BEFORE THE PENNSYLVANIA PUBLIC UTILITY COMMISSION

Act 129 Energy Efficiency and Conservation Program Phase III

Docket No. M-2014-2424864

COMMENTS OF ENERGY EFFICIENCY FOR ALL

Submitted to the Tentative Implementation Order Entered March 11, 2015

Todd Nedwick
Housing and Energy Efficiency Policy Director
National Housing Trust
1101 30th Street, NW, Ste. 100A
Washington, D.C. 20007
202-333-8931 x128
tnedwick@nhtinc.org

On behalf of Energy Efficiency for All

Dated: April 27, 2015

I. <u>INTRODUCTION</u>

These comments are submitted by the Energy Efficiency for All ("EEFA") coalition pursuant to the Pennsylvania Public Utility Commission's ("Commission") invitation for interested parties to comment upon its Tentative Implementation Order regarding Act 129 Energy Efficiency and Conservation Program Phase III. ¹

EEFA is a partnership of national and Pennsylvania organizations that share a common goal of ensuring that the owners and tenants of multifamily housing can access energy efficiency services to reduce the energy consumption of these buildings and to preserve existing affordable housing for economically vulnerable households. Improving the energy efficiency of affordable housing can 1) provide direct economic benefits to these households, 2) materially improve quality of life by addressing health and safety issues that may be present, and 3) can help to preserve the affordability of commercially-metered affordable multifamily housing, at a time when tenant wages are not keeping up with increasing rental costs.

Comprehensive energy efficiency upgrades routinely identify and resolve health and safety concerns such as those related to inadequate ventilation, mold/mildew, and poorly drafting combustion appliances that could pose carbon monoxide threats. Lower income populations are also commonly more vulnerable to both the Clean Air Act criteria pollutants that result from electric generation and to the potential consequences of climate change. EEFA strives to empower this sector to play a more prominent role in reducing pollutants attributable to electric energy—the number one source of carbon emissions in the state.²

¹ See Tentative Implementation Order Re: Act 129 Energy Efficiency and Conservation Program Phase III, Docket No. M-2014- 2424864 (Published in the Saturday, March 28, 2015 PA Bulletin, Vol. 45, No.13).

²Pa. Dep't Environmental Protection, Climate Change Advisory Committee, Greenhouse Gas Inventory Update

EEFA is comprised of the following organizations: ACTION-Housing, Inc., The Energy Foundation, The National Housing Trust, The Natural Resources Defense Council, The Pennsylvania Utility Law Project, and Regional Housing Legal Services.

EEFA thanks the Commission for the opportunity to provide these comments.

II. <u>DISCUSSION</u>

EEFA applauds the Commission for its work to increase energy efficiency in Pennsylvania and for taking steps to ensure that there is an appropriate focus on the cost-effective savings opportunities available through thoughtful approaches to reducing the energy use in multifamily homes. In its Tentative Order, the Commission affirmed its prior position established in Phase II regarding the inclusion of programs dedicated to providing energy efficiency to the multifamily sector, stating that it "...asks that the companies continue those [multifamily] programs, or similar ones, for Phase III." ³ EEFA appreciates the Commission's interest in building on the foundation it created in Phases I and II, and supports the Commission's directive to the utilities to continue to offer multifamily efficiency programs in Phase III. However, EEFA respectfully suggests that the existing multifamily programs can and should be improved, and makes the following observations and specific recommendations in furtherance of that goal:

1. EEFA supports the Commission proposal to create a working group "...to address the many barriers that exist to serving the multifamily housing segment" ⁴ and

(Dec. 9, 2014), available at

http://files.dep.state.pa.us/Air/AirQuality/AQPortalFiles/Advisory%20Committees/CCAC/2014/12-9-14/Greenhouse Gas Inventory summary (11-10-14).pdf.

³ Tentative Implementation Order, p. 66-67

⁴ Tentative Implementation Order, p. 67

suggests that the Commission should provide explicit direction that the working group should be convened as quickly as possible with an express directive to develop approaches to key multifamily barriers in time for them to be reflected in the Phase III Plans that the utilities will develop.

- 2. EEFA supports inclusion of the proposed 5.5% low income carve-out in the final order, along with the requirement for a carve-out from direct install measures. However EEFA respectfully suggests that a direct-install carve-out of 3% will advance the desired outcomes of the Commission more effectively than the 2% carve-out proposed in the Tentative Order. EEFA recommends that the Commission continue to allow savings from qualifying units of low income residentially-metered multifamily housing to contribute to meeting these targets.
- 3. EEFA recommends that the Commission define "direct-installed measures" for the purpose of assessing compliance with the proposed 3% direct-install requirement as follows:

For the purpose of assessing compliance with this requirement, a direct-installed measure is any durable efficiency measure that is installed at the direction of the utility program in homes, including owner and/or tenant occupied single family homes and multifamily units, where the incomes of the occupants meet low income qualification criteria.

4. To assure that a reasonable portion of the low-income multifamily projects are comprehensive in nature, meaning that they "...provide more of a whole-house and/or weatherization (insulation, air-sealing) type of program focus," EEFA recommends that the Commission require utilities to achieve average electric savings

⁵ Tentative Implementation Order, p. 56

- at the project/building level of 12% for both the residentially-metered and commercially-metered low income multifamily projects, as determined by dividing the estimated weather-normalized total building annual electricity savings by the weather-normalized total building historic annual electricity consumption.
- 5. EEFA recommends that the Commission require that no less than one-third of the proposed 3% low income direct install carve-out, or 1% of the total portfolio savings, be derived from residentially-metered affordable multifamily properties.
- 6. In addition, in recognition of the significant energy savings potential in commercially-metered multifamily housing, EEFA recommends that the Commission require the utilities to deliver energy efficiency services that capture no less than an additional 1% of its total program savings from the combination of savings in living units and common areas of commercially-metered affordable multifamily housing, to ensure that the efficiency of the entire property is increased.
- 7. EEFA proposes that savings from commercially-metered multifamily housing should not count towards the Government/Educational/Nonprofit (G/E/NP) carve-out unless that carve-out is increased significantly from the proposed 3.5%. While EEFA has previously proposed that savings from commercially-metered multifamily housing should count towards the G/E/NP carve-out, that proposal was premised on expectations of a 10% G/E/NP carve-out. Given the Commission's proposal that only 3.5% of savings should come from the G/E/NP sector, we disagree that the savings from commercially-metered multifamily housing projects should count towards the G/E/NP low income carve-outs, as it would diminish the utilities' focus on other important sectors of the low income and G/E/NP markets. Should the Commission

- decide to increase the G/E/NP carve-out to the 10% suggested by statute, EEFA's prior recommendation that savings from commercially-metered affordable multifamily housing apply to meeting the carve-out would stand.
- 8. EEFA recognizes the critical importance of building new multifamily housing to the most efficient cost-effective levels, both in the affordable and market-rate sectors. In order to assure that Act 129 energy efficiency programs provide appropriate support for new construction projects, EEFA urges the Commission to direct the utilities to design their residential new construction energy efficiency program offerings such that they provide suitable services to the multifamily market, rather than assume that a one-size fits all residential new construction program that is designed around single family homes will suffice.
- 9. Finally, EEFA recommends that the Commission institute policies for allowable budget rollover that direct the utilities to, within the constraints of other Commission directives, use a portion of unexpended funds from prior years to increase savings in subsequent years, while not exceeding allowable annual energy efficiency collections.

Detailed discussion of these recommendations follows.

1. EEFA supports the Commission proposal to create a working group "...to address the many barriers that exist to serving the multifamily housing segment" and requests that the Commission provide explicit direction to convene the working group as quickly as possible after the entry of its Phase III Implementation Order, as it will allow the group to develop approaches to key multifamily barriers and issue recommendations in time for utilities to adopt the recommendations in their Phase III

Plans.

EEFA applauds the opportunity provided by the Commission for stakeholders and utilities to proactively work together to address the broad range of barriers to greater participation in multifamily energy efficiency, including identifying approaches that will increase cost-effectiveness and increase savings for low income affordable housing occupants. EEFA sees the creation of this working group as a step toward more streamlined, comprehensive, consistent, and effective multifamily energy efficiency programs for the state—and indeed, the need is great. In its introduction to its Assessment of the Pennsylvania Housing Finance Agency's ARRA-Funded Weatherization Program, Preservation through Smart Rehab, the Center for Building Performance and Diagnostics at Carnegie Mellon University reported that "The [Preservation through Smart Rehab] program itself, which predates ARRA, is designed to preserve multifamily affordable rental units in the state and in the post-2008 economy, its mission is critical. In Allegheny County alone, 70% of the housing units with rent below \$700 per month have disappeared in the last ten months, replaced with far more expensive rentals, although median income in the county has not changed.... Pennsylvania and most other states in the US are experiencing a similar demand for affordable multifamily units and an important aspect of their affordability is manageable utility bills." ⁶

The good news is, as demonstrated by EEFA's multifamily potential study, and as supported by the SWE's potential study addressing residentially-metered multifamily housing, there are abundant opportunities to cost-effectively capture energy efficiency to

⁶ Baird, Nina J., et al. Energy and Water Savings in Multifamily Affordable Housing: Assessment of the Pennsylvania Housing Finance Agency's ARRA-Funded Weatherization Program, Preservation through Smart Rehab. Center for Building Performance and Diagnostics, Carnegie Mellon University, 2014. p.13

the benefit of the occupants of affordable housing, the providers of affordable housing, and Pennsylvania's ratepayers as a whole. EEFA's report, *The Potential for Energy Savings in Affordable Multifamily Housing*, estimates that there are in excess of 300,000 affordable multifamily living units in Pennsylvania, with a total cost-effective cumulative annual energy savings potential of 532 GWh by 2034.⁷

For the reasons stated above, EEFA supports the Commission proposal to create a working group "...to address the many barriers that exist to serving the multifamily housing segment" ⁸ and suggests that this working group should be convened as quickly as possible, with an express directive to develop approaches to key multifamily barriers in time to be reflected in the Phase III Plans that the utilities will develop. EEFA requests that the Commission require the Bureau of Consumer Services (BCS) to convene an initial meeting of the working group no later than June 15, 2015, and to require the BCS, on behalf of the working group, to submit a report to the Commission no later than September 15, 2015 that outlines initial recommendations for inclusion in the utility plans in at least the following areas:

- a. Design a framework for providing unified multifamily efficiency program services to utility customers through specific customer points of contact at each utility regardless of whether the multifamily property is served by residential meters, commercial meters, or a combination of both;
- b. Develop approaches to the multifamily market that assure comprehensive,

⁷ Optimal Energy, Inc. *Potential for Energy Savings in Affordable Multifamily Housing*. February 19, 2015. p.22. See Appendix A for the full report.

⁸ Tentative Implementation Order, p. 67. Note that while EEFA is more narrowly focused on improving the energy efficiency of affordable multifamily housing, it recognizes the importance of, and supports a working group effort focused more broadly on overcoming barriers to energy efficiency across all sectors of multifamily housing, including both new construction and retrofit opportunities.

enduring savings for a substantive percentage of participants. In these comments, EEFA suggests that requiring 12% average savings can assure that at least a portion of low income multifamily projects will have measures installed that go beyond lighting and low-flow showerheads, but specific program approaches to support achieving this target will be required;

- c. Develop systems and agreements to assure closer, productive coordination between Pennsylvania's Weatherization Assistance Providers, utility-run universal service programs, and Act 129 low income utility programs to streamline service delivery, increase cost-effectiveness, and improve customer experiences;⁹
- d. Develop recommendations for improved coordination with low income multifamily programs administered by the Pennsylvania Housing Finance Agency;
- e. Develop a comprehensive listing of affordable housing providers in Pennsylvania so that outreach and recruitment can be systematically provided through a combined effort by the utilities, building on PHFA's inventory of affordable multifamily projects.¹⁰

The report filed by the working group should also provide an opportunity for alternative points of view to be expressed where consensus in the group has not been reached.

EEFA further proposes that the multifamily working group should develop a priority

⁹ Note that in its plan for the 2015-16 program year DCED included language calling for creation of a subcommittee to consider how to enable subgrantees to move forward with multifamily weatherization on a larger scale.

¹⁰ http://www.phfa.org/applications/multifamily inventory.aspx

list of issues to address. It should also develop a timeline and process for addressing those issues, as well as a process for providing ongoing review and input to the utilities as programs are implemented to assure that goals are met. EEFA recommends that the working group provide quarterly updates of its work and progress to the Commission.

2. EEFA supports inclusion of the proposed 5.5% low income carve-out in the final order, and respectfully requests that 3% of the carve-out come from direct install measures. EEFA recommends that the Commission continue to allow savings from qualifying units of low income residentially-metered multifamily housing to contribute to meeting these targets.

EEFA applauds the Commission for increasing the Phase II 4.5% low income carve-out to 5.5% and for instituting a direct install carve-out for low income households. Low income families do not have the same opportunities to participate in utility energy efficiency programs that are afforded to middle-income and more affluent families, most obviously because the costs of participation are simply too great. For this reason, EEFA applauds the Commission for recognizing that the current allocation methodology is flawed in that the assumption that low income Pennsylvanians participate in non-low income programs is unverifiable. EEFA agrees that the low income carve-out, with a specific carve out for durable, direct-installed measures, is needed to assure that low income ratepayers are indeed receiving benefits from the Act 129 programs.

Further, EEFA appreciates the intent of the Commission to "...shift the focus for the low income sector from indirect measures, to those directly-installed measures that

will provide more of a whole-house and/or weatherization...type of emphasis." ¹¹ EEFA finds that longer-lived measures, such as insulation and air—sealing and heating/cooling efficiency improvements that are installed through a comprehensive approach are most likely to provide significant, lasting benefits. This shift will be necessary to obtain the deep, long-lived savings that will keep Pennsylvania's affordable housing affordable. Multifamily program approaches that rely only on low-cost, short-lived measures such as simple light bulb change-outs, and that fail to maximize the savings that can result from each interaction with multifamily building owners, run the risk of increasing transaction costs for any subsequent participation by that building owner—perhaps to the point that subsequent projects are no longer attractive financially, or in the worst case not even cost-effective. Comprehensive program approaches assure that the maximum savings possible will result from program interactions with building owners, leading to lower overall costs relative to the energy saved, and greater benefits all around.

The need to move beyond low cost lighting measures is illustrated in the EEFA affordable multifamily potential study. In assessing the savings opportunity for the affordable multifamily sector, Optimal Energy found that the opportunity for electrical savings in this housing stock is diverse, across several critical end uses including heating and cooling, plug loads, and water heating. This finding supports the Commission's conclusion that the types of savings that have historically been achieved will be insufficient to meet its' objectives for the low income sector.

¹¹ Tentative Implementation Order, p. 56

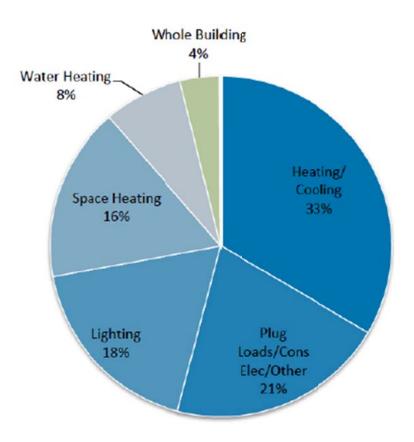


Figure 1: cumulative electric energy savings by end Use, 2034¹²

The proposed requirement for direct-installed measures will provide greater assurance that low income ratepayers are receiving Act 129 benefits, but EEFA respectfully suggests that more specificity is needed to move the low income programs further in the direction of more durable, whole-house type savings. To this end, EEFA suggests two enhancements to the Order that it believes will provide greater assurance that the Commission's intent will be met: These proposed enhancements include 1) a broad definition for direct-installed measures that is focused on prioritizing measures that are verified to be installed to the direct benefit of low income households regardless of the

¹² Optimal Energy, Inc. p. 16. Note that this represents opportunities nationally, not specifically for Pennsylvania. See Appendix A for the report.

comprehensiveness of savings, and; 2) a recommendation for an average savings target for low income multifamily efficiency projects that would assure that at least a portion of the projects move beyond non-comprehensive approaches (such as directly installing efficient light bulbs) to more comprehensive approaches that address heating, cooling, building shell, and water heating efficiencies. ¹³

3. EEFA recommends that the Commission define "direct-installed measures" for the purpose of assessing compliance with the proposed 3% direct-install requirement as follows:

For the purpose of assessing compliance with this requirement, a direct-installed measure is any durable efficiency measure that is installed at the direction of the utility program in homes, including owner and/or tenant occupied single family homes and multifamily units, where the incomes of the occupants meet low income criteria.

EEFA suggests that the Commission adopt this definition of "direct-install" as part of its Phase III Order. The term "direct-install" is widely used in the energy efficiency industry without a precise definition and is subject to interpretation. The proposed definition will support the first aspect of what EEFA sees as a two-fold value in the direct-install requirement proposed by the Commission for Phase III: providing significantly greater assurance that the benefits from these measures will indeed flow directly to low income Pennsylvanians. The approach from Phase II of allowing an allocation method to be used to determine full compliance with the low income savings target does not provide the same level of assurance.

However, EEFA believes that the current language in the Tentative Order is

¹³ Please note that EEFA believes that an appropriate average savings target could be developed for single family homes as well.

insufficient for the second policy outcome that the commission seeks to achieve through the direct install provision, to "...shift the focus for the low-income sector from indirect measures, such as home energy reports, efficiency kits, giveaways at community events..." Indeed, there is evidence to support this assertion in PECO's Quarterly Report to the PA PUC-Program Year 6 Quarter 2 in which it states in regard to the Smart Multi-Family solutions (SMFS) program that "As of this quarter, Phase II has reached its mid-point and the SMFS program is yet to see any participation in its prescriptive channel" but reports that it has had significant success in installing direct-install lighting measures. In other words, PECO would be able to meet the direct-install requirement in the Tentative Order with the SMFS program as it is currently run, with no insulation, air sealing, or heating/cooling measures being installed. It would not need to change anything about the measures that it is installing.

PPL offers the Master Metered Low-Income Multifamily Housing Program (MMMF) with a program design that also includes a variety of prescriptive measures. However, in an evaluation of the program conducted by The Cadmus Group it is noted that "In PY5, the vast majority of installed measures were lighting- both in common areas and tenant units." EEFA applauds PPL for addressing both common area and in-unit opportunities through this program, but it seems clear that PPL's current MMMF program could also meet the Commission's direct-install requirement without increasing the proportion of the types of weatherization measures that the Commission is seeking to encourage.

-

¹⁴ Tentative Implementation Order, p. 56

¹⁵ PECO Quarterly Report to the PA PUC-Program Year 6 Quarter 2. p. 8

¹⁶ The Cadmus Group, Inc. *Process Evaluation Report: PPL Electric EE&C Plan, Program Year Five.* November 13, 2014. p.156

There are numerous approaches the Commission could take to assure greater comprehensiveness in the low income programs, including, but not limited to the following:

- Require a comprehensive assessment as part of program participation;
- Require that the program provide incentives for all cost-effective measures;
- Require that a combination of measures be installed. For example, require that
 50% of projects that are applied to meeting the direct-install provision include
 both air-sealing and insulation measures or a combination of insulation and
 heating/cooling system efficiency measures;
- Require that project investments for measures other than efficient light bulbs
 and water conservation devices meet a minimum threshold;
- Require that program savings meet a minimum per unit threshold.

There are merits and weaknesses in each of these examples, and in EEFA's view it would require a thoughtful work group, made of up stakeholders from various professional fields, to determine the best program approaches for Pennsylvania that would lead to the desired result without introducing undesirable consequences. Determining the best program design to achieve more comprehensive savings is an activity that EEFA believes is best suited to the multifamily working group. However, EEFA proposes below that one simple way to achieve this policy goal in the low income multifamily sector would be to institute an average project savings requirement for those projects that are applied to meeting the direct-install provision of the order. A similar approach could be used for the single family sector. This would not preclude the need for thoughtful program design, but it would shift that detailed discussion to the working group while still

providing a clear signal to the utilities regarding expectations for greater comprehensiveness in multifamily housing.

4. To assure that a reasonable portion of the low income multifamily projects are comprehensive in nature, meaning that they "...provide more of a whole-house and/or weatherization (insulation, air-sealing) type of program focus," EEFA recommends that the Commission require that the utilities achieve average electric savings at the project/building level of 12% for both the residentially-metered and commercially-metered low income multifamily projects, as determined by dividing the estimated weather-normalized total building annual electricity savings by the weather-normalized total building historic annual electricity consumption;

In Phase II, utilities implemented their first programs that were specifically targeted to multifamily homes. EEFA appreciates the efforts that utilities have made in this market, and looks forward to working with them in the multifamily working group process to support program designs and implementation that will lead to greater depth of savings overall, and more comprehensiveness in specific projects, consistent with the Commission direction in its Tentative Order. To provide sufficient impetus for the utilities to comply with the Commission's preferred direction as outlined in the Tentative Order, EEFA recommends that the Commission impose an average per project savings requirement of 12% in addition to the proposed 3% direct-install carve-out. EEFA believes that the evidence of the *Preservation through Smart Rehab* program evaluation suggests that meeting a 12% program average savings metric will require the utilities to achieve greater savings than could be obtained through a continuation of the utilities'

¹⁷ Tentative Implementation Order, p. 56

existing multifamily programs that are dominated by lighting savings. In other words, the utilities will either have to increase the level of savings across the board by going beyond simple lighting retrofits, or, if they continue this approach for a portion of their participants, they will be required to significantly increase the savings for the remaining portion of participants in order to meet the 12% target.

5. EEFA recommends that the Commission require that no less than one-third of the proposed 3% low income direct install carve-out, or 1% of the total portfolio savings, come from residentially-metered affordable multifamily properties.

The SWE reports that just over 18% of Pennsylvania homes are in multifamily structures, ¹⁸ yet historically the Act 129 programs have not achieved participation in multifamily homes that begin to approach this fraction. The SWE estimated that Base Achievable savings from existing residentially-metered multifamily buildings is equivalent to 11.8% of the 2020 cumulative savings potential in the residential sector. Further, Optimal Energy, Inc., recently completed a multifamily potential study, which concluded that by 2034 the annual electricity requirements for affordable multifamily buildings in Pennsylvania could cost-effectively be reduced by 20%, equivalent to 532 GWh of savings. ¹⁹

Despite this potential, the utilities are only scratching the surface in achieving savings in the multifamily sector. PPL, for example, reports that it achieved 2,039 verified gross MWh in its Master Metered Multi-family program in PY5, out of a portfolio total of 200,065 MWh saved. Similarly PECO reported 5,175 verified gross MWh in its Smart

¹⁸ http://www.puc.pa.gov/Electric/pdf/Act129/SWE-2014 PA Statewide Act129 Residential Baseline Study.pdf

Optimal Energy, Inc. p. 14. Please note that this includes both commercially-metered and residentially-metered MF buildings. See Appendix A for the report.

