602.07                          | 716 73                                   | ů                                            | 716.73                           | 1 15                  | 1.62E+05                  |
|                   | 2120.12                          | 200.67                                   | 0.2                                          | 200.87                           | 0.07                  | 9 89E+03                  |
| K14<br>D15        | 2137.13                          | 200.07                                   | 0.2                                          | 362.2                            | 0.01                  | 2 10E+03                  |
| NIJ<br>D14        | 17/1.0                           | 501.53                                   | ů<br>O                                       | 591.53                           | 0.69                  | 9 71E+04                  |
| R10<br>P17        | 731.27                           | 1608 73                                  | ů<br>Ú                                       | 1608 73                          | 0.98                  | 1 37E+05                  |
|                   | 731.27                           | 1500.73                                  | ů<br>0                                       | 1599.33                          | 2.53                  | 3.55E+05                  |
| N10<br>D10        | 1516.27                          | 823 73                                   | ů<br>0                                       | 823 73                           | 4 28                  | 6 01E+05                  |
| R17<br>R20        | 1910.27                          | 358.87                                   | ů                                            | 358.87                           | 0.15                  | 2.12E+04                  |
| R20<br>R21        | 2000                             | 340                                      | ů<br>O                                       | 340                              | 0.15                  | 2.05E+04                  |
| R21<br>P22        | 1925.47                          | 414.53                                   | ů                                            | 414.53                           | 0.37                  | 5 20E+04                  |
| R22<br>R24        | 2109                             | 231                                      | ů<br>0                                       | 231                              | 0.04                  | 5.08E+03                  |
| R24<br>R25        | 1927.07                          | 412.93                                   | ů<br>0                                       | 412.93                           | 0.08                  | 1.09E+04                  |
| R25<br>R26        | 1906.6                           | 433.4                                    | ů<br>0                                       | 433.4                            | 0.35                  | 4.92E+04                  |
| 04                | 1907 4                           | 432.6                                    | ů<br>N                                       | 432.6                            | 0.61                  | 8.56E+04                  |
| Δ                 | ۰.،رور ا                         | 2340                                     | 0                                            | 2340                             | 4.71                  | 6.61E+05                  |
| 29                | 0                                | 2340                                     | 0                                            | 2340                             | 12.1                  | 1.70E+06                  |
| 10                | 0                                |                                          | •                                            |                                  |                       |                           |

۵. :

13

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENG TH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|-----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1392.93                          | 407.07                                   | 0                                             | 407.07                           | 0.73                  | 7 86E+04                  |
| R03               | 1540.07                          | 259.87                                   | 0.07                                          | 259.94                           | 0.83                  | 8.92E+04                  |
| R04               | 1800                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R05               | 731.13                           | 1068.87                                  | 0                                             | 1068.87                          | 1.49                  | 1.60E+05                  |
| R06               | 1800                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R07               | 1486.6                           | 313.4                                    | 0                                             | 313.4                            | 0.26                  | 2.82E+04                  |
| R08               | 727.53                           | 1072.47                                  | 0                                             | 1072.47                          | 1.77                  | 1.91E+05                  |
| R09               | 1526.33                          | 273.6                                    | 0.07                                          | 273.67                           | 0.32                  | 3.41E+04                  |
| R11               | 1555.8                           | 244.13                                   | 0.07                                          | 244.2                            | 0.32                  | 3.46E+04                  |
| R12               | 1800                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R13               | 1491.87                          | 308.07                                   | 0.07                                          | 308.14                           | 0.54                  | 5.87E+04                  |
| R14               | 1800                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R15               | 1613                             | 187                                      | 0                                             | 187                              | 0                     | 2.26E+02                  |
| R16               | 1522.2                           | 277.73                                   | 0.07                                          | 277.8                            | 0.28                  | 3.00E+04                  |
| R17               | 728.6                            | 1071.4                                   | 0                                             | 1071.4                           | 0.49                  | 5.28E+04                  |
| R18               | 736.13                           | 1063.87                                  | 0                                             | 1063.87                          | 1.25                  | 1.35E+05                  |
| R19               | 1475.4                           | 324.53                                   | 0.07                                          | 324.6                            | 2.09                  | 2.25E+05                  |
| R20               | 1614.4                           | 185.6                                    | 0                                             | 185.6                            | 0.03                  | 3.75E+03                  |
| R21               | 1633.93                          | 166.07                                   | 0                                             | 166.07                           | 0.04                  | 4.81E+03                  |
| R22               | 1607.07                          | 192.93                                   | 0                                             | 192.93                           | 0.12                  | 1.24E+04                  |
| R24               | 1800                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R25               | 1624.53                          | 175.47                                   | 0                                             | 175.47                           | 0                     | 2.94E+02                  |
| R26               | 1616.4                           | 183.6                                    | 0                                             | 183.6                            | 0.07                  | 7.59E+03                  |
| 9A                | 1726.87                          | 73.13                                    | 0                                             | 73.13                            | 0                     | 4.45E+02                  |
| A                 | 0                                | 1800                                     | 0                                             | 1800                             | 3.82                  | 4.12E+05                  |
| PS                | 0                                | 1800                                     | 0                                             | 1800                             | 9.79                  | 1.06E+06                  |

.

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| P02               | 1286                             | 603.03                                   | 0.07                                         | 694                              | 1 36                  | 1.61E+05                  |
| R02               | 1535 33                          | 095.95<br>AAA 67                         | 0.07                                         | 444 67                           | 1.30                  | 1.01E+05                  |
| R04               | 1772 4                           | 207.6                                    | 0                                            | 207.6                            | 0.13                  | 1.51E+04                  |
| R04<br>R05        | 722.13                           | 1257.87                                  | 0                                            | 1257.87                          | 2 3 5                 | 2 79E+05                  |
| R05               | 1853.8                           | 1257.07                                  | 0                                            | 126.2                            | 0.05                  | 5.78E+03                  |
| R07               | 1507.33                          | 472.67                                   | 0                                            | 472.67                           | 0.5                   | 5.99E+04                  |
| R08               | 722.2                            | 1257.8                                   | 0                                            | 1257.8                           | 3.23                  | 3.83E+05                  |
| R09               | 1511.73                          | 468.27                                   | 0                                            | 468.27                           | 1.11                  | 1.32E+05                  |
| R11               | 1653.47                          | 326.47                                   | 0.07                                         | 326.54                           | 0.8                   | 9.48E+04                  |
| R12               | 1915.47                          | 64.53                                    | 0                                            | 64.53                            | 0.1                   | 1.14E+04                  |
| R13               | 1492.47                          | 487.53                                   | 0                                            | 487.53                           | 0.98                  | 1.17E+05                  |
| R14               | 1834                             | 146                                      | 0                                            | 146                              | 0.35                  | 4.15E+04                  |
| R15               | 1854.27                          | 125.73                                   | 0                                            | 125.73                           | 0.02                  | 2.94E+03                  |
| R16               | 1601.87                          | 378.07                                   | 0.07                                         | 378.14                           | 0.67                  | 7.98E+04                  |
| R17               | 722.8                            | 1257.2                                   | 0                                            | 1257.2                           | 0.79                  | 9.35E+04                  |
| R18               | 725.27                           | 1254.73                                  | 0                                            | 1254.73                          | 2.2                   | 2.61E+05                  |
| R19               | 1457.6                           | 522.4                                    | 0                                            | 522.4                            | 1.89                  | 2.25E+05                  |
| R20               | 1855.73                          | 124.27                                   | 0                                            | 124.27                           | 0.17                  | 2.00E+04                  |
| R21               | 1853.73                          | 126.27                                   | 0                                            | 126.27                           | 0.13                  | 1.60E+04                  |
| R22               | 1801.4                           | 178.6                                    | 0                                            | 178.6                            | 0.36                  | 4.32E+04                  |
| R24               | 1804.8                           | 175.2                                    | 0                                            | 175.2                            | 0.11                  | 1.28E+04                  |
| R25               | 1679.33                          | 300.67                                   | 0                                            | 300.67                           | 0.16                  | 1.86E+04                  |
| R26               | 1629.47                          | 350.53                                   | 0                                            | 350.53                           | 0.41                  | 4.84E+04                  |
| 9A                | 1686.13                          | 293.87                                   | 0                                            | 293.87                           | 0.54                  | 6.36E+04                  |
| A                 | 0                                | 1980                                     | 0                                            | 1980                             | 4.14                  | 4.92E+05                  |
| PS                | 0                                | 1980                                     | 0                                            | 1980                             | 10.35                 | 1.23E+06                  |

• •

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1471.93                          | 268.07                                   | 0                                            | 268.07                           | 0.32                  | <br>3 35E+04              |
| R03               | 1585.87                          | 154.13                                   | 0                                            | 154.13                           | 0.28                  | 2 94E+04                  |
| R04               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 757.27                           | 982.73                                   | 0                                            | 982.73                           | 0.72                  | 7.55E+04                  |
| R06               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1542.4                           | 197.6                                    | 0                                            | 197.6                            | 0.11                  | 1.11E+04                  |
| R08               | 746.2                            | 993.8                                    | 0                                            | 993.8                            | 0.79                  | 8.25E+04                  |
| R09               | 1570.87                          | 169.13                                   | 0                                            | 169.13                           | 0.1                   | 1.02E+04                  |
| R11               | 1685.4                           | 54.6                                     | 0                                            | 54.6                             | 0                     | 5.77E+01                  |
| R12               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1546.73                          | 193.27                                   | 0                                            | 193.27                           | 0.21                  | 2.20E+04                  |
| R14               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1678.07                          | 61.93                                    | 0                                            | 61.93                            | 0                     | 1.06E+01                  |
| R16               | 1590.73                          | 149.2                                    | 0.07                                         | 149.27                           | 0.07                  | 7.82E+03                  |
| R17               | 739.93                           | 1000.07                                  | 0                                            | 1000.07                          | 0.22                  | 2.29E+04                  |
| R18               | 752.47                           | 987.53                                   | 0                                            | 987.53                           | 0.59                  | 6.18E+04                  |
| R19               | 1525.6                           | 214.33                                   | 0.07                                         | 214.4                            | 0.8                   | 8.32E+04                  |
| R20               | 1675.33                          | 64.67                                    | 0                                            | 64.67                            | 0                     | 3.05E+02                  |
| R21               | 1699.27                          | 40.73                                    | 0                                            | 40.73                            | 0                     | 3.97E+02                  |
| R22               | 1653.8                           | 86.2                                     | 0                                            | 86.2                             | 0.02                  | 2.02E+03                  |
| R24               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1676.93                          | 63.07                                    | 0                                            | 63.07                            | 0.01                  | 8.18E+02                  |
| 9A                | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 1740                                     | 0                                            | 1740                             | 3.07                  | 3.20E+05                  |
| PS                | 0                                | 1740                                     | 0                                            | 1740                             | 8.64                  | 9.02E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1462.47                          | 757.53                                   | 0                                            | 757.53                           | 0.99                  | 1.32E+05                  |
| R03               | 1596.13                          | 623.87                                   | 0                                            | 623.87                           | 1.04                  | 1.38E+05                  |
| R04               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 736.73                           | 1483.2                                   | 0.07                                         | 1483.27                          | 2                     | 2.66E+05                  |
| R06               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1562.27                          | 657.73                                   | 0                                            | 657.73                           | 0.37                  | 4.89E+04                  |
| R08               | 730.8                            | 1489.2                                   | 0                                            | 1489.2                           | 2.39                  | 3.18E+05                  |
| R09               | 1570.67                          | 649.27                                   | 0.07                                         | 649.34                           | 0.4                   | 5.29E+04                  |
| R11               | 1986.8                           | 233.2                                    | 0                                            | 233.2                            | 0.05                  | 6.80E+03                  |
| R12               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1552.8                           | 667.13                                   | 0.07                                         | 667.2                            | 0.71                  | 9.40E+04                  |
| R14               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1936.07                          | 283.93                                   | 0                                            | 283.93                           | 0                     | 2.31E+02                  |
| R16               | 1617.53                          | 602.4                                    | 0.07                                         | 602.47                           | 0.26                  | 3.42E+04                  |
| R17               | 731.27                           | 1488.73                                  | 0                                            | 1488.73                          | 0.65                  | 8.72E+04                  |
| R18               | 740.67                           | 1479.33                                  | 0                                            | 1479.33                          | 1.68                  | 2.23E+05                  |
| R19               | 1517.2                           | 702.73                                   | 0.07                                         | 702.8                            | 2.7                   | 3.60E+05                  |
| R20               | 1928.93                          | 291.07                                   | 0                                            | 291.07                           | 0.03                  | 4.15E+03                  |
| R21               | 1995.47                          | 224.53                                   | 0                                            | 224.53                           | 0.04                  | 5.63E+03                  |
| R22               | 1920.2                           | 299.8                                    | 0                                            | 299.8                            | 0.12                  | 1.55E+04                  |
| R24               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1999.13                          | 220.87                                   | 0                                            | 220.87                           | 0                     | 1.64E+02                  |
| R26               | 1929.47                          | 290.53                                   | 0                                            | 290.53                           | 0.07                  | 8.83E+03                  |
| 9A                | 2150.87                          | 69.13                                    | 0                                            | 69.13                            | 0                     | 1.28E+02                  |
| А                 | 0                                | 2220                                     | 0                                            | 2220                             | 4.37                  | 5.83E+05                  |
| PS                | 0                                | 2220                                     | 0                                            | 2220                             | 11.61                 | 1.55E+06                  |

e"

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1800                             | 0                                        | 0                                            | 0                                | <b></b> 0             | 0.00E+00                  |
| R03               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1755.13                          | 44.87                                    | 0                                            | 44.87                            | 0                     | 4.52E+01                  |
| R06               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1744.93                          | 55.07                                    | 0                                            | 55.07                            | 0                     | 1.01E+02                  |
| R09               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1800                             | . 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1689.87                          | 110.13                                   | 0                                            | 110.13                           | 0                     | 1.44E+02                  |
| R18               | 1645.67                          | 154.33                                   | 0                                            | 154.33                           | 0.01                  | 1.50E+03                  |
| R19               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1800                                     | 0                                            | 1800                             | 2.57                  | 2.77E+05                  |
| PS                | 0                                | 1800                                     | 0                                            | 1800                             | 7.12                  | 7.69E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| P02               | 1576.8                           | A3 2                                     |                                              | 43.2                             | 0                     | 6 37E+01                  |
| R02<br>R03        | 1620                             |                                          | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1550.33                          | 69.67                                    | 0                                            | 69.67                            | 0.01                  | 8.53E+02                  |
| R06               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1548.33                          | 71.67                                    | 0                                            | 71.67                            | 0.01                  | 1.31E+03                  |
| R09               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1533.2                           | 86.8                                     | 0                                            | 86.8                             | 0.01                  | 4.99E+02                  |
| R18               | 1505.33                          | 114.67                                   | 0                                            | 114.67                           | 0.03                  | 2.78E+03                  |
| R19               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1620                                     | 0                                            | 1620                             | 2.61                  | 2.53E+05                  |
| PS                | 0                                | 1620                                     | 0                                            | 1620                             | 7.19                  | 6.99E+05                  |

| CONDUIT<br>NUMBER | LENG TH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|-----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1458.87                           | 161.13                                   | 0                                            | 161.13                           | 0.08                  | 7.69E+03                  |
| R03               | 1606.2                            | 13.8                                     | 0                                            | 13.8                             | 0                     | 1.06E+01                  |
| R04               | 1620                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 742.2                             | 877.73                                   | 0.07                                         | 877.8                            | 0.27                  | 2.62E+04                  |
| R06               | 1620                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1558.2                            | 61.8                                     | 0                                            | 61.8                             | 0.01                  | 9.96E+02                  |
| R08               | 734.87                            | 885.07                                   | 0.07                                         | 885.14                           | 0.2                   | 1.94E+04                  |
| R09               | 1603.8                            | 16.2                                     | 0                                            | 16.2                             | 0                     | 2.00E+00                  |
| R11               | 1620                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1620                              | . 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1584.67                           | 35.33                                    | 0                                            | 35.33                            | 0                     | 4.74E+02                  |
| R14               | 1620                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1620                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1620                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1474.33                           | 145.67                                   | 0                                            | 145.67                           | 0.03                  | 2.90E+03                  |
| R18               | 1455.67                           | 164.33                                   | 0                                            | 164.33                           | 0.12                  | 1.13E+04                  |
| R19               | 1620                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1620                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1620                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1620                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1620                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1620                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1620                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1620                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                 | 1620                                     | 0                                            | 1620                             | 2.61                  | 2.54E+05                  |
| PS                | 0                                 | 1620                                     | 0                                            | 1620                             | 7.76                  | 7.54E+05                  |

| Storm 3 | 32 |
|---------|----|
|---------|----|

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 2752.47                          | 187.53                                   | 0                                            | 187,53                           | 0.09                  | 1.65E+04                  |
| R03               | 2866.67                          | 73.27                                    | 0.07                                         | 73.34                            | 0.07                  | 1.24E+04                  |
| R04               | 2940                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 2015.8                           | 924.13                                   | 0.07                                         | 924.2                            | 0.26                  | 4.51E+04                  |
| R06               | 2940                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 2841.8                           | 98.2                                     | 0                                            | 98.2                             | 0.03                  | 4.56E+03                  |
| R08               | 2000.07                          | 939.93                                   | 0                                            | 939.93                           | 0.24                  | 4.17E+04                  |
| R09               | 2877.47                          | 62.53                                    | 0                                            | 62.53                            | 0                     | 6.94E+02                  |
| R11               | 2940                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 2940                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 2849.4                           | 90.53                                    | 0.07                                         | 90.6                             | 0.05                  | 8.87E+03                  |
| R14               | 2940                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 2901.87                          | 38.13                                    | 0                                            | 38.13                            | 0                     | 1.85E-01                  |
| R16               | 2905.07                          | 34.8                                     | 0.13                                         | 34.93                            | 0                     | 0.00E+00                  |
| R17               | 2722.4                           | 217.6                                    | 0                                            | 217.6                            | 0.04                  | 7.25E+03                  |
| R18               | 1947.93                          | 992.07                                   | 0                                            | 992.07                           | 0.2                   | 3.55E+04                  |
| R19               | 2805.73                          | 134.27                                   | 0                                            | 134.27                           | 0.16                  | 2.89E+04                  |
| R20               | 2892.07                          | 47.93                                    | 0                                            | 47.93                            | 0                     | 6.22E+01                  |
| R21               | 2936.67                          | 3.33                                     | 0                                            | 3.33                             | 0                     | 1.00E+01                  |
| R22               | 2886.4                           | 53.6                                     | 0                                            | 53.6                             | 0.01                  | 9.24E+02                  |
| R24               | 2940                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 2940                             | · 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 2889.67                          | 50.33                                    | 0                                            | 50.33                            | 0                     | 2.35E+02                  |
| 9A                | 2940                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 2940                                     | 0                                            | 2940                             | 2.69                  | 4.74E+05                  |
| PS                | 0                                | 2940                                     | 0                                            | 2940                             | 7.74                  | 1.36E+06                  |

.

.....

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1431.73                          | 368.27                                   | 0                                            | 368.27                           | 0.3                   | <br>3.24E+04              |
| R03               | 1672.2                           | 127.8                                    | 0                                            | 127.8                            | 0.16                  | 1.72E+04                  |
| R04               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 731.13                           | 1068.87                                  | 0                                            | 1068.87                          | 0.71                  | 7.64E+04                  |
| R06               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1605.87                          | 194.13                                   | 0                                            | 194.13                           | 0.07                  | 7.10E+03                  |
| R08               | 727.53                           | 1072.47                                  | 0                                            | 1072.47                          | 0.72                  | 7.82E+04                  |
| R09               | 1729.67                          | 70.27                                    | 0.07                                         | 70.34                            | 0.01                  | 7.71E+02                  |
| R11               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1605                             | 194.93                                   | 0.07                                         | 195                              | 0.12                  | 1.30E+04                  |
| R14               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1759.4                           | 40.6                                     | 0                                            | 40.6                             | 0                     | 2.00E-01                  |
| R16               | 1761.27                          | 38.53                                    | 0.2                                          | 38.73                            | 0                     | 0.00E+00                  |
| R17               | 1472.87                          | 327.13                                   | 0                                            | 327.13                           | 0.11                  | 1.20E+04                  |
| R18               | 736.13                           | 1063.87                                  | 0                                            | 1063.87                          | 0.51                  | 5.48E+04                  |
| R19               | 1618.4                           | 181.53                                   | 0.07                                         | 181.6                            | 0.46                  | 4.99E+04                  |
| R20               | 1748                             | 52                                       | 0                                            | 52                               | 0                     | 6.79E+01                  |
| R21               | 1795.53                          | 4.47                                     | 0                                            | 4.47                             | 0                     | 1.23E+01                  |
| R22               | 1742.4                           | 57.6                                     | 0                                            | 57.6                             | 0.01                  | 9.93E+02                  |
| R24               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1746.8                           | 53.2                                     | 0                                            | 53.2                             | 0                     | 2.52E+02                  |
| 9A                | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1800                                     | 0                                            | 1800                             | 3.02                  | 3.27E+05                  |
| PS                | 0                                | 1800                                     | 0                                            | 1800                             | 9.02                  | 9.74E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1315 47                          | 1324 53                                  | 0                                            | 1324 53                          | 1 78                  | 2 82E+05                  |
| R02               | 1933.67                          | 706.27                                   | 0.07                                         | 706.34                           | 1.98                  | 3.14E+05                  |
| R04               | 2401.2                           | 238.8                                    | 0                                            | 238.8                            | 0.02                  | 2.49E+03                  |
| R05               | 131.13                           | 2508.87                                  | 0                                            | 2508.87                          | 3.38                  | 5.35E+05                  |
| R06               | 2508.47                          | 131.53                                   | 0                                            | 131.53                           | 0.02                  | 3.45E+03                  |
| R07               | 1788.4                           | 851.6                                    | 0                                            | 851.6                            | 0.63                  | 1.00E+05                  |
| R08               | 127.53                           | 2512.47                                  | 0                                            | 2512.47                          | 4.25                  | 6.74E+05                  |
| R09               | 1877                             | 762.87                                   | 0.13                                         | 763                              | 1.48                  | 2.35E+05                  |
| R11               | 2017.33                          | 622.67                                   | 0                                            | 622.67                           | 1.03                  | 1.63E+05                  |
| R12               | 2348.27                          | 291.73                                   | 0                                            | 291.73                           | 0.05                  | 8.01E+03                  |
| R13               | 1770.33                          | 869.6                                    | 0.07                                         | 869.67                           | 1.25                  | 1.98E+05                  |
| R14               | 2398                             | 242                                      | 0                                            | 242                              | 0.17                  | 2.64E+04                  |
| R15               | 2212.8                           | 427.2                                    | 0                                            | 427.2                            | 0.02                  | 3.08E+03                  |
| R16               | 1900.73                          | 739.13                                   | 0.13                                         | 739.26                           | 0.79                  | 1.25E+05                  |
| R17               | 128.6                            | 2511.4                                   | 0                                            | 2511.4                           | 1.1                   | 1.75E+05                  |
| R18               | 135.33                           | 2504.67                                  | 0                                            | 2504.67                          | 2.88                  | 4.56E+05                  |
| R19               | 1744.07                          | 895.93                                   | 0                                            | 895.93                           | 4.41                  | 6.99E+05                  |
| R20               | 2212.33                          | 427.67                                   | 0                                            | 427.67                           | 0.17                  | 2.66E+04                  |
| R21               | 2257.6                           | 382.4                                    | 0                                            | 382.4                            | 0.16                  | 2.50E+04                  |
| R22               | 2204.93                          | 435.07                                   | 0                                            | 435.07                           | 0.41                  | 6.44E+04                  |
| R24               | 2278.47                          | 361.53                                   | 0                                            | 361.53                           | 0.06                  | 1.00E+04                  |
| R25               | 2282.6                           | . 357.4                                  | 0                                            | 357.4                            | 0.07                  | 1.11E+04                  |
| R26               | 2009.93                          | 630.07                                   | 0                                            | 630.07                           | 0.43                  | 6.80E+04                  |
| 9A                | 2032.87                          | 607.13                                   | 0                                            | 607.13                           | 0.73                  | 1.15E+05                  |
| A                 | 0                                | 2640                                     | 0                                            | 2640                             | 4.97                  | 7.88E+05                  |
| PS                | 0                                | 2640                                     | 0                                            | 2640                             | 12.87                 | 2.04E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1746.4                           | 173.6                                    | 0                                            | 173.6                            | 0.12                  | 1.39E+04                  |
| R03               | 1846.8                           | 73.13                                    | 0.07                                         | 73.2                             | 0.09                  | 1.06E+04                  |
| R04               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 977.53                           | 942.47                                   | 0                                            | 942.47                           | 0.34                  | 3.93E+04                  |
| R06               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1813.47                          | 106.53                                   | 0                                            | 106.53                           | 0.03                  | 3.64E+03                  |
| R08               | 967.07                           | 952.87                                   | 0.07                                         | 952.94                           | 0.33                  | 3.85E+04                  |
| R09               | 1826.07                          | 93.93                                    | 0                                            | 93.93                            | 0.03                  | 3.21E+03                  |
| R11               | 1892.93                          | 27.07                                    | 0                                            | 27.07                            | 0                     | 1.85E+02                  |
| R12               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1800.67                          | 119.27                                   | 0.07                                         | 119.34                           | 0.07                  | 8.00E+03                  |
| R14               | 1920                             | . 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1889.07                          | 30.93                                    | 0                                            | 30.93                            | 0                     | 9.78E+00                  |
| R16               | 1857.93                          | 62.07                                    | 0                                            | 62.07                            | 0                     | 0.00E+00                  |
| R17               | 945.33                           | 974.67                                   | 0                                            | 974.67                           | 0.1                   | 1.11E+04                  |
| R18               | 922.73                           | 997.27                                   | 0                                            | 997.27                           | 0.28                  | 3.26E+04                  |
| R19               | 1777.67                          | 142.33                                   | 0                                            | 142.33                           | 0.34                  | 3.92E+04                  |
| R20               | 1889.27                          | 30.73                                    | 0                                            | 30.73                            | 0                     | 2.31E+02                  |
| R21               | 1917.2                           | 2.8                                      | 0                                            | 2.8                              | 0                     | 1.05E+01                  |
| R22               | 1884.87                          | 35.13                                    | 0                                            | 35.13                            | 0.01                  | 1.19E+03                  |
| R24               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1889.33                          | 30.67                                    | 0                                            | 30.67                            | 0.01                  | 6.10E+02                  |
| 9A                | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1920                                     | 0                                            | 1920                             | 2.72                  | 3.14E+05                  |
| PS                | 0                                | 1920                                     | 0                                            | 1920                             | 7.83                  | 9.02E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1589                             | 511                                      | 0                                            | 511                              | 0.5                   | 6.29E+04                  |
| R03               | 1767.87                          | 332.13                                   | 0                                            | 332.13                           | 0.45                  | 5.63E+04                  |
| R04               | 2056.6                           | 43.4                                     | 0                                            | 43.4                             | 0                     | 6.33E+00                  |
| R05               | 757.27                           | 1342.73                                  | 0                                            | 1342.73                          | 1.08                  | 1.36E+05                  |
| R06               | 2100                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1733.6                           | 366.4                                    | 0                                            | 366.4                            | 0.17                  | 2.13E+04                  |
| R08               | 746.2                            | 1353.8                                   | 0                                            | 1353.8                           | 1.23                  | 1.55E+05                  |
| R09               | 1733.33                          | 366.67                                   | 0                                            | 366.67                           | 0.3                   | 3.76E+04                  |
| R11               | 1872.47                          | 227.47                                   | 0.07                                         | 227.54                           | 0.18                  | 2.30E+04                  |
| R12               | 2042.93                          | 57.07                                    | 0                                            | 57.07                            | 0                     | 6.23E+02                  |
| R13               | 1711.47                          | 388.4                                    | 0.13                                         | 388.53                           | 0.32                  | 4.08E+04                  |
| R14               | 2100                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 2019.07                          | 80.93                                    | 0                                            | 80.93                            | 0                     | 2.66E+02                  |
| R16               | 1885.13                          | 214.73                                   | 0.13                                         | 214.86                           | 0.14                  | 1.75E+04                  |
| R17               | 739.93                           | 1360.07                                  | 0                                            | 1360.07                          | 0.33                  | 4.17E+04                  |
| R18               | 752.47                           | 1347.53                                  | 0                                            | 1347.53                          | 0.89                  | 1.12E+05                  |
| R19               | 1689.13                          | 410.87                                   | 0                                            | 410.87                           | 1.24                  | 1.56E+05                  |
| R20               | 2014.53                          | 85.47                                    | 0                                            | 85.47                            | 0.03                  | 3.51E+03                  |
| R21               | 2035.33                          | 64.67                                    | 0                                            | 64.67                            | 0.03                  | 3.46E+03                  |
| R22               | 2008.2                           | 91.8                                     | 0                                            | 91.8                             | 0.07                  | 8.97E+03                  |
| R24               | 2100                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 2039.07                          | 60.93                                    | 0                                            | 60.93                            | 0.01                  | 1.04E+03                  |
| R26               | 2014.4                           | 85.6                                     | 0                                            | 85.6                             | 0.05                  | 6.26E+03                  |
| 9A                | 1993.87                          | 106.13                                   | 0                                            | 106.13                           | 0.13                  | 1.65E+04                  |
| А                 | 0                                | 2100                                     | 0                                            | 2100                             | 3.29                  | 4.15E+05                  |
| PS                | 0                                | 2100                                     | 0                                            | 2100                             | 9.27                  | 1.17E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1696.6                           | 223.4                                    | 0                                            | 223,4                            | 0.09                  | 1.03E+04                  |
| R03               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 937.27                           | 982.73                                   | 0                                            | 982.73                           | 0.25                  | 2.90E+04                  |
| R06               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1834.6                           | 85.4                                     | 0                                            | 85.4                             | 0.01                  | 1.26E+03                  |
| R08               | 926.2                            | 993.8                                    | 0                                            | 993.8                            | 0.2                   | 2.34E+04                  |
| R09               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| RH                | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1874.6                           | 45.4                                     | 0                                            | 45.4                             | 0                     | 3.15E+02                  |
| R14               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1920                             | . 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1678.2                           | 241.8                                    | 0                                            | 241.8                            | 0.03                  | 3.28E+03                  |
| R18               | 1 <b>6</b> 36.53                 | 283.47                                   | 0                                            | 283.47                           | 0.12                  | 1.39E+04                  |
| R19               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9 <b>A</b>        | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| Α                 | 0                                | 1920                                     | 0                                            | 1920                             | 2.71                  | 3.12E+05                  |
| PS                | 0                                | 1920                                     | 0                                            | 1920                             | 7.95                  | 9.15E+05                  |

.

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
|                   |                                  | 260 72                                   |                                              |                                  | 0.77                  | 7 725+04                  |
| RU2               | 1511.27                          | 306.73                                   | 0                                            | 300.73                           | 0.77                  | 0.20E+04                  |
| RU3               | 1000.4                           | 90.0<br>70 07                            | 0                                            | 90.0                             | 0.93                  | 9.39ET04                  |
| RU4               | 701.15                           | /0.0/                                    | 0                                            | /0.0/<br>000.22                  | 1.09                  | 9.10E+03                  |
| RU5               | /01.0/                           | <u>098.33</u>                            | 0                                            | 696.33<br>67.67                  | 1.20                  | 1.30E+03                  |
| RU6               | 1012.33                          | 07.0                                     | 0.07                                         | 07.07                            | 0.04                  | 3.30E+03                  |
|                   | 100/                             | 123                                      | 0.07                                         | 123                              | 1.00                  | 2.04ETU4                  |
| RU8               | /01.0                            | 090.13                                   | 0.07                                         | 070.2                            | 1.05                  | 7 495+03                  |
| RU9               | 1557.15                          | 122.87                                   | 0.07                                         | 122.07                           | 0.74                  | 7.40E+04                  |
| RII               | 1004.87                          | 73.07                                    | 0.07                                         | 75.14                            | 0.55                  | 3.30E+04                  |
| RI2               | 1620                             | 60<br>120 (7                             | 0                                            | 100 (7                           | 0.07                  | 7.09E+03                  |
| RIS               | 1550.33                          | 129.67                                   | 0                                            | 129.67                           | 0.59                  | 5.94E+04                  |
| RI4               | 1598.27                          | 81.67                                    | 0.07                                         | 81.74                            | 0.26                  | 2.57E+04                  |
| RIS               | 1611.13                          | 68.87                                    | 0                                            | 68.87                            | 0.02                  | 1.57E+03                  |
| R16               | 1538.73                          | 141.27                                   | 0                                            | 141.27                           | 0.45                  | 4.52E+04                  |
| R17               | 780.93                           | 899.07                                   | 0                                            | 899.07                           | 0.45                  | 4.56E+04                  |
| R18               | 781.93                           | 898.07                                   | 0                                            | 898.07                           | 1.3                   | 1.31E+05                  |
| R19               | 1490.73                          | 189.27                                   | 0                                            | 189.27                           | 1.21                  | 1.22E+05                  |
| R20               | 1614                             | 66                                       | 0                                            | 66                               | 0.12                  | 1.26E+04                  |
| R21               | 1612.6                           | 67.4                                     | 0                                            | 67.4                             | 0.1                   | 9.87E+03                  |
| R22               | 1613.87                          | 66.13                                    | 0                                            | 66.13                            | 0.26                  | 2.63E+04                  |
| R24               | 1614.13                          | 65.87                                    | 0                                            | 65.87                            | 0.08                  | 7.94E+03                  |
| R25               | 1611.73                          | 68.27                                    | 0                                            | 68.27                            | 0.1                   | 9.77E+03                  |
| R26               | 1608.13                          | 71.87                                    | 0                                            | 71.87                            | 0.26                  | 2.66E+04                  |
| 9A                | 1603.8                           | 76.2                                     | 0                                            | 76.2                             | 0.39                  | 3.91E+04                  |
| А                 | 0                                | 1680                                     | 0                                            | 1680                             | 3.19                  | 3.22E+05                  |
| P <b>S</b>        | 0                                | 1680                                     | 0                                            | 1680                             | 8.45                  | 8.52E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>D (1)         | 1610.07                          |                                          |                                              |                                  |                       |                           |
| R02               | 1010.07                          | 429.93                                   | 0                                            | 429.93                           | 0.43                  | 5.22E+04                  |
| R03               | 1042.2                           | 197.73                                   | 0.07                                         | 197.8                            | 0.45                  | 5.56E+04                  |
| RU4<br>ROS        | 1991.87                          | 48.13                                    | 0                                            | 48.13                            | 0                     | 5.03E+02                  |
| RUS<br>DOC        | 123.13                           | 1316.2                                   | 0.07                                         | 1316.27                          | 0.91                  | 1.12E+05                  |
| RU6               | 1996.33                          | 43.67                                    | 0                                            | 43.67                            | 0.01                  | 1.09E+03                  |
| RU/               | 1811.67                          | 228.33                                   | 0                                            | 228.33                           | 0.15                  | 1.84E+04                  |
| R08               | 723.2                            | 1316.73                                  | 0.07                                         | 1316.8                           | 1.07                  | 1.31E+05                  |
| R09               | 1810.13                          | 229.8                                    | 0.07                                         | 229.87                           | 0.33                  | 4.01E+04                  |
| RII               | 1904.07                          | 135.93                                   | 0                                            | 135.93                           | 0.23                  | 2.79E+04                  |
| R12               | 1991.07                          | 48.93                                    | 0                                            | 48.93                            | 0.01                  | 1.76E+03                  |
| R13               | 1778.73                          | 261.2                                    | 0.07                                         | 261.27                           | 0.3                   | 3.73E+04                  |
| R14               | 1988.33                          | 51.67                                    | 0                                            | 51.67                            | 0.01                  | 7.91E+02                  |
| R15               | 1974.33                          | 65.67                                    | 0                                            | 65.67                            | 0                     | 4.83E+02                  |
| R16               | 1835.4                           | 204.53                                   | 0.07                                         | 204.6                            | 0.14                  | 1.69E+04                  |
| R17               | 724.2                            | 1315.8                                   | 0                                            | 1315.8                           | 0.3                   | 3.62E+04                  |
| R18               | 727.87                           | 1312.13                                  | 0                                            | 1312.13                          | 0.79                  | 9.68E+04                  |
| R19               | 1725.93                          | 314.07                                   | 0                                            | 314.07                           | 1.08                  | 1.32E+05                  |
| R20               | 1977.27                          | 62.73                                    | 0                                            | 62.73                            | 0.04                  | 4.81E+03                  |
| R21               | 1984.47                          | 55.53                                    | 0                                            | 55.53                            | 0.03                  | 3.79E+03                  |
| R22               | 1976.8                           | 63.2                                     | 0                                            | 63.2                             | 0.09                  | 1.12E+04                  |
| R24               | 1991.13                          | 48.87                                    | 0                                            | 48.87                            | 0                     | 5.41E+02                  |
| R25               | 1981.4                           | 58.6                                     | 0                                            | 58.6                             | 0.02                  | 2 09E+03                  |
| R26               | 1978.67                          | 61.33                                    | 0                                            | 61.33                            | 0.07                  | 8 35E+03                  |
| 9A                | 1917.67                          | 122.33                                   | Ô                                            | 122.33                           | 0.15                  | 1 89F+04                  |
| A                 | 0                                | 2040                                     | Ô                                            | 2040                             | 2.99                  | 3.66E+05                  |
| PS                | 0                                | 2040                                     | ů<br>0                                       | 2040                             | 8.58                  | 1.05E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1498.2                           | 241.8                                    | 0                                            | 241.8                            | 0.04                  | 4.30E+03                  |
| R03               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1557.33                          | 182.67                                   | 0                                            | 182.67                           | 0.02                  | 2.28E+03 -                |
| R0 <b>6</b>       | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1740                             | · 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1548.13                          | 191.8                                    | 0.07                                         | 191.87                           | 0.03                  | 3.45E+03                  |
| R09               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1488.8                           | 251.2                                    | 0                                            | 251.2                            | 0.01                  | 1.33E+03                  |
| R18               | 1472.33                          | 267.67                                   | 0                                            | 267.67                           | 0.07                  | 7.62E+03                  |
| R19               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1740                                     | 0                                            | 1740                             | 2.81                  | 2.94E+05                  |
| PS                | 0                                | 1740                                     | 0                                            | 1740                             | 7. <b>6</b> 9         | 8.03E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1604.8                           | 675.2                                    | 0                                            | 675.2                            | 0.35                  | 4.85E+04                  |
| R03               | 1939.8                           | 340.13                                   | 0.07                                         | 340.2                            | 0.27                  | 3.63E+04                  |
| R04               | 2280                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 757.27                           | 1522.73                                  | 0                                            | 1522.73                          | 0.81                  | 1.10E+05                  |
| R06               | 2280                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1899.73                          | 380.27                                   | 0                                            | 380.27                           | 0.11                  | 1.45E+04                  |
| R08               | 746.2                            | 1533.8                                   | 0                                            | 1533.8                           | 0.87                  | 1.19E+05                  |
| R09               | 2140.2                           | 139.73                                   | 0.07                                         | 139.8                            | 0.01                  | 1.45E+03                  |
| R11               | 2280                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 2280                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1873.07                          | 406.93                                   | 0                                            | 406.93                           | 0.21                  | 2.88E+04                  |
| R14               | 2280                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 2205.2                           | 74.8                                     | 0                                            | 74.8                             | 0                     | 3.62E-01                  |
| R16               | 2200.13                          | 79.33                                    | 0.53                                         | 79.86                            | 0                     | 0.00E+00                  |
| R17               | 1679.2                           | 600.8                                    | 0                                            | 600.8                            | 0.14                  | 1.88E+04                  |
| R18               | 752.47                           | 1527.53                                  | 0                                            | 1527.53                          | 0.67                  | 9.16E+04                  |
| R19               | 1795.47                          | 484.4                                    | 0.13                                         | 484.53                           | 0.88                  | 1.21E+05                  |
| R20               | 2182.93                          | 97.07                                    | 0                                            | 97.07                            | 0                     | 1.25E+02                  |
| R21               | 2277.67                          | 2.33                                     | 0                                            | 2.33                             | 0                     | 6.48E+00                  |
| R22               | 2169.8                           | 110.2                                    | 0                                            | 110.2                            | 0.01                  | 1.87E+03                  |
| R24               | 2280                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 2280                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 2179.4                           | 100.6                                    | 0                                            | 100.6                            | 0                     | 4.69E+02                  |
| 9A                | 2280                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 2280                                     | 0                                            | 2280                             | 3.22                  | 4.40E+05                  |
| PS                | 0                                | 2280                                     | 0                                            | 2280                             | 9.38                  | 1.28E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1599.8                           | 200.13                                   | 0.07                                         | 200.2                            | 0.16                  | 1.73E+04                  |
| R03               | 1727.67                          | 72.33                                    | 0                                            | 72.33                            | 0.01                  | 5.99E+02                  |
| R04               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 729.67                           | 1070.33                                  | 0                                            | 1070.33                          | 0.45                  | 4.81E+04                  |
| R06               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1662.4                           | 137.6                                    | 0                                            | 137.6                            | 0.04                  | 4.82E+03                  |
| R08               | 726.6                            | 1073.4                                   | 0                                            | 1073.4                           | 0.44                  | 4.79E+04                  |
| R09               | 1724.67                          | 75.33                                    | 0                                            | 75.33                            | 0                     | 1.34E+02                  |
| R11               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1665.47                          | 134.47                                   | 0.07                                         | 134.54                           | 0.09                  | 9.41E+03                  |
| R14               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1644.33                          | 155.67                                   | 0                                            | 155.67                           | 0.06                  | 7.01E+03                  |
| R18               | 1592.67                          | 207.33                                   | 0                                            | 207.33                           | 0.22                  | 2.37E+04                  |
| R19               | 1714.27                          | 85.73                                    | 0                                            | 85.73                            | 0.09                  | 9.22E+03                  |
| R20               | 1794.13                          | 5.87                                     | 0                                            | 5.87                             | 0                     | 8.83E-01                  |
| R21               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1779.6                           | 20.4                                     | 0                                            | 20.4                             | 0                     | 1.70E+02                  |
| R24               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1791.4                           | 8.6                                      | 0                                            | 8.6                              | 0                     | 1.91E+01                  |
| 9A                | 1800                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1800                                     | 0                                            | 1800                             | 2.79                  | 3.01E+05                  |
| PS                | 0                                | 1800                                     | 0                                            | 1800                             | 8.28                  | 8.95E+05                  |

\$

12

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1157.47                          | 402.47                                   | 0.07                                         | 402.54                           | 0.92                  | 8.60E+04                  |
| R03               | 1471                             | 89                                       | 0                                            | 89                               | 1.15                  | 1.07E+05                  |
| R04               | 1481.6                           | 78.4                                     | 0                                            | 78.4                             | 0.11                  | 1.05E+04                  |
| R05               | 722.33                           | 837.67                                   | 0                                            | 837.67                           | 1.48                  | 1.38E+05                  |
| R06               | 1489.8                           | 70.2                                     | 0                                            | 70.2                             | 0.04                  | 3.81E+03                  |
| R07               | 1456.8                           | 103.2                                    | 0                                            | 103.2                            | 0.34                  | 3.18E+04                  |
| R08               | 722.33                           | 837.67                                   | 0                                            | 837.67                           | 2.18                  | 2.04E+05                  |
| R09               | 1453.4                           | 106.6                                    | 0                                            | 106.6                            | 0.9                   | 8.46E+04                  |
| R11               | 1486.67                          | 73.27                                    | 0.07                                         | 73.34                            | 0.65                  | 6.07E+04                  |
| R12               | 1499.6                           | 60.4                                     | 0                                            | 60.4                             | 0.09                  | 8.67E+03                  |
| R13               | 1462.4                           | 97.6                                     | 0                                            | 97.6                             | 0.71                  | 6.65E+04                  |
| R14               | 1478.87                          | 81.07                                    | 0.07                                         | 81.14                            | 0.32                  | 3.03E+04                  |
| R15               | 1490.87                          | 69.13                                    | 0                                            | 69.13                            | 0.02                  | 1.94E+03                  |
| R16               | 1421.33                          | 138.67                                   | 0                                            | 138.67                           | 0.56                  | 5.25E+04                  |
| R17               | 723                              | 837                                      | 0                                            | 837                              | 0.52                  | 4.90E+04                  |
| R18               | 725.6                            | 834.4                                    | 0                                            | 834.4                            | 1.53                  | 1.43E+05                  |
| R19               | 1377.53                          | 182.47                                   | 0                                            | 182.47                           | 2.15                  | 2.02E+05                  |
| R20               | 1494.2                           | 65.8                                     | 0                                            | 65.8                             | 0.16                  | 1.48E+04                  |
| R21               | 1492.67                          | 67.33                                    | 0                                            | 67.33                            | 0.12                  | 1.15E+04                  |
| R22               | 1494.07                          | 65.93                                    | 0                                            | 65.93                            | 0.33                  | 3.06E+04                  |
| R24               | 1497.6                           | 62.4                                     | 0                                            | 62.4                             | 0.1                   | 9.48E+03                  |
| R25               | 1489.53                          | 70.47                                    | 0                                            | 70.47                            | 0.12                  | 1.13E+04                  |
| R26               | 1490.8                           | 69.2                                     | 0                                            | 69.2                             | 0.32                  | 3.02E+04                  |
| 9A                | 1484.47                          | 75.53                                    | 0                                            | 75.53                            | 0.47                  | 4.44E+04                  |
| А                 | 0                                | 1560                                     | 0                                            | 1560                             | 3.29                  | 3.08E+05                  |
| PS                | 0                                | 1560                                     | 0                                            | 1560                             | 8.53                  | 7.99E+05                  |

;

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>R02           | 1924 87                          | 535.13                                   |                                              | 535.13                           | 0.88                  | 1.30E+05                  |
| R03               | 2188.47                          | 271.53                                   | 0                                            | 271.53                           | 1.21                  | 1.78E+05                  |
| R04               | 2210.87                          | 249.13                                   | 0                                            | 249.13                           | 0.1                   | 1.45E+04                  |
| R05               | 1189                             | 1271                                     | 0                                            | 1271                             | 1.76                  | 2.60E+05                  |
| R06               | 2260.27                          | 199.67                                   | 0.07                                         | 199.74                           | 0.05                  | 6.90E+03                  |
| R07               | 2123.73                          | 336.27                                   | 0                                            | 336.27                           | 0.36                  | 5.38E+04                  |
| R08               | 1163                             | 1297                                     | 0                                            | 1297                             | 2.37                  | 3.50E+05                  |
| R09               | 2164.87                          | 295.13                                   | 0                                            | 295.13                           | 0.89                  | 1.31E+05                  |
| R11               | 2209.93                          | 250                                      | 0.07                                         | 250.07                           | 0.66                  | 9.68E+04                  |
| R12               | 2392.47                          | 67.53                                    | 0                                            | 67.53                            | 0.06                  | 8.71E+03                  |
| R13               | 2127                             | 333                                      | 0                                            | 333                              | 0.75                  | 1.11E+05                  |
| R14               | 2231.47                          | 228.53                                   | 0                                            | 228.53                           | 0.26                  | 3.78E+04                  |
| R15               | 2266.47                          | 193.53                                   | 0                                            | 193.53                           | 0.02                  | 2.29E+03                  |
| R16               | 2154.47                          | 305.53                                   | 0                                            | 305.53                           | 0.54                  | 7.91E+04                  |
| R17               | 1078.47                          | 1381.53                                  | 0                                            | 1381.53                          | 0.61                  | 8.97E+04                  |
| R18               | 1032.93                          | 1427.07                                  | 0                                            | 1427.07                          | 1.67                  | 2.47E+05                  |
| R19               | 2104.4                           | 355.6                                    | 0                                            | 355.6                            | 2                     | 2.95E+05                  |
| R20               | 2267.53                          | 192.47                                   | 0                                            | 192.47                           | 0.12                  | 1.78E+04                  |
| R21               | 2255.67                          | 204.33                                   | 0                                            | 204.33                           | 0.11                  | 1.58E+04                  |
| R22               | 2218                             | 242                                      | 0                                            | 242                              | 0.27                  | 4.05E+04                  |
| R24               | 2220.4                           | 239.6                                    | 0                                            | 239.6                            | 0.08                  | 1.24E+04                  |
| R25               | 2217.4                           | 242.6                                    | 0                                            | 242.6                            | 0.12                  | 1.73E+04                  |
| R26               | 2211.47                          | 248.53                                   | 0                                            | 248.53                           | 0.32                  | 4.79E+04                  |
| 9A                | 2212.2                           | 247.8                                    | 0                                            | 247.8                            | 0.43                  | 6.31E+04                  |
| А                 | 0                                | 2460                                     | 0                                            | 2460                             | 3.92                  | 5.78E+05                  |
| PS                | 0                                | 2460                                     | 0                                            | 2460                             | 9.86                  | 1.46E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1394.87                          | 165.13                                   | 0                                            | 165.13                           | 0.23                  | 2.15E+04                  |
| R03               | 1483.33                          | 76.6                                     | 0.07                                         | 76.67                            | 0.27                  | 2.55E+04                  |
| R04               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 725.4                            | 834.53                                   | 0.07                                         | 834.6                            | 0.56                  | 5.28E+04                  |
| R06               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1467.6                           | 92.4                                     | 0                                            | 92.4                             | 0.08                  | 7.37E+03                  |
| R08               | 724.07                           | 835.93                                   | 0                                            | 835.93                           | 0.61                  | 5.71E+04                  |
| R09               | 1463.93                          | 96.07                                    | 0                                            | 96.07                            | 0.16                  | 1.48E+04                  |
| R11               | 1509                             | 51                                       | 0                                            | 51                               | 0.12                  | 1.14E+04                  |
| R12               | 1530.2                           | 29.8                                     | 0                                            | 29.8                             | 0                     | 7.88E+01                  |
| R13               | 1471                             | 88.93                                    | 0.07                                         | 89                               | 0.18                  | 1.66E+04                  |
| R14               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1506.07                          | 53.93                                    | 0                                            | 53.93                            | 0                     | 1.01E+02                  |
| R16               | 1454.47                          | 105.47                                   | 0.07                                         | 105.54                           | 0.05                  | 4.74E+03                  |
| R17               | 725.33                           | 834.67                                   | 0                                            | 834.67                           | 0.17                  | 1.63E+04                  |
| R18               | 730                              | 830                                      | 0                                            | 830                              | 0.47                  | 4.37E+04                  |
| R19               | 1419.33                          | 140.67                                   | 0                                            | 140.67                           | 0.53                  | 4.97E+04                  |
| R20               | 1504.13                          | 55.87                                    | 0                                            | 55.87                            | 0.02                  | 1.55E+03                  |
| R21               | 1529.53                          | 30.47                                    | 0                                            | 30.47                            | 0.01                  | 1.16E+03                  |
| R22               | 1502.47                          | 57.53                                    | 0                                            | 57.53                            | 0.05                  | 4.48E+03                  |
| R24               | 1560                             | . 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1521.53                          | 38.47                                    | 0                                            | 38.47                            | 0                     | 3.56E+02                  |
| R26               | 1503.93                          | 56.07                                    | 0                                            | 56.07                            | 0.03                  | 2.95E+03                  |
| 9A                | 1513.13                          | 46.87                                    | 0                                            | 46.87                            | 0.07                  | 6.30E+03                  |
| А                 | 0                                | 1560                                     | 0                                            | 1560                             | 2.72                  | 2.54E+05                  |
| PS                | 0                                | 1560                                     | 0                                            | 1560                             | 7.84                  | 7.34E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1643.8                           | 576.13                                   | 0.07                                         | 576.2                            | 0.58                  | 7.75E+04                  |
| R03               | 1972.93                          | 247                                      | 0.07                                         | 247.07                           | 0.66                  | 8.84E+04                  |
| R04               | 2157.2                           | 62.8                                     | 0                                            | 62.8                             | 0.01                  | 7.43E+02                  |
| R05               | 727.87                           | 1492.13                                  | 0                                            | 1492.13                          | 1.2                   | 1.60E+05                  |
| R06               | 2162.07                          | 57.93                                    | 0                                            | 57.93                            | 0.01                  | 1.67E+03                  |
| R07               | 1917.67                          | 302.33                                   | 0                                            | 302.33                           | 0.2                   | 2.70E+04                  |
| R08               | 725.4                            | 1494.53                                  | 0.07                                         | 1494.6                           | 1.46                  | 1.95E+05                  |
| R09               | 1914.53                          | 305.4                                    | 0.07                                         | 305.47                           | 0.42                  | 5.65E+04                  |
| R11               | 2074                             | 145.87                                   | 0.13                                         | 146                              | 0.25                  | 3.35E+04                  |
| R12               | 2158                             | 62                                       | 0                                            | 62                               | 0.02                  | 2.36E+03                  |
| R13               | 1913.67                          | 306.2                                    | 0.13                                         | 306.33                           | 0.43                  | 5.76E+04                  |
| R14               | 2153.87                          | 66.07                                    | 0.07                                         | 66.14                            | 0.03                  | 4.41E+03                  |
| R15               | 2073.73                          | 146.27                                   | 0                                            | 146.27                           | 0.01                  | 6.82E+02                  |
| R16               | 2031.73                          | 188.13                                   | 0.13                                         | 188.26                           | 0.2                   | 2.71E+04                  |
| R17               | 726.8                            | 1493.2                                   | 0                                            | 1493.2                           | 0.4                   | 5.29E+04                  |
| R18               | 732.8                            | 1487.2                                   | 0                                            | 1487.2                           | 1.05                  | 1.40E+05                  |
| R19               | 1951.87                          | 268.07                                   | 0.07                                         | 268.14                           | 1.29                  | 1.72E+05                  |
| R20               | 2076.87                          | 143.13                                   | 0                                            | 143.13                           | 0.05                  | 7.09E+03                  |
| R21               | 2130.07                          | 89.93                                    | 0                                            | 89.93                            | 0.05                  | 6.55E+03                  |
| R22               | 2072.2                           | 147.8                                    | 0                                            | 147.8                            | 0.13                  | 1.78E+04                  |
| R24               | 2157.27                          | 62.73                                    | 0                                            | 62.73                            | 0.03                  | 3.90E+03                  |
| R25               | 2106.53                          | 113.47                                   | 0                                            | 113.47                           | 0.02                  | 2.72E+03                  |
| R26               | 2076.73                          | 143.27                                   | 0                                            | 143.27                           | 0.09                  | 1.26E+04                  |
| 9A                | 2142.47                          | 77.53                                    | 0                                            | 77.53                            | 0.18                  | 2.42E+04                  |
| A                 | 0                                | 2220                                     | 0                                            | 2220                             | 3.3                   | 4.40E+05                  |
| PS                | 0                                | 2220                                     | 0                                            | 2220                             | 9.35                  | 1.25E+06                  |

۰.

 $\nabla a^{\dagger}$ 

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 845.33                           | 774.67                                   | 0                                            | 774 67                           | 2.16                  | 2 10F+05                  |
| R03               | 1470.07                          | 149.93                                   | 0                                            | 149.93                           | 2.98                  | 2.90E+05                  |
| R04               | 1479.13                          | 140.87                                   | 0                                            | 140.87                           | 0.31                  | 3.02E+04                  |
| R05               | 722.07                           | 897.93                                   | 0                                            | 897.93                           | 4.03                  | 3.92E+05                  |
| R06               | 1483.8                           | 136.2                                    | 0                                            | 136.2                            | 0.12                  | 1.20E+04                  |
| R07               | 1456.73                          | 163.27                                   | 0                                            | 163.27                           | 0.89                  | 8.67E+04                  |
| R08               | 722.13                           | 897.8                                    | 0.07                                         | 897.87                           | 5.91                  | 5.74E+05                  |
| R09               | 1452.67                          | 167.33                                   | 0                                            | 167.33                           | 2.44                  | 2.37E+05                  |
| R11               | 1486.2                           | 133.73                                   | 0.07                                         | 133.8                            | 1.73                  | 1.68E+05                  |
| R12               | 1498.53                          | 121.47                                   | 0                                            | 121.47                           | 0.26                  | 2.52E+04                  |
| R13               | 1461.73                          | 158.27                                   | 0                                            | 158.27                           | 1.73                  | 1.68E+05                  |
| R14               | 1477.47                          | 142.47                                   | 0.07                                         | 142.54                           | 1.09                  | 1.06E+05                  |
| R15               | 1489.53                          | 130.47                                   | 0                                            | 130.47                           | 0.08                  | 7.98E+03                  |
| R16               | 1420.6                           | 199.33                                   | 0.07                                         | 199.4                            | 1.62                  | 1.58E+05                  |
| R17               | 722.73                           | 897.27                                   | 0                                            | 897.27                           | 1.27                  | 1.24E+05                  |
| R18               | 725.13                           | 894.87                                   | 0                                            | 894.87                           | 3.77                  | 3.67E+05                  |
| R19               | 1372.8                           | 247.2                                    | 0                                            | 247.2                            | 5.56                  | 5.41E+05                  |
| R20               | 1493.6                           | 126.4                                    | 0                                            | 126.4                            | 0.44                  | 4.29E+04                  |
| R21               | 1491.73                          | 128.27                                   | 0                                            | 128.27                           | 0.34                  | 3.27E+04                  |
| R22               | 1493.27                          | 126.73                                   | 0                                            | 126.73                           | 0.93                  | 9.04E+04                  |
| R24               | 1493.2                           | 126.8                                    | 0                                            | 126.8                            | 0.27                  | 2.66E+04                  |
| R25               | 1483.13                          | 136.87                                   | 0                                            | 136.87                           | 0.37                  | 3.55E+04                  |
| R26               | 1490.4                           | 129.6                                    | 0                                            | 129.6                            | 0.85                  | 8.22E+04                  |
| 9A                | 1483.53                          | 136.47                                   | 0                                            | 136.47                           | 1.29                  | 1.25E+05                  |
| А                 | 0                                | 1620                                     | 0                                            | 1620                             | 4.78                  | 4.65E+05                  |
| PS                | 0                                | 1620                                     | 0                                            | 1620                             | 10.13                 | 9.85E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1569.13                          | 650.87                                   | 0                                            | 650.87                           | 0.42                  | 5.65E+04                  |
| R03               | 2033.47                          | 186.47                                   | 0.07                                         | 186.54                           | 0.38                  | 5.00E+04                  |
| R04               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 736.73                           | 1483.2                                   | 0.07                                         | 1483.27                          | 0.98                  | 1.30E+05                  |
| R06               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1942.87                          | 277.13                                   | 0                                            | 277.13                           | 0.13                  | 1.67E+04                  |
| R08               | 767.2                            | 1452.73                                  | 0.07                                         | 1452.8                           | 0.97                  | 1.30E+05                  |
| R09               | 2019                             | 201                                      | 0                                            | 201                              | 0.14                  | 1.88E+04                  |
| R11               | 2102.53                          | 117.4                                    | 0.07                                         | 117.47                           | 0.02                  | 3.03E+03                  |
| R12               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1953.53                          | 266.47                                   | 0                                            | 266.47                           | 0.25                  | 3.29E+04                  |
| R14               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 2098.6                           | 121.4                                    | 0                                            | 121.4                            | 0                     | 1.06E+02                  |
| R16               | 2032.8                           | 187.13                                   | 0.07                                         | 187.2                            | 0.1                   | 1.32E+04                  |
| R17               | 731.27                           | 1488.73                                  | 0                                            | 1488.73                          | 0.28                  | 3.75E+04                  |
| R18               | 740.67                           | 1479.33                                  | 0                                            | 1479.33                          | 0.77                  | 1.02E+05                  |
| R19               | 1845.73                          | 374.2                                    | 0.07                                         | 374.27                           | 1                     | 1.33E+05                  |
| R20               | 2099.47                          | 120.53                                   | 0                                            | 120.53                           | 0.01                  | 1.92E+03                  |
| R21               | 2124.87                          | 95.13                                    | 0                                            | 95.13                            | 0.02                  | 2.41E+03                  |
| R22               | 2097.47                          | 122.53                                   | 0                                            | 122.53                           | 0.05                  | 6.93E+03                  |
| R24               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 2161                             | 59                                       | 0                                            | 59                               | 0                     | 1.14E+02                  |
| R26               | 2099.87                          | 120.13                                   | 0                                            | 120.13                           | 0.03                  | 4.07E+03                  |
| 9A                | 2162.27                          | 57.73                                    | 0                                            | 57.73                            | 0                     | 1.13E+02                  |
| А                 | 0                                | 2220                                     | 0                                            | 2220                             | 3.35                  | 4.47E+05                  |
| PS                | 0                                | 2220                                     | 0                                            | 2220                             | 9.48                  | 1.26E+06                  |

÷. \*

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1685.13                          | 234.8                                    | 0.07                                         | 234.87                           | 0.15                  | 1.74E+04                  |
| R03               | 1812.27                          | 107.73                                   | 0                                            | 107.73                           | 0.08                  | 9.13E+03                  |
| R04               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 757.27                           | 1162.73                                  | 0                                            | 1162.73                          | 0.43                  | 4.90E+04                  |
| R06               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1779.4                           | 140.6                                    | 0                                            | 140.6                            | 0.04                  | 4.51E+03                  |
| R08               | 746.2                            | 1173.8                                   | 0                                            | 1173.8                           | 0.4                   | 4.56E+04                  |
| R09               | 1787.87                          | 132.13                                   | 0                                            | 132.13                           | 0.02                  | 2.82E+03                  |
| R11               | 1898.27                          | 21.73                                    | 0                                            | 21.73                            | 0                     | 1.54E+01                  |
| R12               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1741.4                           | 178.6                                    | 0                                            | 178.6                            | 0.07                  | 8.11E+03                  |
| R14               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1891.07                          | 28.93                                    | 0                                            | 28.93                            | 0                     | 3.70E+00                  |
| R16               | 1898.87                          | 21.13                                    | 0                                            | 21.13                            | 0                     | 0.00E+00                  |
| R17               | 739.93                           | 1180.07                                  | 0                                            | 1180.07                          | 0.12                  | 1.34E+04                  |
| R18               | 752.47                           | 1167.53                                  | 0                                            | 1167.53                          | 0.34                  | 3.90E+04                  |
| R19               | 1843.2                           | 76.8                                     | 0                                            | 76.8                             | 0.08                  | 8.64E+03                  |
| R20               | 1890.47                          | 29.53                                    | 0                                            | 29.53                            | 0                     | 1.15E+02                  |
| R21               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1885.6                           | 34.4                                     | 0                                            | 34.4                             | 0.01                  | 8.45E+02                  |
| R24               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1890.33                          | 29.67                                    | 0                                            | 29.67                            | 0                     | 3.52E+02                  |
| 9A                | 1920                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 1920                                     | 0                                            | 1920                             | 2.71                  | 3.12E+05                  |
| PS                | 0                                | 1920                                     | 0                                            | 1920                             | 8.09                  | 9.32E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1172.47                          | 747.53                                   | 0                                            | 747.53                           | 2                     | 2 31E+05                  |
| R03               | 1536                             | 384                                      | 0                                            | 384                              | 3.11                  | 3.59E+05                  |
| R04               | 1583.4                           | 336.6                                    | 0                                            | 336.6                            | 0.26                  | 2.99E+04                  |
| R.05              | 733.8                            | 1186.13                                  | 0.07                                         | 1186.2                           | 4.42                  | 5.10E+05                  |
| R06               | 1686.47                          | 233.47                                   | 0.07                                         | 233.54                           | 0.12                  | 1.39E+04                  |
| R07               | 1518.73                          | 401.27                                   | 0                                            | 401.27                           | 0.94                  | 1.08E+05                  |
| R08               | 728.8                            | 1191.2                                   | 0                                            | 1191.2                           | 6.15                  | 7.08E+05                  |
| R09               | 1521.4                           | 398.53                                   | 0.07                                         | 398.6                            | 2.46                  | 2.83E+05                  |
| R11               | 1589.33                          | 330.6                                    | 0.07                                         | 330.67                           | 1.7                   | 1.96E+05                  |
| R12               | 1733.73                          | 186.27                                   | 0                                            | 186.27                           | 0.21                  | 2.38E+04                  |
| R13               | 1525.47                          | 394.53                                   | 0                                            | 394.53                           | 1.84                  | 2.12E+05                  |
| R14               | 1592.67                          | 327.33                                   | 0                                            | 327.33                           | 0.94                  | 1.08E+05                  |
| R15               | 1644.6                           | 275.4                                    | 0                                            | 275.4                            | 0.07                  | 7.56E+03                  |
| R16               | 1495.67                          | 424.27                                   | 0.07                                         | 424.34                           | 1.55                  | 1.79E+05                  |
| R17               | 729.6                            | 1190.4                                   | 0                                            | 1190.4                           | 1.43                  | 1.65E+05                  |
| R18               | 738                              | 1182                                     | 0                                            | 1182                             | 4.01                  | 4.62E+05                  |
| R19               | 1463.2                           | 456.8                                    | 0                                            | 456.8                            | 4.42                  | 5.10E+05                  |
| R20               | 1652.27                          | 267.73                                   | 0                                            | 267.73                           | 0.39                  | 4.44E+04                  |
| R21               | 1638.53                          | 281.47                                   | 0                                            | 281.47                           | 0.31                  | 3.53E+04                  |
| R22               | 1607.6                           | 312.4                                    | 0                                            | 312.4                            | 0.84                  | 9.72E+04                  |
| R24               | 1610.6                           | 309.4                                    | 0                                            | 309.4                            | 0.24                  | 2.78E+04                  |
| R25               | 1600.13                          | 319.87                                   | 0                                            | 319.87                           | 0.33                  | 3.83E+04                  |
| R26               | 1582.93                          | 337.07                                   | 0                                            | 337.07                           | 0.85                  | 9.83E+04                  |
| 9A                | 1591.33                          | 328.67                                   | 0                                            | 328.67                           | 1.26                  | 1.45E+05                  |
| А                 | 0                                | 1920                                     | 0                                            | 1920                             | 5.33                  | 6.14E+05                  |
| PS                | 0                                | 1920                                     | 0                                            | 1920                             | 11.81                 | 1.36E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1452.93                          | 227.07                                   | 0                                            | 227.07                           | 010                   | 1.87F+04                  |
| R03               | 1616.87                          | 63.07                                    | 0.07                                         | 63 14                            | 0.01                  | 1.07E+04                  |
| R04               | 1680                             | 0                                        | 0                                            | 0                                | 0.01                  | 0.00E+00                  |
| R05               | 731.13                           | 948.87                                   | 0                                            | 948.87                           | 048                   | 4 87E+04                  |
| R06               | 1680                             | 0                                        | 0                                            | 0                                | 0.10                  | 0.00E+00                  |
| R07               | 1528                             | 152                                      | 0                                            | 152                              | 0.05                  | 4.88E+03                  |
| R08               | 727.53                           | 952.47                                   | 0                                            | 952.47                           | 0.47                  | 4.76E+04                  |
| R09               | 1611.67                          | 68.33                                    | 0                                            | 68.33                            | 0                     | 2.96E+02                  |
| R11               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1512.6                           | 167.33                                   | 0.07                                         | 167.4                            | 0.08                  | 7.88E+03                  |
| R14               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1669.27                          | 10.73                                    | 0                                            | 10.73                            | 0                     | 0.00E+00                  |
| R17               | 1486.6                           | 193.4                                    | 0                                            | 193.4                            | 0.07                  | 7.34E+03                  |
| R18               | 1466.47                          | 213.53                                   | 0                                            | 213.53                           | 0.25                  | 2.51E+04                  |
| R19               | 1596.07                          | 83.93                                    | 0                                            | 83.93                            | 0.11                  | 1.15E+04                  |
| R20               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1621.27                          | 58.73                                    | 0                                            | 58.73                            | 0                     | 4.03E+02                  |
| R24               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1680                                     | 0                                            | 1680                             | 2.85                  | 2.87E+05                  |
| PS                | 0                                | 1680                                     | 0                                            | 1680                             | 8.49                  | 8.56E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1082.07                          | 477.87                                   | 0.07                                         | 477.94                           | 1.12                  | 1.05E+05                  |
| R03               | 1470.13                          | 89.87                                    | 0                                            | 89.87                            | 1.39                  | 1.30E+05                  |
| R04               | 1479.2                           | 80.8                                     | 0                                            | 80.8                             | 0.14                  | 1.34E+04                  |
| R05               | 722.13                           | 837.87                                   | 0                                            | 837.87                           | 1.76                  | 1.65E+05                  |
| R06               | 1485                             | 75                                       | 0                                            | 75                               | 0.05                  | 4.70E+03                  |
| R07               | 1456.47                          | 103.53                                   | 0                                            | 103.53                           | 0.41                  | 3.86E+04                  |
| R08               | 722.2                            | 837.8                                    | 0                                            | 837.8                            | 2.67                  | 2.50E+05                  |
| R09               | 1452.73                          | 107.27                                   | 0                                            | 107.27                           | 1.11                  | 1.04E+05                  |
| R11               | 1486.2                           | 73.73                                    | 0.07                                         | 73.8                             | 0.79                  | 7.41E+04                  |
| R12               | 1498.6                           | 61.4                                     | 0                                            | 61.4                             | 0.12                  | 1.13E+04                  |
| R13               | 1461.67                          | 98.33                                    | 0                                            | 98.33                            | 0.84                  | 7.90E+04                  |
| R14               | 1477.6                           | 82.33                                    | 0.07                                         | 82.4                             | 0.42                  | 3.96E+04                  |
| R15               | 1489.53                          | 70.47                                    | 0                                            | 70.47                            | 0.03                  | 2.82E+03                  |
| R16               | 1420.73                          | 139.27                                   | 0                                            | 139.27                           | 0.71                  | 6.68E+04                  |
| R17               | 722.8                            | 837.2                                    | 0                                            | 837.2                            | 0.61                  | 5.73E+04                  |
| R18               | 725.27                           | 834.73                                   | 0                                            | 834.73                           | 1.83                  | 1.71E+05                  |
| R19               | 1374.33                          | 185.67                                   | 0                                            | 185.67                           | 1.05                  | 9.81E+04                  |
| R20               | 1493.6                           | 66.4                                     | 0                                            | 66.4                             | 0.2                   | 1.88E+04                  |
| R21               | 1491.73                          | 68.27                                    | 0                                            | 68.27                            | 0.15                  | 1.43E+04                  |
| R22               | 1493.27                          | 66.73                                    | 0                                            | 66.73                            | 0.41                  | 3.88E+04                  |
| R24               | 1493.33                          | 66.67                                    | 0                                            | 66.67                            | 0.12                  | 1.16E+04                  |
| R25               | 1483.2                           | 76.8                                     | 0                                            | 76.8                             | 0.16                  | 1.54E+04                  |
| R26               | 1490.33                          | 69.67                                    | 0                                            | 69.67                            | 0.39                  | 3.67E+04                  |
| 9A                | 1483.53                          | 76.47                                    | 0                                            | <b>7</b> 6.47                    | 0.58                  | 5.45E+04                  |
| A                 | 0                                | 1560                                     | 0                                            | 1560                             | 3.47                  | 3.25E+05                  |
| PS                | 0                                | 1560                                     | 0                                            | 1560                             | 8.7                   | 8.14E+05                  |

ġ. .

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1432 93                          |                                          |                                              |                                  | 0.35                  | 2 52E±04                  |
| R03               | 1561.87                          | 118                                      | 0.13                                         | 118.13                           | 0.55                  | 1.56E+04                  |
| R04               | 1680                             | 0                                        | 0                                            | 0                                | 0.15                  | 0.00E+00                  |
| R05               | 1487.27                          | 192.67                                   | 0.07                                         | 192.74                           | 0.65                  | 6.56E+04                  |
| R06               | 1593.13                          | 86,87                                    | 0                                            | 86.87                            | 0.01                  | 1.35E+03                  |
| R07               | 1498.27                          | 181.73                                   | 0                                            | 181.73                           | 0.12                  | 1.23E+04                  |
| R08               | 1500.2                           | 179.8                                    | 0                                            | 179.8                            | 0.74                  | 7,44E+04                  |
| R09               | 1546.6                           | 133.33                                   | 0.07                                         | 133.4                            | 0.08                  | 7.92E+03                  |
| R11               | 1591.6                           | 88.4                                     | 0                                            | 88.4                             | 0.03                  | 3.27E+03                  |
| R12               | 1650.2                           | 29.8                                     | 0                                            | 29.8                             | 0                     | 7.88E+01                  |
| R13               | 1544.4                           | 135.47                                   | 0.13                                         | 135.6                            | 0.15                  | 1.48E+04                  |
| R14               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1574.6                           | 105.4                                    | 0                                            | 105.4                            | 0                     | 1.10E+02                  |
| R16               | 1566.67                          | 113.27                                   | 0.07                                         | 113.34                           | 0.01                  | 8.18E+02                  |
| R17               | 1479.93                          | 200.07                                   | 0                                            | 200.07                           | 0.17                  | 1.74E+04                  |
| R18               | 1437                             | 243                                      | 0                                            | 243                              | 0.53                  | 5.34E+04                  |
| R19               | 1524.53                          | 155.4                                    | 0.07                                         | 155,47                           | 0.51                  | 5.15E+04                  |
| R20               | 1571.87                          | 108.13                                   | 0                                            | 108.13                           | 0.02                  | 1.79E+03                  |
| R21               | 1637.6                           | 42.4                                     | 0                                            | 42.4                             | 0.01                  | 1.22E+03                  |
| R22               | 1568.33                          | 111.67                                   | 0                                            | 111.67                           | 0.06                  | 6.07E+03                  |
| R24               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1588.93                          | 91.07                                    | 0                                            | 91.07                            | 0.01                  | 1.03E+03                  |
| R26               | 1570.73                          | 109.27                                   | 0                                            | 109.27                           | 0.04                  | 3.64E+03                  |
| 9A                | 1643.2                           | 36.8                                     | 0                                            | 36.8                             | 0.01                  | 7.04E+02                  |
| A                 | 0                                | 1680                                     | 0                                            | 1680                             | 3.54                  | 3.56E+05                  |
| PS                | 0                                | 1680                                     | 0                                            | 1680                             | 9.88                  | 9.96E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| P02               | 1232 47                          | 747 53                                   | 0                                            | 747 53                           | 1.82                  | 2.17E+05                  |
| R02               | 1232.47                          | 97.8                                     | 0                                            | 97.8                             | 1.84                  | 2.18E+05                  |
| R04               | 1891.93                          | 88.07                                    | 0                                            | 88.07                            | 0.28                  | 3.36E+04                  |
| R05               | 733.8                            | 1246.13                                  | 0.07                                         | 1246.2                           | 3.81                  | 4.53E+05                  |
| R06               | 1884                             | 95.93                                    | 0.07                                         | 96                               | 0.12                  | 1.45E+04                  |
| R07               | 1813.87                          | 166.13                                   | 0                                            | 166.13                           | 0.83                  | 9.82E+04                  |
| R08               | 728.8                            | 1251.2                                   | 0                                            | 1251.2                           | 3.53                  | 4.19E+05                  |
| R09               | 1867.8                           | 112.2                                    | 0                                            | 112.2                            | 2.04                  | 2.43E+05                  |
| R11               | 1903.53                          | 76.47                                    | 0                                            | 76.47                            | 1.56                  | 1.85E+05                  |
| R12               | 1907.93                          | 72.07                                    | 0                                            | 72.07                            | 0.34                  | 4.02E+04                  |
| R13               | 1835.27                          | 144.67                                   | 0.07                                         | 144.74                           | 1.54                  | 1.83E+05                  |
| R14               | 1892.2                           | 87.8                                     | 0                                            | 87.8                             | 1.07                  | 1.27E+05                  |
| R15               | 1869                             | 111                                      | 0                                            | 111                              | 0.12                  | 1,42E+04                  |
| R16               | 1837.6                           | 142.33                                   | 0.07                                         | 142.4                            | 1.71                  | 2.03E+05                  |
| R17               | 729.6                            | 1250.4                                   | 0                                            | 1250.4                           | 0.98                  | 1.17E+05                  |
| R18               | 738                              | 1242                                     | 0                                            | 1242                             | 3.53                  | 4.20E+05                  |
| R19               | 1716.8                           | 263.2                                    | 0                                            | 263.2                            | 0.83                  | 9.88E+04                  |
| R20               | 1900.47                          | 79.53                                    | 0                                            | 79.53                            | 0.5                   | 5.88E+04                  |
| R21               | 1908.87                          | 71.13                                    | 0                                            | 71.13                            | 0.31                  | 3.64E+04                  |
| R22               | 1900.93                          | 79.07                                    | 0                                            | 79.07                            | 0.97                  | 1.16E+05                  |
| R24               | 1910.6                           | 69.4                                     | 0                                            | 69.4                             | 0.25                  | 2.96E+04                  |
| R25               | 1900.2                           | 79.8                                     | 0                                            | 79.8                             | 0.34                  | 4.01E+04                  |
| R26               | 1907.27                          | 72.73                                    | 0                                            | 72.73                            | 0.77                  | 9.12E+04                  |
| 9A                | 1898.4                           | 81.6                                     | 0                                            | 81.6                             | 0.99                  | 1.17E+05                  |
| А                 | 0                                | 1980                                     | 0                                            | 1980                             | 4.71                  | 5.60E+05                  |
| PS                | 0                                | 1980                                     | 0                                            | 1980                             | 9.29                  | 1.10E+06                  |

•

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1487.2                           | 192.8                                    | 0                                            | 192.8                            | 0.05                  | 4.60E+03                  |
| R03               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 736.73                           | 943.2                                    | 0.07                                         | 943.27                           | 0.23                  | 2.30E+04                  |
| R06               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1504.8                           | 175.2                                    | 0                                            | 175.2                            | 0.03                  | 3.41E+03                  |
| R09               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1680                             | . 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1490.53                          | 189.47                                   | 0                                            | 189.47                           | 0.01                  | 1.23E+03                  |
| R18               | 1471.67                          | 208.33                                   | 0                                            | 208.33                           | 0.07                  | 6.66E+03                  |
| R19               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1680                                     | 0                                            | 1680                             | 2.55                  | 2.58E+05                  |
| PS                | 0                                | 1680                                     | 0                                            | 1680                             | 7,58                  | 7.64E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1335.93                          | 344                                      | 0.07                                         | 344.07                           | 0.7                   | 7.02E+04                  |
| R03               | 1548.47                          | 131.53                                   | 0                                            | 131.53                           | 0.81                  | 8.12E+04                  |
| R04               | 1602                             | 78                                       | 0                                            | 78                               | 0.07                  | 7.26E+03                  |
| R05               | 722.73                           | 957.2                                    | 0.07                                         | 957.27                           | 1.21                  | 1.22E+05                  |
| R06               | 1616.73                          | 63.2                                     | 0.07                                         | 63.27                            | 0.03                  | 2.78E+03                  |
| R07               | 1525.4                           | 154.6                                    | 0                                            | 154.6                            | 0.25                  | 2.53E+04                  |
| R08               | 722.6                            | 957.4                                    | 0                                            | 957.4                            | 1.64                  | 1.66E+05                  |
| R09               | 1522.2                           | 157.8                                    | 0                                            | 157.8                            | 0.64                  | 6.44E+04                  |
| R11               | 1600.87                          | 79.13                                    | 0                                            | 79.13                            | 0.44                  | 4.44E+04                  |
| R12               | 1621.4                           | 58.6                                     | 0                                            | 58.6                             | 0.05                  | 5.38E+03                  |
| R13               | 1495                             | 184.93                                   | 0.07                                         | 185                              | 0.52                  | 5.23E+04                  |
| R14               | 1599.47                          | 80.53                                    | 0                                            | 80.53                            | 0.19                  | 1.94E+04                  |
| R15               | 1611.13                          | 68.87                                    | 0                                            | 68.87                            | 0.01                  | 1.22E+03                  |
| R16               | 1528.6                           | 151.33                                   | 0.07                                         | 151.4                            | 0.36                  | 3.64E+04                  |
| R17               | 723.4                            | 956.6                                    | 0                                            | 956.6                            | 0.42                  | 4.24E+04                  |
| R18               | 726.27                           | 953.73                                   | 0                                            | 953.73                           | 1.17                  | 1.18E+05                  |
| R19               | 1460.93                          | 219                                      | 0.07                                         | 219.07                           | 1.31                  | 1.32E+05                  |
| R20               | 1614.33                          | 65.67                                    | 0                                            | 65.67                            | 0.1                   | 1.02E+04                  |
| R21               | 1613.27                          | 66.73                                    | 0                                            | 66.73                            | 0.08                  | 7.95E+03                  |
| R22               | 1614.13                          | 65.87                                    | 0                                            | 65.87                            | 0.21                  | 2.16E+04                  |
| R24               | 1620.6                           | 59.4                                     | 0                                            | 59.4                             | 0.07                  | 6.69E+03                  |
| R25               | 1612.13                          | 67.87                                    | 0                                            | 67.87                            | 0,08                  | 7.83E+03                  |
| R26               | 1592.8                           | 87.2                                     | 0                                            | 87.2                             | 0,22                  | 2.23E+04                  |
| 9A                | 1602.8                           | 77.2                                     | 0                                            | 77.2                             | 0.33                  | 3.34E+04                  |
| A                 | 0                                | 1680                                     | 0                                            | 1680                             | 3.14                  | 3.17E+05                  |
| PS                | 0                                | 1680                                     | 0                                            | 1680                             | 8.54                  | 8.61E+05                  |

;

•

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1425.4                           | 254.53                                   | 0.07                                         | 254.6                            | 0.43                  | 4 37F+04                  |
| R03               | 1538.8                           | 141.2                                    | 0                                            | 141.2                            | 0.48                  | 4.88E+04                  |
| R04               | 1638.33                          | 41.67                                    | 0                                            | 41.67                            | 0                     | 1.42E+02                  |
| R05               | 724.2                            | 955.73                                   | 0.07                                         | 955.8                            | 0.91                  | 9.15E+04                  |
| R06               | 1680                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1511.07                          | 168.93                                   | 0                                            | 168.93                           | 0.16                  | 1.60E+04                  |
| R08               | 723.4                            | 956.53                                   | 0.07                                         | 956.6                            | 1.08                  | 1.09E+05                  |
| R09               | 1512.93                          | 167.07                                   | 0                                            | 167.07                           | 0.33                  | 3.36E+04                  |
| R11               | 1557.13                          | 122.87                                   | 0                                            | 122.87                           | 0.23                  | 2.34E+04                  |
| R12               | 1635                             | 45                                       | 0                                            | 45                               | 0.01                  | 1.01E+03                  |
| R13               | 1495.4                           | 184.6                                    | 0                                            | 184.6                            | 0.33                  | 3.32E+04                  |
| R14               | 1644.6                           | 35.33                                    | 0.07                                         | 35.4                             | 0                     | 0.00E+00                  |
| R15               | 1610.67                          | 69.33                                    | 0                                            | 69.33                            | 0                     | 3.24E+02                  |
| R16               | 1512.67                          | 167.27                                   | 0.07                                         | 167.34                           | 0.16                  | 1.57E+04                  |
| R17               | 724.53                           | 955.47                                   | 0                                            | 955.47                           | 0.3                   | 3.02E+04                  |
| R18               | 728.47                           | 951.53                                   | 0                                            | 951.53                           | 0.78                  | 7.91E+04                  |
| R19               | 1464.6                           | 215.4                                    | 0                                            | 215.4                            | 1.16                  | 1.17E+05                  |
| R20               | 1614.6                           | 65.4                                     | 0                                            | 65.4                             | 0.04                  | 3.60E+03                  |
| R21               | 1624.07                          | 55.93                                    | 0                                            | 55.93                            | 0.03                  | 2.88E+03                  |
| R22               | 1610                             | 70                                       | 0                                            | 70                               | 0.09                  | 8.86E+03                  |
| R24               | 1643.6                           | 36.4                                     | 0                                            | 36.4                             | 0                     | 1.57E+01                  |
| R25               | 1631.33                          | 48.67                                    | 0                                            | 48.67                            | 0.01                  | 1.34E+03                  |
| R26               | 1616.33                          | 63.67                                    | 0                                            | 63.67                            | 0.06                  | 6.37E+03                  |
| 9A                | 1568.67                          | 111.33                                   | 0                                            | 111.33                           | 0.15                  | 1.54E+04                  |
| А                 | 0                                | 1680                                     | 0                                            | 1680                             | 3.01                  | 3.04E+05                  |
| PS                | 0                                | 1680                                     | 0                                            | 1680                             | 8.46                  | 8.53E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1512.93                          | 107.07                                   | 0                                            | 107.07                           | 0.02                  | 1.95E+03                  |
| R03               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 790.53                           | 829.47                                   | 0                                            | 829.47                           | 0.17                  | 1.69E+04                  |
| R06               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1543.47                          | 76.47                                    | 0.07                                         | 76.54                            | 0.03                  | 2.94E+03                  |
| R09               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1530.27                          | 89.73                                    | 0                                            | 89.73                            | 0.01                  | 8.96E+02                  |
| R18               | 1502.33                          | 117.67                                   | 0                                            | 117.67                           | 0.04                  | 4.21E+03                  |
| R19               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 1620                                     | 0                                            | 1620                             | 2.5                   | 2.43E+05                  |
| PS                | 0                                | 1620                                     | 0                                            | 1620                             | 7.3                   | 7.10E+05                  |

 $\epsilon_{\rm c}$  s

÷~
|         | LENGTH    | LENGTH      | LENGTH    | LENGTH    |         |          |
|---------|-----------|-------------|-----------|-----------|---------|----------|
|         | OF        | OF          | OF UPSTR. | OF        | MEAN    | TOTAL    |
| CONDUIT | DRY       | SUBCRITICAL | CRITICAL  | WET       | FLOW    | FLOW     |
| NUMBER  | FLOW(MIN) | FLOW(MIN)   | FLOW(MIN) | FLOW(MIN) | (CFS)   | CUBIC FT |
|         |           |             |           |           | ******* |          |
| R02     | 1217.73   | 582.27      | 0         | 582.27    | 1.23    | 1.33E+05 |
| R03     | 1547.6    | 252.33      | 0.07      | 252.4     | 1.49    | 1.61E+05 |
| R04     | 1602.93   | 197.07      | 0         | 197.07    | 0.13    | 1.36E+04 |
| R05     | 722.4     | 1077.53     | 0.07      | 1077.6    | 2.12    | 2.29E+05 |
| R06     | 1616.6    | 183.33      | 0.07      | 183.4     | 0.06    | 6.32E+03 |
| R07     | 1524.8    | 275.2       | 0         | 275.2     | 0.46    | 4.92E+04 |
| R08     | 722.4     | 1077.6      | 0         | 1077.6    | 2.91    | 3.14E+05 |
| R09     | 1521.73   | 278.27      | 0         | 278.27    | 1.15    | 1.25E+05 |
| R11     | 1601.87   | 198.13      | 0         | 198.13    | 0.81    | 8.74E+04 |
| R12     | 1680.2    | 119.8       | 0         | 119.8     | 0,08    | 8.61E+03 |
| R13     | 1494.53   | 305.47      | 0         | 305.47    | 0.94    | 1.02E+05 |
| R14     | 1598.8    | 201.2       | 0         | 201.2     | 0.29    | 3.11E+04 |
| R15     | 1612.2    | 187.8       | 0         | 187.8     | 0.02    | 2.07E+03 |
| R16     | 1527.93   | 272.07      | 0         | 272.07    | 0.68    | 7.33E+04 |
| R17     | 723.07    | 1076.93     | 0         | 1076.93   | 0.75    | 8.05E+04 |
| R18     | 725.8     | 1074.2      | 0         | 1074.2    | 2.03    | 2.19E+05 |
| R19     | 1461.8    | 338.2       | 0         | 338.2     | 2,38    | 2.57E+05 |
| R20     | 1615.6    | 184.4       | 0         | 184.4     | 0.16    | 1.76E+04 |
| R21     | 1613.67   | 186.33      | 0         | 186.33    | 0.14    | 1.52E+04 |
| R22     | 1615.07   | 184.93      | 0         | 184.93    | 0.36    | 3.89E+04 |
| R24     | 1618.27   | 181.73      | 0         | 181.73    | 0.11    | 1.14E+04 |
| R25     | 1617.13   | 182.87      | 0         | 182.87    | 0.14    | 1.54E+04 |
| R26     | 1593.93   | 206.07      | 0         | 206.07    | 0.4     | 4.28E+04 |
| 9A      | 1603.6    | 196.4       | 0         | 196.4     | 0.59    | 6.34E+04 |
| А       | 0         | 1800        | 0         | 1800      | 3.82    | 4.12E+05 |
| PS      | 0         | 1800        | 0         | 1800      | 9.77    | 1.05E+06 |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 153/ 8                           | 205.2                                    |                                              | 205.2                            | 0.02                  | 2 025+03                  |
| R03               | 1740                             | 209.2                                    | 0                                            | 209.2                            | 0.02                  | 0.00E+00                  |
| R04               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1624.67                          | 115.33                                   | 0                                            | 115.33                           | 0.01                  | 1 23E+03                  |
| R06               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1616.8                           | 123.2                                    | 0                                            | 123.2                            | 0.02                  | 1.78E+03                  |
| R09               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1501.87                          | 238.13                                   | 0                                            | 238.13                           | 0.01                  | 7.82E+02                  |
| R18               | 1486.33                          | 253.67                                   | 0                                            | 253.67                           | 0.05                  | 5.12E+03                  |
| R19               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1740                             | . 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 1740                                     | 0                                            | 1740                             | 2.73                  | 2.85E+05                  |
| PS                | 0                                | 1740                                     | 0                                            | 1740                             | 7.48                  | 7.81E+05                  |

ť

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| *****             |                                  |                                          |                                              |                                  | *******               |                           |
| R02               | 1172.47                          | 747.53                                   | 0                                            | 747,53                           | 1.54                  | 1.77E+05                  |
| R03               | 1604.13                          | 315.8                                    | 0.07                                         | 315.87                           | 1.78                  | 2.05E+05                  |
| R04               | 1765.67                          | 154.33                                   | 0                                            | 154.33                           | 0.17                  | 1.98E+04                  |
| R05               | 733.8                            | 1186.13                                  | 0.07                                         | 1186.2                           | 2.68                  | 3.09E+05                  |
| R06               | 1825.87                          | 94.13                                    | 0                                            | 94.13                            | 0.07                  | 7.99E+03                  |
| R07               | 1582.13                          | 337.87                                   | 0                                            | 337.87                           | 0.57                  | 6.57E+04                  |
| R08               | 728.8                            | 1191.2                                   | 0                                            | 1191.2                           | 3.61                  | 4.16E+05                  |
| R09               | 1575.2                           | 344.73                                   | 0.07                                         | 344.8                            | 1.42                  | 1.63E+05                  |
| R11               | 1672.8                           | 247.13                                   | 0.07                                         | 247.2                            | 0.98                  | 1.13E+05                  |
| R12               | 1854.13                          | 65.87                                    | 0                                            | 65.87                            | 0.15                  | 1.75E+04                  |
| R13               | 1576.27                          | 343.73                                   | 0                                            | 343.73                           | 1.1                   | 1.27E+05                  |
| R14               | 1814.13                          | 105.87                                   | 0                                            | 105.87                           | 0.63                  | 7.24E+04                  |
| R15               | 1565.47                          | 354.53                                   | 0                                            | 354.53                           | 0.06                  | 6.54E+03                  |
| R16               | 1647.4                           | 272.6                                    | 0                                            | 272.6                            | 0.93                  | 1.08E+05                  |
| R17               | 729.6                            | 1190.4                                   | 0                                            | 1190.4                           | 0.84                  | 9.70E+04                  |
| R18               | 738                              | 1182                                     | 0                                            | 1182                             | 2.51                  | 2.89E+05                  |
| R19               | 1484.2                           | 435.73                                   | 0.07                                         | 435.8                            | 1.35                  | 1.55E+05                  |
| R20               | 1845.53                          | 74.47                                    | 0                                            | 74.47                            | 0.25                  | 2.86E+04                  |
| R21               | 1842.33                          | 77.67                                    | 0                                            | 77.67                            | 0.19                  | 2.15E+04                  |
| R22               | 1840.87                          | 79.13                                    | 0                                            | 79.13                            | 0.51                  | 5.91E+04                  |
| R24               | 1847.87                          | 72.13                                    | 0                                            | 72.13                            | 0.15                  | 1.72E+04                  |
| R25               | 1738                             | 182                                      | 0                                            | 182                              | 0.21                  | 2.38E+04                  |
| R26               | 1660.87                          | 259.13                                   | 0                                            | 259.13                           | 0.5                   | 5.76E+04                  |
| 9A                | 1733.87                          | 186.13                                   | 0                                            | 186.13                           | 0.72                  | 8.26E+04                  |
| А                 | 0                                | 1920                                     | 0                                            | 1920                             | 4.27                  | 4.91E+05                  |
| PS                | 0                                | 1920                                     | 0                                            | 1920                             | 9.91                  | 1.14E+06                  |

| Storm 04 | torm ( | 62 |
|----------|--------|----|
|----------|--------|----|

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1093.4                           | 766.6                                    | 0                                            | 766.6                            | 1.79                  | 2.00E+05                  |
| R03               | 1540.47                          | 319.47                                   | 0.07                                         | 319.54                           | 2.39                  | 2.67E+05                  |
| R04               | 1606.93                          | 253.07                                   | 0                                            | 253.07                           | 0.14                  | 1.62E+04                  |
| R05               | 726.2                            | 1133.8                                   | 0                                            | 1133.8                           | 3.49                  | 3.90E+05                  |
| R06               | 1626.87                          | 233.13                                   | 0                                            | 233.13                           | 0.09                  | 1.03E+04                  |
| R07               | 1506.8                           | 353.2                                    | 0                                            | 353.2                            | 0.72                  | 8.02E+04                  |
| R08               | 724.47                           | 1135.47                                  | 0.07                                         | 1135.54                          | 4.72                  | 5.27E+05                  |
| R09               | 1512.6                           | 347.33                                   | 0.07                                         | 347.4                            | 1.84                  | 2.06E+05                  |
| R11               | 1575.67                          | 284.33                                   | 0                                            | 284.33                           | 1.31                  | 1.46E+05                  |
| R12               | 1672.87                          | 187.13                                   | 0                                            | 187.13                           | 0.12                  | 1.34E+04                  |
| R13               | 1497.8                           | 362.13                                   | 0.07                                         | 362.2                            | 1.44                  | 1.60E+05                  |
| R14               | 1609.33                          | 250.6                                    | 0.07                                         | 250.67                           | 0.57                  | 6.38E+04                  |
| R15               | 1583.2                           | 276.8                                    | 0                                            | 276.8                            | 0.04                  | 4.49E+03                  |
| R16               | 1517.87                          | 342.13                                   | 0                                            | 342.13                           | 1.09                  | 1.22E+05                  |
| R17               | 725.73                           | 1134.27                                  | 0                                            | 1134.27                          | 1.17                  | 1.30E+05                  |
| R18               | 730.87                           | 1129.13                                  | 0                                            | 1129.13                          | 3.12                  | 3.48E+05                  |
| R19               | 1469.8                           | 390.13                                   | 0.07                                         | 390.2                            | 4.04                  | 4.51E+05                  |
| R20               | 1581.73                          | 278.27                                   | 0                                            | 278.27                           | 0.27                  | 2.98E+04                  |
| R21               | 1598.13                          | 261.87                                   | 0                                            | 261.87                           | 0.24                  | 2.66E+04                  |
| R22               | 1566.07                          | 293.93                                   | 0                                            | 293.93                           | 0.61                  | 6.79E+04                  |
| R24               | 1618.73                          | 241.27                                   | 0                                            | 241.27                           | 0.18                  | 2.05E+04                  |
| R25               | 1584.6                           | 275.4                                    | 0                                            | 275.4                            | 0.2                   | 2.25E+04                  |
| R26               | 1574.53                          | 285.47                                   | 0                                            | 285.47                           | 0.59                  | 6.55E+04                  |
| 9A                | 1583                             | 277                                      | 0                                            | 277                              | 0.93                  | 1.04E+05                  |
| А                 | 0                                | 1860                                     | 0                                            | 1860                             | 4.73                  | 5.28E+05                  |
| PS                | 0                                | 1860                                     | 0                                            | 1860                             | 11.27                 | 1.26E+06                  |

·

~

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1123.8                           | 1456.2                                   | 0                                            | 1456.2                           | 2 32                  | 3 59E+05                  |
| R03               | 1615.73                          | 964.27                                   | 0                                            | 964.27                           | 2.77                  | 4 28E+05                  |
| R04               | 1852.33                          | 727.67                                   | Ō                                            | 727.67                           | 0.2                   | 3.14E+04                  |
| R05               | 722.13                           | 1857.8                                   | 0.07                                         | 1857.87                          | 4.1                   | 6.35E+05                  |
| R06               | 2274.13                          | 305.87                                   | 0                                            | 305.87                           | 0.07                  | 1.11E+04                  |
| R07               | 1571.27                          | 1008.73                                  | 0                                            | 1008.73                          | 0.85                  | 1.32E+05                  |
| R08               | 722.27                           | 1857.73                                  | 0                                            | 1857.73                          | 5.51                  | 8.52E+05                  |
| R09               | 1560.13                          | 1019.8                                   | 0.07                                         | 1019.87                          | 1.96                  | 3.03E+05                  |
| R11               | 1737.67                          | 842.27                                   | . 0.07                                       | 842.34                           | 1.31                  | 2.03E+05                  |
| R12               | 2396.07                          | 183.93                                   | 0                                            | 183.93                           | 0.11                  | 1.66E+04                  |
| R13               | 1564.33                          | 1015.53                                  | 0.13                                         | 1015.66                          | 1.74                  | 2.69E+05                  |
| R14               | 1935.2                           | 644.67                                   | 0.13                                         | 644.8                            | 0.5                   | 7.74E+04                  |
| R15               | 1975.4                           | 604.6                                    | 0                                            | 604.6                            | 0.03                  | 4.73E+03                  |
| R16               | 1679.47                          | 900.47                                   | 0.07                                         | 900.54                           | 1.15                  | 1.78E+05                  |
| R17               | 722.87                           | 1857.13                                  | 0                                            | 1857.13                          | 1.42                  | 2.19E+05                  |
| R18               | 725.33                           | 1854.67                                  | 0                                            | 1854.67                          | 3.73                  | 5.77E+05                  |
| R19               | 1419.93                          | 1160.07                                  | 0                                            | 1160.07                          | 6.44                  | 9.96E+05                  |
| R20               | 1970.2                           | 609.8                                    | 0                                            | 609.8                            | 0.23                  | 3.57E+04                  |
| R21               | 1979.93                          | 600.07                                   | 0                                            | 600.07                           | 0.22                  | 3.33E+04                  |
| R22               | 1916.4                           | 663.6                                    | 0                                            | 663.6                            | 0.55                  | 8.58E+04                  |
| R24               | 1919.2                           | 660.8                                    | 0                                            | 660.8                            | 0.17                  | 2.66E+04                  |
| R25               | 1800.33                          | 779.67                                   | 0                                            | 779.67                           | 0.25                  | 3.89E+04                  |
| R26               | 1738.8                           | 841.2                                    | 0                                            | 841.2                            | 0.71                  | 1.10E+05                  |
| 9A                | 1800.53                          | 779.47                                   | 0                                            | 779.47                           | 0.9                   | 1.39E+05                  |
| А                 | 0                                | 2580                                     | 0                                            | 2580                             | 5.48                  | 8.48E+05                  |
| PS                | 0                                | 2580                                     | 0                                            | 2580                             | 13.08                 | 2.02E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1411.93                          | 148                                      | 0.07                                         | 148.07                           | 0.14                  | 1.33E+04                  |
| R03               | 1491.07                          | 68.87                                    | 0.07                                         | 68.94                            | 0.12                  | 1.13E+04                  |
| R04               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E÷00                  |
| R05               | 727.2                            | 832.73                                   | 0.07                                         | 832.8                            | 0.4                   | 3.75E+04                  |
| R06               | 1560                             | . 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1471.33                          | 88.67                                    | 0                                            | 88.67                            | 0.04                  | 3.68E+03                  |
| R08               | 725.07                           | 834.93                                   | 0                                            | 834.93                           | 0.4                   | 3.75E+04                  |
| R09               | 1474.87                          | 85.07                                    | 0.07                                         | 85.14                            | 0.04                  | 3.39E+03                  |
| R11               | 1533.2                           | 26.8                                     | 0                                            | 26.8                             | 0                     | 4.67E+02                  |
| R12               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1475.4                           | 84.53                                    | 0.07                                         | 84.6                             | 0.09                  | 8.30E+03                  |
| R14               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1529                             | 31                                       | 0                                            | 31                               | 0                     | 1.60E+01                  |
| R16               | 1514.47                          | 45.47                                    | 0.07                                         | 45.54                            | 0                     | 0.00E+00                  |
| R17               | 726.4                            | 833.6                                    | 0                                            | 833.6                            | 0.11                  | 1.04E+04                  |
| R18               | 732.07                           | 827.93                                   | 0                                            | 827.93                           | 0.32                  | 3.01E+04                  |
| R19               | 1443.67                          | 116.27                                   | 0.07                                         | 116.34                           | 0.27                  | 2.53E+04                  |
| R20               | 1529.8                           | 30.2                                     | 0                                            | 30.2                             | 0                     | 3.36E+02                  |
| R21               | 1549.4                           | 10.6                                     | 0                                            | 10.6                             | 0                     | 6.86E+01                  |
| R22               | 1510                             | 50                                       | 0                                            | 50                               | 0.02                  | 1.48E+03                  |
| R24               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1538.93                          | 21.07                                    | 0                                            | 21.07                            | 0                     | 5.50E+00                  |
| R26               | 1529.93                          | 30.07                                    | 0                                            | 30.07                            | 0.01                  | 8.16E+02                  |
| 9A                | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | . 1560                                   | 0                                            | 1560                             | 2.65                  | 2.48E+05                  |
| PS                | 0                                | 1560                                     | 0                                            | 1560                             | 7.69                  | 7.20E+05                  |

•

 $\mathcal{A}^{(1)}$ 

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1400.93                          | 219                                      | 0.07                                         | 219.07                           | 0.34                  | <br>3.31E+04              |
| R03               | 1489.53                          | 130.47                                   | 0                                            | 130,47                           | 0.38                  | 3.74E+04                  |
| R04               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 726.67                           | 893.33                                   | 0                                            | 893.33                           | 0.77                  | 7.51E+04                  |
| R06               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1470.2                           | 149.8                                    | 0                                            | 149.8                            | 0.12                  | 1.15E+04                  |
| R08               | 724.73                           | 895.27                                   | 0                                            | 895.27                           | 0.88                  | 8.51E+04                  |
| R09               | 1472.4                           | 147.6                                    | 0                                            | 147.6                            | 0.14                  | 1.38E+04                  |
| R11               | 1529.2                           | 90.73                                    | 0.07                                         | 90.8                             | 0.02                  | 1.76E+03                  |
| R12               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1474.93                          | 145.07                                   | 0                                            | 145.07                           | 0.25                  | 2.46E+04                  |
| R14               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1526.13                          | 93.87                                    | 0                                            | 93.87                            | 0                     | 6.75E+01                  |
| R16               | 1466.8                           | 153.2                                    | 0                                            | 153.2                            | 0.09                  | 8.54E+03                  |
| R17               | 726.07                           | 893.93                                   | 0                                            | 893.93                           | 0.24                  | 2.37E+04                  |
| R18               | 731.4                            | 888.6                                    | 0                                            | 888.6                            | 0.64                  | 6.24E+04                  |
| R19               | 1429.67                          | 190.33                                   | 0                                            | 190.33                           | 0.91                  | 8.87E+04                  |
| R20               | 1526.13                          | 93.87                                    | 0                                            | 93.87                            | 0.01                  | 1.25E+03                  |
| R21               | 1543.07                          | 76.93                                    | 0                                            | 76.93                            | 0.02                  | 1.54E+03                  |
| R22               | 1507.93                          | 112.07                                   | 0                                            | 112.07                           | 0.05                  | 4.98E+03                  |
| R24               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1590                             | 30                                       | 0                                            | 30                               | 0                     | 5.43E+01                  |
| R26               | 1526.47                          | 93.53                                    | 0                                            | 93,53                            | 0.03                  | 2.76E+03                  |
| 9A                | 1594.67                          | 25.33                                    | 0                                            | 25.33                            | 0                     | 3.31E+01                  |
| A                 | 0                                | 1620                                     | 0                                            | 1620                             | 3.02                  | 2.94E+05                  |
| PS                | 0                                | 1620                                     | 0                                            | 1620                             | 8.43                  | 8.20E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1561.2                           | 58.8                                     | 0                                            | 58.8                             | 0                     | 1.68E+01                  |
| R03               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1620                             | . 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1549.67                          | 70.27                                    | 0.07                                         | 70.34                            | 0.01                  | 7.59E+02                  |
| R06               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1545.47                          | 74.47                                    | 0.07                                         | 74.54                            | 0.01                  | 1.22E+03                  |
| R09               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1503.13                          | 116.87                                   | 0                                            | 116.87                           | 0                     | 4.75E+02                  |
| R18               | 1486.27                          | 133.73                                   | 0                                            | 133.73                           | 0.03                  | 2.80E+03                  |
| R19               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 1620                                     | 0                                            | 1620                             | 2.62                  | 2.54E+05                  |
| PS                | 0                                | 1620                                     | 0                                            | 1620                             | 7.2                   | 7.00E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1443.27                          | 176.73                                   | 0                                            | 176.73                           | 0.1                   | 1.01E+04                  |
| R03               | 1592.67                          | 27.33                                    | 0                                            | 27.33                            | 0                     | 6.31E+01                  |
| R04               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 736.73                           | 883.2                                    | 0.07                                         | 883.27                           | 0.33                  | 3.24E+04                  |
| R06               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1545.93                          | 74.07                                    | 0                                            | 74.07                            | 0.02                  | 1.91E+03                  |
| R08               | 730.8                            | 889.2                                    | 0                                            | 889.2                            | 0.26                  | 2.51E+04                  |
| R09               | 1589.6                           | 30.4                                     | 0                                            | 30.4                             | 0                     | 9.71E+00                  |
| R11               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1571.67                          | 48.27                                    | 0.07                                         | 48.34                            | 0.01                  | 9.05E+02                  |
| R14               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1620                             | · 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1471.27                          | 148.73                                   | 0                                            | 148.73                           | 0.04                  | 3.86E+03                  |
| R18               | 1451.2                           | 168.8                                    | 0                                            | 168.8                            | 0.15                  | 1.43E+04                  |
| R19               | 1592.2                           | 27.8                                     | 0                                            | 27.8                             | 0                     | 4.71E+02                  |
| R20               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1620                                     | 0                                            | 1620                             | 2.66                  | 2.58E+05                  |
| PS                | 0                                | 1620                                     | 0                                            | 1620                             | 7.95                  | 7.73E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENG TH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|-----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>R02           | <br>891.47                       | 1388.53                                  | 0                                             | 1388.53                          | 2.45                  | 3.35E+05                  |
| R03               | 1549                             | 731                                      | 0                                             | 731                              | 2.98                  | 4.08E+05                  |
| R04               | 2085.93                          | 194.07                                   | 0                                             | 194.07                           | 0.02                  | 2.79E+03                  |
| R05               | 736.73                           | 1543.2                                   | 0.07                                          | 1543.27                          | 4.56                  | 6.23E+05                  |
| R06               | 1845.67                          | 434.33                                   | 0                                             | 434.33                           | 0.09                  | 1.26E+04                  |
| R07               | 1529.27                          | 750.73                                   | 0                                             | 750.73                           | 0.9                   | 1.23E+05                  |
| R08               | 730.8                            | 1549.2                                   | 0                                             | 1549.2                           | 5.79                  | 7.92E+05                  |
| R09               | 1535.4                           | 744.53                                   | 0.07                                          | 744.6                            | 2.12                  | 2.90E+05                  |
| R11               | 1616.6                           | 663.4                                    | 0                                             | 663.4                            | 1.44                  | 1.96E+05                  |
| R12               | 1976.07                          | 303.93                                   | 0                                             | 303.93                           | 0.06                  | 7.72E+03                  |
| R13               | 1532.73                          | 747.2                                    | 0.07                                          | 747.27                           | 1.83                  | 2.51E+05                  |
| R14               | 2060.4                           | 219.53                                   | 0.07                                          | 219.6                            | 0.2                   | 2.79E+04                  |
| R15               | 1617.8                           | 662.2                                    | 0                                             | 662.2                            | 0.03                  | 3.72E+03                  |
| R16               | 1529.27                          | 750.73                                   | 0                                             | 750.73                           | 1.22                  | 1.67E+05                  |
| R17               | 731.27                           | 1548.73                                  | 0                                             | 1548.73                          | 1.53                  | 2.10E+05                  |
| R18               | 740.67                           | 1539.33                                  | 0                                             | 1539.33                          | 3.88                  | 5.31E+05                  |
| R19               | 1486.27                          | 793.67                                   | 0.07                                          | 793.74                           | 6.84                  | 9.36E+05                  |
| R20               | 1622.07                          | 657.93                                   | 0                                             | 657.93                           | 0.23                  | 3.17E÷04                  |
| R21               | 1643.8                           | 636.2                                    | 0                                             | 636.2                            | 0.24                  | 3.32E+04                  |
| R22               | 1614.6                           | 665.4                                    | 0                                             | 665.4                            | 0.6                   | 8.16E+04                  |
| R24               | 1851.87                          | 428.13                                   | 0                                             | 428.13                           | 0.14                  | 1.98E+04                  |
| R25               | 1693.53                          | 586.47                                   | 0                                             | 586.47                           | 0.08                  | 1.12E+04                  |
| R26               | 1564.93                          | 715.07                                   | 0                                             | 715.07                           | 0.68                  | 9.29E+04                  |
| 9A                | 1737                             | . 543                                    | 0                                             | 543                              | 0.99                  | 1.35E+05                  |
| А                 | 0                                | 2280                                     | 0                                             | 2280                             | 5.87                  | 8.03E+05                  |
| PS                | 0                                | 2280                                     | 0                                             | 2280                             | 14.03                 | 1.92E+06                  |

a' -

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1584.93                          | 875                                      | 0.07                                         | 875.07                           | 0.91                  | 1.35E+05                  |
| R03               | 2056.33                          | 403.67                                   | 0                                            | 403.67                           | 0.93                  | 1.37E+05                  |
| R04               | 2395.93                          | 64.07                                    | 0                                            | 64.07                            | 0.01                  | 7.68E+02                  |
| R05               | 757.27                           | 1702.73                                  | 0                                            | 1702.73                          | 1.79                  | 2.64E+05                  |
| R06               | 2402.07                          | 57.93                                    | 0                                            | 57.93                            | 0.01                  | 1.68E+03                  |
| R07               | 1977.93                          | 482.07                                   | 0                                            | 482.07                           | 0.32                  | 4.75E+04                  |
| R08               | 746.2                            | 1713.8                                   | 0                                            | 1713.8                           | 2.12                  | 3.13E+05                  |
| R09               | 2025.47                          | 434.47                                   | 0.07                                         | 434.54                           | 0.67                  | 9.83E+04                  |
| R11               | 2128.8                           | 331.2                                    | 0                                            | 331.2                            | 0.49                  | 7.17E+04                  |
| R12               | 2299                             | 161                                      | 0                                            | 161                              | 0.02                  | 2.78E+03                  |
| R13               | 1985.13                          | 474.8                                    | 0.07                                         | 474.87                           | 0.61                  | 9.03E+04                  |
| R14               | 2392.6                           | 67.33                                    | 0.07                                         | 67.4                             | 0.04                  | 5.31E+03                  |
| R15               | 2270.4                           | 189.6                                    | 0                                            | 189.6                            | 0.01                  | 9.85E+02                  |
| R16               | 2023.67                          | 436.27                                   | 0.07                                         | 436.34                           | 0.32                  | 4.68E+04                  |
| R17               | 739.93                           | 1720.07                                  | 0                                            | 1720.07                          | 0.57                  | 8.38E+04                  |
| R18               | 752.47                           | 1707.53                                  | 0                                            | 1707.53                          | 1.51                  | 2.23E+05                  |
| R19               | 1883.67                          | 576.33                                   | 0                                            | 576.33                           | 2.25                  | 3.32E+05                  |
| R20               | 2275.27                          | 184.73                                   | 0                                            | 184.73                           | 0.07                  | 1.11E+04                  |
| R21               | 2300.67                          | 159.33                                   | 0                                            | 159.33                           | 0.07                  | 1.00E+04                  |
| R22               | 2272.67                          | 187.33                                   | 0                                            | 187.33                           | 0.18                  | 2.67E+04                  |
| R24               | 2401.07                          | 58.93                                    | 0                                            | 58.93                            | 0                     | 3.53E+02                  |
| R25               | 2284.53                          | 175.47                                   | 0                                            | 175.47                           | 0.03                  | 3.92E+03                  |
| R26               | 2277.73                          | 182.27                                   | 0                                            | 182.27                           | 0.13                  | 1.94E+04                  |
| 9A                | 2148.6                           | 311.4                                    | 0                                            | 311.4                            | 0.31                  | 4.62E+04                  |
| A                 | 0                                | 2460                                     | 0                                            | 2460                             | 3.9                   | 5.75E+05                  |
| PS                | 0                                | 2460                                     | 0                                            | 2460                             | 10.73                 | 1.58E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1584.93                          | 875                                      | 0.07                                         | 875.07                           | 0.91                  | 1.35E+05                  |
| R03               | 2056.33                          | 403.67                                   | 0                                            | 403.67                           | 0.93                  | 1.37E+05                  |
| R04               | 2395.93                          | 64.07                                    | 0                                            | 64.07                            | 0.01                  | 7.68E+02                  |
| R05               | 757.27                           | 1702.73                                  | 0                                            | 1702.73                          | 1.79                  | 2.64E+05                  |
| R06               | 2402.07                          | . 57.93                                  | 0                                            | 57.93                            | 0.01                  | 1.68E+03                  |
| R07               | 1977.93                          | 482.07                                   | 0                                            | 482.07                           | 0.32                  | 4.75E+04                  |
| R08               | 746.2                            | 1713.8                                   | 0                                            | 1713.8                           | 2.12                  | 3.13E+05                  |
| R09               | 2025.47                          | 434.47                                   | 0.07                                         | 434.54                           | 0.67                  | 9.83E+04                  |
| R11               | 2128.8                           | 331.2                                    | 0                                            | 331.2                            | 0.49                  | 7.17E+04                  |
| R12               | 2299                             | 161                                      | 0                                            | 161                              | 0.02                  | 2.78E+03                  |
| R13               | 19 <b>8</b> 5.13                 | 474.8                                    | 0.07                                         | 474.87                           | 0.61                  | 9.03E+04                  |
| R14               | 2392.6                           | 67.33                                    | 0.07                                         | 67.4                             | 0.04                  | 5.31E+03                  |
| R15               | 2270.4                           | 189.6                                    | 0                                            | 189.6                            | 0.01                  | 9.85E+02                  |
| R16               | 2023.67                          | 436.27                                   | 0.07                                         | 436.34                           | 0.32                  | 4.68E+04                  |
| R17               | 739.93                           | 1720.07                                  | 0                                            | 1720.07                          | 0.57                  | 8.38E+04                  |
| R18               | 752.47                           | 1707.53                                  | 0                                            | 1707.53                          | 1.51                  | 2.23E+05                  |
| R19               | 1883.67                          | 576.33                                   | 0                                            | 576.33                           | 2.25                  | 3.32E+05                  |
| R20               | 2275.27                          | 184.73                                   | 0                                            | 184.73                           | 0.07                  | 1.11E+04                  |
| R21               | 2300.67                          | 159.33                                   | 0                                            | 159.33                           | 0.07                  | 1.00E+04                  |
| R22               | 2272.67                          | 187.33                                   | 0                                            | 187.33                           | 0.18                  | 2.67E+04                  |
| R24               | 2401.07                          | 58.93                                    | 0                                            | 58.93                            | 0                     | 3.53E+02                  |
| R25               | 2284.53                          | 175.47                                   | 0                                            | 175.47                           | 0.03                  | 3.92E+03                  |
| R26               | 2277.73                          | 182.27                                   | 0                                            | 182.27                           | 0.13                  | 1.94E+04                  |
| 9A                | 2148.6                           | 311.4                                    | 0                                            | 311.4                            | 0.31                  | 4.62E+04                  |
| А                 | 0                                | 2460                                     | 0                                            | 2460                             | 3.9                   | 5.75E+05                  |
| PS                | 0                                | 2460                                     | 0                                            | 2460                             | 10.73                 | 1.58E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1423.8                           | 136.13                                   | 0.07                                         | 136.2                            | 0.08                  | 7.08E+03                  |
| R03               | 1544.47                          | 15.53                                    | 0                                            | 15.53                            | 0                     | 9.38E+01                  |
| R04               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 729.67                           | 830.33                                   | 0                                            | 830.33                           | 0.28                  | 2.60E+04                  |
| R06               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1482.07                          | 77.93                                    | 0                                            | 77.93                            | 0.01                  | 1.03E+03                  |
| R08               | 726.6                            | 833.4                                    | 0                                            | 833.4                            | 0.24                  | 2.25E+04                  |
| R09               | 1541                             | 19                                       | 0                                            | 19                               | 0                     | 2.28E+01                  |
| R11               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1503.6                           | 56.33                                    | 0.07                                         | 56.4                             | 0.01                  | 7.78E+02                  |
| R14               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1560                             | . 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1466.6                           | 93.4                                     | 0                                            | 93.4                             | 0.03                  | 2.89E+03                  |
| R18               | 1443.4                           | 116.6                                    | 0                                            | 116.6                            | 0.11                  | 1.02E+04                  |
| R19               | 1554.07                          | 5.93                                     | 0                                            | 5.93                             | 0                     | 4.81E+00                  |
| R20               | 1556.27                          | 3.73                                     | 0                                            | 3.73                             | 0                     | 3.55E-01                  |
| R21               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1548.4                           | 11.6                                     | 0                                            | 11.6                             | 0                     | 1.02E+02                  |
| R24               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1553                             | 7                                        | 0                                            | 7                                | 0                     | 1.52E+01                  |
| 9A                | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1560                                     | 0                                            | 1560                             | 2.55                  | 2.39E+05                  |
| PS                | 0                                | 1560                                     | 0                                            | 1560                             | 7.59                  | 7.10E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>R02           |                                  | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R03               | 1740                             | 0                                        | 0                                            | . 0                              | 0                     | 0.00E+00                  |
| R04               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1740                             | . 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R06               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R09               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1678.33                          | 61.67                                    | 0                                            | 61.67                            | 0                     | 2.39E+00                  |
| R18               | 1608.67                          | 131.33                                   | 0                                            | 131.33                           | 0                     | 4.02E+02                  |
| R19               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1740                                     | 0                                            | 1740                             | 2.51                  | 2.62E+05                  |
| PS                | 0                                | 1740                                     | 0                                            | 1740                             | 7.01                  | 7.32E÷05                  |

 $\mathbf{v}(x)$ 

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1876.2                           | 943.8                                    | 0                                            | 943.8                            | <b></b><br>1.49       | 2.52E+05                  |
| R03               | 2262.27                          | 557.73                                   | 0                                            | 557.73                           | 2.23                  | 3.78E+05                  |
| R04               | 2474.53                          | 345.47                                   | 0                                            | 345.47                           | 0.12                  | 2.09E+04                  |
| R05               | 733.8                            | 2086.13                                  | 0.07                                         | 2086.2                           | 3.45                  | 5.84E+05                  |
| R06               | 2503.47                          | 316.53                                   | 0                                            | 316.53                           | 0.07                  | 1.15E+04                  |
| R07               | 2238.07                          | 581.93                                   | 0                                            | 581.93                           | 0.68                  | 1.15E+05                  |
| R08               | 1308.73                          | 1511.27                                  | 0                                            | 1511.27                          | 4.47                  | 7.56E+05                  |
| R09               | 2237                             | 582.93                                   | 0.07                                         | 583                              | 1.71                  | 2.90E+05                  |
| R11               | 2279.93                          | 540.07                                   | 0                                            | 540.07                           | 1.2                   | 2.03E+05                  |
| R12               | 2582.07                          | 237.93                                   | 0                                            | 237.93                           | 0.11                  | 1.89E+04                  |
| R13               | 2215.07                          | 604.93                                   | 0                                            | 604.93                           | 1.34                  | 2.27E+05                  |
| R14               | 2516.87                          | 303.07                                   | 0.07                                         | 303.14                           | 0.44                  | 7.46E+04                  |
| R15               | 2437.8                           | 382.2                                    | 0                                            | 382.2                            | 0.04                  | 6.66E+03                  |
| R16               | 2256.4                           | 563.53                                   | 0.07                                         | 563.6                            | 1.05                  | 1.78E+05                  |
| R17               | 1302.4                           | 1517.6                                   | 0                                            | 1517.6                           | 1.08                  | 1.83E+05                  |
| R18               | 1285.27                          | 1534.73                                  | 0                                            | 1534.73                          | 2.96                  | 5.00E+05                  |
| R19               | 2186.33                          | 633.67                                   | 0                                            | 633.67                           | 3.29                  | 5.57E+05                  |
| R20               | 2441                             | 379                                      | 0                                            | 379                              | 0.24                  | 4.04E+04                  |
| R21               | 2459.67                          | 360.33                                   | 0                                            | 360.33                           | 0.2                   | 3.42E+04                  |
| R22               | 2393.47                          | 426.53                                   | 0                                            | 426.53                           | 0.54                  | 9.18E+04                  |
| R24               | 2404.6                           | 415.4                                    | 0                                            | 415.4                            | 0.14                  | 2.39E+04                  |
| R25               | 2394 <b>.8</b>                   | 425.2                                    | 0                                            | 425.2                            | 0.18                  | 2.97E+04                  |
| R26               | 2278.07                          | 541.93                                   | 0                                            | 541.93                           | 0.59                  | 9.90E+04                  |
| 9A                | 2329.4                           | 490.6                                    | 0                                            | 490.6                            | 0.86                  | 1.45E+05                  |
| A                 | 0                                | 2820                                     | 0                                            | 2820                             | 4,79                  | 8.10E+05                  |
| PS                | 0                                | 2820                                     | 0                                            | 2820                             | 11.47                 | 1.94E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>R02           | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R03               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 2137.13                          | 82.87                                    | 0                                            | 82.87                            | 0                     | 8.13E+01                  |
| R06               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 2220                             | . 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 2116.2                           | 103.8                                    | 0                                            | 103.8                            | 0                     | 1.90E+02                  |
| R09               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 2045.2                           | 174.8                                    | 0                                            | 174.8                            | 0                     | 2.56E+02                  |
| R18               | 2013.47                          | 206.53                                   | 0                                            | 206.53                           | 0.02                  | 2.44E+03                  |
| R19               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 2220                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 2220                                     | 0                                            | 2220                             | 2.6                   | 3.46E+05                  |
| PS                | 0                                | 2220                                     | 0                                            | 2220                             | 7.18                  | 9.57E+05                  |

ť ę

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1884.2                           | 995.8                                    | 0                                            | 995.8                            | 1.11                  | 1.91E+05                  |
| R03               | 2410.2                           | 469.73                                   | 0.07                                         | 469.8                            | 1.28                  | 2.21E+05                  |
| R04               | 2569.4                           | 310.6                                    | 0                                            | 310.6                            | 0.07                  | 1.30E+04                  |
| R05               | 1131.67                          | 1748.27                                  | 0.07                                         | 1748.34                          | 2.06                  | 3.56E+05                  |
| R06               | 2591.13                          | 288.87                                   | 0                                            | 288.87                           | 0.05                  | 8.62E+03                  |
| R07               | 2336.07                          | 543.93                                   | 0                                            | 543.93                           | 0.4                   | 6.97E+04                  |
| R08               | 1126.27                          | 1753.67                                  | 0.07                                         | 1753.74                          | 2.66                  | 4.60E+05                  |
| R09               | 2370.67                          | 509.27                                   | 0.07                                         | 509.34                           | 0.97                  | 1.67E+05                  |
| R11               | 2514.13                          | 365.8                                    | 0.07                                         | 365.87                           | 0.69                  | 1.19E+05                  |
| R12               | 2702.4                           | 177.6                                    | 0                                            | 177.6                            | 0.05                  | 7.87E+03                  |
| R13               | 2319.13                          | 560.8                                    | 0.07                                         | 560.87                           | 0.8                   | 1.39E+05                  |
| R14               | 2717.67                          | 162.33                                   | 0                                            | 162.33                           | 0.15                  | 2.62E+04                  |
| R15               | 2581.67                          | 298.33                                   | 0                                            | 298.33                           | 0.01                  | 2.52E+03                  |
| R16               | 2480.33                          | 399.67                                   | 0                                            | 399.67                           | 0.55                  | 9.45E+04                  |
| R17               | 849.47                           | 2030.53                                  | 0                                            | 2030.53                          | 0.7                   | 1.20E+05                  |
| R18               | 819.33                           | 2060.67                                  | 0                                            | 2060.67                          | 1.85                  | 3.19E+05                  |
| R19               | 2383.53                          | 496.47                                   | 0                                            | 496.47                           | 2.71                  | 4.68E+05                  |
| R20               | 2578.93                          | 301.07                                   | 0                                            | 301.07                           | 0.12                  | 2.05E+04                  |
| R21               | 2577.67                          | 302.33                                   | 0                                            | 302.33                           | 0.11                  | 1.95E+04                  |
| R22               | 2576.07                          | 303.93                                   | 0                                            | 303.93                           | 0.28                  | 4.85E+04                  |
| R24               | 2580.2                           | 299.8                                    | 0                                            | 299.8                            | 0.08                  | 1.36E+04                  |
| R25               | 2577                             | 303                                      | 0                                            | 303                              | 0.12                  | 2.02E+04                  |
| R26               | 2491.53                          | 388.47                                   | 0                                            | 388.47                           | 0.31                  | 5.41E+04                  |
| 9A                | 2569.8                           | 310.2                                    | 0                                            | 310.2                            | 0.48                  | 8.24E+04                  |
| А                 | 0                                | 2880                                     | 0                                            | 2880                             | 4.09                  | 7.07E+05                  |
| PS                | 0                                | 2880                                     | 0                                            | 2880                             | 10.52                 | 1.82E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1495.8                           | 244.2                                    | 0                                            | 244.2                            | 0.09                  | 9.76E+03                  |
| R03               | 1710.27                          | 29.73                                    | 0                                            | 29.73                            | 0                     | 7.29E+01                  |
| R04               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 790.53                           | 949.47                                   | 0                                            | 949.47                           | 0.32                  | 3.34E+04                  |
| R06               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1667.47                          | 72.53                                    | 0                                            | 72.53                            | 0.01                  | 1.22E+03                  |
| R08               | 832.27                           | 907.67                                   | 0.07                                         | 907.74                           | 0.24                  | 2.46E+04                  |
| R09               | 1707.6                           | 32.33                                    | 0.07                                         | 32.4                             | 0                     | 1.19E+01                  |
| R11               | 1740                             | . 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1691.87                          | 48.07                                    | 0.07                                         | 48.14                            | 0.01                  | 9.51E+02                  |
| R14               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1559.73                          | 180.27                                   | 0                                            | 180.27                           | 0.04                  | 3.71E+03                  |
| R18               | 1499.07                          | 240.93                                   | 0                                            | 240.93                           | 0.14                  | 1.44E+04                  |
| R19               | 1724.53                          | 15.47                                    | 0                                            | 15.47                            | 0                     | 7.67E+01                  |
| R20               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1740                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1740                                     | 0                                            | 1740                             | 2.68                  | 2.79E+05                  |
| PS                | 0                                | 1740                                     | 0                                            | 1740                             | 7.96                  | 8.31E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1428.8                           | 191.2                                    | 0                                            | 191.2                            | 0.15                  | <br>1.49E+04              |
| R03               | 1524.47                          | 95.53                                    | 0                                            | 95.53                            | 0.08                  | 7.44E+03                  |
| R04               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 728.67                           | 891.27                                   | 0.07                                         | 891.34                           | 0.43                  | 4.17E+04                  |
| R06               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1488                             | 132                                      | 0                                            | 132                              | 0.04                  | 4.31E+03                  |
| R08               | 725.93                           | 894.07                                   | 0                                            | 894.07                           | 0.42                  | 4.10E+04                  |
| R09               | 1583.27                          | 36.67                                    | 0.07                                         | 36.74                            | 0                     | 2.71E+02                  |
| R11               | 1611.2                           | 8.73                                     | 0.07                                         | 8.8                              | 0                     | 3.24E+00                  |
| R12               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1485.93                          | 134                                      | 0.07                                         | 134.07                           | 0.07                  | 7.24E+03                  |
| R14               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1603                             | 17                                       | 0                                            | 17                               | 0                     | 1.43E+00                  |
| R16               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 727.27                           | 892.73                                   | 0                                            | 892.73                           | 0.11                  | 1.09E+04                  |
| R18               | 733.67                           | 886.33                                   | 0                                            | 886.33                           | 0.33                  | 3.24E+04                  |
| R19               | 1539.53                          | 80.47                                    | 0                                            | 80.47                            | 0.05                  | 4.73E+03                  |
| R20               | 1602.33                          | 17.67                                    | 0                                            | 17.67                            | 0                     | 4.79E+01                  |
| R21               | 1620                             | • 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1597.27                          | 22.73                                    | 0                                            | 22.73                            | 0                     | 4.66E+02                  |
| R24               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1601.73                          | 18.27                                    | 0                                            | 18.27                            | 0                     | 1.79E+02                  |
| 9A                | 1620                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1620                                     | 0                                            | 1620                             | 2.69                  | 2.62E+05                  |
| PS                | 0                                | 1620                                     | 0                                            | 1620                             | 8.05                  | 7.82E+05                  |

.

•

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1517.07                          | 522.87                                   | 0.07                                         | 522,94                           | 0.68                  | 8.28E+04                  |
| R03               | 1895.13                          | 144.87                                   | 0                                            | 144.87                           | 0.72                  | 8.81E+04                  |
| R04               | 1962.27                          | 77.73                                    | 0                                            | 77.73                            | 0.07                  | 8.51E+03                  |
| R05               | 731.13                           | 1308.87                                  | 0                                            | 1308.87                          | 1.3                   | 1.60E+05                  |
| R06               | 1972.6                           | 67.33                                    | 0.07                                         | 67.4                             | 0.03                  | 3.25E+03                  |
| R07               | 1784.07                          | 255.93                                   | 0                                            | 255.93                           | 0.25                  | 3.09E+04                  |
| R08               | 727.53                           | 1312.47                                  | 0                                            | 1312.47                          | 1.74                  | 2.13E+05                  |
| R09               | 1872.13                          | 167.87                                   | 0                                            | 167.87                           | 0.57                  | 7.03E+04                  |
| R11               | 1967                             | 72.93                                    | 0.07                                         | 73                               | 0.41                  | 5.07E+04                  |
| R12               | 1980.07                          | 59.93                                    | 0                                            | 59.93                            | 0.05                  | 6.44E+03                  |
| R13               | 1832.87                          | 207.07                                   | 0.07                                         | 207.14                           | 0.47                  | 5.77E+04                  |
| R14               | 1973.47                          | 66.53                                    | 0                                            | 66.53                            | 0.12                  | 1.47E+04                  |
| R15               | 1971.6                           | 68.4                                     | 0                                            | 68.4                             | 0.01                  | 1.43E+03                  |
| R16               | 1901.4                           | 138.6                                    | 0                                            | 138.6                            | 0.34                  | 4.19E+04                  |
| R17               | 1009.8                           | 1030.2                                   | 0                                            | 1030.2                           | 0.4                   | 4.88E+04                  |
| R18               | 992.13                           | 1047.87                                  | 0                                            | 1047.87                          | 1.17                  | 1.43E+05                  |
| R19               | 1786.8                           | 253.2                                    | 0                                            | 253.2                            | 1                     | 1.22E+05                  |
| R20               | 1974.73                          | 65.27                                    | 0                                            | 65.27                            | 0.1                   | 1.17E+04                  |
| R21               | 1973.4                           | 66.6                                     | 0                                            | 66.6                             | 0.07                  | 9.13E+03                  |
| R22               | 1974.47                          | 65.53                                    | 0                                            | 65.53                            | 0.2                   | 2.46E+04                  |
| R24               | 1977.6                           | 62.4                                     | 0                                            | 62.4                             | 0.06                  | 7.81E+03                  |
| R25               | 1972.67                          | 67.33                                    | 0                                            | 67.33                            | 0.07                  | 8.77E+03                  |
| R26               | 1971.13                          | 68.87                                    | 0                                            | 68.87                            | 0.2                   | 2.50E+04                  |
| 9A                | 1965                             | 75                                       | 0                                            | 75                               | 0.3                   | 3.68E+04                  |
| А                 | 0                                | 2040                                     | 0                                            | 2040                             | 3.38                  | 4.13E+05                  |
| PS                | 0                                | 2040                                     | 0                                            | 2040                             | 9.45                  | 1.16E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
|                   |                                  |                                          |                                              |                                  |                       |                           |
| R02               | 1324.6                           | 1435.33                                  | 0.07                                         | 1435.4                           | 2.50                  | 4.24E+05                  |
| R03               | 1695.13                          | 1064.87                                  | 0                                            | 1064.87                          | 3.42                  | 5.66E+05                  |
| R04               | 2237.13                          | 522.87                                   | 0                                            | 522.87                           | 0.32                  | 5.25E+04                  |
| R05               | 757.27                           | 2002.73                                  | 0                                            | 2002.73                          | 5.4                   | 8.94E+05                  |
| R06               | 2331                             | 428.93                                   | 0.07                                         | 429                              | 0.14                  | 2.28E+04                  |
| R07               | 1605.13                          | 1154.87                                  | 0                                            | 1154.87                          | 1.1                   | 1.81E+05                  |
| R08               | 746.2                            | 2013.8                                   | 0                                            | 2013.8                           | 7.2                   | 1.19E+06                  |
| R09               | 1608.47                          | 1151.27                                  | 0.27                                         | 1151.54                          | 2.7                   | 4.47E+05                  |
| R11               | 1859.6                           | 900.4                                    | 0                                            | 900.4                            | 1.88                  | 3.11E+05                  |
| R12               | 2396.93                          | 363.07                                   | 0                                            | 363.07                           | 0.19                  | 3.14E+04                  |
| R13               | 1578.6                           | 1181.33                                  | 0.07                                         | 1181.4                           | 2.09                  | 3.46E+05                  |
| R14               | 2308.67                          | 451.33                                   | 0                                            | 451.33                           | 1.09                  | 1.81E+05                  |
| R15               | 2326.87                          | 433.13                                   | 0                                            | 433.13                           | 0.07                  | 1.11E+04                  |
| R16               | 1957.8                           | 802                                      | 0.2                                          | 802.2                            | 1.59                  | 2.64E+05                  |
| R17               | 739.93                           | 2020.07                                  | 0                                            | 2020.07                          | 1.73                  | 2.87E+05                  |
| R18               | 752.47                           | 2007.53                                  | 0                                            | 2007.53                          | 4.67                  | 7.73E+05                  |
| R19               | 1499.53                          | 1260.4                                   | 0.07                                         | 1260.47                          | 4.85                  | 8.03E+05                  |
| R20               | 2331.6                           | 428.4                                    | 0                                            | 428.4                            | 0.4                   | 6.55E+04                  |
| R21               | 2330.13                          | 429.87                                   | 0                                            | 429.87                           | 0.33                  | 5.53E+04                  |
| R22               | 2273.87                          | 486.13                                   | 0                                            | 486.13                           | 0.88                  | 1.46E+05                  |
| R24               | 2277.93                          | 482.07                                   | 0                                            | 482.07                           | 0.28                  | 4.58E+04                  |
| R25               | 1987.33                          | 772.67                                   | 0                                            | 772.67                           | 0.38                  | 6.24E+04                  |
| R26               | 1820.67                          | 939.33                                   | 0                                            | 939.33                           | 0.95                  | 1.57E+05                  |
| 9A                | 2030.93                          | 729.07                                   | 0                                            | 729.07                           | 1.36                  | 2.25E+05                  |
| A                 | 0                                | 2760                                     | 0                                            | 2760                             | 6.12                  | 1.01E+06                  |
| PS                | 0                                | 2760                                     | 0                                            | 2760                             | 13.79                 | 2.28E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1617.47                          | 542.53                                   | 0                                            | 542.53                           | 0.32                  | 4.11E+04                  |
| R03               | 1904.13                          | 255.8                                    | 0.07                                         | 255.87                           | 0.27                  | 3.53E+04                  |
| R04               | 2160                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 850                              | 1310                                     | 0                                            | 1310                             | 0.73                  | 9.51E+04                  |
| R06               | 2160                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1860.4                           | 299.6                                    | 0                                            | 299.6                            | 0.09                  | 1.22E+04                  |
| R08               | 847                              | 1312.93                                  | 0.07                                         | 1313                             | 0.79                  | 1.03E+05                  |
| R09               | 1844.4                           | 315.53                                   | 0.07                                         | 315.6                            | 0.11                  | 1.40E+04                  |
| R11               | 2038.8                           | 121.2                                    | 0                                            | 121.2                            | 0.12                  | 1.59E+04                  |
| R12               | 2160                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1832.4                           | 327.6                                    | 0                                            | 327.6                            | 0.2                   | 2.58E+04                  |
| R14               | 2160                             | · 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 2094.73                          | 65.27                                    | 0                                            | 65.27                            | 0                     | 9.75E+01                  |
| R16               | 2005.8                           | 154.13                                   | 0.07                                         | 154.2                            | 0.06                  | 8.36E+03                  |
| R17               | 786.33                           | 1373.67                                  | 0                                            | 1373.67                          | 0.23                  | 2.98E+04                  |
| R18               | 784.13                           | 1375.87                                  | 0                                            | 1375.87                          | 0.62                  | 8.03E+04                  |
| R19               | 1753.4                           | 406.6                                    | 0                                            | 406.6                            | 0.74                  | 9.62E+04                  |
| R20               | 2097.27                          | 62.73                                    | 0                                            | 62.73                            | 0.01                  | 1.60E+03                  |
| R21               | 2116.13                          | 43.87                                    | 0                                            | 43.87                            | 0.01                  | 1.32E+03                  |
| R22               | 2094.53                          | 65.47                                    | 0                                            | 65.47                            | 0.04                  | 4.88E+03                  |
| R24               | 2160                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 2103.13                          | 56.87                                    | 0                                            | 56.87                            | 0                     | 2.36E+02                  |
| R26               | 2098.73                          | 61.27                                    | 0                                            | 61.27                            | 0.02                  | 3.15E+03                  |
| 9A                | 2107                             | 53                                       | 0                                            | 53                               | 0                     | 3.42E+02                  |
| A                 | 0                                | 2160                                     | 0                                            | 2160                             | 3.15                  | 4.08E+05                  |
| PS                | 0                                | 2160                                     | 0                                            | 2160                             | 8.68                  | 1.12E+06                  |

.