Multi-family solutions Program (residential and commercial combined) out of a portfolio total of 273,367 MWh saved. Requiring that 1% of portfolio savings come from the residentially-metered multifamily sector will assure that PECO and PPL will continue their efforts in this area, and that the other utilities will catch up to the good start that has been made.

6. In recognition of the significant energy savings potential in commercially-metered multifamily housing, EEFA recommends that the Commission require utilities to deliver energy efficiency services that capture no less than an additional 1% of its total program savings from the combination of savings in living units and common areas in commercially-metered affordable multifamily housing so that the efficiency of the entire property is increased.

In its potential study, the SWE estimated the savings potential from residentially-metered multifamily housing (described above), but did not estimate the savings potential from commercially-metered multifamily housing. Without this important data, the Commission felt that it did not have the sufficiently clear picture of the entire market that it needed to develop specific multifamily savings and/or participation targets. There is evidence, however, that there is a non-trivial savings opportunity in commercially-metered multifamily housing. For example, Carnegie-Mellon's 2014 Assessment of the Pennsylvania Housing Finance Agency's ARRA-Funded Weatherization Program, Preservation through Smart Rehab found that the building owner paid all of the utility bills in 68% of the housing units that were included in the study. Presumably most, if not all of these units are on master-metered commercial accounts.

²⁰ Baird, Nina J., et al. p.28

Further, PECO, Duquesne Light, and PPL are currently running programs designed to address the master-metered multifamily sector. PECO's Smart Multi-family Solutions program addresses both commercially-metered and residentially-metered multifamily buildings through a single program with funding split between the two sectors. While the program is not targeted only to low income properties, its services are available to them. PPL offers its Master-Metered Multi-family program specifically to low income properties. The Duquesne Light Multifamily Retrofit Program offers incentives to affordable multifamily property owners to upgrade lighting and install lighting controls for affordable multifamily buildings with commercially-metered electric accounts. EEFA appreciates the efforts that these utilities are making and encourages the Commission to provide further direction to enhance these programs and assure that the benefits that they provide to this sector are extended.

In recognition of the opportunity and need for additional energy savings in the affordable, commercially-metered multifamily sector, EEFA recommends that the Commission require the utilities to provide 1% of their total portfolio savings from commercially-metered multifamily housing, and that the commercially-metered multifamily projects also obtain an average of 12% of electric savings at the project/building level as is outlined above for residentially-metered low income multifamily projects.

For the total affordable multifamily market, including both residentially-metered and commercially-metered properties, EEFA is proposing that a minimum of 2% of total portfolio savings are achieved— 1% from residentially-metered multifamily properties and an additional 1% from commercially-metered multifamily properties. Given that the

SWE estimated that the low income sector can provide 12.9% of the estimated program potential savings²¹, and that 18% of the housing in Pennsylvania is multifamily, ²² this seems like a very modest recommendation. Note that by applying the 12% average savings metric at the project/building level, the average savings could still be determined and included in measuring success at meeting this metric for buildings that include savings for residentially-metered living units and commercially-metered common areas in the same "project".

7. Savings from commercially-metered multifamily housing should not count towards the G/E/NP carve-out, unless that carve-out is increased significantly from the proposed 3.5%.

While EEFA previously proposed that savings from commercially-metered multifamily housing count towards the G/E/NP carve-out, that proposal was based on expectations of a 10% G/E/NP carve-out. Given the Commission's proposal that only 3.5% of savings should come from the G/E/NP sector, we do not propose that the savings from these projects count towards the G/E/NP carve-out, so as to not diminish the utilities' focus on other important components of the low income and G/E/NP markets. If the utilities were to be allowed to count commercially-metered multifamily savings toward the G/E/NP carve-out it would effectively reduce the amount of other worthy projects that the utilities would be expected to do in these sectors. Rather than count toward the G/E/NP sector, the 1% of total portfolio savings that EEFA recommends the utilities acquire from commercially-metered affordable multifamily projects should

²¹ Pennsylvania Statewide Evaluation Team. *Application of Market Potential Study Results to Phase III goals*. February 23, 2015. p.7.

²² GDS Associates, Inc. 2014 Pennsylvania statewide Act 129 Residential Baseline Study, April 2014. p.3. http://www.puc.pa.gov/Electric/pdf/Act129/SWE-2014_PA_Statewide_Act129_Residential_Baseline_Study.pdf

simply apply to the overall commercial sector savings targets.

8. EEFA recognizes the critical importance of building new multifamily housing to the most efficient cost-effective levels, both in the affordable and market-rate sectors. In order to assure that Act 129 energy efficiency programs provide appropriate support for new construction projects, EEFA urges the Commission to direct the utilities to design their residential new construction energy efficiency program offerings such that they provide suitable services to the multifamily market, rather than assume that a one-size fits all residential new construction program that is designed around single family homes will suffice.

Utility programs will only effectively promote efficient multifamily new construction if they reflect the specific needs of this market. Multifamily buildings generally resemble commercial new construction projects more closely than single family homes. Due to their larger scale, multifamily buildings have structural designs that differ from single family homes and multifamily buildings often require commercial-scale mechanical heating, cooling, and ventilation systems, as well as commercial-grade lighting. As a result, addressing multifamily new construction through a home energy rating-based residential new construction program would not adequately address the needs of this market, and would therefore be inadequate for identifying and encouraging energy efficient design in multifamily housing.

Rather, a more suitable approach would be to provide standardized high efficiency guidelines for typical multifamily systems and design approaches that are eligible for certain incentives. In the case of more complex designs the programs could achieve the best results by providing design assistance to the building team to assure that the most-

efficient building is built. Assuring that new construction meets the highest levels of costeffective energy efficiency can insulate affordable housing providers and multifamily residents against future energy price spikes, helping to maintain the affordability of housing across both affordable and market rate multifamily sectors.

9. EEFA recommends that the Commission institute policies for allowable budget rollover that direct the utilities to, within the constraints of other Commission directives, use a portion of unexpended funds from prior years to increase savings in subsequent years while not exceeding allowable annual energy efficiency collections.

In section K.1.b. of the Tentative Order, the Commission addresses issues related to the application of excess Phase II budgets²³ in the event that the utilities are able to achieve their Phase II savings obligations without spending the full budget amounts as approved by the commission. In EEFA's view, the Commission appropriately considers several of the market implications of reducing Phase III budgets based on the availability of excess Phase II budgets. That said, EEFA respectfully urges the Commission to further consider this issue in light of the consistent ability of the utilities to achieve savings targets without fully expending their available budgets.

Without intending to diminish the achievements of the utilities in their abilities to meet savings targets at less cost than expected, EEFA suggests that the consistent availability of excess funds is evidence that savings targets have been established based on an overly-conservative view of the cost of achieving savings. EEFA respectfully suggests that the Commission elect to allow the utilities to apply any excess Phase II

²³ Tentative Implementation Order, p. 109

funds to increase the available funds in Phase III while also increasing the Phase III savings goals in proportion to the excess funds. Allowing utilities to roll over unused portions of Phase II budgets into Phase III will provide the utilities with additional resources to allow them to meet or exceed the required savings targets through adoption of more comprehensive measures. In EEFA's view, Act 129's limitation on costs should be read to mean that the *collections* from customers in a given year cannot exceed the 2% cap, rather than that the program spending cannot exceed the 2% cap in that year.

To determine how much the Phase III goals should increase based on making Phase III excess funds available, EEFA suggests that goals should increase on the basis of the Phase II actual cost per kWh saved. As an example, if a utility captured savings in Phase II at \$100/MWh saved, and had \$450,000 in unspent Phase II funds, that utility's Phase III target should increase by \$450,000/\$100 = 4,500 MWh when the funds are rolled over into Phase III. However, EEFA would further propose that all, or a portion of the excess funds, depending on the amount available, could be directed to increasing the availability of low income energy efficiency programs. In this case, the increased savings requirement should be determined based on the actual spending across the low income programs rather than across the overall portfolio.

Respectfully submitted,

/s/Kathryn Fantauzzi

The One Stop Program Manager ACTION-Housing, Inc. 425 Sixth Ave, Suite 950 Pittsburgh, PA 15219 (412) 281-2102 kfantauzzi@actionhousing.org

/s/Elizabeth Marx

Pennsylvania Utility Law Project

118 Locust Street Harrisburg, PA 17101 (717) 236-9486 emarxPULP@palegalaid.net

/s/Rachel Blake

Associate Director Regional Housing Legal Services 2 S. Easton Street Glenside, PA 19038 (215) 572-7300 rblake@rhls.org

/s/Todd Nedwick

Housing and Energy Efficiency Policy Director National Housing Trust 1101 30th Street, NW, Ste. 100A Washington, D.C. 20007 (202) 333-8931 tnedwick@nhtinc.org

/s/Deron Lovaas

State/Federal Policy & Practice Dir., Urban Solutions Natural Resources Defense Council 1152 15th Street NW, Suite 300 Washington, D.C. 20005 (202) 289-2384 dlovaas@nrdc.org

APPENDIX A:

Potential for Energy Savings in Affordable Multifamily Housing

FINAL REPORT

February 19, 2015

Potential for Energy Savings in Affordable Multifamily Housing

FINAL REPORT

February 19, 2015

Prepared for Natural Resources Defense Council

by

Contents

INTRODUCTION	1
Background and Purpose of Study	1
Study Overview	1
Summary of Results	
Comparative Information from Other Jurisdictions	10
MAXIMUM ACHIEVABLE POTENTIAL DETAILED RESULTS	13
State-Level Summary	
Utility-Level Summary	19
NON-ENERGY BENEFITS AND DISCOUNT RATE SENSITIVITY ANALYSES	31
METHODOLOGY	37
Overview	37
Unit Counts	38
Baseline Energy Consumption	39
Measure Characterization	40
Location-Dependent Parameters	
Cost-Effectiveness Analysis	
Economic Potential Analysis	
Maximum Achievable Potential Analysis	
APPENDICES	
Appendix A: Utility-Level Economic Potential	
Appendix B: Bibliography	
Appendix C: Unit Counts	
Appendix D: Baseline Sales Forecast	
Appendix E: Measure Characterizations	
Appendix F: Location-Dependent Parameters Appendix G: Avoided Costs	
Appendix H: Non-Energy Benefits Factors	
Appendix I: Penetration Profiles	
1 appendix 1. 1 circulation 1 rome	120
-	
Tables	
Table 1 Summary of Sensitivity Analyses Performed	2
Table 2 Cumulative Base Case Potential Relative to Sales Forecast, 2034	5
Table 3 Cumulative Base Case Maximum Achievable Potential by State, 2034	7
Table 4 Cumulative Maximum Achievable Potential by NEBs Sensitivity Scenario and State, 2034	8
Table 5 Base Case Maximum Achievable Potential Costs and Benefits by Fuel and State	9
Table 6 Maximum Achievable Potential Net Benefits by NEBs Sensitivity Scenario and State, All Fu	
Table 7 Comparative Potential from Other Residential Studies	
-	
Table 8 Cumulative Base Case Maximum Achievable Potential by State, 2034	
Table 9 Base Case Maximum Achievable Potential Costs and Benefits by Fuel and State	19

Table 10 Georgia Cumulative Base Case Maximum Achievable Potential by Utility Service Territory, 2034
Table 11 Illinois Cumulative Base Case Maximum Achievable Potential by Utility Service Territory, 203420
Table 12 Maryland Cumulative Base Case Maximum Achievable Potential by Utility Service Territory, 2034
Table 13 Michigan Cumulative Base Case Maximum Achievable Potential by Utility Service Territory, 2034
Table 14 Missouri Cumulative Base Case Maximum Achievable Potential by Utility Service Territory, 2034
Table 15 New York Cumulative Base Case Maximum Achievable Potential by Utility Service Territory, 2034
Table 16 North Carolina Cumulative Base Case Maximum Achievable Potential by Utility Service Territory, 2034
Table 17 Pennsylvania Cumulative Base Case Maximum Achievable Potential by Utility Service Territory, 2034
Table 18 Virginia Cumulative Base Case Maximum Achievable Potential by Utility Service Territory, 2034
Table 19 Georgia Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory
Table 20 Illinois Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory
Table 21 Maryland Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory25
Table 22 Michigan Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory
Table 23 Missouri Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory
Table 24 New York Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory
Table 25 North Carolina Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territor
Table 26 Pennsylvania Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory
Table 27 Virginia Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory
Table 28 Summary of Sensitivity Analyses Performed
Table 29 Sensitivity for Low Non-Energy Benefits, Cumulative Maximum Achievable Potential by State, 2034
Table 30 Sensitivity for High Non-Energy Benefits, Cumulative Maximum Achievable Potential by State, 2034
Table 31 Sensitivity for Low Non-Energy Benefits, Maximum Achievable Potential Costs and Benefits, All Fuels
Table 32 Sensitivity for High Non-Energy Benefits, Maximum Achievable Potential Costs and Benefits, All Fuels
Table 33 Measure Characterization Data Sources, 2034
Optimal Energy, Inc.

Potential for Energy Savings in Affordable Multifamily Housing

Table 34 Overview of the Total Resource Cost Test	45
Figures	
	1.
Figure 1 Cumulative Electric Energy Savings by End Use, 2034	16
Figure 2 Cumulative Natural Gas Savings by End Use, 2034	17
Figure 3 Cumulative Fuel Oil Savings by End Use, 2034	18
Figure 4 Affordable Multifamily Housing Units by State and Subsidy Type	39

INTRODUCTION

BACKGROUND AND PURPOSE OF STUDY

The Natural Resources Defense Council, National Housing Trust, Energy Foundation, Elevate Energy, and New Ecology are conducting a multistate and multiyear Energy Efficiency for All affordable multifamily housing efficiency project with the goal of cost effectively reducing energy consumption in order to maintain housing affordability, create healthier and more comfortable living environments for moderate- and low-income families, and reduce pollution. The project aims to encourage electric and gas utilities to spearhead programs designed to capture all cost-effective energy efficiency within the affordable multifamily housing sector, significantly benefiting low-income families and building owners as well as utilities.

The project partners commissioned this study to estimate the potential energy savings from the implementation of efficiency measures in affordable multifamily housing in nine states – Georgia, Illinois, Maryland, Michigan, Missouri, New York, North Carolina, Pennsylvania, and Virginia. For this study, affordable multifamily housing is defined as households in buildings with five or more units occupied by people with household incomes at or below 80% of the area median income.

The analysis includes savings for electricity, natural gas, and fuel oil over a 20-year period, 2015–2034. A 3% real discount rate is assumed for estimating the future value of costs and benefits. The study provides two types of potential estimates:

- Economic potential savings that can be realized if all cost-effective efficiency measures are implemented
- Maximum achievable potential savings that can be realized if all costeffective efficiency measures are implemented given existing market barriers

"Potential" here refers to the savings that would result from the adoption of energy-efficient technologies that would not occur without funded programs to promote their adoption.

STUDY OVERVIEW

The focus of this study is the energy efficiency potential in affordable multifamily housing. The study includes the following key components:

- Economic potential and maximum achievable potential for the 20-year period from 2015 to 2034
- Potential estimates for electricity, natural gas, and fuel oil. The assessment of fuel oil potential is limited to opportunities in New York State.¹

Optimal Energy, Inc. 1

¹ Per the study scope, the assessment of "delivered fuels" (i.e., fuel oil, propane, and wood) was limited to cases where a given delivered fuel represented more than 5% of the total residential heating fuel market share in a given state. Fuel oil in New York was the only delivered fuel that satisfied this criterion.

 Sensitivity analyses to assess the impacts of including various levels of nonenergy benefits (NEBs) on the potential

The "Base Case" potential estimates presented in this report consider the benefits associated with energy, water, and operation and maintenance savings; however, there are other, non-energy benefits (NEBs) associated with efficiency improvements that can significantly increase the cost-effectiveness of a given measure. For this study, NEBs include reduced arrearages, reduced customer calls and collection activities, reduced safety-related emergency calls, higher comfort levels, increased housing property values, health-related benefits, and other impacts not captured in the Base Case potential scenario. We developed sensitivity scenarios reflecting two levels of NEB impacts. These are compared with the Base Case potential scenarios, which assume no NEBs. These sensitivity scenarios are described in Table 1 below and in further detail in the Non-Energy Benefits and Discount Rate Sensitivity Analyses section of this report.

Scenario Description

Maximum achievable potential scenario. Benefits assessed limited to reduced energy, water, and operation and maintenance costs (i.e., does not include the impact of other non-energy benefits)

Low Non-Energy Benefits² Maximum achievable potential including the impact of low non-energy benefits

High Non-Energy Benefits Maximum achievable potential including the impact of high non-energy benefits

Table 1 | Summary of Sensitivity Analyses Performed

While the Base Case presented in this report assumes no benefits beyond those associated with energy, water, and operation and maintenance savings, it is generally acknowledged that other NEBs are significant and represent considerable benefits to society. Utilities, program administrators, and regulators are urged to include the impact of NEBs in their internal analyses to the fullest extent possible.

The study scope is limited in the following respects:

- Relies primarily on secondary sources, in some cases outside of the study states
- Uses aggregate or representative measures in some cases to approximate more diverse opportunities and streamline the analysis
- Relies on a limited set of location-dependent parameters to reflect differences among utility service territories

-

Optimal Energy, Inc. 2

 $^{^{\}rm 2}$ For explanation of low and high non-energy benefits, please see p. 36

- Does not include opportunities in the new construction market
- Does not include demand response or fuel-switching measures
- Has inherent conservative biases as the cost-effectiveness screening was
 performed at the measure-level rather than at the program or portfolio level,
 i.e., measures that are not cost-effective are not included in the estimated
 potential. If this were an assessment of program potential,³ there would be
 greater opportunity to address the inclusion of non-cost effective measures.⁴

The basic methodology for assessing the economic and maximum achievable potential entails the following steps:

- Estimate the number of affordable multifamily housing units by state and utility service territory
- Estimate baseline energy consumption for the period 2015–2034
- Characterize efficiency measures (e.g. costs, savings, lifetimes)
- Identify location-dependent parameters for each electric utility service territory
- Develop measure penetrations (i.e., the extent to which each measure is implemented)
- Estimate avoided energy supply costs and screen measures for costeffectiveness using the Total Resource Cost test⁵
- Establish incentive and non-incentive program costs (i.e., both the costs associated with direct financial assistance to participants and the administrative, marketing, and other costs associated with running a program)
- Adjust for measure interactions

A total of 182 measures were characterized for up to two applicable markets, the natural replacement and renovation market and the retrofit market. For each measure, we analyzed each measure/market combination for each building size and utility service territory. In total, we modeled more than 13,000 distinct combinations of measures, markets, building sizes, and utility service territories for each year of the analysis. The Methodology section later in this report provides a detailed discussion of the methods and assumptions used in the analysis.

Several notes related to the analysis and presentation of results in this report are listed below:

• Unless otherwise noted, all dollar values are in real 2015 dollars.

³ Program potential refers to the efficiency potential possible given specific program funding levels and designs. Often, program potential studies are referred to as "achievable" in contrast to "maximum achievable." In effect, they estimate the achievable potential from a given set of programs and funding.

⁴ It is recommended that utilities and program administrators perform the cost-effectiveness screening at the portfolio or program level to encourage the development of comprehensive efficiency projects.

⁵ For an explanation of the Total Resource Cost test, see p. 48.

- When savings are presented for a specific year, they reflect the cumulative annual savings in that year, accounting for measures that have been implemented or have expired in previous years.
- When costs and benefits are presented, they reflect the cumulative present value for the years 2015–2034.
- Electric savings are quantified at the point of consumption, that is, "at meter," as opposed to at the point of generation.
- While quantified, the natural gas and fuel oil savings do not reflect the interactive effects between space heating and efficient lighting;⁶ however, these impacts are reflected in the benefits presented and used for the cost-effectiveness screening. Where the primary space heating fuel is electricity, the electric savings do reflect interactive effects. Finally, where electric cooling is present, the electric savings reflect interactions between cooling and efficient lighting.⁷
- Unless otherwise noted, the potential estimates presented reflect the results of the Base Case sensitivity scenario (i.e., only benefits associated with energy, water, and operation and maintenance savings are considered).

SUMMARY OF RESULTS

Scenario Summaries

This section presents a summary of the study results, comparing outputs from the different potential scenarios and sensitivity analyses assessed in the study. This study analyzed two levels of potential:

- Economic potential savings that can be realized if all cost-effective efficiency measures are implemented
- Maximum achievable potential savings that can be realized if all costeffective efficiency measures are implemented given existing market barriers

Comparing different potential types is useful for understanding the boundaries of what can be achieved. Following the state-level economic and maximum achievable results, we present more detailed results for the maximum achievable potential, including savings and cost-benefit analyses.

Table 2 provides a summary of the economic and maximum achievable potential for the Base Case sensitivity scenario (i.e., only benefits associated with energy, water, and operation

.

⁶ Lighting produces some "waste heat" that contributes to space heating during the heating season and, where cooling equipment is present, must be removed during the cooling season. Since efficient lighting generally reduces the amount of waste heat produced, some additional space heating must be provided whereas some cooling can be avoided when efficient lighting is installed.

⁷ This reporting convention is used to avoid understating the natural gas and fuel oil potential due to the impact of aggressively pursuing efficient lighting. In cases where efficiency programs are not integrated across fuel types, this is especially important.

and maintenance savings are considered) for each fuel relative to the baseline forecasted sales if no measures were implemented. Overall, statewide economic potential for electricity ranges from 23% to 37% of the forecasted load by 2034 depending on the state. Maximum achievable potential for electricity ranges from 15% to 26% by 2034, averaging roughly 69% of the economic potential. The economic potential for natural gas ranges from 18% to 36% relative to forecasted load in 2034. The maximum achievable potential for natural gas is lower than electricity, ranging from 10% to 22% by 2034, averaging 58% of the economic potential. Fuel oil maximum achievable potential, limited to New York State, is estimated at 15% by 2034.

Table 2 | Cumulative Base Case Potential Relative to Sales Forecast, 2034

State	Scenario	Electric	Natural Gas	Fuel Oil	
Coordia	Max Achievable Potential	17%	13%	-	
Georgia	Economic Potential	26%	22%	-	
Illinois	Max Achievable Potential	22%	16%	-	
IIIIIIOIS	Economic Potential	32%	26%	-	
Mandand	Max Achievable Potential	19%	18%	-	
Maryland	Economic Potential 28%		30%	-	
N 4: alai ana sa	Max Achievable Potential	26%	11%	-	
Michigan	Economic Potential	37%	18%	-	
N. dianai	Max Achievable Potential	15%	17%	-	
Missouri	Economic Potential	23%	29%	-	
New York	Max Achievable Potential	24%	13%	15%	
New fork	Economic Potential	34%	23%	26%	
North Carolina	Max Achievable Potential	19%	22%	-	
North Carolina	Economic Potential	29%	36%	-	
Donneylyania	Max Achievable Potential	20%	10%	-	
Pennsylvania	Economic Potential	29%	18%	-	
Virginia	Max Achievable Potential	21%	13%	-	
Virginia	Economic Potential	30%	23%	-	

Table 2 does not reveal any clear trend between climate and the estimated potential. While one might expect warmer climates to have higher electric potential and lower natural gas potential as compared with other states, this is not the case. There are several reasons for this. First, the electric avoided costs for southern states are generally lower than those of other states. This results in lower economic benefits for electric efficiency measures, reducing the overall amount of cost-effective potential. Second, while warmer climates and more cooling degree days may suggest more electric savings potential, warmer climates also mean higher cooling energy consumption. Therefore, while cooling energy savings may be higher in warmer

Optimal Energy, Inc. 5

climates, when the potential is expressed as percentage of forecasted load, the impact is less significant.