- 200

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENG TH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|-----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1524.93                          | 35.07                                    | 0                                             | 35.07                            | 0                     | 8.52E+00                  |
| R03               | 1560                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R04               | 1560                             | . 0                                      | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R05               | 1498.4                           | 61.53                                    | 0.07                                          | 61.6                             | 0.01                  | 6.94E+02                  |
| R06               | 1560                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R07               | 1560                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R08               | 1493.8                           | 66.13                                    | 0.07                                          | 66.2                             | 0.01                  | 1.15E+03                  |
| R09               | 1560                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| RH                | 1560                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R12               | 1560                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R13               | 1560                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R14               | 1560                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R15               | 1560                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R16               | 1560                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R17               | 1484.6                           | 75.4                                     | 0                                             | 75.4                             | 0                     | 4.23E+02                  |
| R18               | 1466.4                           | 93.6                                     | 0                                             | 93.6                             | 0.02                  | 2.23E+03                  |
| R19               | 1560                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R20               | 1560                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R21               | 1560                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R22               | 1560                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R24               | 1560                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R25               | 1560                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| R26               | 1560                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1560                             | 0                                        | 0                                             | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1560                                     | 0                                             | 1560                             | 2.58                  | 2.41E+05                  |
| PS                | 0                                | 1560                                     | 0                                             | 1560                             | 7.12                  | 6.66E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>R02           | 1206                             | 2064                                     |                                              | 2064                             | 2 3 3                 | 4 69E+05                  |
| R02               | 1953.07                          | 1406.93                                  | 0                                            | 1406.93                          | 2.55                  | 5.17E+05                  |
| R04               | 2929.67                          | 430.33                                   | ů<br>0                                       | 430.33                           | 0.09                  | 1 79E+04                  |
| R05               | 794.2                            | 2565.8                                   | 0                                            | 2565.8                           | 4.28                  | 8.63E+05                  |
| R06               | 3068.4                           | 291.6                                    | 0                                            | 291.6                            | 0.04                  | 7.73E+03                  |
| R07               | 1777.6                           | 1582.4                                   | 0                                            | 1582.4                           | 0.86                  | 1.74E+05                  |
| R08               | 789.4                            | 2570.6                                   | 0                                            | 2570.6                           | 5.48                  | 1.11E+06                  |
| R09               | 1919.4                           | 1440,47                                  | 0.13                                         | 1440.6                           | 1.54                  | 3.10E+05                  |
| R11               | 2218.4                           | 1141.6                                   | 0                                            | 1141.6                           | 1.21                  | 2.44E+05                  |
| R12               | 2964.47                          | 395.53                                   | 0                                            | 395.53                           | 0.05                  | 9.96E+03                  |
| R13               | 1837.93                          | 1522.07                                  | 0                                            | 1522.07                          | 1.64                  | 3.30E+05                  |
| R14               | 3184.07                          | 175.8                                    | 0.13                                         | 175.93                           | 0.13                  | 2.54E+04                  |
| R15               | 2535.27                          | 824.73                                   | 0                                            | 824.73                           | 0.02                  | 3.67E+03                  |
| R16               | 2062.33                          | 1297.13                                  | 0.53                                         | 1297.66                          | 0.93                  | 1.88E+05                  |
| R17               | 782.67                           | 2577.33                                  | 0                                            | 2577.33                          | 1.41                  | 2.84E+05                  |
| R18               | 783.73                           | 2576.27                                  | 0                                            | 2576.27                          | 3.7                   | 7.47E+05                  |
| R19               | 1730.53                          | 1629.47                                  | 0                                            | 1629.47                          | 6.33                  | 1.28E+06                  |
| R20               | 2519.73                          | 840.27                                   | 0                                            | 840.27                           | 0.18                  | 3.57E+04                  |
| R21               | 2592.4                           | 767.6                                    | 0                                            | 767.6                            | 0.18                  | 3.70E+04                  |
| R22               | 2447.8                           | 912.2                                    | 0                                            | 912.2                            | 0.46                  | 9.19E+04                  |
| R24               | 3054.87                          | 305.13                                   | 0                                            | 305.13                           | 0.08                  | 1.64E+04                  |
| R25               | 2675.8                           | 684.2                                    | 0                                            | 684.2                            | 0.13                  | 2.54E+04                  |
| R26               | 2397.6                           | 962.4                                    | 0                                            | 962.4                            | 0.44                  | 8.91E+04                  |
| 9A                | 2451.33                          | 908.67                                   | 0                                            | 908.67                           | 0.56                  | 1.13E+05                  |
| A                 | 0                                | 3360                                     | 0                                            | 3360                             | 6.3                   | 1.27E+06                  |
| P <b>S</b>        | 0                                | 3360                                     | 0                                            | 3360                             | 15.34                 | 3.09E+06                  |

6

13

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1591.27                          | 448.73                                   | 0                                            | 448.73                           | 0.26                  | 3.16E+04                  |
| R03               | 1931.8                           | 108.2                                    | 0                                            | 108.2                            | 0.02                  | 2.60E+03                  |
| R04               | 2040                             | . 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 848.2                            | 1191.73                                  | 0.07                                         | 1191.8                           | 0.6                   | 7.37E+04                  |
| R06               | 2003.4                           | 36.6                                     | 0                                            | 36.6                             | 0                     | 2.84E+02                  |
| R07               | 1785.6                           | 254.4                                    | 0                                            | 254.4                            | 0.07                  | 8.84E+03                  |
| R08               | 834                              | 1205.87                                  | 0.13                                         | 1206                             | 0.63                  | 7.69E+04                  |
| R09               | 1925.6                           | 114.33                                   | 0.07                                         | 114.4                            | 0                     | 6.11E+02                  |
| R11               | 2040                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 2040                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1746.07                          | 293.93                                   | 0                                            | 293.93                           | 0.15                  | 1.78E+04                  |
| R14               | 2040                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 2040                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1971.53                          | 68.07                                    | 0.4                                          | 68.47                            | 0                     | 0.00E+00                  |
| R17               | 1536.4                           | 503.6                                    | 0                                            | 503.6                            | 0.1                   | 1.22E+04                  |
| R18               | 1490.07                          | 549.93                                   | 0                                            | 549.93                           | 0.36                  | 4.44E+04                  |
| R19               | 1745.07                          | 294.93                                   | 0                                            | 294.93                           | 0.52                  | 6.40E+04                  |
| R20               | 2040                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 2035.2                           | 4.8                                      | 0                                            | 4.8                              | 0                     | 1.01E+01                  |
| R22               | 1934.6                           | 105.4                                    | 0                                            | 105.4                            | 0.01                  | 7.58E+02                  |
| R24               | 2040                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 2040                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 2040                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 2040                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 2040                                     | 0                                            | 2040                             | 3.26                  | 3.99E+05                  |
| PS                | 0                                | 2040                                     | 0                                            | 2040                             | 9.11                  | 1.12E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>R02           | 1694.8                           | 165.2                                    | 0                                            | 165.2                            | 0.04                  | 4 36F+03                  |
| R03               | 1860                             | 0                                        | 0                                            | 0                                | 0.04                  | 0.00E+00                  |
| R04               | 1860                             | 0                                        | Ő                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 924.6                            | 935.4                                    | 0                                            | 935.4                            | 0.17                  | 1.85E+04                  |
| R06               | 1860                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1860                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1688.13                          | 171.87                                   | 0                                            | 171.87                           | 0.03                  | 3.36E+03                  |
| R09               | 1860                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1860                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1860                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1860                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1860                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1860                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1860                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1544.93                          | 315.07                                   | 0                                            | 315.07                           | 0.01                  | 1.25E+03                  |
| R18               | 1514.73                          | 345.27                                   | 0                                            | 345.27                           | 0.07                  | 7.64E+03                  |
| R19               | 1860                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1860                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1860                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1860                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1860                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1860                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1860                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1860                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                | 1860                                     | 0                                            | 1860                             | 2.68                  | 2.99E+05                  |
| PS                | 0                                | 1860                                     | 0                                            | 1860                             | 7.7                   | 8.59E+05                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1347.67                          | 812.33                                   | 0                                            | 812.33                           | 1.37                  | 1.78E+05                  |
| R03               | 1638.2                           | 521.8                                    | 0                                            | 521.8                            | 1.56                  | 2.03E+05                  |
| R04               | 2086.73                          | 73.27                                    | 0                                            | 73.27                            | 0                     | 2.82E+02                  |
| R05               | 790.53                           | 1369.47                                  | 0                                            | 1369.47                          | 2.63                  | 3.41E+05                  |
| R06               | 2160                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1615.4                           | 544.6                                    | 0                                            | 544.6                            | 0.5                   | 6.54E+04                  |
| R08               | 787.13                           | 1372.8                                   | 0.07                                         | 1372.87                          | 3.24                  | 4.19E+05                  |
| R09               | 1623                             | 536.93                                   | 0.07                                         | 537                              | 1.09                  | 1.41E+05                  |
| R11               | 1743.47                          | 416.53                                   | 0                                            | 416.53                           | 0.7                   | 9.08E+04                  |
| R12               | 1924.47                          | 235.53                                   | 0                                            | 235.53                           | 0.02                  | 2.24E+03                  |
| R13               | 1612                             | 547.93                                   | 0.07                                         | 548                              | 1                     | 1.30E+05                  |
| R14               | 2040.53                          | 119.4                                    | 0.07                                         | 119.47                           | 0.02                  | 2.96E+03                  |
| R15               | 1794.67                          | 365.33                                   | 0                                            | 365.33                           | 0.01                  | 1.20E+03                  |
| R16               | 1695.4                           | 464.6                                    | 0                                            | 464.6                            | 0.6                   | 7.74E+04                  |
| R17               | 782.33                           | 1377.67                                  | 0                                            | 1377.67                          | 0.87                  | 1.13E+05                  |
| R18               | 783.53                           | 1376.47                                  | 0                                            | 1376.47                          | 2.24                  | 2.90E+05                  |
| R19               | 1596.07                          | 563.87                                   | 0.07                                         | 563.94                           | 3.87                  | 5.02E+05                  |
| R20               | 1796.47                          | 363.53                                   | 0                                            | 363.53                           | 0.11                  | 1.40E+04                  |
| R21               | 1820.67                          | 339.33                                   | 0                                            | 339.33                           | 0.12                  | 1.57E+04                  |
| R22               | 1791.47                          | 368.53                                   | 0                                            | 368.53                           | 0.28                  | 3.68E+04                  |
| R24               | 2103.53                          | 56.47                                    | 0                                            | 56.47                            | 0                     | 2.47E+01                  |
| R25               | 1918.93                          | 241.07                                   | 0                                            | 241.07                           | 0.03                  | 4.03E+03                  |
| R26               | 1798.07                          | 361.93                                   | 0                                            | 361.93                           | 0.19                  | 2.52E+04                  |
| 9A                | 1899.8                           | 260.2                                    | 0                                            | 260.2                            | 0.5                   | 6.52E+04                  |
| А                 | 0                                | 2160                                     | 0                                            | 2160                             | 4.58                  | 5.94E+05                  |
| PS                | 0                                | 2160                                     | 0                                            | 2160                             | 12                    | 1.56E+06                  |

| CONDUIT<br>NUMBER | LENGTH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| <br>R02           | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R03               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1522                             | 38                                       | 0                                            | 38                               | 0                     | 3.61E+01                  |
| R06               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1511.27                          | 48.73                                    | 0                                            | 48,73                            | 0                     | 8.91E+01                  |
| R09               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R11               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1495.33                          | 64.67                                    | 0                                            | 64.67                            | 0                     | 1.13E+02                  |
| R18               | 1479                             | 81                                       | 0                                            | 81                               | 0.01                  | 9.63E+02                  |
| R19               | 1560                             | · 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1560                             | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| A                 | 0                                | 1560                                     | 0                                            | 1560                             | 2.51                  | 2.35E+05                  |
| PS                | 0                                | 1560                                     | 0                                            | 1560                             | 6.99                  | 6.55E+05                  |

| CONDUIT<br>NUMBER | LENG TH<br>OF<br>DRY<br>FLOW(MIN) | LENGTH<br>OF<br>SUBCRITICAL<br>FLOW(MIN) | LENGTH<br>OF UPSTR.<br>CRITICAL<br>FLOW(MIN) | LENGTH<br>OF<br>WET<br>FLOW(MIN) | MEAN<br>FLOW<br>(CFS) | TOTAL<br>FLOW<br>CUBIC FT |
|-------------------|-----------------------------------|------------------------------------------|----------------------------------------------|----------------------------------|-----------------------|---------------------------|
| R02               | 1733.87                           | 66.13                                    | 0                                            | 66.13                            | 0                     | 1.04E+02                  |
| R03               | 1800                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R04               | 1800                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R05               | 1721.6                            | 78.4                                     | 0                                            | 78.4                             | 0.01                  | 9.18E+02                  |
| R06               | 1800                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R07               | 1800                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R08               | 1720                              | 80                                       | 0                                            | 80                               | 0.01                  | 1.38E+03                  |
| R09               | 1800                              | · 0                                      | 0                                            | 0                                | 0                     | 0.00E+00                  |
| RII               | 1800                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R12               | 1800                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R13               | 1800                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R14               | 1800                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R15               | 1800                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R16               | 1800                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R17               | 1554.33                           | 245.67                                   | 0                                            | 245.67                           | 0.01                  | 5.61E+02                  |
| R18               | 1527.07                           | 272.93                                   | 0                                            | 272.93                           | 0.04                  | 4.09E+03                  |
| R19               | 1800                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R20               | 1800                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R21               | 1800                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R22               | 1800                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R24               | 1800                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R25               | 1800                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| R26               | 1800                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| 9A                | 1800                              | 0                                        | 0                                            | 0                                | 0                     | 0.00E+00                  |
| А                 | 0                                 | 1800                                     | 0                                            | 1800                             | 2.7                   | 2.92E+05                  |
| PS                | 0                                 | 1800                                     | 0                                            | 1800                             | 7.4                   | 7.99E+05                  |

. . .



| · · · · · · · · · · · · · · · · · · ·                          |                                                                                                                                                                              |             | * * * * * *  |
|----------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|
| · · · · · · · · · · · · · · · · · · ·                          | $ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$                                                                                                                    |             | * * * * *    |
| · · · · · · · · · · · · · · · · · · ·                          | * * * * * * * * * * * * * * * * * * *                                                                                                                                        |             | * * *        |
| · · · · · · · · · · · · · · · · · · ·                          | * * * * * * * * * * * * * * * * * * *                                                                                                                                        |             | * *          |
| · · · · · · · · · · · · · · · · · · ·                          | ***************************************                                                                                                                                      |             | 4.4          |
| · · · · · · · · · · · · · · · · · · ·                          | * * * * * * * * * * * * * * * * * * * *                                                                                                                                      |             | *            |
| far 1<br>* * * * *<br>* * * *<br>* * * *<br>* * * *<br>* * * * | * * * * * * * * * * *                                                                                                                                                        |             | * *          |
| بيم<br>                                                        |                                                                                                                                                                              | * * * *     | * *          |
|                                                                | ***** ***** * * * * * * * * *                                                                                                                                                | *           | *            |
|                                                                |                                                                                                                                                                              | *           | * *          |
| · · · · · · · · · · · · · · · · · · ·                          |                                                                                                                                                                              | * * * * *   | * *          |
| · * * * * * * * * * * * * * * * * * * *                        | **** SIGKET SUMMARY SECTION ****                                                                                                                                             | *           | * *          |
| **************************************                         |                                                                                                                                                                              | * *         | * •          |
|                                                                | лі. (MING IS а ветвієйля се пата роми тир риктроммрити протокого споло споло с                                                                                               | * * * *     | * ·          |
| V ******* *                                                    | DEPOSITION DESTIMATION OF DATA FROM ALLE ENVIRONMENTALI FROLECTION ACCULTS STOREM<br>Deposition of sometime streaments accordance on the transmission of the streaments with | ****        | * •          |
| * * RI                                                         | PILITION OF DELIVERY OF A CONTRACT OF A C                                                              | * * *       | × +          |
| ** * RI                                                        | EQUESTED FOR THIS RETRIEVAL. BRIEF EXPLANATIONS OF THE INSTRUCTION SETS ARE INCLUINED BRIOW                                                                                  | *           | *            |
| *                                                              | QUESTIONS MAY BE DIRECTED TO THE STORET USER ASSISTANCE SECTION AT                                                                                                           | *           | * *          |
| * •                                                            | (800) 424-9067.                                                                                                                                                              | *           | *            |
| *                                                              |                                                                                                                                                                              | *           | * *          |
| * *'                                                           |                                                                                                                                                                              | *           | **           |
| *                                                              | ******                                                                                                                                                                       |             | *            |
| ***** *'                                                       |                                                                                                                                                                              | ****        | *            |
| * *                                                            |                                                                                                                                                                              | *           | *            |
| * *                                                            |                                                                                                                                                                              | *           | *            |
| * *                                                            |                                                                                                                                                                              | *           | *            |
| * *                                                            |                                                                                                                                                                              | *           | *            |
| × × × ×                                                        |                                                                                                                                                                              | *           | * *          |
| с<br>с<br>с<br>с<br>к                                          |                                                                                                                                                                              | ****        | *            |
| * *****                                                        | server, horney were neared horneys dim dog akmood and J. Dufnotion                                                                                                           |             | * *          |
| *                                                              | COMMANNUE IN AND FUNCTIAL FOR THE STATION MEADER INFORMATION WHICH APPEARS<br>ON EACH PAGE OF THE RETRIEVAL INLESS STATION ACCEPTOR WAS DEPENDED                             | ****        | * *          |
| * * *                                                          | ак жажжажажажа коло то                                                                                                                   | · •·        | < +<<br>< +< |
| ***** *                                                        | *                                                                                                                                                                            | *****       | *            |
| * * *                                                          | * STATION NUMBER(S) *                                                                                                                                                        | *           | *            |
| * *                                                            | * LATITUDE/LONGITUDE PRECISION CODE *                                                                                                                                        | *           | *            |
| * * *                                                          | * STATION LOCATION *                                                                                                                                                         | *           | * *          |
| *                                                              | * STATE/COUNTY CODE STATE NAME COUNTY NAME *                                                                                                                                 |             | *            |
| * ******                                                       | * MAJOR BASIN NAME MAJ/MIN/SUB BASIN CODE *                                                                                                                                  | *****       | *            |
| * +                                                            | * MINOR BASIN NAME *                                                                                                                                                         | *           | *            |
|                                                                | SIATION TIPE AGENCY CODE STORED DATE HYDROLOGIC UNIT*                                                                                                                        | *           | *            |
| *** *                                                          | * STATION DEPTH ELEVATION *                                                                                                                                                  | ***         | *            |
| : *                                                            |                                                                                                                                                                              | *           | *            |
| * *****                                                        |                                                                                                                                                                              | ×           | * 1          |
| *                                                              | * * 100KED 04TE * *                                                                                                                                                          |             | < *<br>< *   |
| ******                                                         | *                                                                                                                                                                            | * * * * * * | * *          |
| *                                                              | *RIVER MILE INDEX *                                                                                                                                                          | *           | *            |
| *                                                              | *                                                                                                                                                                            | *           | * *          |
| *                                                              | ***************************************                                                                                                                                      | *           | * *          |
| * •                                                            |                                                                                                                                                                              | *           | *            |
| к 4<br>Ж                                                       |                                                                                                                                                                              | *           | *            |
| <                                                              |                                                                                                                                                                              | *           | *            |
| < +                                                            | CONTINUED ON NEXT PAGE(S)                                                                                                                                                    |             | * *          |
|                                                                |                                                                                                                                                                              |             | * *          |
| * * * * * * * * * * * * * * * * *                              |                                                                                                                                                                              |             | ĸ            |

RETRIEVAL PROGRAM

PGM=INVENT

THIS IS AN INVENTORY RETRIEVAL SHOWING SUMMARY STATISTICS FOR ALL PARAMETERS

A BEGINNING DATE OF (YY/MM/DD) 80/01/01 WAS REQUESTED AN ENDING DATE OF (YY/MM/DD) 99/12/31 WAS REQUESTED STATION SELECTION WAS BY:

**31DELRBC** 112WRD AGENCY CODE(S) AND STATION NUMBER(S) FOR THE FOLLOWING AGENCY(S): 21PA 31DELRBC STATIONS SELECTED WERE RESTRICTED TO: **31DELRBC** 31DELRBC

112WRD

AGENCIES WHOSE DATA HAS NOT BEEN 'RETIRED' CONTACTS FOR AGENCY CODES RETRIEVED:

PHONE NUMBER (S) (609)883-9500 (717)787-1511 (703)648-5624 PENNSYLVANIA DPT ENV PROT DELAWARE RIVER BASIN COMM US GEOLOGICAL SURVEY ORGANI ZATION PRIMARY CONTACT NAME SANTORO, EDWARD D. SCHREFFLER, TAMMY BRIGGS, JOHN DATA RESTRICTIONS: 31DELRBC AGENCY 112WRD 21PA

----

\*\*NOTE\*\*

NO DEPTH INDICATOR RESTRICTIONS WERE SPECIFIED - COMPUTATIONS WILL BE PERFORMED WITHOUT REGARD TO DEPTH INDICATORS

\* \* NOTE \* \*

NO GRAB/COMPOSITE RESTRICTIONS WERE UTILIZED, SO BOTH GRAB AND COMPOSITE SAMPLE TYPES MAY HAVE BEEN INCLUDED - COMPUTATIONS WILL BE PERFORMED WITHOUT REGARD TO SAMPLE TYPE

\* \* NOTE \* \*

NO COMPOSITE SAMPLE RESTRICTIONS WERE SPECIFIED - COMPUTATIONS WILL INCLUDE STATISTICAL FEATURES OF THE COMPOSITING PROCESS, PRODUCING VALID RESULTS ONLY WHEN SOPHISTICATED COMPOSITES ARE NOT ENCOUNTERED. SPECIFY COMPOSITE HANDLING KEYWORDS "ANC" AND/OR "DSROC" IF NEEDED

\*\*\*\* END OF SUMMARY SECTION \*\*\*\*

. - . .

DELCORA CSO LTCP PGM=INVENT 422094 39 50 42.0 075 21 38.0 2 CHESTER CREEK AT ROUTE 291, CHESTER, PA 42045 PENNSYLVANIA DELAWARE NORTH ATLANTIC 020800 DELAWARE RIVER ZONE 4 31DELRBC 820130 0000 FEET DEPTH 00000 FEET DEPTH STORET RETRIEVAL DATE 99/01/25

/TYPA/AMBNT/STREAM

OFF

02040202011

| BEG DATE END DATE<br>81/07/21 92/09/28 | 81/08/17 94/06/28<br>87/01/27 87/01/27 | 81/08/17 94/06/28 | 81/08/17 94/06/28 | 96/03/21 96/03/21 | 96/03/21 96/03/21 | 81/09/17 81/09/17 | 96/03/21 96/03/21 | 81/07/21 84/03/22                       | 81/07/21 85/09/17 | 96/03/21 96/03/21 | 96/03/21 96/03/21  | 85/11/13 94/06/28 | 81/07/21 97/09/17 | 96/03/21 96/03/21 | 96/03/21 96/03/21 | 96/03/21 96/03/21 | 96/03/21 96/03/21 | 96/03/21 96/03/21 | 95/11/27 96/03/21 | 83/06/27 94/06/28 | 33/06/27 94/06/28 | 31/07/21 96/09/16 | 31/09/17 86/12/18 | 31/07/21 96/09/16 | 37/07/16 96/09/16 | 37/10/26 87/10/26 | 37/07/16 96/09/16 | 34/06/19 94/06/28 | 31/07/21 97/09/17 | 31/07/21 96/09/16 | 31/07/21 97/09/17 | 37/10/26 87/10/26 | 31/07/21 97/09/17 | 71/07/21 97/09/17 | 35/10/17 93/03/31 | 1/07/21 97/09/17 | 71/00/70 90/70/Té |
|----------------------------------------|----------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|------------------|-------------------|
| MINIMUM<br>2654<br>2                   | 1.0                                    | 0.                | 32.0              | 7092E+60          | 1828E+63          | 2                 | 9850E+60          | e<br>e                                  | 2.60              | 1694E+61          | 2403E+59           | 160               | 130               | 6304E+58          | 1260E+58          | 7249E+59          | 3033E+59          | 9062E+58          | 9062E+60          | 3.2               | 35.6              | ۍ.<br>۳           | 2.0               | s.                | .4                | 4.                | 4.                | 6.70              | о.                | 0                 | 56 8              | 2                 | 2                 | 2                 | 2                 | 2                | 7.05 9            |
| MAXIMUM<br>123213                      | 1.0                                    | 28.0              | 82.4              | 7092E+60          | 1828E+63          | 2                 | 9850E+60          | 606                                     | 5.10              | 1694E+61          | 2403E+59           | 800               | 825               | 6304E+58          | 1260E+58          | 7249E+59          | 3033E+59          | 9062E+58          | 9850E+60          | 16.8              | 123.0             | 15.0              | 2.0               | 15.0              | 3.6               | 4.                | 3.6               | 9.00              | 8.7               | 100               | 558               | 2                 | 558               | 772               | 2                 | 772              | 10.80             |
| STAN DEV<br>46091.00                   | 006260.1                               | 7.805400          | 14.05000          |                   |                   |                   |                   | 365.9000                                | 001690/           |                   |                    | 149.7600          | 124.9500          |                   |                   |                   |                   |                   | .0000000          | 3.229600          | 19.60900          | 2.380800          | .0000000          | 2.364600          | .8457200          |                   | .8649300          | 4694000           | .7969200          | 12.85600          | 88.74500          |                   | 91.44500          | 75.98800          | .0000000          | 73.93700         | 2.086500          |
| VARIANCE<br>) 2124E+06                 | 00707-20 (                             | 0 60.92400        | 197.3900          | _                 |                   | _                 | -                 | 133880.0                                | 0061865.          |                   |                    | 22428.00          | 15613.00          |                   |                   |                   |                   |                   | . 0000000         | 10.43000          | 384.5000          | 5.668300          | . 0000000         | 5.591200          | .7152300          |                   | .7481100          | .2203400          | .6350800          | 165.2600          | 7875.700          |                   | 8362.300          | 5774.200          | .0000000          | 5466.700         | 4.353300          |
| 47952.00                               | 1.000000                               | 13.05200          | 55.49300          | 7092E+60          | 1828E+63          | 1.600000          | 9850E+60          | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                   | 10+35601          | 2403E+59           | 263.2400          | 378.1800          | 6304E+58          | 12608+58          | 72498+59          | 3033E+59          | 9062E+58          | 9456E+60          | 7.863000          | 70.24000          | 3.138900          | 2.000000          | 3.119100          | 1.639100          | .4000000          | 1.587500          | 7.283800          | 7.011000          | 53.45600          | 257.6700          | 2.000000          | 255.5000          | 27.99100          | 2.000000          | 26.44900         | 8.396700          |
| NUMBER<br>39<br>51                     | 7                                      | 52                | 52                | ·                 | Ľ,                | ~1 1              | 1                 | n (                                     |                   |                   | - :                | 1/1               | 118               | ~                 |                   | ľ                 |                   | ۲,                | 2                 | 46                | 46                | 113               | 2                 | 115               | 23                | ۲,                | 24                | 42                | 118               | 114               | 117               | e4                | 118               | 111               | -                 | 118              | m                 |
| RMK                                    | U                                      | TOT               | ა                 |                   |                   |                   |                   |                                         |                   |                   |                    |                   |                   |                   |                   |                   |                   |                   |                   |                   | \$                |                   | м                 | TOT               | ;                 | ×,                | TOT               |                   |                   |                   |                   | Ж                 | TOT               |                   | м                 | TOT              |                   |
| MEDIUM<br>WATER<br>WATER               |                                        |                   | WATER             | WATER             | WATER             | WATER             | WAIEK             | WALER<br>WATED                          | No true           | ADION<br>ADION    | MALER<br>WAMED     | WALEK<br>Gamer    | WATER             |                   |                   | MAIEK             |                   |                   | WATER             | WATER             | WATER             | WATER             |                   |                   | WATER             |                   |                  | WATER             |
| NUMBER<br>CENT                         |                                        |                   | FAHN              | FAHK              | FARN              | PH JO HE          | TNOT CODE         | EFFT                                    | 1001<br>1001      | 1/ UM             | d 1051<br>Onwoorth | MTCPONIO          | MICKUMHU          | METEKS            | SU FILT           | MG/L              | FT-CDS            | LB/D/CFS          | PERCENT           | MG/L              | FERCENT           | MG/L              |                   |                   | 1 1961 T          |                   |                   | 20                | 202               | мG/Ъ              | C MG/F            |                   |                   | MG/L              |                   |                  | MG/L              |
| AMETER<br>I DENT .<br>TEMP             |                                        |                   | TEMP T            | NAI UKAL<br>TEMD  | DDFCCUPD          | TVDF              |                   | STAGE                                   | DEPTH             | FLOAT             | ETET D             |                   | 107 TH            |                   | » CN              | TUTAL             | SUL RAD           | GREASE            | SOLLOS            |                   | SATUR             | YAU C             |                   |                   |                   |                   |                   |                   | LAB               | LACU3             | 50T-55TO          |                   |                   | TUT NETT          |                   | ;                | z                 |
| PAR.<br>LAB<br>WATER                   |                                        |                   | WAIEK<br>DT EDOW  | DI FRUM<br>ATD    | ALA<br>DAWAOAAD   | CTOID             | CTD57M            | STREAM                                  | MAX SAMP          | SOLTOS            | CNDITCTVV          | AUDIONO VALUE     | TA FOODAO         | VOAMPEDOU         | TODING T          | T-GNTOOT          | UNDW INC          | DID AND           | DIGESTER          | 22                |                   | 800               |                   | DOD TNU           |                   |                   | nd                | 110               |                   | I ALK             | REALDUE           |                   |                   | KEALDUE           |                   |                  | IUTAL N           |
| 00008                                  |                                        | 11000             | 1000              | 01001             | 00005             | C7000             | 00061             | 00065                                   | 00068             | 00093             | 00004              | 0000              |                   | 00100             | 00100             | 00100             | 001E3             | CCT00             | 7/700             | 00000             | 10000             | 01000             |                   | 00314             | E 7 0 0 0         |                   | 00700             |                   | 00500             | 01500             | CTCON             |                   | 000000            | 05500             |                   | 00200            | 00000             |

----PAGE: PGM=INVENT DELCORA CSO LTCP

STORET RETRIEVAL DATE 99/01/25 422094 39 50 42.0 075 21 38.0 2 CHESTER CREEK AT ROUTE 291, CHESTER, PA 42045 PENNSYLVANIA DELAWARE NORTH ATLANTIC 020800 DELAWARE RIVER ZONE 4 31DELRBC 820130 0000 FEET DEPTH

/TYPA/AMBNT/STREAM

OFF

| 00605 | PARI<br>ORG N | AMETER<br>N | MG/L    | MEDIUM<br>WATER | RMK | NUMBER<br>44 | MEAN<br>.6675000 | VARIANCE<br>.1485000 | STAN DEV<br>.3853500 | MAXIMUM<br>1.730 | MININUM<br>.060 | BEG DATE END DATE<br>87/07/16 96/09/16 |  |
|-------|---------------|-------------|---------|-----------------|-----|--------------|------------------|----------------------|----------------------|------------------|-----------------|----------------------------------------|--|
|       |               |             |         |                 | М   | 1            | .3900000         |                      |                      | .390             | .390            | 87/11/23 87/11/23                      |  |
|       |               |             |         |                 | TOT | 45           | .6613300         | .1468300             | .3831900             | 1.730            | .060            | 87/07/16 96/09/16                      |  |
| 00610 | 0H3+NH4-      | N TOTAL     | MG/L    | WATER           |     | 117          | .6758900         | .6511900             | .8069600             | 4.510            | .020            | 81/07/21 97/09/17                      |  |
| 00612 | UN-IONZD      | NH3-N       | MG/L    | WATER           | ŝ   | 52           | .0027995         | .0000155             | 0039471              | .023             | .0001           | 81/08/17 94/06/28                      |  |
| 00615 | N02-N         | TOTAL       | MG/L    | WATER           |     | 116          | .0872670         | .0147910             | .1216200             | 1.008            | .004            | 81/07/21 97/09/17                      |  |
|       |               |             |         |                 | ×   | 1            | .0880000         |                      |                      | .088             | .088            | 83/07/13 83/07/13                      |  |
|       |               |             |         |                 | TOT | 117          | .0872730         | .0146630             | .1210900             | 1.008            | .004            | 81/07/21 97/09/17                      |  |
| 00619 | UZNOI-NU      | NH3-NH3     | MG/L    | WATER           | ŝ   | 52           | .0034039         | .0000230             | .0047993             | .028             | .0002           | 81/08/17 94/06/28                      |  |
| 00620 | N-SON         | TOTAL       | MG/L    | WATER           |     | 117          | 3.680400         | 1.832600             | 1.353700             | 10.520           | 1.060           | 81/07/21 97/09/17                      |  |
| 00625 | TOT KJEL      | N           | MG/L    | WATER           |     | 111          | 1.432000         | 2.092500             | 1.446500             | 12.000           | . 000           | 81/07/21 97/08/19                      |  |
|       |               |             |         |                 | М   | ю            | 1.000000         | .0000000             | .0000000             | 1.000            | 1.000           | 87/11/23 97/09/17                      |  |
|       |               |             |         |                 | TOT | 114          | 1.420700         | 2.041700             | 1.428900             | 12.000           | 000.            | 81/07/21 97/09/17                      |  |
| 00665 | PHOS-TOT      |             | MG/L P  | WATER           |     | 114          | .7178000         | .2307100             | .4803300             | 2.750            | .050            | 81/07/21 97/09/17                      |  |
| 00671 | PHOS-DIS      | ORTHO       | MG/I P  | WATER           |     | m            | .9166700         | .0214340             | .1464000             | 1.050            | .760            | 71/00/70 80/70/70                      |  |
| 00940 | CHLORIDE      | TOTAL       | MG/L    | WATER           |     | 116          | 50.90200         | 1128.100             | 33.58800             | 208              | 8               | 81/07/21 97/09/17                      |  |
| 01002 | ARSENIC       | AS, TOT     | UG/L    | WATER           |     | 14           | 4.000000         | .0000000             | .0000000             | 4                | 4               | 93/11/16 96/09/16                      |  |
|       |               |             |         |                 | ×   | 103          | 137.5400         | 106210.0             | 325.8900             | 1000             | 4               | 81/07/21 97/09/17                      |  |
|       |               |             |         |                 | TOT | 117          | 121.5700         | 95283.00             | 308.6800             | 1000             | 4               | 81/07/21 97/09/17                      |  |
| 01003 | ARSENIC       | SEDMG/KG    | DRY WGT | WATER           |     | 1            | 4.000000         |                      |                      | 4.00             | 4.00            | 87/08/17 87/08/17                      |  |
| 01027 | CADMIUM       | CD, TOT     | UG/L    | WATER           |     | 61           | 1.515600         | 46.99900             | 6.855600             | 53               | .03             | 81/07/21 97/09/17                      |  |
|       |               |             |         |                 | Ж   | 56           | 4.132800         | 31.22400             | 5.587800             | 18               | .02             | 81/08/17 94/06/28                      |  |
|       |               |             |         |                 | ТоТ | 117          | 2.768200         | 40.83800             | 6.390500             | 53               | .02             | 81/07/21 97/09/17                      |  |
| 01034 | CHROMIUM      | CR, TOT     | UG/L    | WATER           |     | 35           | 20.99900         | 424.8400             | 20.61200             | 107              | 4               | 81/07/21 88/02/22                      |  |
|       |               |             |         |                 | ×   | 44           | 38.02300         | 568.0200             | 23.83300             | 70               | 4               | 82/03/16 88/04/20                      |  |
|       |               |             |         |                 | TOT | 61           | 30.48000         | 570.7600             | 23.89100             | 107              | 4               | 81/07/21 88/04/20                      |  |
| 01042 | COPPER        | CU, TOT     | UG/L    | WATER           |     | 78           | 27.18900         | 1756.700             | 41.91300             | 359              | 8               | 81/07/21 97/09/17                      |  |
|       |               |             |         |                 | Ж   | 68           | 26.15400         | 892.7100             | 29.87800             | 80               | 10              | 83/04/14 93/06/22                      |  |
|       |               |             |         |                 | TOT | 117          | 26.84400         | 1458.700             | 38.19400             | 359              | ω               | 81/07/21 97/09/17                      |  |
| 01045 | IRON          | FE, TOT     | UG/L    | WATER           |     | 115          | 1208.600         | 11846000             | 3441.700             | 36500            | 70              | 81/07/21 97/09/17                      |  |
|       |               |             |         |                 | Ж   | 1            | 10.00000         |                      |                      | 10               | 10              | 86/06/24 86/06/24                      |  |
|       |               |             |         |                 | TOT | 116          | 1198.300         | 11755000             | 3428.600             | 36500            | 10              | 81/07/21 97/09/17                      |  |
| 01047 | FERROUS       | IRON        | UG/L    | WATER           |     | 1            | . 0000000        |                      |                      | 0                | 0               | 82/04/14 82/04/14                      |  |
| 01051 | LEAD          | PB, TOT     | UG/L    | WATER           |     | 66           | 14.88600         | 615.5500             | 24.81000             | 136              | <del>4</del> 4  | 81/07/21 97/09/17                      |  |
|       |               |             |         |                 | Ж   | 51           | 22.80900         | 891.0000             | 29.85000             | 100              | 60.             | 81/09/17 94/03/14                      |  |
|       |               |             |         |                 | TOT | 117          | 18.34000         | 744.5400             | 27.28600             | 136              | 60.             | 81/07/21 97/09/17                      |  |
| 01067 | NICKEL        | NI, TOTAL   | UG/L    | WATER           |     | 14           | 25.00000         | .0000000             | .0000000             | 25               | 25              | 93/11/16 96/09/16                      |  |
|       |               |             |         |                 | ×   | 24           | 25.00000         | .0000000             | .0000000             | 25               | 25              | 92/01/09 97/09/17                      |  |
|       |               |             |         |                 | TOT | 38           | 25.00000         | .0000000             | .0000000             | 25               | 25              | 92/01/09 97/09/17                      |  |

,

1.2

PAGE: 2
/TYPA/AMBNT/STREAM DELCORA CSO LTCP PGM=INVENT OFE 02040202011 39 50 42.0 075 21 38.0 2 CHESTER CREEK AT ROUTE 291, CHESTER, PA DELAWARE 020800 STORET RETRIEVAL DATE 99/01/25 4 PENNSYLVANIA NORTH ATLANTIC DELAWARE RIVER ZONE 31DELRBC 820130 422094

0000 FEET DEPTH

42045

END DATE 97/09/17 97/09/17 97/09/17 96/09/16 93/08/09 97/09/17 97/09/17 87/01/27 85/06/20 96/09/16 97/09/17 84/06/19 71/00/12 97/09/17 93/08/09 84/06/19 88/01/11 97/09/17 93/08/09 92/07/15 81/07/21 81/12/15 81/07/21 81/10/15 81/09/17 81/07/21 86/04/28 BEG DATE 81/08/17 84/11/13 81/08/17 81/09/17 93/08/09 81/09/17 93/08/09 81/09/17 81/07/21 87/01/27 93/08/09 1.0 1.0 3.0 871231 10 10 ဖ ଡ 5000 100 10 4000 20 20 100 с) ~~1 MEAN VARIANCE STAN DEV MAXIMUM MINIMUM 4000 100 310 1.5 2000.0 2000.0 980528 15 32 107 1002 107 10 1002 200000 100 170000 200000 99 33.41700 383.4300 19.58100 17 15.11800 90.48600 9.512400 116 30.73500 381.5900 19.53400 15 7.133300 .6952600 .8338200 
 15
 7.133300
 .6952600
 .8338200

 88
 153.6800
 116450.0
 341.2500

 103
 132.3400
 102030.0
 319.4200
 3 246.6700 3008.400 54.84900 19 1.084700 .0291290 .1706700 99 21.85900 40340.00 200.8500 118 18.51400 33848.00 183.9800 66 928990.0 1959E+06 44270.00 9040E+06 95080.00 9877.200 7230E+05 26890.00 12300.00 1159E+06 34058.00 .0000000 1.000000 .0000000 57750.00 4000.000 100.0000 100.0000 15.00000 NUMBER ო 70 4 75 <del>, ,</del> <del>~~</del>-| TOT RMK  $\simeq$ TOT ¥ TOT <u>ж</u> н TOT က MEDIUM WATER WATER WATER WATER WATER WATER WATER WATER UPDATED WATER FEC STRP WATER SEVERITY /100ML /100ML /100ML UG/L UG/L CODE UG/L MFIMENDO MFKFAGAR 31501 TOT COLI MFIMENDO 31616 FEC COLI MFM-FCBR HG, TOTAL SAMPLE FEC COL ATMOSPH APPEAR 01147 SELENIUM SE, TOT ZN, TOT PARAMETER 31673 FECSTREP WATER ODOR MERCURY WQF RATIO 01092 ZINC 01330 71900 74041 82028 46001

 $\sim$ PAGE:

DELCORA CSO LTCP

HQ 02040202081 0000.440 OFF STORET RETRIEVAL DATE 99/01/25 422120 39 51 15.0 075 20 53.0 2 RIDLY CREEK AT ROUTE 291, RIDLY, PAPA 42045 PENNSYLVANIA DELAWARE NORTH ATLANTIC 020800 DELAWARE RIVER ZONE 4 31DELRBC 820130 0000 FEET DEPTH

/TYPA/AMBNT/STREAM

|            | PAR          | AMETER         |                | MEDIUM         | RMK | NUMBER            | MEAN     | VARIANCE             | STAN DEV N           | JAX I MUM      | MUMINIM   | BEG DATE END DATE                       |
|------------|--------------|----------------|----------------|----------------|-----|-------------------|----------|----------------------|----------------------|----------------|-----------|-----------------------------------------|
| 0000800000 | LAB<br>WATER | IDENT.<br>TEMP | NUMBER<br>CENT | WATER<br>WATER |     | 9 6<br>9 9<br>9 9 | 52695.00 | 2369E+06<br>63 43900 | 48676.00<br>7 964800 | 123200<br>28 0 | 2136<br>0 | 81/07/21 92/08/19<br>81/08/17 04/06/20  |
|            |              |                |                |                | U   | 2                 | 3.500000 | 4.500000             | 2.121300             | 5.0            |           | 07/00/166 17/00/10<br>80/00/28 22/00/28 |
|            |              |                |                |                | TOT | 55                | 13.37500 | 64.92000             | 8.057300             | 28.0           | 0         | 81/08/17 94/06/28                       |
| 00011      | WATER        | TEMP           | FAHN           | WATER          | ŝ   | 55                | 56.07400 | 210.3300             | 14.50300             | 82.4           | 32.0      | 81/08/17 94/06/28                       |
| 00065      | STREAM       | STAGE          | FEET           | WATER          |     | ч                 | 12.80000 |                      |                      | 12.80          | 12.80     | 82/07/07 82/07/07                       |
| 00094      | CNDUCTVY     | FIELD          | MICROMHO       | WATER          |     | 6 T               | 206.8400 | 7203.400             | 84.87300             | 390            | 0         | 82/07/07 94/06/28                       |
| 00095      | CNDUCTVY     | AT 25C         | MICROMHO       | WATER          |     | 114               | 281.0300 | 8526.500             | 92.33900             | 730            | 85        | 81/07/21 97/09/17                       |
| 00101      | SOLIDS       | NO 🕏           | 74U FILT       | WATER          |     | ~                 | 13.60000 |                      |                      | 13.6           | 13.6      | 84/01/25 84/01/25                       |
| 00140      | BOD          | 5 DAY          | LB/TON         | WATER          |     | г                 | 40.00000 |                      |                      | 40.0           | 40.0      | 82/12/20 82/12/20                       |
| 00300      | Q            |                | MG/L           | WATER          |     | 48                | 8.131200 | 12.73500             | 3.568700             | 17.8           | 0.        | 82/07/07 94/06/28                       |
| 00301      | Q            | SATUR          | PERCENT        | WATER          | ŝ   | 48                | 73.48200 | 573.3600             | 23.94500             | 127.9          | 0.        | 82/07/07 94/06/28                       |
| 00310      | BOD          | 5 DAY          | MG/L           | WATER          |     | 108               | 3.122800 | 9.563500             | 3.092500             | 29.0           | .2        | 81/07/21 96/09/17                       |
|            |              |                |                |                | Ж   | 2                 | 1.500000 | .5000000             | .7071100             | 2.0            | 1.0       | 81/09/17 86/12/18                       |
|            |              |                |                |                | TOT | 110               | 3.093300 | 9.440000             | 3.072500             | 29.0           |           | 81/07/21 96/09/17                       |
| 00314      | BOD INH      | 5 DAY TO       | T MG/L         | WATER          |     | 23                | 1.578300 | .9090600             | .9534500             | 3.7            | ۳.        | 87/07/16 96/09/17                       |
| 00332      | BOD          | 17 DAY         | MG/L           | WATER          |     |                   | .4500000 |                      |                      | ·.5            | ŝ.        | 82/12/20 82/12/20                       |
| 00400      | Ηd           |                | SU             | WATER          |     | 46                | 7.116700 | 1.273100             | 1.128300             | 8.10           | 00.       | 82/07/07 94/06/28                       |
| 00403      | Ηđ           | LAB            | SU             | WATER          |     | 115               | 6.932100 | .1394600             | .3734400             | 7.7            | 5.9       | 81/07/21 97/09/17                       |
| 00410      | T ALK        | CACO3          | MG/L           | WATER          |     | 112               | 46.11600 | 86.52000             | 9.301600             | 70             | 17        | 81/07/21 96/09/17                       |
| 00515      | RESIDUE      | DISS-105       | C MG/L         | WATER          |     | 113               | 212.2700 | 39794.00             | 199.4900             | 2200           | 60        | 81/07/21 97/09/17                       |
| 00530      | RESIDUE      | TOT NFLT       | MG/L           | WATER          |     | 109               | 35.47700 | 2533.200             | 50.33000             | 324            | 2         | 81/07/21 97/09/17                       |
|            |              |                |                |                | М   | ŝ                 | 2.000000 | .0000000             | .0000000             | 2              | 2         | 86/06/24 96/09/17                       |
|            |              |                |                |                | TOT | 114               | 34.00900 | 2468.500             | 49.68400             | 324            | 2         | 81/07/21 97/09/17                       |
| 00556      | OIL-GRSE     | FREON-GR       | MG/L           | WATER          | м   | ч                 | 2.000000 |                      |                      | 2.00           | 2.00      | 86/06/24 86/06/24                       |
| 00600      | TOTAL N      | N              | MG/L           | WATER          |     | ٣                 | 4.536700 | 1.922500             | 1.386600             | 6.03           | 3.29      | 71/00/70 80/70/79                       |
| 00605      | ORG N        | z              | MG/L           | WATER          |     | 42                | .5640500 | .1325800             | .3641100             | 1.740          | .130      | 87/07/16 96/09/17                       |
|            |              |                |                |                | Ж   | ÷                 | .2800000 |                      |                      | . 280          | .280      | 88/02/29 88/02/29                       |
|            |              |                |                |                | TOT | 43                | .5574400 | .1313000             | .3623500             | 1.740          | .130      | 87/07/16 96/09/17                       |
| 00610      | NH3+NH4-     | N TOTAL        | MG/L           | WATER          |     | 115               | .3748600 | .1273600             | .3568700             | 1.650          | .020      | 81/07/21 97/09/17                       |
| 00612      | UN-ION2D     | NH3-N          | MG/L           | WATER          | ŝ   | 55                | .0020540 | .0000083             | .0028845             | .015           | 8521E-15  | 81/08/17 94/06/28                       |
| 00615      | N02-N        | TOTAL          | MG/L           | WATER          |     | 114               | .0562800 | .0052668             | .0725730             | . 682          | .004      | 81/07/21 97/09/17                       |
|            |              |                |                |                | м   | ~~1               | .0660000 |                      |                      | .066           | .066      | 84/01/25 84/01/25                       |
|            |              |                |                |                | TOT | 115               | .0563650 | .0052214             | .0722590             | . 682          | .004      | 81/07/21 97/09/17                       |
| 00619      | UN-IONZD     | NH3-NH3        | MG/L           | WATER          | ŝ   | 55                | .0024975 | .0000123             | .0035073             | .018           | 1036E-14  | 81/08/17 94/06/28                       |
| 00620      | NO3-N        | TOTAL          | MG/L           | WATER          |     | 115               | 2.545900 | .9338300             | .9663500             | 7.040          | .020      | 81/07/21 97/09/17                       |
| 00625      | TOT KJEL     | N              | MG/L           | WATER          |     | 105               | .9805700 | .6918400             | .8317700             | 7.300          | . 000     | 81/07/21 96/09/17                       |
|            |              |                |                |                | Ж   | 9                 | 1.000000 | .0000000             | . 0000000            | 1.000          | 1.000     | 83/09/26 97/09/17                       |
|            |              |                |                |                | TOT | 111               | .9816200 | .6541300             | .8087800             | 7.300          | . 000     | 81/07/21 97/09/17                       |

Ł

PAGE:

4

DELCORA CSO LTCP

PGM=INVENT HQ 02040202081 0000.440 OFF 422120 39 51 15.0 075 20 53.0 2 RIDLY CREEK AT ROUTE 291, RIDLY, PAPA 42045 PENNSYLVANIA DELAWARE NORTH ATLANTIC 020800 DELAWARE RIVER ZONE 4 31DELABC 820130 0000 FEET DEPTH STORET RETRIEVAL DATE 99/01/25

/TYPA/AMBNT/STREAM

|        | BEG DATE END DATE                                                | L1/60/L6 17/10/T0            | 86/06/24 86/06/24 | 86/06/24 86/06/24 | 82/07/07 82/07/07 | 82/07/07 82/07/07 | 82/07/07 82/07/07 | 81/07/21 97/09/17              | 82/07/07 82/07/07 | 81/12/15 96/07/31             | 81/07/21 97/09/17                | 81/07/21 97/09/17                  | 82/04/14 82/04/14 | 81/11/16 97/09/17             | 81/07/21 96/06/05               | 81/07/21 97/09/17                  | 81/07/21 88/05/17             | 81/11/16 88/03/22               | 81/07/21 88/05/17                 | 81/07/21 97/08/19             | 82/10/19 97/09/17               | 81/07/21 97/09/17                  | 81/07/21 97/09/17              | 82/04/14 82/04/14 | 81/07/21 97/09/17             | 81/09/17 93/09/20               | 81/07/21 97/09/17                  | 92/05/18 97/08/19            | 92/01/09 97/09/17               | 92/01/09 97/09/17                 | 81/08/17 97/09/17             | 84/12/12 96/09/17               | 81/08/17 97/09/17                  | 81/12/15 96/03/25            | 81/07/21 97/09/17               | 81/07/21 97/09/17                  | 81/09/17 84/06/19            | 81/12/15 81/12/15 | 93/08/10 93/08/10 |
|--------|------------------------------------------------------------------|------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|--------------------------------|-------------------|-------------------------------|----------------------------------|------------------------------------|-------------------|-------------------------------|---------------------------------|------------------------------------|-------------------------------|---------------------------------|-----------------------------------|-------------------------------|---------------------------------|------------------------------------|--------------------------------|-------------------|-------------------------------|---------------------------------|------------------------------------|------------------------------|---------------------------------|-----------------------------------|-------------------------------|---------------------------------|------------------------------------|------------------------------|---------------------------------|------------------------------------|------------------------------|-------------------|-------------------|
|        | MUMINIM                                                          | .174                         | 42.000            | .046              | 60                | 20.0              | 5.2               | 9                              | 28                | ъ<br>ъ                        | 4                                | ъ                                  | 5.00              | .2                            | .02                             | .02                                | 4                             | 4                               | ዋ                                 | 8                             | 4                               | 4                                  | 200                            | 0                 | ~                             | 60.                             | 60.                                | 17                           | 25                              | 17                                | 10                            | 10                              | 10                                 | 9                            | 9                               | 9                                  | 0                            | 1.000000          | 3900              |
|        | MUMIXAM                                                          | .250                         | 42.000            | .046              | 60                | 20.0              | 5.2               | 165                            | 28                | 5                             | 1000                             | 1000                               | 5.00              | 6E                            | 18                              | 39                                 | 88                            | 20                              | 88                                | 284                           | 80                              | 284                                | 34700                          | 0                 | 187                           | 100                             | 187                                | 25                           | 25                              | 25                                | 126                           | 32                              | 126                                | 10                           | 1000                            | 1000                               | 1                            | 1.000000          | 3900              |
|        | NUN NUMBER MEAN VAKIANCE STAN DEV<br>112 3734800 ASIS860 2271300 | 3 .2110000 .0014470 .0380390 | 1 42.00000        | 1.0460000         | 1 60.00000        | 1 20.00000        | 1 5.200000        | 115 35.97200 541.8900 23.27900 | 1 27.50000        | 10 4.200000 .1777900 .4216500 | K 104 144.9000 112510.0 335.4200 | TOT 114 132.5500 104150.0 322.7200 | K 1.5.00000       | 43 1.433900 34.55300 5.878200 | K 71 3.471200 27.47400 5.241600 | TOT 114 2.702700 30.84600 5.553900 | 28 18.76700 453.1100 21.28700 | K 52 32.67300 560.9700 23.68500 | TOT 80 27.80600 561.5600 23.69700 | 66 27.53000 1317.200 36.29300 | K 47 21.78700 711.0000 26.66500 | TOT 113 25.14200 1064.500 32.62700 | 113 1643.400 11559000 3399.800 | 1.0000000         | 74 16.36900 645.4500 25.40600 | K 40 25.98200 1023.100 31.98500 | TOT 114 19.74200 791.2900 28.13000 | 9 24.11100 7.111800 2.666800 | K 24 25.00000 .0000000 .0000000 | TOT 33 24.75800 1.939800 1.392800 | 97 34.58900 475.6300 21.80900 | K 15 15.86700 101.4100 10.07000 | TOT 112 32.08100 465.1700 21.56800 | 8 7.250000 1.357200 1.165000 | K 92 156.5500 120100.0 346.5500 | TOT 100 144.6100 112050.0 334.7400 | 3 .6666700 .3333300 .5773500 | 1 1.00000         | 1 3900.000        |
| MEDTIM | MATER                                                            | VATER                        | IATER             | IATER             | IATER             | ATER              | IATER             | IATER                          | IATER             | IATER                         |                                  |                                    | IATER             | IATER                         |                                 |                                    | ATER                          |                                 |                                   | ATER                          |                                 |                                    | ATER                           | ATER              | ATER                          |                                 |                                    | ATER                         |                                 |                                   | ATER                          |                                 |                                    | ATER                         |                                 |                                    | ATER                         | ATER              | ATER              |
|        | MG/L P V                                                         | MG/L P V                     | UG/L V            | MG/L V                         | MG/L P            | UG/L V                        |                                  |                                    | G/KG-CR W         | UG/L N                        |                                 |                                    | 0G/I, W                       |                                 |                                   | UG/L W                        |                                 |                                    | UG/L W                         | UG/L W            | UG/L W                        |                                 | -                                  | UG/L W                       |                                 |                                   | UG/L W                        |                                 |                                    | UG/L W                       |                                 |                                    | SEVERITY W                   | NUMBER W          | /100ML W          |
| METER  |                                                                  | ORTHO                        | HBG METH          | CN-TOT            | CAC03             | CA-TOT            | MG, TOT           | TOTAL                          | SO4-TOT           | AS, TOT                       |                                  |                                    | WET WGTM          | CD, TOT                       |                                 |                                    | CR, TOT                       |                                 |                                   | CU, TOT                       |                                 |                                    | FE, TOT                        | IRON              | PB, TOT                       |                                 |                                    | N1, TUTAL                    |                                 |                                   | TOT NZ                        |                                 |                                    | SE, TOT                      |                                 |                                    | ATMOSPH 8                    | PAR               | MFIMENDO          |
| 2420   | PHOS-TOT                                                         | PHOS-DIS                     | CN FREE           | CYANIDE           | TOT HARD          | CALCIUM           | MGNSIUM           | CHLORIDE                       | SULFATE           | ARSENIC                       |                                  |                                    | CR MUD            | CADMI UM                      |                                 |                                    | CHROMIUM                      |                                 |                                   | COPPER                        |                                 |                                    | IRON                           | FERROUS           | LEAD                          |                                 |                                    | NUCKED                       |                                 |                                   | SINC                          |                                 |                                    | SELENIUM                     |                                 |                                    | ODOR                         | INVALID           | TOT COLI          |
|        | 00665                                                            | 00671                        | 00719             | 00720             | 00600             | 00916             | 00927             | 00940                          | 00945             | 01002                         |                                  |                                    | 01024             | 01027                         |                                 |                                    | 01034                         |                                 |                                   | 01042                         |                                 |                                    | 01045                          | 01047             | 01051                         |                                 |                                    | /0/10                        |                                 | 000000                            | 76070                         |                                 |                                    | 01147                        |                                 |                                    | 01330                        | 10330             | 31501             |

ഹ PAGE:

 STORET RETRIEVAL DATE 99/01/25
 PGM=INVENT

 422120
 39 51 15.0 075 20 53.0 2
 PGM=INVENT

 39 51 15.0 075 20 53.0 2
 RIDLY CREEK AT ROUTE 291, RIDLY, PAPA
 PGM=INVENT

 42045
 PENNSYLVANIA
 DELAWARE
 NORTH ATLANTIC
 020800

 0000
 FEET DEPTH
 MQ 02040202081
 0000.440 OFF

DELCORA CSO LTCP

/TYPA/AMBNT/STREAM

| BEG DATE END DATE | 81/12/15 97/09/17 | 82/04/14 83/02/01 | 81/09/17 86/08/21 | 81/09/17 97/09/17 | 85/02/14 93/08/10 | 86/06/24 86/06/24 | 81/09/17 85/02/14 | 82/07/07 82/07/07 | 82/07/07 82/07/07 | 88/05/17 88/05/17 | 92/05/18 96/03/25 | 81/07/21 97/09/17 | 81/07/21 97/09/17 | 86/04/28 97/09/17 | 85/02/14 93/08/10 | 82/07/07 82/07/07 | 82/07/07 82/07/07 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| MININIM           | 20                | 6000              | 5000              | 20                | 340               | 0                 | 0                 | 11                | 0                 | 00.               | 1.0               | 1.0               | 1.0               | 870110            | τ.                | 8.9               | .18               |
| MAXIMUM           | 190000            | 6000              | 200000            | 200000            | 1200              | 0                 | 215               | 71                | 0                 | .05               | 5.0               | 2000.0            | 2000.0            | 980528            | 19                | 8.9               | .18               |
| STAN DEV          | 31527.00          | .0000000          | 87035.00          | 42311.00          | 608.1100          |                   | 93.74200          |                   |                   | .0353550          | 1.191200          | 196.9100          | 187.1800          | 44131.00          | 12.63100          |                   |                   |
| VARIANCE          | 9939E+05          | .0000000          | 7575E+06          | 1790E+06          | 369800.0          |                   | 8787.500          |                   |                   | .0012500          | 1.419000          | 38775.00          | 35034.00          | 1947E+06          | 159.5400          |                   |                   |
| MEAN              | 16104.00          | 6000.000          | 75000.00          | 21266.00          | 770.0000          | . 0000000         | 150.0000          | 71.35400          | . 0000000         | .0250000          | 1.436400          | 21.03900          | 19.14700          | 924570.0          | 9.598000          | 8.900000          | .1766000          |
| NUMBER            | 64                | Ś                 | L                 | 74                | 2                 | 1                 | ŝ                 | <del>، ،</del>    | <b>-</b> -1       | 2                 | 11                | 103               | 114               | 63                | ~                 | 1                 | 1                 |
| RMK               |                   | м                 | ų                 | TOT               |                   |                   |                   | ა                 |                   |                   |                   | м                 | TOT               |                   | ა                 |                   |                   |
| MEDIUM            | WATER             |                   |                   |                   | WATER             |                   |                   | WATER             | WATER             | WATER             | WATER             |
|                   | /100ML            |                   |                   |                   | /100ML            | UG/L              | CODE              | MG/L              | HOT-MG/L          | MG/L              | 0G/L              |                   |                   | UPDATED           | FEC STRP          | NTU               | MOSM/KG           |
| ER                | -FCBR             |                   |                   |                   | MFKFAGAR          | TOTAL             | APPEAR            | CA MG             | AS CACO3          | ELEMENTL          | HG, TOTAL         |                   |                   | SAMPLE            | FEC COL           | LAB               | PRES TOT          |
| AMETI             | MFM               |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| PARAMET           | FEC COLI MFM      |                   |                   |                   | FECSTREP 1        | PHENOLS           | WATER             | CAL HARD          | T ACDITY          | BROMINE           | MERCURY           |                   |                   | WQF               | RATIO             | TURBIDTY          | OSMOTIC           |

۰.

. .

•

PAGE:

ଡ

PGM=INVENT DELCORA CSO LTCP

STORET RETRIEVAL DATE 99/01/25 892062 42062 39 50 48.0 075 20 18.0 2 RIVER MILE 83.98 42000 PENNSYLVANIA AT EDDYSTONE, PA. 020792

משפת/ שמפאה/ המעשי/

|       | DEPTH |
|-------|-------|
| RBC   | FEET  |
| 31DEL | 0046  |

02040202012 0000.130 ON

| 24     |  |
|--------|--|
| Щ.     |  |
| 0      |  |
| F-4    |  |
| n.     |  |
| č.     |  |
|        |  |
| $\sim$ |  |
| E-4    |  |
| z      |  |
| m      |  |
| -      |  |
| 5      |  |
|        |  |
| ~      |  |
| ≪.     |  |
| ۵ù     |  |
| ÷      |  |
|        |  |
|        |  |
| ~      |  |

| REC DATE END DATE | 81/07/14 81/08/12   | 80/04/22 98/09/17   | 81/07/14 81/08/12 | 80/02/28 98/09/17   | 81/07/14 81/08/12   | 80/02/28 98/09/17   | 81/07/14 81/08/12   | 81/05/18 98/09/17   | 93/03/23 97/03/25   | 82/07/21 82/07/21 | 81/07/14 81/08/12   | 80/02/28 97/03/25   | 80/02/28 86/11/24   | 87/03/18 98/09/17   | 81/06/17 95/11/27 | 80/02/28 96/09/26   | 80/09/16 98/09/17   | 82/05/05 82/05/05 | 97/09/17 98/09/17   | 81/07/14 81/08/12 | 80/02/28 98/09/17   | 81/07/14 81/08/12   | 84/06/11 97/03/25   | 80/02/28 98/09/17 | 80/02/28 98/09/17   | 81/03/10 81/06/11  | 81/03/10 81/04/22 | 81/03/10 81/06/11 | 81/03/10 81/06/11 | 80/02/28 95/11/20 | 80/04/15 95/10/30                       | 80/02/28 95/11/20 | 94/08/30 94/08/30 | 81/03/10 81/06/11  | 81/03/10 81/06/11 | 86/07/15 86/07/15 | 81/03/10 86/07/15 | 81/03/10 81/06/11 | 81/03/10 81/06/11 |
|-------------------|---------------------|---------------------|-------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|-------------------|---------------------|---------------------|---------------------|---------------------|-------------------|---------------------|---------------------|-------------------|---------------------|-------------------|---------------------|---------------------|---------------------|-------------------|---------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-----------------------------------------|-------------------|-------------------|--------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| MTNTNIM           | 2634                | 172                 | 26.0              | 1.0                 | 78.8                | 33.8                | 20.0                | -6.0                | 0                   | ÷.                | Ч                   | 0                   | 2.0                 | 1.0                 | 12                | 8                   | 100                 | 890.000           | 4.8                 | 2.0               | 1.6                 | 24.4                | 27.0                | 19.1              | 19.1                | .400               | 9.                | 1.0               | 1.4               | 2.4               | 2.4                                     | 2.4               | 2.4               | 2.2                | 2.3               | 2.4               | 2.3               | 2.8               | 3.4               |
| MAXTMIIM          | 3278                | 98042900            | 27.0              | 29.0                | 80.6                | 84.2                | 28.0                | 32.0                | 21                  | <b>b</b> .        | m                   | 10000               | 40.0                | 45.0                | 60                | 56                  | 3560                | 890.000           | 11.8                | 4.6               | 12.7                | 56.8                | 104.0               | 97.4              | 104.0               | 1.100              | 1.5               | 2.5               | 3.2               | 4.7               | 2.4                                     | 4.7               | 2.4               | 3.9                | 4.4               | 2.4               | 4.4               | 5.2               | 6.2               |
| VARIANCE STAN DEV | 0 88064.00 296.7600 | 0 6445E+11 25387000 | 0.3333300.5773500 | 0 51.28200 7.161100 | 0 1.083300 1.040800 | 0 166.2200 12.89300 | 0 12.91700 3.594000 | 0 56.11300 7.490900 | 0 7.855600 2.802800 | 0                 | 0 1.333300 1.154700 | 0 322420.0 567.8200 | 0 54.60700 7.389700 | 0 38.91400 6.238100 | 301.0900 17.35200 | 0 133.0300 11.53400 | 0 133830.0 365.8300 |                   | ) 3.235100 1.798600 | 1.796700 1.340400 | ) 5.408100 2.325500 | 0 271.5600 16.47900 | ) 228.6700 15.12200 | 346.9100 18.62600 | 0 296.8900 17.23000 | 1.1233300 .3511900 | 0.4512500 6717500 | .5700000 .7549800 | 9300000 9643700   | 3853800 6207900   | 0000000 0000000000000000000000000000000 | 0.2436900 4936400 |                   | 1.7433400 .8621700 | 1.243300 1.115100 | _                 | 1.169200 1.081300 | 1.443300 1.201400 | 1.990000 1.410700 |
| ER MEAN           | 4 2993.500          | 29 7122000          | 4 26.5000         | 44 17.84100         | 4 79.7000(          | 44 64.1120(         | 4 22.7500(          | 89 15.7060(         | 59.8474600          | 1.400000          | 4 2.000000          | 10 34.69400         | 27 12.00800         | 12 8.999100         | 11 31.90900       | 16 17.68800         | 14 392.3000         | 1 890.0000        | 13 6.725400         | 4 3.350000        | 32 6.463200         | 4 41.11700          | 88 69.46300         | 42 60.85100       | 30 65.75700         | 3.7666700          | 2 1.025000        | 3 1.700000        | 3 2.100000        | 55 3.160000       | 21 2.400000                             | 76 2.637500       | 1 2.40000         | 3 3.133300         | 3 3.566700        | 1 2.400000        | 4 3.275000        | 3 4.033300        | 3 4.700000        |
| RMK NUMB          | 8                   | m                   |                   | m                   | ŝ                   | ۳<br>ه              |                     | 2                   |                     |                   |                     | ŝ                   | Ħ                   | 2                   | •                 | •                   | ŝ                   |                   |                     |                   | m                   | ŝ                   | F                   | s<br>S            | TOT 33              |                    |                   |                   |                   |                   | K 12                                    | TOT 1             | ×                 |                    |                   | Ж                 | TOT               |                   |                   |
| MEDIUM            | BOTTOM              | WATER               | BOTTOM            | WATER               | BOTTOM              | WATER               | BOTTOM              | WATER               | WATER               | WATER             | SOTTOM              | VATER               | <b>VATER</b>        | VATER               | VATER             | VATER               | VATER               | VATER             | VATER               | SOTTOM            | WATER               | SOTTOM              | IATER               |                   |                     | ATER               | IATER             | AT ER             | <i>i</i> ater     | IATER             |                                         |                   | IATER             | IATER              | IATER             |                   |                   | ATER              | ATER              |
|                   | NUMBER              | -                   | CENT              | -                   | FAHN                | -                   | CENT                |                     | 4501                | IN FEET 1         | CODE                | 1                   | PPM SIO2 1          | HACH FTU 1          | INCHES 1          | N STINU             | MICROMHO 1          | TONS/DAY V        | MG/L 1              | MG/L 1            |                     | PERCENT I           | -64                 |                   |                     | MG/L N             | MG/L V            | MG/L V            | MG/L V            | MG/L V            |                                         |                   | MG/L V            | MG/L V             | MG/L V            |                   |                   | MG/L W            | MG/L N            |
| AMETER            | IDENT.              |                     | TEMP              | I                   | TEMP                |                     | TEMP                |                     | WMO CODE            | SURF ELE          | STAGE               |                     | HLGE                | TRBIDMTR            | SECCHI            | PT-CO               | <b>A</b> T 25C      | PRODN             | PROBE               |                   |                     | SATUR               |                     |                   |                     | 1 DAY              | Z DAY             | 3 DAY             | 4 DAY             | 5 DAY             |                                         |                   | 5 DAY             | 6 DAY              | 7 DAY             |                   |                   | 8 DAY             | 9 ДАҮ             |
| PARI              | LAB                 |                     | WATER             |                     | WATER               | 1                   | AIR                 |                     | WEATHER             | WATER             | TIDE                |                     | TURB                | TURB                | TRANSP            | COLOR               | CNDUCTVY            | TOTAL             | DO                  | oq                |                     | DO                  |                     |                   |                     | BOD                | BOD               | BOD               | BOD               | BOD               |                                         |                   | DISS BOD          | BOD                | BOD               |                   |                   | BOD               | BOD               |
|                   | 00008               |                     | 07000             |                     | 00011               |                     | 02000               |                     | 1.5000              | 00062             | 00067               |                     | 57000<br>57000      | 0.0076              | 22000             | 08000               | 00095               | 00145             | 00299               | 00300             |                     | 00301               |                     |                   |                     | 00303              | 00304             | 00305             | 00306             | 00310             |                                         |                   | 00311             | 00312              | 00315             |                   |                   | 00316             | 00317             |

DELCORA CSO LTCP

PAGE:

ω

| 01/25      |         |      |      |       | 020792 |
|------------|---------|------|------|-------|--------|
| 66         | 2       | 0    |      |       |        |
| <b>ATE</b> | 1206    | 18.  |      | AIA   |        |
| i Di       | *       | 20   | ß    | VA    | А.     |
| EVAL       |         | 075  | 83.9 | INSYL | Ш, Р   |
| RETR)      | ~       | 48.0 | MILE | PEN   | VSTO   |
| ЕŢ         | 206     | 50   | ER   | 00    | EDD    |
| STOR       | 68<br>8 | 39   | RIV  | 420   | AT     |

/TYPA/AMBNT/ESTURY

| RBC<br>FEET DEPTH |      |       |
|-------------------|------|-------|
| ,RBC<br>FEET      |      | DEPTH |
|                   | RBC. | FEET  |

| NO          |  |
|-------------|--|
| 0000.130    |  |
| 02040202012 |  |

| ~  |  |  |
|----|--|--|
| 1  |  |  |
| 3  |  |  |
| 2  |  |  |
| -1 |  |  |
| 2  |  |  |
| 4  |  |  |
| r  |  |  |
| >  |  |  |
| 5  |  |  |
| -  |  |  |
| -1 |  |  |
| `  |  |  |

·

| BEG DATE END DATE | 82/06/14 82/06/14 | 81/03/10 81/06/11 | 81/03/10 81/06/11 | 80/04/22 81/06/11 | 81/03/10 81/06/11 | 81/03/10 81/03/10 | 81/04/22 81/06/11 | 81/04/22 81/04/22 | 81/03/10 81/06/11 | 81/03/10 81/04/22 | 81/03/10 81/03/10 | 80/02/28 98/09/17 | 86/09/05 96/09/26 | 80/02/28 98/09/17 | 80/02/28 98/09/17 | 95/07/10 95/07/10 | 80/02/28 98/09/17 | 80/04/22 80/04/22 | 80/04/22 80/04/22 | 80/04/22 98/09/17 | 95/06/26 95/06/26 | 80/04/22 98/09/17 | 80/04/22 98/09/17 | 96/09/09 98/05/18 | 80/04/22 98/09/17 | 81/02/17 86/08/14 | 80/02/28 98/09/17 | 80/07/15 96/06/17 | 80/02/28 98/09/17 | 80/02/28 98/09/17 | 80/02/28 98/09/17 | 92/07/08 93/04/12 | 80/02/28 98/09/17 | 80/02/28 98/09/17 | 80/02/28 98/09/17 | 80/02/28 98/09/17 | 80/07/15 85/09/16 | 80/02/28 98/09/17 | 93/03/31 98/09/17 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| MUMINIM           | .1                | 4.3               | s.3               | 3.1               | 5.0               | 5.7               | 5.2               | 6.7               | 5.4               | 6.2               | 5.9               | 5.90              | 5.7               | 10                | 0                 | 1                 | 0                 | 120               | 44                | 0                 | 1                 | 0                 | г                 | Ч                 | г                 | 000 .             | .004              | .004              | .004              | .00002            | .003              | .005              | .003              | .00002            | .470              | .000              | .200              | .000              | . 66              |
| MUMIXAM           | .1                | 6.3               | 6.7               | 6.7               | 6.3               | 5.7               | 6.3               | 6.7               | 6.2               | 6.7               | 5.9               | 8.80              | 8.4               | 67                | 10                |                   | 10                | 120               | 44                | 86                | 1                 | 86                | 6                 | 1                 | 6                 | 7.300             | 1.800             | .100              | 1.800             | .072              | . 630             | .005              | . 630             | .087              | 3.400             | 2.600             | .500              | 2.600             | 3.00              |
| STAN DEV          |                   | 1.014900          | .7000900          | 1.597900          | .7000900          |                   | .7778300          |                   | .5656900          | .3535300          |                   | .4320700          | .7054100          | 9.930300          | 1.697800          |                   | 1.702400          |                   |                   | 12.00700          |                   | 12.03300          | 2.107700          | .0000000          | 2.126700          | .7863400          | .3076700          | .0325380          | .2953100          | .0054026          | .0700530          | .0000000          | 0700850           | .0065690          | .5828000          | .3733900          | .1527500          | .3732800          | .5747300          |
| VARIANCE          |                   | 1.030000          | .4901300          | 2.553400          | .4901300          |                   | .6050100          |                   | .3200100          | .1249900          |                   | .1866900          | .4976100          | 98.61000          | 2.882500          |                   | 2.898200          |                   |                   | 144.1600          |                   | 144.7900          | 4.442500          | .0000000          | 4.523000          | .6183400          | .0946590          | .0010587          | .0872070          | .0000291          | .0049075          | .0000000          | .0049119          | .0000431          | .3396600          | .1394200          | .0233340          | .1393400          | .3303100          |
| MEAN              | .100000           | 5.200000          | 6.000000          | 5.400000          | 5.500000          | 5.700000          | 5.750000          | 6.700000          | 5.800000          | 6.450000          | 5.900000          | 7.325300          | 7.101300          | 42.79200          | 3.841600          | 1.000000          | 3.833000          | 120.0000          | 44.00000          | 19.88000          | 1.000000          | 19.82300          | 3.406300          | 1.000000          | 3.138900          | .6578300          | .3113200          | .0703390          | .2716300          | .0022941          | .0803200          | .0050000          | .0798650          | .0027893          | 1.753800          | .7096700          | .3666700          | .7061300          | 1.747800          |
| NUMBER            | ~                 | m                 | m                 | 4                 | m                 | 1                 | 2                 | Ч                 | 2                 | 0                 | ***               | 294               | 37                | 330               | 329               | <del>~~</del> 1   | 330               | ~                 | 1                 | 332               | ľ                 | 333               | 32                | 4                 | 36                | 83                | 284               | 56                | 340               | 320               | 329               | 2                 | 331               | 320               | 332               | 288               | m                 | 291               | 71                |
| RMK               |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | Ж                 | TOT               |                   |                   |                   | м                 | TOT               |                   | Ж                 | TOT               |                   |                   | ×                 | TOT               | ŝ                 |                   | K                 | TOT               | s                 |                   |                   | Ж                 | TOT               |                   |
| MEDIUM            | WATER             |                   |                   | WATER             | WATER             | WATER             |                   |                   | WATER             |                   |                   | WATER             | WATER             |                   |                   | WATER             | WATER             |                   |                   | WATER             | WATER             | WATER             |                   |                   | WATER             |
|                   | MG/L              | su                | SU                | MG/L              | MG/L              |                   |                   | MG/L              | MG/L              | MG/L              |                   |                   | MG/L              |                   |                   | MG/L              | MG/L              |                   |                   | MG/L              | MG/L              |                   |                   | MG/L              | MG/L              | MG/L              |                   |                   | MG/L              |
| AMETER            | ULT FRST          | 10 DAY            | 15 DAY            | 20 DAY            | 11 DAY            | 12 DAY            | 13 DAY            | 16 DAY            | 17 DAY            | 19 DAY            | 14 DAY            |                   | LAB               | CACO3             | CAC03             |                   |                   | TOTAL             | TOT VOL           | TOT NFLT          |                   |                   | VOL NFLT          |                   |                   | N                 | N TOTAL           |                   |                   | NH3-N             | TOTAL             |                   |                   | NH3-NH3           | TOTAL             | z                 |                   |                   | N-TOTAI,          |
| PARJ              | BOD               | ΡH                | Ηd                | T ALK             | T ACDITY          |                   |                   | RESIDUE           | RESIDUE           | RESIDUE           |                   |                   | RESIDUE           |                   |                   | ORG N             | NH3+NH4-          |                   |                   | <b>UZNOI-NU</b>   | N02-N             |                   |                   | <b>GZNOI-NU</b>   | N-EON             | TOT KJEL          |                   |                   | NO2&NO3           |
|                   | 00320             | 00322             | 00323             | 00324             | 00327             | 00328             | 00329             | 00331             | 00332             | 00334             | 00350             | 00400             | 00403             | 00410             | 00435             |                   |                   | 00500             | 00505             | 00530             |                   |                   | 00535             |                   |                   | 00605             | 00610             |                   |                   | 00612             | 00615             |                   |                   | 00619             | 00620             | 00625             |                   |                   | 00630             |

•

ŝ

÷

DELCORA CSO LTCP PGM=INVENT 020792 STORET RETRIEVAL DATE 99/01/25 892062 42062 39 50 48.0 075 20 18.0 2 RIVER MILE 83.98 42000 PENNSYLVANIA AT EDDYSTONE, PA. 02

/TYPA/AMBNT/ESTURY

02040202012 0000.130 ON

31DELRBC 0046 FEET DEPTH

| BEG DATE END DATE | 80/02/28 83/11/14<br>81/07/14 08/00/17 | 89/07/10 08/09/17 | 92/04/23 92/06/15 | 89/07/10 98/09/17 | 80/08/25 80/08/25 | 80/02/28 98/09/17 | 85/07/29 85/07/29 | 81/07/14 87/11/13 | 80/02/28 98/09/17 | 94/08/23 96/06/18 | 94/09/19 95/09/05 | 94/08/23 96/06/18 | 82/07/07 90/07/09 | 82/09/13 82/09/13 | 92/03/09 92/11/17 | 80/02/28 92/11/17 | 92/03/09 92/11/17 | 88/07/05 92/07/08 | 80/02/28 92/11/17 | 96/07/08 96/11/13 | 92/03/09 98/08/24 | 94/09/19 97/07/07 | 92/03/09 98/08/24 | 84/03/12 98/08/24 | 88/07/05 98/07/14 | 80/02/28 88/06/14     | 80/02/28 98/08/24 | 80/02/28 90/06/20 | 86/08/06 90/01/09 | 80/02/28 90/07/09 | 88/07/05 90/07/09 | 95/05/08 95/09/25 | 92/03/09 94/05/23 | 94/07/25 95/11/27 | 92/03/09 95/11/27 | 80/04/02 95/11/27 | 94/07/25 95/10/23 | 80/02/28 94/05/23 |
|-------------------|----------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-----------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| MUMINIM           | 20.0                                   | . 010             | .005              | .005              | 13.7              | 36                | 15.0              | 5.12              | 80                |                   | .2                | .2                | 5                 | 30.00             |                   | 1 104             | 100               | 10                | m                 | ŝ                 | 0                 | 0                 | 0                 | m                 | 0                 | m                     | 0                 | 100               | 100               | 100               | 100               | 2                 | m                 | 0                 | 0                 | ŝ                 | -1                | m                 |
| MAXIMUM<br>2 60   | 2.800                                  | .317              | .020              | .317              | 13.7              | 2400              | 15.0              | 279000.0          | 1351              | 2.8               | .2                | 2.8               | 30                | 30.00             | 1                 | 100               | 100               | 10                | 100               | ω                 | υ.                | S                 | 8                 | 26                | 5                 | 100                   | 100               | 4510              | 100               | 4510              | 100               | 2                 | ſ                 | 0                 | m                 | 110               | m                 | 100               |
| STAN DEV          | .1764600                               | .0472420          | .0076376          | .0475770          |                   | 188.7300          |                   | 52351.00          | 118.0700          | .9972400          | .0000000          | .9862300          | 10.11400          |                   | .0000000          | 33.02600          | .0000000          | .0000000          | 44.81000          | 1.916300          | 1.161600          | 2.236100          | 1.661000          | 5.871500          | 1.547400          | 45.17900              | 32.04800          | 689.5800          | .0000000          | 688.7100          | .0000000          | .5656900          | .0000000          | .0000000          | 1.452600          | 32.90500          | .5580600          | 30.77200          |
| VARIANCE          | .0311390                               | .0022318          | .0000583          | .0022636          |                   | 35618.00          |                   | 2740E+06          | 13941.00          | .9944900          | .0000000          | .9726500          | 102.2800          |                   | .0000000          | 1090.700          | .0000000          | .0000000          | 2007.900          | 3.672100          | 1.349300          | 5.000000          | 2.758800          | 34.47400          | 2.394600          | 2041.100              | 102/.100          | 475520.0          | .0000000          | 474320.0          | .0000000          | .3200000          | .0000000          | .0000000          | 2.110000          | 1082.700          | .3114300          | 946.8800          |
| MEAN<br>2030700   | .1652000                               | .0743510          | .0116670          | .0731600          | 13.70000          | 121.0100          | 15.00000          | 32080.00          | 60.36500          | 1.498000          | .2000000          | .9301300          | 21.63100          | 30.00000          | 1.000000          | 16.66400          | 100.0000          | 10.00000          | 51.31400          | 6.665000          | 1.602400          | 1.000000          | 1.750600          | 7.981100          | 2.469600          | 37.00000              | 16.19300          | 131.4400          | 100.0000          | 727.3700          | 100.0000          | 2.000000          | 3.000000          | .0000000          | 1.793100          | 16.78500          | 2.050000          | 21.34700          |
| NUMBER<br>75      | 277                                    | 155               | m                 | 158               | ***1              | 329               | н<br>Н            | 115               | 332               | 6                 | 7                 | 16                | 46                | <del>~~</del> 1   | თ                 | 119               | თ                 | 23                | 86                | 2                 | 41                | ŝ                 | 48                | 35                | 114               | 5 8 8<br>5 8 8<br>6 8 | 200               | 191               | m                 | . 061             | 37                | 5                 | 16                | 11                | 29                | 10                | 80                | 225               |
| RMK               |                                        |                   | Ж                 | TOT               |                   |                   | Ж                 |                   |                   |                   | Ж                 | TOT               | Ж                 | м                 | ¥                 | м                 | *                 | м                 | ¥                 |                   | ŗ                 | D                 | TOT               |                   | י כיי             | × 1                   | 101               | 1                 | м                 | TOT               | М                 | IJ                | х                 | Ð                 | TOT               |                   | IJ                | Ж                 |
| MEDIUM<br>WATER   | WATER                                  | WATER             |                   |                   | WATER             | WATER             | WATER             | WATER             | WATER             | WATER             |                   |                   | WATER             |                   |                   |                   | WATER             |                   |                       | 14 M TO 1         | WALER             |                   |                   | WATER             | WATER             |                   |                   |                   | WATER             |                   |                   |
| MG/L              | MG/L P                                 | MG/L P            |                   |                   | MG/L              | MG/L              | MG/L              | MG/L              | MG/L              | MG/L              |                   |                   | UG/L              | G/KG-CR           | 0G/L              | UG/L              | UG/L              | UG/L              | UG/L              | UG/L              |                   |                   |                   | UG/ P             |                   |                       | 1/ (11            | 100/ F            |                   |                   | UG/L              | UG/L              |                   |                   |                   | UG/L              |                   |                   |
| AMETER<br>PO4     | n<br>D<br>E                            | ORTHO             |                   |                   | 0                 | CACO3             | CACO3             | NA, TOT           | TOTAL             | DISOLVED          |                   |                   | AS, TOT           | WET WGTM          | CD, DISS          | CD, TOT           | CR, DISS          | HEX-VAL           | CR, TOT           | cu, DISS          |                   |                   |                   | LU, TUT           |                   |                       | LCT<br>LCT        | 101/93            |                   |                   | FE, DISS          | PB, DISS          |                   |                   |                   | PB, TOT           |                   |                   |
| PAR!<br>T PO4     | PHOS-TOT                               | PHOS-DIS          |                   |                   | T OKG C           | TOT HARD          | CALCIUM           | SODIUM            | CHLORIDE          | SILICA            |                   |                   | ARSENIC           | CR MUD            | CADMIUM           | CADMIUM           | CHROMIUM          | CHROMIUM          | CHROMIUM          | COPPER            |                   |                   |                   | COFFER            |                   |                       | TDON              | NOUT              |                   |                   | TRON              | LEAD              |                   |                   |                   | LEAD              |                   |                   |
| 00650             | 00665                                  | 00671             |                   |                   | 08900             | 00900             | 01910             | 62600             | 00940             | cc800             |                   |                   | 20010             | 670TO             | 01025             | 01027             | 01030             | 01032             | 01034             | 01040             |                   |                   |                   | 75070             |                   |                       | 01045             | CE070             |                   |                   | 95010             | 64010             |                   |                   |                   | 01051             |                   |                   |

DELCORA CSO LTCP

PAGE: 10

|       | 2           |       |           | 020792 |  |
|-------|-------------|-------|-----------|--------|--|
| 42062 | 075 20 18.0 | 83.98 | NSYLVANIA | Е, РА. |  |
| 62    | 48.0        | MILE  | PEN       | DYSTON |  |
| 8920  | 39 50       | RIVER | 42000     | AT ED  |  |

STORET RETRIEVAL DATE 99/01/25

/TYPA/AMBNT/ESTURY

31DELRBC 0046 FEET DEPTH

02040202012 0000.130 ON

| 01051 | PAR            | AMETER<br>DD TOT  | 1/ 011    | MEDIUM | RMK<br> | NUMBER  | MEAN    | VARIANCE  | STAN DEV  | MAXIMUM | MUMINIM | BEG DATE | END DATE |
|-------|----------------|-------------------|-----------|--------|---------|---------|---------|-----------|-----------|---------|---------|----------|----------|
| 10010 | LEAD           | 101,07<br>TOT TOT | 1/5/1     | WAIDK  |         |         |         | .0000000  | .0000000  | 0       | 0 (     | 95/06/26 | 95/07/10 |
|       | MEAD<br>Marian | 101,473           | 1/00      | NALER  | 101     | -07 CB7 | . 22500 | 0020.028  | 3U.414UU  | 110     | Ð       | 80/02/28 | 95/11/27 |
| CCNTN | MANGNESE       | MM                | UG/L      | WATER  |         | 55 166  | 6600    | 4618.600  | 67.96000  | 450.0   | 100.0   | 80/02/28 | 83/11/14 |
|       |                |                   |           |        | *       | 20 96.  | 50000   | 245.0000  | 15.65300  | 100.0   | 30.0    | 80/06/06 | 83/09/07 |
|       |                |                   |           |        | TOT     | 75 147  | 1.9500  | 4408.700  | 66.39800  | 450.0   | 30.0    | 80/02/28 | 83/11/14 |
| 01065 | NICKEL         | NI, DISS          | UG/L      | WATER  | х       | 9 10.   | 00000   | .0000000  | .0000000  | 10      | 10      | 92/03/09 | 92/11/17 |
| 01067 | NICKEL         | NI, TOTAL         | UG/L      | WATER  |         | 1 13.   | 10000   |           |           | 13      | 13      | 90/06/19 | 61/60/06 |
|       |                |                   |           |        | х       | 81 43   | 33300   | 1912.500  | 43.73200  | 100     | 10      | 80/02/28 | 93/06/21 |
|       |                |                   |           |        | TOT     | 82 42.  | 96500   | 1900.0001 | 43.58900  | 100     | 10      | 80/02/28 | 93/06/21 |
| 01077 | SILVER         | AG, TOT           | UG/L      | WATER  | х       | 25 37.  | 92000   | 2258.200  | 47.52000  | 100.0   | 3.0     | 80/02/28 | 91/06/25 |
| 01090 | ZINC           | ZN, DISS          | UG/L      | WATER  |         | 12 13.  | 39200   | 8.522700  | 2.919400  | 21      | 11      | 92/03/09 | 97/03/25 |
|       |                |                   |           |        | ŋ       | 24 6.1  | 50400   | 3.940100  | 1.985000  | 5       | ო       | 94/07/25 | 98/08/24 |
|       |                |                   |           |        | ×       | 10 10.  | 00000   | .0000000  | .0000000  | 10      | 10      | 92/05/04 | 94/05/23 |
|       |                |                   |           |        | Ð       | 2 .00   | 00000   | .0000000  | . 0000000 | 0       | 0       | 95/08/29 | 95/09/25 |
|       |                |                   |           |        | TOT     | 48 8-5  | 005300  | 16.40400  | 4.050200  | 21      | 0       | 92/03/09 | 98/08/24 |
| 01092 | ZINC           | ZN, TOT           | UG/L      | WATER  |         | 108 22. | 28600   | 164.7600  | 12.83600  | 88      | 10      | 82/07/07 | 98/08/24 |
|       |                |                   |           |        | ŋ       | 5 7.9   | 86000   | .5310100  | .7287000  | 6       | ſ       | 95/06/26 | 98/06/24 |
|       |                |                   |           |        | *       | 121 50. | 45500   | 1717.500  | 41.44300  | 100     | 10      | 80/02/28 | 94/05/23 |
|       |                |                   |           |        | TOT     | 234 36. | 54600   | 1172.500  | 34.24100  | 100     | L       | 80/02/28 | 98/08/24 |
| 01220 | CR-DISS        | .HEX VAL          | UG/L      | WATER  | Ж       | 11 6.8  | 18200   | 6.363700  | 2.522600  | 10.0    | 5.0     | 92/08/10 | 97/05/08 |
|       |                |                   |           |        | n       | 12 5.0  | 00000   | .00000000 | .0000000  | 5.0     | 5.0     | 97/06/09 | 98/08/24 |
|       |                |                   |           |        | TOT     | 23 5.8  | 69600   | 3.755000  | 1.937800  | 10.0    | 5.0     | 92/08/10 | 98/08/24 |
| 01519 | RAD GROS       | ALPHA             | TOT PC/L  | WATER  | Ж       | 11 2-5  | 45500   | 2.272700  | 1.507600  | 6.000   | 1.000   | 85/03/26 | 97/06/09 |
| 01000 | Н-З            | TOTAL             | PC/L      | WATER  | м       | 10 143  | 7.400   | 990970.0  | 995.4700  | 3000.0  | 200.0   | 86/12/10 | 97/06/09 |
| 30201 | CLRMTHAN       | WTR, WHL          | REC UG/L  | WATER  | D       | 15 1.2  | :66700  | .2095300  | .4577400  | 2       | ~       | 94/08/23 | 97/06/09 |
| 30202 | BROMOETH       | WTR, WHL          | REC UG/L  | WATER  | D       | 15 1.2  | :66700  | .2095300  | .4577400  | ~       |         | 94/08/23 | 97/06/09 |
| 31505 | TOT COLI       | MPN CONF          | /100ML    | WATER  |         | 47 972  | .7.900  | 5767E+05  | 24015.00  | 160000  | 330     | 87/07/01 | 89/06/19 |
|       |                |                   |           |        | Ŀ       | 1 240   | 00.00   |           |           | 24000   | 24000   | 88/01/22 | 88/01/22 |
|       |                |                   |           |        | TOT     | 48 100  | 125.00  | 5687E+05  | 23848.00  | 160000  | 330     | 87/07/01 | 89/06/19 |
| 31611 | FEC COLI       | M-TEC             | #/100ML/# | WATER  |         | 202 182 | . 7900  | 287280.0  | 535.9900  | 5800    | 2       | 87/03/18 | 98/09/17 |
|       |                |                   |           |        | Ч       | 5 760   | 0000.1  | 8000.000  | 89.44300  | 800     | 600     | 87/04/10 | 97/10/06 |
|       |                |                   |           |        | 0       | 8.00    | 00000   | .0000000  | .0000000  | 0       | 0       | 95/08/29 | 96/08/12 |
|       |                |                   |           |        | TOT     | 215 189 | .4100   | 278970.0  | 528.1800  | 5800    | 0       | 87/03/18 | 98/09/17 |
| 31615 | FEC COLI       | MPNECMED          | /100ML    | WATER  |         | 48 166  | 3.800   | 4704400   | 2169.000  | 7900    | 33      | 87/07/01 | 89/06/19 |
| 31616 | FEC COLI       | MFM-FCBR          | /100ML    | WATER  |         | 134 835 | .3800   | 1767800   | 1329.600  | 0006    | ŝ       | 80/02/28 | 87/06/18 |
|       |                |                   |           |        | ц       | 1 600   | 0000.0  |           |           | 600     | 600     | 87/04/10 | 87/04/10 |
|       |                |                   |           |        | TOT     | 135 833 | .6400   | 1755000   | 1324.800  | 0006    | ъ.      | 80/02/28 | 87/06/18 |
| 31633 | E.COLI         | THERMTOL          | #/100ML   | WATER  |         | 203 135 | .7300   | 140600.0  | 374.9700  | 3600    | 2       | 87/03/18 | 98/09/17 |
|       |                |                   |           |        | Х       | 11.0    | 00000   |           |           | rt      | Ц       | 94/04/25 | 94/04/25 |
|       |                |                   |           |        |         |         |         |           |           |         |         |          |          |

STORET RETRIEVAL DATE 99/01/25

892062 42062 39 50 48.0 075 20 18.0 2 RIVER MILE 83.98 42000 PENNSYLVANIA AT EDDYSTONE, PA. 03

DELCORA CSO LTCP

/TYPA/AMBNT/ESTURY

02040202012 0000.130 ON

31DELRBC 0046 FEET DEPTH

020792

PAGE: 11

| BEG DATE END DATE<br>92/09/21 97/10/06<br>95/08/20 06/00/12 | 87/03/18 98/09/17 | 87/03/18 98/09/17 | 88/06/14 97/07/16 | 95/10/23 95/10/23 | 96/08/12 96/08/12 | 87/03/18 98/09/17 | 89/07/10 97/06/09 | 89/01/10 97/06/09 | 89/07/10 97/06/09 | 89/01/10 91/06/09 | 92/03/09 93/03/23 | 89/08/02 90/09/19 | 89/07/10 97/06/09 | 89/07/10 97/06/09 | 87/03/18 89/06/19 | 89/07/10 96/06/18 | 91/03/20 95/11/27 | 89/07/10 96/06/18 | 89/07/10 96/06/18 | 95/10/10 95/10/10 | 91/05/13 92/11/09 | 89/07/10 96/06/18 | 80/02/28 86/11/24 | 80/04/22 86/04/29 | 80/02/28 88/06/14 | 80/02/28 88/06/14 | 90/06/19 90/06/19 | 89/10/03 89/10/03 | 89/07/10 97/06/09 | 89/07/10 97/06/09 | 89/07/10 97/06/09 | 89/07/10 97/06/09 | 89/07/10 97/06/09 | 89/07/10 97/06/09 | 89/07/10 93/10/25 | 89/07/10 93/10/25    | 93/03/23 93/03/23 |
|-------------------------------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|----------------------|-------------------|
| 009<br>WIMINIW                                              | 00                | н,                |                   | 600               | 0                 | 0                 | 1.0               | 1.0               | 1.0               | 1.0               | с.                | 1.0               | 1.0               | ε.                | .00               | .00               | 1.00              | .00               | .00               | 39.00             | 1.00              | 00.               | .000              | ഹ                 | ŝ                 | ഹ                 | 4.70              | 1.00              | 1.00              | 1.00              | 1.00              | 1.000             | 1,000             | 1,000             | 1.000             | 1.000                | .200              |
| MAXIMUM<br>800<br>0                                         | 3600              | 490               | 1                 | 009               | 0                 | 600               | 2.0               | 2.0               | 2.0               | 2.0               | ς.<br>Γ           | 1.0               | 2.0               | 2.0               | 54.80             | 56.00             | 1.00              | 56.00             | 104.00            | 39.00             | 1.00              | 104.00            | 33000.00          | 20                | 2                 | 20                | 4.70              | 1.00              | 2.00              | 4.70              | 2.00              | 2.000             | 2.000             | 2.000             | 1.000             | 1.000                | .200              |
| STAN DEV<br>115.4700                                        | 372.2900          | 72.07800          | . ບບບບບບ          |                   |                   | 80.53200          | .2620800          | .2620800          | .2620800          | .2620800          | .0000000          | .0000000          | .2740500          | .2999100          | 9.802400          | 10.05100          | .0000000          | 9.842700          | 20.30700          |                   | 0000000 -         | 20.30200          | 3159.800          | 4.690700          | .0000000          | 1.739800          |                   |                   | .4903100          | .6644600          | .4960600          | 4287700           | .2620800          | .5070900          | 0000000           | 0000000              |                   |
| VARIANCE<br>13334.00<br>.0000000                            | 138600.0          | 5195.300          |                   |                   |                   | 6485.400          | .0686880          | .0686880          | .0686880          | .0686880          | .0000000          | .0000000          | .0751030          | .0899480          | 96.08700          | 101.0300          | .0000000          | 96.87900          | 412.3800          |                   | .0000000          | 412.1700          | 9984500           | 22.00300          | .0000000          | 3.026700          |                   |                   | .2404100          | .4415100          | .2460700          | .1838400          | .0686880          | .2571400          | 0000000           | .0000000             |                   |
| NUMBER MEAN<br>3 733.3300<br>8 .0000000                     | 215 142.1600      | 204 29.58800      | 1 600 0000        | 1 000,000 L       | 1 .0000000        | 215 30.90700      | 55 1.072700       | 55 1.072700       | 55 1.072700       | 55 1.072700       | 2 .3000000        | 3 1.000000        | 50 1.080000       | 55 1.047300       | 44 7.028000       | 97 11.17000       | 26 1.000000       | 123 9.020300      | 111 22.39700      | 1 39.00000        | 11 1.000000       | 123 20.61900      | 109 313.2300      | 16 8.012500       | 137 5.000000      | 153 5.315000      | 1 4.700000        | 1 1.000000        | 45 1.622200       | 47 1.674500       | 47 1.595800       | 55 1.236400       | 55 1.072700       | 36 1.500000       | 40 1.000000       | 40 1.000000          | 1.2000000         |
| RMK<br>O L                                                  | TOT               | ч                 | 4 +               | 긔 (               |                   | TOT               | n                 | n                 | U                 | D                 | C,                | ×                 | D                 | TOT               |                   |                   | ¥                 | TOT               |                   | ជា                | ×                 | TOT               |                   | :                 | м                 | TOT               |                   | м                 | D                 | TOT               | n                 | n                 | n                 | ŋ                 | U                 | n                    | IJ                |
| MEDIUM<br>#/100ML WATER                                     |                   | F/IUUMD WATER     |                   |                   |                   |                   | TOTUG/L WATER     | TOTUG/L WATER     | UG/L WATER        | TOTUG/L WATER     | TOTUG/L WATER     |                   |                   |                   | UG/L WATER        | CORRECTD WATER    |                   |                   | UG/L WATER        |                   |                   |                   | MG/L WATER        | UG/L WATER        |                   |                   | UT UG/T WAIEK     |                   |                   |                   | OT UG/L WATER     | OTWUG/L WATER     | 'OTWUG/L WATER    | OTWUG/L WATER     | OTWUG/L WATER     | OTWUG/L WATER        | OTWUG/L WATER     |
| AMETER<br>THERMTOL                                          | ам<br>С           | GK D, MY          |                   |                   |                   |                   |                   |                   | WHL-WTR           |                   |                   |                   |                   |                   | A                 | A UG/I. (         |                   |                   | A                 |                   |                   | ,                 | A                 | TOTAL             |                   |                   |                   |                   |                   |                   |                   | NZENE 1           | HANE 7            | ZENE 3            | OMIDE 1           | LORIDE 7             | ECHLORID 1        |
| PAR.<br>1633 E.COLI                                         | 1630 EWECOCCT     | TODA FRICOCT      |                   |                   |                   |                   | ZIUL DICLERMT     | ZIUZ CARBNTET     | Z104 BROMOFRM     | Z105 CLDIBRMT     | ZIU6 CHLRFORM     |                   |                   |                   | ZZIU CHLRPHYL     | ZZII CHLRPHYL     |                   |                   | ZZIB PHEOPHTN     |                   |                   |                   | 2230 CHLRPHIL     | CIDNARA UCIS      |                   |                   | AULU LULUENE      |                   |                   |                   | 4030 BENZENE      | 4301 CHLOROBE     | 4311 CHLOROET     | 4371 ETHYLBEN     | 4413 METHYLBR     | <b>4418 METHYLCH</b> | 4423 METHYLEN     |

STORET RETRIEVAL DATE 99/01/25 892062 42062 39 50 48.0 075 20 18.0 2 RIVER MILE 83.98 42000 PENNSYLVANIA AT EDDYSTONE, PA. 020792

PGM=INVENT DELCO

DELCORA CSO LTCP

/TYPA/AMBNT/ESTURY

02040202012 0000.130 ON

31DELRBC 0046 FEET DEPTH

PAGE: 12

| BEG DATE END DATE | 89/07/10 97/06/09 | 89/07/10 97/06/09 | 89/07/10 97/06/09 | 89/07/10 97/06/09 | 89/07/10 97/06/09 | 89/07/10 97/06/09 | 89/08/02 89/08/02 | 89/01/10 97/06/09 | 89/07/10 97/06/09 | 89/01/10 97/06/09 | 89/07/10 97/06/09 | 90/05/16 90/06/06 | 89/07/10 89/10/03 | 89/08/02 97/06/09 | 89/07/10 97/06/09 | 89/07/10 97/06/09 | 89/01/10 97/06/09 | 89/07/10 97/06/09 | 89/01/10 97/06/09 | 89/07/10 97/06/09 | 89/07/10 97/06/09 | 89/07/10 97/06/09 | 89/01/10 97/06/09 | 89/07/10 97/06/09 | 89/07/10 97/06/09 | 89/07/10 97/06/09 | 80/05/29 80/05/29 | 80/05/29 80/05/29 | 80/05/29 80/05/29 | 80/05/29 80/05/29 | 80/05/29 80/05/29 | 80/05/29 80/05/29 | 80/05/29 80/05/29 | 80/05/29 80/05/29 | 80/05/29 80/05/29 | 80/05/29 80/05/29 | 80/05/29 80/05/29 | 80/05/29 80/05/29 | 80/05/29 80/05/29 |
|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| MUMINIM           | 1.000             | .200              | 1.000             | 1.000             | 1.000             | 1.000             | 1.000             | 1.000             | 1.000             | 1.000             | 1.000             | 1.000             | 1.000             | 1.000             | 1.000             | 1.000             | 1.000             | 1.000             | 1.000             | 1.000             | 1.000             | 1.000             | 1.000             | 1.000             | 1.000             | 1.000             | .071              | .057              | .050              | .052              | .024              | :03               | .010              | .010              | .043              | .027              | .050              | .010              | .015              |
| MAXIMUM           | 2.000             | 2.000             | 2.000             | 2.000             | 2.000             | 2.000             | 1.000             | 2.000             | 2.000             | 2.000             | 2.000             | 1.500             | 1.000             | 2.000             | 2.000             | 2.000             | 2.000             | 2.000             | 2.000             | 2.000             | 4.000             | 2.000             | 2.000             | 2.000             | 2.000             | 2.000             | .071              | .057              | .050              | .052              | .024              | .03               | .010              | .010              | .043              | . 027             | .050              | .010              | .015              |
| STAN DEV          | .2643500          | .2871900          | .2620800          | .2620800          | .2620800          | .2620800          |                   | .2643500          | .2620800          | .2620800          | .2620800          | .3535500          | .0000000          | .2715300          | .2681200          | .4287700          | .2620800          | .2620800          | .4287700          | .4287700          | .4583700          | .2620800          | .2620800          | .2620800          | .2620800          | .2620800          |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| VARIANCE          | .0698820          | .0824780          | .0686880          | .0686880          | .0686880          | .0686880          |                   | .0698820          | .0686880          | .0686880          | .0686880          | .1250000          | .0000000          | .0737260          | .0718870          | .1838400          | .0686880          | .0686880          | .1838400          | .1838400          | .2101000          | ,0686880          | .0686880          | .0686880          | .0686880          | .0686880          |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |
| MEAN              | 1.074100          | 1.058200          | 1.072700          | 1.072700          | 1.072700          | 1.072700          | 1.000000          | 1.074100          | 1.072700          | 1.072700          | 1.072700          | 1.250000          | 1.000000          | 1.078400          | 1.081800          | 1.236400          | 1.072700          | 1.072700          | 1.236400          | 1.236400          | 1.109100          | 1.072700          | 1.072700          | 1.072700          | 1.072700          | 1.072700          | .0710000          | .0570000          | .0500000          | .0520000          | .0240000          | .0310000          | .0100000          | .0100000          | .0430000          | .0270000          | .0500000          | .0100000          | .0150000          |
| NUMBER            | 54                | 55                | 55                | 55                | 55                | 55                | 1                 | 54                | 55                | 55                | 55                | 0                 | 2                 | 51                | 55                | 55                | 55                | 55                | 55                | 55                | 55                | 55                | 55                | 55                | 55                | 55                | ~                 | ÷                 | IJ                | r                 | ~                 | m                 | <del>,</del>      | Ļ                 | 1                 | m                 | г                 | Ĺ                 | 1                 |
| RMK               | D                 | TOT               | D                 | D                 | D                 | D                 | ×                 | D                 | TOT               | n                 | U                 |                   | ¥                 | D                 | TOT               | n                 | D                 | D                 | D                 | D                 | D                 | D                 | D                 | D                 | n                 | n                 | м                 | ×                 | ×                 | ×                 | 2                 | ×                 | *                 | м                 | *                 | 2                 | ×                 | ×                 | ×                 |
| MEDIUM            | TOTWUG/L WATER    |                   |                   | TOTWUG/L WATER    | TOTWUG/L WATER    | TOTWUG/L WATER    |                   |                   |                   | TOTWUG/L WATER    | UG/L WATER        | UG/L WATER        | TOT UG/L WATER    | TOT UG/L WATER    | TOT UG/L WATER    | UG/L WATER        | TOT UG/L WATER    | UG/L WATER        | TOT UG/L WATER    | UG/KG WATER       | TOT UG/L WATER    | TOTUG/L WATER     | TOTUG/L WATER     | TOTUG/L WATER     | TOT UG/L WATER    | TOTUG/L WATER     | TOTUG/L WATER     |
| AMETER            | ECHLORID          | ECHLORID          | OROE'THYL         | OFLUOROM          | ROETHANE          | ROETHYLE          | LOROETHA          |                   |                   | LOROETHA          | ACHLOROE          | ROETHANE          |                   |                   |                   | ROBENZEN          | ROPROPAN          | ROETHENE          | ROBENZEN          | ROBENZEN          | THYLVINY          | DIFLUORO          | TOT WAT           | TOT WAT           | ORIDE             | ETHYLENE          |                   | WHL SMPL          |                   | MHL SMPL          |                   | MUD               |                   |                   |                   |                   |                   |                   |                   |
| PARI              | METHYLEN          | METHYLEN          | TETRACHL          | TRICHLOR          | 11DICHLO          | 11DICHLO          | 111TRICH          |                   |                   | 112TRICH          | 1122TETR          | 12DICHLO          |                   |                   |                   | 12DICHLO          | 12DICHLO          | 12DICHLO          | 13DICHLO          | 14DICHLO          | 2CHLOROE          | DICHLORO          | T1,3-DCP          | C1, 3-DCP         | VINYLCHL          | TRICHLOR          | P, P' DDT         | O, P' DDT         | P, P' DDD         | 0, P' DDD         | P, P' DDE         | O, P' DDE         | ALDRIN            | ALPHABHC          | BETA BHC          | DIELDRIN          | ENDRIN            | HEPTCHLR          | HPCHLREP          |
|                   | 34423             | 34423             | 34475             | 34488             | 34496             | 34501             | 34506             |                   |                   | 34511             | 34516             | 34531             |                   |                   |                   | 34536             | 34541             | 34546             | 34566             | 34571             | 34576             | 34668             | 34699             | 34704             | 39175             | 39180             | 39300             | 39305             | 39310             | 39315             | 39320             | 39328             | 39330             | 39337             | 39338             | 39380             | 39390             | 39410             | 39420             |

÷

DELCORA CSO LTCP

PAGE: 13

| 9/01/25   |       | ) 2      |           |        | 020792    |
|-----------|-------|----------|-----------|--------|-----------|
| L DATE 9  | 42062 | 20 18.0  | 98        | VANIA  | PA.       |
| RETRIEVAJ | 2     | 48.0 075 | MILE 83.9 | ΓΥΝΝΖΑ | YSTONE, I |
| STORET    | 89206 | 39 50    | RIVER     | 42000  | AT EDD    |

/TYPA/AMBNT/ESTURY

02040202012 0000.130 ON

31DELRBC 0046 FEET DEPTH

| r             | . ന             |          |          | ۰ <b>م</b> | . ~      |           | . ~      | . ~      | · ~      | ~        |          | ~           |          |          |                | ~        |          | -          |
|---------------|-----------------|----------|----------|------------|----------|-----------|----------|----------|----------|----------|----------|-------------|----------|----------|----------------|----------|----------|------------|
| END DATE      | 80/05/29        | 80/05/20 | 80/05/20 | 80/05/20   | 92/11/11 | 02/11/17  | 98/09/17 | 96/11/12 | 93/03/25 | 93/10/25 | 93/10/25 | 93/03/23    | 93/10/25 | 93/10/25 | 80/04/22       | 94/08/30 | 98/09/17 | 50/90/16   |
| ; DATE        | 05/29           | 05/29    | 05/29    | 05/20      | 03/09    | 02/28     | 03/26    | 03/23    | 03/23    | 04/19    | 03/23    | 03/23       | 04/19    | 03/23    | 04/22          | 08/30    | 03/01    | 04/18      |
| BE(           | 80              | 80/      | 807      | 808        | 6        |           | 6        | 66       | 6        | 63       | 93/      | 93/         | 93/      | 93/      | 80/            | 94/      | 88       | 87/        |
| MUMINIM       | .210            | .010     | . 08     | 010        | ~        |           | 861126   | 1 00     | 30       | 2 00     | .30      | .30         | 2.00     | .30      | 1.8            | 4958     | 6001     | 3.000      |
| MAXIMUM       | .210            | .010     | .08      | .010       | 2        | -<br>-    | 981229   | 2.00     | 30       | 2.00     | 2.00     | .30         | 2.00     | 2.00     | 1.8            | 5210     | 550810   | 4.000      |
| AN DEV        |                 |          |          |            | 000000   | 209400    | 880.00   | 294200   |          | 000000   | 010400   |             | 000000   | 010400   |                | 8.1700   | 864.00   | 336100     |
| E<br>ST       |                 |          |          |            | 0.       | 0.4       | 6 38     | 0.2      |          | 0.0      | 9.0      |             | °.<br>0  | 9.0      |                | 0 17     | 5 56     | 4.         |
| VARIANCI      |                 |          |          |            | .0000000 | 1771900   | 1511E+0  | .0526350 |          | .0000000 | .3612500 |             | .0000000 | .361250( |                | 31744.00 | 3233E+06 | .1880200   |
| MEAN          | 2100000         | 0100000  | 0830000  | 0100000    | 2000000  | .109900   | 324260.0 | .947400  | 3000000  | 000000   | .787500  | 3000000     | .000000  | .787500  | . 800000       | 084.000  | 2268.00  | .240000    |
| NUMBER        | ,<br>,          | 1        |          | ה          | თ        | 71 1      | 283 5    | 19 1     | ~        | 2 1      | 8        | M           | 7 2      | 8        | н<br>н         | 2 5      | 176 3    | с<br>2     |
| RMK           | X               | ж        | м        | м          | м        | м         |          | ŋ        | Ţ        | n        | TOT      | ŋ           | D        | TOT      |                |          |          | м          |
|               |                 |          |          |            |          |           |          |          |          |          |          |             |          |          |                |          |          |            |
| MEDIUM        | WATER           | WATER    | WATER    | WATER      | WATER    | WATER     | WATER    | WATER    | WATER    |          |          | WATER       |          |          | WATER          | WATER    | WATER    | WATER      |
|               | UG/L            | TOT UG/L | UG/L     | UG/L       | UG/L     | UG/L      | UPDATED  | UG/L     | 0G/L     |          |          | HOH UG/L    |          |          | MG/L           | UG/L     | UG/L     | PC/L       |
| <b>ye</b> ter | WHL SMPL        |          | WHL SMPL | NHL SMPL   | HG, DISS | HG, TOTAL | SAMPLE   | WH WTR   | HOH VOL  |          |          | CYCLOPNT    |          |          | <b>ODAYCAR</b> | COTAL MG | COTAL NA | AT WHL     |
| PARA          | <b>WTHXYCLR</b> | HCB      | MIREX    | LINDANE    | MERCURY  | MERCURY . | WQF      | STH BENZ | 3ENZENE  |          |          | ) IMETHYL ( |          |          | BOD 20C ;      | мо       | SODIUM   | BETAGROS 1 |
|               | 39480 r         | 39700 1  | 39755    | 39782 1    | 71890 1  | 71900 1   | 74041    | 78113 E  | 78124 E  |          |          | 78135 L     |          |          | 80087          | 82033    | 82035    | 85817 E    |

PGM=INVENT DELCORA CSO LTCP

STORET RETRIEVAL DATE 99/01/25 PGM=INV WON0158 ABMS0158 01476510 39 52 28.0 075 22 56.0 1 RIDLEY CRK-150YDS DWN JCT WATERVL/COBBL 42045 PENNSYLVANIA DELAWARE DELAWARE RIVER 020300 RIDLEY CREEK 020300 RIDLEY CREEK 21PA 02040202081 0003.760 ON 0000 FEET DEPTH

/TYPA/AMBNT/STREAM

|       | PARI            | AMETER   |          | MEDIUM | RMK | NUMBER         | MEAN     | VARIANCE | STAN DEV | MUMI XAM | MUMINIM | BEG DATE ENI | DATE    |
|-------|-----------------|----------|----------|--------|-----|----------------|----------|----------|----------|----------|---------|--------------|---------|
| 01000 | WATER           | TEMP     | CENT     | WATER  |     | 22             | 14.38600 | 69.26100 | 8.322300 | 27.0     | 0.      | 80/03/12 87/ | 11/17   |
| 00011 | WATER           | TEMP     | FAHN     | WATER  | ŝ   | 22             | 57.89500 | 224.4100 | 14.98000 | 80.6     | 32.0    | 80/03/12 87/ | 11/17   |
| 00076 | TURB            | TRBIDMTR | HACH FTU | WATER  |     | 6              | 10.83300 | 304.9400 | 17.46300 | 53.0     | 1.5     | 80/03/12 82/ | 02/02   |
| 00094 | CNDUCTVY        | FIELD    | MICROMHO | WATER  |     | 2              | 165.0000 | 2450.000 | 49.49800 | 200      | 130     | 80/03/12 86/ | 05/19   |
| 00095 | CNDUCTVY        | AT 25C   | MICROMHO | WATER  |     | 33             | 235.4600 | 1799.100 | 42.41600 | 370      | 140     | 80/03/12 87/ | 11/17   |
| 00300 | od              |          | MG/L     | WATER  |     | 21             | 9.738100 | 7.702500 | 2.775300 | 14.6     | 5.0     | 80/03/12 87/ | 11/17   |
| 00301 | 00              | SATUR    | PERCENT  | WATER  | ŝ   | 21             | 91.20700 | 297.7600 | 17.25600 | 121.0    | 58.0    | 80/03/12 87/ | 11/17   |
| 00310 | BOD             | 5 DAY    | MG/L     | WATER  |     | 21             | 2.390500 | 1.727900 | 1.314500 | 5.5      | ۲.      | 80/08/18 85/ | 11/06   |
| 00340 | COD             | HI LEVEL | MG/L     | WATER  |     | <del>،</del> ۲ | 10.00000 |          |          | 10       | 10      | 85/08/15 85/ | 08/15   |
| 00400 | Hď              |          | SU       | WATER  |     | 13             | 7.743900 | .7310000 | .8549800 | 10.00    | 7.00    | 80/03/12 87/ | 71/11   |
| 00403 | Нd              | LAB      | SU       | WATER  |     | ее<br>ЭЭ       | 7.039400 | .2636900 | .5135100 | 7.9      | 5.9     | 80/03/12 87/ | 71/11   |
| 00410 | T ALK           | CAC03    | MG/L     | WATER  |     | 33             | 38.84900 | 44.50800 | 6.671500 | 52       | 20      | 80/03/12 87/ | 11/17   |
| 00515 | RESIDUE         | DISS-105 | C MG/L   | WATER  |     | е<br>С         | 178.6400 | 2479.500 | 49.79500 | 360      | 84      | 80/03/12 87/ | T1/17   |
| 00530 | RESIDUE         | TOT NELT | MG/L     | WATER  |     | 2              | 10.00000 | 72.00000 | 8.485300 | 16       | 4       | 80/08/18 85/ | 08/15   |
| 00610 | NH3+NH4-        | N TOTAL  | MG/L     | WATER  |     | 33             | .4512100 | .3083700 | 5553100  | 2.640    | .010    | 80/03/12 87/ | 11/17   |
| 00612 | UN-IONZD        | NH3-N    | MG/L     | WATER  | ŝ   | 22             | .0304960 | .0163700 | .1279500 | . 603    | .0003   | 80/03/12 87/ | 11/11   |
| 00615 | NO2-N           | TOTAL    | MG/L     | WATER  |     | 33             | .0782420 | .0064867 | 0805400  | .440     | .002    | 80/03/12 87/ | 11/17   |
| 00619 | UN-IONZD        | NH3-NH3  | MG/L     | WATER  | ŝ   | 22             | .0370800 | .0242020 | .1555700 | .733     | .0004   | 80/03/12 87/ | 11/17   |
| 00620 | N-SON           | TOTAL    | MG/L     | WATER  |     | 32             | 2.710300 | .8047600 | 8970900  | 4.870    | 1.260   | 80/03/12 87/ | 71/11   |
|       |                 |          |          |        | L   | Т              | 2.000000 |          |          | 2.000    | 2.000   | 86/11/18 86/ | (11/18) |
|       |                 |          |          |        | TOT | 33             | 2.688800 | .7949000 | 8915700  | 4.870    | 1.260   | 80/03/12 87/ | 11/17   |
| 00625 | TOT KJEL        | z        | MG/L     | WATER  |     | Ч              | .4200000 |          |          | .420     | .420    | 85/08/15 85/ | 08/15   |
| 00665 | <b>PHOS-TOT</b> |          | MG/L P   | WATER  |     | 33             | .4724200 | .0656190 | .2561600 | .950     | .150    | 80/03/12 87/ | 11/17   |
| 00600 | TOT HARD        | CAC03    | MG/L     | WATER  |     | 33             | 67.09100 | 74.15000 | 8.611100 | 81       | 45      | 80/03/12 87/ | 11/17   |
| 00916 | CALCIUM         | CA-TOT   | MG/L     | WATER  |     | 32             | 14.43600 | 10.19200 | 3.192400 | 19.4     | 6.3     | 80/03/12 87/ | 11/17   |
| 00927 | MUISNDM         | MG, TOT  | MG/L     | WATER  |     | 32             | 8.127800 | 2.529700 | 1.590500 | 12.9     | 5.5     | 80/03/12 87/ | 11/17   |
| 00940 | CHLORIDE        | TOTAL    | MG/L     | WATER  |     | 33             | 28.37900 | 132.4900 | 11.51000 | 73       | 7       | 80/03/12 87/ | 11/17   |
| 00945 | SULFATE         | SO4-TOT  | MG/L     | WATER  |     | 33             | 24.77300 | 68.70500 | 8.288900 | 45       | 10      | 80/03/12 87, | 11/17   |
| 01002 | ARSENIC         | AS, TOT  | UG/L     | WATER  | ¥   | 10             | 5.500000 | 5.833300 | 2.415200 | 10       | 4       | 80/08/18 87/ | 08/12   |
| 01027 | CADMIUM         | CD, TOT  | UG/L     | WATER  |     | 2              | 1.205000 | 1.980100 | 1.407200 | 2        | .2      | 86/08/19 87, | 08/12   |
|       |                 |          |          |        | ж   | 8              | .9875000 | .7898200 | .8887200 | m        | .2      | 80/08/18 87/ | 05/21   |
|       |                 |          |          |        | TOT | 10             | 1.031000 | .8427200 | .9180000 | m        | .2      | 80/08/18 87/ | 08/12   |
| 01032 | CHROMIUM        | HEX-VAL  | UG/L     | WATER  | Х   | 2              | 10.00000 | .0000000 | .0000000 | 10       | 10      | 83/08/16 84/ | 08/02   |
| 01034 | CHROMIUM        | CR, TOT  | UG/L     | WATER  |     | m              | 8.200000 | 9.720100 | 3.117700 | 10       | ςυ      | 80/08/18 87, | 08/12   |
|       |                 |          |          |        | ¥   | 7              | 13.14300 | 273.1400 | 16.52700 | 50       | 4       | 82/08/02 87/ | 05/21   |
|       |                 |          |          |        | TOT | 10             | 11.66000 | 189.9600 | 13.78300 | 50       | 4       | 80/08/18 87/ | 08/12   |
| 01042 | COPPER          | CU, TOT  | UG/L     | WATER  |     | 4              | 15.00000 | 33.33300 | 5.773500 | 20       | 10      | 80/08/18 83/ | 08/16   |
|       |                 |          |          |        | ×   | 9              | 55.00000 | 150.0000 | 12.24800 | 80       | 50      | 84/08/02 87, | 08/12   |
|       |                 |          |          |        | TOT | 10             | 39.00000 | 521.1100 | 22.82800 | 80       | 10      | 80/08/18 87/ | 08/12   |

۰ ۰ ۰

PAGE: 14

DELCORA CSO LTCP

 STORET RETRIEVAL DATE 99/01/25
 PGM=INVENT

 WQN0158
 ABMS0158
 01476510

 39 52 28.0
 075 22 56.0
 1

 RIDLEY CRR-150YDS DWN JCT WATERVL/COBBL
 42045
 PENNSYLVANIA

 A2045
 PENNSYLVANIA
 DELAWARE
 020300

 RIDLEY CREEK
 020300
 RIDLEY CREEK
 21PA

 770419
 02040202081
 0003.760
 0N

/TYPA/AMBNT/STREAM

PAGE: 15

1

DELCORA CSO LTCP PGM=INVENT

02040202081 0003.760 ON STORET RETRIEVAL DATE 99/01/25 WQN0158 ABMS0158 01476510 39 52 28.0 075 22 56.0 1 RIDLEY CRK-150YDS DWN JCT WATERVL/COBBL 42045 PENNSYLVANIA DELAWARE DELAWARE RIVER 020300 RIDLEY CRREK Z1PA 770419 020300 S1PA 770419 020300 0000 FET DEPTH

/TYPA/AMBNT/STREAM

| FE END DATE | 08 83/08/08 | 02 87/10/20 | 23 87/10/20 | 08 83/08/08 | 23 87/10/20 | 23 87/10/20 | 23 87/10/20 | 20 87/10/20 | 02 87/10/20 | 20 87/10/20 | 23 87/10/20 | 21/11/28 21 | 12 87/11/17 | 03 85/11/06 | 12 87/11/17 | 18 87/08/12 | 14 87/11/17 | 05 87/11/17 | 08 82/11/08 | 05 87/11/17 |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| BEG DA'     | 83/08/(     | 82/08/(     | 81/11/:     | 83/08/(     | 81/11/2     | 81/13/      | 81/11/2     | 87/10/2     | 82/08/(     | 87/10/2     | 2/11/18     | 80/03/      | 80/03/      | 84/05/(     | 80/03/:     | 80/08/2     | 85/08/3     | 82/05/(     | 82/11/(     | 82/05/0     |
| MUMINIM     | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | c           | 40          | 0           | 0           | 0           | 1.0         | 861017      | 8.          | 1.0         | 8,          |
| MUMIXAM     | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 0           | 63          | 0           | 0           | 0           | 2.0         | 880608      | 13.0        | 1.0         | 13.0        |
| STAN DEV    |             | .0000000    | 00000000.   |             | .0000000    | .0000000    | .0000000    |             | .0000000    |             | .0000000    | 11.07100    | .0000000    | .0000000    | .0000000    | .5270500    | 7081.000    | 3.380300    |             | 3.357700    |
| VARIANCE    |             | .0000000    | .0000000    |             | .0000000    | .0000000    | .0000000    |             | .0000000    |             | .0000000    | 122.5700    | .0000000    | .0000000    | .0000000    | .2777800    | 50141000    | 11.42700    |             | 11.27400    |
| MEAN        | .0000000    | .0000000    | .0000000    | .0000000    | . 0000000   | .0000000    | .0000000    | .0000000    | .0000000    | .0000000    | .0000000    | 69.51800    | .0000000    | ,0000000    | .0000000    | 1.500000    | 870540.0    | 3.873900    | 1.000000    | 3.754200    |
| NUMBER      | r~4         | 4           | ŝ           | 1           | m           | ŝ           | 4           | y-rel       | 2           | -4          | 4           | 32          | 26          | 7           | 33          | 10          | 12          | 23          | 1           | 24          |
| RMK         | Σ           | Σ           | Σ           | Σ           | Σ           | Σ           | Σ           | Σ           | Ξ           | Σ           | Σ           | ŝ           |             | υ           | TOT         | м           |             |             | *           | TOT         |
| MEDIUM      | WATER       |             |             | WATER       | WATER       | WATER       |             |             |
|             | NO/FT2      | MG/L        | HOT-MG/L    |             |             | UG/L        | UPDATED     | NTU         |             |             |
| AMETER      | BEETLE      | BEETLE      | FLY         | FLY         | FLY         | FLY         | SNAIL       | SNAIL       | SNAIL       | CLAM        | AQ E WRM    | CA MG       | AS CACO3    |             |             | HG, TOTAL   | SAMPLE      | LAB         |             |             |
| PAR         | PSEPHEN     | ELMIDAE     | TIPUL       | CERATOPO    | SIMULID     | TENDIPED    | DISYHY      | PLANORB     | ANCYL       | SPHAERI     | OLIGOCHT    | CAL HARD    | T ACDITY    |             |             | MERCURY     | WQF         | TURBIDTY    |             |             |
|             | 46071       | 46075       | 46078       | 46083       | 46084       | 46087       | 46095       | 46097       | 46098       | 46104       | 46106       | 46570       | 70508       |             |             | 71900       | 74041       | 82079       |             |             |

.8 82/05/05 87/11/17

. 3

16 PAGE: PAGE: 17

PGM=INVENT DELCORA CSO LTCP

STORET RETRIEVAL DATE 99/01/25 01482100 39 41 21.0 075 31 19.0 2 DELAWARE R AT DMB AT WILMINGTON, DE 10003 DELAWARE NEW CASTLE 020891

112WRD 0000 FEET DEPTH

02040204

/TYPA/AMBNT/STREAM

| BEG DATE FND DATE                   | 80/11/26 80/11/26 | 80/11/26 80/11/26 | 80/05/22 80/11/26            | 80/05/22 80/11/26            | 80/05/22 80/11/26            | 80/11/26 80/11/26 | 80/05/22 80/11/26            | 80/05/22 80/11/26            | 80/05/22 80/11/26            | 80/05/22 80/11/26            | 80/05/22 80/11/26            | 80/05/22 80/11/26            | 80/05/22 80/11/26            | 80/05/22 80/11/26            | 80/05/22 80/11/26            | 80/05/22 80/11/26            | 80/05/22 80/11/26            | 80/05/22 80/11/26            | 80/05/22 80/11/26            | 80/05/22 80/11/26            | 80/05/22 80/11/26            | 80/05/22 80/11/26           | 80/05/22 80/11/26            | 80/05/22 80/11/26            | 80/05/22 80/05/22 | 80/05/22 80/11/26            | 80/11/26 80/11/26 | 80/05/22 80/05/22 | 80/05/22 80/11/26               | 80/11/26 80/11/26 | 80/05/22 80/05/22 | 80/05/22 80/11/26                | 80/05/22 80/05/22 | 80/05/22 80/05/22 | 80/11/26 80/11/26 | 80/05/22 80/05/22 | 80/05/22 80/11/26                | 80/05/22 80/05/22 | 80/11/26 80/11/26 |
|-------------------------------------|-------------------|-------------------|------------------------------|------------------------------|------------------------------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|-----------------------------|------------------------------|------------------------------|-------------------|------------------------------|-------------------|-------------------|---------------------------------|-------------------|-------------------|----------------------------------|-------------------|-------------------|-------------------|-------------------|----------------------------------|-------------------|-------------------|
| MINIMIM                             | 7.2               | 45.0              | 80010                        | 413                          | 6.40                         | 7.4               | 1.9                          | 30                           | 37                           | .4                           | 00.                          | .000                         | 2.8                          | 81                           | 51                           | 17.0                         | 9.4                          | 52.00                        | 2.8                          | 57                           | 3.40                         | 77                          | 41                           | ۳ <b>.</b>                   | 4.00              | 30                           | 00.               | 1.00              | 00.                             | 55                | <del>, ~</del> 1  | -1                               | 10.00             | 10.00             | 0                 | m                 | 0                                | 30.00             | 10                |
| МАХТМИМ                             | 7.2               | 45.0              | 80010                        | 6800                         | 7.70                         | 7.4               | 24.0                         | 50                           | 61                           | 2.5                          | .06                          | .020                         | 5.8                          | 550                          | 500                          | 54.0                         | 100.0                        | 960.00                       | 21.0                         | 78                           | 41.00                        | 2200                        | 390                          | 1.8                          | 4.00              | 40                           | 00.               | 1.00              | 1.00                            | 55                | г                 | 55                               | 10.00             | 30.00             | 0                 | m                 | m                                | 30.00             | 10                |
| RMK NUMBER MEAN VARIANCE STAN DEV I | 1 7.200000        | \$ 1 44.96000     | 3 80010.00 .0000000 .0000000 | 3 4424.300 12205000 3493.600 | 3 7.000000 .4300200 .6557600 | 1 7.40000         | 3 12.63300 122.4000 11.06400 | 3 43.00000 127.0000 11.27000 | 3 52.66700 184.3300 13.57700 | 3 1.806700 1.442100 1.200900 | 2 .0300000 .0018000 .0424270 | 2 .0100000 .0002000 .0141420 | 3 4.166700 2.303300 1.517700 | 2 315.5000 109980.0 331.6300 | 2 275.5000 100800.0 317.4900 | 2 35.50000 684.5000 26.16300 | 2 54.70000 4104.200 64.06400 | 2 506.0000 412230.0 642.0500 | 2 11.90000 165.6200 12.86900 | 2 67.50000 220.5000 14.84900 | 2 22.20000 706.8800 26.58700 | 3 1325.700 1231900 1109.900 | 3 250-3300 34090.00 184.6400 | 2 1.025000 1.201300 1.096000 | 1 4.00000         | 2 35.00000 50.00000 7.071100 | 1 .0000000        | K 1 1.000000      | TOT 2.5000000 .5000000 .7071100 | 1 55.0000         | K 1.000000        | TOT 2 28.00000 1458.000 38.18400 | K 1 10.0000       | K 1 10.00000      | 1 .0000000        | K 1 3.00000       | TOT 2 1.500000 4.500000 2.121300 | 1 30.00000        | 1 10.00000        |
| MEDIUM                              | WATER             | WATER             | WATER                        | WATER                        | WATER                        | WATER             | WATER                        | WATER                        | WATER                        | WATER                        | WATER                        | WATER                        | WATER                        | WATER                        | WATER                        | WATER                        | WATER                        | WATER                        | WATER                        | WATER                        | WATER                        | WATER                       | WATER                        | WATER                        | WATER             | WATER                        | WATER             |                   |                                 | WATER             |                   |                                  | WATER             | WATER             | WATER             |                   |                                  | WATER             | WATER             |
|                                     | CENT              | FAHN              | CODE                         | MICROMHO                     | SU                           | SU                | MG/L                         | MG/L                         | MG/L                         | MG/L                         | MG/L                         | MG/L P                       | MG/L                         | MG/L                         | MG/L                         | MG/L                         | MG/L                         | MG/L                         | RATIO                        | <b>0</b> 50                  | MG/L                         | MG/L                        | MG/L                         | MG/L                         | DRY WGT           | UG/L                         | UG/F              |                   | 2                               | UG/L              |                   |                                  | MG/KG-CD          | DRY WGT           | UG/I,             |                   |                                  | MG/KG-CO          | UG/L              |
| METER                               | TEMP              | TEMP              | AGENCY                       | AT 25C                       |                              | LAB               | 1                            | CACO3                        | нсоз                         | N-DISS                       | P04                          | ORTHO                        | υ                            | CACO3                        | CACO3                        | CA, DISS                     | MG, DISS                     | NA, DISS                     | ADSBTION                     | SODIUM                       | K, DISS                      | TOTAL                       | SO4-TOT                      | DISOLVED                     | SEDMG/KG          | BA, DISS                     | 85.U15S           |                   |                                 | CD, DISS          |                   |                                  | DRY WGT           | SEDMG/KG          | CO, DISS          |                   |                                  | DRY WGT           | CU, DISS          |
| PARP                                | WATER             | WATER             | ANALYZE                      | CNDUCTVY                     | Нd                           | Нd                | C02                          | T ALK                        | HCO3 ION                     | NO2 &NO3                     | ORTHOP04                     | PHOS-DIS                     | D ORG C                      | TOT HARD                     | NC HARD                      | CALCIUM                      | MGNSIUM                      | SODIUM                       | SODIUM                       | PERCENT                      | PTSSIUM                      | CHLORIDE                    | SULFATE                      | SILICA                       | ARSENIC           | BARIUM                       | BERTLIUM          |                   |                                 | CADMIUM           |                   |                                  | CD MUD            | CHROMIUM          | COBALT            |                   |                                  | CO MUD            | COPPER            |
|                                     | 00010             | 00011             | 00028                        | 56000                        | 00400                        | 00403             | 00405                        | 00410                        | 00440                        | 00631                        | 00660                        | 00671                        | 00681                        | 00600                        | 20600                        | 51600                        | 00925                        | 05600                        | 00931                        | 00932                        | 00935                        | 01600                       | 00945                        | 00955                        | 01003             | 01005                        | 01010             |                   | 10010                           | CZ010             |                   |                                  | 01028             | 01029             | 01035             |                   |                                  | 01038             | 01040             |

DELCORA CSO LTCP

18 PAGE:

| FARMARTSR         MEDIUM         MMK         UNMERR         MEAN         VALANCE         STAN BET BY         MAXIMUM         MINIMUM           010140         COPERX         CU, DISS         UG/L         MATER         TO         10,0000         100         100         100         100         100         100         20         10         10,000         100         100         20         10         10         10,000         100         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         1                                                                                                                                                                                                                                                                                                                                                | 000 FEE | Т ДЕРТН                |          |           | 5      |     |              |           |           |           |          |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------------------------|----------|-----------|--------|-----|--------------|-----------|-----------|-----------|----------|----------|
| 01430         ССР.Т.         МАТЕВ         К         110.00000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .0000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .000000         .0000000         .0000000         .0000000 <t< th=""><th></th><th>PARI</th><th>METER</th><th></th><th>MEDIUM</th><th>RMK</th><th>NUMBER</th><th>MEAN</th><th>VARIANCE</th><th>STAN DEV</th><th>MAXIMUM</th><th>MUMINIM</th></t<> |         | PARI                   | METER    |           | MEDIUM | RMK | NUMBER       | MEAN      | VARIANCE  | STAN DEV  | MAXIMUM  | MUMINIM  |
| 10140         CORPER         CU/L         MATER         TOT         2         10,00000         .0000000         .0000000         .00         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20                                                                                                                                                                                                                                                                                                                                                                    | 01040 ( | COPPER                 | CU, DISS | UG/L      | WATER  | м   | r-1          | 10.00000  |           |           | 10       | 10       |
| 10143         TRNR         1         2         000000         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00         20.00 </td <td>01040 0</td> <td>COPPER</td> <td>cu, diss</td> <td>UG/L</td> <td>WATER</td> <td>TOT</td> <td>2</td> <td>10.00000</td> <td>.0000000</td> <td>.0000000</td> <td>10</td> <td>10</td>                                                              | 01040 0 | COPPER                 | cu, diss | UG/L      | WATER  | TOT | 2            | 10.00000  | .0000000  | .0000000  | 10       | 10       |
| 01046         IRAD         RF, DISS         UG/L         MATER         21         750000         220.5000         14.84900         26         00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00                                                                                                                                                                                                                                                                | 01043 0 | COPPER                 | SEDMG/KG | DRY WGT   | WATER  |     | <del>۱</del> | 20.00000  |           |           | 20.00    | 20.00    |
| 01039         EXADINATION         NATER         1         0000000         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00                                                                                                                                                                                                                                                           | 01046   | IRON                   | FE, DISS | UG/L      | WATER  |     | 2            | 17.50000  | 220.5000  | 14.84900  | 28       | د        |
| 01035         REMG/K         BRY WATER         16.00000         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         66.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00         60.00                                                                                                                                                                                                                                                       | 01049   | LEAD                   | PB, DISS | UG/L      | WATER  |     | ~~~          | .0000000  |           |           | 0        | 0        |
| 01056         MM MURSE         MATER         1910         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00         940.00 <td>01052 1</td> <td>LEAD</td> <td>SEDMG/KG</td> <td>DRY WGT</td> <td>WATER</td> <td></td> <td>Ļ</td> <td>60.00000</td> <td></td> <td></td> <td>60.00</td> <td>60.00</td>                                            | 01052 1 | LEAD                   | SEDMG/KG | DRY WGT   | WATER  |     | Ļ            | 60.00000  |           |           | 60.00    | 60.00    |
| 01056         MANCHESE         02.5 500         457.400         120.0         25.6           01065         MANCHESE         05/L         MATER         2         25.5000         25.5000         25.6         25.6           01065         YANADTUM         V,DISS         UG/L         MATER         2         429.5000         247.500         467.4000         760         90           01065         YANADTUM         V,DISS         UG/L         MATER         2         429.5000         218460.0         467.4000         760         90         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                         | 01053   | MN MUD                 | DRY WGT  | MG/KG-MN  | WATER  |     | 7            | 940.0000  |           |           | 940.00   | 940.00   |
| 01066         MOLY         MAJER         2         14,5000         20,5000         29,5060         29           01080         STANNTUN         V,DISS         UG/L         MATER         2         425,5000         218460.0         467         400         760         99           01080         STANNTUN         V,DISS         UG/L         MATER         1         0.000000         8         000000         10         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                                                                                                                                                                                                                                                                                                                                                                                               | 01056 1 | MANGNESE               | MN, DISS | UG/L      | WATER  |     | 2            | 72.50000  | 4512.500  | 67.17500  | 120.0    | 25.0     |
| 010305         TENNTUM         UC/L         WATER         2         429.5000         15.000000         760         99           01035         VANDIUM         V, DISS         UG/L         WATER         1         0000000         15.00000         15.0000         15.0000         10.0000         10.00000         10.00000         10.00000         10.00000         10.00000         10.00000         10.00000         10.00000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.0000000         10.0000000         1                                                                                                                                                                     | 01060   | NOLY                   | MO, DISS | UG/L      | WATER  |     | 2            | 14.50000  | 420.5000  | 20.50600  | 29       | C        |
| 01035         VANADIUM         V.DISS         UG/L         WATER         1         000000         18.00000         4.242600         6         4           01039         ZITTHIUM         LI, DISS         UG/L         WATER         TOT         Z         1000000         18.00000         4.242600         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6         6                                                                                                                                                                                                                                                                                                                                                                                                  | 01080 5 | STRONTUM               | SR, DISS | UG/L      | WATER  |     | 2            | 429.5000  | 218460.0  | 467.4000  | 760      | 66       |
| K         1         6.000000         12.000000         12.42600         6         6         7           01090         21KC         2N,DTSS         UG/L         WATER         70T         2         000000         12.00000         12.0000         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00                                                                                                                                                                                                                                                                       | 01085 \ | VANADIUM               | V, DISS  | UG/L      | WATER  |     | 1            | .0000000  |           |           | 0        | C        |
| TOT         23.000000         18.00000         1.242600         13         0.00           01030         ZINC         SENGING         DRY MGT         MATER         19.0000         1.242600         13         10.0000         13.0000         13.0000         13.0000         13.0000         13.0000         13.0000         13.0000         13.0000         13.00000         13.00000         13.00000         13.00000         13.00000         10.0000         13.00000         13.00000         13.00000         13.000000         13.000000         13.000000         13.000000         13.000000         13.000000         10.000000         13.000000         13.000000         13.000000         13.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000         10.000000                                                                                                                                                                              |         |                        |          |           |        | М   | 1            | 6.000000  |           |           | 9        | 9        |
| 01030         ZIKC         SU/L         WATER         1         1         0000         1         2         1         0         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>                                                                                                                                                                                                                                                                                                                                                                                            |         |                        |          |           |        | TOT | 2            | 3.000000  | 18.00000  | 4,242600  | 9        | C        |
| 01093         ZINC         SEDNG/KG         DRX WATER         1         91.000         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00         91.00                                                                                                                                                                                                                                                            | 01090   | ZINC                   | ZN, DISS | UG/L      | WATER  |     | 2            | 10.00000  | 18.00000  | 4.242600  | 13       |          |
| 01130         LTFUINM         LL DISS         UG/L         WATER         2         13.00000         98.00000         9.895500         20           011170         FE MUD         DRY WGT         MATER         1         2000000         0000000         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00         00 </td <td>01093 2</td> <td>ZINC</td> <td>SEDMG/KG</td> <td>DRY WGT</td> <td>WATER</td> <td></td> <td><b>6</b>-4</td> <td>91.00000</td> <td></td> <td></td> <td>91.00</td> <td>91.00</td>                                                                                                                                                                   | 01093 2 | ZINC                   | SEDMG/KG | DRY WGT   | WATER  |     | <b>6</b> -4  | 91.00000  |           |           | 91.00    | 91.00    |
| 01148         SELENIUM SEDMG/KG         DRY WGT         MATER         1         .0000000         .0000000         .000         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         .00         <                                                                                                                                                                                                                                                                                                                  | 01130 I | LITHIUM                | LI, DISS | UG/L      | WATER  |     | 2            | 13.00000  | 98.00000  | 9.899500  | 20       | 9        |
| 01170         FE WUD         DRY WGT         MG/KG-FE WATER         1         23000.00         23000.00         23000.00         23000.00         23000.00         23000.00         23000.00         23000.00         23000.00         23000.00         23000.00         23000.00         2000000         2000000         20         2         20000000         2000000         2000000         2000000         20         2         2         20000000         2000000         20         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2         2                                                                                                                                                                                                                                                                                                                                                      | 01148 5 | SELENIUM               | SEDMG/KG | DRY WGT   | WATER  |     | ~            | .0000000  |           |           | 00,      | 00       |
| 32101       DICLBRWT       TOTUG/L WATER       2       0000000       0000000       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 01170   | FE MUD                 | DRY WGT  | MG/KG-EE  | WATER  |     | 1            | 23000.00  |           |           | 23000.00 | 23000.00 |
| 32102       CARBNTET       TOTUG/L       WATER       2       .0000000       .0000000       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32101 L | DICLBRMT               |          | TOTUG/L   | WATER  |     | 2            | .0000000  | .0000000  | . 0000000 | 0        | 0.       |
| 32103       12DICLET       TOTUG/L WATER       2       0000000       0000000       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0       0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 32102 C | CARBNTET               |          | TOTUG/L   | WATER  |     | 8            | .0000000  | .0000000  | .0000000  | 0        | 0        |
| 32105       CLDIBRMT       TOTUG/L WATER       2       .0000000       .0000000       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0 </td <td>32103 1</td> <td>12DICLET</td> <td></td> <td>TOTUG/L</td> <td>WATER</td> <td></td> <td>2</td> <td>. 0000000</td> <td>.0000000</td> <td>.0000000</td> <td>0.</td> <td>0</td>                                                                                                                                                                                                                                                                                  | 32103 1 | 12DICLET               |          | TOTUG/L   | WATER  |     | 2            | . 0000000 | .0000000  | .0000000  | 0.       | 0        |
| 32106       CHLRFORM       TOTUG/L       WATER       2       .0000000       .0000000       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0       .0                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 32105 C | CLDIBRMT               |          | TOTUG/L   | WATER  |     | 2            | .0000000  | .0000000  | .0000000  | 0.       | , C      |
| 34010 TOLUENE       TOT UG/L WATER       1 10.00000       10.000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000       000                                                                                                                                                                                                                                                                                                                                                                                                                    | 32106 C | CHLRFORM               |          | TOTUG/1   | WATER  |     | 2            | .0000000  | . 0000000 | . 0000000 | 0.       | 0.       |
| 34030       BENZENE       TOT UG/L WATER       2       .0000000       .000       .00       .00         34475       TETRACHL       ORCTHAL       TOT UG/L WATER       2       .0000000       .000000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .                                                                                                                                                                                                                                                                                                                                                                          | 34010 7 | <b>FOLUENE</b>         |          | TOT UG/L  | WATER  |     | Ч            | 10.00000  |           |           | 10.00    | 10.00    |
| 34475       TETRACHL       ORCTHYL       TOTWUG/L       WATER       2       .0000000       .0000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000                                                                                                                                                                                                                                                                                                                                                                                  | 34030 E | BUZENE                 |          | TOT UG/I. | WATER  |     | 2            | .0000000  | . 0000000 | .0000000  | .00      | 00.      |
| 34496 IIDICHLO ROETHANE TOTWUG/L WATER       2.0000000 .000000 .000000 .000       .000       .000         34506 IIITRICH LORDETHA TOTWUG/L WATER       2.0000000 .000000 .000000 .0000       .000       .000         34514 IZDICHLO ROETHA TOTWUG/L WATER       2.0000000 .000000 .000000 .000000 .000       .000       .000         34541 IZDICHLO ROERDAN TOTWUG/L WATER       2.0000000 .000000 .000000 .000000 .000       .000       .000         39180 TRICHLOR ETHYLENE TOT UG/L WATER       2.0000000 .0000000 .0000000 .000       .000       .000         39251 NAFTHAL ENES, PC . UG/L WATER       1.0000000 .0000000 .0000000 .000       .000       .000         39251 NAFTHAL ENES, PC . UG/L WATER       1.0000000 .0000000 .0000000 .000       .000       .000         39253 ALDRIN SEDUG/KG DRY WGT WATER       1.0000000 .0000000 .000000 .000       .000       .000         39333 ALDRIN SEDUG/KG WATER       1.0000000 .000000 .000000 .000000 .000       .000       .000       .000         39343 GBHC-MUD LINDANE DRYUG/KG WATER       1.00000000 .000000 .000000 .000000 .000000                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34475 1 | <b><i>TETRACHL</i></b> | OROETHYL | TOTWUG/L  | WATER  |     | 2            | .0000000  | .0000000  | .0000000  | . 000    | .000     |
| 34506 111TRICH LORDETHA TOTWUG/L WATER       2.0000000.0000000.00000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34496 3 | IDICHLO                | ROETHANE | TOTWUG/L  | WATER  |     | 2            | .0000000  | .0000000  | .0000000  | .000     | .000     |
| 34541       12DICHLO ROPROPAN TOTWUG/L WATER       2       .0000000       .000       .000       .000         39180       TRICHLOR ETHYLENE TOT UG/L WATER       2       .0000000       .0000000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000       .000                                                                                                                                                                                                                                                                                                                                                                | 34506 1 | <b>111TRICH</b>        | LOROETHA | TOTWUG/L  | WATER  |     | 2            | .0000000  | .0000000  | .0000000  | .000     | .000     |
| 39180 TRICHLOR ETHYLENE TOT UG/L WATER       2.0000000.0000000.00000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 34541 1 | <b>L2DICHLO</b>        | ROPROPAN | TOTWUG/L  | WATER  |     | 2            | .0000000  | .0000000  | .0000000. | . 000    | .000     |
| 39250 NAPTHAL ENES, PC. UG/L WATER       1.000000       .00       .00       .00         39251 PCNS MUD       UG/KG WATER       1.000000       .00       .00       .00       .00         39251 PCNS MUD       UG/KG WATER       1.0000000       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00                                                                                                                                                                                                                                                                                                                                                                                                            | 39180 7 | <b>FRICHLOR</b>        | ETHYLENE | TOT UG/L  | WATER  |     | 2            | .0000000  | .0000000  | .0000000  | .000     | .000     |
| 39251       PCNS       MUD       UG/KG       WATER       1       .000000       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00       .00                                                                                                                                                                                                                                                                                                                                                                                                                                | 39250   | NAPTHAL                | ENES, PC | . UG/L    | WATER  |     | ŗ            | .0000000  |           |           | 00.      | 00.      |
| 39333 ALDRIN SEDUG/KG DRY WGT WATER       1.0000000       .00       .00       .00         39343 GEHC-MUD LINDANE DRYUG/KG WATER       1.0000000       .00       .00       .00         39351 CDANEDRY TECH&MET NUDUG/KG WATER       1.0000000       7.00       7.00       .00         39353 CDANEDRY TECH&MET NUDUG/KG WATER       1.2.000000       1.2.000000       7.00       .00         39368 DDE MUD UG/KG WATER       1.12.00000       12.00       10.00       10.00         39368 DDE MUD UG/KG WATER       1.10.00000       1.00       0.00       .00         39368 DDE MUD UG/KG WATER       1.000000       1.00.00       .00       .00       .00         39368 DDE MUD UG/KG WATER       1.0000000       1.000000       .00       .00       .00       .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 39251   | PCNS                   | MUD      | UG/KG     | WATER  |     | <b>,</b> i   | .0000000  |           |           | .00      | .00      |
| 39343 GBHC-MUD LINDANE DRYUG/KG WATER       1 .0000000       .00       .00       .00         39351 CDANEDRY TECH&MET MUDUG/KG WATER       1 7.000000       7.00       7.00       7.00         39353 DDD       MUD       UG/KG       WATER       1 2.00000       7.00       7.00         39363 DDD       MUD       UG/KG       WATER       1 12.00000       12.00       12.00         39368 DDE       MUD       UG/KG       WATER       1 10.00000       10.00       0.00         39373 DDT       MUD       UG/KG       WATER       1 .0000000       0.00       00       00         39383 DIELDRIN SEDUG/KG       DRY WGT WATER       1 .0000000       00       00       00       00       00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39333 A | ALDRIN                 | SEDUG/KG | DRY WGT   | WATER  |     | r1           | .0000000  |           |           | 00.      | 00.      |
| 39351 CDANEDRY TECH&MET WUDUG/KG WATER       1 7.000000       7.00       7.00         39363 DDD       MUD       UG/KG       WATER       1 12.00000       12.00         39368 DDE       MUD       UG/KG       WATER       1 12.00000       12.00       10.00         39368 DDE       MUD       UG/KG       WATER       1 10.00000       10.00       10.00         39373 DDT       MUD       UG/KG       WATER       1 .000000       00       00       00         39383 DIFLDRIN SEDUG/KG       DRY WGT WATER       1 .0000000       1 .0000000       00       00       00       00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39343 G | SBHC-MUD               | LINDANE  | DRYUG/KG  | WATER  |     | ~            | .0000000  |           |           | 00.      | 00.      |
| 39363         DDD         MUD         UG/KG         WATER         1         12.00000         12.00         12.00         12.00         12.00         12.00         12.00         12.00         12.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.0                                                                                                                                                                                                                                                       | 39351 C | CDANEDRY               | TECH&MET | MUDUG/KG  | WATER  |     | <del>ب</del> | 7.000000  |           |           | 7.00     | 7.00     |
| 39368         DDE         MUD         UG/KG         WATER         1         10.00000         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.00         10.0                                                                                                                                                                                                                                                       | 39363   | DDD                    | MUD      | UG/KG     | WATER  |     |              | 12.00000  |           |           | 12.00    | 12.00    |
| 39373 DDT MUD UG/KG WATER 1 .0000000 .00 .00 39383 DIELDRIN SEDUG/KG DRY WGT WATER 1 .0000000 .00 .00 .00 .00 .00 .00 .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39368   | DDE                    | MUD      | UG/KG     | WATER  |     | , <b>1</b>   | 10.00000  |           |           | 10.00    | 10.00    |
| 39383 DIELDRIN SEDUC/KG DRY WGT WATER 1 .0000000 0 .00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 39373   | DDT                    | MUD      | UG/KG     | WATER  |     |              | .0000000  |           |           | . 00     | 00.      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39383 L | DIELDRIN               | SEDUG/KG | DRY WGT   | WATER  |     |              | . 0000000 |           |           | .00      | 00.      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                        |          |           |        |     |              |           |           |           |          |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |         |                        |          |           |        |     |              |           |           |           |          |          |