Maximum Achievable Potential

The results presented in this section, as well as in all state- and utility-level results sections correspond to the maximum achievable potential. (Economic potential results, by utility, can be found in Appendix A). We focus on this scenario because it most closely reflects what could theoretically be captured through exemplary energy efficiency programs for the affordable multifamily housing sector designed to overcome market barriers to the extent possible.⁸ Results in this section are broken out by state and fuel. Further breakdowns of the state totals can be found in the Utility-Level Summary section.

Savings

Table 3 provides a summary of the Base Case cumulative savings in 2034, by state and fuel, in both absolute terms and relative to the baseline sales forecast. The maximum achievable potential varies significantly by state, reflecting differences in avoided energy supply costs, the mix of fuels used (fuel shares), equipment saturations, climate, measure costs, and other factors. The study finds significant potential in the affordable multifamily sector in all states. In absolute units of energy saved, the potential is highest in New York, primarily because of the enormous number of affordable multifamily units in New York City.

-

⁸ Program design best practices for achieving cost-effective efficiency potential in affordable multifamily housing are presented in *Program Design Guide: Energy Efficiency Programs in Multifamily Affordable Housing*, Natural Resources Defense Council, National Housing Trust, the Energy Foundation, and Elevate Energy, 2015.

⁹ Equipment saturation refers to the fraction of housing units that employ a particular equipment type. For example, if half of all units use window air conditioners, one quarter of units have central air-conditioning systems, and the remaining quarter have no cooling equipment, the equipment saturations for window air conditioners and central air conditioners would be 50% and 25%, respectively.

Table 3 | Cumulative Base Case Maximum Achievable Potential by State, 2034

	Cumulative Savings 2034	% of Sales Forecast
Electric (GWh)		
Georgia	804	17%
Illinois	744	22%
Maryland	578	19%
Michigan	529	26%
Missouri	358	15%
New York	1,981	24%
North Carolina	629	19%
Pennsylvania	532	20%
Virginia	620	21%
Natural Gas (BBtu)		
Georgia	1,175	13%
Illinois	3,311	16%
Maryland	1,716	18%
Michigan	2,440	11%
Missouri	590	17%
New York	8,019	13%
North Carolina	362	22%
Pennsylvania	1,614	10%
Virginia	1,059	13%
Fuel Oil (BBtu)		
New York	5,258	15%

Table 4 provides a summary of the cumulative savings in 2034, relative to the baseline sales forecast, for the Base Case, Low NEBs, and High NEBs sensitivity scenarios. For the Low NEBs sensitivity, total cumulative electric savings in 2034 for all nine states are 14% higher than in the Base Case. Natural gas savings are 29% higher. Savings for fuel oil are unchanged as no additional measures pass the cost-effectiveness screening. For the High NEBs sensitivity, total cumulative electric savings are 28% higher than in the Base Case. Natural gas savings are 33% higher. As in the Low NEBs scenario, savings for fuel oil in the High NEBs scenario are virtually unchanged from the Base Case.

Optimal Energy, Inc. 7

Table 4 | Cumulative Maximum Achievable Potential by NEBs Sensitivity Scenario and State, 2034

State	Base Case % of Sales Forecast	Low NEBs Sensitivity Scenario % of Sales Forecast	High NEB Sensitivity Scenario % of Sales Forecast
Electric (GWh)			
Georgia	17	20	23
Illinois	22	26	26
Maryland	19	22	25
Michigan	26	27	32
Missouri	15	19	20
New York	24	27	31
North Carolina	19	23	26
Pennsylvania	20	23	25
Virginia	21	25	28
Natural Gas (BBtu)			
Georgia	13	17	17
Illinois	16	20	21
Maryland	18	20	21
Michigan	11	14	15
Missouri	17	23	24
New York	13	18	18
North Carolina	22	28	28
Pennsylvania	11	13	13
Virginia	13	18	19
Fuel Oil (BBtu)			
New York	15	15	15

Costs, Benefits, and Cost-Effectiveness

We found that the total benefits to society, as defined by the Total Resource Cost test, from pursuing energy efficiency substantially exceed the costs. Table 5 shows the cumulative impacts to each state's economy from capturing the Base Case maximum achievable potential through 2034. The maximum achievable potential scenarios for all states and fuels are highly cost-effective from a Total Resource Cost Test perspective. Statewide benefit-to-cost ratios (BCR) range from 1.8 to 3.1 depending on the state and fuel. In Georgia, for example, total benefits from all fuels amount to \$871 million from an investment of \$405 million, resulting in net benefits of approximately \$466 million. The ratio of benefits to costs is such that the energy efficiency spending would return \$2.15 to the Georgia economy for every dollar invested. The variation in the BCRs from state to state is largely driven by differences in avoided costs among the utility territories.

Table 5 | Base Case Maximum Achievable Potential Costs and Benefits by Fuel and State

	Costs (\$Millions)	Benefits (\$Millions)	Net Benefits (\$Millions)	BCR
Electric				
Georgia	\$332	\$699	\$367	2.1
Illinois	\$336	\$617	\$281	1.8
Maryland	\$278	\$698	\$420	2.5
Michigan	\$246	\$597	\$352	2.4
Missouri	\$178	\$336	\$158	1.9
New York	\$976	\$2,169	\$1,193	2.2
North Carolina	\$272	\$577	\$305	2.1
Pennsylvania	\$252	\$526	\$274	2.1
Virginia	\$277	\$551	\$274	2.0
Natural Gas				
Georgia	\$73	\$172	\$99	2.4
Illinois	\$235	\$481	\$246	2.0
Maryland	\$112	\$242	\$129	2.2
Michigan	\$171	\$354	\$182	2.1
Missouri	\$35	\$66	\$31	1.9
New York	\$586	\$1,240	\$654	2.1
North Carolina	\$21	\$49	\$28	2.3
Pennsylvania	\$117	\$247	\$130	2.1
Virginia	\$65	\$146	\$81	2.2
Fuel Oil				
New York	\$616	\$1,884	\$1,268	3.1

Table 6 shows the maximum achievable potential net benefits by state for all fuels for the Base Case, Low NEBs, and High NEBs sensitivity scenarios. For the Low NEBs sensitivity, total net benefits for all states and fuels increase by 122% from \$6.5 billion to \$14.4 billion. The overall BCR changes from 2.2 to 3.0. For the High NEBs sensitivity, total net benefits increase by 253% from \$6.5 billion to \$22.9 billion and the overall BCR rises from 2.2 to 3.3.

Table 6 | Maximum Achievable Potential Net Benefits by NEBs Sensitivity Scenario and State, All Fuels

State	Base Case Net Benefits (\$Millions)	Low NEBs Sensitivity Scenario Net Benefits (\$Millions)	High NEB Sensitivity Scenario Net Benefits (\$Millions)
Georgia	\$467	\$1,223	\$2,048
Illinois	\$527	\$1,344	\$2,276
Maryland	\$550	\$1,132	\$1,755
Michigan	\$534	\$1,111	\$1,724
Missouri	\$190	\$511	\$894
New York	\$3,114	\$6,291	\$9,552
North Carolina	\$332	\$893	\$1,508
Pennsylvania	\$404	\$938	\$1,522
Virginia	\$354	\$941	\$1,579
Total	\$6,472	\$14,384	\$22,858

COMPARATIVE INFORMATION FROM OTHER JURISDICTIONS

To provide a basis of comparison for our data, we gathered information from several other recent studies investigating energy efficiency potential in the residential sector. Table 7 presents both economic and maximum achievable potential estimates from other studies for utility service territories in each state. While such comparisons are generally useful to establish some perspective on the magnitude of the potential, it is important to understand that most of the referenced studies reflect differing purposes, analysis periods, assumptions, levels of comprehensiveness, and degrees of focus on the multifamily sector. Any one of these variables could greatly affect the estimates. For example, the 2013 study of potential in the Ameren Illinois service territory yields the lowest potential estimate in the final study year, but only looks at a three-year period.

Table 7 | Comparative Potential from Other Residential Studies

		Ene	rgy Efficie	ency Poter	ntial			
State Utility Source		Source	Study Period	Scenario	Final Study Year % Sales Forecast		Average Annual % Sales Forecast	
			(Years)		Electric	Natural Gas	Electric	Natural Gas
Illinois	ComEd	ICF 2013	6	Economic	41	-	6.8	-
IIIIIOIS	COITIEU	ICF 2015	U	Max Achievable	8	-	1.3	-
Donneylyania	Statewide	GDS 2012	10	Economic	36	-	3.6	-
Pennsylvania	Statewide	GD3 2012	10	Max Achievable	19	-	1.9	-
Michigan	Statewide	GDS 2013	10	Economic	34	22	3.4	2.2
Michigan	Statewide	GDS 2013 10	10	Max Achievable	14	14	1.4	1.4
Illinois	Ameren	ENERNOC		Economic	9	4	3.1	1.2
IIIIIIOIS	Ameren	2013	3	Max Achievable	4	2	1.3	0.5
New York	ConEd	GEP 2010	9	Economic	17	20	1.9	2.2
New York	CONEC	GEP 2010	9	Max Achievable	12	15	1.4	1.6
Minainia	Statewide	ACEEE	18	Economic	24	-	1.3	-
Virginia	Statewide	2008	18	Max Achievable	-	-	-	-
Missouri	Amaran	CED 2010	22	Economic	21	-	1.0	-
Missouri	Ameren	GEP 2010	22	Max Achievable	-	-	-	-
N4	Chahamid	Cadmus	24	Economic	15	24	0.7	1.1
Massachusetts	Statewide	2012	21	Max Achievable	12	19	0.5	0.9

^{*} For full references, please see Appendix B; ENERNOC is, "Enernoc Utility Solutions Consulting"; GEP is, "Global Energy Partners"; ACEEE is "American Council for an Energy-Efficient Economy"

Estimates of electric economic energy efficiency potential range from 9% to 41% of forecasted electric load in the respective studies' final year of analysis. Maximum achievable potential ranges from 4% to 19% by the final analysis year. Natural gas economic potential ranges from 4% to 24%, and maximum achievable potential ranges from 2% to 19%. For comparison purposes, the potential estimates are also presented as the average annual savings over the respective study periods. ¹⁰ On an annual basis, electric economic potential ranges from 0.7% to 6.8%, and maximum achievable potential ranges from 0.5% to 1.9%. Natural gas economic potential ranges from 1.1% to 2.2%, and maximum achievable potential ranges from 0.5% to 1.6%.

¹⁰ The average annual savings are estimated by dividing the total percent savings in the final study year by the length of the study period. This is a simplification for comparison purposes, and we note that the actual savings in each year as projected in the respective studies are dependent on differing assumptions of how quickly efficiency programs can capture the savings.

Potential for Energy Savings in Affordable Multifamily Housing

While the ranges of potential presented in our study are on the higher end of the estimates in the comparison studies, there is significant overlap. Given the variables discussed above, what is significant is not so much that our estimates are high or low but rather that they are of similar magnitude to estimates presented in other recent studies investigating potential in the residential sector.

MAXIMUM ACHIEVABLE POTENTIAL - DETAILED RESULTS

This section presents detailed results from our analysis of the maximum achievable potential scenario. We focus on this scenario because it provides the best indication of what could theoretically be captured through exemplary energy efficiency programs in the affordable multifamily housing sector. Potential estimates and the associated cost-benefit analyses are presented by fuel to reflect the fact that program offerings may not be integrated across fuels in all jurisdictions. We present the savings for each state as well as a compilation of the total potential of all nine states by fuel and end use. Finally, maximum achievable potential savings, costs, and benefits are presented by fuel at the electric utility service territory level. All estimates presented in this section represent the Base Case scenario, which only reflects benefits associated with energy, water, and operation and maintenance savings.

STATE-LEVEL SUMMARY

Savings

Cumulative results through 2034 for the affordable multifamily housing sector are presented by state and fuel in Table 8 below. The maximum achievable potential varies significantly by state because of differences in avoided energy supply costs, fuel shares, equipment saturations, climate, measure costs, and other factors.

Some electric measures, especially indoor lighting, impose a "heating penalty." Since efficient indoor lighting tends to produce less waste heat than the less efficient lighting it replaces, a lighting retrofit can increase a building's heating load. The heating penalty can offset a significant portion of the savings of natural gas efficiency measures. However, in the natural gas savings presented in tables below, and in all tables in this report, we do not include the increased natural gas usage to make up for efficient electric equipment. The negative impacts are, however, reflected in the benefits presented and used for the cost-effectiveness screening. We used the same approach for petroleum fuels.

Table 8 | Cumulative Base Case Maximum Achievable Potential by State, 2034

	Cumulative Savings 2034	% of Sales Forecast
Electric (GWh)		
Georgia	804	17%
Illinois	744	22%
Maryland	578	19%
Michigan	529	26%
Missouri	358	15%
New York	1,981	24%
North Carolina	629	19%
Pennsylvania	532	20%
Virginia	620	21%
Natural Gas (BBtu)		
Georgia	1,175	13%
Illinois	3,311	16%
Maryland	1,716	18%
Michigan	2,440	11%
Missouri	590	17%
New York	8,019	13%
North Carolina	362	22%
Pennsylvania	1,614	11%
Virginia	1,059	13%
Fuel Oil (BBtu)		
New York	5,258	15%

End Use Electric Savings

Figure 1 highlights the key role that measures reducing heating and cooling energy use play in reaching the maximum achievable potential. The heating and cooling end uses (i.e., heating/cooling, space heating, and cooling) contribute a combined 49% of total electric energy savings by 2034.¹¹ The savings potential is achieved primarily through the introduction of Wi-Fi thermostats, efficient windows, and air sealing. Equipment plugged directly into an outlet (plug load), of which consumer electronics are a major part, contributes a significant 21% of the total

¹¹ Note that the heating/cooling, space heating, and cooling end uses may appear redundant but are necessary. End use savings in the figures below are presented by primary end use. Measures may save energy across multiple end uses. For example, consider an efficient clothes washer in a building with natural gas water heating. As the most significant impact of this measure is reduced water heating energy, the primary end use is water heating; however, the measure also reduces the electric energy required to operate the washer. The secondary end use is classified as "appliances." In some cases, the primary and secondary end uses affect the same fuel type. This is the case for many envelope and HVAC measures installed in buildings with electric space heat and cooling. In such cases, the "heating/cooling" end use is applied.

potential. Use of advanced power strips account for the bulk of these savings, reflecting their low costs, accessibility, and relatively low current penetrations in the multifamily market segment. Energy efficiency measures for lighting contribute 18% of the electric potential. This is surprising because other potential studies estimate that lighting contributes a much higher fraction of total electric potential. However, compliance with recent federal standards (e.g., the Energy Independence and Security Act of 2007) has greatly reduced the potential incremental savings for both general service lamps and linear fluorescents as baseline efficiencies have improved. It is assumed that during the 20-year analysis period of this study, the cost of light emitting diodes (LEDs) will decline and LEDs will represent the bulk of the future efficient lighting market, supplanting contributions from compact fluorescent lamps (CFLs). Standard LED general service lamps in both in-unit and common area applications represent 16% of the total electric potential.

After lighting, the next largest end-use savings contributions come from improvements in water heating (8%) and whole-building measures (4%), such as behavioral initiatives and making improvements in existing equipment (retrocommissioning). Measures increasing the efficiency of refrigerators and some other appliances (e.g. freezers and electric dryers) do not pass the cost-effectiveness hurdle for inclusion in our potential estimates in any utility service territory, primarily because recent federal standards for appliances have already significantly raised efficiency levels of baseline equipment.¹²

¹² Note that measures were screened relative to typical baseline conditions as determined primarily from referenced baseline and potential studies. Additional measures may pass the cost-effectiveness screening for specific projects.

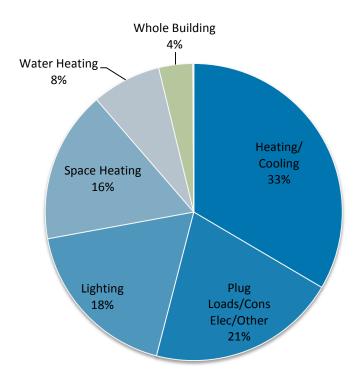


Figure 1 | Cumulative Electric Energy Savings by End Use, 2034

End Use Natural Gas Savings

Natural gas usage in the affordable multifamily housing sector, as in the overall residential sector, is largely limited to space heating, water heating, and cooking. Figure 2 shows that space heating accounts for 77% of the gas savings, with an additional 21% from water heating measures. The remaining 2% are from retrocommissioning activities. Wi-Fi thermostats, efficient in-unit and central furnaces, efficient central boilers, and air sealing contribute the vast majority of space heating savings. Commercial clothes washers, water heater pipe wrap, and low-flow showerheads and faucet aerators are the principal measures contributing to gas water heating savings.

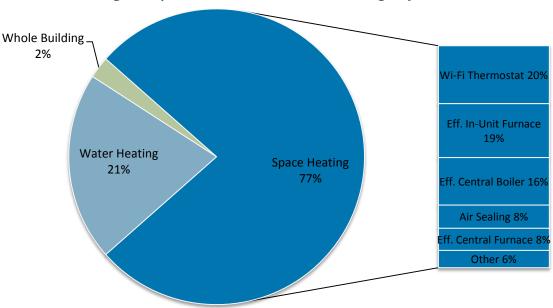


Figure 2 | Cumulative Natural Gas Savings by End Use, 2034

End Use Fuel Oil Savings

As shown in Figure 3, we found that space heating accounts for more than three-fourths of fuel oil savings potential (76% of cumulative savings by 2034) because of its nearly exclusive use as a heating fuel. (As above, fuel oil potential was estimated only in New York State). The remaining 24% of savings are split between water heating measures (15%) and whole building measures (9%). The mix of fuel oil measures is somewhat different from natural gas due in large part to the significantly higher avoided costs for fuel oil. Efficient central boilers (25%), Wi-Fi thermostats (16%), efficient windows (14%), and wall insulation (11%) contribute the majority of space-heating savings, while high efficiency oil water heaters (7%) contribute the majority of water-heating savings.

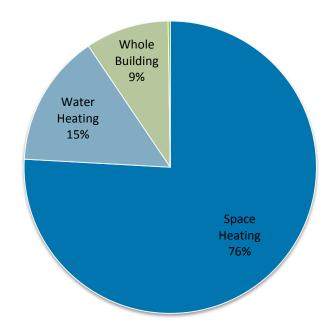


Figure 3 | Cumulative Fuel Oil Savings by End Use, 2034

Costs, Benefits, and Cost-Effectiveness

Table 9 shows the cumulative costs and benefits by state realized from capturing the maximum achievable potential through 2034. The maximum achievable potential scenarios for all states and fuels are highly cost-effective from a Total Resource Cost Test perspective; that is, the total resource benefits of energy efficiency substantially exceed the costs. Statewide benefit-to-cost ratios (BCR) range from 1.8 to 2.8 depending on the state and fuel. In North Carolina, for example, total benefits (from all fuels) amount to \$626 million from an investment of \$293 million, resulting in net benefits of approximately \$333 million. This means that the energy efficiency spending would return \$2.14 to the North Carolina economy for every dollar invested.

Table 9 | Base Case Maximum Achievable Potential Costs and Benefits by Fuel and State

	Costs (\$Millions)	Benefits (\$Millions)	Net Benefits (\$Millions)	BCR
Electric				
Georgia	\$332	\$699	\$367	2.1
Illinois	\$336	\$617	\$281	1.8
Maryland	\$278	\$698	\$420	2.5
Michigan	\$246	\$597	\$352	2.4
Missouri	\$178	\$336	\$158	1.9
New York	\$976	\$2,169	\$1,193	2.2
North Carolina	\$272	\$577	\$305	2.1
Pennsylvania	\$252	\$526	\$274	2.1
Virginia	\$277	\$551	\$274	2.0
Natural Gas				
Georgia	\$73	\$172	\$99	2.4
Illinois	\$235	\$481	\$246	2.0
Maryland	\$112	\$242	\$129	2.2
Michigan	\$171	\$354	\$182	2.1
Missouri	\$35	\$66	\$31	1.9
New York	\$586	\$1,240	\$654	2.1
North Carolina	\$21	\$49	\$28	2.3
Pennsylvania	\$117	\$247	\$130	2.1
Virginia	\$65	\$146	\$81	2.2
Fuel Oil				
New York	\$616	\$1,884	\$1,268	3.1

UTILITY-LEVEL SUMMARY

Savings

Cumulative results through 2034 by state and utility for the affordable multifamily housing sector are presented in Table 10 through Table 18 below. Utilities are presented by state and fuel in order of decreasing electric potential. The magnitude of the maximum achievable potential varies significantly by utility because of differences in the number of affordable multifamily housing units serviced in each territory.