80/09/03 80/11/26 80/09/03 80/11/26 80/09/03 80/11/26 80/09/03 80/11/26 80/09/03 80/11/26 80/11/26 80/11/26 80/11/26 80/11/26

80/11/26 80/11/26

80/09/03 80/09/03 80/09/03 80/09/03

80/11/26

80/09/03

80/11/26 80/11/26 80/11/26 80/05/22 80/05/22 80/05/22

80/05/22 80/05/22

80/05/22 1 80/05/22 1

80/05/22 80/05/22

80/05/22

80/05/22

80/05/22 80/05/22

80/05/22

80/05/22 80/11/26 80/11/26

80/11/26 80/05/22

80/11/26 80/05/22

80/05/22

80/11/26 80/05/22 80/05/22 80/05/22 80/05/22

80/05/22

80/05/22

80/05/22

BEG DATE END DATE

80/05/22 80/11/26 80/11/26

80/05/22 80/05/22 80/11/26 80/11/26

80/11/26 80/11/26

80/05/22

80/11/26 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22

80/11/26

80/11/26 80/05/22

80/05/22 8

/TYPA/AMBNT/STREAM

39 41 21.0 075 31 19.0 2 DELAWARE R AT DMB AT WILMINGTON, DE 10003 DELAWARE NEW CASTLE 020891 01482100

STORET RETRIEVAL DATE 99/01/25

112WRD 0000 FE

PAGE:

DELCORA CSO LTCP

PGM=INVENT

19

02040204 TURE1 ...... 01482100 39 41 21.0 075 31 19.0 2 DELAWARE R AT DMB AT WILMINGTON, DE DELAWARE NEW CASTLE 10003 DELAWARE 020891 STORET RETRIEVAL DATE 99/01/25

112WRD 0000 FEET DEPTH

/TYPA/AMBNT/STREAM

| BEG DATE          | 80/05/22         | 80/05/22              | 80/05/22         | 80/05/22                 | 80/05/22                 | 80/05/22                 | 80/05/22               | 80/05/22       | 80/05/22          | 80/05/22          | 80/05/22           | 80/05/22           | 80/05/22            | 80/05/22           | 80/05/22           | 80/05/22            | 80/05/22               | 80/05/22          | 80/05/22                  | 80/05/22                | 80/05/22                 |
|-------------------|------------------|-----------------------|------------------|--------------------------|--------------------------|--------------------------|------------------------|----------------|-------------------|-------------------|--------------------|--------------------|---------------------|--------------------|--------------------|---------------------|------------------------|-------------------|---------------------------|-------------------------|--------------------------|
| MUMINIM           | .00              | 00.                   | .00              | 00.                      | 00.                      | 00.                      | 00.                    | 42.00          | .00               | 00.               | .00                | .00                | .00                 | .00                | .00                | 81                  | 250                    | 220               | .34                       | 0.                      | .000                     |
| MAXIMUM           | .00              | .00                   | .00              | .00                      | .00                      | .00                      | .00                    | 42.00          | .00               | 00.               | .00                | .00                | .00                 | .00                | 00.                | 547                 | 3320                   | 3220              | 4.52                      | 0.                      | .000                     |
| VARIANCE STAN DEV |                  |                       |                  |                          |                          |                          |                        |                |                   |                   |                    |                    |                     |                    |                    | 108340.0 329.1400   | 4712500 2170.800       | 4500000 2121.300  | 8.736200 2.955700         |                         |                          |
| MEAN              | .0000000         | 0000000.              | .0000000         | .0000000                 | .0000000                 | .0000000                 | .0000000               | 42.00000       | .0000000          | .0000000          | .0000000           | .0000000           | .0000000            | .0000000           | .0000000           | 313.9000            | 1785.000               | 1720.000          | 2.430000                  | .0000000                | .0000000                 |
| NUMBER            | Ч                | г                     | 1                | щ                        | Ч                        | <del>~</del> 1           | <del>,</del> 1         |                | <del>ب</del>      | Ч                 | Ч                  |                    | ч                   | ٦                  | 1                  | 2                   | 2                      | 2                 | 2                         | г                       | e~f                      |
| RMK               |                  |                       |                  |                          |                          |                          |                        |                |                   |                   |                    |                    |                     |                    |                    | ŝ                   |                        |                   |                           |                         |                          |
| MEDIUM            | WATER            | WATER                 | WATER            | WATER                    | WATER                    | WATER                    | WATER                  | WATER          | WATER             | WATER             | WATER              | WATER              | WATER               | WATER              | WATER              | WATER               | WATER                  | WATER             | WATER                     | WATER                   | WATER                    |
|                   | KG               | ЧGТ                   |                  | E                        | H                        | F                        |                        |                |                   |                   |                    |                    |                     |                    |                    |                     | 2                      |                   |                           | Е                       | c                        |
|                   | UG/              | DRY V                 | UG/KG            | DRY W(                   | DRY W(                   | DRY WC                   | UG/KG                  | UG/KG          | UG/KG             | UG/KG             | UG/KG              | UG/KG              | UG/KG               | UG/KG              | UG/KG              | MG/L                | C MG/:                 | MG/L              | ACRE-FT                   | DRY WG                  | WGTUG/K                  |
| METER             | MUD UG/          | SEDUG/KG DRY V        | MUD UG/KG        | SEDUG/KG DRY W(          | SEDUG/KG DRY W(          | SEDUG/KG DRY WC          | MUD DRY UG/KG          | MUD UG/KG      | MUD UG/KG         | MUD UG/KG         | MUD UG/KG          | MUD UG/KG          | BOT MAT UG/KG       | MUD UG/KG          | MUD UG/KG          | CA MG MG/L          | DISS-180 C MG/:        | SUM MG/L          | TONS PER ACRE-FT          | SEDMG/KG DRY WG         | SED DRY WGTUG/K          |
| PARAMETER         | ENDOSULN MUD UG/ | ENDRIN SEDUG/KG DRY V | ETHION MUD UG/KG | TOXAPHEN SEDUG/KG DRY WO | HEPTCHLR SEDUG/KG DRY W( | HPCHLREP SEDUG/KG DRY WC | MTHXYCLR MUD DRY UG/KG | PCBS MUD UG/KG | MALATHN MUD UG/KG | PARATHN MUD UG/KG | DIAZINON MUD UG/KG | MPARATHN MUD UG/KG | MIREX BOT MAT UG/KG | TRITHION MUD UG/KG | MTRTHION MUD UG/KG | CAL HARD CA MG MG/L | RESIDUE DISS-180 C MG/ | DISS SOL SUM MG/L | DISS SOL TONS PER ACRE-FT | MERCURY SEDMG/KG DRY WG | PERTHANE SED DRY WGTUG/K |

END DATE 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/05/22 80/

DELCORA CSO LTCP

PAGE:

20

42000 PENNSYLVANIA AT WALNUT STREET

STORET RETRIEVAL DATE 99/01/25 422107 39 57 07.0 075 10 57.0 2

020592 31DELRBC 0000 FEET DEPTH

HQ 02040203001 0007.190 OFF

/TYPA/AMBNT/STREAM

| INIMUM BEG DATE END DATE            | 1284 80/10/13 92/09/14        | 1.0 80/09/24 92/05/05         | 33.8 80/09/24 92/05/05           | 1500 81/02/23 81/07/08      | 5.75 81/02/23 92/05/05        | 8.0 81/04/29 81/06/25        | 60 85/09/19 92/05/05          | 220 81/04/29 92/09/14         | 0030000 81/02/23 81/02/23 | 5.7 80/09/24 92/05/05         | 65.5 80/09/24 92/05/05           | .2 80/01/17 92/09/14           | .2 84/07/30 86/08/26           | .2 80/01/17 92/09/14               | .4 87/07/13 88/04/20         | .4 87/09/24 87/12/21        | .4 87/07/13 88/04/20           | 8 80/01/17 81/06/25           | 6.50 85/09/19 92/05/05        | 6.1 80/01/17 92/09/14          | 40 80/01/17 92/09/14           | 0 80/09/24 80/09/24 | 266 81/04/29 81/06/25        | 110 81/04/29 81/06/25        | 1 80/09/24 81/06/25          | 102 81/04/29 92/09/14         | 2 81/08/18 81/08/18 | 1 80/12/09 92/08/17           | 2 84/11/14 92/09/14            | 1 80/12/09 92/09/14               | 6 80/09/24 81/06/25          | 2 80/09/24 81/06/25         | .5 80/09/24 80/09/24 | .5 81/04/29 81/06/25         | .5 80/09/24 81/06/25             | 2.0 80/09/24 80/09/24 | 2.00 80/10/06 81/06/25         | 2.00 81/02/23 81/02/23 | .130 87/07/13 92/09/14        |
|-------------------------------------|-------------------------------|-------------------------------|----------------------------------|-----------------------------|-------------------------------|------------------------------|-------------------------------|-------------------------------|---------------------------|-------------------------------|----------------------------------|--------------------------------|--------------------------------|------------------------------------|------------------------------|-----------------------------|--------------------------------|-------------------------------|-------------------------------|--------------------------------|--------------------------------|---------------------|------------------------------|------------------------------|------------------------------|-------------------------------|---------------------|-------------------------------|--------------------------------|-----------------------------------|------------------------------|-----------------------------|----------------------|------------------------------|----------------------------------|-----------------------|--------------------------------|------------------------|-------------------------------|
| MAXIMUM M                           | 128241                        | 28.8                          | 83.8                             | 6004                        | 7.16                          | 43.0                         | 440                           | 610                           | . 0030000                 | 15.7                          | 115.1                            | 9.5                            | .2                             | 9.5                                | 1.6                          | <u>د</u> .                  | 1.6                            | 36                            | 8.40                          | 8.9                            | 118                            | 0                   | 592                          | 444                          | 156                          | 452                           | 2                   | 44                            | 2                              | 44                                | 14                           | 12                          | 5.                   | .5                           | .5                               | 2.0                   | 2.00                           | 2.00                   | 1.090                         |
| RMK NUMBER MEAN VARIANCE STAN DEV I | 50 40475.00 2080E+06 45613.00 | 25 13.64000 75.79100 8.705800 | \$ 25 56.55200 245.5600 15.67100 | 3 3295.400 5697700 2387.000 | 65 6.313000 .1234300 .3513300 | 2 25.50000 612.5000 24.74900 | 23 231.7400 12095.00 109.9800 | 91 387.1300 7554.700 86.91800 | 1 .0030000                | 25 10.24800 7.930400 2.816100 | \$ 25 94.31500 208.1600 14.42800 | 105 2.466800 2.313200 1.520900 | K 2 ,2000000 ,0000000 ,0000000 | TOT 107 2.424400 2.364700 1.537800 | 7 1.000000 .2000000 .4472200 | K 3.4333300.0033339.0577400 | TOT 10.8300000.2090000.4571700 | 12 25.67800 81.94300 9.052200 | 25 7.556000 .2223200 .4715100 | 108 7.296200 .2095500 .4577700 | 106 72.09400 258.8500 16.08900 | 1.0000000           | 2 429.0000 53138.00 230.5200 | 2 277.0000 55778.00 236.1700 | 3 101.7400 7595.200 87.15100 | 91 256.3400 5320.200 72.94000 | 1 1.550000          | 87 13.23000 72.24900 8.499900 | K 5 2.000000 .0000000 .0000000 | TOT 92 12.62000 74.83200 8.650500 | 3 10.00000 16.00000 4.000000 | 3 6.00000 28.00000 5.291500 | 1.500000             | K 2 .500000 .000000 .0000000 | TOT 3 .5000000 .0000000 .0000000 | 1 2.00000             | K 5 2.000000 .0000000 .0000000 | 1 2.00000              | 17 .5135300 .0502990 .2242800 |
| MEDIUM                              | WATER                         | WATER                         | WATER                            | WATER                       | WATER                         | WATER                        | WATER                         | WATER                         | WATER                     | WATER                         | WATER                            | WATER                          |                                |                                    | WATER                        |                             |                                | WATER                         | WATER                         | WATER                          | WATER                          | WATER               | WATER                        | WATER                        | WATER                        | WATER                         | WATER               | WATER                         |                                |                                   | WATER                        | WATER                       | WATER                |                              |                                  | WATER                 | WATER                          | WATER                  | WATER                         |
|                                     | NUMBER                        | CENT                          | FAHN                             | INST-CFS                    | FEET                          | JTU                          | MICROMHO                      | MICROMHO                      | NUMBER                    | MG/L                          | PERCENT                          | MG/L                           |                                |                                    | T MG/L                       |                             |                                | MG/L                          | SU                            | su                             | MG/L                           | MG/L                | MG/L                         | MG/L                         | MG/L                         | C MG/L                        | MG/L                | MG/L                          |                                |                                   | MG/L                         | MG/L                        | ML/L                 |                              |                                  | MG/L                  | MG/L                           | GPD                    | MG/L                          |
| METER                               | IDENT.                        | awar.                         | TEMP                             | FLOW,                       | STAGE                         | JKSN                         | FIELD                         | AT 25C                        | PAR                       |                               | SATUR                            | 5 DAY                          |                                |                                    | 5 DAY TO                     |                             |                                | HI LEVEL                      |                               | LAB                            | CACO3                          | FROM CO2            | TOTAL                        | TOT VOL                      | TOT FIX                      | DISS-105                      | FIX FLT             | TOT NELT                      |                                |                                   | VOL NFLT                     | FIX NFLT                    | SETTLBLE             |                              |                                  | TOT-SXLT              | FREON-GR                       | 1236                   | z                             |
| PARA                                | 8 LAB                         | U WATER                       | I WATER                          | I STREAM                    | 5 STREAM                      | 0 TURB                       | 4 CNDUCTVY                    | 5 CNDUCTVY                    | 4 INVALID                 | 00 00                         | 1 00                             | 0 BOD                          |                                |                                    | 4 BOD INH                    |                             |                                | 0 COD                         | Hđ O                          | 3 PH                           | O T ALK                        | 7 ACIDITY           | O RESIDUE                    | 5 RESIDUE                    | 0 RESIDUE                    | 5 RESIDUE                     | 5 RESIDUE           | O RESIDUE                     |                                |                                   | 5 RESIDUE                    | 0 RESIDUE                   | 5 RESIDUE            |                              |                                  | 0 OIL-GRSE            | 6 OIL-GRSE                     | 6 IMCO NOS             | 5 ORG N                       |
|                                     | 0000                          | TOOO                          | 1000                             | 0000                        | 0006                          | 0001                         | 6000                          | 6000                          | 0022                      | 0030                          | 0030                             | 0031                           |                                |                                    | 0031                         |                             |                                | 0034                          | 0040                          | 0040                           | 0041                           | 0043                | 0050                         | 0050                         | 0051                         | 0051.                         | 0052.               | 0053                          |                                |                                   | 0053                         | 0054                        | 0054                 |                              |                                  | 00551                 | 0055                           | 0056                   | 00 60:                        |

,

STORET RETRIEVAL DATE 99/01/25 422107 39 57 07.0 075 10 57.0 2

PGM=INVENT

DELCORA CSO LTCP

PAGE: 21

|                    | 020592           |
|--------------------|------------------|
| 42000 PENNSYLVANIA | AT WALNUT STREET |

/TYPA/AMBNT/STREAM

|       | DEPTH |
|-------|-------|
| RBC   | FEET  |
| 31DEI | 0000  |

HQ 02040203001 0007.190 OFF

| ۴. |  |  |  |
|----|--|--|--|
|    |  |  |  |
| ŧ. |  |  |  |
| r. |  |  |  |
| 5  |  |  |  |
| Ł  |  |  |  |
|    |  |  |  |
|    |  |  |  |
|    |  |  |  |
|    |  |  |  |
|    |  |  |  |
| ί. |  |  |  |
|    |  |  |  |
|    |  |  |  |
|    |  |  |  |
|    |  |  |  |
|    |  |  |  |
|    |  |  |  |
|    |  |  |  |
|    |  |  |  |
|    |  |  |  |
|    |  |  |  |
|    |  |  |  |

| Б<br>Ш     | 14       | 05       | 14       | 05        | 14       | 11       | 14         | 14         | 14         | 25       | 06         | 25         | 25         | 14         | 18       | 14         | 14         | 20         | 14         | 14         | 31         | 20         | 20         | 14              | 05         | 14         | 14         | 16       | 14         | 13             | 15         | 14         | 14         | 13       | 18         | 62       | 18         | 14         | 14         |
|------------|----------|----------|----------|-----------|----------|----------|------------|------------|------------|----------|------------|------------|------------|------------|----------|------------|------------|------------|------------|------------|------------|------------|------------|-----------------|------------|------------|------------|----------|------------|----------------|------------|------------|------------|----------|------------|----------|------------|------------|------------|
| AG GN:     | 2/09/    | 2/05/    | 12/09/   | 12/05/    | 2/09/    | 3/08/    | 2/09/      | 2/09/      | 2/09/      | 1/06/    | 0/10/      | 1/06/      | 1/06/      | 2/09/      | 5/06/    | 2/09/      | 2/09/      | 8/04/      | 2/09/      | 2/09/      | 7/03/      | 8/04/      | 8/04/      | 2/09/           | 2/05/      | 2/09/      | 2/09/      | 6/01/    | 2/09/      | 2/04/          | 2/07/      | 2/09/      | 2/09/      | 0/10/    | 1/08/      | 1/01/1   | 1/08/      | 2/09/      | 2/09/      |
| ATE F      | /17 9    | 1/24 9   | /17 9    | 1/24 9    | /17 9    | 111 8    | /17 9      | 1/24 9     | 6 60/      | /17 8    | /29 8      | /29 8      | 1/24 8     | 124 9      | /18 8    | /18 9      | /18 9      | /06 8      | /17 9      | /17 9      | /17 8      | /13 8      | /17 8      | /17 9           | /29 9      | /17 9      | /17 9      | /16 8    | /17 9      | /13 8          | /13 9      | /17 9      | /17 9      | /13 8    | /13 8      | /29 8    | /17 8      | 6 61/      | /17 9      |
| BEG        | 80/01    | 80/08    | 80/03    | 80/08     | 80/03    | 83/08    | 80/01      | 80/08      | 80/12      | 80/03    | 80/03      | 81/01      | 80/08      | 80/08      | 85/06    | 81/08      | 81/08      | 80/10      | 80/01      | 80/01      | 80/01      | 80/03      | 80/01      | 80/01           | 81/01      | 80/03      | 80/01      | 86/03    | 80/03      | 82/04          | 80/10      | 80/01      | 80/01      | 80/10    | 80/03      | 81/01    | 80/01      | 80/06      | 80/01      |
| MINIMUM    | .010     | .0001    | .010     | .0002     | .100     | 22.000   | .100       | .000       | .140       | .001     | .002       | .001       | 2          | 4          | 986      | 2          | 2          | .2         | .2         | .2         | 9          | 4          | ţ          | თ               | 4          | 4          | 30         | 10       | 10         | 30             | 9.         | 4          | .6         | 140.0    | 80.0       | 130      | 10         | 10         | 10         |
| MAXIMUM    | 9.240    | .027     | .396     | .033      | 5.540    | 22.000   | 22.000     | 25.000     | 066.       | .015     | .01        | .005       | 186        | 96         | 980      | 1000       | 1000       | 17         | 18         | 18         | 1070       | 70         | 1070       | 140             | 80         | 140        | 4255       | 10       | 4255       | 30             | 490        | 06         | 490        | 140.0    | 330.0      | 130      | 40         | 25         | 40         |
| STAN DEV   | 9786300  | 0056933  | 0617550  | 0069224   | 7895700  |          | 000600.3   | .897100    | 1568000    | 0041139  | 0035214    | 0020494    | :2.41100   | 3.33500    |          | :68.1400   | :75.9500   | .175500    | .688400    | .988700    | 94.3900    | 4.96500    | 12.2400    | 6.14000         | 8.90100    | 7.27900    | 16.8400    |          | 16.6300    |                | 7.24600    | 6.20500    | 7.85100    |          | 6.97400    |          | 0.00000    | .245700    | .722800    |
| VARIANCE 8 | .9577200 | .0000324 | .0038137 | .0000479. | .6234200 |          | 4.036100 2 | 8.393200 2 | .0245870 . | .0000169 | .0000124 . | .0000042 . | 6791.500 8 | 177.8100 3 |          | 135520.0 3 | 141340.0 3 | 10.08400 3 | 32.35800 5 | 24.88700 4 | 37788.00 1 | 623.2600 2 | 12599.00 1 | 683.2800 2      | 835.2600 2 | 744.1200 2 | 267120.0 5 |          | 266900.0 5 |                | 5967.000 7 | 686.7000 2 | 3346.700 5 |          | 5925.000 7 |          | 100.0000 1 | 52.50000 7 | 76.08800 8 |
| MEAN       | .5785100 | .0044182 | .0733050 | .0053721  | 2.785500 | 22.00000 | 2.963400   | 1.493300   | .3380000   | .0080667 | .0050000   | .0028000   | 88.00000   | 34.09100   | 980.0000 | 174.7400   | 183.8900   | 1.407700   | 4.861800   | 3.270200   | 62.09700   | 28.73900   | 39.51100   | 29.00800        | 24.51200   | 27.13100   | 506.5400 : | 10.00000 | 501.8100   | 30.00000       | 28.94800   | 27.48000 1 | 28.22800   | 140.0000 | 150.0000 ! | 130.0000 | 20.00000   | 20.50000   | 20.21700   |
| NUMBER     | 108      | 25       | 108      | 25        | 107      | г        | 108        | 68         | 06         | 15       | 9          | 5          | ъ<br>С     | 93         | п        | 87         | 88         | 47         | 55         | 102        | 31         | 65         | 96         | 60              | 43         | 103        | 104        | ~~4      | 105        | <del>,</del> . | 52         | 50         | 102        | Ч        | თ          | 1        | 13         | 10         | 53         |
| RMK        |          | ŝ        |          | ŝ         |          | х        | TOT        |            |            |          |            |            |            |            |          | Х          | TOT        |            | Х          | TOT        |            | X          | TOT        |                 | Ж          | TOT        |            | ×        | TOT        |                |            | м          | TOT        |          |            |          |            | К          | TOT        |
| MU         |          |          |          |           |          |          |            |            |            |          |            |            |            |            |          |            |            |            |            |            |            |            |            |                 |            |            |            |          |            |                |            |            |            |          |            |          |            |            |            |
| MEDI       | WATER    | WATER    | WATER    | WATER     | WATER    |          |            | WATER      | WATER      | WATER    | WATER      | WATER      | WATER      | WATER      | WATER    |            |            | WATER      |            |            | WATER      |            |            | WATER           |            |            | WATER      |          |            | WATER          | WATER      |            |            | WATER    | WATER      | WATER    | WATER      |            |            |
|            | MG/L     | MG/L     | MG/L     | MG/L      | MG/L     |          |            | MG/L       | MG/L P     | MG/L     | MG/L       | UG/L       | MG/L       | MG/L       | UG/L     |            |            | UG/L       |            |            | UG/L       |            |            | UG/L            |            |            | UG/L       |          |            | UG/L           | UG/L       |            |            | 0G/L     | UG/L       | UG/L     | UG/L       |            |            |
| METER      | N TOTAL  | NH3-N    | TOTAL    | NH3-NH3   | TOTAL    |          |            | z          |            | CN-TOT   | FREE CN    | COMPLEX    | CACO3      | TOTAL      | AS, TOT  |            |            | CD, TOT    |            |            | CR, TOT    |            |            | cu, to <b>r</b> |            |            | FE, TOT    |          |            | IRON           | PB, TOT    |            |            | MN, SUSP | MN         | MO, TOT  | NI, TOTAL  |            |            |
| PARA       | NH3+NH4- | UN-IONZD | N02N     | UN-IONZD  | N-SON    |          |            | TOT KJEL   | PHOS-TOT   | CYANIDE  | CYANI DE   | CYANIDE    | TOT HARD   | CHLORIDE   | ARSENIC  |            |            | CADMIUM    |            |            | CHROMIUM   |            |            | COPPER          |            |            | IRON       |          |            | FERROUS        | LEAD       |            |            | MANGNESE | MANGNESE   | MOLY I   | NICKEL     |            |            |
|            | 00610    | 00612    | 00615    | 00619     | 00620    |          |            | 00625      | 00665      | 00720    | 00722      | 00724      | 00600      | 00640      | 01002    |            |            | 01027      |            |            | 01034      |            |            | 01042           |            |            | 01045      |          |            | 01047          | 01051      |            |            | 01054    | 01055      | 01062 1  | 01067      |            |            |

DELCORA CSO LTCP

PAGE: 22

STORET RETRIEVAL DATE 99/01/25 422107 39 57 07.0 075 10 57.0 2

42000 PENNSYLVANIA AT WALNUT STREET

31DELRBC 0000 FEET DEPTH

020592 HQ 02040203001 0007.190 OFF

/TYPA/AMBNT/STREAM

|       | PAR      | AMETER    |          | MEDIUM | RMK | NUMBER  | MEAN V  | ARIANCE | STAN DEV | MAXIMUM | MUMINIM | BEG DATE | END DATE |
|-------|----------|-----------|----------|--------|-----|---------|---------|---------|----------|---------|---------|----------|----------|
| 01092 | ZINC     | ZN, TOT   | UG/L     | WATER  |     | 87 42.  | 61600 1 | 323.500 | 36.37900 | 210     | 4.      | 80/01/17 | 92/09/14 |
|       |          |           |          |        | ×   | 16 15.  | 50000 9 | 6.80000 | 9.838700 | 32      | 10      | 84/12/13 | 88/01/26 |
|       |          |           |          |        | TOT | 103 38. | 40400 1 | 227.500 | 35.03600 | 210     | . 4     | 80/01/17 | 92/09/14 |
| 01105 | ALUMINUM | AL, TOT   | UG/L     | WATER  |     | 6 420   | .0000 4 | 6080.00 | 214.6600 | 720     | 150     | 80/04/25 | 81/07/30 |
| 01147 | SELENIUM | SE, TOT   | UG/L     | WATER  |     | 3 140   | .3300 5 | 00.0360 | 225.7400 | 401     | 10      | 81/12/16 | 85/06/18 |
|       |          |           |          |        | м   | 69 217  | .3300 1 | 59720.0 | 399.6500 | 1000    | 9       | 81/08/18 | 92/09/14 |
|       |          |           |          |        | TOT | 72 214  | .1300 1 | 54650.0 | 393.2500 | 1000    | 9       | 81/08/18 | 92/09/14 |
| 01330 | ODOR     | ATMOSPH   | SEVERITY | WATER  |     | 3 1.0   | . 00000 | 0000000 | .0000000 | ï       | ~       | 81/04/29 | 81/06/25 |
| 31616 | FEC COLI | MFM-FCBR  | /100ML   | WATER  |     | 33 175  | 65.00 1 | 284E+06 | 35842.00 | 190000  | 0       | 82/03/15 | 92/09/14 |
|       |          |           |          |        | К   | 4 777   | 5.000 7 | 3069000 | 8548.100 | 20000   | 100     | 82/05/11 | 92/05/05 |
|       |          |           |          |        | Ч   | 10 129  | 00.00 5 | 6100000 | 7490.000 | 20000   | 5000    | 81/08/18 | 87/06/03 |
|       |          |           |          |        | TOT | 47 157  | 39.00 9 | 190E+05 | 30316.00 | 190000  | 0       | 81/08/18 | 92/09/14 |
| 32730 | PHENOLS  | TOTAL     | UG/L     | WATER  |     | 12.16   | 66700 . | 3333300 | .5773500 | 2       | 0       | 80/01/17 | 81/06/25 |
| 46001 | WATER    | APPEAR    | CODE     | WATER  |     | 3 244   | .3300 3 | 749.400 | 61.23200 | 315     | 207     | 81/04/29 | 81/06/25 |
| 46002 | PHENOLS  | PHOTOMET  | UG/L     | WATER  |     | 1 5.0   | 00000   |         |          | ъ.      | S       | 81/03/09 | 81/03/09 |
| 71900 | MERCURY  | HG, TOTAL | NG/L     | WATER  |     | 3 1.4   | 36700 . | 2620300 | .5118900 | 2.0     | 1.0     | 81/12/16 | 92/09/14 |
|       |          |           |          |        | K   | 95 24.  | 73700 4 | 2363.00 | 205.8200 | 2000.0  | 1.0     | 80/01/17 | 92/07/15 |
|       |          |           |          |        | TOT | 98 24.  | 02400 4 | 1069.00 | 202.6600 | 2000.0  | 1.0     | 80/01/17 | 92/09/14 |
| 74041 | WQF      | SAMPLE    | UPDATED  | WATER  |     | 36 889  | 660.0 6 | 773E+05 | 26025.00 | 940621  | 860606  | 86/02/17 | 92/09/14 |

•

.... \$

PGM=INVENT GROSS

> 6 TOTAL STATIONS PROCESSED DELCORA CSO LTCP

PGM=INVENT STORET RETRIEVAL DATE 99/01/25

GROSS

6 TOTAL STATIONS PROCESSED DELCORA CSO LTCP

 

 5140300
 4737E+11
 21765000
 98042900

 26.50000
 .3333300
 .5773500
 27.0

 16.54900
 58.69800
 7.661500
 29.0

 2.666700
 4.333400
 2.081700
 5.0

 16.46600
 59.51600
 7.714700
 29.0

 79.70000
 1.083300
 1.040800
 80.6

 STAN DEV MAXIMUM 6.009800 1.795900 1.340100 2.000000 1.333300 1.154700 34.69400 322420.0 567.8200 .0000000. 0000000 24.74900 230.5700 13242.00 115.0700 380.5600 179700.0 423.9100 3.350000 1.796700 1.340400 296.7600 61.63700 192.8700 13.88800 22.75000 12.91700 3.594000 15.70600 56.11300 7.490900 .0000000 .0000000. .8474600 7.855600 2.802800 4137600 2034.100 7.389700 9.073800 48.54300 6.967300 31.90900 301.0900 17.35200 17.68800 133.0300 11.53400 6.725400 3.235100 1.798600 612.5000 54.60700 VARIANCE 88064.00 25.50000 1411.700 12.00800 2993.500 80010.00 94562+60 7092E+60 1.600000 9850E+60 .4000000 2403E+59 6304E+58 1260E+58 7249E+59 3033E+59 9062E+58 .0030000 1828E+63 13.60000 40.00000 890.0000 1694E+61 MEAN 289 127 221 457 496 499 499 310 673 4 4 59 76 11 16 61 13 NUMBER RMK m υ ŝ TOT MEDIUM WATER BOTTOM WATER BOTTOM BOTTOM BOTTOM SOTTON VATER VATER WATER VATER VATER BOTTON WATER MM OF HG WMO CODE INST-CFS PPM SIO2 MICROMHO MICROMHO 74U FILT 5U FILT **TONS/DAY** IN FEET HACH FTU LB/D/CFS NUMBER INCHES METERS FT-CDS LB/TON PERCENT MG/L NUMBER MG/L CODE NUITS MG/L CENT FAHN CENT FAHN 4501 FEET CODE FEET MG/L JTU FAHR PRESSURE SURF ELE WMO CODE **FRBIDMTR** SOL RAD IDENT. STAGE STAGE FLOAT AT 25C NATURAL AGENCY PRODN FLOW, HLGE SECCHI SOLIDS TEMP TEMP TEMP TEMP JKSN NO % % on PT-CO DEPTH DEPTH TOTAL 5 DAY GREASE PROBE TYPE FIELD PAR PARAMETER MAX SAMP CNDUCTVY BAROMTRC ANALY2E CNDUCTVY UNDW INC VSAMPLOC IODINE-I DIGESTER DT FROM TRANSP OIL AND STREAM SOLIDS SOLIDS TOTAL INVALID WEATHER STREAM TURB TURB TURB SOLIDS TIDE COLOR CLOUD WATER WATER WATER LABAIR AIR BOD 88 01000 00020 00153 00224 00011 00018 00025 00067 00068 00095 86000 00108 00172 00041 00065 00076 77000 00094 00101 00103 00140 00300 00008 00028 00043 00061 00062 00070 00075 00080 00093 00113 00145 0299 00021

92/05/05

81/02/23 81/07/14

2.60

.4 12.80

33

6004

80/02/28 96/03/21 81/04/29

96/03/21

96/03/21 81/02/23 82/07/21

9850E+60 9850E+60

96/03/21

96/03/21 81/09/17 93/03/23

1828E+63 1828E+63

80/05/22

80010

80010

2

81/07/14

20.0 -6.0

28.0

32.0

96/03/21 81/05/18

7092E+60

7092E+60

81/06/25

80/03/12 81/06/17

1.0 12

40.0 53.0

80/02/28

96/03/21

2403E+59 2403E+59

20 800 6800

60

80/02/28

8.0 2.0

1694E+61

1694E+61 43.0

10000

94/06/28

80/03/12 80/03/12

85

96/03/21 84/01/25 96/03/21 96/03/21 82/12/20 96/03/21 95/11/27 81/02/23 81/07/14

6304E+58 6304E+58 1260E+58 1260E+58 7249E+59 7249E+59 3033E+59 3033E+59

13.6

13.6

82/12/20 82/05/05

40.0 890.000

40.0

96/03/21

96/03/21 96/03/21

9062E+58 9062E+58 9850E+60 9062E+60

890.000

82/05/05

81/02/23 98/09/17

71/00/72

4.8 2.0

11.8

4.6

.0030000

.0030000

81/08/12

PAGE:

24

END DATE 81/08/12

BEG DATE 81/07/14 80/04/22 81/07/14 80/02/28 80/02/28 80/02/28

MUMINIM

98/09/17 81/08/12 98/09/17 87/02/04 71/60/86 81/08/12 98/09/17 96/03/21 81/08/12 71/60/86 81/09/13 80/11/26 97/03/25 84/03/22 82/07/21 81/08/12 97/03/25 96/03/21 86/11/24 71/60/86 95/11/27 96/09/26 96/03/21 98/09/17 96/03/21 84/01/25 96/03/21 96/03/21 96/03/21

172 26.0 1.0

2634

3278

81/07/14

78.8 32.0

84.2

87/01/27

6 TOTAL STATIONS PROCESSED DELCORA CSO LTCP

PGM=INVENT GROSS

PAGE: 25

| BEG DATE END DATE                 | 80/02/28 98/09/17                                                 | 84/06/11 97/03/25              | 80/02/28 98/09/17                 | 80/02/28 98/09/17                  | 81/03/10 81/06/11            | 81/03/10 81/04/22            | 81/03/10 81/06/11            | 81/03/10 81/06/11            | 80/01/17 96/09/17              | 80/04/15 95/10/30                | 80/01/17 96/09/17                  | 94/08/30 94/08/30 | 81/03/10 81/06/11            | 87/07/13 96/09/17             | 87/09/24 87/12/21              | 87/07/13 96/09/17                 | 81/03/10 81/06/11            | 86/07/15 86/07/15 | 81/03/10 86/07/15                | 81/03/10 81/06/11            | 81/03/10 81/06/11            | 82/06/14 82/06/14 | 81/03/10 81/06/11            | 81/03/10 81/06/11            | 80/04/22 81/06/11            | 81/03/10 81/06/11            | 81/03/10 81/03/10 | 81/04/22 81/06/11            | 81/04/22 81/04/22 | 81/03/10 82/12/20            | 81/03/10 81/04/22            | 80/01/17 85/08/15             | 81/03/10 81/03/10 | 80/02/28 98/09/17              | 80/01/17 97/09/17              | 80/05/22 80/11/26            | 80/01/17 98/09/17              | 80/02/28 98/09/17              | 95/07/10 95/07/10 | 80/02/28 98/09/17                  | 80/09/24 80/09/24 |
|-----------------------------------|-------------------------------------------------------------------|--------------------------------|-----------------------------------|------------------------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------|----------------------------------|------------------------------------|-------------------|------------------------------|-------------------------------|--------------------------------|-----------------------------------|------------------------------|-------------------|----------------------------------|------------------------------|------------------------------|-------------------|------------------------------|------------------------------|------------------------------|------------------------------|-------------------|------------------------------|-------------------|------------------------------|------------------------------|-------------------------------|-------------------|--------------------------------|--------------------------------|------------------------------|--------------------------------|--------------------------------|-------------------|------------------------------------|-------------------|
| MUMINIM                           | 0.00                                                              | 27.0                           | .0                                | •                                  | .400                         | . 6                          | 1.0                          | 1.4                          |                                |                                  | .2                                 | 2.4               | 2.2                          | e.                            | ۰.                             | e.                                | 2.3                          | 2.4               | 2.3                              | 2.8                          | 3.4                          | .1                | 4.3                          | 5.3                          | 3.1                          | 5.0                          | 5.7               | 5.2                          | 6.7               | ŝ.                           | 6.2                          | 8                             | 5.9               | 00.                            | 0.                             | 1.9                          | 0                              | 0                              | Ч                 | 0                                  | 0                 |
| MAXIMUM                           | 17.8<br>56 8                                                      | 104.0                          | 127.9                             | 127.9                              | 1.100                        | 1.5                          | 2.5                          | 3.2                          | 29.0                           | 2.4                              | 29.0                               | 2.4               | 3.9                          | 3.7                           | 2                              | 3.7                               | 4.4                          | 2.4               | 4.4                              | 5.2                          | 6.2                          | 1.                | 6.3                          | 6.7                          | 6.7                          | 6.3                          | 5.7               | 6.3                          | 6.7               | 6.2                          | 6.7                          | 36                            | 5.9               | 10.00                          | 8.9                            | 24.0                         | 118                            | 10                             |                   | 10                                 | 0                 |
| RMK NUMBER MEAN VARIANCE STAN DEV | 472 7.115400 8.086300 2.843600<br>\$ 4 41.11700 271.5600 16.47900 | 188 69.46300 228.6700 15.12200 | \$ 282 69.76000 501.0500 22.38400 | 101 4/0 69.54700 391.4000 19.78400 | 3 ./b66/UU .1233300 .3511900 | 2 1.025000 .4512500 .6717500 | 3 1.700000 .5700000 .7549800 | 3 2.100000 .9300000 .9643700 | 402 2.922800 4.974000 2.230200 | K 127 2.344900 .0930700 .3050700 | TOT 529 2.784100 3.860800 1.964900 | K 1 2.400000      | 3 3.133300 .7433400 .8621700 | 53 1.528300 .7543900 .8685500 | K 4 .4250000 .0025003 .0500030 | TOT 57 1.450900 .7814800 .8840100 | 3 3.566700 1.243300 1.115100 | K 1 2.40000       | TOT 4 3.275000 1.169200 1.081300 | 3 4.033300 1.443300 1.201400 | 3 4.700000 1.990000 1.410700 | 1 .100000         | 3 5.200000 1.030000 1.014900 | 3 6.000000 .4901300 .7000900 | 4 5.400000 2.553400 1.597900 | 3 5.500000 .4901300 .7000900 | 1 5.70000         | 2 5.750000 .6050100 .7778300 | 1 6.70000         | 3 4.016700 9.700800 3.114600 | 2 6.450000 .1249900 .3535300 | 13 24.47200 94.02200 9.696500 | 1 5.90000         | 423 7.322700 .3364600 .5800500 | 412 7.075100 .3582700 .5985600 | 3 12.63300 122.4000 11.06400 | 698 49.33100 237.3900 15.40700 | 329 3.841600 2.882500 1.697800 | K 1 1.00000       | TOT 330 3.833000 2.898200 1.702400 | 1 .0000000        |
| MEDIUM                            | WATER<br>BOTTOM                                                   | WATER                          |                                   | ta Men                             | WALER                        | WATER                        | WATER                        | WATER                        | WATER                          |                                  |                                    | WATER             | WATER                        | WATER                         |                                |                                   | WATER                        |                   |                                  | WATER                        | WATER                        | WATER             | WATER                        | WATER                        | WATER                        | WATER                        | WATER             | WATER                        | WATER             | WATER                        | WATER                        | WATER                         | WATER             | WATER                          | WATER                          | WATER                        | WATER                          | WATER                          |                   |                                    | WATER             |
|                                   | MG/L<br>PERCENT                                                   |                                |                                   | 1/ UW                              | 1/95                         | MG/L                         | MG/L                         | MG/L                         | MG/L                           |                                  |                                    | MG/L              | MG/L                         | T MG/L                        |                                | •                                 | MG/L                         |                   |                                  | MG/L                         | MG/L                         | MG/L              | MG/L                         | MG/L                         | MG/L                         | MG/L                         | NG/L              | MG/L                         | MG/L              | MG/L                         | MG/L                         | MG/L                          | MG/L              | su                             | SU                             | MG/L                         | MG/L                           | MG/L                           |                   | -                                  | MG/L              |
| AMETER                            | SATUR                                                             |                                |                                   | יאמר 1                             |                              | Z UAI                        | 3 DAY                        | 4 DAY                        | 5 DAY                          |                                  |                                    | 5 DAY             | 6 DAY                        | 5 DAY TO                      |                                |                                   | 7 DAY                        |                   |                                  | 8 DAY                        | 9 DAY                        | ULT FRST          | 10 DAY                       | 15 DAY                       | 20 DAY                       | 11 DAY                       | 12 DAY            | 13 DAY                       | 16 DAY            | 17 DAY                       | 19 DAY                       | HI LEVEL                      | 14 DAY            |                                | LAB                            |                              | CAC03                          | CAC03                          |                   |                                    | FROM CU2          |
| PAR                               | 88                                                                |                                |                                   | UOR<br>UOR                         |                              |                              | BUD                          | BOD                          | BOD                            |                                  |                                    | DISS BOD          | BOD                          | BOD INH                       |                                |                                   | BOD                          |                   | 1                                | BOD                          | BOD                          | BOD               | BOD                          | BOD                          | BOD                          | 800                          | BOD               | BOD                          | BOD               | 80D                          | 002<br>201                   | COD                           | BOD               | н<br>Ц                         | Нď                             | C02                          | T ALK                          | T ACDITY                       |                   |                                    | ACTURY            |
| 1                                 | 00300                                                             |                                |                                   | 00303                              | 0000                         | #0000                        | 00200                        | 00306                        | 00310                          |                                  |                                    | 00311             | 21600                        | 00314                         |                                |                                   | 00315                        |                   |                                  | 00316                        | 00317                        | 00320             | 00322                        | 00323                        | 00324                        | 00327                        | 00328             | 00329                        | 00331             | 00332                        | 00334                        | 00340                         | 00350             | 00400                          | 00403                          | 50400<br>51111               | 00410                          | 00435                          |                   |                                    | 00431             |

GROSS PGM=INVENT

> 6 TOTAL STATIONS PROCESSED DELCORA CSO LTCP

END DATE 80/11/26 97/09/17 81/06/25 88/02/29 98/09/17 71/60/86 81/06/25 81/06/25 87/10/26 81/08/18 98/09/17 96/09/17 98/09/17 98/09/17 98/05/18 81/06/25 81/06/25 81/02/23 97/09/17 96/09/17 96/09/17 98/09/17 96/06/17 98/09/17 98/09/17 98/09/17 93/04/12 98/09/17 98/09/17 98/09/17 83/08/11 86/11/18 97/09/17 98/09/17 98/09/17 81/06/25 71/09/17 98/09/17 80/09/24 80/09/24 86/06/24 BEG DATE 80/05/22 80/04/22 84/11/14 80/04/22 80/04/22 96/09/09 80/04/22 80/09/24 87/11/23 81/02/17 80/01/17 80/02/28 83/08/11 80/03/12 81/08/18 80/02/28 80/01/17 80/10/06 81/02/23 80/02/28 81/04/29 80/09/24 80/09/24 80/01/17 80/01/17 83/07/13 80/01/17 80/02/28 80/04/22 80/09/24 87/10/26 80/04/22 80/09/24 80/10/16 81/02/17 80/07/15 80/07/15 80/03/12 80/01/17 93/03/31 1036E-14 .020 22.000 2.000 0.0.5 N H H H 2.00 2.00 3.29 000 .280 .000 .004 .004 .005 .020 200 000 .66 37 120 120 56 56 2 2 2 2 2 2 2 0 0 .004 8521E-15 .002 MUMINIM .603 1.008 10.520 22.000 .390 7.300 9.240 .100 9.240 22.000 25.000 1.000 25.000 25.000 25.000 25.000 2.5 592 444 156 2200 2200 2 772 2.00 2.00 10.80 7.300 772 12 1.008 14 2.0 61 VARIANCE STAN DEV MAXIMUM 2.904900 5.291500 52.66700 184.3300 13.57700 326.0000 58396.00 241.6500 199.3300 45985.00 214.4400 659 22.42800 1523.000 39.02500 35 3.971400 8.499200 2.915300 .0000000 .5852000 .0011619 .0340870 1.245500 1.116000 2.431800 1.786900 1.336800 1.009500 1.935400 1.391200 .8416700 .0862880 .2937500 1.006100 1.899200 1.378100 1.747800 .3303100 .5747300 87.15100 354 235.4700 17545.00 132.4600 234.8100 17649.00 132.8500 .2357100 .0000000 2.642000 .5875500 .0777820 .6085800 .0325380 .5925700 .0280340 .0810110 .0425290 .0808720 39.41700 .0000000 .0000000 .3703700 .0010587 101.7400 7595.200 8.438600 . 0000000 .0000000 .3452200 .3424500 .3511400 .0007859 .0065403 1553.700 28.00000 .0000000 . 0000000 .0060500 .0065628 .0018087 .0555590 6.980200 4 1.000000 . 39 3.666700 8 3 6.000000 2 1 2.000000 .0045506 2.404600 22.00000 23.00300 .5000000 1.944500 .6257500 .6226600 .5000000 6.466700 .3350000 .4383100 .4094100 .0761750 .0703390 .0037426 .0763760 .0410000 1.550000 2.000000 2.000000 2.000000 MEAN 355 39 188 474 705 594 12 606 ოო 18 186 657 56 713 NUMBER 641  $\sim$ m ø 2 700 ÷ 704 474 703 71 RMK TOT. ы TOT ž TOT  $\simeq$ TOT ъ × TOT М TOT ŝ  $\simeq$ TOT ŝ ≌ TOT ¥ TOT MEDIUM WATER MG/L MG/L MG/L MG/L MG/L MG/L MG/I. MG/L MG/L MG/L MG/L ML/L MG/L GPD O 1,2,3,6 N N DISS-105 FLT NFLT FREON-GR VOL NFLT FIX NFLT SETTLBLE TOT-SXLT NH3-NH3 FOT VOL N TOTAL N-TOTAL TOT FIX HC03 NH3-N TOTAL TOTAL TOTAL PARAMETER z FIX TOT HCO3 ION RESIDUE OIL-GRSE OIL-GRSE IMCO NOS -\$HN+EHN UZNOI-NU UZNOI-NU RESIDUE RESIDUE KJEL RESIDUE RESIDUE RESIDUE RESIDUE RESIDUE 00535 RESIDUE TOTAL N NO2 ENO3 ORG N N02-N NO3-N TOT 00440 00500 00505 00510 00525 00530 00619 00620 00630 00515 00545 00556 00566 00600 00612 00615 00540 00550 00605 00610 00625

80/11/26

80/05/22

1.806700 1.442100 1.200900

m

WATER

N-DISS

NO2 &NO3

00631

ŝ

6 TOTAL STATIONS PROCESSED DELCORA CSO LTCP

PGM=INVENT GROSS

PAGE: 27

|            | BEG DATE END DATE<br>80/02/28 82/11/14 | 80/05/22 80/11/26 | 80/03/12 98/09/17 | 80/05/22 98/09/17 | 92/04/23 92/06/15 | 80/05/22 98/09/17 | 80/08/25 80/08/25 | 80/05/22 80/11/26 | 86/06/24 86/06/24 | 80/01/17 86/06/24 | 80/02/29 80/10/06 | 81/01/29 81/06/25 | 80/02/28 98/09/17 | 80/05/22 80/11/26 | 85/07/29 85/07/29 | 80/05/22 80/11/26 | 80/03/12 87/11/17 | 80/05/22 80/11/26 | 80/03/12 87/11/17 | 81/07/14 87/11/13 | 80/05/22 80/11/26 | 80/05/22 80/11/26 | 80/05/22 80/11/26 | 80/05/22 80/11/26 | 80/02/28 98/09/17 | 80/03/12 87/11/17 | 80/05/22 96/06/18 | 94/09/19 95/09/05 | 80/05/22 96/06/18 | 81/12/15 96/09/16 | 80/08/18 97/09/17 | 80/08/18 97/09/17 | 80/05/22 87/08/17 | 80/05/22 80/11/26 | 80/11/26 80/11/26 | 80/05/22 80/05/22 | 80/05/22 80/11/26 | 82/04/14 82/09/13 | 80/11/26 80/11/26 | 80/05/22 92/11/17 | 80/05/22 92/11/17 | 80/10/06 97/09/17 |
|------------|----------------------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
|            | CU<br>MOMTNITH                         | 00.               | .030              | .000              | . 005             | .000              | 13.7              | 2.8               | 42.000            | .001              | . 002             | 100.              | 2                 | 51                | 15.0              | 17.0              | 6.3               | 9.4               | 5.2               | 5.12              | 52.00             | 2.8               | 57                | 3.40              | 77                | 10                | .2                | .2                | . 2               | ব                 | 5                 | 2                 | 4.00              | 30                | 00.               | 1.00              | 00.               | 5.00              | 55                | ~~                |                   | .03               |
|            | U8 2<br>MONTVAN                        | .06               | 2.800             | 1.050             | .020              | 1.050             | 13.7              | 5.8               | 42.000            | .046              | . 01              | .005              | 2400              | 500               | 15.0              | 54.0              | 20.0              | 100.0             | 12.9              | 279000.0          | 960.00            | 21.0              | 78                | 41.00             | 2200              | 390               | 2.8               | .2                | 2.8               | 980               | 1000              | 1000              | 4.00              | 40                | 00.               | 1.00              | 1.00              | 30.00             | 55                | 1                 | 55                | 53                |
| E CTAN DEU | D .3266700                             | 0.0424270         | 0.3349200         | 0.1250700         | 3.0076376         | 0.1243900         |                   | 0 1.517700        |                   | 7 .0102830        | 4 .0035214        | 2.0020494         | 0 180.3000        | 0 317.4900        |                   | 0 26.16300        | 0 3.288000        | 0 64.06400        | 0 1.646400        | 6 52351.00        | 0 642.0500        | 0 12.86900        | 0 14.84900        | 0 26.58700        | 0 133.1500        | 0 76.47500        | 0.9758700         | 0000000.0         | 0.9642800         | 0 195.1800        | 0 316.5900        | 0 310.5500        | 0000000. 0        | 0 7.071100        |                   |                   | 0.7071100         | 0 17.67800        |                   | 0000000. 0        | 0 16.28200        | 0 5.582800        |
| UNATORN 1  | 0.106720                               | 0.001800          | 0.112170          | 0.015642          | 0.000058          | 0.015473          | Ō                 | 0 2.30330         | ō                 | 0 .000105         | 0 .000012         | 0.00004           | 0 32509.0         | 0 100800.         | ò                 | 0 684.500         | 0 10.8110         | 0 4104.20         | 0 2.71050         | 0 2740E+0         | 0 412230.         | 0 165.620         | 0 220.500         | 0 706.880         | 0 17730.0         | 0 5848.40         | 0.952320          | 000000. 0         | 0.929830          | 0 38097.0         | 0 100230.         | 0 96442.0         | 0000000.0         | 0 50.0000         | 0                 | 0                 | 0 .500000         | 0 312.5000        | 0                 | 0000000. 0        | 0 265.0900        | 0 31.16700        |
| NEAK       | 5 203070                               | 2.030000          | 6.344130          | 3.091579          | 3.011667          | 6.090135          | 1 13.7000         | 3 4.16670         | 1 42.0000         | 6.010438          | 6.005000          | 5.002800          | 0 116.640         | 2 275.500         | 1 15.0000         | 2 35.5000         | 3 14.6050         | 2 54.7000         | 3 8.03910         | 5 32080.0         | 2 506.000         | 2 11.9000         | 2 67.5000         | 2 22.2000         | 2 55.1540         | 7 43.1350         | 1 I.41200         | 7.200000          | 8 .940670         | 5 43.1200         | 0 129.970         | 5 124.180         | 24.00000          | 2 35.0000         | 000000. I         | 1 1.00000         | 2.500000          | 2 17.5000         | 1 55.0000         | 0 1.00000         | 1 5.90910         | 3 1.45540         |
| NIIMRE     |                                        |                   | 62                | -                 |                   | 16                |                   |                   |                   |                   |                   |                   | 37                |                   |                   |                   | m                 |                   | m                 | +~1<br>+~1        |                   |                   |                   |                   | 69                | m                 | -                 |                   | 1                 | 2                 | 35                | 37                |                   |                   |                   |                   |                   |                   |                   | 1                 | -                 | 15                |
| жиа        |                                        |                   |                   |                   | X                 | TOT               |                   |                   |                   |                   |                   |                   |                   |                   | Ж                 |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   |                   | Ж                 | TOT               |                   | X                 | TOT               |                   |                   |                   | Ж                 | TOT               | Ж                 |                   | м                 | TOT               |                   |
| MEDIUM     | WATER                                  | WATER             | WATER             | WATER             |                   |                   | WATER             |                   |                   | WATER             |                   |                   | WATER             | WATER             | WATER             |                   |                   | WATER             | WATER             |                   |                   | WATER             |
|            | MG/L                                   | MG/I,             | MG/L P            | MG/L P            |                   |                   | MG/L              | MG/L              | UG/L              | MG/L              | MG/L              | UG/L              | MG/L              | RATIO             | 0,0               | MG/L              | MG/L              | MG/L              | MG/L              |                   |                   | UG/L              |                   |                   | DRY WGT           | UG/L              | UG/L              |                   |                   | G/KG-CR           | UG/L              |                   |                   | UG/L              |
| AMETER     | PO4                                    | P04               | _                 | ORTHO             |                   |                   | U                 | U                 | HBG METH          | CN-TOT            | FREE CN           | COMPLEX           | CACO3             | CACO3             | CACO3             | CA, DISS          | CA-TOT            | MG, DISS          | MG, TOT           | NA, TOT           | NA, DISS          | ADSBTION          | MUIDOS            | K, DISS           | TOTAL             | SO4-TOT           | DISOLVED          |                   |                   | AS, TOT           |                   |                   | SEDMG/KG          | BA, DISS          | BE, DISS          |                   |                   | WET WGTM          | CD, DISS          |                   |                   | CD, TOT           |
| PAR        | T PO4                                  | ORTHOPO4          | PHOS-TOT          | PHOS-DIS          |                   |                   | T ORG C           | D ORG C           | CN FREE           | CYANI DE          | CYANI DE          | CYANIDE           | TOT HARD          | NC HARD           | CALCIUM           | CALCIUM           | CALCIUM           | MGNSIUM           | MGNSIUM           | MNIGOS            | <b>WUIDOS</b>     | SODIUM            | PERCENT           | PTSSIUM           | CHLORIDE          | SULFATE           | SILICA            |                   |                   | ARSENIC           |                   |                   | ARSENIC           | BARIUM            | BERYLIUM          |                   |                   | CR MUD            | CADMIUM           |                   | ,                 | CADMIUM           |
|            | 00650                                  | 00660             | 00665             | 00671             |                   |                   | 00680             | 00681             | 00719             | 00720             | 00722             | 00724             | 00600             | 00902             | 01600             | 00915             | 00016             | 00925             | 00927             | 00929             | 00630             | 00931             | 00932             | 00935             | 00940             | 00945             | 00955             |                   |                   | 20010             |                   |                   | 01003             | 01005             | 01010             |                   |                   | 01024             | 01025             |                   |                   | 01027             |

PGM=INVENT GROSS

6 TOTAL STATIONS PROCESSED DELCORA CSO LTCP

3

MEDIUM RMK NUMBER MEAN VARIANCE STA WATER K 309 8.855000 474.1300 21. WATER TOT 462 6.404500 339.2000 18.

| END DATE             | 97/09/17 | 80/05/22 | 80/05/22 | 92/11/17 | 92/07/08 | 88/05/17 | 92/11/17 | 92/11/17 | 80/11/26 | 80/05/22 | 80/11/26 | 80/05/22 | 96/11/13 | 98/08/24 | 80/05/22 | 27/07/07 | 98/08/24 | 98/08/24 | 98/07/14 | 71/09/16 | 98/08/24 | 80/05/22 | 71/60/76 | 90/02/06 | 1/00/16  | 80/11/26 | 90/01/06 | 90/02/06 | 82/04/14 | 80/11/26 | 95/09/25 | 94/05/23 | 95/11/27 | 95/11/27 | 71/09/16 | 95/10/23 | 94/05/23 | 95/07/10 | 71/00/70 | 80/05/22 | 80/05/22 |
|----------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| BEG DATE<br>80/01/17 | 80/01/17 | 80/05/22 | 80/05/22 | 92/03/09 | 83/08/16 | 80/01/17 | 80/02/28 | 80/01/17 | 80/11/26 | 80/05/22 | 80/05/22 | 80/05/22 | 80/11/26 | 92/03/09 | 80/05/22 | 94/09/19 | 80/05/22 | 80/01/17 | 88/07/05 | 80/02/28 | 80/01/17 | 80/05/22 | 80/01/17 | 86/01/16 | 80/01/17 | 80/05/22 | 88/07/05 | 80/05/22 | 82/04/13 | 80/11/26 | 95/05/08 | 92/03/09 | 94/07/25 | 80/11/26 | 80/04/02 | 94/07/25 | 80/01/17 | 95/06/26 | 80/01/17 | 80/05/22 | 80/05/22 |
| MUMINIM<br>02        | .02      | 10.00    | 10.00    | 100      | 10       | Ъ        | m        | m        | 0        | n m      | 0        | 30-00    | ŝ        | 0        | 10       | 0        | c        | ι (Υ)    | 0        | m        | 0        | 20.00    | 30       | 10       | 10       | 7        | 100      | 7        | 0        | 0        | 2        | ო        | 0        | 0        | 9.       | 1        | 60.      | 0        | 0        | 60.00    | 940.00   |
| MAXIMUM<br>1001      | 100      | 10.00    | 10.00    | 100      | 10       | 1070     | 100      | 1070     | 0        | • m      | m        | 30.00    | 10       | S        | 10       | 5        | 10       | 359      | S        | 100      | 359      | 20.00    | 36500    | 100      | 36500    | 28       | 100      | 100      | 30       | 0        | 2        | m        | 0        | m        | 490      | m        | 100      | 0        | 490      | 60.00    | 940.00   |
| STAN DEV<br>21.77500 | 18.41700 |          |          | .0000000 | .0000000 | 111.7600 | 33.96200 | 65.31000 |          |          | 2.121300 |          | 2.354500 | 1.161600 |          | 2.236100 | 2.304900 | 33.69500 | 1.547400 | 36.38600 | 32.95400 |          | 2285.100 | 49.29500 | 2276.400 | 14.84900 | .0000000 | 18.59200 | 17.32100 |          | .5656900 | .0000000 | .0000000 | 1.464400 | 44.95400 | .5580600 | 29.93900 | .0000000 | 35.71900 |          |          |
| VARIANCE<br>474.1300 | 339.2000 |          |          | ,0000000 | .0000000 | 12491.00 | 1153.400 | 4265.400 |          |          | 4.500000 |          | 5.543600 | 1.349300 |          | 5.000000 | 5.312800 | 1135.300 | 2.394600 | 1323.900 | 1085.900 |          | 5221500  | 2430.000 | 5181800  | 220.5000 | .0000000 | 345.6600 | 300.0000 |          | .3200000 | .0000000 | .0000000 | 2.144400 | 2020.800 | .3114300 | 896.3600 | .0000000 | 1275.900 |          |          |
| MEAN<br>8.855000     | 6.404500 | 10.00000 | 10.00000 | 100.0000 | 10.00000 | 33.09300 | 38.36600 | 36.90900 | .0000000 | 3.000000 | 1.500000 | 30.00000 | 7.776700 | 1.602400 | 10.00000 | 1.000000 | 2.080600 | 24.76400 | 2.469600 | 30.00500 | 22.41000 | 20.00000 | 966.7200 | 64.00000 | 958.6200 | 17.50000 | 100.0000 | 95.76900 | 10.00000 | .0000000 | 2.000000 | 3.000000 | .0000000 | 1.733300 | 19.07400 | 2.050000 | 22.60400 | .0000000 | 21.02900 | 60.00000 | 940.0000 |
| NUMBER<br>309        | 462      | Ч        | г        | თ        | 25       | 76       | 254      | 351      | 1        | ч        | 2        | r-4      | ۳        | 41       | 1        | ы        | 50       | 243      | 114      | 224      | 581      | H        | 552      | ŝ        | 557      | 2        | 37       | 68<br>8  | ε        | ÷-1      | 2        | 16       | 11       | 30       | 203      | œ        | 375      | 2        | 588      | ~        | ~~1      |
| RMK<br>K             | TOT      | м        | Х        | Ж        | М        |          | м        | TOT      |          | *        | TOT      |          |          | C,       | м        | IJ       | TOT      |          | IJ       | м        | TOT      |          |          | Ж        | TOT      |          | Ж        | TOT      |          |          | IJ       | ж        | ŋ        | TOT      |          | 5        | М        | ŋ        | TOT      |          |          |
| MUIO                 | ~        | ~        | ~        | ~        | ~        | ~        |          |          | ~        |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |          |
| MEL<br>WATEF         | WATEF    | WATEF    | WATEF    | WATER    | WATEF    | WATEF    |          |          | WATEF    |          |          | WATEF    | WATEF    |          |          |          |          | WATEF    |          |          |          | WATEF    | WATER    |          |          | WATEF    |          |          | WATER    | WATER    |          |          |          |          | WATER    |          |          |          |          | WATER    | WATER    |
| UG/L                 | nc/r     | MG/KG-CD | DRY WGT  | UG/L     | UG/L     | UG/L     |          |          | UG/L     |          |          | MG/KG-CO | UG/L     |          |          |          |          | UG/L     |          |          |          | DRY WGT  | UG/L     |          |          | UG/L     |          |          | UG/L     | UG/L     |          |          |          |          | UG/L     |          |          |          |          | DRY WGT  | MG/KG-MN |
| AMETER<br>CD, TOT    | CD, TOT  | DRY WGT  | SEDMG/KG | CR, DISS | HEX-VAL  | CR, TOT  |          |          | CO, DISS |          |          | DRY WGT  | CU, DISS |          |          |          |          | CU, TOT  |          |          |          | SEDMG/KG | FE, TOT  |          |          | FE, DISS |          |          | IRON     | PB, DISS |          |          |          |          | PB, TOT  |          |          |          |          | SEDMG/KG | DRY WGT  |
| PAR/<br>CADMIUM      | CADMI UM | CD MUD   | CHROMIUM | CHROMIUM | CHROMIUM | CHROMIUM |          |          | COBALT   |          |          | CO MUD   | COPPER   |          |          |          |          | COPPER   |          |          |          | COPPER   | IRON     |          |          | I RON    |          |          | FERROUS  | LEAD     |          |          |          |          | LEAD     |          |          |          |          | LEAD     | MN MUD   |
| 01027                | 01027    | 01028    | 01029    | 01030    | 01032    | 01034    |          |          | 01035    |          |          | 01038    | 01040    |          |          |          |          | 01042    |          |          |          | 01043    | 01045    |          |          | 01046    |          |          | 01047    | 01049    |          |          |          |          | 01051    |          |          |          |          | 01052    | 01053    |

PAGE: 28

6 TOTAL STATIONS PROCESSED DELCORA CSO LTCP

ł

GROSS PGM=INVENT

PAGE:

| MINIMUM<br>140.0             |          | 30.02    | 25.0     | 0        | 130      | 10        | 10        | 10       | 10       | 3.0      | 66       | 0        | 9              | 0        | -        | m        | 10       | 0        | 0        | . 4      | 2        | 10       | 4.       | 91.00        | 140      | 100      | 100      |          | 9 9      | ę        | 9        | .00      | 23000.00 | 5.0        | 5.0      | 5.0      |          | , nnn    | 00001 | 200.0    | 1.000000 |
|------------------------------|----------|----------|----------|----------|----------|-----------|-----------|----------|----------|----------|----------|----------|----------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|--------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|----------|----------|----------|----------|-------|----------|----------|
| MAXIMUM<br>140.0             | 0.001    | 450.0    | 120.0    | 29       | 130      | 10        | 50        | 140      | 140      | 100.0    | 760      | 0        | 9              | 9        | 21       | 5        | 10       | 0        | 21       | 210      | თ        | 100      | 210      | 91.00        | 1000     | 150      | 1000     | 20       | 401      | 1002     | 1002     | .00      | 23000.00 | 10.0       | 5.0      | 10.0     | -        | ξ 000    |       | 3000.0   | 1.000000 |
| STAN DEV                     | 00017 22 | 70.68800 | 67.17500 | 20.50600 |          | . 0000000 | 7.919500  | 35.13400 | 31.78000 | 47.52000 | 467.4000 |          |                | 4.242600 | 3.180100 | 1.985000 | .0000000 | .0000000 | 4.023600 | 24.41400 | .7287000 | 38.72200 | 29.58100 |              | 246.8000 | 35.35500 | 245.6300 | 9.899500 | 77.20000 | 359.8500 | 345.9500 |          |          | 2.522600   | .0000000 | 1.937800 | .4045200 | 1.507600 |       | 995.4/00 |          |
| VARIANCE                     | 515.7600 | 4996.700 | 4512.500 | 420.5000 |          | .0000000  | 62.71900  | 1234.400 | 1010.000 | 2258.200 | 218460.0 |          |                | 18.00000 | 10.11300 | 3.940100 | .0000000 | .0000000 | 16.19000 | 596.0200 | .5310100 | 1499.400 | 875.0000 |              | 60911.00 | 1250.000 | 60332.00 | 98.00000 | 5959.900 | 129490.0 | 119680.0 |          |          | 6.363700   | .0000000 | 3.755000 | .1636400 | 2.272700 |       | 9909/0.0 |          |
| MEAN<br>140.0000<br>154 2300 | 88.75000 | 137.5100 | 72.50000 | 14.50000 | 130.0000 | 10.00000  | 23.00300  | 36.13000 | 33.30700 | 37.92000 | 429.5000 | .0000000 | 6.000000       | 3.000000 | 12.90700 | 6.150400 | 10.00000 | .0000000 | 8.566200 | 32.42000 | 7.986000 | 40.34100 | 34.54900 | 91.00000     | 377.8600 | 125.0000 | 346.2500 | 13.00000 | 22.53900 | 172.3800 | 158.2100 | .0000000 | 23000.00 | 6.818200   | 5.000000 | 5.869600 | .8181800 | 2.545500 |       | 143/.400 | 1.00000  |
| NUMBEK<br>1<br>70            | 24       | 94       | 2        | ~        | ٣        | 6         | 40        | 146      | 186      | 25       | 2        | 1        | <del>ہ</del> م | N        | 14       | 24       | 10       | 2        | 50       | 400      | 5        | 170      | 575      | <del>،</del> | 14       | 2        | 16       | 2        | 26       | 249      | 275      | ~        | ~        | <u>ј</u> ј | 12       | 23       | 11       | 11       |       | n '      | T        |
| RMK                          | ¥        | TOT      |          |          |          | ×         |           | K        | TOT      | Х        |          |          | К              | TOT      |          | ŗ        | ¥        | D        | TOT      |          | ŗ        | Ж        | TOT      |              |          | Ж        | TOT      |          |          | Х        | TOT      |          |          | Ж          | n        | TOT      |          | м        | : 2   | Ч        |          |
| MEDIUM<br>WATER<br>WATER     |          |          | WATER    | WATER    | WATER    | WATER     | WATER     |          |          | WATER    | WATER    | WATER    |                |          | WATER    |          |          |          | -        | WATER    |          |          |          | WATER        | WATER    |          |          | WATER    | WATER    |          |          | WATER    | WATER    | WATER      |          |          | WATER    | WATER    |       | WAIEK    | WATER    |
| UG/L<br>UG/L                 | 1        |          | UG/L     | UG/L     | UG/L     | UG/L      | UG/L      |          |          | 0G/L     | nG/L     | UG/L     |                |          | UG/L     |          |          |          |          | UG/L     |          |          |          | DRY WGT      | UG/L     |          |          | UG/L     | UG/L     |          |          | DRY WGT  | MG/KG-FE | UG/L       |          |          | SEVERITY | TOT PC/L | 1/ 04 |          | NUMBER   |
| AMETER<br>MN, SUSP<br>MN     |          |          | MN, DISS | MO, DISS | MO, TOT  | NI, DISS  | NI, TOTAL |          |          | AG, TOT  | SR, DISS | V, DISS  |                |          | ZN, DISS |          |          |          |          | ZN, TOT  |          |          |          | SEDMG/KG     | AL, TOT  |          |          | LI, DISS | SE, TOT  |          |          | SEDMG/KG | DRY WGT  | .HEX VAL   |          |          | ATMOSPH  | ALPHA    | TOTAT | TOTAL    | YAK      |
| PARI<br>MANGNESE<br>MANGNESE |          |          | MANGNESE | MOLY     | MOLY     | NICKEL    | NICKEL    |          |          | SILVER   | STRONTUM | VANADIUM |                |          | ZINC     |          |          |          |          | ZINC     |          |          |          | ZINC         | ALUMINUM |          |          | LITHIUM  | SELENIUM |          |          | SELENIUM | FE MUD   | CR-DISS    |          |          | ODOR     | RAD GROS | c 11  | 0-H      | ULALIU   |
| 01054<br>01055               |          |          | 01056    | 01060    | 01062    | 01065     | 01067     |          |          | 01077    | 01080    | 01085    |                |          | 01090    |          |          |          |          | 01092    |          |          |          | 01093        | 01105    |          |          | 01130    | 71147    |          |          | 01148    | 01170    | 01220      |          |          | 01330    | 01519    | 00000 | 00000    | 102501   |

97/09/17 91/06/25 80/11/26 80/11/26

80/01/17 80/02/28 80/01/17 80/02/28 80/05/22 80/05/22 80/05/22

80/05/22

80/10/13 87/05/21

87/08/12

END DATE

BEG DATE 180/10/13

87/08/12 80/11/26 80/11/26 81/01/29

80/02/28 80/02/28 80/05/28 80/05/22 81/01/29 92/03/09

92/11/17 97/08/19

71/00/10

80/11/26 97/03/25 98/08/24 94/05/23 95/09/25 98/08/24

80/05/22 80/05/22 94/07/25 92/05/04

98/06/24 98/08/24 80/05/22 87/08/12 86/08/19

95/08/29 80/05/22 80/01/17 95/06/26 80/02/28

96/09/17

87/08/12 80/11/26 96/09/16 97/09/17

80/01/17 80/05/22 80/04/25 84/08/02 80/04/25 80/04/25 81/02/22 81/07/21 81/07/21

80/05/22 97/05/08

80/05/22 92/08/10 97/06/09

80/05/22

80/05/22

71/09/17

97/06/09 97/06/09 81/12/15

85/03/26 86/12/10 81/12/15

84/06/19

98/08/24 98/08/24

> 92/08/10 80/03/12

29

6 TOTAL STATIONS PROCESSED DELCORA CSO LTCP

ł

PGM=INVENT GROSS

PAGE: 30

|         | PARP            | METER    |          | MEDIUM | RMK | NUMBER | MEAN      | VARIANCE | STAN DEV  | MAXIMUM | MUMINIM        | BEG DATE | END DATE |  |
|---------|-----------------|----------|----------|--------|-----|--------|-----------|----------|-----------|---------|----------------|----------|----------|--|
| 30201 C | CLRMTHAN        | WTR, WHL | REC UG/L | WATER  | D   | 15     | 1.266700  | .2095300 | .4577400  | 2       | г              | 94/08/23 | 97/06/09 |  |
| 30202 E | <b>3ROMOETH</b> | WTR, WHL | REC UG/L | WATER  | n   | 15     | 1.266700  | .2095300 | .4577400  | 2       | П              | 94/08/23 | 97/06/09 |  |
| 31501 1 | TOT COLI        | MFIMENDO | /100ML   | WATER  |     | 2      | 3950.000  | 5008.000 | 70.76700  | 4000    | 3900           | 93/08/09 | 93/08/10 |  |
| 31505 1 | TOT COLI        | MPN CONF | /100ML   | WATER  |     | 47     | 9727.900  | 5767E+05 | 24015.00  | 160000  | 330            | 10/L0/L8 | 89/06/19 |  |
|         |                 |          |          |        | Г   | Ļ      | 24000.00  |          |           | 24000   | 24000          | 88/01/22 | 88/01/22 |  |
|         |                 |          |          |        | TOT | 48     | 10025.00  | 5687E+05 | 23848.00  | 160000  | 330            | 87/07/01 | 89/06/19 |  |
| 31611 8 | FEC COLI        | M-TEC    | #/100ML  | WATER  |     | 202    | 182.7900  | 287280.0 | 535.9900  | 5800    | 2              | 87/03/18 | 98/09/17 |  |
|         |                 |          |          |        | Г   | 5      | 760.0000  | 8000.000 | 89.44300  | 800     | 600            | 87/04/10 | 91/10/06 |  |
|         |                 |          |          |        | 0   | ω      | .0000000  | .0000000 | . 0000000 | 0       | 0              | 95/08/29 | 96/08/12 |  |
|         |                 |          |          |        | TOT | 215    | 189.4100  | 278970.0 | 528.1800  | 5800    | 0              | 87/03/18 | 98/09/17 |  |
| 31615 E | FEC COLI        | MPNECMED | /100ML   | WATER  |     | 48     | 1663.800  | 4704400  | 2169.000  | 0061    | 33             | 10//0//8 | 89/06/19 |  |
| 31616 E | FEC COLI        | MFM-FCBR | /100ML   | WATER  |     | 328    | 7446.900  | 5182E+05 | 22764.00  | 190000  | 0              | 80/02/28 | 97/09/17 |  |
|         |                 |          |          |        | ×   | თ      | 5469.500  | 37474000 | 6121.600  | 20000   | 25             | 81/02/17 | 92/05/05 |  |
|         |                 |          |          |        | Г   | 23     | 38722.00  | 4227E+06 | 65016.00  | 200000  | 600            | 81/08/18 | 87/06/03 |  |
|         |                 |          |          |        | TOT | 360    | 9395.600  | 7908E+05 | 28122.00  | 200000  | 0              | 80/02/28 | 71/00/12 |  |
| 31633 E | S.COLI          | THERMTOL | #/100ML  | WATER  |     | 203    | 139.7300  | 140600.0 | 374.9700  | 3600    | 7              | 87/03/18 | 98/09/17 |  |
|         |                 |          |          |        | ¥   | ~      | 1.000000  |          |           |         | Ч              | 94/04/25 | 94/04/25 |  |
|         |                 |          |          |        | Г   | m      | 733.3300  | 13334.00 | 115.4700  | 800     | 600            | 92/09/21 | 97/10/06 |  |
|         |                 |          |          |        | 0   | ω      | .0000000  | .0000000 | .0000000  | 0       | 0              | 95/08/29 | 96/08/12 |  |
|         |                 |          |          |        | TOT | 215    | 142.1600  | 138600.0 | 372.2900  | 3600    | 0              | 87/03/18 | 98/09/17 |  |
| 31639 E | SNTCOCCI        | GR D,MF  | #/100ML  | WATER  |     | 204    | 29.58800  | 5195.300 | 72.07800  | 490     | <del>،</del> ۲ | 87/03/18 | 98/09/17 |  |
|         |                 |          |          |        | х   | 6      | 1.000000  | .0000000 | .0000000  | 1       |                | 88/06/14 | 97/07/16 |  |
|         |                 |          |          |        | Г   | m      | 600.0000  |          |           | 600     | 600            | 95/10/23 | 95/10/23 |  |
|         |                 |          |          |        | 0   | ~      | .0000000  |          |           | 0       | 0              | 96/08/12 | 96/08/12 |  |
|         |                 |          |          |        | TOT | 215    | 30.90700  | 6485.400 | 80.53200  | 600     | 0              | 87/03/18 | 98/09/17 |  |
| 31673 5 | FECSTREP        | MFKFAGAR | /100ML   | WATER  |     | m      | 546.6700  | 334530.0 | 578.3900  | 1200    | 100            | 85/02/14 | 93/08/10 |  |
| 32101 L | DICLBRMT        |          | TOTUG/L  | WATER  |     | 2      | .0000000  | .0000000 | .0000000  | 0.      | 0.             | 80/00/08 | 80/11/26 |  |
|         |                 |          |          |        | D   | 55     | 1.072700  | -0686880 | .2620800  | 2.0     | 1.0            | 89/07/10 | 97/06/09 |  |
|         |                 |          |          |        | TOT | 57     | 1.035100  | .1058900 | .3254100  | 2.0     | 0.             | 80/09/03 | 60/90/16 |  |
| 32102 C | CARBNTET        |          | TOTUG/L  | WATER  |     | 2      | .0000000  | .0000000 | 0000000 - | 0.      | 0.             | 80/09/03 | 80/11/26 |  |
|         |                 |          |          |        | n   | 55     | 1.072700  | .0686880 | .2620800  | 2.0     | 1.0            | 89/07/10 | 97/06/09 |  |
|         |                 |          |          |        | TOT | 57     | 1.035100  | .1058900 | .3254100  | 2.0     | 0.             | 80/09/03 | 97/06/09 |  |
| 32103 1 | 2DICLET         |          | TOTUG/L  | WATER  |     | ~      | .0000000  | .0000000 | . 0000000 | 0.      | 0.             | 80/09/03 | 80/11/26 |  |
| 32104 E | <b>BROMOFRM</b> | WHL-WTR  | NG/L     | WATER  | n   | 55     | 1.072700  | .0686880 | .2620800  | 2.0     | 1.0            | 89/07/10 | 97/06/09 |  |
| 32105 C | LUDIBRMT        |          | TOTUG/L  | WATER  |     | 3      | .0000000  | .0000000 | .0000000  | 0.      | 0.             | 80/09/03 | 80/11/26 |  |
|         |                 |          |          |        | n   | 55     | 1.072700  | .0686880 | .2620800  | 2.0     | 1.0            | 89/07/10 | 91/06/09 |  |
|         |                 |          |          |        | TOT | 57     | 1.035100  | .1058900 | .3254100  | 2.0     | 0.             | 80/09/03 | 97/06/09 |  |
| 32106 C | CHLRFORM        |          | TOTUG/L  | WATER  |     | \$     | . 0000000 | .0000000 | .0000000  | 0.      | 0.             | 80/09/03 | 80/11/26 |  |
|         |                 |          |          |        | ŋ   | 8      | .3000000  | .0000000 | . 0000000 | ۳.<br>۲ | ٣.             | 92/03/09 | 93/03/23 |  |
|         |                 |          |          |        | *   | m      | 1.000000  | .0000000 | .0000000  | 1.0     | 1.0            | 89/08/02 | 91/00/06 |  |
|         |                 |          |          |        | n   | 50     | 1.080000  | .0751030 | .2740500  | 2.0     | 1.0            | 89/07/10 | 60/90/16 |  |
|         |                 |          |          |        | TOT | 57     | 1.010500  | .1245300 | .3528900  | 2.0     | 0.             | 80/09/03 | 97/06/09 |  |
|         |                 |          |          |        |     |        |           |          |           |         |                |          |          |  |

PAGE:

33

GROSS PGM=INVENT

> 6 TOTAL STATIONS PROCESSED DELCORA CSO LTCP

I

STORET RETRIEVAL DATE 99/01/25

95/11/27 96/06/18 91/06/09 91/06/09 97/06/09 97/06/09 93/10/25 93/10/25 93/03/23 97/06/09 97/06/09 97/06/09 97/06/09 97/06/09 90/00/06 DATE 89/06/19 96/06/18 95/10/10 92/11/09 96/06/18 86/06/24 90/09/19 89/10/03 97/06/09 97/06/09 80/11/26 97/06/09 80/11/26 97/06/09 97/06/09 97/06/09 80/11/26 96/06/18 86/11/24 88/06/14 88/06/14 80/11/26 97/06/09 97/06/09 97/06/09 89/08/02 END 89/07/10 89/07/10 DATE 87/03/18 89/07/10 89/01/10 89/07/10 95/10/10 80/11/26 80/11/26 80/00/08 89/07/10 80/09/03 89/07/10 89/07/10 80/09/03 89/07/10 91/03/20 91/05/13 89/07/10 80/02/28 80/02/28 80/01/17 89/10/03 89/07/10 89/01/10 89/07/10 89/07/10 93/03/23 80/09/03 89/07/10 80/09/03 89/07/10 80/09/03 89/07/10 89/07/10 89/07/10 89/07/10 80/01/17 80/09/03 89/08/02 80/09/03 BEG 1.00 .00 39.00 1.00 .00 4.70 1.00 1.00 1.00 .00 1.00 1.000 1.000 1.000 1.000 1.000 .200 1.000 .200 1.000 000 0 sо 1.000 .000 1.000 000. .000 1.000 1.000 .000 1.000 .000 1.000 1.000 00 MUMINIM 1.00 104.00 33000.00 1.00 56.00 104.00 2.00 2.000 1.000 2.000 54.80 39.00 2.000 000. 2.000 2.000 2.000 56.00 20 ŝ 20 00 1.00 10.00 00. 2.00 2.00 2.000 2.000 1.000 .200 2.000 2.000 2.000 .000 2.000 .000 2.000 2.000 2.000 1.500 1.000 MAXIMUM 10. STAN DEV 101.0300 10.05100 .0000000 .0000000 9.842700 3159.800 9.802400 20.30700 5.266800 .0000000 2.178300 3.747700 1.369700 .4960600 .5810200 .4287700 .2620800 .5070900 .0000000 .0000000 .2643500 .2871900 .0000000 .2620800 .3254100 .2620800 .0000000 .2620800 .3254100 .2620800 0000000 .3254100 .2620800 .2620800 .4903100 . 0000000 .2643500 .1838400 .0686880 4 745000 VARIANCE 96.08700 .0000000 96.87900 412.3800 412.1700 9984500 27.73900 .0000000 14.04500 .2404100 1.876200 .0698820 .0000000 .0000000 .2460700 .0000000 .0000000 .0686880 .1058900 .0000000 .0698820 .0686880 .0686880 .3375900 .2571400 .0000000 .0824780 .0686880 .0686880 .1058900 .0686880 .0000000 .1058900 .00000000 1.072700 1.250000 4.910900 7.350000 1.622200 7.028000 11.17000 1.000000 9.020300 22.39700 1.000000 20.61900 313.2300 4.489700 5.000000 1.847900 1.000000 .0000000 1.530600 1.072700 1.074100 .0000000 1.035100 1.072700 1.072700 1.035100 .0000000 1.074100 1.035100 1.000000 1.236400 1.500000 1.000000 1.058200 1.072700 1.072700 1.072700 39.00000 .2000000 1.000000 MEAN 26 123 137 166 11 123 109 29 44 76 1 45 48 447 555 40 40 40 5 2 2 7 7 7 7 2 2 7 7 7 7 NUMBER ~1  $\sim$ ror RMK TOT R K TOT TOT  $\mathbf{X}$ Ð Ð 0000000 р TOT U U TOT TOT р TOT Ð TOT þ × þ MEDIUM WATER WATER WATER WATER WATER WATER WATER WATER 34511 112TRICH LOROETHA TOTWUG/L WATER 34516 1122TETR ACHLOROE TOTWUG/L WATER ACHLOROE TOTWUG/L WATER ROETHANE TOTWUG/L WATER WATER TOT UG/L WATER WATER TOTWUG/L WATER WATER WATER WATER WATER WATER WATER TOTWUG/L 1 TOTWUG/L 1 CORRECTD TOTWUG/L UG/L TOTWUG/L TOTWUG/L TOTWUG/L TOTWUG/L TOTWUG/L TOTWUG/L TOTWUG/L UG/L MG/L UG/L UG/L TOT OFLUOROM ROETHANE 34501 11DICHLO ROETHYLE 34506 111TRICH LOROETHA ECHLORID OROETHYL 32210 CHLRPHYL A 32211 CHLRPHYL A UG/L A TOTAL LORIDE PARAMETER NZENE OMIDE А, HANE ZENE 1122TETR 12DICHLO CHLRPHYL PHENOLS 32210 CHLRPHYL CHLOROBE **11DICHLO** 32218 PHEOPHTN CHLOROET ETHYLBEN METHYLBR METHYLCH METHYLEN TETRACHL TRICHLOR TOLUENE 34030 BENZENE 32230 32730 34010 34311 34371 34413 34488 34301 34418 34423 34475 34496

90/05/16

.3535500

.1250000

34531

6 TOTAL STATIONS PROCESSED DELCORA CSO LTCP

PGM=INVENT GROSS

PAGE: 32

.

.....

PGM=INVENT GROSS

PAGE: 33

| PROCESSED      |          |  |
|----------------|----------|--|
| TOTAL STATIONS | CSO LTCP |  |
| 9              | DELCORA  |  |

ı

| NIMIM OFC DATE END DATE | .010 80/05/29 80/05/29 | 00 80/05/22 80/05/22 | .015 80/05/29 80/05/29 | 00 80/05/22 80/05/22 | .210 80/05/29 80/05/29 | .00 80/05/22 80/05/22 | 42.00 80/05/22 80/05/22 | 00 80/05/22 80/05/22 | 00 80/05/22 80/05/22 |          | 77/GN/N8 77/GN/N8 00 | 27/50/08 27/50/08 00. | .010 80/05/29 80/05/29 | .08 80/05/29 80/05/29 | .00 80/05/22 80/05/22 | .010 80/05/29 80/05/29 | .00 80/05/22 80/05/22 | .00 80/05/22 80/05/22 | 0 80/03/12 85/02/14 | 5 81/03/09 81/03/09 | 0 85/08/14 87/10/20 | 0 87/10/20 87/10/20 | 0 83/08/08 83/08/08 | 0 81/11/23 87/10/20 | 0 81/11/23 83/08/08 | 0 87/10/20 87/10/20 | 0 81/11/22 87/10/20 | 0 81/11/23 87/10/20 |          | 0 05/00/08 83/08/08 | 50/00/C0 57/00/C0 0 | 0 00/00/20 00/00/20 0 | FT /00/00 00/00/00 0 | C7/IT/T0 C7/IT/T0 0 | C7/TT/T0 C7/TT/T0 0 | 0 81/11/23 8//10/20 | 0 83/08/08 83/08/08 | 0 87/10/20 87/10/20 | 0 83/08/08 83/08/08 | 0 82/08/02 87/10/20 | 0 81/11/23 87/10/20 | 0 83/08/08 83/08/08 | 0 81/11/23 87/10/20       | 0 81/11/23 87/10/20 |
|-------------------------|------------------------|----------------------|------------------------|----------------------|------------------------|-----------------------|-------------------------|----------------------|----------------------|----------|----------------------|-----------------------|------------------------|-----------------------|-----------------------|------------------------|-----------------------|-----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------|---------------------|---------------------|-----------------------|----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------------|---------------------|
| MAXTMIIM MT             | .010                   | .00                  | .015                   | 00.                  | .210                   | 00.                   | 42.00                   | 00.                  | 00                   |          |                      | 00.0                  | 010.                   | .08                   | . 00                  | 010.                   | .00                   | 00.                   | 413                 | S                   | 0                   | 0                   | 0                   | 0                   | 0                   | 0                   | c                   | òc                  |          |                     |                     |                       |                      |                     | o c                 | - ·                 | 0                   | 0                   | 0                   | 0                   | 0                   | 0                   | 0                         | 0                   |
| STAN DEV                |                        |                      |                        |                      |                        |                       |                         |                      |                      |          |                      |                       |                        |                       |                       |                        |                       |                       | 101.2600            |                     | .0000000            |                     |                     | .0000000            | .0000000            |                     | .0000000            | .0000000            |          |                     |                     | 0000000               |                      |                     |                     |                     |                     |                     |                     | .00000000           | .0000000            |                     | .0000000                  | .0000000            |
| VARIANCE                |                        |                      |                        |                      |                        |                       |                         |                      |                      |          |                      |                       |                        |                       |                       |                        |                       |                       | 10253.00            |                     | .0000000            |                     |                     | .0000000            | .0000000            |                     | .0000000            | .0000000            |          |                     |                     | . 0000000             |                      |                     |                     |                     |                     |                     |                     | .0000000            | .0000000            |                     | .0000000                  | .0000000            |
| MEAN                    | .0100000               | .0000000             | .0150000               | .0000000             | .2100000               | .0000000              | 42.00000                | .0000000             | .0000000             | .0000000 | 0000000              | 0000010               | 00000000               | 00000000              | .0000000              | 0000010.               | . ບບບບບບບ             | . 0000000             | 204.6400            | 5.000000            | .0000000            | .0000000            | .0000000            | 0000000             | 0000000             | .0000000            | 00000000            | .0000000            | 0000000  | 0000000             | 0000000             | .0000000              | 0000000              | 0000000             | 0000000             | 0000000             |                     | .0000000            | .0000000            | .0000000            | .0000000            | .0000000            | .00000000                 | ,0000000            |
| NUMBER                  | ~                      |                      | 1                      | Ч                    |                        | -                     | 1                       | г                    | ч                    | -1       | : <del>(</del> ~     | ( <del>-</del>        |                        | - <del>-</del>        |                       | -1 r                   |                       | <b>→</b> :            | 14                  | ~1                  | 2                   | r=1                 | 1                   | Ŋ                   | 2                   | Ч                   | ۍ<br>ا              | ۍ<br>۱              |          | <del>، «</del>      | - <del>.</del>      |                       |                      | . •••               | י עי<br>וויי        | <del>،</del> (      |                     |                     | 1                   | 4                   | ഹ                   | 1                   | m                         | ۍ<br>ا              |
| RMK                     | К                      |                      | Х                      |                      | м                      |                       |                         |                      |                      |          |                      | 4                     | : 2                    | 4                     | 2                     | 4                      |                       |                       |                     |                     | X                   | W                   | Σ                   | W                   | W                   | Σ                   | M                   | ω                   | Σ        | Ψ                   | Σ                   | W                     | Σ                    | X                   | Σ                   | 2                   | E 2                 | E :                 | ε                   | Ξ                   | Σ                   | Σ                   | W                         | £                   |
| MEDIUM                  | WATER                  | WATER                | WATER                  | WATER                | WATER                  | WATER                 | WATER                   | WATER                | WATER                | WATER    | WATER                | AATER                 | JD T F P               | JATER                 | 2777DD                | AALEN<br>AATEN         | VOINT                 | TALER                 | VATER               | VATER               | VATER               | VATER               | <b>VATER</b>        | ØATER               | IATER               | <b>IATER</b>        | IATER               | IATER               | JATER    | IATER               | IATER               | IATER                 | IATER                | IATER               | IATER               | 17.50               | 10100<br>10100      |                     | ALEK                | ATER                | ATER                | ATER                | ATER                      | ATER                |
|                         | TOTUG/L                | DRY WGT              | TOTUG/L                | DRY WGT              | 16/F                   | 06/ KG                | UG/KG                   | UG/KG                | UG/KG                | UG/KG    | UG/KG                | TOT IG/L              | 116/1.                 | 116/80                | 110/1                 |                        | 04/00                 | 54/50                 | CODE                | 0G/T                | NO/FT2              | NO/FT2              | NO/FT2              | NO/FT2              | NO/FT2 1            | NO/FT2 1            | NO/FT2 1            | NO/FT2 V            | NO/FT2 1 | NO/FT2 1            | NO/FT2 1            | NO/FT2 4              | NO/FT2 V             | NO/FT2 V            | NO/FT2 V            | 40/PT2 5            |                     |                     |                     | NU/FTZ V            | VO/FTZ V            | VO/FTZ W            | VO/FT2 V                  | 40/FT2 W            |
| METER                   |                        | SEDUG/KG             |                        | SEDUG/ KG            | WHL SMPL               |                       | U UM                    | MUD                  | MUD                  | MUD      | MUD                  |                       | WHL SMPI.              | BOT MAT               | WHI, CMDI.            |                        | d Dim                 |                       | MFFEAR<br>PHOROSOF  | PHOTOMET.           | F WORM              | R WORM              | LEECH               | SOW BUG             | SCUD                | CRAYFISH            | MAYFLY              | MAYFLY 1            | DAMSEL   | BUG 1               | BUG 1               | ALDER 1               | FISHFLY 1            | CADDIS 1            | CADDIS 1            | ADDIS N             | APPTLE A            |                     |                     |                     |                     | <br>                | <b>1</b> Хт. <del>4</del> | FLY I               |
| PARF                    | HEPTCHLR               | HEPTCHLR             | HPCHLREP               | NEUNIKEP             | MTHVVCID               | MU HAI CLR            | FCBS                    | MALATHN              | PARATHN              | DIAZINON | MPARATHN             | HCB                   | MIREX                  | MIREX                 | I.TNDANF              | TRITHION               | MUDTUTON              | NOTH INTER            | ABIAN<br>DIENOLO    | FRENULS             | FLANARI             | NEMATODA            | HIRUD               | ASELL               | GAMMAR              | ASTACIDA            | BAETIDAE            | HEPTAGEN            | COENAG   | GERRIDAE            | CORIXI              | SIALIDAE .            | CORYDAL              | HYDROPT             | HYDROPSY (          | PHILOPT (           | UALTPL.             | TTTTT               | Nacimus<br>Crwig    | ELMIDAE .           | rirur               | CERATURO            | TTOMIS                    | LENDIPED            |
|                         | 39410                  | 39413                | 39420                  | 02420                | 20401                  | 10500                 | 59019<br>5019           | 59531                | 39541                | 39571    | 39601                | 39700                 | 39755                  | 39758                 | 39782                 | 39787                  | 20707                 | 1001                  | 10002               | 70004               | 4 0000              | 46008               | 46014               | 46015               | 46018               | 46019               | 46028               | 46029               | 46037    | 46041 (             | 46048 (             | 46049                 | 46050 4              | 46051               | 46053 1             | 46055 1             | 460691              | 1 1 1 1 1 1         |                     |                     | 8/045               |                     | 50001                     | 18096               |

6 TOTAL STATIONS PROCESSED DELCORA CSO LTCP

PGM=INVENT GROSS

PAGE: 34

•

| BEG DATE END DATE | 0 81/11/23 87/10/20 | 0 87/10/20 87/10/20 | 0 82/08/02 87/10/20 | 0 87/10/20 87/10/20 | 0 81/11/23 87/10/20 | 0 80/03/12 87/11/17 | 0 80/05/22 80/11/26 | 0 80/05/22 80/11/26 | 4 80/05/22 80/11/26 | 0 80/03/12 87/11/17 | 0 84/05/03 85/11/06 | 0 80/03/12 87/11/17 | 0 88/05/17 88/05/17 | 2 92/03/09 92/11/17 | 0 81/12/16 96/09/16 | 2 80/01/17 97/09/17 | 2 80/01/17 97/09/17 | 0 80/05/22 80/05/22 | 6 85/03/26 98/09/17 | 0 93/03/23 96/11/13 | 0 93/03/23 93/03/23 | 0 93/04/19 93/10/25 | 0 93/03/23 93/10/25 | 0 93/03/23 93/03/23 | 0 93/04/19 93/10/25 | 0 93/03/23 93/10/25 | 8 80/04/22 80/04/22 | 0 80/05/22 80/05/22 | 7 85/02/14 93/08/10 | 8 94/08/30 94/08/30 | 1 88/03/01 98/09/17 | 8 82/05/05 87/11/17 | 0 82/11/08 82/11/08 | 8 82/05/05 87/11/17 | 8 82/07/07 82/07/07 | 0 87/04/18 97/06/09  |
|-------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------|
| MUMINIM MO        | 0                   | 0                   | 0                   | 0                   | 0                   | 547 4               | 320 25              | 220 22              | .52 .3              | 0                   | 0                   | 0                   | .05 .01             | 2                   | 5.0 1.              | . 0.0               | 0.0                 | 0.                  | 229 86060           | .00 1.0             | .30 .3              | .00 2.0             | . 00                | .30 .3              | .00 2.0             | .00 .3              | 1.8 1.              | 000 .000            | . 61                | 210 495             | 810 600             | 3.0                 | 1.0 1.              | 3.0                 | .18 .1              | 000 3.00             |
| IN MAXIM          | 0                   |                     | 0                   |                     | 0                   | 0                   | ю<br>Э              | 0                   | 00 4                | 0                   | 0                   | 0                   | 0                   | 0                   | 00                  | 00 2000             | 0 200               |                     | 186 00              | 00 2                |                     | 0 2                 | 0 2                 |                     | 0 2                 | 00 2                |                     | -                   | 00                  | 00 5:               | 0 550               | 00                  |                     | 00 1:               |                     | 1.1                  |
| STAN DE           | . 000000            |                     | . 000000            |                     | . 000000            | 81.2960             | 2170.80             | 12121.30            | 1 2.95570           | . 000000            | . 000000            | . 000000            | 035355              | . 000000            | .712280             | 177.820             | 170.570             |                     | 3 41040.0           | .229420             |                     | . 000000            | . 601040            |                     | .000000             | 0.601040            |                     |                     | 9.46030             | 178.170             | 56864.0             | 3.46160             |                     | 3.44430             |                     | .433610              |
| VARIANCE          | .0000000            |                     | .0000000            |                     | .0000000            | 6609.000            | 4712500             | 4500000             | 8.736200            | .0000000            | .0000000            | .0000000            | .0012500            | .0000000            | .5073500            | 31619.00            | 29095.00            |                     | 1684E+06            | .0526350            |                     | .0000000            | .3612500            |                     | .0000000            | .3612500            |                     |                     | 89.49700            | 31744.00            | 3233E+06            | 11.98200            |                     | 11.86300            |                     | .1880200             |
| MEAN              | .0000000            | 0000000             | .0000000            | .0000000            | .0000000            | 83.53500            | 1785.000            | 1720.000            | 2.430000            | - 0000000           | .0000000            | .0000000            | .0250000            | .2000000            | 1.233900            | 17.92300            | 16.58300            | .0000000            | 920840.0            | 1.947400            | .3000000            | 2.000000            | 1.787500            | .3000000            | 2.000000            | 1.787500            | 1.800000            | .0000000            | 11.39900            | 5084.000            | 32268.00            | 4.083300            | 1.000000            | 3.960000            | .1766000            | 3.240000             |
| NUMBER            | 4                   | 1                   | ~                   | г                   | 4                   | 35                  | 2                   | 2                   | 2                   | 27                  | 7                   | 34                  | 2                   | 6                   | 33                  | 378                 | 411                 |                     | 460                 | 19                  |                     | 7                   | œ                   | ۲H                  | 7                   | ω                   |                     | Ч                   | ო                   | 2                   | 176                 | 24                  | ~1                  | 25                  | ı                   | ŝ                    |
| RMK               | Ð                   | Σ                   | Ø                   | Σ                   | Σ                   | ŝ                   |                     |                     |                     |                     | U                   | TOT                 |                     | м                   |                     | М                   | TOT                 |                     |                     | n                   | ŋ                   | U                   | TOT                 | сı                  | n                   | TOT                 |                     |                     | ŝ                   |                     |                     |                     | Ж                   | TOT                 |                     | М                    |
| MEDIUM            | WATER               |                     |                     | WATER               | WATER               | WATER               |                     |                     | WATER               | WATER               | WATER               | WATER               |                     |                     | WATER               |                     |                     | WATER               | WATER               | WATER               | WATER               | WATER               | WATER               |                     |                     | WATER               | WATER                |
|                   | NO/FT2              | NO/FT2              | NO/FT2              | NO/FT2              | NO/FT2              | MG/L                | C MG/L              | MG/L                | ACRE-FT             | HOT-MG/L            |                     |                     | MG/L                | UG/L                | UG/L                |                     |                     | DRY WGT             | UPDATED             | UG/L                | UG/L                |                     |                     | HOH UG/L            |                     |                     | MG/L                | WGTUG/KG            | FEC STRP            | UG/L                | UG/L                | NTU                 |                     |                     | MOSM/KG             | PC/L                 |
| METER             | SNAIL               | SNAIL               | SNALL               | CLAM                | AQ E WRM            | CA MG               | DISS-180            | SUM                 | TONS PER            | AS CACO3            |                     |                     | ELEMENTL            | HG, DISS            | HG, TOTAL           |                     |                     | SEDMG/KG            | SAMPLE              | WH WTR              | HOH VOL             |                     |                     | CYCLOPNT            |                     |                     | 20DAYCAR            | SED DRY             | FEC COL             | TOTAL MG            | TOTAL NA            | LAB                 |                     |                     | PRES TOT            | WAT WHL              |
| PARA              | DISYHY              | PLANORB             | ANCYL               | SPHAERI             | OLIGOCHT            | CAL HARD            | RESIDUE             | DISS SOL            | DISS SOL            | T ACDITY            |                     |                     | BROMINE             | MERCURY             | MERCURY             |                     |                     | MERCURY             | WQF                 | ETH BENZ            | BENZENE             |                     |                     | DIMETHYL            |                     |                     | BOD 20C             | PERTHANE            | RATIO               | MG                  | SODIUM              | TURBIDTY            |                     |                     | OSMOTIC             | BETAGROS<br>LL FOLKS |
| ł                 | 46095               | 4 60 97             | 46098               | 46104               | 46106               | 46570               | 70300               | 70301               | 70303               | 70508               |                     |                     | 71871               | 71890               | 71900               |                     |                     | 71921               | 74041               | 78113               | 78124               |                     |                     | 78135               |                     |                     | 80087               | 81886               | 82028               | 82033               | 82035               | 82079               |                     |                     | 82550               | 85817<br>THAT'S A    |

2

## APPENDIX F

# NOAA ENVIRONMENTAL SENSITIVITY INDEX MAPS



DEPARTMENT OF STREETS & PUBLIC IMPROVEMENTS City Engineer, Charles J. Catania, Sr., P.E. City Hall, 36 East Fifth Street Chester, Pennsylvania 19013-4430 Telephone (610) 447-7742 Facsimile (610) 447-7721

February 16, 1999

Michael B. Freedman, Chief Engineer Delcora 100 E. 5th Street Chester, PA 19013

RE: Inlet Reconstruction/Street Cleaning

Dear Mr. Freedman:

As requested, we are submitting the list of storm sewer inlets which have been reconstructed over the last three year period. A mylar of the inlet system is also enclosed.

The street cleaning program for the City utilizes two mechanical street sweepers which are scheduled to clean two areas each as shown on the map enclosed. This program, weather permitting, is designed to clean all the City streets each week.

Very truly yours,

Charles J. Catania, Sr., P.E. City Engineer

CJC,Sr./flw

Encl. (3) CC: File





Inlet Reconstruction 1996 - 1997 - 1998

February 15, 1999 File #80300-236

10<sup>th</sup> & Hyatt Streets, SE, NE 21st & Madison Streets, NE 10<sup>th</sup> & Elsinore Streets, NW 7<sup>th</sup> & Hinkson Streets, SW 8<sup>th</sup> & Potter Streets, NW Rose & Upland Streets, NW 3<sup>rd</sup> & Concord Streets, NW 3<sup>rd</sup> & Franklin Streets, NW 6<sup>th</sup> & Butler Streets, NE 7<sup>th</sup> & Butler Streets, NE 3rd & Ulrich Streets, NW, NE, SE 3rd & Clayton Streets, NW 3100 Block W. 3rd Street 5<sup>th</sup> & Franklin Streets, NW 11th & Upland Streets, NE, NW 7<sup>th</sup> & Lincoln Streets, NE, SE Front & Central Avenue 3<sup>rd</sup> & Crosby Streets, NW, NE 7<sup>th</sup> & Concord Avenue, NW 6<sup>th</sup> & Kerlin Streets, NE, NW, SW 3rd & Parker Streets, NE, SW, NW 2<sup>nd</sup> & Hayes Streets, NW 3rd & Townsend Streets, NE 900 Block W. 3rd Street, NW 3<sup>rd</sup> & Pennell Streets, NE, SW 5<sup>th</sup> & Franklin Streets, NW 3rd & Central Avenue, NW 700 Block W. 3rd Street, S, N 2800 Block W. 9th Street, N 3<sup>rd</sup> & Edwards Streets, SW Front & Highland Avenue, NW Nolan & Perkins Streets, NE 16th & Washington Streets, SW Unit Block W. 7th Street, N 3rd & Fulton Streets, NE 7th & Kerlin Streets, NW 8th & Sproul Street, NE Green & Caldwell Streets, SW, NW 8th & Caldwell Streets, NW

#### DEPARTMENT OF STREETS & PUBLIC IMPROVEMENTS City Engineer, Charles J. Catania, Sr., P.E. City Hall, 36 East Fifth Street Chester, Pennsylvania 19013-4430 Telephone (610) 447-7742

Facsimile (610) 447-7721

6<sup>th</sup> & Parker NW 8<sup>th</sup> & Butler Streets, NW 8<sup>th</sup> & Lloyd Streets, NW 9th & Lloyd Streets, SE 6th & Wilson Streets, NE 6<sup>th</sup> & Flower Streets, NW Gray & Edgmont Avenue, SW 2<sup>nd</sup> & Bunting Streets, SE 2<sup>nd</sup> & Ward Streets, NW 2<sup>nd</sup> & Palmer Streets, NW 4<sup>th</sup> & Hayes Streets, NE 3100 Block West 3rd Street 4<sup>th</sup> & Central Avenue, SW 400 Block of Yarnall Street 9<sup>th</sup> & Penn Streets, NW 9<sup>th</sup> & Fulton Streets, NW Crozer & W. Elkinton Streets, SW Crozer & W. Parkway NE, NW, SW 7th & Jeffrey Streets, NE, NW 7th & Yarnall Streets, NE 11<sup>th</sup> & Kerlin Streets, SW 10th & Pennell Streets, NE 8<sup>th</sup> & Barclay, NE 7<sup>th</sup> & Barclay, NE, NW, SW 6<sup>th</sup> & Jeffrey Streets, NE, NW 6<sup>th</sup> & Harwick Strets, NE 2<sup>nd</sup> & Reaney Streets, SE 2<sup>nd</sup> & Edgmont Streets, SE 2<sup>nd</sup> & Trainer Streets, 14<sup>th</sup> & Melrose Streets, NW 3rd & Hayes Streets, SW 4<sup>th</sup> & Booth Streets, SW 2700 Block W. 3rd Street, N. S 11th & Upland Streets, NW, NE 9th & McIlvain Streets, SE, SW 2<sup>nd</sup> & Booth Streets, SW 10<sup>th</sup> & Upland Streets, NW 3<sup>rd</sup> & Madison Streets, NW 3<sup>rd</sup> & Yarnall Streets, NW

### **APPENDIX G**

# CORRESPONDENCE WITH THE CITY OF CHESTER REGARDING STREET SWEEPING AND INLET REPLACEMENT


# **SENSITIVE BIOLOGICAL RESOURCES**

PARK/REFUGE BOUNDARY

STATE BOUNDARY

**10 - SALT AND BRACKISH WATER MARSHES** 

**9 - SHELTERED TIDAL FLATS** 







FISH





TURTLES













| *        |
|----------|
| S        |
|          |
| 5        |
| Щ        |
| 5        |
| μ̈́      |
| E.       |
| <b>U</b> |

## Common Name

Species Name

## MARINE MAMMALS

DOLPHINS Atlantic white-sided dolphin Bottlenose dolphin Common dolphin Harbor porpoise Risso's dolphin Rough-toothed dolphin Stenellid dolphin

SEALS

Gray seal Harbor seal Harp seal Hooded seal

WHALES Bryde's whale Dwarf sperm whale Fin whale (DE, NJ) Humpback whale (DE, NJ) Long-finned pilot whale Minke whale Northern right whale (DE, NJ) Pygmy sperm whale Sei whale (DE, NJ) Shortfin pilot whale Sperm whale (NJ)

Lagenorhynchus acutus Tursiops truncatus Delphinus delphis Phocoena phocoena Grampus griseus Steno bredanensis Stenella sp.

Halichoerus grypus Phoca vitulina Pagophilus groenlandicus Cystophora cristata

Balaenoptera edeni Kogia simus Balaenoptera physalus Megaptera novaeangliae Globicephala melaena Balaenoptera acutorostrata Eubalaena glacialis Kogia breviceps Balaenoptera borealis Globicephala macrorhynchus Physeter catodon

## TERRESTRIAL MAMMALS

SMALL MAMMALS Muskrat Northern raccoon River otter

Mustela vison Ondatra zibethicus Procyon lotor Lutra canadensis

### BIRDS

DIVING BIRDS <u>Brown pelican</u> (DE) Double-crested cormorant Great cormorant Pied-billed grebe

Common tern Forster's tern Great black-backed gull Gull-billed tern Herring gull Laughing gull Least tern (NJ) Ring-billed gull <u>Roseate tern</u> (NJ) GULLS AND TERNS Black skimmer (NJ) Black tern

.

<u>Osprey</u> (NJ) <u>Peregrine falcon</u> (DE, NJ) SHOREBIRDS American oystercatcher Greater yellowlegs Least sandpiper <u>Bald eagle</u> (DE, NJ) Northern harrier RAPTORS

Pelecanus occiúentalis Phalacrocorax auritus Phalacrocorax carbo Podilymbus podiceps

Larus marinus Sterna nilotica Larus argentatus Larus atricilla Sterna antillarum Larus delawarensis Sterna dougallii Rynchops niger Chlidonias niger Sterna hirundo Sterna fosteri

Haliaeetus leucocephalus Circus cyaneus Pandion haliaetus Falco peregrinus

Haematopus palliatus Tringa melanaleuca Calidris minutilla Trinoa flanines

## SPECIES LIST\*

| Common Name                                                                  | Species Name                          |
|------------------------------------------------------------------------------|---------------------------------------|
| BIRDS (continued)                                                            |                                       |
| WATERFOWL                                                                    |                                       |
| American coot                                                                | Fulica americana                      |
| American wigeon                                                              | Anas americana                        |
| Black duck                                                                   | Anas rubripes                         |
| Blue-winged teal                                                             | Anas discors                          |
| Brant                                                                        | Branta bernicla                       |
| Bufflehead                                                                   | Bucephala albeola                     |
| Canada goose                                                                 | Branta canadensis                     |
| Canvasback                                                                   | Aythya valisineria                    |
| Common eider                                                                 | Somateria mollissima                  |
| Common goldeneye                                                             | Bucephala clangula                    |
| Common merganser                                                             | Mergus merganser                      |
| Common moorhen                                                               | Gallinula chloropus                   |
| Gadwall                                                                      | Anas strepera                         |
| Goldeneye                                                                    | Bucephala spp.                        |
| Greater scaup                                                                | Aythya marila                         |
| Green-winged teal                                                            | Anas crecca                           |
| Hooded merganser                                                             | Lophodytes cucullatus                 |
| Lesser scaup                                                                 | Aythya affinis                        |
| Mallard                                                                      | Anas platyrhynchos                    |
| Merganser                                                                    | Mergus spp.                           |
| Muteswan                                                                     | Lygnus olor                           |
| Northern pintail                                                             | Anas acuta                            |
| Notthern shoveler                                                            | Anas ciypeata                         |
| Didsquaw                                                                     | Clangula hyemalis                     |
| Keaneaa<br>m. , , , ,                                                        | Aythya americana                      |
| King-necked duck                                                             | Aythya collaris                       |
| Kuday auck                                                                   | Oxyura jamaicensis                    |
| scaup                                                                        | Aythya spp.                           |
| Scoter                                                                       | Melanitta spp.                        |
| Snow goose                                                                   | Chen caerulescens                     |
| Surf scoter                                                                  | Melanitta perspicillata               |
| Whistling swan (tundra swan)                                                 | Olor columbianus                      |
| White-winged scoter                                                          | Melanitta deglandi                    |
| Wood duck                                                                    | Aix sponsa                            |
|                                                                              |                                       |
| REPTILES                                                                     | -                                     |
| TURTLES                                                                      |                                       |
| Diamondback terrapin                                                         | Malaclemys terrapin                   |
| <u>Green sea turtle</u> (DÊ)                                                 | Chelonia mydas                        |
| <u>Kemp's ridiey sea turtle</u> (UE, NJ)<br>I occerhead sea turtla (DR' NII) | Leptaochelys kempi<br>Caretta caretta |
| LUBBEALIEAN SEA LULL (MUL 14)                                                | Cureiu cureiu                         |

### **FISH**

Alewife American shad Atlantic sturgeon Blueback herring Strortnose sturgeon (DE, NJ, PA) Striped bass SPECIAL CONCENTRATIONS Atlantic croaker Atlantic herring Atlantic menhaden Bay anchovy Black drum Black seabass Bluefish Channel catfish Largemouth bass Northern kingfish Porgy (scup) Seatrout (weakfish) ANADROMOUS

Alosa pseudoharengus Alosa sapidissima Acipenser oxyrhynchus Alosa aestivalis Acipenser brevirostrum Morone saxatilis

Micropogonias undulatus Clupea harengus harengus Brevoortia tyrannus Anchoa mitchilli Pogonias cromis Centropristis striata Pomatomus saltatrix Ictalurus punctatus Micropterus salmoides Menticirrhus saxatilis Stenotomus chrysops Cynoscion regalis

| renthesis.<br>DE/NJ/PA - Page 5                   | lining; the state for which<br>endangered is indicated in pa |                                                            |                                                                             |
|---------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------------------|
| Callinectes sapidus<br>Limulus polyphemus         | CKABS<br>Blue crab<br>Horseshoe crab                         | Egretta tricolor<br>Rallus limicola<br>Nyctanassa violacea | Tricolored heron<br>Virginia rail<br><u>Yellow-crowned night heron</u> (NJ) |
| Loligo sp.                                        | Squid                                                        | Egretta thula<br>Porzana carolina                          | Snowy egret                                                                 |
| Mercenaria mercenaria                             | Northern qualog (hard clam)                                  | Rallus elegans<br>Ixobrychus exilis                        | King rail<br>Least bittern                                                  |
|                                                   | BIVALVES                                                     | Casmerodius albus<br>Butorides striatus                    | Great egret<br>Green-backed heron                                           |
|                                                   | SHELLFISH                                                    | Bubulcus vors<br>Plegadis falcinellus<br>Arden herodias    | Lattle egret<br>Glossy ibis<br>Great blue heron                             |
| Pseudopleuronectes americanus<br>Perca flavescens | Winter flounder<br>Yellow perch                              | Nycticorax nycticorax                                      | VADING BIRDS<br>slack-crowned night heron                                   |
| Tautoga onitis<br>Morone americana                | Tautog<br>White perch                                        | l'ringa solitaria<br>Actitis macularia                     | solitary sandpiper<br>spotted sandpiper                                     |
| Urophycis chuss<br>Paralichthys dentatus          | Squirrel (red) hake (ling)<br>Summer flounder                | Charadrius melodus<br>Calidris pusilla                     | 2 <u>iping plover</u> (DE, NJ)<br>Semipalmated sandpiper                    |
| Letostomus xanthurus                              | Spot                                                         | Tringa Juanpes                                             | Lesser yellowlegs                                                           |

.

Curreared mast mutual (N)
Curreared mast (N)
Featherfold (N)
Featherfold (N)
Featherfold (N)
Featherfold (N)
Featherfold (N)
Featherfold (N)
Formania (N)
Featherfold (N)
Formation (N)
Formation (N)
Featherfold (N)
Formation (N)
Featherfold (N)
Formation (N)
F

.

.

DE/NJ/PA - Page 6

SENSITIVITY INDEX MAP ENVIRONMENTAL



### and PENNSYLVANIA ESIMAP \* NEW JERSEY, DELAWARE,

.

20

## BIOLOGICAL RESOURCES: BIRD:

| r⊄ i         | AR# Species                                | ST S/F T/E Concen                              | UFMANCSALLMAND                          |                   |               | ,         |
|--------------|--------------------------------------------|------------------------------------------------|-----------------------------------------|-------------------|---------------|-----------|
| 'n           | 7 Mallard                                  |                                                |                                         | burker bur        | Hatching      | Fledging  |
| 41           | 5 Double-crested cormorant                 | 600<br>HTGH                                    | X X X X X X - X X - X X X X X X X X X X | ł                 | I             | 1         |
|              | Great cormorant                            | LOW                                            | - XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX  | 1                 | I             | I         |
| 22           | 2 Pied-billed grebe                        | HJLH                                           | X X X X X X                             | 1                 | Ιí            | 1 1       |
| 37           | 7 Black duck                               | 200-2000                                       | X X X X X X X X X X X X APR-A           | APR APR-APR       | MAY-JUN       | 1         |
|              | Canada goose<br>Budar auch                 | 200-300                                        | X X X X X X X X X X X X X X X X X X X   | NUG MAR-JUL       | APR-AUG       | APR-AUG   |
| 42           | 8 Black duck                               | 0-200                                          |                                         | l í               | ł I           | 1 1       |
|              | Bufflehead                                 | 100                                            | X X X X X X X X X X X X X X X X X X X   | J                 | I             | I         |
|              | Canada goose                               | 0006                                           | - * * * * * * * * * * * * * * * * * * * | ł                 | I             | I         |
|              | canvaspack<br>Gadwall                      | 100                                            |                                         | 11                | 1 1           | I         |
|              | Green-winged teal                          | 50                                             | ~ X X X X X X                           | I                 | 1             | 1 1       |
|              | Mallard                                    | 2800                                           | X X X X X X X X X X X X X X X X X X X   | I                 | ş             | ı         |
|              | Merganser                                  | 200                                            |                                         | ۱<br>,            | ſ             | ı         |
|              | Mute swan<br>Worthern ninteil              | 120                                            | X X X X X X X X X X X X MAR-OX          | -<br>Ct Apr-Mav   |               | - 440     |
|              | Ring-necked durk                           | 3000                                           | X X X X X X X X X X                     |                   |               | 1.00-4.22 |
|              | Ruddy duck                                 | 100                                            | ~ X X X X X X X X X X                   | ı                 | t             | i         |
|              | Scaup                                      | 750                                            |                                         | ı                 | ĩ             | ı         |
|              | snow goose<br>Whistling swan (tundra swan) | 15000                                          |                                         | 11                | 1 3           | 1 }       |
| -<br>F       |                                            |                                                | - XX                                    | ŧ                 | I             | I         |
| H H H        | an:<br># Species                           | ST S/F T/E Concen                              |                                         |                   |               |           |
| 88           | strined base                               |                                                | UFMANJASOND Spawni                      | ing Outmig.       | Larvae/J      | Δī        |
| 45           | Alewife                                    | HIGH                                           | X X X X X X X APR-MA                    | л л.              | MAY-OCT       | 1         |
|              | American shad                              | WED                                            | ХХХХХХХ АРR-JU<br>ХХХХХХХ АРR-JU        |                   | APR-NOV       |           |
|              | Atlantic menhaden<br>Bluebark berring      | HIGH                                           |                                         | SEP-NOV           | TUN-NOV       |           |
|              | Spot                                       | HIGH                                           | X X X APR-JU                            | I<br>N            |               |           |
|              | Striped bass                               | HOTH                                           | X X X X X X X X X X X X X X X X X X X   | 1                 | MAR-JUN       |           |
| U V          | White perch                                | MED                                            | - XXXXXXX                               | OCT-OCT           | 1             |           |
| 40           | Atlantic croaker<br>Bav anchouv            | HIGH                                           |                                         | ıı<br>Y           | 1             |           |
|              | Bluefish                                   | HIGH                                           | X X X X X X X X X X X X X X X X X X X   | 1                 | MAY-JAN       |           |
|              | Seatrout (weakfish)                        | TOM                                            | ···· X X X X X X X X X X X X X X X X X  | 1                 | JUL-SEP       |           |
|              | Summer flounder<br>Vellar souch            | LOW                                            | XXXXXXXX APR-AUC<br>XXXXXXXX            | 1<br>1            | APR-SEP       |           |
| 47           | Atlantic sturgeon                          | LOW                                            | X X X X X X X X X X X Y FEB-MAI         | i 1<br>22         | FER-MAR       |           |
| 381          | American shad                              | LOW                                            | X X X X X X X X X X X X X X X X X X X   | ا<br>د            | APR-AUG       |           |
|              | Atlantic croaker                           | MED                                            | XXXXXXXXX APR-MAX<br>X XXXXX V V V      | ו<br>א            | MAY-NOV       |           |
|              | Atlantic menhaden<br>Atlantic sturreen     | MED                                            |                                         | 1 8               | MAY-JAN       |           |
|              | Bay anchow                                 | TOW                                            | - X X X X X X X                         |                   |               |           |
|              | Black drum                                 | HIGH >                                         | X X X X X X X X X X X MAY-SEP           | 1                 | MAY-JAN       |           |
|              | Black seabass<br>Plucfict                  | MED                                            |                                         | I                 | JUN-NUC       |           |
|              | Seatrout (weakfish)                        | MED                                            | - X X X X X X                           | 1                 | APK-OCT       |           |
|              | Spot                                       | HIGH<br>MED                                    | X X X X X X X X X X X X X X X X X X X   | ı                 | -             |           |
|              | Striped bass<br>Summer flounder            | MED X                                          | - ************************************* | <b>г</b> а<br>1 а | MAY-NOV       |           |
| 382          | Atlantic sturgeon                          | MED                                            | - X X X X X X X X                       |                   | -<br>APR-NOV  |           |
|              | Channel catfish                            | MED X                                          | -                                       | SEP-OCT           | JUN-OCT       |           |
| 38 <b>4</b>  | wnite perch<br>Strined hass                | MED                                            |                                         |                   | TIM MOUT      |           |
| 4<br>)<br>}  |                                            | MED                                            | X X X APR-JUN                           |                   |               |           |
| HAB.<br>RAR# | LTAT:<br>Species                           |                                                |                                         |                   |               |           |
|              |                                            | ST S/F T/E Concen J                            | F M A M J J A S O N D                   |                   |               |           |
| 9/T          | Bur-marigold                               | NJ S E MED X                                   | X X X X X X X X X X X X X               |                   |               |           |
| SHE          | :HSTSH:                                    |                                                |                                         |                   |               |           |
| RAR#         | Species                                    | ST S/F T/E Concen J                            | <b>F МАМЈЈА S О N D Spawning</b>        | r Larvae/Ju       | v Mating      |           |
| 261          | Blue crab                                  |                                                |                                         |                   |               |           |
|              | ***************************************    | 밝고 북 밖 해 다 바 바 바 바 바 바 바 바 바 바 바 바 바 바 바 바 바 바 |                                         | SEP-OCT           | ************* |           |
| н тм 2       |                                            |                                                |                                         |                   |               |           |
| 313011       | M USE RESOURCES:                           |                                                |                                         |                   |               |           |
| WATE<br>Pape | R_INTAKE:                                  |                                                |                                         |                   |               |           |

WATER INTAKE: RAR# Name H035 WATER INTAKE H035 WATER INTAKE H036 WATER INTAKE H037 INDUSTRIAL WATER SUPPLY H038 INDUSTRIAL WATER SUPPLY

Owner PWS (STANDBY INTAKE) B. P. OIL INC. CITISTEEL USA, INC.

Contact

215-499-7000 302-792-5400 RAY AJALLI, MGR. ENERGY AND ENVIRONMENT JOSEPH HARDMAN; MGR. REGIONAL AFFAIRS

Phone

GENERAL CHEMICAL CORPORATION

302-792-8741





•

## BIOLOGICAL RESOURCES:

## BIRD

| RAR#         | Species                                        | ST S/F T/E Concen      | JFMAMJJASO                                  | N D Nesting             | Laying 1                   | latching F                            | ledging'    |
|--------------|------------------------------------------------|------------------------|---------------------------------------------|-------------------------|----------------------------|---------------------------------------|-------------|
| 40           | Double-crested cormorant<br>Great cormorant    | HDIH<br>HOI            | · · · · · · · · · · · · · · · · · · ·       |                         |                            |                                       | <br>        |
|              | Gulls                                          | HIGH                   | × × × × × × × × × × × × × × × × × × ×       | * *                     | i I                        | 3 1                                   | 1 1         |
| 42           | Peregrine falcon<br>Black duck                 | NJ S/F E/E LOW<br>HIGH | X X X X X X X X X X X X X X X X X X X       | X X MAR-AUG<br>X X -    | MAR-APR                    | APR-MAY C                             | TUN-AUG     |
|              | Canada goose<br>Common merganser               | HIGH                   | X X X X X X X X X X X X X X X X X X X       | <br>× ×<br>× ×          |                            | 1 1                                   |             |
|              | Greater yellowlegs                             | MOT                    | × × × × × × × × × × × × × × × × × × ×       | ;<br>; ><br>; >         | 1                          | f                                     | ł           |
|              | Least sandpiper                                | TOW                    |                                             | ; ;<br><<br><           | 11                         | I I                                   |             |
|              | Lesser yellowlegs<br>Mallard                   | HIGH                   | X X X X X X X X X X X X X X X X X X X       | × ×                     | 11                         | 1 1                                   | 4 I         |
|              | Northern pintail<br>Northern shoveler          | HIGH<br>MED            | X X X X X X X X X X X X X X X X X X X       | X X                     | 11                         | 13                                    | 1           |
|              | Semipalmated sandpiper<br>Solitary sandpiper   | LOW                    | × × × × × ×                                 | 1                       | 3-1                        | 1 1                                   |             |
|              | Spotted sandpiper<br>Wood durk                 | MOT                    | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~       |                         | 1 1                        | 3                                     | 1           |
| 44           | Black duck<br>Black form                       | HOIH                   |                                             | <br>× ×                 | 1                          | . 1                                   | 1           |
|              | Black-crowned night heron                      | HOTH                   | X X X X X X X X                             | ł I                     | ł I                        | 1 1                                   |             |
|              | Canada goose<br>Common merganser               | HIGH                   | x x x x x x x x x x x x x x x x x x x       | × × ×                   | I i                        | 1 \$                                  | 1 1         |
|              | Common moorhen<br>Forster's tern               | HIGH<br>MED            | * * * * * * *                               | 1 1                     | 1 1                        | 1 1                                   | 1           |
|              | Great blue heron<br>Great earet                | HIGH                   | X X X X X X X X X X X X X X X X X X X       |                         | 1 1                        | 1 4                                   | 1 1         |
|              | Greater wellowlegs<br>Greater Perhod horor     | HOIH                   |                                             |                         | I                          | 1                                     |             |
|              | Green-Dacked Heron<br>Hooded merganser         | MED                    | X X X X X X X X X X X X X X X X X X X       |                         | 1 }                        | ŧ I                                   | ÷ 1         |
|              | King rail<br>Least bittern                     | LOW                    | * * * * * * *                               | X<br>X MAY-AUG          | - MAY-JUN                  | ייייייייייייייייייייייייייייייייייייי | UL-AUG      |
|              | Least sandpiper<br>Lesser vellowleds           | HIGH                   | × × × × × × ×                               | . ,                     |                            | 1 1                                   | i 1         |
|              | Little blue heron<br>Mallard                   | LOW                    |                                             | • •<br>×<br>×           | ŧ                          | 1                                     | 1 1         |
|              | Northern pintail<br>Northern shousisr          | HOIN                   |                                             | <                       | 1 3 1                      | 1 1                                   |             |
|              | Not the fit showere.<br>Semipalmated sandpiper | HIGH                   |                                             | - ;<br>< <              | ; }                        | ; 1                                   | 1 1         |
|              | snowy egret<br>Solitary sandpiper              | LOW                    | × × × × × × ×                               | FI                      | 1                          | 1 1                                   | 1 2         |
|              | Sora rail<br>Spotted sandpiper                 | MED<br>HIGH            | * * * * * * *                               | 1 1                     | 11                         | II                                    | 11          |
|              | Virginia rail<br>Wood duck                     | MED<br>HTGH            | * * * * * * * *                             | ۰ ۱<br>×                | 1 1                        | f I                                   |             |
| 45           | Double-crested cormorant<br>Great cormorant    | HIGH                   |                                             | <br>× ×<br>× ×          | 3                          |                                       | I           |
| ĩ            |                                                | HOIH                   |                                             | • •<br>•                | 1 1                        |                                       | 1           |
| T o          | Double-crested cormorant<br>Great cormorant    | LOW                    | X X X X X X X X X X X X X X X X X X X       | × ×                     | 1 1                        | I ł                                   | 1 1         |
| 428          | Black duck<br>Bufflehead                       | 6850<br>100            | X X X X X X X X X X X X X X X X X X X       | × × ×                   |                            | 1 1                                   | 1 1         |
|              | Canada goose<br>Canvasback                     | 9000<br>100            | X X X X X X X X X X X X X X X X X X X       | · ·<br>××               | 11                         |                                       | 1 1         |
|              | Gadwall<br>Green winned teal                   | 50                     | × × × × × ×                                 | · · ·                   | 1                          | ŧ.                                    | ı           |
|              |                                                | 3300                   |                                             | · ·                     | 1                          | 1                                     | 1 1         |
|              | Mute swan                                      | 120                    | x x x x x x x x x x x x x x x x x x x       | X X MAR-OCT             | -<br>APR-MAY N             | LAY-JUN S                             | -<br>EP-OCT |
|              | Northern pintail<br>Ring-becked duck           | 1000                   |                                             | <br>                    | 11                         | 14                                    | 1 1         |
|              | kuday duck<br>Scaup                            | 750                    | × × × × × × × × × × × × × × × × × × ×       | +                       | 1                          | 1 1                                   | 11          |
|              | snow goose<br>Whistling swan (tundra swan)     | 400                    | x x x x x x x x x x x x x x x x x x x       | <br>× ×:<br>× ×         | 1,                         | <b>;</b> 1                            | Ιſ          |
| 429          | Black duck<br>Bufflehead                       | 1500                   | x x x x x x x x x x x x x x x x x x x       | <br>× × ×               |                            | 11                                    | E i         |
|              | Canada goose<br>Canvasback                     | 7600<br>200            | X X X X X X X X X X X X X X X X X X X       | × × ×                   | 1 +                        | 1 1                                   | ; 1         |
|              | Gadwall<br>Goldeneve                           | 01                     | X X X X X X X X X X X X X X X X X X X       | <br>× ×                 | 1                          | i I                                   | 1.3         |
|              | Green-winged teal<br>Mallard                   | 1700                   |                                             | * * *                   | 1 1                        |                                       |             |
|              | Merganser<br>Northern bintail                  | 300                    |                                             | <br>                    | 1 1                        | 1 1                                   | 1 1         |
|              | Oldsguaw<br>Ring-necked duck                   | 200                    | X X X X X X X X X X X X X X X X X X X       | <br>××                  | 11                         | i 1                                   | ŝ į         |
|              | Ruddy duck<br>Scaup                            | 7300<br>6700           | X X X X X X X X X X X X X X X X X X X       | <br>× × ×               | ١ţ                         |                                       | 1;          |
|              | Whistling swan (tundra swan)                   | 200                    | X X X X                                     | -<br>X X                | ı                          | ı                                     | 1           |
| FISF<br>RAR# | Species                                        | ST S/F T/E Concen      | . 0 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | N D Spawning            | outmig.                    | Larvae/Ju                             | >           |
| 166          | striped bass                                   | MED                    | X X                                         |                         | 1<br>1<br>1<br>1<br>1<br>1 |                                       | ı           |
| 40           | Alewife<br>American shad                       | HIGH<br>MED            | X X X X X X X X X X X X X X X X X X X       | X APR-JUN<br>X *        | -<br>SEP-NOV               | APR-NOV<br>JUN-NOV                    |             |
|              | Atlantic menhaden<br>Blueback herring          | HDIH                   | X X X X X X X X X                           | -<br>APR-JUN            | 11                         | MAR-OCT                               |             |
|              | Spot<br>Striped bass                           | HDIH<br>HDIH           | X X X X X X X X X                           | × ×                     | <br>ОСТ-ОСТ                | MAR-JUN<br>-                          |             |
| 41           | White perch<br>Striped bass                    | HELH                   | X X X X X X X                               | X MAY-MAY<br>-          | . 1                        |                                       |             |
| 45           | Alewife<br>American shad                       | HIGH<br>MED            |                                             | X APR-JUN<br>X -        | -<br>SEP-NOV               | APR-NOV<br>JUN-NOV                    |             |
|              | Atlantic mennagen<br>Blueback herring          | нотн<br>Нотн           | · · · · · · · · · · · · · · · · · · ·       | APR-JUN                 | 1                          | MAR-OCY                               |             |
|              | spor<br>Striped bass<br>White perch            | MED<br>MED             | × × × × × × × × × × × × × × × × × × ×       | х л -<br>-<br>- мау-мау | -<br>0CT-0CT<br>-          |                                       |             |
| 46           | Atlantic croaker<br>Bay anchovy                | HIGH                   | X X X X X X X X X X X X X X X X X X X       | X X                     | 1 1                        | SEP-DEC<br>MAY-JAN                    |             |

| P           |                     |           | 110111   |                  | <           | 4 | \$ | \$     | ۲<br>۲    | <      |         |   | 221-220 | ,   |
|-------------|---------------------|-----------|----------|------------------|-------------|---|----|--------|-----------|--------|---------|---|---------|-----|
|             | Bay anchovy         |           | HIGH     | X X X X          | XXX         | × | ×  | ×      | ×         | ×      | MAY-SEP | 1 | MAY-JAI | 2   |
|             | Bluefish            |           | MED      | ×                | XX          | × | ×  | ×      | <u>بر</u> |        | ı       | I | JUL-SE  | പ   |
|             | Seatrout (weakfish) |           | LOW      | ×                | X<br>X<br>V | × | ×  | ×      | ×         |        | APR-AUG | 1 | APR-SE  | ۵,  |
|             | Summer flounder     |           | LOW      | ×                | X<br>X<br>V | × | ×  | ×      | ×         | ~      | ı       | I | APR-NOV | ь   |
|             | Yellow perch        |           | LOW      | X X X            | XXX         | × | ×  | ×      | ×         | X      | FEB-MAR | 1 | FEB-MAI | œ.  |
| 47          | Atlantic sturgeon   |           | LOW      | x x x x          | XXX         | × | ×  | ×      | ×         | ×      | APR-JUL | I | APR-AU( | ( ) |
| 48          | Blueback herring    |           | HIGH     | ×                | X<br>X<br>X |   |    |        |           |        | APR-JUN |   | ı       |     |
|             | Striped bass        |           | HIGH     | ×                | ×           |   |    |        |           |        | APR-MAY | ţ | ı       |     |
| 49          | Striped bass        |           | HICH     | ×                | ×           |   |    |        |           |        | APR-MAY | I | ı       |     |
| 50          | Striped bass        |           | гом      | ~                | x           |   |    |        |           |        | APR-MAY | 1 | ı       |     |
| HAB<br>RAR# | ITAT:<br>Species    | ST S/F T/ | E Concen | A M F            | р<br>М      | b | 4  | s<br>S | 2         | 0<br>L |         |   |         |     |
|             |                     |           |          | 1<br>1<br>1<br>1 | 1           | ł | i  | ï      |           | !      |         |   |         |     |

.

| RAR# | Species           | in l | S/1    | 9<br>1      | Concen | Б | 24<br>6. | A | Σ | Ь | Б | ∞.<br>•⊄ | 0 | z | A |  |
|------|-------------------|------|--------|-------------|--------|---|----------|---|---|---|---|----------|---|---|---|--|
|      |                   | 1    | 1<br>1 | E<br>E<br>E |        | 1 | 1        | 1 | 1 | ı | i | i        |   | I | ı |  |
| 202  | Robin-run-away    | Ŋ    | v<br>v | ធ           |        | × | ŝ        | × | × | × | × | ×        | ž | × | × |  |
| 235  | Twisted spikerush | ΩŊ   | S      | ы           |        | × | ŝ        | × | × | × | × | ×        | ž | × | × |  |
|      |                   |      |        |             |        |   |          |   |   |   |   |          |   |   |   |  |

| •• |
|----|
| Ħ  |
| SU |
| Ĥ  |
| Ŀι |
| н  |
| R  |
| н  |
| Ë  |
| U) |

| RAR# | Species                                 | ST S/E | 3) H ( | Concen | ېز<br>اد<br>ان | N N                        | .,<br>Б | ۲<br>۲ | 0<br>0   | а<br>22 | Spawning | Larvae/Juv | Mating |
|------|-----------------------------------------|--------|--------|--------|----------------|----------------------------|---------|--------|----------|---------|----------|------------|--------|
| 1    |                                         |        |        |        | 1<br>1<br>1    | ;                          | į       | !      | 1        | 1<br>1  |          |            |        |
| 261  | Blue crab                               |        |        |        |                | ~                          | x       | ×      | x<br>x   | ×       | JUL-AUG  | SEP-OCT    | ı      |
|      | *************************************** |        | 1111   |        |                | H<br>H<br>H<br>H<br>H<br>H | N H H   |        | 11<br>11 | H H H   |          |            | ****** |

## HUMAN USE RESOURCES:

| WATE     | SR_INTAKE:   |                               |         |              |
|----------|--------------|-------------------------------|---------|--------------|
| RAR#     | Name         | Ówner                         | Contact | Phone        |
| <br>H041 |              | DEGUSSA CORP NORTH AM.        |         |              |
|          |              | SILICA                        |         |              |
| H042     | WATER INTAKE | SCOTT PAPER COMPANY           |         | 215-522-5000 |
| H043     | WATER INTAKE | SCOTT PAPER COMPANY           |         | 215-522-5000 |
| H044     | WATER INTAKE | PHILADELPHIA ELECTRIC COMPANY |         | 215-595-8100 |
| H045     | WATER INTAKE | PHILADELPHIA ELECTRIC COMPANY |         | 215-595-8100 |