Table 10 | Georgia Cumulative Base Case Maximum Achievable Potential by Utility Service Territory, 2034

Utility	Electric (GWh)	Natural Gas (BBtu)
Georgia Power	654	955
All Coops	66	97
All Munis/Public Power	57	84
Savannah Electric & Power Company	25	37
Other	1	2
Total	804	1,175

Table 11 | Illinois Cumulative Base Case Maximum Achievable Potential by Utility Service Territory, 2034

Utility	Electric (GWh)	Natural Gas (BBtu)
Commonwealth Edison Company	548	2,447
Ameren Services	132	581
MidAmerican Energy Company	13	60
Other	52	223
Total	744	3,311

Table 12 | Maryland Cumulative Base Case Maximum Achievable Potential by Utility Service Territory, 2034

Utility	Electric (GWh)	Natural Gas (BBtu)
Baltimore Gas and Electric Company	258	763
Potomac Electric Power Co.	214	641
Potomac Edison	36	108
Delmarva Power	27	79
Southern Maryland Electric Cooperative	15	43
Other	28	84
Total	578	1,716

Table 13 | Michigan Cumulative Base Case Maximum Achievable Potential by Utility Service Territory, 2034

Utility	Electric (GWh)	Natural Gas (BBtu)
DTE Energy Company	278	1,282
Consumers Energy	180	829
Indiana Michigan Power	10	47
Other Investor-Owned Utilities (IOUs)	5	21
Other	57	261
Total	529	2,440

Table 14 | Missouri Cumulative Base Case Maximum Achievable Potential by Utility Service Territory, 2034

Utility	Electric (GWh)	Natural Gas (BBtu)
Ameren Missouri	147	239
Kansas City Power & Light	110	184
City Utilities of Springfield	24	40
Empire District	15	24
Other	62	102
Total	358	590

Table 15 | New York Cumulative Base Case Maximum Achievable Potential by Utility Service Territory, 2034

Utility	Electric (GWh)	Natural Gas (BBtu)	Fuel Oil (BBtu)
Con Edison of NY	1,645	6,525	4,284
Niagara Mohawk	145	633	406
Long Island Power Authority	55	251	185
New York State Electric & Gas Corp.	47	206	127
Rochester Gas & Electric	39	169	113
Central Hudson Gas & Electric Corp.	22	104	63
Orange and Rockland Utilities	17	83	49
Other	11	49	30
Total	1,981	8,019	5,258

Table 16 | North Carolina Cumulative Base Case Maximum Achievable Potential by Utility Service Territory, 2034

Utility	Electric (GWh)	Natural Gas (BBtu)
Duke Energy Carolinas, LLC	271	158
Carolina Power & Light	190	108
Virginia Electric and Power Company	13	7
EnergyUnited	10	5
Other	145	83
Total	629	362

Table 17 | Pennsylvania Cumulative Base Case Maximum Achievable Potential by Utility Service Territory, 2034

Utility	Electric (GWh)	Natural Gas (BBtu)
PECO Energy Company	161	471
PPL Electric Utilities	117	369
Duquesne Light	85	220
Pennsylvania Electric Company	58	192
West Penn Power Company	52	173
Metropolitan Edison Company	34	114
Pennsylvania Power Co.	10	34
Other	14	41
Total	532	1,614

Table 18 | Virginia Cumulative Base Case Maximum Achievable Potential by Utility Service Territory, 2034

Utility	Electric (GWh)	Natural Gas (BBtu)
Dominion	474	801
Appalachian Power	59	110
All Munis/Public Power	38	64
NOVEC	27	45
All Coops except NOVEC/Rappahannock	8	14
Potomac Edison (VA only)	7	12
Rappahannock Electric Cooperative	3	5
Kentucky Utilities Co. (Old Dominion/PPL)	2	5
PEPCO Delmarva (VA only)	1	1
Other	2	3
Total	620	1,059

Costs, Benefits, and Cost-Effectiveness

Table 19 through Table 27 show the cumulative costs and benefits by state and utility that would be realized from capturing the maximum achievable potential through 2034. Results at the utility service territory level are presented by state and fuel in order of decreasing net benefits. The maximum achievable potential scenarios for all utilities and fuels are highly cost-effective from a Total Resource Cost Test perspective. The benefit-to-cost ratios (BCR) of individual utilities within each state are fairly close. Differences result primarily from differences in assumed avoided costs by electric utility service territory.

Table 19 | Georgia Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory

Utility	Costs (\$Millions)	Benefits (\$Millions)	Net Benefits (\$Millions)	BCR
Electric				
Georgia Power	\$270	\$569	\$299	2.1
All Coops	\$27	\$58	\$30	2.1
All Munis/Public Power	\$23	\$49	\$26	2.1
Savannah Electric & Power Company	\$11	\$22	\$12	2.1
Other	\$1	\$1	\$1	2.1
Electric Total	\$332	\$699	\$367	2.1
Natural Gas				
Georgia Power	\$59	\$140	\$81	2.4
All Coops	\$6	\$14	\$8	2.4
All Munis/Public Power	\$5	\$12	\$7	2.4
Savannah Electric & Power Company	\$2	\$5	\$3	2.4
Other	\$0	\$0	\$0	2.3
Natural Gas Total	\$73	\$172	\$99	2.4

^{*}due to rounding, numbers presented in "Other" category may not add up to total provided

Table 20 | Illinois Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory

Utility	Costs (\$Millions)	Benefits (\$Millions)	Net Benefits (\$Millions)	BCR
Electric				
Commonwealth Edison Company	\$248	\$454	\$207	1.8
Ameren Services	\$60	\$110	\$50	1.8
MidAmerican Energy Company	\$5	\$10	\$5	2.0
Other	\$23	\$43	\$19	1.8
Electric Total	\$336	\$617	\$281	1.8
Natural Gas				
Commonwealth Edison Company	\$174	\$355	\$182	2.0
Ameren Services	\$41	\$85	\$43	2.0
MidAmerican Energy Company	\$4	\$8	\$4	2.1
Other	\$16	\$33	\$17	2.0
Natural Gas Total	\$235	\$481	\$246	2.0

Table 21 | Maryland Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory

Utility	Costs (\$Millions)	Benefits (\$Millions)	Net Benefits (\$Millions)	BCR
Electric				
Baltimore Gas and Electric Company	\$125	\$312	\$187	2.5
Potomac Electric Power Co.	\$104	\$259	\$156	2.5
Potomac Edison	\$17	\$43	\$26	2.5
Delmarva Power	\$12	\$32	\$20	2.7
Southern Maryland Electric Cooperative	\$7	\$18	\$11	2.5
Other	\$13	\$34	\$20	2.5
Electric Total	\$278	\$698	\$420	2.5
Natural Gas				
Baltimore Gas and Electric Company	\$50	\$108	\$57	2.1
Potomac Electric Power Co.	\$42	\$90	\$48	2.1
Potomac Edison	\$7	\$15	\$8	2.1
Delmarva Power	\$5	\$11	\$6	2.4
Southern Maryland Electric Cooperative	\$3	\$6	\$3	2.1
Other	\$5	\$12	\$6	2.1
Natural Gas Total	\$112	\$242	\$129	2.2

Table 22 | Michigan Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory

Utility	Costs (\$Millions)	Benefits (\$Millions)	Net Benefits (\$Millions)	BCR
Electric				
DTE Energy Company	\$137	\$315	\$177	2.3
Consumers Energy	\$78	\$202	\$125	2.6
Indiana Michigan Power	\$4	\$11	\$7	2.6
Other Investor-Owned Utilities (IOUs)	\$2	\$5	\$3	2.6
Other	\$24	\$64	\$39	2.6
Electric Total	\$246	\$597	\$352	2.4
Natural Gas				
DTE Energy Company	\$98	\$186	\$88	1.9
Consumers Energy	\$52	\$120	\$68	2.3
Indiana Michigan Power	\$3	\$7	\$4	2.3
Other Investor-Owned Utilities (IOUs)	\$1	\$3	\$2	2.3
Other	\$16	\$38	\$21	2.3
Natural Gas Total	\$171	\$354	\$182	2.1

Table 23 | Missouri Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory

Utility	Costs (\$Millions)	Benefits (\$Millions)	Net Benefits (\$Millions)	BCR
Electric				
Ameren Missouri	\$75	\$139	\$64	1.9
Kansas City Power & Light	\$56	\$104	\$48	1.9
City Utilities of Springfield	\$11	\$22	\$11	2.0
Empire District	\$7	\$14	\$7	2.0
Other	\$29	\$57	\$28	2.0
Electric Total	\$178	\$336	\$158	1.9
Natural Gas				
Ameren Missouri	\$15	\$27	\$12	1.8
Kansas City Power & Light	\$11	\$21	\$9	1.8
City Utilities of Springfield	\$2	\$4	\$2	2.2
Empire District	\$1	\$3	\$1	2.2
Other	\$5	\$11	\$6	2.2
Natural Gas Total	\$35	\$66	\$31	1.9

Table 24 | New York Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory

Utility	Costs (\$Millions)	Benefits (\$Millions)	Net Benefits (\$Millions)	BCR
Electric				
Con Edison of NY	\$838	\$1,890	\$1,051	2.3
Niagara Mohawk	\$56	\$119	\$62	2.1
Long Island Power Authority	\$25	\$48	\$22	1.9
New York State Electric & Gas Corp.	\$18	\$38	\$20	2.1
Rochester Gas & Electric	\$15	\$32	\$17	2.1
Central Hudson Gas & Electric Corp.	\$10	\$19	\$9	1.9
Orange and Rockland Utilities	\$8	\$15	\$7	1.9
Other	\$5	\$9	\$4	1.9
Electric Total	\$976	\$2,169	\$1,193	2.2
Natural Gas				
Con Edison of NY	\$487	\$1,030	\$543	2.1
Niagara Mohawk	\$39	\$86	\$47	2.2
Long Island Power Authority	\$19	\$39	\$20	2.0
New York State Electric & Gas Corp.	\$13	\$28	\$15	2.2
Rochester Gas & Electric	\$10	\$23	\$13	2.2
Central Hudson Gas & Electric Corp.	\$8	\$16	\$8	2.0
Orange and Rockland Utilities	\$6	\$12	\$6	2.0
Other	\$4	\$7	\$3	1.8
Natural Gas Total	\$586	\$1,240	\$654	2.1
Fuel Oil				
Con Edison of NY	\$513	\$1,536	\$1,023	3.0
Niagara Mohawk	\$40	\$145	\$105	3.6
Long Island Power Authority	\$22	\$66	\$43	3.0
New York State Electric & Gas Corp.	\$13	\$46	\$33	3.6
Rochester Gas & Electric	\$11	\$40	\$29	3.6
Central Hudson Gas & Electric Corp.	\$8	\$22	\$15	3.0
Orange and Rockland Utilities	\$6	\$17	\$12	3.0
Other	\$4	\$11	\$7	3.0
Fuel Oil Total	\$616	\$1,884	\$1,268	3.1

Table 25 | North Carolina Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory

Utility	Costs (\$Millions)	Benefits (\$Millions)	Net Benefits (\$Millions)	BCR
Electric				
Duke Energy Carolinas, LLC	\$117	\$248	\$131	2.1
Carolina Power & Light	\$82	\$175	\$92	2.1
Virginia Electric and Power Company	\$6	\$12	\$6	2.1
EnergyUnited	\$4	\$9	\$5	2.1
Other	\$63	\$133	\$70	2.1
Electric Total	\$272	\$577	\$305	2.1
Natural Gas				
Duke Energy Carolinas, LLC	\$9	\$21	\$12	2.3
Carolina Power & Light	\$6	\$15	\$8	2.3
Virginia Electric and Power Company	\$0	\$1	\$1	2.3
EnergyUnited	\$0	\$1	\$0	2.3
Other	\$5	\$11	\$6	2.3
Natural Gas Total	\$21	\$49	\$28	2.3

Table 26 | Pennsylvania Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory

Utility	Costs (\$Millions)	Benefits (\$Millions)	Net Benefits (\$Millions)	BCR
Electric				
PPL Electric Utilities	\$55	\$139	\$83	2.5
PECO Energy Company	\$77	\$141	\$64	1.8
Duquesne Light	\$46	\$102	\$55	2.2
Pennsylvania Electric Company	\$25	\$49	\$24	2.0
West Penn Power Company	\$23	\$44	\$22	2.0
Metropolitan Edison Company	\$15	\$29	\$14	2.0
Pennsylvania Power Co.	\$4	\$9	\$4	2.0
Other	\$7	\$13	\$6	1.8
Electric Total	\$252	\$526	\$274	2.1
Natural Gas				
PECO Energy Company	\$36	\$74	\$38	2.0
PPL Electric Utilities	\$25	\$55	\$30	2.2
Duquesne Light	\$17	\$36	\$19	2.1
Pennsylvania Electric Company	\$13	\$28	\$15	2.1
West Penn Power Company	\$12	\$25	\$14	2.1
Metropolitan Edison Company	\$8	\$17	\$9	2.1
Pennsylvania Power Co.	\$2	\$5	\$3	2.1
Other	\$3	\$6	\$3	2.0
Natural Gas Total	\$117	\$247	\$130	2.1

Table 27 | Virginia Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory

Utility	Costs (\$Millions)	Benefits (\$Millions)	Net Benefits (\$Millions)	BCR
Electric				
Dominion	\$213	\$421	\$208	2.0
Appalachian Power	\$24	\$52	\$28	2.1
All Munis/Public Power	\$17	\$33	\$16	2.0
NOVEC	\$12	\$24	\$12	2.0
All Coops except NOVEC/Rappahannock	\$4	\$7	\$3	2.0
Potomac Edison (VA only)	\$3	\$6	\$3	2.0
Rappahannock Electric Cooperative	\$1	\$3	\$1	2.0
Kentucky Utilities Co. (Old Dominion/PPL)	\$1	\$2	\$1	2.1
PEPCO Delmarva (VA only)	\$0	\$0	\$0	2.1
Other	\$1	\$2	\$1	2.0
Electric Total	\$277	\$551	\$274	2.0
Natural Gas				
Dominion	\$50	\$111	\$61	2.2
Appalachian Power	\$6	\$14	\$8	2.3
All Munis/Public Power	\$4	\$9	\$5	2.2
NOVEC	\$3	\$6	\$3	2.2
All Coops except NOVEC/Rappahannock	\$1	\$2	\$1	2.2
Potomac Edison (VA only)	\$1	\$2	\$1	2.2
Rappahannock Electric Cooperative	\$0	\$1	\$0	2.2
Kentucky Utilities Co. (Old Dominion/PPL)	\$0	\$1	\$0	2.3
PEPCO Delmarva (VA only)	\$0	\$0	\$0	2.3
Other	\$0	\$0	\$0	2.2
Natural Gas Total	\$65	\$146	\$81	2.2

^{*}due to rounding, numbers presented may not add up to total provided

NON-ENERGY BENEFITS AND DISCOUNT RATE SENSITIVITY ANALYSES

The inclusion of non-energy benefits (NEBs) can have a significant impact on maximum achievable potential, especially for the affordable multifamily housing sector. We conducted sensitivity analyses, assessing the impacts of changes in certain key input variables, to examine the impact of NEBs on the maximum achievable potential. Table 28 shows the sensitivity analyses performed.

Scenario	Scenario Description			
Base Case	Maximum achievable potential scenario. Benefits assessed limited to reduced energy, water, and operation and maintenance costs (i.e., does not include the impact of other non-energy benefits)			
Low Non-Energy Benefits	Maximum achievable potential including the impact of low non-energy benefits			
High Non-Energy Benefits	Maximum achievable potential including the impact of high non-energy benefits			

Table 28 | Summary of Sensitivity Analyses Performed

Several efficiency programs account for the impacts of additional benefits beyond reduced energy and water consumption and reduced operation and maintenance costs. Massachusetts has studied these impacts extensively in the residential sector, and has quantified NEBs specifically for low-income participants.¹³ The benefits that warrant quantification include the following:¹⁴

- Reduced arrearages
- Reduced customer calls and collection activities
- Reduced safety-related emergency calls
- Higher comfort levels
- Increased housing property values
- Health-related benefits

For the sensitivity analyses, we have assumed NEB values derived from the actual nonenergy benefits claimed for low-income residential programs implemented by the

1

¹³ NMR Group, Massachusetts Special and CrossSector Studies Area, Residential and Low-Income Non-Energy Impacts (NEI) Evaluation (2001).

¹⁴ The referenced Massachusetts study does not quantify all NEBs investigated. Reasons given for not quantifying some NEBs include the following: "[t]he [NEB] is too hard to quantify meaningfully, [q]uantifying the [NEB] would amount to double counting as the NEB is already accounted for, [t]here is insufficient evidence in the literature for its existence, [and] [t]he [NEB] is too intangible."

Massachusetts programs' administrators in 2012 and 2013. The statewide study results, on which these values are based, are provided on a per-housing unit basis by measure type; our simplified approach assumes the ratio of overall non-energy benefits to energy benefits claimed by the Massachusetts low-income residential programs can be applied to the avoided costs used in this study to estimate the impact of NEBs. Because the avoided costs in Massachusetts vary significantly in some cases from those used in this study, our ratios are adjusted such that the resulting value of the NEBs per unit of energy saved are approximately equal regardless of actual avoided costs in the specific utility territory assessed. The Low NEBs scenario assumed NEBs equivalent to 50% of the Massachusetts values whereas the High NEBs scenario assumes values equivalent to 100% of the Massachusetts values.

When assessing the cost-effectiveness and net benefits of efficiency measures, including the non-energy benefits is equivalent to assuming higher avoided energy costs. Avoided energy supply costs (or simply, avoided costs), are energy supply costs that will be avoided by reducing consumption of electricity, natural gas, and fuel oil. Including the impacts of NEBs in the avoided costs results in an increase of 60% to 261% relative to the avoided costs assumed in the Base Case for this study. The extent of variation depends on the sensitivity scenario, utility service territory, and fuel. The complete set of NEB factors used in this study is presented in Appendix H. Given the magnitude of the non-energy benefits in the affordable multifamily housing sector, including these benefits, in many cases, changes whether individual measures pass or fail cost-effectiveness screening. Therefore, the impact on overall savings can be significant.

Table 29 and Table 30 show the maximum achievable potential by state and fuel for both sensitivity scenarios. For the Low NEBs sensitivity, total cumulative electric savings in 2034 for all nine states are 14% higher than in the Base Case. Natural gas savings are 29% higher. Savings for fuel oil are unchanged as no additional measures pass the cost-effectiveness screening. For the High NEBs sensitivity, total cumulative electric savings are 28% higher than in the Base Case. Natural gas savings are 33% higher. As in the Low NEBs scenario, savings for fuel oil in the High NEBs scenario are virtually unchanged from the Base Case.

Table 29 | Sensitivity for Low Non-Energy Benefits, Cumulative Maximum Achievable Potential by State, 2034

	Low NEBs Sensi	tivity Scenario	Base Case		
	Cumulative Savings, 2034	% of Sales Forecast	Cumulative Savings, 2034	% of Sales Forecast	
Electric (GWh)					
Georgia	931	20%	804	17%	
Illinois	871	26%	744	22%	
Maryland	644	22%	578	19%	
Michigan	551	27%	529	26%	
Missouri	438	19%	358	15%	
New York	2,177	27%	1,981	24%	
North Carolina	749	23%	629	19%	
Pennsylvania	607	23%	532	20%	
Virginia	731	25%	620	21%	
Natural Gas (BBtu)					
Georgia	1,525	17%	1,175	13%	
Illinois	4,324	20%	3,311	16%	
Maryland	1,932	20%	1,716	18%	
Michigan	3,162	14%	2,440	11%	
Missouri	774	23%	590	17%	
New York	10,587	18%	8,019	13%	
North Carolina	463	28%	362	22%	
Pennsylvania	1,992	13%	1,614	11%	
Virginia	1,464	18%	1,059	13%	
Fuel Oil (BBtu)					
New York	5,258	15%	5,258	15%	

For a given state, the degree to which the inclusion of NEBs increases the savings potential depends on how many measures fall just short of being cost-effective without the inclusion of NEBs. If the level of NEBs are sufficient, these nearly cost-effective measures are pushed over the cost-effectiveness hurdle and included in the potential estimates in the sensitivity scenarios. In general, states with lower avoided energy costs are more significantly affected by the inclusion of NEBs as fewer measures pass cost-effectiveness in the Base Case. For the electric potential, NEBs have the most significant impact in Virginia, North Carolina, and Georgia. For the natural gas potential, NEBs have the largest impact in Virginia, Michigan, and Missouri.

Table 30 | Sensitivity for High Non-Energy Benefits, Cumulative Maximum Achievable Potential by State, 2034

	High NEB Sensi	tivity Scenario	Base Case		
	Cumulative Savings 2034	% of Sales Forecast	Cumulative Savings 2034	% of Sales Forecast	
Electric (GWh)					
Georgia	1,071	23%	804	17%	
Illinois	879	26%	744	22%	
Maryland	739	25%	578	19%	
Michigan	649	32%	529	26%	
Missouri	459	20%	358	15%	
New York	2,513	31%	1,981	24%	
North Carolina	852	26%	629	19%	
Pennsylvania	671	25%	532	20%	
Virginia	838	28%	620	21%	
Natural Gas (BBtu)					
Georgia	1,562	17%	1,175	13%	
Illinois	4,390	21%	3,311	16%	
Maryland	1,978	21%	1,716	18%	
Michigan	3,410	15%	2,440	11%	
Missouri	827	24%	590	17%	
New York	10,765	18%	8,019	13%	
North Carolina	474	28%	362	22%	
Pennsylvania	2,028	13%	1,614	11%	
Virginia	1,497	19%	1,059	13%	
Fuel Oil (BBtu)					
New York	5,271	15%	5,258	15%	

Table 31 and Table 32 show the maximum achievable potential costs and benefits by state for all fuels for both sensitivity scenarios. For the Low NEBs sensitivity, total net benefits for all states and fuels increase by 122% from \$6.5 billion to \$14.4 billion. The overall BCR rises from 2.2 to 3.0. For the High NEBs sensitivity, total net benefits increase by 253% from \$6.5 billion to \$22.9 billion and the overall BCR increases from 2.2 to 3.3.

Table 31 | Sensitivity for Low Non-Energy Benefits, Maximum Achievable Potential Costs and Benefits, All Fuels

	Low NEBs Sensitivity Scenario			Base Case				
State	Costs (\$Millions)	Benefits (\$Millions)	Net Benefits (\$Millions)	BCR	Costs (\$Millions)	Benefits (\$Millions)	Net Benefits (\$Millions)	BCR
Georgia	\$575	\$1,799	\$1,223	3.1	\$405	\$872	\$467	2.2
Illinois	\$866	\$2,210	\$1,344	2.6	\$571	\$1,098	\$527	1.9
Maryland	\$500	\$1,632	\$1,132	3.3	\$391	\$940	\$550	2.4
Michigan	\$531	\$1,642	\$1,111	3.1	\$417	\$951	\$534	2.3
Missouri	\$335	\$845	\$511	2.5	\$213	\$402	\$190	1.9
New York	\$2,764	\$9,055	\$6,291	3.3	\$2,178	\$5,293	\$3,114	2.4
North Carolina	\$430	\$1,324	\$893	3.1	\$293	\$625	\$332	2.1
Pennsylvania	\$515	\$1,453	\$938	2.8	\$369	\$773	\$404	2.1
Virginia	\$520	\$1,461	\$941	2.8	\$342	\$697	\$354	2.0
Total	\$7,036	\$21,421	\$14,384	3.0	\$5,179	\$11,651	\$6,472	2.2

Table 32 | Sensitivity for High Non-Energy Benefits, Maximum Achievable Potential Costs and Benefits, All Fuels

	High NEB Sensitivity Scenario			Base Case				
State	Costs (\$Millions)	Benefits (\$Millions)	Net Benefits (\$Millions)	BCR	Costs (\$Millions)	Benefits (\$Millions)	Net Benefits (\$Millions)	BCR
Georgia	\$926	\$2,975	\$2,048	3.2	\$405	\$872	\$467	2.2
Illinois	\$915	\$3,190	\$2,276	3.5	\$571	\$1,098	\$527	1.9
Maryland	\$775	\$2,530	\$1,755	3.3	\$391	\$940	\$550	2.4
Michigan	\$860	\$2,584	\$1,724	3.0	\$417	\$951	\$534	2.3
Missouri	\$412	\$1,305	\$894	3.2	\$213	\$402	\$190	1.9
New York	\$3,883	\$13,435	\$9,552	3.5	\$2,178	\$5,293	\$3,114	2.4
North Carolina	\$688	\$2,197	\$1,508	3.2	\$293	\$625	\$332	2.1
Pennsylvania	\$708	\$2,230	\$1,522	3.2	\$369	\$773	\$404	2.1
Virginia	\$813	\$2,392	\$1,579	2.9	\$342	\$697	\$354	2.0
Total	\$9,980	\$32,838	\$22,858	3.3	\$5,179	\$11,651	\$6,472	2.2

Finally, a second sensitivity analysis was conducted to investigate the impact of the discount rate on the potential. Increasing the discount rate decreases the present value of future costs incurred and benefit streams realized. The maximum achievable Base Case scenario was reexamined assuming a 1%, 3%, and 5% real discount rate. The results of the analyses showed that the potential estimates are fairly insensitive to such small changes in the discount rate. For all states, the maximum achievable electric potential drops an average of only 0.2 percentage points between the 3% and 5% real discount rate cases. The maximum achievable natural gas

Potential for Energy Savings in Affordable Multifamily Housing

potential drops by 0.9 percentage points between the same two cases. When the discount rate is reduced to 1%, the average maximum achievable electric potential across all nine states increases by 0.1 percentage points relative to the 3% real discount rate case, and the maximum achievable natural gas potential increases by 1.6 percentage points. Because of the relative insensitivity of the model to small changes in discount rate, the detailed results of the sensitivity analysis are not presented.

METHODOLOGY

OVERVIEW

The energy efficiency potential analysis involved several initial steps that were required regardless of the specific scenario assessed. These steps include the following:

- Estimating the number of affordable multifamily housing units by state, electric utility service territory, building size (i.e., buildings with 5 to 49 units and buildings with 50 or more units), and subsidy type (i.e., unsubsidized affordable, subsidized affordable, and public housing authority-owned)
- Estimating baseline energy consumption for affordable multifamily housing units
- Characterizing efficiency measures, including estimated costs, savings, and lifetimes
- Identifying location-dependent parameters for each electric utility service territory, including climate, hours of lighting use, measure cost-adjustment factors, and avoided energy supply costs
- Developing, for each electric utility service territory, a comprehensive measure list representing all pertinent combinations of measures, market, building size, and location-dependent parameters

Developing the two potential scenarios required additional steps specific to the assumptions in each scenario. These steps include the following:

- Screening all measures for cost-effectiveness by applying the Total Resource Cost test to determine whether total lifetime benefits exceed lifetime costs. All failing measures are removed from the analysis.
- Developing penetration profiles for both the economic and maximum achievable scenarios
- Establishing incentive levels and non-incentive program costs for the maximum achievable scenario

Optimal Energy characterized a comprehensive list of energy efficiency technologies and practices. Measures addressing each primary residential end use (i.e., space heating, cooling, and lighting) were represented. They included building envelope improvements, efficient lighting systems and controls, efficient appliances and consumer electronics, efficient heating and cooling systems and controls, and behavioral programs. Efficiency opportunities both in common areas and within individual housing units were considered.

Measure costs and savings were characterized per housing unit and then screened for cost-effectiveness. We used the Total Resource Cost (TRC) test to estimate the costs of achieving efficiency savings and benefits that result from these measures. The TRC test includes all costs incurred by participants and program administrators, including incentives, participant share of measure costs, and program administrative costs. The benefits include the value of all electric

energy and capacity, natural gas, and fuel oil savings as well as any other resource savings (e.g., water) and operation and maintenance savings.

Making appropriate adjustments for measure applicability and taking into consideration the portion of the market that has already converted to efficient equipment and practices, or is projected to in the future absent any program intervention, the total potential was estimated by applying the measure-level costs and savings to the population of affordable multifamily housing units both statewide and by electric utility service territory.

To estimate the economic and maximum achievable potentials, we used the following two approaches:

- Economic potential scenario. We generally assumed that all cost-effective
 measures (i.e., those that pass the TRC test) would be taken at the rate of
 turnover for market-driven measures such as for major renovation and
 natural replacement. For retrofit measures, as the economic potential is
 somewhat hypothetical, we neglect practical constraints and assume all costeffective retrofit measures are taken immediately.
- Maximum achievable scenario. This scenario is based on the economic potential (in that it only includes measures that pass the TRC test) but accounts for real-world market barriers. We assumed that efficiency programs would provide incentives to cover 100% of the incremental costs of efficiency measures, so that program participants would have no out-of-pocket costs relative to standard baseline equipment. Measure penetration rates were then estimated assuming optimal program delivery, but recognizing that market barriers still remain even when measure incremental costs are fully offset by program incentives.

UNIT COUNTS

Project partners Elevate Energy and the National Housing Trust provided estimates of multifamily housing unit counts by state, electric utility service territory, building size, and subsidy type. The affordable housing market was subdivided in two ways: by the number of units in a building (i.e., 5 to 49 units and 50 or more units) and by affordability (i.e., unsubsidized affordable, subsidized, and public housing authority-owned). This produces six categories of housing. Figure 4 presents the unit counts by state and subsidy type.

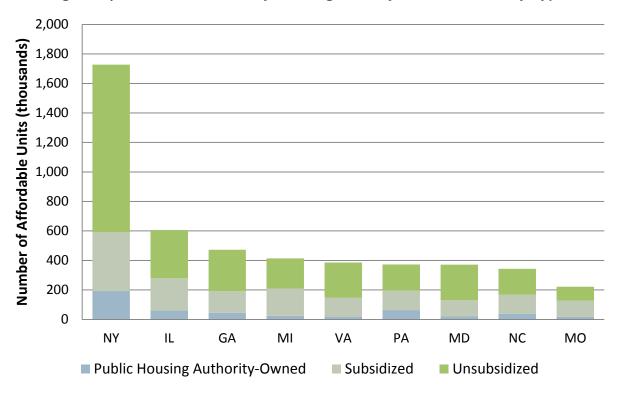


Figure 4 | Affordable Multifamily Housing Units by State and Subsidy Type

All information on subsidy type comes from the National Housing Preservation Database (NHPD), developed by the Public and Affordable Housing Research Corporation and the National Low Income Housing Coalition. This data includes any property that has received at least one subsidy of any sort, including U.S. Department of Housing and Urban Development, U.S. Department of Agriculture Rural Development, Low-Income Housing Tax Credit, Public Housing Agency, and Federal Housing Administration subsidies. The "unsubsidized affordable" units are any units in low/moderate income census tracts, designated by the New Market Tax Credits, which do not have subsidies. These amounts are calculated based on a combination of the five year estimate of total unit counts of the U.S. Census Bureau's *American Community Survey 2012* and the tract-level unit counts from NHPD. In some areas, the census estimates credited fewer total units in a tract than did the NHPD subsidized unit records. In these cases, geocoded NHPD counts were used for total counts, so final unit estimates were slightly higher in some areas than the census data.

After unit counts were determined at the census tract level, they were aggregated to produce figures for electric utility territories with 2014 Platts geospatial data for any service territory with 100,000 or more residential customers. Unit counts by state, utility territory, building size, and subsidy are presented in Appendix C.

BASELINE ENERGY CONSUMPTION

For this study, we developed annual energy consumption estimates for typical affordable multifamily housing units for each energy type (i.e., electricity, natural gas, and fuel oil) and

state. State to other subsectors, has not been well studied. Our electric, natural gas, and fuel oil consumption estimates were primarily based on data from the U.S. Energy Information Administration's (EIA) 2009 Residential Energy Consumption Survey (RECS). RECS "microdata" at the housing-unit level, was used to get information specifically for residential buildings with five or more units in each state. Because of limited sample sizes, differentiation based on household income and building size was not possible while maintaining statistical significance. While the baseline consumption estimates used are not specific to the affordable sector, they are reasonably consistent with affordable housing energy estimates presented in Fannie Mae's 2014 Transforming Multifamily Housing: Fannie Mae's Green Initiative and Energy Star for Multifamily and the 2014 New York City Local Law 84 Benchmarking Report.

One drawback of the RECS data is that it does not include common-area consumption. Based on several other recent studies that specifically quantified common-area characteristics, we estimated that an additional 10% of space heating, cooling, and water heating end-use energy is consumed in common areas.

Also, because of the impact of the Energy Independence and Security Act of 2007 on lighting efficiency, the RECS data do not adequately reflect current lighting energy consumption. To address this, we estimated lighting consumption, both within housing units and common areas, by multiplying the typical type, number, and wattage of lighting fixtures per unit by the assumed hours of use in each utility territory. Hours-of-use assumptions were derived from the NMR Group's 2014 Northeast Residential Lighting Hours-of-Use Study. Lighting fixture types, counts, and wattages were developed from the measure characterization data sources described below.

The per-housing-unit consumption estimates were then multiplied by number of units to estimate total baseline energy consumption by state and electric utility service territory. The per-unit baseline consumption estimates by state and fuel are presented in Appendix D. The baseline consumption estimates are used both to inform our measure characterizations and for reporting the potential estimates as a percentage of total load.

MEASURE CHARACTERIZATION

A key early step in the analysis was to generate the measure list and characterize measures in terms of costs, savings, useful lives, and other baseline assumptions. We collaborated with NRDC to develop a comprehensive list of measures representing all major efficiency opportunities in affordable multifamily housing. The analysis addresses all in-unit measures usually characterized in efficiency studies but, because of budget constraints, limits the assessment of consumer electronics and other devices plugged directly into outlets (small-plug loads) and behavioral measures. The assessment of small-plug loads was limited to advanced power strips and efficient set-top boxes. Behavioral measures were assessed as a single package,

.

¹⁵ Because the lighting hours-of-use assumptions used for the Consolidated Edison service territory in New York State were significantly higher than the values used elsewhere, the total electric consumption for this service territory was estimated separately from the rest of the state.

assuming residents receive periodic feedback on energy use and advice for improving their energy performance. The final list of measures and associated characteristics considered in the analysis is presented in Appendix E.

All measures were characterized on a per-housing-unit basis. A single set of base national-level per-unit measure characterizations for each of the two building segments (i.e., 5 to 49 units and 50 or more units) was developed. This approach allows the per-unit impacts and costs to be adjusted based on significant factors such as climate but still enables us to estimate total population-level potential by utility territory based on the number of affordable housing units within each territory.

All in-unit measures (i.e., measures installed within individual housing units) are generally consistent across both building sizes and reflect the average number of those measures per apartment unit. To preserve the per-housing-unit approach, we allocated all central system efficiency measures at the unit level for each of the two building-size segments. As a result, a large central heating plant would be screened based on the portion of a typical heating plant allocated to a single housing unit. This approach ensured that all measure-level data was consistent for all comparable units and could be easily applied to different territories based on unit populations.

A total of 182 measures were characterized for up to two applicable markets (i.e. the natural replacement and renovation market and the retrofit market). This is important because the costs and savings of a given measure can vary depending on the market to which it is applied. For example, a retrofit or early retirement of operating but inefficient equipment entails covering the costs of entirely new equipment and the labor to install it and dispose of the old equipment. For market-driven opportunities, installing new high efficiency equipment may entail only the incremental cost of a high efficiency piece of equipment versus a standard efficiency one, as similar labor costs would be incurred in either case. Similarly, on the savings side, retrofit measures can initially save more when performance is compared with older existing equipment, while market-driven measure savings reflect only the incremental savings over current standard efficiency purchases. For retrofit measures, we model a "baseline efficiency shift" at the time when the equipment to be retrofitted would have needed to be replaced anyway.

In general, measure characterizations include defining the following for each combination of measure, market, and, if necessary, building size:

- Savings (relative to baseline equipment)
- Cost (incremental or full installation depending on market)
- Lifetime (both baseline and high-efficiency options if different)
- Operation and maintenance (O&M) impacts (relative to baseline equipment)
- Water impacts (relative to baseline equipment).

For each technology, measure savings were primarily drawn from secondary sources, such as technical reference manuals (TRMs) and existing potential studies. For more complex measures not addressed by these sources, engineering calculations were used based on the best available data about current baselines in the study states and the performance impacts of high-

efficiency equipment or practices. Measure costs were drawn from the sources mentioned above as well as from baseline studies, incremental cost studies, and direct pricing research. Measure lifetimes, operation and maintenance impacts (e.g., reduced replacement lamp purchases for new high efficiency fixtures), and water impacts were generally developed from technical reference manuals and potential studies.

Table 33 provides an overview of some of the state-specific sources referenced for developing measure characteristics. To the extent possible, these sources were used to develop the base national-level characterizations, including estimates of measure applicability. ¹⁶ It should be noted that no recent studies were available for Georgia and Virginia; however, since the sources were used to inform the national-level characterizations, these data gaps did not represent an insurmountable obstacle. Location-dependent parameters, as discussed below, were used to capture the primary differences between analysis regions. Primary sources included the recent potential studies in Massachusetts, Michigan, New York, and Pennsylvania and the *Illinois Statewide Technical Reference Manual*. The final list of measures, associated characteristics, and sources considered in the analysis are presented in Appendix E. See Appendix B for full citations for all referenced documents.

Measure applicability is the fraction of housing units for which a given measure represents a realistic option. For example, duct sealing measures are only applicable to housing units with ducted HVAC systems. This is discussed in further detail in the Economic Potential Analysis section below.

Table 33 | Measure Characterization Data Sources, 2034

State	Market/Baseline Study	Potential Study	Technical Reference Manual
Study States			
Georgia			
Illinois		✓	✓
Maryland	✓		✓
Michigan	✓	✓	✓
Missouri		✓	
New York		✓	✓
North Carolina		✓	
Pennsylvania	✓	✓	✓
Virginia			
Other States/Regions			
California	✓		
Massachusetts		✓	✓
Minnesota	✓		
Pacific Northwest	✓		✓

LOCATION-DEPENDENT PARAMETERS

While the analysis was based on a single set of base national-level measure characterizations, we apply utility territory-level adjustments to account for variations in climate, equipment and labor costs, and hours of lighting use. Given the scope of the study (i.e., 56 unique utility service territories in nine states), customized analysis of each utility territory was not feasible. But, we believe that adjusting these key parameters significantly improves the accuracy of the utility-level results over those of a simpler parsing of statewide data.

To make these adjustments, we studied variations in location-dependent parameters across the nine states. The range of values for the parameters was then divided into two to four representative "bins," with the number of bins depending on the degree of variation we found for each parameter. Each utility service territory was then categorized according to these bins to facilitate the regionalized analysis . Avoided energy supply costs, which are functionally treated as location-dependent parameters, are discussed in the cost-effectiveness section below. All location-dependent parameters are described in Appendix F.

Climate adjustments are based on four representative climate categories that we defined after collecting climate data from each state. These categories differ primarily by degree days and full load hours of use assumptions (i.e., the number of hours a piece of heating or cooling equipment would have to operate at maximum capacity to satisfy annual heating or cooling requirements).

The costs of efficiency measures can also vary significantly by area. For example, the costs of retrofitting a building in New York City will be quite different from those in rural Missouri. As a result, we also collected location-specific cost adjustment factors for the states and defined high-, medium-, and low-cost adjustment factors. These adjustment factors are applied to national average measure costs to estimate costs at the utility territory level.

Finally, recent studies suggest that hours of lighting use in downstate New York, essentially limited to the Consolidated Edison service territory, are considerably higher than all other areas studied. As 29% of all affordable multifamily housing units considered in this study are located in Consolidated Edison's territory, the characteristics of this region warrant special attention. So, high and low lighting hours of use assumptions are used to reflect differences in usage patterns.

COST-EFFECTIVENESS ANALYSIS

Another key step in our process was to develop a list of all measure permutations necessary to screen the measures for cost-effectiveness in each territory. For each measure, we analyzed each measure/market combination for each building size and utility service territory. This took into account differences in climate, measure costs, hours of lighting use, and avoided costs. In total, we modeled more than 13,000 distinct combinations of measures, markets, building sizes, and utility service territories for each year of the analysis.

Cost-Effectiveness Tests

The study applied the Total Resource Cost (TRC) test to determine measure cost-effectiveness. The TRC test considers the costs and benefits of efficiency measures from the perspective of society as a whole. The principles of this cost test are described in the *California Standard Practice Manual*. Efficiency measure costs for market-driven measures represent the incremental cost between a standard baseline (non-efficient) piece of equipment or practice and the high-efficiency measure. For retrofit markets, the full cost of equipment and labor was used because it is assumed that without efficiency program intervention, no action would be taken by the household or building owner. Measure benefits are primarily energy savings over the measure lifetime, but can also include other benefits, such as water and operation and maintenance savings. The energy impacts may be derived from multiple fuels and end uses. For example, efficient lighting reduces waste heat, which in turn reduces the cooling load, but increases the heating load. All of these impacts are accounted for in the estimation of a measure's costs and benefits over its lifetime.

The following table provides the costs and benefits considered in the TRC test.

¹⁷ For the sensitivity analyses, these benefits also include other non-energy benefits.

Monetized Benefits / Costs	Total Resource Cost (TRC)
Measure cost (incremental over baseline)	Cost
Program administrator incentives	Transfer/Excluded*
Program administrator non-incentive program costs	Cost
Energy and electric demand savings	Benefit
Fossil fuel increased usage	Cost
Operations and maintenance savings	Benefit
Water savings	Benefit
Deferred replacement credit**	Benefit

Table 34 | Overview of the Total Resource Cost Test

Avoided Energy Supply Costs

Overview

Avoided energy supply costs (or simply, avoided costs) are used to assess the value of energy savings (or increased usage). A detailed estimation of avoided costs for all nine states was outside the scope of the project, so a simplified approach was used to capture the impacts of regional variations in avoided costs. The avoided costs used in this study reflect the following limitations:

- We have not included costs for externalities, such as air quality or reduced greenhouse gas emissions. 18
- We have not included the avoided costs of price suppression, or demand reduction induced price effects.

The above factors are included in the avoided costs of many efficiency programs and may be considered for inclusion for future efficiency programs. This study can be considered conservative in this respect.

A discrete set of avoided costs were developed that reflect the continuum of avoided costs usually found in the study states. We reviewed public data sources including regulatory filings, integrated resource plans, potential studies, and specific avoided cost studies. These sources were sufficient to develop a reasonable set of illustrative avoided costs. We then assigned these

^{*} Program administrator incentives reflect a transfer payment from utilities to customers. Because incentives represent a cost to the program administrator and a benefit to participants, they effectively cancel each other out and are therefore excluded from the calculation of TRC.

^{**} The deferred replacement credit is available for early-retirement retrofit measures, measures that obviate or delay the need for the replacement of existing equipment.

¹⁸ Energy savings in affordable multifamily housing will reduce carbon emissions and contribute to state efforts to comply with section 111(d) of the Clean Air Act. The potential estimates from this study can be used with appropriate emissions factors to develop preliminary estimates of carbon pollution reduction potential.

values to each individual utility territory, as appropriate. The avoided costs used in this study are presented in Appendix G.

Electricity

There are two aspects of electric efficiency savings: annual energy use and peak demand coincidence. The former refers to the reductions in actual energy usage, which usually account for the greatest share of electric economic benefits. However, because it is difficult to store electricity, total reduction in system peak demand is also an important factor. Power producers need to ensure adequate capacity to meet system peak demand, even if that peak is only reached a few hours each year. As a result, substantial economic benefits can accrue from reducing the system peak demand, even if little energy is saved during other hours. The electric benefits reported in this study reflect both electric energy savings (kWh) and peak demand reductions (kW) from efficiency measures.

Detailed electric load shapes¹⁹ were not developed by measure, as these vary significantly by territory. Rather, we developed average avoided costs per kWh that incorporate all avoided cost energy and demand components. In order to reflect the differences between measures whose effect on peak demand varies (i.e., those that exhibit high and low peak coincidence), we further disaggregated the electric avoided costs into low coincidence and high coincidence categories. Therefore, four distinct average electric avoided costs per kWh saved were developed (i.e., low costs/low coincidence, low costs/high coincidence, high costs/low coincidence, high costs/low coincidence, high costs/high coincidence). Electric avoided costs were assumed to escalate at 1% annually over the study period. For reference, the U.S. Energy Information Administration's *Annual Energy Outlook 2014* projects an annual growth rate of 0.4% for electricity prices from 2012 to 2040.

Natural Gas

Because of observed variation, we developed both a high and low set of natural gas avoided costs. Natural gas avoided costs were primarily informed by potential studies, specific avoided cost studies, and so-called "citygate" prices from the U.S. Energy Information Administration (USEIA). Citygate refers to a point at which a distributing gas utility receives gas from a natural gas pipeline company or transmission system. As with electricity, natural gas avoided costs were assumed to escalate at 1% annually over the study period. For reference, the USEIA's *Annual Energy Outlook 2014* projects an annual growth rate of 1.6% for natural gas prices from 2012 to 2040.

Fuel Oil

Because the analysis of fuel oil potential was limited to New York State, the avoided energy supply costs for fuel oil were adopted from the Energy Efficiency and Renewable Energy Potential Study of New York State Volume 4: Energy Efficiency Technical Appendices. A single set of fuel oil

Optimal Energy, Inc. 46

-

¹⁹ Avoided energy supply costs are typically differentiated by energy costing period (e.g., summer on-peak, summer off-peak, winter on-peak, winter off-peak). In order to calculate the benefits of a measure using these avoided costs, one needs to know how the energy savings are distributed across these energy costing periods. Load shapes depict this distribution.

avoided costs were assumed in the analysis. Cost escalation assumptions are embedded in the oil avoided cost values from the referenced study and average approximately 1% annually over the study period.

Discounting the Future Value of Money

Future costs and benefits are discounted to the present using a real discount rate of 3%. The U.S. Department of Energy recommends using a 3% rate for projects related to energy conservation, renewable energy, and water conservation as of 2010, and this is consistent with the Federal Energy Management Program (FEMP).²⁰

ECONOMIC POTENTIAL ANALYSIS

Once all measure permutations were screened for cost-effectiveness, we applied the housing units and a number of other factors to derive the total economic potential by state and utility service territory. In addition to unit counts, the analysis applies applicability, space and water heating fuel shares, cooling equipment saturations, and not complete factors. All of these factors serve to reduce the total number of housing units in a given utility territory to only those units where a particular measure could be applied. These factors are described in more detail below.

- **Applicability** is the fraction of housing units for which a given measure represents a realistic option. For example, duct sealing measures are only applicable to housing units with ducted HVAC systems.
- **Space Heating Fuel Shares** are the percentages of housing units using electricity, natural gas, or fuel oil for space heating. For example, a Wi-Fi thermostat measure characterized to estimate gas savings should only be applied to the fraction of housing units using gas as their space heating fuel.
- Water Heating Fuel Shares are the percentages of housing units using electricity, natural gas, or fuel oil for water heating. Both space and water heating fuel shares for each study state were provided by project partner Elevate Energy.
- Cooling Equipment Saturations are the percentages of housing units using window/room air-conditioners or central air-conditioners. For example, central air-conditioner tune-up measures should only be applied to housing units with central AC.
- **Not Complete** is the percentage of housing units with equipment that already represents the high-efficiency option. This only applies to retrofit markets. For example, if 5% of sockets already have LED lamps, then the not complete factor for LEDs would be 5% (1.0-0.95), indicating that only 95% of the total potential from LEDs remains.