### APPENDIX H

### DETAILED COST ESTIMATE DATA

| FILENAME: DCORACSO.WK1                                                                                                       | SUBCONTRACTS                                      | AL TOTAL SUBCONTRACTS    |                                                               | 2,500 1,277,874 4,286,504.86                             | 0.00                                                                                  | 2,500 1,277,874 4,286,504.86 | 342,900.00<br>47,200.00<br>128,600.00<br>86,400.00<br>64,300.00<br>64,300.00                                                                                                                                                                                                         | 5,075,800.00 | 0.00<br>0.00<br>5.075.800.00                                                                                       |          | 239,900.00                                                                                                            | 5,850,600.00 | 1,170,100.00                                      | 1004L COST 7,020,700.00         |              |             |
|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|--------------------------|---------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------|---------------------------------|--------------|-------------|
|                                                                                                                              | EQUIPMENT                                         | UNIT TOTA<br>COST EQUIPA |                                                               | 1,053                                                    |                                                                                       | 1,052                        |                                                                                                                                                                                                                                                                                      |              |                                                                                                                    |          |                                                                                                                       |              |                                                   | EET NO. 4 FOR INDIV<br>EAKDOWN  |              |             |
|                                                                                                                              | 0 R                                               | TOTAL<br>LABOR           |                                                               | 1,097,430                                                | 0                                                                                     | 1,097,430                    |                                                                                                                                                                                                                                                                                      |              |                                                                                                                    |          |                                                                                                                       |              |                                                   | NOTE:<br>SEE SH<br>COMPONENT BR |              |             |
|                                                                                                                              | LAB                                               |                          | 1                                                             | -25                                                      |                                                                                       | 23                           |                                                                                                                                                                                                                                                                                      |              |                                                                                                                    |          |                                                                                                                       |              |                                                   |                                 |              |             |
| ¢ 10 -15X                                                                                                                    | RIAL                                              | TOTAL<br>MATERIA         |                                                               | 858,700.                                                 |                                                                                       | 858,700.                     | .,                                                                                                                                                                                                                                                                                   |              |                                                                                                                    | <u></u>  |                                                                                                                       |              |                                                   |                                 |              |             |
| URACY: +30                                                                                                                   | MATE                                              | UNIT COST                |                                                               |                                                          |                                                                                       |                              |                                                                                                                                                                                                                                                                                      |              |                                                                                                                    |          |                                                                                                                       |              |                                                   |                                 | <del>.</del> |             |
| ESTIMATE ACC                                                                                                                 |                                                   |                          |                                                               |                                                          |                                                                                       |                              |                                                                                                                                                                                                                                                                                      |              | 1.0000<br>0.0000                                                                                                   | ****     |                                                                                                                       |              | 20.00%                                            |                                 |              |             |
| T:DELCORA CSO ALTERNATIVES<br>:05623-009-001-0003-00<br>N:CHESTER, DELAWARE COUNTY, PENNSYLVANIA<br>E:CONCEPTUAL/PRELIMINARY | R:NGA<br>E: 07 - 07 - 07 - 07 - 07 - 07 - 07 - 07 | DESCRIPTION              | COMBINED SEMER OVERFLOW (CSO) ALTERNATIVES<br>PROJECT SUMMARY | FIRST COST SUBTOTAL<br>(FROM SHEET SUMMARY, SHEET NO. 3) | LABOR PRODUCTIVITY ADJUSTMENT FACTOR:<br>LEVEL "D" PERSONNEL PROTECTION, DIFFERENTIAL | SUBTOTAL                     | OTHER PROJECT DIRECT AND INDIRECT COSTS:<br>PROJECT CONSTRUCTION FACILITIES -<br>MOBILIZATION AND DEMOBILIZATION -<br>CONSTRUCTION EQUIPMENT -<br>SMALL TOOLS AND CONSUMABLE ITEMS -<br>PERSONNEL PROTECTION EQUIPMENT (PPE) -<br>PERMITS AND FEES -<br>STATE SALES AND USE TAX 0.6% | SUBTOTAL     | ESCALATION: (INFLATION/DEFLATION FACTOR)<br>ENR CONSTRUCTION COST INDEX (CCI) =<br>ENR BUILDING COST INDEX (BCI) = | SUBTOTAL | PROJECT/CONSTRUCTION CONTRACT COSTS:<br>GENERAL AND ADMINISTRATIVE OVERHEAD COSTS -<br>CONTRACTOR MARKUP AND PROFIT - | SUBTOTAL     | CONTINGENCY @ >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> | TOTAL (ROUNDED)                 |              | SHEET NO. 1 |
| PROJECT<br>W.O. NO.<br>LOCATION<br>ESTIMATE                                                                                  | ESTIMATOR<br>DATE:                                | ITEM                     |                                                               |                                                          | ••••<br>•••                                                                           |                              |                                                                                                                                                                                                                                                                                      |              | 2                                                                                                                  |          | >                                                                                                                     |              | ۲۱<br>۲                                           | V11                             |              |             |

R O Y F. W E S T O N, I N C. WEST CHESTER, PENNSYLVANIA

| PROJEC   | T:DELCORA CSO ALTERNATIVES                                                                                                                                                                                                                                                                                                                                                                                                    |                                                              | ×    | 0Υ F.<br>VESTCHES<br>MATER1                                | W E S T O N,<br>STER, PENNSYLV<br>▲ I        | INC.<br>ANIA<br>B 8 0 | <u>α</u>                               | <br>               | FILENAME: DCO<br>SURCONTRACTS | RACSO.WK1      |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------|------------------------------------------------------------|----------------------------------------------|-----------------------|----------------------------------------|--------------------|-------------------------------|----------------|
|          | COST INDEX AND LABOR DATA                                                                                                                                                                                                                                                                                                                                                                                                     |                                                              |      | COST                                                       | TOTAL                                        | COST                  | TOTAL<br>LABOR                         | TOTAL<br>EQUIPMENT | TOTAL<br>SUBCONTRACTS         | ΙΟΙΑΙ          |
| <b>-</b> | ENGINEERING NEWS RECORD COST INDEX DATA:<br>DATE OF REFERENCED INDEX - July 1997<br>CONSTRUCTION COST INDEX (CCI) =<br>BUILDING COST INDEX (BCI) =<br>DATE OF CURRENT INDEX -<br>CONSTRUCTION COST INDEX (BCI) =<br>BUILDING COST INDEX (CCI) =<br>BUILDING COST INDEX (CCI) =<br>ESCALATION FACTORS -<br>BUILDING COST INDEX (CCI) =<br>BUILDING COST INDEX (CCI) =                                                          | 5862.91<br>3391.86<br>5862.91<br>3391.86<br>1.0000<br>1.0000 | ·    |                                                            |                                              |                       |                                        |                    |                               |                |
| N.       | LABOR:<br>CRAFT CLASSIFICATION: GENERAL CONSTRUCTION<br>LOCAL NO. (N/A) [DAVIS-BACON WAGES]<br>CONTRACT EXPIRATION DATE: 5/31/98<br>BASE WAGE<br>ESTIMATED WAGE INCREASE: (% OF BASE WAGE)<br>WAGE ADJUSTMENT, BASE (IF APPLICABLE)<br>HEALTH AND WELFARE, PENSION<br>OFFRE FRINGES<br>SUBTOTAL<br>PAYROLL TAXES AND INSURANCE:<br>FICA, FUTA, SUTA, AND WORKMANS COMPENSATION,<br>COMPUTE @ PERCENTAGE OF ADJUSTED BASE WAGE | 23.5%                                                        |      |                                                            |                                              |                       | 17.01<br>0.85<br>0.00<br>9.69<br>27.55 |                    |                               |                |
|          | TOTAL JOURNEYMAN HOURLY BASE WAGE<br>TOTAL APPROXIMATE PROJECT MANHOURS                                                                                                                                                                                                                                                                                                                                                       | 34567.2                                                      | HR S |                                                            |                                              |                       | 31.75                                  |                    |                               |                |
| 2A.      | LABOR MODIFICATION FACTOR:<br>LEVEL OF PERSONNEL PROTECTION REQUIRED FOR<br>THE EXECUTION OF THIS PROJECT:<br>LEVEL D<br>LEVEL D<br>MODIFICATION FACTOR<br>LEVEL D, MODIFICATION FACTOR<br>LEVEL D, MODIFICATION FACTOR<br>LEVEL C, MODIFICATION FACTOR<br>LEVEL C, MODIFICATION FACTOR<br>LEVEL B, MODIFICATION FACTOR                                                                                                       | 1.0<br>1.100<br>1.310<br>1.330                               |      | ROTECTIVE<br>LOTHING &<br>QUIPMENT<br>6.02<br>9.80<br>8.70 | PER HOUR<br>PER HOUR<br>PER HOUR<br>PER HOUR |                       |                                        |                    |                               |                |
| х.       | MARKUP AND CONTINGENCY FACTORS:<br>GENERAL AND ADMINISTRATIVE OVERHEAD COSTS -<br>CONTRACTOR MARKUP AND PROFIT -<br>PROJECT CONTINGENCY<br>TOTAL SHEFT NO. 7                                                                                                                                                                                                                                                                  |                                                              | <br> |                                                            | 0.020<br>0.050<br>0.075                      |                       | 0.050<br>0.400<br>0.075                | 0.005              | 0.050<br>0.025<br>0.025       | 0.125<br>0.200 |
|          | IUIAL SAEET NU. 2                                                                                                                                                                                                                                                                                                                                                                                                             |                                                              |      |                                                            |                                              |                       | -                                      |                    |                               |                |

. *š* 

| PROJECT:          | : DELEORA CSO ALTERNATIVES              |      | Ľ | UT F.                 | ¥ES↓UN,<br>STER, PENNSYLV  | ANIA L.                                  |                     |                               | FILENAME: DCC                         | RACSO. WK1     |
|-------------------|-----------------------------------------|------|---|-----------------------|----------------------------|------------------------------------------|---------------------|-------------------------------|---------------------------------------|----------------|
| и. о. ио.<br>ITEM | :05623-009-001-0003-00<br>DESCRIPTION   | UNIT |   | HATER<br>UNIT<br>COST | I A L<br>TOTAL<br>MATERIAL | L A B O<br>UNIT<br>COST                  | R<br>TOTAL<br>LABOR | M E N T<br>TOTAL<br>EQUIPMENT | SUBCONTRACTS<br>TOTAL<br>SUBCONTRACTS | T O T A L      |
|                   | DIVISION SUMMARY                        |      |   |                       |                            |                                          |                     |                               |                                       |                |
|                   | DIVISION 2 - SITE WORK                  |      |   |                       | 538,536.96                 |                                          | 779,751.43          | <br>970,000.00                | 1,240,874                             | 3,529,162.69   |
|                   | DIVISION 3 - CONCRETE                   |      |   |                       | 248,981.30                 |                                          | 239,004.86          | <br>0.00                      | 20,000.00                             | 507,986.16     |
|                   | DIVISION 4 - MASONRY                    |      |   |                       |                            |                                          |                     |                               |                                       |                |
|                   | DIVISION 5 - METALS                     |      |   |                       | 29,382.21                  |                                          | 36,512.83           | 0.00                          | 0.00                                  | 65,895.04      |
|                   | DIVISION 6 - CARPENTRY                  |      |   |                       |                            |                                          |                     |                               |                                       |                |
|                   | DIVISION 7 - MOISTURE PROTECTION        |      |   |                       |                            |                                          |                     |                               |                                       |                |
|                   | DIVISION 8 - DOORS, WINDOWS AND GLAZING |      |   |                       |                            |                                          |                     |                               |                                       |                |
|                   | DIVISION 9 - FINISHES                   |      |   |                       |                            |                                          |                     |                               |                                       |                |
|                   | DIVISION 10 - SPECIALTIES               |      |   |                       |                            |                                          |                     |                               |                                       |                |
|                   | DIVISION 11 - EQUIPMENT                 |      |   |                       | 6,800,00                   |                                          | 10, 159.27          | <br>55,000.00                 | 0.00                                  | 71,959.27      |
|                   | DIVISION 12 - FURNISHINGS               |      |   |                       |                            |                                          |                     |                               |                                       |                |
|                   | DIVISION 13 - SPECIAL CONSTRUCTION      |      |   |                       |                            |                                          |                     | <br>                          |                                       |                |
|                   | DIVISION 14 - CONVEYING SYSTEMS         |      |   |                       |                            |                                          |                     |                               |                                       |                |
|                   | DIVISION 15 - MECHANICAL                |      |   |                       | 13,500.00                  |                                          | 9, 143.34           | <br>0.00                      | 10,000.00                             | 32,643.34      |
|                   | DIVISION 16 - ELECTRJCAL                |      |   |                       | 21,500.00                  |                                          | 22,858.36           | <br>27,500.00                 | 7,000.00                              | 78,858.36      |
|                   |                                         |      |   |                       |                            | n an |                     |                               |                                       |                |
|                   | TOTAL SHEET NO. 3                       |      |   |                       | 858,700                    |                                          | 1,097,430           | 1,052,500                     | 1,277,874                             | 4, 286, 504.86 |

|           |                                                      |                  | ¢κ    | UEST CHES    | WESTON,<br>TER, PENNSYLV | INC.<br>Ania |                |           |                | FILENAME: DCO | RACSO. UK 1  |
|-----------|------------------------------------------------------|------------------|-------|--------------|--------------------------|--------------|----------------|-----------|----------------|---------------|--------------|
| PROJECI   | 1:0ELCORA CSO ALTERNATIVES<br>.05623-000-001-0003-00 |                  | æ.    | IATER        | A L                      | L A B O      | 8              | H L L D J | E N T<br>Total | SUBCONTRACTS  |              |
| TEN       | DESCRIPTION                                          | UNIT<br>QUANTITY | UNIT  | UNIT<br>COST | TOTAL<br>MATERIAL        | COST         | TOTAL<br>LABOR | COST      | EQUIPMENT      | SUBCONTRACTS  | -<br>-<br>-  |
| 1 - C - H |                                                      |                  |       |              |                          |              |                |           |                |               |              |
|           | ALTERNATIVE SUMMARY                                  |                  |       |              |                          |              | ·              |           |                |               |              |
| Α.        | RIDLEY CREEK OUTFALL INTERCEPTOR                     |                  |       |              |                          |              |                |           |                |               | 1,247,800.00 |
| ů.        | 6A INTERCONNECT                                      |                  |       |              |                          |              |                |           |                |               | 19,300.00    |
| :<br>:    | 4A AND 4B INTERCONNECT                               |                  |       |              |                          |              |                |           |                |               | 20,600.00    |
| Ρ.        | 23A INTERCONNECT                                     |                  |       |              |                          |              |                |           |                |               | 110,300.00   |
| ய்        | STORM DRAIN INLEIS (PER EACH) [1,140 REQUIRED]       | ×                |       |              |                          |              |                |           |                |               | 10,100.00    |
| <u></u>   | REGULATORS                                           |                  |       |              |                          |              |                |           |                |               | 1,651,000-00 |
| .9        | FLOATABLES CONTAINMENT                               |                  |       |              | • •                      |              |                |           |                |               | 1,740,300.00 |
| 'n        | UASTENATER TREATMENT PLANT (WWTP) MODIFICATIONS      |                  |       |              |                          |              |                |           |                |               |              |
| 1.        | BYPASS FROM EXISTING PRIMARY SETTLING TANK(S)        |                  |       |              |                          |              |                |           |                |               | 427,400.00   |
| 11.       | GRIT TANK EXPANSION                                  |                  |       |              |                          |              |                |           |                |               | 874,500.00   |
| 111.      | CHLORINE CONTACT TANK EXPANSION                      |                  |       |              |                          |              |                |           |                |               | 919,500.00   |
|           |                                                      |                  |       |              |                          |              |                |           |                |               |              |
|           |                                                      |                  |       |              |                          |              |                |           |                |               |              |
|           |                                                      |                  |       |              |                          |              |                |           |                |               |              |
|           |                                                      |                  | ····· |              |                          |              |                |           |                |               |              |
|           | TOTAL SHEET NO. 4                                    |                  |       |              | 00.0                     |              | 0.00           |           | 0.00           | 0.00          | 7,020,800.00 |
|           |                                                      |                  |       | ľ            |                          |              |                |           |                |               |              |

| DCORACSO. HK1            | CTS<br>TS<br>TS<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T<br>T | 222 606,843,93<br>254,989,52<br>2606,843,93<br>2606,843,93<br>260,843,93<br>11,2,5912,59<br>11,2,592,98<br>14,015,01<br>224,027,29<br>14,015,01<br>41,015,01<br>41,015,01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4,286,504.86      |
|--------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| FILENAME:                | SUBCONTRAC<br>TOTAL<br>SUBCONTRAC                                                          | 27, 222<br>27, 222<br>27, 230<br>2, 730<br>2, 730<br>2, 730<br>2, 730<br>2, 730<br>2, 722<br>2, 722<br>2, 730<br>2, 730<br>2, 730<br>2, 730<br>2, 730<br>2, 730<br>2, 722<br>2, 722<br>2, 722<br>2, 730<br>2, | 1,277,87          |
|                          | M E N T<br>TOTAL<br>EQUIPMENT                                                              | 2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.00<br>2,000.                                                                                                      | 1,052,500         |
|                          | E Q U I P<br>UNIT<br>COST                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
|                          | D R<br>TOTAL<br>LABOR                                                                      | 145,653.41<br>24,77.86<br>5,777,195<br>5,777,195<br>107,538,51<br>107,538,51<br>13,715.01<br>13,715.01<br>13,715.01<br>13,715.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,097,430         |
| INC.<br>Vania            |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| WESTON,<br>STER, PENNSYL | I A L<br>TOTAL<br>MATERIAL                                                                 | 5,086.11<br>343,173.85<br>5,235.53<br>5,235.53<br>5,235.53<br>9,829.35<br>1,704.88<br>1,704.88<br>1,704.88<br>26,500.00<br>170,679.83<br>15,300.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 858, 700          |
| <pre></pre>              | MATER<br>UNIT<br>COST                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
| -                        |                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
|                          | UNIT<br>QUANTITY                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
|                          | T:106LCORA CSU ALIEKMALIVES<br>0.:05623-009-001-0003-00<br>DESCRIPTION                     | SHEET SUMMARY<br>TOTAL RROM SHEET NO. 6<br>TOTAL RROM SHEET NO. 7<br>TOTAL RROM SHEET NO. 7<br>TOTAL RROM SHEET NO. 7<br>TOTAL RROM SHEET NO. 10<br>TOTAL RROM SHEET NO. 12<br>TOTAL RROM SHEET NO. 12<br>TOTAL RROM SHEET NO. 13<br>TOTAL RROM SHEET NO. 20<br>TOTAL RROM SHEET NO. 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TOTAL SHEET NO. 5 |
|                          | PROJEC<br>H. O. NO<br>ITEM                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |

| PROJEC   | 1:DELCORA CSO ALTERNATIVES<br>.:05623-009-001-0003-00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                 | <del>с</del>                              | 0YF.<br>VESTCHES<br>MATERI | WESTON,<br>TER, PENNSYLV<br>AL | INC.<br>Ania<br>LABO | ~              | е о<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1 | L<br>Z<br>W        | FILENAME: DCC<br>SUBCONTRACTS | RACSO.UK1        |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------|----------------------------|--------------------------------|----------------------|----------------|----------------------------------------------------------------------------------------------------|--------------------|-------------------------------|------------------|
| 11EM     | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                 | UNIT                                      | UNIT                       | TOTAL<br>MATERIAL              | UNIT<br>COST         | TOTAL<br>LABOR | UNIT                                                                                               | TOTAL<br>EQUIPMENT | TOTAL<br>SUBCONTRACTS         | 1 0 1 <b>A L</b> |
| Α.       | RIDLEY CREEK OUTFALL INTERCEPTOR<br>DIVISION 2 - SITE WORK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                 |                                           |                            |                                |                      |                |                                                                                                    |                    |                               |                  |
| <u>.</u> | SITE SURVEY AND LAYOUT:<br>SURVEY AND ROUTE LAYOUT OFFSETS AND<br>VERTICAL/ELEVATION CONTROLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.0                             | E S                                       | 500.00                     | 500.00                         | 2285.84              | 2,285.84       | •••••••••                                                                                          | 0.00               | 00.0                          | 2,785.84         |
| с.<br>С  | EROSION AND SEDIMENTATION CONTROLS:<br>PROVIDE AND INSTALL SILT FENCING, STAKED<br>HATBALES, DIVERSION SWALES, BERMS, TURBIDITY<br>CURTAINS, AND OTHER MEASURES AS NECESSARY FOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.0                             | rs                                        | 3375.00                    | 3,375.00                       | 25 <b>39</b> .82     | 2,539.82       |                                                                                                    | 0.00               | 0.00                          | 5,914.82         |
|          | E&S CONTROLS.<br>MAINTENANCE DURING CONSTRUCTION -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1.0                             | LS                                        | 100.00                     | 100.00                         | 761.95               | 761.95         |                                                                                                    | 00"6               | 00.00                         | 861.95           |
| ň        | SAW CUTTING OF EXISTING PAVEMENT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1000.0                          | LF                                        | 0.00                       | 0.00                           | 0.00                 | 00°0           |                                                                                                    | 0.00               | 4,250.00                      | 4,250.00         |
| 4.       | BREAKOUT, REMOVE, LOAD, AND DISPOSE OF PAVEMENT<br>TO AN APPROVED DISPOSAL AREA:<br>6" PAVEMENT THICKNESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 888.9                           | SY                                        | 1.25                       | 1,111.11                       | 4                    | 9,877.07       |                                                                                                    | 0.00               | 00.00                         | 10,988.18        |
| ŗ.       | TRENCH EXCAVATION: MACHINE AND HAND<br>42" RCP<br>EDOM: OTH STREET NEU MULT: SDIDE LENGTH=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 722.2                           | ± در                                      | 00                         | 0.00                           | 12.06                | 8,712.98       |                                                                                                    | 00.00              | 00.00                         | 8, 712.98        |
|          | TCCMT2 VIR SINCEL, NEW TO TY FILE LENGTH-<br>TO: NEW MH-2; DEPTH, AVERAGE=<br>42" RCP<br>FROM-NE-2: DEPTH-2: DEPTH-1: DEPTH-1: DEPTH-2: DE | 737.3<br>250.0                  | 555                                       | 0.00                       | 0.00                           | 12.06                | 8,894.51       |                                                                                                    | 00.00              | 00-0                          | 8,894.51         |
|          | TOL NEW MH-3; >DEPTH, AVERAGE=<br>66" RCP<br>FROM: NEU MH-3: >PIPE IENGTH=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12. <b>3</b><br>787.0<br>200.0  | L'S L                                     | 0.00                       | 0.00                           | 12.06                | 9,494.92       |                                                                                                    | 0.00               | 0.00                          | 9,494.92         |
|          | 10. NEW MH-4; >DEPIH, AVERAGE=<br>66. RCP<br>56. RFU MH-4; >PIPE LENGTH=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.5<br>999.5<br>250.0          | 555                                       | 0.00                       | 0.00                           | 12.06                | 12,058.55      |                                                                                                    | 00.0               | 0.00                          | 12,058.55        |
|          | TO: NEW MH-5; >DEPTH, AVERAGE=<br>66" RCP (TRAIN BRIDGE)<br>FROM: NEW MH-5; >PIPE LENGTH=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.7<br>1019.2<br>250.0         | ۲.<br>۲.<br>۲.                            | 00.00                      | 0.00                           | 24.13                | 24,591.84      |                                                                                                    | 0.00               | 0.00                          | 24,591.84        |
|          | TO: NEW MH-6; >DEPTH, AVERAGE=<br>66" RCP (TRAIN BRIDGE)<br>FROM: NEW MH-6: >PIPE LENGTH=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 13.0<br>1246.7<br>300.0         | r c f                                     | 00.00                      | 0.00                           | 24.13                | 30,079.90      |                                                                                                    | 00.00              | 0.00                          | 30,079.90        |
|          | TO: NEW MH-7; >DEPTH, AVERAGE=<br>66" RCP<br>FROM: NEW MH-7; >PIPE LENGTH=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 13.2<br>1487.5<br>350.0         | LT C                                      | 0.00                       | 0.00                           | 12.06                | 17,945.40      |                                                                                                    | 0.00               | 0.00                          | 17,945.40        |
|          | TO: NEW MH-8; >DEPTH, AVERAGE=<br>66" RCP >PIPE LENGTH=<br>FROM: NEW MH-8; >DEPTH, AVERAGE=<br>TO: NEW MH-9; >DEPTH, AVERAGE=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13.5<br>1526.1<br>350.0<br>13.9 | ۲, L, | 0.00                       | 0.00                           | 12.06                | 18,410.65      |                                                                                                    | 0.00               | 0.00                          | 18,410.65        |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                                           |                            |                                |                      |                |                                                                                                    |                    |                               |                  |
|          | TOTAL SHEET NO. 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                 |                                           |                            | 5,086.11                       |                      | 145,653.41     |                                                                                                    | 0.00               | 4,250.00                      | 154,989.52       |

ï

٠.

|                    |                                                                                                                                      |            | œ         | UCY F.                    | U E S T O N,<br>STER, PENNSYLV | INC.              |                     |        |                    | FILENAME: DCC         | RACSO . HK 1         |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|---------------------------|--------------------------------|-------------------|---------------------|--------|--------------------|-----------------------|----------------------|
| PRUJEC<br>H. O. NO | CT SUELCUKA USU ALTEKNALIVES<br>1.:05623-009-001-0003-00                                                                             |            | -         | MATER                     |                                | L A 8 0           | X                   | EQUIPI |                    | SUBCONTRACTS          |                      |
| ITEM               | DESCRIPTION                                                                                                                          |            | UNIT      | UNIT<br>COST              | TOTAL<br>MATERIAL              | UNIT<br>COST      | TOTAL<br>LABOR      | COST   | TOTAL<br>EQUIPMENT | TOTAL<br>SUBCONTRACTS | T 0 1 A L            |
| в.                 | SUBAREA 6A INTERCONNECT<br>DIVISION 2 - SITE WORK                                                                                    |            |           |                           |                                |                   |                     |        |                    |                       |                      |
| <del>.</del>       | SAW CUTTING OF EXISTING PAVEMENT:                                                                                                    | 48.0       | Ť.        | 0.00                      | 0.00                           | 0.00              | 0.00                |        | 00.00              | 204.00                | 204.00               |
| У.                 | BREAKOUT, REMOVE, LOAD, AND DISPOSE OF PAVEMENT<br>TO AN APPROVED DISPOSAL AREA:<br>6" PAVEMENT THICKNESS                            | 16.0       | SY        | 1.25                      | 20.00                          |                   | 177.79              |        | 0.00               | 0.00                  | 197.79               |
| ų.                 | EXCAVATION: MACHINE AND HAND<br>172" MANHOLE                                                                                         | 85.3       | ۲         | 0.00                      | 0.00                           | 12.06             | 1,029.47            |        | 0.00               | 0.00                  | 1,029.47             |
| <i>6</i> .         | BEDDING: SELECT GRANULAR MATERIAL 6" THICK<br>AND FINE GRADING                                                                       | 2.7        | ۲         | 19.35                     | 51.60                          | 6.35              | 16.93               |        | 0.00               | 0.00                  | 68.53                |
| ۲.                 | BACKFILL WITH EXCAVATED MATERIAL,<br>COMPACTED TO 95% MAXIMUM DENSITY                                                                | 65.4       | 5         | 0.00                      | 0.00                           | 5.40              | 352.85              |        | 0.00               | 0.00                  | 352.85               |
| 8.                 | LOAD AND HAUL EXCESS SPOIL:<br>TO APPROVED BORROW                                                                                    | 20.0       | 2         | 1.50                      | 29.93                          | 9.84              | 196.39              |        | 00                 | 498.87                | 725.20               |
| ŏ                  | RESTORATION:<br>PAVEMENT RESTORATION TO MATCH EXISTING                                                                               | 16.0       | sγ        | 1.50                      | 24.00                          | 6-84              | 157.47              |        | 00.0               | 400.00                | 581.47               |
| 10.                | MANHOLES: PRECAST CONCRETE, 72" ID COMPLETE WITH<br>TRANSITION, FRAME AND COVER<br>72"ID X 8.0 VLF<br>ADDITIONAL FOR DEPTHS >8.0 VLF | 1.0<br>6.0 | EA<br>VLF | 2349.00<br>153.00         | 2, <b>3</b> 49.00<br>918.00    | 1124.79<br>142.86 | 1, 124.79<br>857.19 |        | 0.00               | 0.00                  | 3,473.79<br>1,775.19 |
| ÷.                 | PIPE CONNECTIONS TO NEW MANHOLE:<br>54"<br>36"                                                                                       | 2.0        | EA<br>EA  | 648.00<br>4 <b>3</b> 2.00 | 1,296.00                       | 172.36<br>140.61  | 344.72<br>140.61    |        | 00.0               | 0.00                  | 1,640.72             |
| 12°.               | PLUG EXISTING PIPE:<br>54"                                                                                                           | 1.0        | Ч         | 810.00                    | 810.00                         | 380.97            | 380.97              |        | 00.0               | 00.00                 | 1, 190.97            |
|                    |                                                                                                                                      |            |           |                           |                                |                   |                     |        |                    |                       |                      |
|                    |                                                                                                                                      |            | ······    |                           |                                |                   |                     |        |                    |                       |                      |
|                    |                                                                                                                                      |            |           |                           |                                |                   |                     |        |                    |                       |                      |
|                    | TOTAL SHEET NO. 8                                                                                                                    |            |           |                           | 5, 930.53                      |                   | 4, 779.19           |        | 0.00               | 1,102.87              | 11,812.59            |

. .

ESTON.

INC.

| PROJEC           | CT-DELCORA CSO ALTERNATIVES                                                                                                          |                  | œ            | KOYF.<br>WESTCHES         | W E S T O N,<br>STER, PENNSYLV | INC.<br>/ANIA                                  |                          |                           |                               | FILENAME: DCC                         | DRACSO_WK1           |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------|---------------------------|--------------------------------|------------------------------------------------|--------------------------|---------------------------|-------------------------------|---------------------------------------|----------------------|
| H. O. NC<br>ITEM | 0.:05623-009-001-0003-00<br>DESCRIPTION                                                                                              | UNIT<br>QUANTITY | UNIT         | M A T E R<br>UNIT<br>COST | I A L<br>TOTAL<br>MATERIAL     | L A B O                                        | R<br>TOTAL<br>LABOR      | E Q U I P<br>UNIT<br>COST | M E N T<br>TOTAL<br>EQUIPMENT | SUBCONTRACTS<br>TOTAL<br>SUBCONTRACTS | TOTAL                |
| ರ                | SUBAREA 4A AND 48 INTERCONNECT<br>DIVISION 2 - SITE WORK                                                                             |                  |              |                           |                                |                                                |                          |                           |                               |                                       |                      |
| -                | SAW CUTTING OF EXISTING PAVEMENT:                                                                                                    | 48.0             | 5            | 0.00                      | 0.00                           | 0.00                                           | 0.00                     |                           | 0.00                          | 204-00                                | 204.00               |
| S.               | BREAKOUT, REMOVE, LOAD, AND DISPOSE OF PAVEMENT<br>TO AN APPROVED DISPOSAL AREA:<br>6" PAVEMENT THICKNESS                            | 16.0             | ۶۲           | 1.25                      | 20.00                          |                                                | 177.79                   |                           | 0.00                          | 0.00                                  | 197.79               |
| 3.               | EXCAVATION: MACHINE AND HAND<br>172" MANHOLE                                                                                         | 96.0             | ζ            | 0.00                      | 0.00                           | 12.06                                          | 1, 158. 16               |                           | 0.00                          | 0.00                                  | 1, 158.16            |
| ų.               | BEDDING: SELECT GRANULAR MATERIAL 6" THICK<br>AND FINE GRADING                                                                       | 2.7              | ς            | 19.35                     | 51.60                          | 6.35                                           | 16.93                    |                           | 0.0                           | 0.00                                  | 68.53                |
| 7.               | BACKFILL WITH EXCAVATED MATERIAL,<br>COMPACTED TO 95% MAXIMUM DENSITY                                                                | 76.0             | ζ            | 0.00                      | 0.00                           | 5.40                                           | 410.42                   |                           | 0.00                          | 0.00                                  | 410.42               |
| 8.               | LOAD AND HAUL EXCESS SPOIL:<br>10 APPROVED BORROW                                                                                    | 20.0             | ς            | 1.50                      | 29.93                          | 9.84                                           | 196.39                   |                           | 0.00                          | 498.87                                | 725.20               |
| ¢.               | RESTORATION:<br>PAVEMENT RESTORATION TO MATCH EXISTING                                                                               | 16.0             | ۶۲           | 1.50                      | 24.00                          | 9.84                                           | 157.47                   |                           | 0.00                          | 400.00                                | 581.47               |
| 10.              | MANHOLES: PRECAST CONCRETE, 72" ID COMPLETE WITH<br>TRANSITION, FRAME AND COVER<br>72"ID X 8.0 VLF<br>ADDITIONAL FOR DEPTHS >8.0 VLF | 1.0<br>8.0       | vl F<br>Vl F | 2349.00<br>153.00         | 2,349.00<br>1,224.00           | 1124.79<br>142.86                              | 1, 124.79<br>1, 142.92   |                           | 0.00                          | 0.00<br>0.00                          | 3,473.79<br>2,366.92 |
| 1.               | PIPE CONNECTIONS TO NEW MANHOLE:<br>54"<br>36"                                                                                       | 2.0              | E A<br>E A   | 648.00<br>432.00          | 1,296.00                       | 172.36                                         | 344.72<br>140. <b>61</b> |                           | 0.00                          | 0.00                                  | 1,640.72<br>572.61   |
| 72.              | PLUG EXISTING PIPE:<br>54#                                                                                                           | 1.0              | ĒÀ           | 810.00                    | 810.00                         | 380.97                                         | 380.97                   |                           | 0.00                          | 0.00                                  | 1,190.97             |
|                  |                                                                                                                                      |                  |              |                           |                                |                                                |                          |                           |                               |                                       |                      |
|                  |                                                                                                                                      |                  |              |                           |                                |                                                | <u> </u>                 |                           |                               |                                       |                      |
|                  |                                                                                                                                      |                  |              |                           |                                | <u>, - 1,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,</u> |                          |                           |                               |                                       |                      |
|                  | TOTAL SHEET NO. 9                                                                                                                    |                  |              |                           | 6,236.53                       |                                                | 5,251.17                 |                           | 0.00                          | 1,102.87                              | 12,590.57            |

NESTON, . ....

|        |                                                                                                                                                                                  |                         | 8        | UEST CHES | WESTON,<br>TER, PENNSYLV | INC.<br>ANIA |                |         |                    | FILENAME: DCC         | IRACSO. HK 1 |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|-----------|--------------------------|--------------|----------------|---------|--------------------|-----------------------|--------------|
| PROJEC | 1:DELCORA CSO ALTERNATIVES                                                                                                                                                       |                         | -        | MATERI    | A L                      | L A 8 0      | ~              | EQUIPI  | 4 E N T            | SUBCONTRACTS          |              |
|        | DESCRIPTION                                                                                                                                                                      | UNIT                    | UNIT     | UNIT      | TOTAL<br>MATERIAL        | UNIT<br>COST | TOTAL<br>LABOR | COST    | TOTAL<br>EQUIPMENT | TOTAL<br>SUBCONTRACTS | 101AL        |
| D.     | SUBAREA 23A INTERCONNECT<br>DIVISION 2 - SITE WORK                                                                                                                               |                         |          |           |                          |              |                |         |                    |                       |              |
| ÷.     | SITE SURVEY AND LAYOUT:<br>SURVEY AND ROUTE LAYOUT OFFSETS AND<br>VERTICAL/ELEVATION CONTROLS                                                                                    | 1.0                     | ٢S       | 500.00    | 500.00                   | 1523.89      | 1,523.89       |         | 0.00               | 0.00                  | 2,023.89     |
| 2.     | EROSION AND SEDIMENTATION CONTROLS:<br>PROVIDE AND INSTALL SILT FENCING, STAKED<br>HAYBALES, DIVERSION SWALES, BERMS, TURBIDITY<br>CURTAINS, AND OTHER MEASURES AS NECESSARY FOR | 1.0                     | ۲S       | 650.00    | 650.00                   | 1269.91      | 1,269.91       | <u></u> | 0.00               | 0.00                  | 1,919.91     |
|        | E&S CONTROLS.<br>MAINTENANCE DURING CONSTRUCTION -                                                                                                                               | 1.0                     | rs.      | 100.00    | 100.00                   | 761.95       | 761.95         |         | 0.00               | 0.00                  | 861.95       |
| З.     | SAU CUTTING OF EXISTING PAVEMENT:                                                                                                                                                | 1040.0                  | LF       | 0.00      | 0.00                     | 0.00         | 0.00           |         | 0.00               | 4,420.00              | 4,420.00     |
| £.     | BREAKOUT, REMOVE, LOAD, AND DISPOSE OF PAVEMENT<br>TO AN APPROVED DISPOSAL AREA:<br>6" PAVEMENT THICKNESS                                                                        | 577.8                   | SY       | 1.25      | 722.22                   | ÷            | 6,420.09       |         | 0.00               | 0.00                  | 7,142.32     |
| 5.     | FRENCH EXCAVATION: MACHINE AND HAND<br>18" RCP<br>FROM: 23-N22 (MH); >PIPE LENGTH=<br>TO: 12-B01-A (MH); >DEPIH, AVERAGE=                                                        | 1014.0<br>520.0<br>11.7 | VLF LF C | 0.00      | .`<br>00.0               | 12.06        | 12, 233.03     |         | 0.00               | 00.0                  | 12, 233.03   |
| ó.     | PIPE BEDDING: SELECT GRANULAR MATERIAL 6" THICK<br>AND FINE GRADING                                                                                                              | 43.3                    | c۲       | 19.35     | 838.50                   | 6.35         | 275.15         |         | 0.00               | 0.00                  | 1, 113.65    |
|        | IRENCH BACKFILL WITH EXCAVATED MATERIAL,<br>COMPACTED TO 95% MAXIMUM DENSITY                                                                                                     | 1115.4                  | ζ        | 0.00      | 0.00                     | 2.40         | 6,019.94       |         | 0.00               | 0.00                  | \$6.019.94   |
| ä      | RESTORATION:<br>PAVEMENT RESTORATION TO MATCH EXISTING                                                                                                                           | 577.8                   | SY       | 1.50      | 866.67                   | 9.84         | 5,686.37       |         | 0.00               | 14,444.44             | 20,997.48    |
| ¢.     | PIPE: REINFORCED CONCRETE PIPE, CLASS <b>3 W</b> ITH<br>GASKETS<br>18"                                                                                                           | 520.0                   | <u>ب</u> | 11.00     | 5,720.00                 | 8.13         | 4,226.26       |         | 000                | 0.00                  | 9,946.26     |
| 11.    | PIPE CONNECTIONS TO NEW MANHOLE:<br>18"                                                                                                                                          | 2.0                     | S        | 216.00    | 432.00                   | 108.86       | 217.73         |         | 0.00               | 0.00                  | 649.73       |
|        |                                                                                                                                                                                  |                         |          |           |                          |              |                |         |                    |                       |              |
|        |                                                                                                                                                                                  |                         |          |           |                          |              |                |         |                    |                       |              |
| -      | TOTAL SHEET NO. 10                                                                                                                                                               |                         |          |           | 9,829.39                 |              | 38,634.31      |         | 0.00               | 18,864.44             | 67, 328.14   |

• •

÷ .

HESTO

2

| DJECT     | DELCORA CSO ALTERNATIVES                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       |                             | ×ΟΥF.<br>VEST CHE      | N E S T O N,<br>Ister, pennsylv             | I N C.<br>VANIA         |                            |       |                      | FILENAME: DCO         | RACS0.4K1                  |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------|------------------------|---------------------------------------------|-------------------------|----------------------------|-------|----------------------|-----------------------|----------------------------|
|           | :05623-009-001-0003-00                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                             | HATER                  | IAL                                         | С<br>В<br>И             | ~                          | EQUIP | E N H                | SUBCONTRACTS          |                            |
|           | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | UNIT                        | COST                   | MATERIAL                                    | COST                    | TOTAL<br>LABOR             | COST  | TOTAL<br>EQUIPMENT   | TOTAL<br>SUBCONTRACTS | 101 <b>A</b> L             |
| 1         | STORM DRAIN INLETS:<br>Existing Condition:<br>System is currently served by open curb face<br>type inlets. Thus allowing unacceptable amounts<br>of trash to enter the system and over time the<br>inlets are in need of replacement.<br>Recommendations:<br>Demolish and remove existing open curb face<br>stormwater inlets. Replace with precast concrete<br>storm inlet boxes with bicycle type grates, ADA<br>access curb cuts and new sidewalks (See Attached<br>Sketch) |                       | -                           |                        |                                             |                         |                            |       |                      |                       |                            |
|           | NOTE:<br>ONE(1) AS SHOWN; ONE THOUSAND ONE HUNDRED<br>FORTY(1,140) REQUIRED.                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                             |                        |                                             |                         |                            |       |                      |                       |                            |
|           | JIVISION 2 - SITE WORK                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                             |                        |                                             |                         |                            |       |                      |                       |                            |
|           | SAW CUTTING OF EXISTING PAVEMENT:                                                                                                                                                                                                                                                                                                                                                                                                                                              | 66.0                  | L<br>L                      | 0.00                   | 00.0                                        | 0.00                    | 0.00                       |       | 0.00                 | 280.50                | 280.50                     |
|           | EMOLITION AND REMOVALS:<br>REMOVE EXISTING CURB<br>REMOVE EXISTING INLET<br>REMOVE EXISTING SIDEWALK                                                                                                                                                                                                                                                                                                                                                                           | 22.0<br>1.0<br>266.0  | ч<br>л ч<br>л ч<br>л ч<br>л | 0.00<br>0.00<br>0.00   | 0.00<br>0.00<br>0.00                        | 14.43<br>317.48<br>1.67 | 317.48<br>317.48<br>444.47 |       | 0.00<br>0.00<br>0.00 | 0.00                  | 317.48<br>317.48<br>444.47 |
| w         | ROVIDE AND INSTALL NEW:<br>CATCH BASIN/INLET: PRECAST CONCRETE, INTERIOR<br>DIMENSION - 4.0' X 2.0' X +/-4.0' FROM GRATE<br>LEVATION TO DRAIN INVERT + 1.0' FROM DRAIN PIPE<br>INVERT TO BOTTOM OF BASIN; COMPLETE WITH BICYCLE                                                                                                                                                                                                                                                | 0.                    | EA                          | 650.00                 | <b>65</b> 0.00                              | 761.95                  | 761.95                     |       | 0.00                 | 00.0                  | 1,411.95                   |
| OT - ZN   | SRATE.<br>"IPE CONNECTIONS TO NEW INLET BASIN:<br>8"<br>IEW ADA CURR CUT REPLACEMENT<br>IDEWALKS                                                                                                                                                                                                                                                                                                                                                                               | 22.0<br>22.0<br>266.0 | S T T                       | 216.00<br>4.91<br>1.38 | 4 <b>32</b> .00<br>108.02<br><b>36</b> 7.08 | 108.86<br>23.09<br>2.15 | 217.73<br>507.96<br>571.46 |       | 0.00                 | 0.00                  | 649.73<br>615.98<br>938.54 |
| <u>~~</u> | ESTORATION:<br>AVEMENT RESTORATION TO MATCH EXISTING                                                                                                                                                                                                                                                                                                                                                                                                                           | 29.6                  | ۶۲                          | 5.00                   | 147.78                                      | 9.52                    | 281.50                     | ****  | 00-00                | 738.89                | 1, 168.16                  |
|           | NOIE:<br>ONE(1) AS SHOWN; ONE THOUSAND ONE HUNDRED<br>ORTY(1,140) REGUIRED.                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                             |                        |                                             | 999 ( )                 |                            |       |                      |                       |                            |
| {         | TOTAL SHEET NO. 11                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                       |                             |                        | 1,704.88                                    |                         | 3,420.01                   |       | 0.00                 | 1,019.39              | <b>6</b> , 144.28          |
| 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                             |                        |                                             |                         |                            |       | •                    |                       |                            |

| ORACSO. 4K1                    | 1 U I U [                                | 1,003,000.00<br>0.00<br>0.00                                                                                                   | 1,008,000.00       |
|--------------------------------|------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------|
| FILENAME: DC                   | SURCONTRACTS<br>TOTAL<br>SUBCONTRACTS    | 1,008,000<br>0.00                                                                                                              | 1,008,000          |
|                                | H E N T<br>TOTAL<br>EQUIPMENT            | 88<br>60                                                                                                                       | 0.00               |
|                                |                                          |                                                                                                                                |                    |
|                                | R<br>TOTAL<br>LABOR                      | 00<br>00<br>00                                                                                                                 | 0.00               |
| INC.<br>ANIA                   | L A B O<br>UNIT<br>COST                  | 00<br>00<br>00                                                                                                                 |                    |
| WESTON,<br>STER, PENNSYLV      | I A L<br>TOTAL<br>MATERIAL               | 000<br>00<br>00                                                                                                                | 0.00               |
| ROYF.<br>VESTCHE               | M A T E R<br>UNIT<br>COST                | 88.<br>60                                                                                                                      |                    |
|                                | 1 INN                                    | K K<br>U U                                                                                                                     |                    |
|                                |                                          | 5°.0<br>5'.                                                                                                                    |                    |
| OT DEL PONT POOR ALTERNIATIVES | 10.:05623-009-001-0003-00<br>DESCRIPTION | REGULATORS<br>DIVISION 2 - SITE WORK<br>STORMWATER FLOW REGULATORS:<br>ALL WORK PER OUDTATION<br>PULL AND REPLACE<br>PULL ONLY | TOTAL SHEET NO. 12 |
|                                | H O. NC                                  |                                                                                                                                |                    |

, <sup>2</sup>

| PROJEC           | JI:DELCORA CSO ALTERNATIVES                                                                                                                                                                                                                                               |                             | ~                  | U Y F.<br>VEST CHES         | W E S T O N,<br>STER, PENNSYL | INC.<br>VANIA                 |                                     |                                   |                                        | FILENAME: DC                          | ORACSO, UK [                           |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--------------------|-----------------------------|-------------------------------|-------------------------------|-------------------------------------|-----------------------------------|----------------------------------------|---------------------------------------|----------------------------------------|
| H. O. N(<br>ITEM | D.:05623-009-001-0003-00<br>DESCRIPTION                                                                                                                                                                                                                                   | UNIT<br>QUANTITY            | UNET               | M A T E R<br>UNET<br>COST   | A L<br>TOTAL<br>MATERIAL      | L A B C                       | D R TOTAL<br>LABOR                  | E Q U I P<br>UNIT<br>COST         | M E N T<br>TOTAL<br>EQUIPMENT          | SUBCONTRACTS<br>TOTAL<br>SUBCONTRACTS | TOTAL                                  |
| 6.               | FLOATABLES CONTAINMENT<br>DIVISION 2 - SITE WORK                                                                                                                                                                                                                          |                             |                    |                             |                               |                               |                                     |                                   |                                        |                                       |                                        |
| •••              | SITE SURVEY AND LAYOUT:<br>SURVEY AND ROUTE LAYOUT OFFSETS AND<br>VERTICAL/ELEVATION CONTROLS                                                                                                                                                                             | 1.0                         | L S                | 500.00                      | 500.00                        | 2285.84                       | 2,285.84                            |                                   | 0.00                                   | 0.00                                  | 2, 785.84                              |
| 2.               | EROSION AND SEDIMENTATION CONTROLS:<br>PROVIDE AND INSTALL SILT FENCING, STAKED<br>HAYBALES, DIVERSION SWALES, BERMS, TURBIOITY<br>CURTAINS, AND OTHER MEASURES AS NECESSARY FOR                                                                                          | 1.0                         | Ľ                  | 2025.00                     | 2,025.00                      | 1523.89                       | 1,523.89                            |                                   | 0.00                                   | 0.00                                  | 3, 548.89                              |
|                  | MAINTENANCE DURING CONSTRUCTION                                                                                                                                                                                                                                           | 1.0                         | ٢S                 | 100.00                      | 100.00                        | 761.95                        | 761.95                              |                                   | 0.00                                   | 00.00                                 | 361.95                                 |
| З.               | SAW CUTTING OF EXISTING PAVEMENT:                                                                                                                                                                                                                                         | 150.0                       | ۲.<br>۲            | 0.00                        | 0.00                          | 0.00                          | 0.00                                |                                   | 00.00                                  | 637.50                                | 637.50                                 |
| 4.               | BREAKOUT, REMOVE, LOAD, ANO DISPOSE OF PAVEMENT<br>TO AN APPROVED DISPOSAL AREA:<br>6" PAVEMENT THICKNESS                                                                                                                                                                 | 100.0                       | ۶۲                 | 1.25                        | 125.00                        | 11.11                         | 1,111.17                            |                                   | 0.00                                   | 0.00                                  | 1,236.17                               |
| S.               | TRENCH EXCAVATION: MACHINE AND HAND<br>INLINE TYPE TRASHTRAP SYSTEMS<br>FROM: INFLUENT/INLET; >PIPE LENGTH=                                                                                                                                                               | 231.1<br>120.0              | 57                 | 0.00                        | 00.00                         | 12.06                         | 2,788.16                            |                                   | 00.00                                  | 00.0                                  | 2,788.16                               |
|                  | TO: EFFLUENT/DISCHARGE; >DEPTH, AVERAGE=<br>ENDWALL TYPE TRASHTRAP SYSTEMS<br>FROM: INFLUENT/INLET; >PIPE LENGTH=<br>TO: EFFLUENT/DISCHARGE; >DEPTH, AVERAGE=                                                                                                             | 8.0<br>184.9<br>96.0<br>8.0 | Υ <sub>Γ</sub> ς Υ | 0.00                        | 0.00                          | 12.06                         | 2,230.52                            |                                   | 0.00                                   | 0.00                                  | 2,230.52                               |
| ¢.               | PIPF BEDDING: SELECT GRANULAR MATERIAL 6" THICK<br>AND FINE GRADING                                                                                                                                                                                                       | 28.0                        | cλ                 | 19.35                       | 541.80                        | 6.35                          | 177.79                              |                                   | 0.00                                   | 00                                    | 719.59                                 |
|                  | TRENCH BACKFILL WITH EXCOVATED MATERIAL,<br>COMPACTED TO 95% MAXINUM DENSITY                                                                                                                                                                                              | 457.6                       | 2                  | 0.00                        | 0.00                          | 5.40                          | 2,469.72                            |                                   | 0.00                                   | 00.0                                  | 2,469.72                               |
| ά                | RESTORATION:<br>PAVEMENT RESTORATION TO MATCH EXISTING<br>GRASSY/HON-PAVED AREAS                                                                                                                                                                                          | 106.7<br>64.0               | SY                 | 1.50                        | 160.00<br>160.00              | 9.84<br>10.16                 | 1,049.79                            |                                   | 0.00                                   | 2,666.67<br>0.00                      | 3,876.46<br>810.19                     |
| ¢.               | INLINE NETTING TRASHTRAP SYSEM:<br>PROPRIETARY TRASHTRAP AND RECOVERY SYSTEM,<br>PRECAST CONCRETE CONSTRUCTION WITH INTERNAL.<br>NETTING/TRASH COLLECTION AND RETENTION SYSTEM.<br>COMPLETE WITH REPLACABLE FILTER BAGS.<br>FLOATABLE TYPE<br>ENDWALL TYPE<br>INLINE TYPE | w4w<br>000                  | <b>《《《</b> 《       | 1200.00<br>500.00<br>500.00 | <b>3,600.00</b><br>2,500.00   | 8127.42<br>5079.63<br>3555.74 | 24,382.25<br>20,318.54<br>17,778.72 | 100000.00<br>80000.00<br>70000.00 | 300,000.00<br>320,000.00<br>350,000.00 | 0.00                                  | 327,982.25<br>342,318.54<br>370,278.72 |
|                  | TOTAL SHEET NO. 13                                                                                                                                                                                                                                                        |                             |                    |                             | 11,711.80                     |                               | 77,528.52                           |                                   | 970,000.00                             | 3,304.17                              | 1, 062, 544, 49                        |

|             |                                                                                                                                             |                          | C/              | 0 Y F.<br>WEST CHES | WESTON,<br>HER, PENNSYLV | INC.<br>ANIA      |                      |        |                    | FILENAME: DCC         | RACSO-WK1             |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-----------------|---------------------|--------------------------|-------------------|----------------------|--------|--------------------|-----------------------|-----------------------|
| PROJEC      | T:DELCORA_CSO_ALTERNATIVES<br>.ee23_nno-nn1-nnn3-nn                                                                                         |                          |                 | MATERI              | AL                       | L A B O           | œ                    | EOUIPI | K E N I            | SUBCONTRACTS          |                       |
| W. U. MU    | DESCRIPTION                                                                                                                                 |                          | UNIT            | COST                | TOTAL<br>MATERIAL        | UNIT<br>COST      | TOTAL<br>LABOR       | COST   | TOTAL<br>EQUIPMENT | TOTAL<br>SUBCONTRACTS | 1 V I O I             |
| =           | HASIEWATER TREATMENT PLANT (WWTP) MODIFICATIONS<br>DIVISION 2 - SITE WORK                                                                   |                          |                 |                     |                          |                   |                      |        |                    |                       |                       |
|             | BYPASS FROM EXISTING PRIMARY SETTLING TANK(S)<br>EFFLUENT TO POST-AERATION TANKS T-19 AND T-20,<br>REGULATING FLOW TO 36.4 MGD (25,300 GPM) |                          |                 |                     |                          |                   |                      |        |                    |                       |                       |
| <u>م</u> ـٰ | TRENCH EXCAVATION: MACHINE AND HAND<br>60" RCP<br>FROM: SETTLING TANKS; >PIPE LENGTH=<br>TO: POST-AERATION TANKS; >DEPTH, AVERA             | 3407.4<br>1000.0<br>11.5 | CY<br>LF<br>VLF | 0.00                | 0.00                     | 12.06             | 41,107.41            |        | 0.00               | 0.00                  | 41,107.41             |
| ``<br>``    | PIPE BEDDING: SELECT GRANULAR MATERIAL 6" THICK<br>AND FINE GRADING                                                                         | 148.1                    | ζ               | 19.35               | 2,866.67                 | 6.35              | 940.67               |        | 0.00               | 0.00                  | 3,807.34              |
| З.          | TRENCH BACKFILL WITH EXCAVATED MATERIAL,<br>COMPACTED TO 95% MAXIMUM DENSITY                                                                | 3748.1                   | с               | 0.00                | 0.00                     | 5.40              | 20, 22 <b>9</b> . 18 |        | 0.00               | 0.00                  | 20,229.18             |
| 4.          | RESTORATION:<br>RESTORATION TO MATCH EXISTING                                                                                               | 888.9                    | sY              | 1.50                | 1,333.33                 | 4.76              | 4,233.03             |        | 0.00               | 5,333.33              | 10,899.70             |
| 5.          | PIPE: REINFORCED CONCRETE PIPE, CLASS 3 WITH<br>GASKETS<br>60"                                                                              | 1000.0                   | Ľ               | 97.13               | 97,125.00                | 35.30             | 35,303.46            |        | 0.00               | 00                    | 132,428.46            |
| <u></u> ه.  | PIPE TIEIN TO EXISTING 72" SETTLING TANK<br>EFFLUENT:<br>60"                                                                                | 1.0                      | EA              | 1500.00             | 1,500.00                 | 1523.89           | 1,523.89             |        | 0.00               | 1,250.00              | 4,273.89              |
| 7.          | PIPE FITTINGS: REINFORCFD CONCRETE, CLASS 3<br>724 X 724 X 604 TAPPING SPLIT TEES<br>604 90LR ELLS                                          | 2.0                      | EA              | 11220.00<br>4370.85 | 22,440.00<br>8,741.70    | 1015.93<br>396.85 | 2,031.85<br>793.69   |        | 0.00               | 0.00                  | 24,471.85<br>9,535.39 |
| α           | BUTTERFLY VALVE: LUG HIE WITH MANUAL OPERATOR<br>60"                                                                                        | 1.0                      | EA              | 12903.00            | 12,903.00                | 1269.91           | 1,269.91             |        | 0.00               | 00.00                 | 14,172.91             |
|             |                                                                                                                                             |                          |                 |                     |                          |                   |                      |        |                    |                       |                       |
|             | TOTAL SHEET NO. 14                                                                                                                          |                          |                 |                     | 146,909.70               |                   | 107,433.10           |        | 0.00               | 6,583.33              | 260,926.13            |

|        |                                                                                                                                                                                                                                               |                       | ∝               | 0 Y F.<br>Vest ches                                                                                                          | WESTON,<br>STER, PENNSYLV | INC.<br>ANIA           |                           |        |                      | FILENAME: DCO                  | RACSO, WK 1                         |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------|---------------------------|--------|----------------------|--------------------------------|-------------------------------------|
| PROJEC | 1:DELCORA CSO ALTERNAIIVES<br>. n5423-nn0-nn1-nnn3-nn                                                                                                                                                                                         |                       | -               | 4 A T E R 1                                                                                                                  | A L                       | L A B O                | ×                         | EGUIPS | N N N N              | SUBCONTRACTS                   |                                     |
| 11EM   | DESCRIPTION                                                                                                                                                                                                                                   | UNIT<br>QUANTETY      | UNIT            | UNIT<br>COST                                                                                                                 | TOTAL<br>MATERIAL         | COST                   | TOTAL<br>LABOR            | COST   | TOTAL<br>EQUIPMENT   | TOTAL                          | 1 0 1 <b>A</b> 1                    |
| н.     | WASTEWATER IREATMENT PLANT (WWIP) MODIFICATIONS                                                                                                                                                                                               |                       |                 |                                                                                                                              |                           |                        |                           |        |                      |                                |                                     |
|        | GRIT TANK EXPANSION - CONSTRUCTION OF ONE(1)<br>GRIT TANK IN ADDITION TO THE EXISTING GRIT<br>TANKS. COMMON WALL CONSTRUCTION WITH EXISTING,<br>PILING REQUIRED FOR FOUNDATIONS. COMPLETE WITH<br>GRIT REMOVAL EQUIPMERT AND ALL ANCILLARIES. |                       |                 |                                                                                                                              |                           |                        |                           |        |                      |                                |                                     |
| ÷      | DIVISION 2 - SITE WORK<br>EXCAVATION: MACHINE AND HAND<br>EXISTING PLANT WORK                                                                                                                                                                 | 5055.6                | ć               | 0.00                                                                                                                         | 0.00                      | 6.32                   | 31,939.97                 |        | 0.00                 | 0.00                           | 31,939.97                           |
| 2.     | HAUL EXCAVATED SPOIL TO ONSIT BORROM:<br>LOAD, HAUL AND PLACE                                                                                                                                                                                 | 5561.1                | ζ               | 0.00                                                                                                                         | 0.00                      | 4.19                   | 2 <b>3,3</b> 04.94        |        | 0.00                 | 0.00                           | 23,304.94                           |
| Ň      | PILING:<br>PRECAST, PRESTRESSED CONCRETE PILES, 50.0' LONG<br>WITH 3" WALLS<br>16" DIAMETER (64 EA)<br>MOBILIZATION AND DEMOBILIZATION<br>PIPE CUT-OFFS                                                                                       | 3200.0<br>1.0<br>64.0 | LLF<br>LS<br>EA | 0.00<br>0.00<br>25.00                                                                                                        | 0.00<br>0.00<br>1,600.00  | 0.00<br>0.00<br>190.49 | 0.00<br>0.00<br>12,191.12 |        | 0.00<br>0.00<br>0.00 | 68,800.00<br>10,000.00<br>0.00 | 68,800.00<br>10,000.00<br>13,791.12 |
| - 7    | FOUNDATION BEDDING: SELECT GRANULAR MATERIAL 6" T<br>AND FINE GRADING                                                                                                                                                                         | 120.4                 | ζ               | 19.35                                                                                                                        | 2,329.17                  | 6.35                   | 764 .30                   |        | 00.00                | 00.0                           | 3,093.46                            |
| 5.     | BACKFILL WITH EXCAVATED MATERIAL, COMPACTED TO<br>95% MAXIMUM DENSITY                                                                                                                                                                         | 3061.6                | 5               | 0.00                                                                                                                         | 0.00                      | 5.40                   | 16,523.56                 |        | 00-00                | 00-0                           | 16,523.56                           |
|        |                                                                                                                                                                                                                                               |                       |                 | μα, τρήμας, αυτοποιούτας τη μ <sub>α</sub> τάς τουριούτας του τη του που τη του τη τη τη τη τη τη τη του του του του του του |                           |                        |                           |        |                      |                                |                                     |
|        | TOTAL SHEET NO. 15                                                                                                                                                                                                                            |                       |                 |                                                                                                                              | 3,929.17                  |                        | 84,723.89                 |        | 0.00                 | 78,800.00                      | 167,453.05                          |

| PROJEC           | 11:DELCORA CSD ALTERNATIVES                                                                                                                                                                                                      |                                     | *          | KOYF.                     | WESTON,<br>STER, PENNSYL | INC.    |                     |                             |                               | FILENAME: DC                          | ORACSO. WK1 |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|------------|---------------------------|--------------------------|---------|---------------------|-----------------------------|-------------------------------|---------------------------------------|-------------|
| H. O. NC<br>ITEM | D.:05623-009-001-0003-00<br>DESCRIPTION                                                                                                                                                                                          | QUANTITY                            | UNIT       | M A T E R<br>UNIT<br>COST | A L<br>TOTAL<br>MATERIAL | L A B O | R<br>TOTAL<br>LABOR | E Q U I P I<br>UNIT<br>COST | M E N T<br>TOTAL<br>EQUIPMENT | SUBCONTRACTS<br>TOTAL<br>SUBCONTRACTS |             |
| H.               | WASTEWATER TREATMENT PLANT (WUTP) MODIFICATIONS                                                                                                                                                                                  |                                     |            |                           |                          |         |                     |                             |                               |                                       |             |
| 11.              | GRIT TANK EXPANSION -                                                                                                                                                                                                            |                                     |            |                           |                          |         |                     |                             |                               |                                       |             |
|                  | DIVISION 3 - CONCRETE                                                                                                                                                                                                            |                                     |            |                           |                          |         |                     |                             |                               |                                       |             |
| t<br>terr        | CONCRETE: 3,500 PSI, CAST IN PLACE, WITH<br>REINFORCING STEEL, LIGHT BENDING<br>BASE SLAB<br>WALLS, LONG AXIS<br>WALLS, LONG AXIS<br>WALLS - INTERIOR, LONG AXIS<br>WALLS - INTERIOR, SHORT AXIS<br>WALLS - INTERIOR, SHORT AXIS | 373.3<br>94.5<br>32.0<br>8.0<br>8.7 | 333333     |                           |                          |         |                     |                             |                               |                                       |             |
|                  | UTHEK:<br>MISCELLANEOUS CONCRETE                                                                                                                                                                                                 | 54.8                                | 555        |                           |                          |         |                     |                             |                               |                                       |             |
|                  | TOTAL CONCRETE                                                                                                                                                                                                                   | 602.3                               | ۲.         | 158.75                    | 95,609.61                | 152.39  | 91,778.63           |                             | 0.00                          | 10,000.00                             | 197,388.24  |
|                  | DIVISION 5 - METALS                                                                                                                                                                                                              |                                     |            |                           | <u> </u>                 |         |                     |                             |                               |                                       |             |
| ÷                | MISCELLANEOUS METALS AND EMBFDMENTS:<br>AS REGUTRED                                                                                                                                                                              | 1.0                                 | rs         | 6022.65                   | 6,022.65                 | 9560.27 | 9,560.27            |                             | 0.00                          | 0.00                                  | 15,582.93   |
| 2.               | HANDRAILS:<br>1 1/2" DIAMETER, FER OSHA REQUTREMENTS                                                                                                                                                                             | 247.0                               | <u>ل</u> ت | 8.33                      | 2,057.51                 | 9.21    | 2,274.09            |                             | 0.00                          | 0.00                                  | 4,331.60    |
| ×^<br>`          | BAR GRATING                                                                                                                                                                                                                      | 366.0                               | SF         | 10.91                     | 3, 993. 90               | 2.46    | 2,730.62            | <u> </u>                    | 00-00                         | 0.00                                  | 6,724.52    |
|                  |                                                                                                                                                                                                                                  |                                     |            | 99                        |                          |         |                     |                             |                               |                                       |             |
|                  | TOIAL SHEET NO. 16                                                                                                                                                                                                               |                                     |            |                           | 107,683.68               |         | 106, 343.61         |                             | 0.00                          | 10,000.00                             | 224,027.29  |

123

. .

• •

| PROJEC           | T:DELCORA CSO ALTERNATIVES                                                                                                                                                                                           |                    | ×      | WEST CHES              | WESTON,<br>STER, PENNSYLV | ANIA                    |                     |          |                               | FILENAME: DCO                         | RACSO, WK 1 |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|------------------------|---------------------------|-------------------------|---------------------|----------|-------------------------------|---------------------------------------|-------------|
| H. O. NO<br>ITEM | 1.:05623-009-001-0003-00<br>DESCRIPTION                                                                                                                                                                              | UNIT<br>QUANTITY   | UNIT   | MATERI<br>UNIT<br>COST | A L<br>TOTAL<br>MATERIAL  | L A B O<br>UNIT<br>COST | R<br>TOTAL<br>LABOR |          | A E N T<br>TOTAL<br>EQUIPMENT | SUBCONTRACTS<br>TOTAL<br>SUBCONTRACTS | I O I A L   |
| <br>             | WASTEWATER TREATMENT PLANT (WWTP) MODIFICATIONS<br>GRIT TANK EXPANSION -<br>DIVISION 11 - EQUIPMENT<br>ALLOWANCE FOR GRIT REMOVAL EQUIPMENT, SAME TYPE<br>AS EXISTING FOR SPARE PARTS INVENTORY AND<br>COMPATIBILITY | 1.0                | ي `    | 2000.00                | 5, 000.00                 | 8127.42                 | 8, 127.42           | 55000.00 | 55,000.00                     | 00.0                                  | 68, 127.42  |
| <del></del>      | DIVISION 15 - MECHANICAL<br>Allownace for mechanical piping and other<br>Mechanical requirements                                                                                                                     | 0.<br><del>.</del> | s<br>L | 10000.00               | 10,000.00                 | 5079.63                 | 5,079.63            |          | 00 <b>.</b> 0                 | 5,000.00                              | 20,079.63   |
| <u> </u>         | DIVISION 16 - FLECTRILAL<br>ALLOWNACE FOR ELECTRICAL REQUIREMENTS, POWER<br>DISTRIBUTION, LIGHTING, MOTOR CONTROL CENTER,<br>MOTOR DISCONNECTS, GROUNDING AND MISCELLANEOUS<br>WORK.                                 | ۵.<br>۲            | ŝ      | 11500.00               | 11,500.00                 | 15238.90                | 15, 238.90          | 22500.00 | 22,500.00                     | 5, 000. 00                            | 54,238.90   |
|                  | TOTAL SHEET NO. 17                                                                                                                                                                                                   |                    |        |                        | 26,500.00                 |                         | 28,445.95           |          | 77,500.00                     | 10,000.00                             | 142,445.95  |

|                         |                                                                                                                                                                                                                                 |                                                 |          | VESI CHE                  | STER, PENNSTL              | VANIA                   |                     |                                         |                                       | 1 24.00048 |
|-------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------|---------------------------|----------------------------|-------------------------|---------------------|-----------------------------------------|---------------------------------------|------------|
| PROJEC<br>0. NC<br>ITEM | 1:0ELCORA CSO ALTERNATIVES<br>.:05623-009-001-0003-00<br>DESCRIPTION                                                                                                                                                            | UNIT                                            | UNIT     | M A T E R<br>UNIT<br>COST | I A L<br>TOTAL<br>MATERIAL | L A B 0<br>UNIT<br>COST | R<br>TOTAL<br>LABOR | H E N T<br>TOTAL<br>EQUIPMENT           | SUBCONTRACTS<br>TOTAL<br>SUBCONTRACTS | 1 0 I A    |
|                         | WASTEWATER TREATMENT PLANT (WWIP) MODIFICATIONS                                                                                                                                                                                 |                                                 |          |                           |                            |                         |                     |                                         |                                       |            |
| 111.                    | CHLORINE CONTACT TANK EXPANSION                                                                                                                                                                                                 |                                                 |          |                           |                            |                         |                     |                                         |                                       |            |
|                         | DIVISION 3 - CONCRETE                                                                                                                                                                                                           |                                                 |          |                           |                            |                         |                     |                                         |                                       |            |
| -:<br>-:                | CONCRETE: 3,500 PSI, CAST IN PLACE, WITH<br>REINFORCING STEEL, LIGHT BENDING<br>BASE SLAB<br>WALLS, LONG AXIS<br>WALLS, LONG AXIS<br>WALLS, SHORT AXIS<br>WALLS, INTERIOR, LONG AXIS<br>WALLS - INTERIOR, SHORT AXIS<br>WALLMAY | 534.1<br>534.1<br>74.0<br>125.3<br>16.7<br>10.9 | <u> </u> |                           |                            |                         |                     | • ····· • • • • • • • • • • • • • • • • |                                       |            |
|                         | UI REK:<br>MISCELLANEOUS CONCRETE                                                                                                                                                                                               | 87.8                                            | 555      |                           |                            |                         |                     |                                         |                                       |            |
|                         | TOTAL CONCRETE                                                                                                                                                                                                                  | 966.1                                           | 5        | 158.75                    | 153,371.68                 | 152.39                  | 147,226.23          | 0.00                                    | 10,000.00                             | 310,597.   |
|                         | DIVISION 5 - METALS                                                                                                                                                                                                             | ·                                               |          |                           |                            |                         |                     |                                         |                                       |            |
| <del>, '</del>          | MISCELLANEOUS METALS AND EMBEDMENTS:<br>AS REQUIRED                                                                                                                                                                             | 1.0                                             | rs.      | 9661.21                   | 9,661.21                   | 15336.07                | 15, 336.07          | 0.00                                    | 0.00                                  | 24,997.3   |
| 2.                      | HANDRAILS:<br>1 1/2" DIAMETER, FER OSHA REQUIREMENTS                                                                                                                                                                            | 394 - 0                                         | Ę,       | 8.33                      | 3,282.02                   | 9.21                    | 3,627.49            | 0.00                                    | 0.00                                  | • 605'9    |
| m.                      | BAR GRATING                                                                                                                                                                                                                     | 400.0                                           | SF       | 10.91                     | 4,364.92                   | 27.46                   | 2,984.29            | 0.00                                    | 0.00                                  | 7,349.     |
|                         |                                                                                                                                                                                                                                 |                                                 |          |                           |                            |                         |                     |                                         |                                       |            |
|                         | TOTAL SHEFT NO. 19                                                                                                                                                                                                              |                                                 |          |                           | 170,679.83                 |                         | 169, 174.08         | 0.00                                    | 10,000.00                             | 349,853    |

.

···· \$

| <br>               |                                                                                                                                                                         |                                                                                                  | یند<br>است<br>سیک<br>بینک<br>ب                                                                                                                                                                                                                            | TEM                                                              | :             |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|---------------|
| TOTAL SHEET NO. 20 | IVISION 16 - ELECTRICAL<br>LLOWNACE FOR ELECTRICAL REQUIREMENTS, POWER<br>ISTRIBUTION, LIGHTING, CHLORINE ANALYZER WITH<br>ONTROLLER, GROUNDING AND MISCELLANEOUS WORK. | DIVISION 15 - MECHANICAL<br>ALLOWNACE FOR MECHANICAL PIPING AND OTHER<br>MECHANICAL REQUIREMENTS | WASTEWATER TREATMENT PLANT (WMTP) MODIFICATIONS<br>CHLORINE CONTACT TANK EXPANSION<br>DIVISION 11 - EQUIPMENT<br>ALLOWANCE FOR CHLORINE INJECTION AT NEW CONTACT<br>TANK. ASSUMED THAT EXISTING CHLORINE FEED SYSTEM<br>IS ADEQUATE FOR NEW CONTACT TANK. | DELCORA CSO ALTERNATIVES<br>05623-009-001-0003-00<br>DESCRIPTION |               |
|                    | -1<br>:0                                                                                                                                                                | <b>1</b><br>.0                                                                                   | -1<br>0                                                                                                                                                                                                                                                   | UNIT                                                             |               |
|                    |                                                                                                                                                                         | rs.                                                                                              | 5                                                                                                                                                                                                                                                         | UNIT                                                             |               |
|                    | <b>1</b> 000 <b>0</b> .00                                                                                                                                               | 3500.00                                                                                          | 1800.00                                                                                                                                                                                                                                                   | MATER<br>UNIT<br>COST                                            | WEST CHE      |
| 15,300.00          | 10,000.00                                                                                                                                                               | 3,500.00                                                                                         | 1,800.00                                                                                                                                                                                                                                                  | I A L<br>TOTAL<br>MATERIAL                                       | STER, PENNSYL |
|                    | 7619.45                                                                                                                                                                 | 4063.71                                                                                          | 2031.85                                                                                                                                                                                                                                                   | L A B O                                                          | VANIA         |
| 13,715.01          | 7,619-45                                                                                                                                                                | 4,063.71                                                                                         | 2,031.85                                                                                                                                                                                                                                                  | R<br>TOTAL<br>LABOR                                              |               |
|                    | 5000.00                                                                                                                                                                 |                                                                                                  |                                                                                                                                                                                                                                                           | E Q U I P<br>UNIT<br>COST                                        |               |
| 5,000.00           | 5,000.00                                                                                                                                                                | 0.<br>00                                                                                         | 0<br>0<br>0                                                                                                                                                                                                                                               | M E N I<br>TOTAL<br>EQUIPMENT                                    |               |
| 7,000.00           | 2,000.00                                                                                                                                                                | 5,000.00                                                                                         | 0.00                                                                                                                                                                                                                                                      | SUBCONTRACTS                                                     | FILENAME: DC  |
| 41,015.01          | 24,619-45                                                                                                                                                               | 12,563.71                                                                                        | 3,831.85                                                                                                                                                                                                                                                  | ΙΟΙΑΕ                                                            | ORACSO, UK I  |

ROY F. WESTON, INC.

and the subgroup of the second

|                    | <del>5</del>                                                          | 4.                                                                        |                                                                                                                                                         | 2.                                                            | <del></del>                                                                   | . H.                                                                                                                                                                                                                                                  | H. O. NO                              | DDU JEC                     |
|--------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------|
| TOTAL SHEET NO. 18 | BACKFILL WITH EXCAVATED MATERIAL, COMPACTED TO<br>95% MAXIMUM DENSITY | FOUNDATION BEDDING: SELECT GRANULAR MATERIAL OT<br>THICK AND FINE GRADING | PILING:<br>PRECAST, PRESTRESSED CONCRETE PILES, 50.0' LONG<br>WITH 3" WALLS<br>16" DIAMETER (75 EA)<br>MOBILIZATION AND DEMOBILIZATION<br>PIPE CUT-OFFS | HAUL EXCAVATED SPOIL TO ONSIT BORROW:<br>LOAD, HAUL AND PLACE | DIVISION 2 - SITE WORK<br>EXCAVATION: MACHINE AND HAND<br>EXISTING PLANT WORK | WASTEWATER TREATMENT PLANT (WHTP) MODIFICATIONS<br>CHLORINE CONTACT TANK EXPANSION - CONSTRUCTION<br>OF ONE(1) CONTACT TANK IN ADDITION TO THE<br>EXISTING CONTACT TANKS. COMMON WALL CONSTRUCTION<br>WITH EXISTING, PILING REQUIRED FOR FOUNDATIONS. |                                       | T-DEI CODA COD ALTERNATIVES |
|                    | 1833.0                                                                |                                                                           | 3750.0<br>1.0<br>75.0                                                                                                                                   | 5133.3                                                        | 4666.7                                                                        |                                                                                                                                                                                                                                                       | UNIT                                  |                             |
|                    | Q                                                                     | CY                                                                        | EA LS                                                                                                                                                   | CY                                                            | CY ,                                                                          |                                                                                                                                                                                                                                                       |                                       |                             |
|                    | 0.00                                                                  | 19.35                                                                     | 0.00<br>0.00<br>25.00                                                                                                                                   | 0.00                                                          | 0.00                                                                          |                                                                                                                                                                                                                                                       | UNIT<br>COST                          |                             |
| 4,025.00           | 0.00                                                                  | 2,150.00                                                                  | 0.00<br>0.00<br>1,875-00                                                                                                                                | 0.00                                                          | 0.00                                                                          |                                                                                                                                                                                                                                                       | TOTAL<br>HATERIAL                     |                             |
|                    | 5. 60                                                                 | 6.35                                                                      | 0.00<br>0.00<br>190.49                                                                                                                                  | 4.19                                                          | 6.32                                                                          |                                                                                                                                                                                                                                                       | COST 0                                |                             |
| 75,879.98          | 9,892.71                                                              | 705,50                                                                    | 0.00<br>0.00<br>14,286.47                                                                                                                               | 21,512.25                                                     | 29,483.05                                                                     |                                                                                                                                                                                                                                                       | R<br>TOTAL<br>LABOR                   |                             |
|                    |                                                                       |                                                                           |                                                                                                                                                         |                                                               |                                                                               |                                                                                                                                                                                                                                                       |                                       |                             |
| 0.00               | o.<br>0                                                               | 0.00                                                                      | 0.00                                                                                                                                                    | 0.00                                                          | 0.00                                                                          |                                                                                                                                                                                                                                                       | EQUIPMENT                             |                             |
| 90,625,00          |                                                                       | 0.00                                                                      | 80,625.00<br>10,000.00<br>0.00                                                                                                                          | 0.00                                                          | 0.00                                                                          |                                                                                                                                                                                                                                                       | SUBCONTRACTS<br>TOTAL<br>SUBCONTRACTS |                             |
| 170,529.98         | 9,892.71<br>                                                          | 2,855.50                                                                  | 80,625.00<br>10,000.00<br>16,161.47                                                                                                                     | 21,512.25                                                     | 29,483.05                                                                     |                                                                                                                                                                                                                                                       | I O I A L                             |                             |

.

•

.

ROY F. WESTON, INC. WEST CHESTER, PENNSYLVANIA . .

.

.,

FILENAME: DCORACSO.WK1

### EXHIBIT B TO THE AQUA-DELCORA ASSET PURCHASE AGREEMENT

### ESCROW AGREEMENT

THIS ESCROW AGREEMENT (the "Agreement") is entered into on December \_\_\_\_, 2019 by Aqua Pennsylvania Wastewater, Inc. ("Buyer"), the Delaware County Regional Water Quality Control Authority (transacting as "DELCORA") ("Seller") and Univest Bank and Trust Co., as escrow agent (the "Escrow Agent").

### **BACKGROUND:**

Buyer and Seller have entered into a certain Asset Purchase Agreement dated September 17, 2019 (the "Asset Purchase Agreement"). Upon Closing of the transaction contemplated by the Asset Purchase Agreement, Buyer is required to deposit the amount of \$5,000,000 of the Purchase Price into escrow (the "Escrow Fund") in order to secure Seller's obligations related to Curing title objections that are not Cured as of Closing. Buyer and Seller are entering into this Agreement to establish the terms of the funding, management and distribution of the Escrow Fund as required by the Asset Purchase Agreement. Pursuant to the Asset Purchase Agreement, after the Closing Date and notwithstanding any other provision of the Asset Purchase Agreement, the Escrow Fund is Buyer's sole recourse with respect to providing for Seller's post-Closing obligations pursuant to Article VI of the Asset Purchase Agreement."

Capitalized terms used in this Agreement but not defined herein have the meanings ascribed to them in the Asset Purchase Agreement.

**NOW THEREFORE**, in consideration of the premises and of the mutual covenants contained herein and in the Asset Purchase Agreement, the parties hereto agree as follows:

1. <u>Acceptance by Escrow Agent</u>. The Escrow Agent accepts the appointment as escrow agent pursuant to this Agreement and shall act on the terms and conditions set forth in this Agreement. Escrow Agent shall be paid from the Escrow Fund in accordance with the provisions of <u>Exhibit I</u>.

2. <u>Investment of Escrow Fund</u>. Upon receipt by the Escrow Agent of the Escrow Fund at Closing, the Escrow Agent shall, subject to the terms hereof, retain the Escrow Fund and is empowered and directed to invest the Escrow Fund in a Univest Bank and Trust Co. interest bearing account, as described more fully in <u>Exhibit II</u>. The Escrow Agent shall not be obligated to earn any particular yield or rate of return on the Escrow Fund. All interest and other earnings on the Escrow Funds shall be retained by the Escrow Agent until disbursed in accordance with the terms hereof. The Escrow Agent shall have no liability for any investment losses.

3. <u>Rights and Responsibilities of Escrow Agent</u>. The acceptance by the Escrow Agent of its duties hereunder is subject to the following terms and conditions, which shall govern and control with respect to the Escrow Agent's rights, duties, liabilities and immunities:

a. The Escrow Agent shall act hereunder as a depository only, and it shall not be responsible or liable in any manner whatsoever for the sufficiency, correctness, genuineness or validity of any document furnished to the Escrow Agent or any asset deposited with it. b. The Escrow Agent shall have no duties except those specifically set forth in this Agreement.

c. The Escrow Agent shall have the right any time it deems appropriate to seek an adjudication in a court of competent jurisdiction as to the respective rights of the parties hereto and shall not be held liable by any party hereto for the delay or the consequences of any delay occasioned by such resort to court.

d. The Escrow Agent: (i) shall not be responsible for any of the agreements referred to or described herein, or for determining or compelling compliance therewith, and shall not otherwise be bound thereby; (ii) shall be obligated only for the performance of such duties as are expressly and specifically set forth in this Agreement on its part to be performed, each of which is ministerial (and shall not be construed to be fiduciary) in nature, and no implied duties or obligations of any kind shall be read into this Agreement against or on the part of the Escrow Agent; (iii) shall not be obligated to take any legal or other action hereunder which might in its judgment involve or cause it to incur any expense or liability unless it shall have been furnished with acceptable indemnification; (iv) may rely on and shall be protected in acting or refraining from acting upon any written notice, instruction (including, without limitation, wire transfer instructions, whether incorporated herein or provided in a separate written instruction), instrument, statement, certificate, request or other document furnished to it hereunder and believed by it to be genuine and to have been signed or presented by the proper person, and shall have no responsibility or duty to make inquiry as to or to determine the genuineness, accuracy or validity thereof (or any signature appearing thereon), or of the authority of the person signing or presenting the same, and (v) may consult counsel satisfactory to it, including in-house counsel, and the opinion or advice of such counsel in any instance shall be full and complete authorization and protection in respect of any action taken, suffered or omitted by it hereunder in good faith and in accordance with the opinion or advice of such counsel. In the event of any conflict between the terms and provision of this Agreement, those of the Asset Purchase Agreement, any schedule or exhibit attached to the Agreement, or any other Agreement among the parties, the terms and conditions of this Agreement shall control.

e. The Escrow Agent shall not be liable to anyone for any action taken or omitted to be taken by it hereunder except in the case of the Escrow Agent's gross negligence or willful misconduct as determined by a court of competent jurisdiction as being the primary cause of any loss to either the Seller or Buyer. The Escrow Agent may execute any of its powers and perform any of its duties hereunder directly or through affiliates or agents. The Escrow Agent may consult with accountants and other skilled persons to be selected and retained by it. The Escrow Agent shall not be liable for any action taken, suffered or omitted to be taken by it in accordance with, or in reliance upon, the advice or opinion of any such accountants or other skilled persons. In the event that the Escrow Agent shall receive instructions, claims or demands from any party hereto which, in its opinion, conflict with any of the provisions of this Agreement, it shall be entitled to refrain from taking any action and its sole obligation shall be to keep safely all property held in escrow until it shall be given a direction in writing by the parties which eliminates such conflict or by a final and non-appealable court order. In no event shall the Escrow Agent be liable for indirect, punitive, special or consequential damage or loss (including but not limited to lost profits) whatsoever, even if the Escrow Agent has been informed of the likelihood of such loss or damage and regardless of the form of action.

f. The Escrow Agent is hereby authorized, in making or disposing of any investment permitted by this Agreement, to deal with itself (in its individual capacity) or with any one or more of its affiliates, whether it or such affiliate is acting as a subagent of the Escrow Agent or for any third person or dealing as principal for its own account.

g. Notwithstanding any term appearing in this Agreement to the contrary, in no instance shall the Escrow Agent be required or obligated to distribute any portion of the Escrow Fund (or take other action that may be called for hereunder to be taken by the Escrow Agent) sooner than two (2) business days after (i) it has received the applicable documents required under this Agreement in an acceptable form; or (ii) passage of the applicable time period (or both, as applicable under the terms of this Agreement), as the case may be.

h. Unless and except to the extent otherwise expressly set forth herein, all deposits and payments hereunder, or pursuant to the terms hereof shall be in U.S. dollars.

i. The Escrow Agent shall have the right at any time to resign for any reason and be discharged of its duties as Escrow Agent hereunder by giving written notice of its resignation to the parties hereto at least 30 business days prior to the date specified for such resignation to take effect. All obligations of the Escrow Agent in this Agreement shall cease and terminate on the effective date of its resignation, provided that, prior to the effective date of resignation:

(i) if a successor escrow agent shall have been appointed and written notice thereof shall have been given to the resigning Escrow Agent by Buyer, Seller and the successor escrow agent, then the resigning Escrow Agent shall deliver the Escrow Fund to the successor escrow agent; or

(ii) if a successor escrow agent shall not have been appointed by Buyer and Seller, for any reason whatsoever, the resigning Escrow Agent shall deliver the Escrow Fund to a court of competent jurisdiction and give written notice of the same to the Buyer and Seller.

The resigning Escrow Agent shall be reimbursed from the Escrow Fund for any expenses incurred in connection with its resignation and transfer of the Escrow Fund pursuant to and in accordance with the provisions of this Section.

j. The Seller and Buyer each covenants and agrees, jointly and severally, to indemnify the Escrow Agent (and its directors, officers and employees) and hold it (and such directors, officers and employees) harmless from and against any loss, liability, damage, cost and expense of any nature (including, without limitation, the fees and expenses of outside counsel and experts and their staffs and all expense of document location, duplication and shipment) incurred by the Escrow Agent arising out of or in connection with this Agreement or with the administration of its duties hereunder, including, but not limited to, reasonable attorneys' fees and other costs and expenses of defending or preparing to defend against any claim of liability unless and except to the extent such loss, liability, damage, cost and expense shall be finally adjudicated by a court of competent jurisdiction to have been primarily caused by the Escrow Agent's gross negligence or willful misconduct. The foregoing indemnification and agreement to hold harmless shall survive the resignation of the Escrow Agent or the termination of this Agreement.

k. Each of the Seller and Buyer agrees, jointly and severally, (i) to assume any and all obligations imposed now or hereafter by any applicable tax law with respect to any payment or distribution of the Escrow Fund or performance of other activities under this Agreement, (ii) to instruct the Escrow Agent in writing with respect to the Escrow Agent's responsibility for withholding and other taxes, assessments or other governmental charges, and to instruct the Escrow Agent with respect to any certifications and governmental reporting that may be required under any laws or regulations that may be applicable in connection with its acting as Escrow Agent under this Agreement, and (iii) to indemnify and hold the Escrow Agent harmless from any liability or obligation on account of taxes, assessments, additions for late payment, interest, penalties, expenses and other governmental charges that may be assessed or asserted against the Escrow Agent in connection with, on account of or relating to the Escrow Fund, the management established hereby, any payment or distribution of or from the Escrow Fund pursuant to the terms hereof or other activities performed under the terms of this Agreement, including without limitation any liability for the withholding or deduction of (or the failure to withhold or deduct) the same, and any liability for failure to obtain proper certifications or to report properly to governmental authorities in connection with this Agreement, including costs and expenses (including reasonable attorneys' fees and expenses), interest and penalties. The foregoing indemnification and agreement to hold harmless shall survive the resignation of the Escrow Agent or the termination of this Agreement.

4. <u>Statements</u>. During the term of this Agreement, the Escrow Agent shall provide Seller and Buyer with monthly statements containing the beginning balance in the escrow account as well as all principal and income transactions for the statement period. The Escrow Agent shall be forever released and discharged from all liability with respect to the accuracy of such statements, except with respect to any such act or transaction as to which Seller or Buyer shall, within 90 days after the furnishing of the statement, file written objections with the Escrow Agent.

5. <u>Preparation of List of Open Title Objections & Missing Easements</u>. At or before Closing, a written list containing: (1) all Title Objection Items which have not been Cured as of Closing; (2) all items from Buyer's Easement Objection Notice which have not been Cured as of Closing ("Easement Objection Items"); and (3) all Missing Easements as of Closing, shall be appended to this Agreement as <u>Schedule A</u>.

6. <u>Obligations of Seller Secured</u>. Subject to Sections 7 through 9 below, the Escrow Agent shall retain the Escrow Fund for a period of five (5) years following Closing Date (the

"Term") to fund Buyer's assumption of the responsibilities under Article VI of the Asset Purchase Agreement.

7. <u>Distribution Procedures</u>. Except as specifically provided in this Agreement, no distribution from the Escrow Fund shall be made except as follows:

a. upon written notice executed jointly (or in counterparts) by Seller and Buyer (a "Joint Instruction"); or

b. as may be necessary to comply with any final and unappealable judgment, decree or order of a court of competent jurisdiction.

8. <u>Periodic Distributions to Buyer</u>. During the Term, Buyer and Seller shall, on a quarterly basis, issue a Joint Instruction to the Escrow Agent to make a distribution to Buyer for Buyer's unreimbursed Covered Expenses. For purposes of this Section 8, the following terms shall have the following meanings:

"*Conveyance Instrument*" means a written instrument signed by all parties required to effectuate its terms, in form and substance acceptable to Buyer in its reasonable discretion and in form acceptable for recording in the Delaware County Recorder of Deeds, which memorializes Buyer's property interest required to maintain the Acquired Asset in the location in which it is situated.

"*Covered Expenses*" means any and all expenses paid or payable by Buyer to third-parties in securing a Conveyance Instrument, including, without limitation, consideration paid to any counterparty to such Conveyance Instrument to acquire the interest granted therein, payments to engineers, attorneys and other vendors reasonably required to secure such Conveyance Instrument, and all costs of litigation, condemnation and any fees related to the foregoing.

9. <u>Final Distribution</u>. Within ten (10) days following the earlier to occur of: (1) the Escrow Agent's receipt of written notice from one of the parties advising the Escrow Agent that the Term has expired; and (2) the parties' Joint Instruction to terminate the Escrow Fund because all of Seller's obligations under Article VI of the Asset Purchase Agreement secured by this Agreement have been discharged, the Escrow Agent shall release the balance of the Escrow Fund to Seller or as the Seller may otherwise direct in writing.

10. <u>Disbursement Instructions</u>. In the event of any doubt or uncertainty by Escrow Agent as to the propriety of making periodic or final disbursements of the Escrow Fund, the Escrow Agent may retain the Escrow Fund, without penalty or liability, until the parties provide joint written instructions for the disbursement of the Escrow Fund or until a final adjudication is made as to its proper disposition. In this regard, Escrow Agent shall be entitled to rely absolutely on the advice of its counsel.

11. <u>Tax Reporting</u>. The Seller and Buyer hereby represent to the Escrow Agent that (a) there is no sale or transfer of a "United States Real Property Interest" as defined under Section 897(c) of the Internal Revenue Code, as the same may be amended from time to time (the "IRC") in the underlying transaction giving rise to this Agreement, and (b) such underlying transaction does not constitute an installment sale requiring tax reporting or withholding of imputed interest or original issue discount to the Internal Revenue Service ("IRS") or other taxing authority. The Seller and Buyer each agree that, for tax reporting purposes, all interest or other income earned from the investment of the Escrow Fund shall be reported by the Escrow Agent as allocated to the Seller, and reported, as and to the extent required by law, by the Escrow Agent to the IRS, or any other taxing authority on IRS Form 1099 or 1042S (or other appropriate form) as income earned from the Escrow Fund by the Seller whether or not said income has been distributed during such year.

12. <u>Certification of Taxpayer Identification Number</u>. Each of the Seller and Buyer agree to provide the Escrow Agent with a certified tax identification number by signing and returning a Form W-9 to the Escrow Agent upon the execution and delivery of this Agreement. Each of the Seller and Buyer understand that, in the event their tax identification numbers are not certified to the Escrow Agent, the IRC, may require withholding of a portion of any interest or other income earned on the investment of the Escrow Fund.

13. <u>Amendment; Waiver</u>. The parties may amend this Agreement only by the parties' written agreement that identifies itself as an amendment to this Agreement. Any waiver of, or consent to depart from, the requirements of any provision of this Agreement will be effective only if it is in writing and signed by the parties giving it, and only in the specific instance and for the specific purpose for which it has been given. No failure on the part of any party to exercise, and no delay in exercising, any right under this Agreement will operate as a waiver of such right. No single or partial exercise of any such right shall preclude any other or further exercise of such right or the exercise of any other right.

14. <u>Discharge</u>. The Escrow Agent may be discharged from its duties as Escrow Agent under this Agreement upon thirty (30) days written notice from Buyer and Seller jointly and upon payment of any and all fees and indemnity amounts due to Escrow Agent. In such event, the Escrow Agent shall be entitled to rely on instructions from Buyer and Seller jointly as to the disposition and delivery of the Escrow Fund.

15. <u>Execution</u>. This Agreement may be executed in any number of counterparts which, taken together, is one and the same agreement. This Agreement becomes effective when it has been executed by each party and delivered to all parties, provided, however, that this Agreement shall be effective as between Buyer and Seller when it has been executed by Buyer and Seller and delivered to each of Buyer and Seller. To evidence the fact that it has executed this Agreement, a party may send a copy of its executed counterpart to the other parties by facsimile transmission. Such party is deemed to have executed and delivered this Agreement on the date it sent such facsimile transmission. In such event, such party shall forthwith deliver to the other parties an original counterpart of this Agreement executed by such party.

16. <u>Severability</u>. If any term, provision, covenant or restriction contained in this Agreement is held by a court of competent jurisdiction to be invalid, void or unenforceable, the remainder of the terms, provisions, covenants and restrictions contained in this Agreement shall remain in full force and effect and in no way be affected, impaired or invalidated.

17. <u>Entire Agreement</u>. This Agreement is the entire agreement among the parties pertaining to the subject matter hereof and supersedes all prior agreements, negotiations,

discussions and understandings, written or oral, among the parties. There are no representations, warranties, conditions or other agreements, whether direct or collateral, or express or implied, that form part of or affect this Agreement, or that induced any party to enter into this Agreement or on which reliance is placed by any party, except as specifically set forth in this Agreement. The parties acknowledge and agree that (i) each has substantial business experience and is fully acquainted with the provisions of this Agreement, (ii) the provisions and language of this Agreement have been fully negotiated and (iii) no provision of this Agreement shall be construed in favor of any party or against any party by reason of such provision of this Agreement having been drafted on behalf of one party rather than the other parties.

Governing Law; Jurisdiction. The laws of the Commonwealth of Pennsylvania 18. (without giving effect to its conflicts of law principles) govern all matters arising and relating to this Agreement, including torts. The parties irrevocably agree and consent to the jurisdiction of the United States District Court for the Eastern District of Pennsylvania and the Court of Common Pleas of Delaware County, Pennsylvania, for the adjudication of any matters arising under or in connection with this Agreement. Any action initiated in court shall be filed and litigated (including all discovery proceedings) exclusively in the United States District Court for the Eastern District of Pennsylvania and the Court of Common Pleas of Delaware County, Pennsylvania, and each party irrevocably submits to the exclusive jurisdiction of such courts in any such suit, action or proceeding. Service of process, summons, notice or other document by mail to such party's address set forth herein shall be effective service of process for any suit, action or other proceeding brought in any such court. EACH PARTY ACKNOWLEDGES AND AGREES THAT ANY CONTROVERSY WHICH MAY ARISE UNDER THIS AGREEMENT THE OTHER TRANSACTION DOCUMENTS IS LIKELY TO INVOLVE OR COMPLICATED AND DIFFICULT ISSUES AND, THEREFORE, EACH SUCH PARTY IRREVOCABLY AND UNCONDITIONALLY WAIVES ANY RIGHT IT MAY HAVE TO A TRIAL BY JURY IN RESPECT OF ANY LEGAL ACTION ARISING OUT OF OR RELATING TO THIS AGREEMENT, THE OTHER TRANSACTION DOCUMENTS OR THE TRANSACTIONS CONTEMPLATED HEREBY OR THEREBY. EACH PARTY TO THIS AGREEMENT CERTIFIES AND ACKNOWLEDGES THAT (A) NO REPRESENTATIVE OF ANY OTHER PARTY HAS REPRESENTED, EXPRESSLY OR OTHERWISE, THAT SUCH OTHER PARTY WOULD NOT SEEK TO ENFORCE THE FOREGOING WAIVER IN THE EVENT OF A LEGAL ACTION, (B) SUCH PARTY HAS CONSIDERED THE IMPLICATIONS OF THIS WAIVER, (C) SUCH PARTY MAKES THIS WAIVER VOLUNTARILY, AND (D) SUCH PARTY HAS BEEN INDUCED TO ENTER INTO THIS AGREEMENT BY, AMONG OTHER THINGS, THE MUTUAL WAIVERS AND CERTIFICATIONS IN THIS SECTION.

19. <u>Parties in Interest; Third Party Beneficiaries</u>. Except as hereinafter provided, this Agreement is not intended to and shall not be construed to create upon any Person other than the parties any rights or remedies hereunder.

20. <u>Successors and Assigns</u>. No party to this Agreement may assign any right or delegate any performance under this Agreement without the prior written consent of the other parties. A purported assignment or purported delegation without prior written consent is void.
21. <u>Specific Performance</u>. Irreparable damage would occur if any provision of this Agreement were not performed in accordance with the terms of this Agreement. Any party may seek specific performance of the terms of this Agreement, in addition to any other remedy to which they are entitled at law or in equity if such party has performed in accordance with the terms of this Agreement.

22. <u>Headings</u>. The headings in this Agreement are for convenience of reference only and shall neither be considered as part of this Agreement, nor limit or otherwise affect the meaning hereof.

23. <u>Notices</u>. All notices, requests, demands and other communications required or permitted under this Agreement shall be in writing and shall be deemed to have been duly given, made and received only when delivered (personally, by courier service such as Federal Express, or by other messenger) to the address set forth below:

### in the case of the Seller:

DELCORA 100 East Fifth Street Chester, PA 19013 <u>Attention</u>: Executive Director

with a copy to:

DELCORA 100 East Fifth Street Chester, PA 19013 <u>Attention</u>: Solicitor

### in the case of the Buyer:

Aqua Pennsylvania, Inc. 762 W. Lancaster Avenue Bryn Mawr, PA 19010 <u>Attention</u>: President

with a copy to:

Aqua Pennsylvania, Inc. 762 W. Lancaster Avenue Bryn Mawr, PA 19010 Attention: General Counsel in the case of Escrow Agent:

Univest Bank and Trust Co. 16 Harbor Place PO Box 197 Souderton, PA 18964 <u>Attention</u>: Jenna S. Kinzie, VP – Deposit Operations & Support Manager

with a copy to:

Univest Bank and Trust Co. 14 North Main Street PO Box 64197 Souderton, PA 18964 <u>Attention</u>: Megan Duryea Santana, General Counsel

Any party may alter the address to which communications or copies are to be sent by giving notice of such change of address in conformity with the provisions of this paragraph for the giving of notice.

### Signature page follows.

#### **Execution Version**

IN WITNESS WHEREOF, the parties hereto have duly executed this Agreement as of the date first above written.

THE DELAWARE COUNTY REGIONAL WATER QUALITY CONTROL AUTHORITY

By: Bobut Stilles

Printed: Bibert J Willer Its: Executive Director

AQUA PENNSYLVANIA WASTEWATER, INC.

By:

Printed: <u><u><u>IlAR</u></u><u>A. Lvul</u> Its: President</u>

ATTEST: By: Mal Mcw II Name: Its: **ATTEST:** 

By: \_\_\_\_\_ Name: Its:

### **ESCROW AGENT:**

UNIVEST BANK AND TRUST CO., as Escrow Agent

| Bv: |                                                                                                                 |      |
|-----|-----------------------------------------------------------------------------------------------------------------|------|
|     | the second se | <br> |

Printed:

Title: \_\_\_\_\_\_

4823-2994-8846

IN WITNESS WHEREOF, the parties hereto have duly executed this Agreement as of the date first above written.

## THE DELAWARE COUNTY REGIONAL WATER QUALITY CONTROL AUTHORITY

# AQUA PENNSYLVANIA WASTEWATER, INC.

By: \_\_\_\_\_

Printed: \_\_\_\_\_\_ Its: Executive Director By: \_\_\_\_\_

Printed: \_\_\_\_\_\_ Its: President

## ATTEST:

### ATTEST:

| By:   |  |
|-------|--|
| Name: |  |
| Its:  |  |

By: \_\_\_\_\_\_Name: \_\_\_\_\_\_Its:

## **ESCROW AGENT:**

UNIVEST BANK AND TRUST CO., as Escrow Agent

By: <u>Megan Santana</u> Printed: <u>Megan Santana</u> Title: <u>SEVP, CRO and GC</u>

# **SCHEDULE A**\*

# I. Title Objection Items

II. Easement Objection Items

III. Missing Easements

\*to be populated on or before Closing as Buyer proceeds through title review / abstracting process.

## EXHIBIT I

#### Fee Schedule

#### Annual Administration Fee ..... WAIVED

The Administration Fee covers our usual and customary ministerial duties, including record keeping, distributions, document compliance and such other duties and responsibilities expressly set forth in the governing documents for each transaction. Payable upon closing and annually in advance thereafter, without pro-ration for partial years.

#### **Extraordinary Services and Out-of Pocket Expenses**

Any additional services beyond our standard services as specified above, and all reasonable out-of-pocket expenses including attorney's or accountant's fees and expenses will be considered extraordinary services for which related costs, transaction charges, and additional fees will be billed at the Escrow Agent's then standard rate. Disbursements, receipts, investments or tax reporting exceeding 25 items per year may be treated as extraordinary services thereby incurring additional charges. The Escrow Agent may impose, charge, pass-through and modify fees and/or charges for any account established and services provided by the Escrow Agent, including but not limited to, transaction, maintenance, balance-deficiency, and service fees and other charges, including those levied by any governmental authority.

#### **Disclosure & Assumptions**

- Please note that the fees quoted are based on a review of the transaction documents provided and an internal due diligence review. Escrow Agent reserves the right to revise, modify, change and supplement the fees quoted herein if the assumptions underlying the activity in the account, level of balances, market volatility or conditions or other factors change from those used to set our fees.
- The Escrow Fund shall be continuously invested in a Univest Bank and Trust Co. interest bearing account.
- Payment of the invoice is due upon receipt.

# EXHIBIT II

## Terms of Escrow Account

The Escrow Fund shall be continuously invested in a Univest Bank and Trust Co. interest bearing account.

# EXHIBIT C TO THE AQUA-DELCORA ASSET PURCHASE AGREEMENT

### **BILL OF SALE**

**THIS BILL OF SALE** is made as of this \_\_\_\_\_ day of \_\_\_\_\_\_, 2020, by and between The Delaware County Regional Water Quality Control Authority (the "Seller") and Aqua Pennsylvania Wastewater, Inc. (the "Buyer").

#### **BACKGROUND:**

**A.** Seller and Buyer entered into that certain Asset Purchase Agreement dated September 17, 2019, as amended on February 24, 2020, (the "Agreement"), pursuant to which Seller has agreed, among other things, to sell, transfer, convey, assign and deliver to Buyer and Buyer has agreed to purchase from Seller the Acquired Assets, including, without limitation, all of its personal property and fixed assets including equipment, machinery, vehicles, and auxiliary equipment as more thoroughly described on <u>Exhibit "A"</u> attached hereto and incorporated herein by reference ("Personal Property").

**B.** Seller desires hereunder to transfer and assign to Buyer the Personal Property pursuant to the Agreement and Buyer desires to accept the sale, transfer, conveyance, assignment and delivery thereof.

**C.** All capitalized terms not defined herein shall have the meaning ascribed to such term in the Agreement.

**NOW, THEREFORE,** in consideration of the mutual covenants contained in the Agreement and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, and intending to be legally bound hereby, the parties hereto agree as follows:

1. <u>Transfer and Assignment</u>. Seller hereby sells, transfers, assigns, delivers and conveys to Buyer, its successors and assigns, all of Seller's right, title and interest in, to and under the Personal Property.

2. <u>Acceptance of Transfer and Assignment</u>. Buyer hereby accepts the transfer, conveyance, assignment and delivery of the Personal Property.

3. <u>Absolute Transfer</u>. It is the intention of Seller to transfer absolute title of the Personal Property to Buyer.

4. <u>Counterparts</u>. This Bill of Sale may be executed in any number of counterparts, each of which shall be deemed to be an original, and all of which shall together constitute one and the same instrument. This Bill of Sale shall be binding when one or more counterparts hereof, individually or taken together, shall bear the signatures of all of the parties reflected on this Bill of Sale as the signatories.

5. <u>Governing Law</u>. This Bill of Sale shall be governed by and construed in accordance with the laws of the Commonwealth of Pennsylvania without giving effect to the conflicts of laws principles thereof.

6. <u>Binding Effect</u>. This Bill of Sale shall be binding upon and inure to the benefit of Seller and Buyer and their respective successors and assigns.

[Remainder of Page Intentionally Blank; Signature Page Immediately Follows]

**IN WITNESS WHEREOF,** the undersigned have caused this Bill of Sale to be duly executed on the day and year first above written.

### **SELLER:**

## DELAWARE COUNTY WATER QUALITY CONTROL AUTHORITY

| By:    |      | _ |
|--------|------|---|
| Name:  | <br> |   |
| Title: |      |   |

### **BUYER:**

# AQUA PENNSYLVANIA WASTEWATER, INC.

| By:    |  |
|--------|--|
| Name:  |  |
| Title: |  |

# EXHIBIT A

Personal Property

# EXHIBIT D TO THE AQUA-DELCORA ASSET PURCHASE AGREEMENT

4

## ASSIGNMENT AND ASSUMPTION AGREEMENT

**THIS ASSIGNMENT AND ASSUMPTION AGREEMENT** (this "<u>Assignment</u>") is entered into effective as of this \_\_ day of \_\_\_\_\_, 2020, by and between The Delaware County Regional Water Quality Control Authority (the "<u>Assignor</u>") and Aqua Pennsylvania Wastewater, Inc. (the "<u>Assignee</u>").

A. Assignor, as seller, and Assignee, as purchaser, are parties to that certain Asset Purchase Agreement dated September 17, 2019, as amended on February 24, 2020, (the "<u>Purchase Agreement</u>"), pursuant to which Assignor has agreed, among other things, to sell, transfer, convey, assign and deliver to Assignee and Assignee has agreed to purchase from Assignor the Acquired Assets.

B. The Purchase Agreement contemplates that at Closing, Assignor will assign to Assignee and Assignee will accept and assume, all of Assignor's right, title and interest in and to any and all Assigned Contracts and Authorizations and Permits (the "<u>Assigned Business</u> <u>Deliverables</u>") necessary for the operation of the Acquired Assets.

C. Unless herein otherwise defined, all terms defined in the Purchase Agreement shall have the meanings ascribed to them in the Purchase Agreement when used in this Assignment.

NOW, THEREFORE, in consideration of mutual promises contained herein and other good and valuable consideration, the receipt and sufficiency of which are hereby acknowledged, and intending to be legally bound, the parties hereto agree as follows:

1. <u>Assignment of Assigned Business Deliverables</u>. To the extent assignable, Assignor hereby assigns, transfers, sets over, conveys and delivers to Assignee, and Assignee hereby accepts, all of Assignor's right, title and interest in and to all Assigned Business Deliverables, together with all rights and privileges of any nature thereunder accruing to Assignor on or after the date hereof.

2. <u>Indemnification by Assignor</u>. Assignor hereby agrees to indemnify, defend and hold harmless Assignee and the Buyer Indemnified Persons from and against any and all claims for Losses in accordance with Section 8.02 of the Purchase Agreement.

3. <u>Indemnification by Assignee</u>. Assignee hereby agrees to indemnify, defend and hold harmless Assignor and the Seller Indemnified Persons from and against any and all claims for Losses in accordance with Section 8.03 of the Purchase Agreement.

4. <u>Counterparts</u>. This Assignment may be executed in any number of identical counterparts, each of which may be executed by any one or more of the parties hereto, all of which shall together constitute one and the same instrument, and shall be binding and effective when each party hereto has executed and delivered to the other party at least one counterpart. Counterparts delivered via email (.pdf) or facsimile shall be deemed to be originals for all purposes.

5. <u>Successors and Assigns</u>. The terms and provisions of this Assignment shall be binding upon and inure to the benefit of the respective parties hereto, and their respective successors and assigns.

6. <u>Governing Law</u>. This Assignment shall be governed by, and construed and enforced in accordance with, the laws of the Commonwealth of Pennsylvania (without giving effect to Pennsylvania's principles of conflicts of law) and the applicable laws of the United States of America.

7. <u>Further Assurances</u>. Assignor acknowledges and agrees that it shall use commercially reasonable efforts to assist Assignee with notice to the other contract parties under the Assigned Contracts with respect to the execution and effect of this Assignment. Without limiting the foregoing, Assignor acknowledges and agrees that it shall use commercially reasonable efforts as requested to by Assignee to effectuate the assignment of any additional contracts, permits, authorizations, licenses and warranties not covered hereunder.

8. <u>Absolute Assignment</u>. It is the intention of Seller to transfer absolute title of the Assigned Business Deliverables to Buyer, its successors and assigns, free of any redemption by Seller or its successors and assigns.

## [REMAINDER OF PAGE INTENTIONALLY BLANK; SIGNATURE PAGE IMMEDIATELY FOLLOWS]

IN WITNESS WHEREOF, the parties hereto have caused this Assignment to be duly executed as of the day and year first written above.

## **ASSIGNOR:**

# DELAWARE COUNTY WATER QUALITY CONTROL AUTHORITY

| By:      |  |
|----------|--|
| Name:    |  |
| Title: _ |  |

## **ASSIGNEE:**

# AQUA PENNSYLVANIA WASTEWATER, INC.

| By:      |  |
|----------|--|
| Name:    |  |
| Title: _ |  |

# MAY 1, 1973 AGREEMENT BETWEEN BOROUGH OF RUTLEDGE, CENTRAL DELAWARE COUNTY AUTHORITY AND DELCORA

#### CENTRAL DELAWARE COUNTY AUTHORITY

-Босиды́ RIDLEY PARK SWARTHMORE PROSPECT PARK RUTLEDGE MORTON 212 B Unity Terrace Rutledge, Pennsylvania 19070 Telephone (610) 544-9944 Fax (484) 472-8643

Tounukijus RIDLEY SPRINGFIELD NETHER PROVIDENCE MARPLE NEWTOWN UPPER PROVIDENCE EDGMONT

March 19, 2020

Via E-Mail teresa@tntlawfirm.com

Teresa L, Thomas, Legal Assistant Thomas, Niesen & Thomas, LLC 212 Locust Street, Suite 302 Harrisburg, PA 17101

RE: Right to Know Request dated 02/27/2020 Agency Initial Response Date: 03/03/2020 Agency Final Response Date: 03/19/2020

Dear Ms. Thomas:

This notice is provided to you pursuant to Section 902 of the Pennsylvania Right to Know Law. CDCA is in receipt of the Right to Know request from February 27, 2020 in which you request a copy of the "Agreement dated May 1, 1973, between Central Delaware County Authority, the Borough of Rutledge and the Delaware County Regional Water Quality Control".

Your request for a copy of the agreement has been granted. The copy is attached to this email.

If you have any questions or concerns, please feel free to contact me.

Very truly yours,

James R, Kern, P.E. Right-To-Know Officer Authority Secretary

Enclosure: Rutledge-CDCA-DELCORA.pdf

Cc: J. Adam Matlawski, Esq.

5/1/73

#### AGREEMENT

THIS AGREEMENT is made as of the first day of May of 1973 between **RETAINTY** a **DEDUCH** of the Commonwealth of Pennsylvania ("Municipality"), Central Delaware County Authority ("CDCA"), a Pennsylvania municipality authority, and Delaware County Regional Water Quality Control Authority ("DELCORA"), also a Pennsylvania municipality authority.

#### RECITALS

A. CDCA was organized by various Townships and Boroughs in Delaware County, and certain other municipalities have subsequently become members of it. Municipality is now a member.

B. Pursuant to various agreements between CDCA and its members, including especially an Agreement dated October 22, 1951 as previously amended and supplemented (the "Existing Members' Agreement"), CDCA has constructed and now operates for its members a system of interceptor sewers and pumping stations (collectively the "Existing Conveyance System") and a sewage treatment plant (the "Existing Plant").

C. By orders of the State Department of Environmental Resources dated May 5, 1972 various municipal authorities and industries in Delaware County, including CDCA, have been ordered to negotiate with DELCORA for the future treatment of sewage in regional facilities, specifically in the case of CDCA, Darby Creek Joint Authority and Muckinipates Authority (collectively, the "Eastern Authorities") at the Southwest Treatment Plant of the City of Philadelphia. Pursuant to said orders and various engineering studies and regulatory approvals DELCORA has entered into separate but similar Service Agreements with each of the Eastern Authorities, including one dated as of April 1, 1973 between DELCORA and CDCA (the "Service Agreement") a copy of which has been delivered to Municipality.

D. DELCORA is also about to enter into an agreement with the City of Philadelphia (the "Philadelphia Agreement") for treatment by said City of sewage from the Eastern Delaware County Service Area of DELCORA (as defined in the Service Agreement), which includes the area served by the Eastern Authorities. Said Agreement will be approved by CDCA prior to its execution by DELCORA.

E. The Service Agreement between DELCORA and CDCA continues for a term of forty-nine years, with subsequent renewal rights, but the corporate existence of CDCA terminates prior thereto.

F. DELCORA intends to issue shortly its sewer revenue bonds to finance construction of the initial part of the new conveyance system required to transport sewage to the City of Philadelphia, and the term of said bond issue will exceed the present remaining life of CDCA. Although said bond issue will be indirectly secured in part by the County of Delaware, in order to obtain the best possible rate of interest on said bonds for the benefit of all parties being served by the facilities so financed, it has been determined to enter this Agreement and similar agreements with other members of CDCA and the members of the other Eastern Authorities.

G. It is not intended by this Agreement to alter the present ownership of the Existing Conveyance System or the Existing Plant (except for a small tract to be conveyed for a pumping station) or the operation of the Existing Conveyance System.

-2-

H. The abovementioned orders and the Service Agreement require that operation of the Existing Plant be terminated as soon as sufficient capacity becomes available in the regional facilities pursuant to the Philadelphia Agreement.

NOW, THEREFORE, the parties hereto, intending to be légally bound, hereby agree as follows:

1. Municipality hereby approves execution of the Service Agreement by CDCA, and recognizes DELCORA as the sole treatment agency for sewage emanating from the portion of Municipality's area served by the Existing Conveyance System.

2. DELCORA agrees to accept all sewage delivered to it from Municipality through the Existing Conveyance System and transport it to the City of Philadelphia for treatment, all pursuant to the Service Agreement and the Philadelphia Agreement.

3. Municipality agrees to pay to CDCA at least quarterly for prompt repayment to DELCORA, upon receipt of bills from CDCA, Municipality's proportionate share of the amounts payable by CDCA under the Service Agreement, said proportion to be based upon the same formula as that specified in Article III of the Existing Members' Agreement. For purposes of said Agreement, the aforementioned payments will be deemed to be payments toward the cost of operation of the Existing Plant, but until termination of operation thereof will be in addition to the payments for said Plant, under the Existing Members' Agreement.

4. Pending the negotiation and execution of subsequent agreements concerning the Existing Conveyance System and related matters, Municipality hereby approves an extension of the terms of the Existing Members' Agreement and of the corporate existence of CDCA to December 31, 2013, and will promptly enact an Ordinance authorizing

-3-

an appropriate amendment of CDCA's Articles of Incorporation to carry out such extension of corporate existence. Upon the execution of such subsequent agreements in form satisfactory to Municipality, then the terms of existence of CDCA and of the Existing Members! Agreement may be terminated.

5. Amounts payable by Municipality hereunder will be payable solely from the current revenues of the Municipality derived from the imposition of sewer rents and charges and other revenues from operation of the existing sewage collection system of Municipality, as it may be enlarged from time to time. Municipality agrees to continue operating said system and impose and collect rents and charges for the use thereof which together with all other revenues from operation of said system will be sufficient to provide in each year 110% of the cost of operating said system, providing for any debt service and making the payments due under this Agreement and any other agreements relating to sewage service. To the extent that sewer revenues of Municipality are insufficient in any year to comply with the foregoing requirement, Municipality will promptly increase its sewer rentals and charges by an amount sufficient to provide in the immediately following year for the deficiency and future compliance with such requirement.

6. Municipality hereby consents to the transfer by CDCA to DELCORA, for a nominal consideration of land for a pumping station adjacent to the Existing Plant not exceeding two acres plus necessary easements.

7. Except as provided in the prior sections hereof this Agreement shall not modify or affect any of the existing obligations between Municipality and CDCA, which will continue to own and operate all of its existing properties, except as specified above.

-4-

IN WITNESS WHEREOF, the parties hereto have executed this Agreement by their duly authorized officers as of the date set forth above.

•5-

[SEAL] Attest: Borth aus

[SEAL]

ىسىدى. جۇڭ ئارى ئېچە

Attest:

ecres

[SEAL]

Attest:

Shimon /

KUTI ONGA pality Tame D. Mi Jan By: 1/2 when

CENTRAL DELAWARE COUNTY AUTHORITY

By: and mark

DELAWARE COUNTY REGIONAL WATER QUALITY CONTROL AUTHORITY

lak By

# SEPTEMBER 18, 2017 AGREEMENT BETWEEN DELCORA AND TINICUM TOWNSHIP

# AGREEMENT FOR CONTRACT MANAGEMENT OF FACILITIES

THIS AGREEMENT, made and entered into this  $18^{+h}$  day of <u>September</u>, 2017, by and between the DELAWARE COUNTY REGIONAL WATER QUALITY CONTROL AUTHORITY, a municipal authority in the Commonwealth of Pennsylvania, with offices at 100 East Fifth Street, Chester, Pennsylvania 19013 (hereinafter referred to as "MANAGER") and TINICUM TOWNSHIP, a first class township in the Commonwealth of Pennsylvania, with offices at 629 N. Governor Printz Boulevard, Essington, Pennsylvania 19029 (hereinafter referred to as "OWNER").

**RECITALS:** 

a. OWNER is the owner of the facilities described in Exhibit A.

b. OWNER desires to engage MANAGER to provide contract management services for the Facilities as more fully described herein and in accordance with the terms and conditions of this Agreement.

c. MANAGER desires to provide such services to OWNER in accordance with the terms and conditions of this Agreement.

d. OWNER and MANAGER have full legal capacity and authority to enter into this Agreement.

**NOW THEREFORE,** in recognition of the above recitals, in exchange for the mutual consideration set forth herein, and intending to be legally bound, the parties agree as follows:

#### ARTICLE #1 - DEFINITIONS:

For purposes of this Agreement, the following terms shall have the meaning set forth below:

1.1 "Facilities" means those described in Exhibit A.

1.2 "Services" mean the contract management services set forth in Article 2 hereof.

#### ARTICLE #2 - SCOPE OF SERVICES:

+

¢

In consideration of OWNER's timely payment of the compensation set forth herein, MANAGER will provide OWNER with the contract management services set forth in Exhibit A, attached hereto and made a part hereof, in accordance with the terms and conditions set forth herein. MANAGER's provision of contract management services as required by the terms of this Contract shall be performed in accordance with all applicable codes, laws, rules, regulations and ordinances of the Environmental Protection Agency and the Pennsylvania Department of Environmental Protection and the terms and conditions of the National Pollutant Discharge Elimination System permit for the Facilities.

#### ARTICLE #3 - OWNER'S RESPONSIBILITIES:

The OWNER shall provide MANAGER with the items and assistance set forth in Exhibit B, attached hereto and made a part hereof.

### ARTICLE #4 - TERM OF AGREEMENT:

4.1 This Agreement shall become binding when signed by the authorized representatives of both parties hereto. MANAGER shall commence providing the Services on June 1, 2017. This Agreement shall remain in effect unless extended or terminated as provided herein.

4.2 This Agreement shall be automatically renewed for subsequent one (1) year terms, unless one of the parties gives written notice to the other at least sixty (60) days prior to the termination date contained herein.

4.3 Either party may terminate this Agreement by providing written notice to the other party at least ninety (90) days in advance.

## ARTICLE #5 - COMPENSATION AND PAYMENT:

5.1 In consideration of services to be provided by MANAGER as set forth herein, OWNER shall pay MANAGER the compensation set forth in Exhibit C, attached hereto and made a part hereof, in accordance with the payment provisions set forth in Exhibit C.

5.2 MANAGER will invoice OWNER for the Services in accordance with the payment provisions of Exhibit C. Invoices shall be paid by OWNER within 30 days of the invoice date. No payment to MANAGER shall be withheld by OWNER for any reason while MANAGER is providing the Services.

5.3 Interest at the rate of one half (0.5%) percent per month shall accrue and be paid by OWNER on any amounts not paid in accordance with the payment provisions of this Agreement. MANAGER's right to interest on any unpaid amounts shall be in addition to any other rights MANAGER has under this Agreement or at law.

### ARTICLE #6 - OWNERSHIP OF FACILITIES:

۰ ۱

6.1 Notwithstanding anything contained in this Agreement, OWNER shall be and remain the owner of the Facilities and any capital additions made thereto and paid for directly by OWNER.

#### ARTICLE #7 - INDEMNIFICATION AND INSURANCE:

7.1 MANAGER agrees to indemnify, defend and hold OWNER and its elected and appointed officials, contractors, employees, directors and agents harmless from and against liability damages, costs, expenses, and attorneys' fees from personal injury, including death, or property damage to the extent caused by the negligence, recklessness and/or intentional act(s) and/or omission(s) or other fault of MANAGER, its employees, subcontractors and/or agents in connection with the performance of the services hereunder. OWNER agrees to indemnify, defend and hold MANAGER and its officers, employees, subcontractors, directors, and agents harmless from and against liability damages, costs, expenses, and attorneys' fees from personal injury, including death, or property damage to the extent caused by the negligence, recklessness and/or intentional act(s) and/or omission(s) or other fault of method.

contractors, employees and/or agents. In the event that both MANAGER and OWNER are finally determined to have jointly caused any liability for claims or damages as aforesaid, such liability and damages shall be apportioned between the parties in accordance with their pro-rata percentage of fault.

.

7.2 MANAGER warrants that it will exert the degree of care and skill in the performance of the Services ordinarily exercised, under similar circumstances, by similar professionals at the time such Services are rendered. THIS WARRANTY IS IN LIEU OF AND EXCLUDES ALL OTHER WARRANTIES, WHETHER EXPRESSED OR IMPLIED, BY OPERATION OF LAW OR OTHERWISE, INCLUDING ANY WARRANTY OF FITNESS FOR PARTICULAR PURPOSE, IF APPLICABLE.

7.3 OWNER will obtain and maintain adequate property insurance, naming the MANAGER as an additional insured, on the Facilities and any other insurance coverage required under any financing agreement or regulatory requirements with respect to the Facilities and operation thereof. OWNER will provide MANAGER with a certificate of insurance evidencing such coverage upon MANAGER's request.

7.4 MANAGER shall maintain the following types and amounts of insurance during the term of this Agreement. The OWNER shall be named as an additional insured in the applicable liability insurance policies for claims arising out of MANAGER's negligence:

| <u>Type of Coverage</u>     | Minimum Limits |
|-----------------------------|----------------|
| Worker's Compensation       | Statutory      |
| General Liability           | \$2,000,000    |
| Excess General Liability    | \$5,000,000    |
| Automobile Liability        | \$500,000      |
| Excess Automobile Liability | \$5,000,000    |

#### Pollution Control and Liability

.

MANAGER will provide OWNER with a certificate of insurance evidencing the required coverage upon OWNER's request.

7.5 The insurance obligations of both parties shall become effective upon execution of this Agreement.

7.6 Notwithstanding anything in this agreement to the contrary, MANAGER shall have no responsibility and OWNER shall indemnify MANAGER against any claims arising from the release of Hazardous Substances or pursuant to or under the Environmental Laws from or related to the operation of the Facilities, except to the extent that any such claim relates to Hazardous Substances introduced to the Facilities or violation of Environmental Laws as a result of the negligent or intentional acts or omissions of MANAGER or those under MANAGER'S direction in operation of the Facilities under this Agreement. OWNER represents and warrants that the Facilities and the operation thereof are now and at all times through the commencement date of this Agreement shall remain in compliance with the Resource Conservation and Recovery Act, the Comprehensive Environmental Response, Compensation and Liability Act of 1980, as amended, the Superfund Amendments and Reauthorization Act of 1986, the Federal Water Pollution Control Act and all other federal, state and local laws relating to pollution or protection of the environment, including, without limitation, laws relating to emissions, discharges, releases or threatened releases of industrial, toxic or hazardous substances or wastes or other pollutants, contaminants, petroleum products or chemicals (collectively, "Hazardous Substances") into the environment (including without limitation, ambient air, surface water, ground water, land surface or subsurface strata) or otherwise relating to the manufacture, processing, distribution, use, treatment, storage, disposal, transport or handling of Hazardous Substances (the "Environmental Laws"). OWNER covenants and agrees at its sole cost and expense, to protect, defend, indemnify, release and hold MANAGER harmless from and against any and all losses, claims, damages, suits, penalties, administrative orders imposed

upon or incurred by or asserted against MANAGER and directly or indirectly arising out of or in any way relating to any one or more of the following (except to the extent that same relate to Hazardous Substances introduced to the Facilities as a result of the negligent or intentional acts or omissions of MANAGER or those under MANAGER'S direction in operation of the Facilities under this Agreement): (a) the past, present or future presence, release or threatened release of any Hazardous Substances in, on, above, or under the Facilities; (b) any past, present or threatened noncompliance or violations of any Environmental Laws (or permits issued pursuant to any Environmental Law) in connection with the Facilities or operations thereof or thereon; (c) any legal or administrative processes or proceedings or judicial proceedings in any way connected with any matter addressed in this Agreement; (d) any personal injury, wrongful death, or property or other damage arising under any statutory or common law or tort law theory concerning Hazardous Substances; and (e) any misrepresentation or inaccuracy in any representation or warranty or material breach or failure to perform any covenants or other obligations pursuant to this Agreement. The term "Release" with respect to any Hazardous Substance includes but is not limited to any release, deposit, discharge, emission, leaking, leaching, spillage, seeping, migrating, ejecting, pumping, pouring, emptying, escaping, dumping, disposing or other movement of Hazardous Substances.

## ARTICLE #8 - TERMINATION:

· ``

8.1 The failure of either party to comply with the terms of this Agreement shall constitute a default. Upon default by one party, the other party may send a Notice of Termination, in accordance with Article 17. Such notice shall clearly specify the nature of the default and provide the defaulting party with ninety (90) days to cure the default. If the default is capable of being cured within ninety days but is not cured within ninety days, this Agreement shall terminate at midnight of the ninetieth day following receipt of the Notice. In the case of a default that cannot be cured within ninety days, this Agreement shall continue for a reasonable period of time beyond the ninetieth day if the defaulting party has commenced and is diligently pursuing a cure. Evidence of such cure shall be provided from the party determined to be in default to the satisfaction of the other party.

8.2 In the event of termination of this Agreement under the above paragraph, OWNER shall pay MANAGER for the Services provided and invoiced by MANAGER up to the effective date of termination.

#### ARTICLE #9 - SERVICE DELAYS:

Neither OWNER nor MANAGER shall be liable for any loss or damage, failure or delay in rendering any Service or performing any obligation required under this Agreement resulting from a strike, work stoppage, or slowdown on the part of OWNER's employees and from any cause beyond the reasonable control of OWNER or MANAGER including, but not limited to: acts of God; acts or omissions of civil or military authority; acts or omissions of contractors or suppliers; fires; floods; epidemics; quarantine restrictions; severe weather; strikes; embargoes; wars; political strife; riots; delays in transportation; or fuel, power, materials, or labor shortages.

#### ARTICLE #10 - REPRESENTATIVES:

Each party hereto will designate a person to serve as that party's Authorized Representative. All requests for changes to this Agreement shall be transmitted between the Authorized Representatives of the parties. The initially-designated Authorized Representatives for the parties shall be:

#### For OWNER:

Tinicum Township 629 N. Governor Printz Boulevard Essington, PA 19029 Attn: Township Manager

#### For MANAGER:

Delaware County Regional Water Quality Control Authority 100 E. 5<sup>th</sup> Street Chester, PA 19013

#### Attn: Executive Director

Either party may change its Authorized Representative at any time by written notice to the other party.

## ARTICLE #11 - INDEPENDENT CONTRACTOR:

The parties agree and acknowledge that MANAGER is and shall act as an independent contractor in performing under this Agreement, not as an Employee of OWNER. MANAGER shall not be an agent of OWNER, and nothing in this Agreement shall be construed as creating a partnership, joint venture or similar relationship of any kind between OWNER and MANAGER. MANAGER shall be responsible for payment, including any withholding, of any and all taxes payable by MANAGER and, as applicable, any person employed by MANAGER, with respect to monies paid to MANAGER by OWNER in consideration for service performed hereunder.

#### ARTICLE #12 - RECORDS:

1

.:

MANAGER shall maintain a record of the tasks performed for the Facilities in accordance with the Services described herein. These records shall be provided to the OWNER monthly. OWNER shall be the custodian of these records. MANAGER shall make these records available for inspection at all reasonable times during normal daylight office hours and upon twenty four (24) hours advanced notice to MANAGER.

### ARTICLE #13 - CHANGES:

13.1 This Agreement may only be modified by way of a written document executed by both parties.

13.2 In the event that any changes in the scope of operations of the Facilities shall occur, including but not limited to a change in applicable governmental regulations, permit requirements, reporting requirements, changes in influent or effluent volume or characteristics, or changes to conditions affecting the Facilities or the Services that impact on the cost or liability of providing the Services hereunder, MANAGER will make a written request to OWNER for a

modification to the Compensation due MANAGER or to other provisions of this Agreement. Such notice shall specify the change required, the reasons therefore, and the effective date thereof. OWNER shall review such request within sixty days after receipt thereof and either approve or disapprove such request by written notice to MANAGER within such sixty-day period. Such additional compensation shall be retroactive.

13.3 Any change properly justified and requested by MANAGER which is necessary to meet the terms and conditions of this agreement including, but not limited to, permit requirements, and submitted in accordance with the terms and conditions of this agreement that may be disapproved by OWNER within such sixty-day period, may, at the discretion of MANAGER, result in the termination of this agreement by MANAGER in accordance with the termination provisions of this agreement.

#### ARTICLE #14 - WAIVER:

. . .

.:

The failure of either party to enforce, at any time, the provisions of this Agreement shall not constitute a waiver of such provisions in any way or the right of OWNER or MANAGER at any time to avail themselves of such remedies as either may have for any breach or breaches of such provisions.

#### ARTICLE #15 - ASSIGNMENT:

Neither party shall assign its rights, interests, or obligations under this Agreement without the expressed written consent of the other party. Any assignment made without such written consent shall be void; however, such consent shall not be unreasonably withheld.

### ARTICLE #16 - APPLICABLE LAW/VENUE:

This Agreement shall be subject to and construed in accordance with the laws of the Commonwealth of Pennsylvania. MANAGER and OWNER agree to comply with all applicable laws and regulations related to the Facilities and the operations thereof. The parties consent to the exclusive jurisdiction of the Court of Common Pleas of Delaware County, Pennsylvania for the resolution of any dispute arising hereunder or in any way related hereto, and suit to resolve any such dispute may only be initiated in that Court.

#### ARTICLE #17 - NOTICES:

,

•:

17.1 Any written notices required to be given hereunder shall be delivered by hand, or sent by overnight courier or registered U.S. mail, return receipt requested, and addressed to the receiving party as follows:

#### To OWNER:

Tinicum Township 629 N. Governor Printz Boulevard Essington, PA 19029 Attn: Township Manager

#### To MANAGER:

Delaware County Regional Water Quality Control Authority 100 E. 5<sup>th</sup> Street Chester, PA 19013 Attn: Executive Director

17.2 All notices shall be deemed made when actually delivered to the receiving party. Acceptance by the receiving party of any such notice shall constitute a waiver of any and all defects of delivery of said notice.

#### ARTICLE #18 - ENTIRE AGREEMENT:

This Agreement shall constitute the entire and integrated understanding between the parties and supersedes all prior and contemporaneous negotiations, representations and agreements, whether written or oral, with respect to the subject matter herein.

IN WITNESS WHEREOF, the parties hereto have signed this Agreement as of the date set forth above.

;

TINICUM TOWNSHIP

1

В

By: <u>Authorized Officer</u> Thoms <u>Einvarisfoforo</u> (Print Name)

Flainer

DELAWARE COUNTY REGIONAL WATER QUALITY CONTROL AUTHORITY

B١

Witness Christopher Lenton

Solut Adultur Executive Director By: \_

Robert J. Willert

## EXHIBIT A - SCOPE OF SERVICES

MANAGER will provide the following basic services:

12

1.1 MANAGER shall provide the services of qualified personnel, including at least two DEP certified operators as required by Act 11 and the DEP Operator Certification Program, who shall be responsible for the direct supervision and management of all operation and maintenance activities associated with the Facilities. These duties and responsibilities shall include:

a. Provision of, and posting of, the appropriate number of valid operator certifications as required by PADEP;

b. Ensure proper staffing of an adequate number of on-call personnel, for 24 hours per day emergency response;

c. Ensure proper staffing and contract services for the uninterrupted operation and maintenance of the facilities in accordance with all regulatory requirements and industry guidelines;

d. Attend OWNER's meetings when requested;

e. Prepare and submit to OWNER each month, a monthly client report for the previous month including a fully completed DMR for effluent with cover letter, daily flow data, analytical results, daily O&M log, and an operations summary;
f. Meet with regulatory officials, on behalf of the OWNER, during normal business hours;

, ,

g. Meet with OWNER's representatives during normal business hours;

h. Prepare and submit all required regulatory agencies' monthly reports;

i. Perform routine inspections of the Facilities to make process and/or equipment adjustments for proper operations and maintenance. This inspection includes but is not limited to, pump stations, chemical feed units, instrumentation, and pumps;

j. MANAGER shall advise the OWNER of capital improvements which are needed or required for the operation and maintenance of the Facilities in accordance with permit requirements and industry guidelines;

In accordance with the above, MANAGER agrees to provide contract management services for the following, defined as the FACILITIES:

Tinicum Township Wastewater Treatment Plant, Pump Stations, and Collection System

# EXHIBIT B - OWNER'S RESPONSIBILITIES

1. OWNER warrants that it has and shall maintain all permits, easements, license, and equipment warranties for the mutual benefit of both parties and necessary for the proper operation of the Facilities.

1.1

2. OWNER shall purchase and insure that standard fire insurance policies are maintained including extended coverage to the full insurable value of the Facilities as mutually agreed between the parties and shall name OPERATOR as an additional insured according to its insurable interest under these policies during the term of this Agreement.

3. OWNER shall pay for all capital improvements (capital improvements are defined herein as those purchases or improvement(s) and equipment or structures which may be depreciated, which extends service life and which represents a non-routine type of purchase).

4. Should Facilities hydraulic, organic, and/or inorganic loadings exceed treatment plant design parameters and treatment or should the influent to the treatment plant contain contaminants which violate the OWNER Ordinances, and/or Federal, State, and Local Municipal Ordinances, MANAGER will continue to perform duties as identified in the scope of services but does not accept responsibility for associated effluent characteristics or damages associated therewith. MANAGER shall advise the OWNER of the abnormal situation and recommend an action plan.

5. In the event that labor stoppages by employee groups or any other person(s) not employed by MANAGER cause a disruption with MANAGER employees working at the facilities, the OWNER, with MANAGER assistance,

shall seek appropriate legal injunctions or court orders. During such a designated period, MANAGER shall operate the Facilities on a best efforts basis until labor relations are normalized. MANAGER shall not be liable for any fines or penalties associated with its responsibilities under this Agreement resulting from such labor stoppage or disruption until labor stoppages are restored.

,

6. OWNER hereby authorizes MANAGER to purchase emergency capital expense items which are identified and defined for the purpose of this Agreement as those items which are necessary for the safety of workers or the protection of public health and safety. MANAGER shall provide notice to OWNER of such emergency at the time of such event necessitating such purchase or as soon as practicable thereafter. OWNER will reimburse MANAGER for such emergency purchases.

7. OWNER shall provide for all utilities (phone, electricity, gas, etc.) as needed for the operation of the Facilities.

8. OWNER shall be responsible for the costs of routine supplies, chemicals, sludge hauling, generator maintenance, and meter calibration.

9. OWNER shall pay for all labor and materials necessary for the proper operation and maintenance of the Facilities in accordance with all regulatory requirements and industry standards.

# **EXHIBIT C - COMPENSATION**

### 1. MONTHLY OPERATING FEE

- a) The OWNER shall pay MANAGER an hourly fee of \$65 for all hours billed for the direct supervisions and management of the operation and maintenance of the Facilities as defined in this Agreement, with adjustments and additions as contained herein, based on a starting date of June 1, 2017.
- b) This fee shall be payable within 30 days of the invoice date. For any portion of a full operating month, the fee shall be apportioned appropriately. Any additional compensation which has been agreed to in writing by the parties to this Agreement, shall be added to the monthly contract fee in effect at the time such adjustment was deemed necessary.

# 2. ADJUSTMENTS TO MONTHLY OPERATING FEE

a) Starting on June 1, 2018 and continuing until the contract expires, the hourly fee shall be increased by 3% annually.

### 3. ADMINISTRATIVE FEE

a) MANAGER shall be entitled to an additional fee of ten percent (10%) of the cost of any services, equipment, or material procured

by MANAGER on behalf of OWNER.

i.

.

۱

• 1

.

.



Eckell, Sparks, Levy, Auerbach, Monte, Sloane, Matthews & Auslander, P.C.

Direct Extension: 246 E-Mail: <u>sauslander@eckellsparks.com</u> File Number: 20080-0480

01-1219

October 11, 2017

Re:

Dear Adam:

J. Adam Matlawski, Esquire McNichol, Byrne & Matlawski, P.C. 1223 N. Providence Road Media, PA 19063

Tinicum Township – DELCORA

appropriate, returning a fully executed copy to me.

# ATTORNEYS AT LAW

MURRAY S. ECKELL\* W. DONALD SPARKS\* DAVID E. AUERBACH JOSEPH L. MONTE, JR.\*1 JOSEPH E. LASTOWKA, JR.\* LEONARD A. SLOANE<sup>2</sup> GUY F. MATTHEWS<sup>13</sup> SAM S. AUSLANDER\* STEPHEN J. POLAHA CRAIG B. HUFFMAN<sup>2</sup> PATRICK T. HENIGAN<sup>2</sup> JAY M. LEVIN<sup>2</sup> MICHAEL J. DAVEY<sup>2</sup> MATTHEW J. BILKER<sup>2</sup> RACHAEL L. KEMMEY DANIEL R. COLEMAN CHRISTOPHER M. BROWN

#### \*Of Counsel

NICHOLAS D. VADINO, JR. 1961-1977

<sup>1</sup>LL.M. Taxation <sup>2</sup>Admitted to New Jersey <sup>3</sup>Admitted to New York

SSA/kao

Enclosures

cc: David D. Schreiber, Township Manager (w/o encl.) (Via E-Mail) Tinicum Township Board of Commissioners (w/o encl.) (Via E-Mail) Elaine M. Brolley, Township Secretary (w/o encl.) (Via E-Mail)

Please be advised that the Tinicum Township Board of Commissioners at their regularly scheduled

Public Meeting on September 18, 2017, approved the Agreement for Contract Management of Facility

with the Delaware County Regional Water Quality Control Authority. I am pleased to provide you

with three (3) copies of the Agreement for Contract Management of Facility signed by Tinicum

Township. I would appreciate you having the authorized Representative of DELCORA sign where

Thank you for your cooperation and assistance in bringing this matter to a satisfactory conclusion.

Very truly yours,

SAM S. AUSLANDER

Eckell, Sparks, Levy, Auerbach, Monte,

Sloane, Matthews & Auslander, P.C.

Please Reply to Media Office Address 300 W. State Street, Suite 300 = P.O. Box 319 = Media, PA 19063 610-565-3700 = Fax: 610-565-1596 = www.eckellsparks.com

Additional Offices

113 E. Evans Street - Matlack Bldg., Suite D-1 - West Chester, PA 19380 - 610-431-4650

By:

Should you have any questions, please do not hesitate to contact me.

C

#### VERIFICATION

I, William C. Packer, Vice President - Controller of Aqua Pennsylvania, Inc., hereby state that the facts set forth in the foregoing letter of Counsel of Aqua Pennsylvania Wastewater, Inc., dated May 6, 2020, addressing information requests of the Bureau of Technical Utility Services in the matter at PaPUC Docket No. A-2019-3015173, are true and correct to the best of my knowledge, information and belief and that I expect to be able to prove the same at a hearing held in this matter. I understand that the statements herein are made subject to the penalties of 18 Pa. C.S. § 4904 (relating to unsworn falsification to authorities).

William C. Packer

William C. Packer Vice President – Controller Aqua Pennsylvania, Inc.

Dated: May 6, 2020

#### **CERTIFICATE OF SERVICE**

I hereby certify that I have this 6<sup>th</sup> day of May, 2020, served a true and correct copy of the

foregoing Letter and Additional Information, upon the persons and in the manner set forth below:

#### VIA ELECTRONIC MAIL

Sean Donnelly, P.E., Supervisor Water/Wastewater Section Bureau of Technical Utility Services Pennsylvania Public Utility Commission sdonnelly@pa.gov

Erin L. Fure Daniel A. Asmus Assistant Small Business Advocates Office of Small Business Advocate efure@pa.gov dasmus@pa.gov Christine Maloni Hoover Erin L. Gannon Senior Assistant Consumer Advocates Harrison G. Breitman Santo G. Spataro Assistant Consumer Advocates choover@paoca.org egannon@paoca.org hbreitman@paoca.org sspataro@paoca.org

Gina L. Miller, Prosecutor Erika L. McLain, Prosecutor Bureau of Investigation and Enforcement Pennsylvania Public Utility Commission ginmiller@pa.gov ermclain@pa.gov

Thomas T. Niesen PA Attorney ID No. 31379