The product of all these factors and the total housing units by service territory is the total economic potential for each measure permutation. Total measure-level savings and costs are

_

 $^{20 \; {\}rm See} \; {\rm page} \; 1 \; {\rm in} \; http://www1.eere.energy.gov/femp/pdfs/ashb10.pdf.$

derived using the same approach. However, the total economic potential is less than the sum of each separate measure potential. This is because of interactions between measures and competition between measures. Interactions result from installation of multiple measures in the same facility. For example, if one insulates a building, the heating load is reduced. As a result, if one then installs a high efficiency furnace, savings from the furnace will be lower because the overall heating needs of the building have been lowered. As a result, interactions between measures should be taken into account to avoid exaggerating savings potential. Because the economic potential assumes all possible measures are adopted, in adjusting for interactions, we assume every building does all applicable measures. Interactions are accounted for by ranking each set of interacting measures by total savings, and assuming the greatest savings measure is installed first, and then the next highest savings measure. In some cases, measures with marginal savings may not pass the cost-effectiveness test after all interactions are accounted for.

To estimate the economic potential, we generally assumed 100 percent installation of retrofit and market-driven measures. As the economic potential is somewhat hypothetical, we neglect practical constraints and assume all retrofit measures can be installed immediately. For measures that are market-driven only, it is assumed that measures are implemented at the rate of turnover. Turnover is the percentage of existing equipment that will be naturally replaced each year because of failure, remodeling, or renovation. In general, turnover factors are assumed to be 1 divided by the baseline equipment measure life. For example, we assume that that 5% or 1/20th of existing equipment is replaced each year for a measure with a 20-year estimated life.

The estimated economic potential does not differentiate by subsidy type. We believe this approach is appropriate because economic potential assumes 100 percent measure adoption and does not need to reflect differing program strategies that might be used or penetration rates achieved. While there may be some systematic differences in variables like housing unit size or number of occupants based on subsidy type, we do not expect these to be very large and available data is not sufficient to quantify these distinctions.

MAXIMUM ACHIEVABLE POTENTIAL ANALYSIS

The achievable potential was estimated by first developing program budgets and penetration rates for application to the economic potential results. For budgets, we estimated non-incentive costs using "overhead adders" expressed as a percentage of incentive costs, based on the experience of leading programs serving the low-income residential sector. Because the study is limited to affordable housing and the focus is estimating maximum achievable potential, we assume that incentives cover 100% of measure costs.

Measure Incentives and Penetration Rates

As it is extremely unlikely that any existing program has captured the maximum achievable potential in the affordable housing market, penetrations from existing programs are not particularly instructive when attempting to establish maximum achievable penetration rates. We base our assumptions for penetration rates primarily on projections made in the Electric

Power Research Institute's (EPRI) study Assessment of Achievable Potential from Energy Efficiency and Demand Response Programs in the U.S. (2010–2030) coupled with professional judgment to reflect the nuances of the affordable multifamily housing sector. Since the EPRI study was limited to electric measures, this required extrapolating the penetrations to gas and fuel oil measures by end use. For market-driven replacements, penetration rates are multiplied by a turnover rate (i.e., the reciprocal of measure lifetimes) to estimate the eligible market in each year. The resulting penetration rates were reviewed for appropriateness by Energy Efficiency for All project partners.

Initial penetrations for replacement measures in year 2015 range from 10% to 50% and ramp up to between 60% and 75% by the final year of analysis. This large range of initial penetration values reflects differing levels of market barriers (e.g., initial costs and measure complexity). For example, initial penetrations are low for complex, capital-intensive whole-building HVAC system replacements but much higher for lighting replacements, for which barriers and required levels of investment are typically lower. Penetrations for retrofit measures are considerably lower than for replacements as they are multiplied by the entire population of applicable housing units to estimate potential, not just the turnover rate in each year. A notable exception is that penetration rates for behavioral measures are assumed fixed at 100% for all years of the study. As behavioral programs represent well-developed initiatives, it is assumed that they could be initiated immediately. The maximum achievable penetrations are provided in Appendix I.

We modeled a single set of maximum achievable penetration rates for all three subsidy types. While clearly there are a great many differences in institutional and other barriers between these segments, it is not entirely clear how penetrations might vary. For example, while it is undoubtedly more difficult to get individual tenants in public housing to participate in a program compared with market-rate tenants, it is also possible that by working directly with public housing authorities, one could obtain a level of buy-in to a program that guarantees a much higher level of participation than would be possible without this central coordination.

For each measure, the model multiplies the incentive by the penetration rate to establish the overall incentive cost in each year. Non-incentive program budgets are then estimated relative to incentive spending, as described in the following section.

Non-Incentive Program Budgets

Non-incentive costs were set at the portfolio level. These include the costs of general administration; technical assistance; marketing; evaluation, measurement, and verification; and performance incentives. First, we estimated the distribution of total program costs into incentives and non-incentive costs from existing efficiency programs in other jurisdictions, including programs in Massachusetts and Rhode Island. This research suggests that non-incentive budgets are generally 20% of incentive spending. Finally, we applied this ratio to the estimated incentives at the measure level for all measures in this study to determine the non-incentive costs.

APPENDICES

APPENDIX A: UTILITY-LEVEL ECONOMIC POTENTIAL

Savings

Table A1 | Georgia Cumulative Base Case Economic Potential by Utility Service Territory, 2034

Utility	Electric (GWh)	Natural Gas (BBtu)
Georgia Power	976	1,616
All Coops	99	164
All Munis/Public Power	84	142
Savannah Electric & Power Company	38	62
Other	2	4
Total	1,200	1,987

Table A2 | Illinois Cumulative Base Case Economic Potential by Utility Service Territory, 2034

Utility	Electric (GWh)	Natural Gas (BBtu)
Commonwealth Edison Company	799	4,118
Ameren Services	193	978
MidAmerican Energy Company	18	102
Other	75	375
Total	1,085	5,574

Table A3 | Maryland Cumulative Base Case Economic Potential by Utility Service Territory, 2034

Utility	Electric (GWh)	Natural Gas (BBtu)
Baltimore Gas and Electric Company	378	1,287
Potomac Electric Power Co.	313	1,080
Potomac Edison	52	182
Delmarva Power	39	133
Southern Maryland Electric Cooperative	22	72
Other	41	141
Total	846	2,894

Table A4 | Michigan Cumulative Base Case Economic Potential by Utility Service Territory, 2034

Utility	Electric (GWh)	Natural Gas (BBtu)
DTE Energy Company	399	2,187
Consumers Energy	259	1,415
Indiana Michigan Power	15	80
Other Investor-Owned Utilities (IOUs)	7	36
Other	81	445
Total	761	4163

Table A5 | Missouri Cumulative Base Case Economic Potential by Utility Service Territory, 2034

Utility	Electric (GWh)	Natural Gas (BBtu)
Ameren Missouri	218	400
Kansas City Power & Light	164	309
City Utilities of Springfield	35	68
Empire District	22	41
Other	91	172
Total	530	990

Table A6 | New York Cumulative Base Case Economic Potential by Utility Service Territory, 2034

Utility	Electric (GWh) Natural Gas (BBtu)		Fuel Oil (BBtu)
Con Edison of NY	2292	11,495	7,379
Niagara Mohawk	204	1,113	700
Long Island Power Authority	79	443	317
New York State Electric & Gas Corp.	66	362	220
Rochester Gas & Electric	55	298	194
Central Hudson Gas & Electric Corp.	31	182	108
Orange and Rockland Utilities	25	144	84
Other	15	86	52
Total	2,768	14,123	9,055

Table A7 | North Carolina Cumulative Base Case Economic Potential by Utility Service Territory, 2034

Utility	Electric (GWh)	Natural Gas (BBtu)
Duke Energy Carolinas, LLC	407	266
Carolina Power & Light	286	182
Virginia Electric and Power Company	19	12
EnergyUnited	15	9
Other	218	139
Total	946	607

Table A8 | Pennsylvania Cumulative Base Case Economic Potential by Utility Service Territory, 2034

Utility	Electric (GWh)	Natural Gas (BBtu)
PECO Energy Company	236	798
PPL Electric Utilities	170	624
Duquesne Light	124	375
Pennsylvania Electric Company	83	326
West Penn Power Company	75	293
Metropolitan Edison Company	50	194
Pennsylvania Power Co.	15	57
Other	21	70
Total	774	2,737

Table A9 | Virginia Cumulative Base Case Economic Potential by Utility Service Territory, 2034

Utility	Electric (GWh)	Natural Gas (BBtu)	
Dominion	690	1,364	
Appalachian Power	87	184	
All Munis/Public Power	55	109	
NOVEC	39	77	
All Coops except NOVEC/Rappahannock	12	23	
Potomac Edison (VA only)	10	21	
Rappahannock Electric Cooperative	4	8	
Kentucky Utilities Co. (Old Dominion/PPL)	4	8	
PEPCO Delmarva (VA only)	1	2	
Other	3	5	
Total	905	1,800	

Costs, Benefits, and Cost-Effectiveness

Table A10 | Georgia Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory

Utility	Costs (\$Millions)	Benefits (\$Millions)	Net Benefits (\$Millions)	BCR
Electric				
Georgia Power	\$458	\$1,137	\$679	2.5
All Coops	\$46	\$115	\$69	2.5
All Munis/Public Power	\$40	\$98	\$59	2.5
Savannah Electric & Power Company	\$18	\$44	\$26	2.5
Other	\$1	\$3	\$2	2.5
Electric Total	\$563	\$1,398	\$835	2.5
Natural Gas				
Georgia Power	\$113	\$329	\$216	2.9
All Coops	\$11	\$33	\$22	2.9
All Munis/Public Power	\$10	\$29	\$19	2.9
Savannah Electric & Power Company	\$4	\$13	\$8	2.9
Other	\$0	\$1	\$1	2.9
Natural Gas Total	\$139	\$405	\$266	2.9

^{*}due to rounding, numbers presented may not add up to total provided

Table A11 | Illinois Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory

Utility	Costs (\$Millions)	Benefits (\$Millions)	Net Benefits (\$Millions)	BCR
Electric				
Commonwealth Edison Company	\$411	\$875	\$464	2.1
Ameren Services	\$99	\$211	\$112	2.1
MidAmerican Energy Company	\$9	\$20	\$11	2.3
Other	\$39	\$82	\$44	2.1
Electric Total	\$557	\$1,188	\$630	2.1
Natural Gas				
Commonwealth Edison Company	\$342	\$850	\$508	2.5
Ameren Services	\$82	\$203	\$121	2.5
MidAmerican Energy Company	\$7	\$19	\$12	2.6
Other	\$31	\$78	\$47	2.5
Natural Gas Total	\$462	\$1,150	\$688	2.5

Table A12 | Maryland Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory

Utility	Costs (\$Millions)	Benefits (\$Millions)	Net Benefits (\$Millions)	BCR
Electric				
Baltimore Gas and Electric Company	\$213	\$623	\$409	2.9
Potomac Electric Power Co.	\$177	\$517	\$340	2.9
Potomac Edison	\$30	\$87	\$57	2.9
Delmarva Power	\$20	\$63	\$44	3.2
Southern Maryland Electric Cooperative	\$12	\$36	\$24	2.9
Other	\$23	\$67	\$44	2.9
Electric Total	\$475	\$1,392	\$917	2.9
Natural Gas				
Baltimore Gas and Electric Company	\$93	\$249	\$156	2.7
Potomac Electric Power Co.	\$78	\$208	\$130	2.7
Potomac Edison	\$13	\$35	\$22	2.7
Delmarva Power	\$8	\$25	\$17	3.0
Southern Maryland Electric Cooperative	\$5	\$14	\$9	2.7
Other	\$10	\$27	\$17	2.7
Natural Gas Total	\$207	\$558	\$350	2.7

Table A13 | Michigan Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory

Utility	Costs (\$Millions)	Benefits (\$Millions)	Net Benefits (\$Millions)	BCR
Electric				
DTE Energy Company	\$233	\$607	\$375	2.6
Consumers Energy	\$130	\$391	\$260	3.0
Indiana Michigan Power	\$7	\$22	\$15	3.0
Other Investor-Owned Utilities (IOUs)	\$3	\$10	\$7 \$82	3.0
Other	\$41	\$123		3.0
Electric Total	\$415	\$1,153	\$738	2.8
Natural Gas				
DTE Energy Company	\$196	\$446	\$251	2.3
Consumers Energy	\$104	\$285	\$181	2.7
Indiana Michigan Power	\$6	\$16	\$10	2.7
Other Investor-Owned Utilities (IOUs)	\$3 \$7		\$5	2.7
Other	\$33	\$90	\$57	2.7
Natural Gas Total	\$341	\$845	\$503	2.5

Table A14 | Missouri Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory

Utility	Costs (\$Millions)			BCR	
Electric					
Ameren Missouri	\$114	\$266	\$152	2.3	
Kansas City Power & Light	\$85	\$200	\$115	2.3	
City Utilities of Springfield	\$19	\$44	\$25	2.3	
Empire District	\$12	\$28	\$16	2.3	
Other	\$49	\$115	\$66	2.3	
Electric Total	\$279	\$653	\$374	2.3	
Natural Gas					
Ameren Missouri	\$28	\$62	\$34	2.2	
Kansas City Power & Light	\$21	\$47	\$26	2.2	
City Utilities of Springfield	\$4	\$11	\$6	2.5	
Empire District	\$3	\$3 \$6		2.5	
Other	\$11	\$27	\$16	2.5	
Natural Gas Total	\$67	\$154	\$87	2.3	

Table A15 | New York Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory

Utility	Costs (\$Millions)	Benefits (\$Millions)	Net Benefits (\$Millions)	BCR
Electric				
Con Edison of NY	\$1,381	\$3,576	\$2,195	2.6
Niagara Mohawk	\$96	\$227	\$131	2.4
Long Island Power Authority	\$42	\$89	\$47	2.1
New York State Electric & Gas Corp.	\$31	\$73	\$42	2.4
Rochester Gas & Electric	\$26	\$61	\$35	2.4
Central Hudson Gas & Electric Corp.	\$16	\$35	\$19	2.1
Orange and Rockland Utilities	\$13	\$28	\$15	2.1
Other	\$8	\$17	\$9	2.2
Electric Total	\$1,613	\$4,106	\$2,493	2.5
Natural Gas				
Con Edison of NY	\$1,020	\$2,535	\$1,515	2.5
Niagara Mohawk	\$81	\$208	\$127	2.6
Long Island Power Authority	\$40	\$40 \$96		2.4
New York State Electric & Gas Corp.	\$26	\$67	\$41	2.6
Rochester Gas & Electric	\$22	\$56	\$34	2.6
Central Hudson Gas & Electric Corp.	\$16	\$39	\$23	2.4
Orange and Rockland Utilities	\$13	\$31	\$18	2.4
Other	\$7	\$16	\$9	2.2
Natural Gas Total	\$1,225	\$3,048	\$1,823	2.5
Fuel Oil				
Con Edison of NY	\$1,011	\$3,779	\$2,768	3.7
Niagara Mohawk	\$79	\$357	\$278	4.5
Long Island Power Authority	\$44	\$161	\$118	3.7
New York State Electric & Gas Corp.	\$25	\$112	\$87	4.5
Rochester Gas & Electric	\$22	\$99	\$77	4.5
Central Hudson Gas & Electric Corp.	\$15	\$55	\$40	3.7
Orange and Rockland Utilities	\$12	\$43	\$32	3.7
Other	\$7	\$27	\$20	3.7
Fuel Oil Total	\$1,214	\$4,634	\$3,420	3.8

Table A16 | North Carolina Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory

Utility	Costs (\$Millions)	Benefits (\$Millions)	Net Benefits (\$Millions)	BCR
Electric				
Duke Energy Carolinas, LLC	\$200	\$502	\$301	2.5
Carolina Power & Light	\$141	\$353	\$212	2.5
Virginia Electric and Power Company	\$9	\$24	\$14	2.5
EnergyUnited	\$7	\$19	\$11	2.5
Other	\$107	\$268	\$161	2.5
Electric Total	\$465	\$1,164	\$700	2.5
Natural Gas				
Duke Energy Carolinas, LLC	\$17	\$49	\$32	2.8
Carolina Power & Light	\$12	\$34	\$22	2.9
Virginia Electric and Power Company	\$1	\$2	\$1	2.9
EnergyUnited	\$1	\$1 \$2		2.9
Other	\$9	\$26	\$17	2.9
Natural Gas Total	\$40	\$113	\$74	2.9

Table A17 | Pennsylvania Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory

Utility	Costs (\$Millions)	Benefits (\$Millions)	Net Benefits (\$Millions)	BCR	
Electric					
PPL Electric Utilities	\$93	\$274	\$180	2.9	
PECO Energy Company	\$123	\$271	\$148	2.2	
Duquesne Light	\$80	\$202	\$122	2.5	
Pennsylvania Electric Company	\$42	\$97	\$55	2.3	
West Penn Power Company	\$38	\$88	\$50	2.3	
Metropolitan Edison Company	\$25	\$58	\$33	2.3	
Pennsylvania Power Co.	\$8 \$17		\$10	2.3	
Other	\$11	\$24	\$13	2.2	
Electric Total	\$420	\$1,032	\$611	2.5	
Natural Gas					
PECO Energy Company	\$71	\$178	\$107	2.5	
PPL Electric Utilities	\$47	\$127	\$80	2.7	
Duquesne Light	\$34	\$87	\$53	2.6	
Pennsylvania Electric Company	\$24	\$66	\$41	2.7	
West Penn Power Company	\$22	\$59	\$37	2.7	
Metropolitan Edison Company	\$15	\$39	\$24	2.7	
Pennsylvania Power Co.	\$4	\$12	\$7	2.7	
Other	\$6	\$16	\$9	2.5	
Natural Gas Total	\$223	\$583	\$360	2.6	

Table A18 | Virginia Base Case Maximum Achievable Potential Costs and Benefits by Utility Service Territory

Utility	Costs (\$Millions)	Benefits (\$Millions)	Net Benefits (\$Millions)	BCR
Electric				
Dominion	\$364	\$844	\$480	2.3
Appalachian Power	\$41	\$104	\$62	2.5
All Munis/Public Power	\$29	\$67	\$38	2.3
NOVEC	\$21	\$48	\$27	2.3
All Coops except NOVEC/Rappahannock	\$6	\$14	\$8	2.3
Potomac Edison (VA only)	\$5	\$13	\$7	2.3
Rappahannock Electric Cooperative	\$2	\$5	\$3	2.3
Kentucky Utilities Co. (Old Dominion/PPL)	\$2	\$4	\$3	2.5
PEPCO Delmarva (VA only)	\$0	\$1	\$1	2.5
Other	\$2	\$4	\$2	2.3
Electric Total	\$473	\$1,104	\$631	2.3
Natural Gas				
Dominion	\$100	\$266	\$166	2.7
Appalachian Power	\$12	\$33	\$22	2.8
All Munis/Public Power	\$8	\$21	\$13	2.7
NOVEC	\$6	\$15	\$9	2.7
All Coops except NOVEC/Rappahannock	\$2	\$4	\$3	2.7
Potomac Edison (VA only)	\$2	\$4	\$3	2.7
Rappahannock Electric Cooperative	\$1	\$2	\$1	2.7
Kentucky Utilities Co. (Old Dominion/PPL)	\$0	\$1	\$1	2.8
PEPCO Delmarva (VA only)	\$0	\$0	\$0	2.8
Other	\$ 0	\$1	\$1	2.7
Natural Gas Total	\$130	\$348	\$218	2.7

^{*}due to rounding, numbers presented may not add up to total provided

APPENDIX B: BIBLIOGRAPHY

American Council for an Energy-Efficient Economy, Energizing Virginia: Efficiency First (2008).

- ---. North Carolina's Energy Future: Electricity, Water, and Transportation Efficiency (2010).
- ---. Missouri's Energy Efficiency Potential: Opportunities for Economic Growth and Energy Sustainability (2011).

American Society of Heating, Ventilating, and Air-Conditioning Engineers, 2013ASHRAE Handbook – Fundamentals ((2013).

Bass and Company Management Consultants, Nicor Gas Market Potential Study Report (2010).

Benningfield Group, U.S. Multifamily Energy Efficiency Potential by 2020 (2009).

Bright Power, Energy and Water Savings in Multifamily Retrofits (2014).

Cadmus, Michigan Baseline Study 2011: Residential Baseline Report (2011).

- ---. 2012a. Massachusetts Multifamily Market Characterization and Potential Study.
- ---. 2012b. Wi-Fi Programmable Controllable Thermostat Pilot Program Evaluation.
- ---. ESA Program Multifamily Segment Study (2013).

California Energy Commission, Case Study Bi-level Stairwell Lighting (2005).

Center for Energy and Environment, Direct Install Plus Multifamily Pilot Program Final Report (2013).

City of New York, Local Law 84 Benchmarking Report (2014)

Consortium for Energy Efficiency, CEE Refrigerator Specification (2014).

- U.S. Department of Energy, Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Residential Dishwashers, Dehumidifiers, and Cooking Products, and Commercial Clothes Washers (2009).
- ---. 2011a. Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Residential Clothes Dryers and Room Air Conditioners.
- ---. 2011b. Energy Conservation Program: Energy Conservation Standards for Residential Refrigerators, Refrigerator-Freezers, and Freezers.
- ---. 2012. Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment: Residential Clothes Washers.

Ecotope, Residential Building Stock Assessment: Multifamily Characteristics and Energy Use (2013).

U.S. Energy Information Administration, Annual Energy Outlook 2014 (2014).

---. Residential Energy Consumption Survey (2013).

Electric Power Research Institute, Assessment of Achievable Potential from Energy Efficiency and Demand Response Programs in the U.S. (2010–2030)

Energy Center of Wisconsin, Minnesota Multifamily Rental Characterization Study (2013).

EnerNOC Utility Solutions Consulting, Ameren Illinois Energy Efficiency Market Potential Assessment (2013).

U.S. Environmental Protection Agency, Savings Calculator for ENERGY STAR Qualified Appliances (2014).

Fannie Mae, Transforming Multifamily Housing: Fannie Mae's Green Initiative and Energy Star for Multifamily (2014).

Frontier, TRM Version 3.0 Volume 2: Deemed Savings (2013).

GDS, Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures (2007).

- ---. Michigan Electricity and Natural Gas Energy Efficiency Potential Study (2013).
- ---. 2014a. 2014 Pennsylvania Statewide Act 129 Residential Baseline Study.
- ---. 2014b. Electric Energy Efficiency Potential for Pennsylvania.
- ---. 2014c. Pennsylvania Technical Reference Manual.

Global Energy Partners, 2010a. AmerenUE Demand Side Management (DSM) Market Potential Study.

---. 2010b. Energy Efficiency Potential Study for Consolidated Edison Company of New York, Inc.

ICF, ComEd Energy Efficiency Potential Study Report, 2013–2018 (2013).

Illinois Energy Efficiency Stakeholder Advisory Group, Illinois Statewide Technical Reference Manual for Energy Efficiency Version 3.0 (2014).

KEMA, Maryland Energy Baseline Study (2011).

Lawrence Berkeley National Laboratory, Efficiency of Appliance Models on the Market Before and After DOE Standards (2004).

Massachusetts Electric and Gas Energy Efficiency Program Administrators, Massachusetts Technical Reference Manual, 2013-2015 Program Years – Plan Version (2012).

Morgan Marketing Partners, Michigan Energy Measure Database (2014).

Navigant, Incremental Cost Study Final Report (2011).

---. 2010 U.S. Lighting Market Characterization (2012).

Natural Resources Defense Council, National Housing Trust, the Energy Foundation, and Elevate Energy, *Program Design Guide: Energy Efficiency Programs in Multifamily Affordable Housing* (2015).

National Renewable Energy Laboratory, 2014 Building America House Simulation Protocols (2014).

NMR Group, Northeast Residential Lighting Hours-of-Use Study (2014).

Opinion Dynamics Corporation, Delaware Technical Resource Manual (2012).

Optimal Energy, 2014a. Review of Pricing from Online Retailers.

- ---. 2014b. Study of Potential for Energy Savings in Delaware.
- ---. 2014c. Energy Efficiency and Renewable Energy Potential Study of New York State.

Pacific Northwest National Laboratory, SSL Pricing and Efficacy Trend Analysis for Utility Program Planning (2013).

---. Commercial Prototype Building Models (2014).

Northwest Power and Conservation Council Regional Technical Forum, *ResDishwasher_v2_2.xlsm* (2012).

---. ComClothesWasher_v3.0.xlsm (2014).

Robert A. Rundquist, K. Johnson, and D. Aumann, "Calculating Lighting and HVAC Interactions," ASHRAE Journal (1993).

State of California, Governor's Office of Planning and Research, California Standard Practice Manual: Economic Analysis of Demand-Side Programs and Projects (July 2002)

TechMarket Works, New York Standard Approach for Estimating Energy Savings from Energy Efficiency Programs (2010).

APPENDIX C: UNIT COUNTS

The table below presents the estimates of the number of affordable multifamily housing units by state, electric utility service territory, building size, and subsidy type. PHA denotes public housing authority-owned, SA denotes subsidized affordable, and UA, unsubsidized affordable.

Table C1 | Affordable Multifamily Housing Unit Counts by State, Utility, Building Size, and Subsidy Type

		Ruildin	gs with 5-4	19 units	Building	gs with 50 o	or more
State	Utility	PHA	SA	UA	РНА	SA	UA
NY	New York State Electric & Gas Corp.	127	5,558	18,208	2,528	15,540	1,759
NY	Rochester Gas & Electric	168	2,808	12,953	2,465	16,111	2,135
NY	Orange and Rockland Utilities	0	1,006	8,565	281	6,137	926
NY	Niagara Mohawk	327	10,579	55,753	17,673	43,648	7,649
NY	Long Island Power Authority	40	1,460	11,889	8,021	21,941	11,473
NY	Con Edison of NY	0	24,417	622,874	159,059	235,970	365,290
NY	Central Hudson Gas & Electric Corp.	31	1,526	10,024	1,070	7,693	1,114
NY	Other	32	783	4,807	872	3,467	437
IL	Commonwealth Edison Company	359	10,285	230,189	34,021	139,831	32,195
IL	Ameren Services	362	8,088	41,912	17,987	34,882	4,260
IL	MidAmerican Energy Company	0	437	3,078	1,463	4,471	208
IL	Other	166	4,053	11,897	5,758	17,432	2,531
MD	Potomac Edison	93	1,309	13,557	1,487	5,802	851
MD	Potomac Electric Power Co.	91	1,532	84,253	1,742	32,250	17,957
MD	Baltimore Gas and Electric Company	274	3,610	88,739	14,143	48,036	11,117
MD	Delmarva Power	25	2,084	7,244	1,008	6,485	51
	Southern Maryland Electric						
MD	Cooperative	0	644	2,960	124	5,768	50
MD	Other	0	433	11,389	1,036	2,448	2,594
MI	Consumers Energy	302	14,434	57,705	6,573	56,241	5,258
MI	DTE Energy Company	274	6,448	96,009	10,961	83,045	21,254
MI	Indiana Michigan Power	0	970	3,024	1,020	2,901	67
MI	Other Investor Owned Utilities (IOUs)	152	429	1,543	715	685	13
MI	Other	192	3,124	18,392	3,953	16,462	2,140
MO	Ameren Missouri	490	10,620	32,273	7,888	37,767	2,494
MO	Kansas City Power & Light	245	8,045	28,756	3,764	24,482	3,712
MO	Empire District	166	2,350	2,490	684	3,260	84
MO	City Utilities of Springfield	0	668	9,005	653	3,184	847
МО	Other	237	8,364	13,488	4,133	10,418	923
NC	Carolina Power & Light	259	13,679	43,964	10,241	34,172	1,745
NC	Virginia Electric and Power Company	0	1,305	2,016	1,566	1,987	85
NC	Duke Energy Carolinas, LLC	324	8,378	91,567	13,873	30,248	3,718

					Building	gs with 50 c	r more
		Buildings with 5-49 un			·	units	
State	Utility	PHA	SA	UA	PHA	SA	UA
NC	EnergyUnited	0	771	479	319	3,945	0
NC	Other	404	13,552	30,842	10,242	22,683	1,332
PA	Duquesne Light	497	3,980	20,937	9,849	18,828	3,251
PA	PECO Energy Company	939	6,145	48,264	17,233	25,923	19,551
PA	Metropolitan Edison Company	151	2,525	9,110	4,055	7,664	772
PA	Pennsylvania Electric Company	159	4,517	15,517	6,912	12,023	1,639
PA	PPL Electric Utilities	127	5,219	32,792	13,014	21,364	5,628
PA	Pennsylvania Power Co.	34	811	1,606	1,614	3,195	24
PA	West Penn Power Company	298	3,153	13,433	5,808	11,884	2,187
PA	Other	0	444	3,147	2,688	3,176	979
GA	Georgia Power	995	10,174	216,369	31,956	110,922	14,147
GA	All Coops	361	3,037	19,914	5,351	9,361	969
GA	All Munis/Public Power	79	882	20,390	4,151	7,154	623
GA	Savannah Electric & Power Company	52	352	7,789	1,941	4,412	414
GA	Other	0	0	746	0	111	16
VA	Appalachian Power	53	2,671	19,600	2,443	10,340	942
VA	Dominion	424	6,658	156,636	14,621	87,881	29,268
	Kentucky Utilities Co. (Old						
VA	Dominion/PPL)	76	208	622	275	282	21
VA	NOVEC	0	82	9,072	0	3,870	3,677
VA	PEPCO Delmarva (VA only)	0	206	0	0	128	0
VA	Potomac Edison (VA only)	0	364	2,945	0	832	305
VA	Rappahannock Electric Cooperative	0	231	38	0	1,498	37
VA	All Munis/Public Power All Coops except	114	976	12,982	934	7,780	652
VA	NOVEC/Rappahannock	0	948	2,107	0	1,779	113
VA	Other	0	216	0	400	636	0

APPENDIX D: BASELINE SALES FORECAST

The table below presents the baseline sales forecast by state. As this study does not include new construction, the analysis is simplified by assuming that the baseline forecasted load over the analysis period, 2015–2034, does not vary by year.

Table D1 | Baseline Sales Forecast by State and Fuel

	Electricity	Natural Gas	Fuel Oil
State	(MWh)	(MMBtu)	(MMBtu)
New York	8,146,133	60,243,452	35,266,349
Pennsylvania	2,664,354	15,437,243	-
Illinois	3,393,174	21,291,584	-
Michigan	2,062,361	22,644,168	-
Missouri	2,338,392	3,399,183	-
Virginia	2,984,800	7,963,346	-
Maryland	2,993,320	9,626,602	-
Georgia	4,644,688	9,065,535	-
North Carolina	3,266,660	1,667,049	-

APPENDIX E: MEASURE CHARACTERIZATIONS

The tables below present the measure characteristics used in the analysis. Note that the location-dependent parameters affect measure-level savings. For illustrative purposes, the characteristics for a region with a "Medium" climate factor and "Low" lighting hours of use are presented below.

Table E1 | Measure Characteristics

Meas				Primary Fuel	Secondary Fuel	Building Type	Number Per Apartment	Number Per Apartment		Secondary
ID	Measure Name	Category	Market ²¹	(E, G, O)	(E, G, O)	(S,L,B)	Unit	Source	Primary End-Use	End-Use
	Commercial Clothes Washer	Ŭ,				, , , ,			•	
	(Common Area) - Elec							Energy Center of Wisconsin		
1	DHW/Elec Dryer	Appliances	REPL	E		В	0.16	2013, p.42	Water Heating	
	Commercial Clothes Washer									
	(Common Area) - Elec							Energy Center of Wisconsin		
2	DHW/Gas Dryer	Appliances	REPL	E	G	В	0.16	2013, p.42	Water Heating	Other
	Commercial Clothes Washer									
	(Common Area) - Gas							Energy Center of Wisconsin		
3	DHW/Elec Dryer	Appliances	REPL	G	E	В	0.16	2013, p.42	Water Heating	Appliances
	Commercial Clothes Washer									
	(Common Area) - Gas							Energy Center of Wisconsin		
4	DHW/Gas Dryer	Appliances	REPL	G	E	В	0.16	2013, p.42	Water Heating	Appliances
	Commercial Clothes Washer									
	(Common Area) - Oil							Energy Center of Wisconsin		
5	DHW/Elec Dryer	Appliances	REPL	0	E	В	0.16	2013, p.42	Water Heating	Appliances
	Commercial Clothes Washer							_		
	(Common Area) - Elec			_		_		Energy Center of Wisconsin		
6	DHW/Elec Dryer	Appliances	RET	E		В	0.16	2013, p.42	Water Heating	
	Commercial Clothes Washer									
_	(Common Area) - Elec	!!	DET	_			0.16	Energy Center of Wisconsin	M/-1111'	Outran
7	DHW/Gas Dryer	Appliances	RET	E	G	В	0.16	2013, p.42	Water Heating	Other
	Commercial Clothes Washer							Francis Conton of Missonsin		
0	(Common Area) - Gas	!!	DET	_	_		0.16	Energy Center of Wisconsin	M/-1111'	A !!
8	DHW/Elec Dryer	Appliances	RET	G	E	В	0.16	2013, p.42	Water Heating	Appliances
	Commercial Clothes Washer							Energy Center of Wissersin		
9	(Common Area) - Gas DHW/Gas Dryer	Appliances	RET	G	E	В	0.16	Energy Center of Wisconsin 2013, p.42	Water Heating	Appliances
9	Commercial Clothes Washer	Appliances	NEI	G	E	В	0.16	2013, μ.42	water neating	Appliances
								Energy Center of Wisconsin		
10	•	Annliances	RET	0	l E	R	0.16	· · · · · · · · · · · · · · · · · · ·	Water Heating	Appliances
10	(Common Area) - Oil DHW/Elec Dryer	Appliances	RET	0	E	В	0.16	Energy Center of Wisconsin 2013, p.42	Water F	leating

²¹ REPL means replacement and RET means retrofit

Meas	Manager Name	Catalana	Market ²¹	Primary Fuel (E, G, O)	Secondary Fuel	Building Type	Number Per Apartment Unit	Number Per Apartment	Drimon, Fod Hoo	Secondary
עו	Measure Name	Category	warket	(E, G, O)	(E, G, O)	(S,L,B)	Unit	Source	Primary End-Use	End-Use
11	Clothes Washer (In-unit) -	Annliances	DEDI	E		В	1.00		Water Heating	
11	Elec DHW/Elec Dryer Clothes Washer (In-unit) -	Appliances	REPL	Е		В	1.00		Water Heating	
12	Elec DHW/Gas Dryer	Appliances	REPL	E	G	В	1.00		Water Heating	Other
12	Clothes Washer (In-unit) - Gas	Appliances	NLFL	L	0	В	1.00		water rieating	Other
13	DHW/Elec Dryer	Appliances	REPL	G	E	В	1.00		Water Heating	Appliances
13	Clothes Washer (In-unit) - Gas	Appliances	NLFL	U	L	В	1.00		water rieating	Appliances
14	DHW/Gas Dryer	Appliances	REPL	G		В	1.00		Water Heating	
14	Clothes Washer (In-unit) - Oil	Арриансез	INELLE	0			1.00		water riedting	
15	DHW/Elec Dryer	Appliances	REPL	0	G	В	1.00		Water Heating	Other
13	Electric Dryer with Moisture	Appliances	INLFL	U	J	В	1.00		water rieating	Other
16	Sensor (In-unit)	Appliances	REPL	E		В	1.00		Appliances	
10	Gas Dryer with Moisture	Appliances	INLFL	-		В	1.00		Appliances	
17	Sensor (In-unit)	Appliances	REPL	G		В	1.00		Other	
18	Refrigerator (ENERGY STAR)		REPL	E		В	1.01	Cadmus 2012		
		Appliances		E		В	+		Refrigerators	
19	Refrigerator (ENERGY STAR)	Appliances	RET				1.01	Cadmus 2012	Refrigerators	
20	Refrigerator (ENERGY STAR)	Appliances	RET	E		В	1.01	Cadmus 2012	Refrigerators	
21	Refrigerator (CEE Tier 3)	Appliances	REPL	E		В	1.01	Cadmus 2012	Refrigerators	
22	Refrigerator (CEE Tier 3)	Appliances	RET	E		В	1.01	Cadmus 2012	Refrigerators	
23	Refrigerator (CEE Tier 3)	Appliances	RET	E		В	1.01	Cadmus 2012	Refrigerators	
24	Freezer	Appliances	REPL	E		В	1.00		Appliances	
25	Freezer	Appliances	RET	E		В	1.00		Appliances	
26	Dishwasher	Appliances	REPL	E		В	1.00		Water Heating	
27	Dishwasher	Appliances	REPL	G	E	В	1.00		Water Heating	Appliances
28	Dishwasher	Appliances	REPL	0	E	В	1.00		Water Heating	Appliances
29	Dishwasher	Appliances	RET	E		В	1.00		Water Heating	
30	Dishwasher	Appliances	RET	G	E	В	1.00		Water Heating	Appliances
31	Dishwasher	Appliances	RET	0	E	В	1.00		Water Heating	Appliances
									Plug Loads/Cons	
32	Dehumidifier	Appliances	REPL	E		В	1.00		Elec/Other	
									Plug Loads/Cons	
33	Dehumidifier	Appliances	RET	E		В	1.00		Elec/Other	
								Estimated number of in-unit		
								lamps; Cadmus 2012,		
	Standard LED (In-Unit), 2015-							Cadmus 2011, GDS 2014a,		Space
34	2019 - Elec Heat/Cool	Lighting	REPL	E	E	В	19	Ecotope 2013	Lighting	Heating
								Estimated number of in-unit		
								lamps; Cadmus 2012,		
	Standard LED (In-Unit), 2015-							Cadmus 2011, GDS 2014a,		Space
35	2019 - Gas Heat/Cool	Lighting	REPL	E	G	В	19	Ecotope 2013	Lighting	Heating
								Estimated number of in-unit		
	Standard LED (In-Unit), 2015-						1	lamps; Cadmus 2012,		Space
36	2019 - Oil Heat/Cool	Lighting	REPL	E	0	В	19	Cadmus 2011, GDS 2014a,	Lighting	Heating

				Primary	Secondary	Building	Number Per			
Meas			21	Fuel	Fuel	Туре	Apartment	Number Per Apartment		Secondary
ID	Measure Name	Category	Market ²¹	(E, G, O)	(E, G, O)	(S,L,B)	Unit	Source	Primary End-Use	End-Use
								Ecotope 2013		
								Estimated number of in-unit		
								lamps; Cadmus 2012,		
	Standard LED (In-Unit), 2015-							Cadmus 2011, GDS 2014a,		
37	2019 - No Heat/Cool	Lighting	REPL	E		В	19	Ecotope 2013	Lighting	
								Estimated number of in-unit		
								lamps; Cadmus 2012,		
	Standard LED (In-Unit), 2015-							Cadmus 2011, GDS 2014a,		Space
38	2019 - Elec Heat/No Cool	Lighting	REPL	E	E	В	19	Ecotope 2013	Lighting	Heating
								Estimated number of in-unit		
								lamps; Cadmus 2012,		
	Standard LED (In-Unit), 2015-							Cadmus 2011, GDS 2014a,		Space
39	2019 - Gas Heat/No Cool	Lighting	REPL	E	G	В	19	Ecotope 2013	Lighting	Heating
								Estimated number of in-unit		
								lamps; Cadmus 2012,		
	Standard LED (In-Unit), 2015-							Cadmus 2011, GDS 2014a,		Space
40	2019 - Oil Heat/No Cool	Lighting	REPL	E	0	В	19	Ecotope 2013	Lighting	Heating
								Estimated number of in-unit		
								lamps; Cadmus 2012,		
	Standard LED (In-Unit), 2015-							Cadmus 2011, GDS 2014a,		
41	2019 - No Heat/No Cool	Lighting	REPL	E		В	19	Ecotope 2013	Lighting	
								Estimated number of in-unit		
								lamps; Cadmus 2012,		
	Standard LED (In-Unit), 2020-							Cadmus 2011, GDS 2014a,		Space
42	2034 - Elec Heat/Cool	Lighting	REPL	E	E	В	19	Ecotope 2013	Lighting	Heating
								Estimated number of in-unit		Ŭ
								lamps; Cadmus 2012,		
	Standard LED (In-Unit), 2020-							Cadmus 2011, GDS 2014a,		Space
43	2034 - Gas Heat/Cool	Lighting	REPL	E	G	В	19	Ecotope 2013	Lighting	Heating
	•	, ,						Estimated number of in-unit	<u> </u>	
								lamps; Cadmus 2012,		
	Standard LED (In-Unit), 2020-							Cadmus 2011, GDS 2014a,		Space
44	2034 - Oil Heat/Cool	Lighting	REPL	Е	О	В	19	Ecotope 2013	Lighting	Heating
	·	, ,						Estimated number of in-unit	Ü	Ü
								lamps; Cadmus 2012,		
	Standard LED (In-Unit), 2020-						1	Cadmus 2011, GDS 2014a,		
45	2034 - No Heat/Cool	Lighting	REPL	Е		В	19	Ecotope 2013	Lighting	
.5							15	Estimated number of in-unit		
								lamps; Cadmus 2012,		
	Standard LED (In-Unit), 2020-						1	Cadmus 2011, GDS 2014a,		Space
46	2034 - Elec Heat/No Cool	Lighting	REPL	Е	E	В	19	Ecotope 2013	Lighting	Heating
.5	200. 210011000110001		TALL L	-	_	 	15	Estimated number of in-unit	0.10116	cating
	Standard LED (In-Unit), 2020-							lamps; Cadmus 2012,		Space
47	2034 - Gas Heat/No Cool	Lighting	REPL	Е	G	В	19	Cadmus 2011, GDS 2014a,	Lighting	Heating

				Primary	Secondary	Building	Number Per			
Meas			21	Fuel	Fuel	Туре	Apartment	Number Per Apartment		Secondary
ID	Measure Name	Category	Market ²¹	(E, G, O)	(E, G, O)	(S,L,B)	Unit	Source	Primary End-Use	End-Use
								Ecotope 2013		
								Estimated number of in-unit		
								lamps; Cadmus 2012,		
	Standard LED (In-Unit), 2020-							Cadmus 2011, GDS 2014a,		Space
48	2034 - Oil Heat/No Cool	Lighting	REPL	E	0	В	19	Ecotope 2013	Lighting	Heating
								Estimated number of in-unit		
								lamps; Cadmus 2012,		
	Standard LED (In-Unit), 2020-							Cadmus 2011, GDS 2014a,		
49	2034 - No Heat/No Cool	Lighting	REPL	E		В	19	Ecotope 2013	Lighting	
		J						Estimated number of in-unit	Ü	
								lamps; Cadmus 2012,		
	Specialty Lighting (In-Unit),							Cadmus 2011, GDS 2014a,		Space
50	2015-2019 - Elec Heat/Cool	Lighting	REPL	Е	E	В	19	Ecotope 2013	Lighting	Heating
			1	_	_	_		Estimated number of in-unit		
								lamps; Cadmus 2012,		
	Specialty Lighting (In-Unit),							Cadmus 2011, GDS 2014a,		Space
51	2015-2019 - Gas Heat/Cool	Lighting	REPL	Е	G	В	19	Ecotope 2013	Lighting	Heating
		88	1	-		_		Estimated number of in-unit	6	
								lamps; Cadmus 2012,		
	Specialty Lighting (In-Unit),							Cadmus 2011, GDS 2014a,		Space
52	2015-2019 - Oil Heat/Cool	Lighting	REPL	Е	О	В	19	Ecotope 2013	Lighting	Heating
	2010 2010 0	2.88	112.2	_				Estimated number of in-unit	6	
								lamps; Cadmus 2012,		
	Specialty Lighting (In-Unit),							Cadmus 2011, GDS 2014a,		
53	1	Lighting	REPL	Е		В	19	Ecotope 2013	Lighting	
33	2013 2013 110 11647 6001	Ligitania	I TELL	_		J	13	Estimated number of in-unit	2.8	
	Specialty Lighting (In-Unit),							lamps; Cadmus 2012,		
	2015-2019 - Elec Heat/No							Cadmus 2011, GDS 2014a,		Space
54	Cool	Lighting	REPL	Е	E	В	19	Ecotope 2013	Lighting	Heating
	C CC.	2.88	112.2	_	_			Estimated number of in-unit	6	
	Specialty Lighting (In-Unit),							lamps; Cadmus 2012,		
	2015-2019 - Gas Heat/No							Cadmus 2011, GDS 2014a,		Space
55	Cool	Lighting	REPL	Е	G	В	19	Ecotope 2013	Lighting	Heating
33	2001	Libriding	I I I	_			13	Estimated number of in-unit	2.8	ricating
								lamps; Cadmus 2012,		
	Specialty Lighting (In-Unit),							Cadmus 2011, GDS 2014a,		Space
56	2015-2019 - Oil Heat/No Cool	Lighting	REPL	E	0	В	19	Ecotope 2013	Lighting	Heating
	2013 2013 - Oil Heat/ NO COOl	Ligituing	INLIL	-		5	19	Estimated number of in-unit	Ligitting	ricating
								lamps; Cadmus 2012,		
	Specialty Lighting (In-Unit),							Cadmus 2011, GDS 2014a,		
57	2015-2019 - No Heat/No Cool	Lighting	REPL	E		В	19	Ecotope 2013	Lighting	
37	2013-2013 - NO HEAL/ NO COOL	Ligitung	INLFL	_		D	19	Estimated number of in-unit	LIGITUIIE	
	Specialty Lighting (In-Linit)							lamps; Cadmus 2012,		Space
FO	Specialty Lighting (In-Unit),	Lighting	DEDI	E	E	D	10		Lighting	Space
58	2020-2034 - Elec Heat/Cool	Lighting	REPL	C		В	19	Cadmus 2011, GDS 2014a,	Lighting	Heating

				Primary	Secondary	Building	Number Per			
Meas			21	Fuel	Fuel	Туре	Apartment	Number Per Apartment		Secondary
ID	Measure Name	Category	Market ²¹	(E, G, O)	(E, G, O)	(S,L,B)	Unit	Source	Primary End-Use	End-Use
								Ecotope 2013		
								Estimated number of in-unit		
								lamps; Cadmus 2012,		
	Specialty Lighting (In-Unit),							Cadmus 2011, GDS 2014a,		Space
59	2020-2034 - Gas Heat/Cool	Lighting	REPL	E	G	В	19	Ecotope 2013	Lighting	Heating
								Estimated number of in-unit		
								lamps; Cadmus 2012,		
	Specialty Lighting (In-Unit),					_		Cadmus 2011, GDS 2014a,		Space
60	2020-2034 - Oil Heat/Cool	Lighting	REPL	E	0	В	19	Ecotope 2013	Lighting	Heating
								Estimated number of in-unit		
	6							lamps; Cadmus 2012,		
	Specialty Lighting (In-Unit),			_		_		Cadmus 2011, GDS 2014a,		
61	2020-2034 - No Heat/Cool	Lighting	REPL	E		В	19	Ecotope 2013	Lighting	
	6							Estimated number of in-unit		
	Specialty Lighting (In-Unit),							lamps; Cadmus 2012,		Caraca
63	2020-2034 - Elec Heat/No	Lighting	DEDI	_	E	D	10	Cadmus 2011, GDS 2014a,	Lighting	Space
62	Cool	Lighting	REPL	E	<u> </u>	В	19	Ecotope 2013 Estimated number of in-unit	Lighting	Heating
	Specialty Lighting (In Linit)							lamps; Cadmus 2012,		
	Specialty Lighting (In-Unit), 2020-2034 - Gas Heat/No							Cadmus 2011, GDS 2014a,		Cnaca
63	Cool	Lighting	REPL	E	G	В	19	Ecotope 2013	Lighting	Space Heating
03	2001	Ligituing	INELLE	_	- C	Ь	15	Estimated number of in-unit	Ligitting	ricating
								lamps; Cadmus 2012,		
	Specialty Lighting (In-Unit),							Cadmus 2011, GDS 2014a,		Space
64	2020-2034 - Oil Heat/No Cool	Lighting	REPL	Е	О	В	19	Ecotope 2013	Lighting	Heating
						_		Estimated number of in-unit	8	
								lamps; Cadmus 2012,		
	Specialty Lighting (In-Unit),							Cadmus 2011, GDS 2014a,		
65	2020-2034 - No Heat/No Cool	Lighting	REPL	E		В	19	Ecotope 2013	Lighting	
	High Efficiency Common Area									
	Lighting, Linear Fluorescent -									Space
66	Elec Heat/Cool	Lighting	RET	E	E	В	2.70	GDS 2014a, Ecotope 2013	Lighting	Heating
	High Efficiency Common Area									
	Lighting, Linear Fluorescent -									Space
67	Gas Heat/Cool	Lighting	RET	E	G	В	2.70	GDS 2014a, Ecotope 2013	Lighting	Heating
	High Efficiency Common Area									
	Lighting, Linear Fluorescent -									Space
68	Oil Heat/Cool	Lighting	RET	E	0	В	2.70	GDS 2014a, Ecotope 2013	Lighting	Heating
	High Efficiency Common Area									
	Lighting, Linear Fluorescent -									
69	No Heat/Cool	Lighting	RET	E		В	2.70	GDS 2014a, Ecotope 2013	Lighting	
	High Efficiency Common Area									
	Lighting, Linear Fluorescent -	l		l _	_					Space
70	Elec Heat/No Cool	Lighting	RET	E	E	В	2.70	GDS 2014a, Ecotope 2013	Lighting	Heating

				Primary	Secondary	Building	Number Per		1	
Meas				Fuel	Fuel	Type	Apartment	Number Per Apartment		Secondary
ID	Measure Name	Category	Market ²¹	(E, G, O)	(E, G, O)	(S,L,B)	Unit	Source	Primary End-Use	End-Use
	High Efficiency Common Area	, , , , , , , , , , , , , , , , , , ,				, , , ,			,	
	Lighting, Linear Fluorescent -									Space
71	Gas Heat/No Cool	Lighting	RET	E	G	В	2.70	GDS 2014a, Ecotope 2013	Lighting	Heating
	High Efficiency Common Area									
	Lighting, Linear Fluorescent -									Space
72	Oil Heat/No Cool	Lighting	RET	E	0	В	2.70	GDS 2014a, Ecotope 2013	Lighting	Heating
	High Efficiency Common Area									
	Lighting, Linear Fluorescent -									
73	No Heat/No Cool	Lighting	RET	E		В	2.70	GDS 2014a, Ecotope 2013	Lighting	
	Standard LED (Common									
	Area), 2015-2019 - Elec		2501	_	_		2.70	0000044 5 . 0040	1	Space
74	Heat/Cool	Lighting	REPL	E	E	В	2.70	GDS 2014a, Ecotope 2013	Lighting	Heating
	Standard LED (Common									
75	Area), 2015-2019 - Gas Heat/Cool	Lighting	DEDI	_	G	В	2.70	CDC 2014a Faatana 2012	Lighting	Space
75	Standard LED (Common	Lighting	REPL	E	G	В	2.70	GDS 2014a, Ecotope 2013	Lighting	Heating
	Area), 2015-2019 - Oil									Space
76	Heat/Cool	Lighting	REPL	E	0	В	2.70	GDS 2014a, Ecotope 2013	Lighting	Heating
70	Standard LED (Common	LIBITUTE	INELE	_			2.70	GD3 2014a, Leotope 2013	Ligiting	ricating
	Area), 2015-2019 - No									
77	Heat/Cool	Lighting	REPL	Е		В	2.70	GDS 2014a, Ecotope 2013	Lighting	
	Standard LED (Common									
	Area), 2015-2019 - Elec									Space
78	Heat/No Cool	Lighting	REPL	E	E	В	2.70	GDS 2014a, Ecotope 2013	Lighting	Heating
	Standard LED (Common									
	Area), 2015-2019 - Gas									Space
79	Heat/No Cool	Lighting	REPL	E	G	В	2.70	GDS 2014a, Ecotope 2013	Lighting	Heating
	Standard LED (Common									
	Area), 2015-2019 - Oil									Space
80	Heat/No Cool	Lighting	REPL	E	0	В	2.70	GDS 2014a, Ecotope 2013	Lighting	Heating
	Standard LED (Common									
	Area), 2015-2019 - No			_		_				
81	Heat/No Cool	Lighting	REPL	E		В	2.70	GDS 2014a, Ecotope 2013	Lighting	
	Standard LED (Common									Cnaca
82	Area), 2020-2034 - Elec Heat/Cool	Lighting	REPL	E	E	В	2.70	GDS 20142 Ecotopo 2012	Lighting	Space
82	Standard LED (Common	Lighting	KEPL	E	E	D	2.70	GDS 2014a, Ecotope 2013	Lighting	Heating
	Area), 2020-2034 - Gas									Space
83	Heat/Cool	Lighting	REPL	E	G	В	2.70	GDS 2014a, Ecotope 2013	Lighting	Heating
- 55	Standard LED (Common	- ignung	ILLIE	_	-	,	2.70	353 2017a, Ecotope 2013	Ligiting	ricating
	Area), 2020-2034 - Oil									Space
84	Heat/Cool	Lighting	REPL	E	О	В	2.70	GDS 2014a, Ecotope 2013	Lighting	Heating
	Standard LED (Common	56	_					,	J - U	
85	Area), 2020-2034 - No	Lighting	REPL	Е		В	2.70	GDS 2014a, Ecotope 2013	Lighting	

				Primary	Secondary	Building	Number Per		1	
Meas				Fuel	Fuel	Type	Apartment	Number Per Apartment		Secondary
ID	Measure Name	Category	Market ²¹	(E, G, O)	(E, G, O)	(S,L,B)	Unit	Source	Primary End-Use	End-Use
	Heat/Cool			(-, -, -,	(=, =, =,	(-,-,-,			,	
	Standard LED (Common									
	Area), 2020-2034 - Elec									Space
86	Heat/No Cool	Lighting	REPL	E	E	В	2.70	GDS 2014a, Ecotope 2013	Lighting	Heating
	Standard LED (Common	0 0						, ,	<u> </u>	
	Area), 2020-2034 - Gas									Space
87	Heat/No Cool	Lighting	REPL	Е	G	В	2.70	GDS 2014a, Ecotope 2013	Lighting	Heating
	Standard LED (Common	0 - 0					-	.,	0 - 0	
	Area), 2020-2034 - Oil									Space
88	Heat/No Cool	Lighting	REPL	E	О	В	2.70	GDS 2014a, Ecotope 2013	Lighting	Heating
	Standard LED (Common	0 - 0						.,	0 - 0	
	Area), 2020-2034 - No									
89	Heat/No Cool	Lighting	REPL	Е		В	2.70	GDS 2014a, Ecotope 2013	Lighting	
		0 0					-	Energy Center of Wisconsin	0 - 0	
								2013, 2.13 common area		
								lights per unit, 12% of		
	LED Exit Sign, <50 units - Elec							common area lights are exit		Space
90	Heat/Cool	Lighting	RET	E	E	S	0.26	signs	Lighting	Heating
								Energy Center of Wisconsin		j
								2013, 2.13 common area		
								lights per unit, 12% of		
	LED Exit Sign, <50 units - Gas							common area lights are exit		Space
91	Heat/Cool	Lighting	RET	E	G	S	0.26	signs	Lighting	Heating
								Energy Center of Wisconsin		
								2013, 2.13 common area		
								lights per unit, 12% of		
	LED Exit Sign, <50 units - Oil							common area lights are exit		Space
92	Heat/Cool	Lighting	RET	E	0	S	0.26	signs	Lighting	Heating
								Energy Center of Wisconsin		
								2013, 2.13 common area		
								lights per unit, 12% of		
	LED Exit Sign, <50 units - No							common area lights are exit		
93	Heat/Cool	Lighting	RET	E		S	0.26	signs	Lighting	
								Energy Center of Wisconsin		
								2013, 2.13 common area		
								lights per unit, 12% of		
	LED Exit Sign, <50 units - Elec							common area lights are exit		Space
94	Heat/No Cool	Lighting	RET	E	E	S	0.26	signs	Lighting	Heating
								Energy Center of Wisconsin		
								2013, 2.13 common area		
								lights per unit, 12% of		
	LED Exit Sign, <50 units - Gas							common area lights are exit		Space
95	Heat/No Cool	Lighting	RET	E	G	S	0.26	signs	Lighting	Heating
96	LED Exit Sign, <50 units - Oil	Lighting	RET	E	0	S	0.26	Energy Center of Wisconsin	Lighting	Space

				Primary	Secondary	Building	Number Per			
Meas				Fuel	Fuel	Туре	Apartment	Number Per Apartment		Secondary
ID	Measure Name	Category	Market ²¹	(E, G, O)	(E, G, O)	(S,L,B)	Unit	Source	Primary End-Use	End-Use
	Heat/No Cool							2013, 2.13 common area		Heating
								lights per unit, 12% of		
								common area lights are exit		
								signs		
								Energy Center of Wisconsin		
								2013, 2.13 common area		
								lights per unit, 12% of		
	LED Exit Sign, <50 units - No							common area lights are exit		
97	Heat/No Cool	Lighting	RET	E		S	0.26	signs	Lighting	
								Energy Center of Wisconsin		
								2013, 3.2 common area		
								lights per unit, 12% of		
	LED Exit Sign, 50+ units - Elec							common area lights are exit		Space
98	Heat/Cool	Lighting	RET	E	E	L	0.38	signs.	Lighting	Heating
								Energy Center of Wisconsin		
								2013, 3.2 common area		
								lights per unit, 12% of		
	LED Exit Sign, 50+ units - Gas							common area lights are exit		Space
99	Heat/Cool	Lighting	RET	E	G	L	0.38	signs.	Lighting	Heating
								Energy Center of Wisconsin		
								2013, 3.2 common area		
								lights per unit, 12% of		
	LED Exit Sign, 50+ units - Oil							common area lights are exit		Space
100	Heat/Cool	Lighting	RET	E	0	L	0.38	signs.	Lighting	Heating
	-							Energy Center of Wisconsin		j
								2013, 3.2 common area		
								lights per unit, 12% of		
	LED Exit Sign, 50+ units - No							common area lights are exit		
101	Heat/Cool	Lighting	RET	E		L	0.38	signs.	Lighting	
	,	0 0						Energy Center of Wisconsin	0	
								2013, 3.2 common area		
								lights per unit, 12% of		
	LED Exit Sign, 50+ units - Elec							common area lights are exit		Space
102	Heat/No Cool	Lighting	RET	E	E	L	0.38	signs.	Lighting	Heating
	-							Energy Center of Wisconsin		
								2013, 3.2 common area		
								lights per unit, 12% of		
	LED Exit Sign, 50+ units - Gas							common area lights are exit		Space
103	Heat/No Cool	Lighting	RET	E	G	L	0.38	signs.	Lighting	Heating
	•	1 5						Energy Center of Wisconsin	T J	1
								2013, 3.2 common area		
								lights per unit, 12% of		
	LED Exit Sign, 50+ units - Oil				1			common area lights are exit		Space
104	Heat/No Cool	Lighting	RET	E	О	L	0.38	_	Lighting	Heating

		1		Primary	Secondary	Building	Number Per	I		
Meas				Fuel	Fuel	Type	Apartment	Number Per Apartment		Secondary
ID	Measure Name	Category	Market ²¹	(E, G, O)	(E, G, O)	(S,L,B)	Unit	Source	Primary End-Use	End-Use
		carege. y		(-, -, -,	(2, 3, 3)	(0,2,2)		Energy Center of Wisconsin	· · · · · · · · · · · · · · · · · · ·	
								2013, 3.2 common area		
								lights per unit, 12% of		
	LED Exit Sign, 50+ units - No							common area lights are exit		
105	Heat/No Cool	Lighting	RET	E		L	0.38	signs.	Lighting	
								Navigant 2012, 20 parking		
								spaces per lamp. Assumes		
	Outdoor Area/Parking							1.5 parking spaces per		
106	Lighting	Lighting	REPL	E		В	0.08	apartment unit.	Lighting	
	Lighting Controls, Common									
107	Area	Lighting	RET	E		В	2.70	GDS 2014a, Ecotope 2013	Lighting	
	Low Flow Showerheads - Elec	Water								
108	DHW	Heating	RET	E		В	1.30	Cadmus 2011	Water Heating	
	Low Flow Showerheads - Gas	Water								
109	DHW	Heating	RET	G		В	1.30	Cadmus 2011	Water Heating	
	Low Flow Showerheads - Oil	Water								
110	DHW	Heating	RET	0		В	1.30	Cadmus 2011	Water Heating	
								GDS 2014a, assumes 2.4		
	Low Flow Bathroom Faucet	Water		_				faucets per multifamily unit		
111	Aerator - Elec DHW	Heating	RET	E		В	1.40	less 1.0 faucet for kitchens.	Water Heating	
	Law Slave Bath are as Face of	14/-1						GDS 2014a, assumes 2.4		
112	Low Flow Bathroom Faucet	Water	DET	G		В	1.40	faucets per multifamily unit less 1.0 faucet for kitchens.	\\/atau aatiua	
112	Aerator - Gas DHW	Heating	RET	G		В	1.40		Water Heating	
	Low Flow Bathroom Faucet	Matar						GDS 2014a, assumes 2.4		
113	Aerator - Oil DHW	Water Heating	RET	0		В	1.40	faucets per multifamily unit less 1.0 faucet for kitchens.	Water Heating	
113	Low Flow Kitchen Faucet	Water	REI	U		В	1.40	less 1.0 laucet for kitcheris.	water neating	
114	Aerator - Elec DHW	Heating	RET	E		В	1.00	OEI Assumptions	Water Heating	
117	Low Flow Kitchen Faucet	Water	IKET	_		-	1.00	OEI ASSUMPTIONS	Water ricating	
115	Aerator - Gas DHW	Heating	RET	G		В	1.00	OEI Assumptions	Water Heating	
110	Low Flow Kitchen Faucet	Water					1.00	C217 ISSUMPTIONS	Tracer Freating	
116	Aerator - Oil DHW	Heating	RET	0		В	1.00	OEI Assumptions	Water Heating	
	Heat pump water heater - In-	Water						, and the second	0	
117	unit	Heating	REPL	E		В			Water Heating	
	Pipe Wrap - In-unit water	Water								
118	heating	Heating	RET	G		В			Water Heating	
	Pipe Wrap - In-unit water	Water								
119	heating	Heating	RET	E		В			Water Heating	
	Pipe Wrap - In-unit water	Water								
120	heating	Heating	RET	0		В			Water Heating	
	Water Heater Tank Wrap - In-	Water								
121	unit water heating	Heating	RET	E	1	В			Water Heating	
122	Water Heater Tank Wrap - In-	Water	RET	G		В			Water Heating	

				Primary	Secondary	Building	Number Per			T
Meas				Fuel	Fuel	Туре	Apartment	Number Per Apartment		Secondary
ID	Measure Name	Category	Market ²¹	(E, G, O)	(E, G, O)	(S,L,B)	Unit	Source	Primary End-Use	End-Use
	unit water heating	Heating								
	Water Heater Tank Wrap - In-	Water								
123	unit water heating	Heating	RET	0		В			Water Heating	
	High Efficiency Gas Water	Water								
124	Heater - In-unit	Heating	REPL	G		В	1.00		Water Heating	
	High Efficiency Electric Water	Water								
125	Heater - In-unit	Heating	REPL	E		В	1.00		Water Heating	
	High Efficiency Oil Water	Water								
126	Heater - In-unit	Heating	REPL	0		В	1.00		Water Heating	
127	Air Sealing - Electric Heat	Envelope	RET	E		В			Heating/Cooling	
128	Air Sealing - Gas Heat	Envelope	RET	G	E	В			Space Heating	Cooling
129	Air Sealing - Oil Heat	Envelope	RET	0	E	В			Space Heating	Cooling
130	Wall Insulation - Electric Heat	Envelope	RET	E		В			Heating/Cooling	
131	Wall Insulation - Gas Heat	Envelope	RET	G	E	В			Space Heating	Cooling
132	Wall Insulation - Oil Heat	Envelope	RET	0	E	В			Space Heating	Cooling
	Duct Sealing/Insulation -									
133	Electric Heat	Envelope	RET	E		В			Heating/Cooling	
	Duct Sealing/Insulation - Gas									
134	Heat	Envelope	RET	G	E	В			Space Heating	Cooling
	Duct Sealing/Insulation - Oil									
135	Heat	Envelope	RET	0	E	В			Space Heating	Cooling
	Basement Wall Insulation -									
136	Electric Heat	Envelope	RET	E		В			Heating/Cooling	
	Basement Wall Insulation -			_						
137	Gas Heat	Envelope	RET	G	E	В			Space Heating	Cooling
	Basement Wall Insulation - Oil			_	_	_				
138	Heat	Envelope	RET	0	E	В			Space Heating	Cooling
400	Efficient Windows - Electric		2501	_	_					
139	Heat Carlos Carlos	Envelope	REPL	E	E	В			Space Heating	Cooling
140	Efficient Windows - Gas Heat	Envelope	REPL	G		В			Space Heating	Cooling
141	Efficient Windows - Oil Heat	Envelope	REPL	0	E	В			Space Heating	Cooling
142	Mindow Film Coo Hook	Farreless	DET	_		В			Caalina	Space
142	Window Film - Gas Heat	Envelope	RET	E	G	В			Cooling	Heating
143	Window Film - Oil Heat	Envelope	RET	E	0	В			Cooling	Space Heating
143	Willdow Fillii - Oli Heat	Elivelope	NET	<u> </u>	0	ь			Cooling	
144	Cool Boofs Gas Hoat	Envolono	RET	E	G	В			Cooling	Space Heating
144	Cool Roofs - Gas Heat	Envelope	IVE I	_	J	ט			Cooling	Space
145	Cool Roofs - Oil Heat	Envelope	RET	E	0	В			Cooling	Heating
143	Behavior Program: Home	Lilvelope	IVE	_	-	ט	1		Cooling	Space
146	Energy Reports - Electric Heat	Behavior	REPL	E	E	В			Whole Building	Heating
140	Behavior Program: Home	Dellavioi	INEI E	_	_	5			vviiole bulluling	Space
147	Energy Reports - Gas Heat	Behavior	REPL	E	G	В			Whole Building	Heating

				Primary	Secondary	Building	Number Per			
Meas				Fuel	Fuel	Type	Apartment	Number Per Apartment		Secondary
ID	Measure Name	Category	Market ²¹	(E, G, O)	(E, G, O)	(S,L,B)	Unit	Source	Primary End-Use	End-Use
10	Behavior Program: Home	Category	Widthet	(L, G, O)	(L, G, O)	(3,1,0)	Oint	Source	Filliary Elia-Ose	Space Space
148	Energy Reports - Oil Heat	Behavior	REPL	E	0	В			Whole Building	Heating
140	Retrocommissioning (HVAC	Bellavioi	INELLE	-					Willole Building	Space
149	Controls)	HVAC	RET	E		В			Whole Building	Heating
143	Retrocommissioning (HVAC	TIVAC	INE I						Willoic Building	Space
150	Controls)	HVAC	RET	G		В			Whole Building	Heating
130	Retrocommissioning (HVAC	TIVAC	INLI	J		, b			Willole Building	Space
151	Controls)	HVAC	RET	0		В			Whole Building	Heating
131	Controlsy	TIVAC	INE I						Plug Loads/Cons	ricating
152	Advanced Power Strip	Plug Loads	REPL	E		В	2.00		Elec/Other	
132	High-efficiency Set-Top Cable	Consumer	INEI E	-		В	2.00		Plug Loads/Cons	
153	Box/DVR	Electronics	REPL	E		В	2.23		Elec/Other	
133	High-efficiency Set-Top	Consumer	NLFL	_		В	2.23		Plug Loads/Cons	
154	Satellite Box	Electronics	REPL	E		В	1.56		Elec/Other	
155	Central AC Tune-Up	HVAC	RET	E		В	1.50		Cooling	
			RET	E	-	В				
156	Central HP Tune-Up	HVAC			E				Heating/Cooling	
157	Efficient Room AC	HVAC	RET	E		В			Cooling	
158	Efficient Room AC	HVAC	REPL	E		В			Cooling	
159	Efficient In-Unit Central AC	HVAC	REPL	E		В			Cooling	
	Efficient In-Unit Central HP									
160	(Air-Source)	HVAC	REPL	E		В			Heating/Cooling	
161	Proper Central AC Sizing	HVAC	REPL	E		В			Cooling	
162	Proper Central HP Sizing	HVAC	REPL	E		В			Cooling	
163	Efficient Central Boiler	HVAC	REPL	G		S			Space Heating	
164	Efficient Central Boiler	HVAC	REPL	G		L			Space Heating	
165	Efficient Central Boiler	HVAC	REPL	0		S			Space Heating	
166	Efficient Central Boiler	HVAC	REPL	0		L			Space Heating	
167	Efficient In-Unit Furnace	HVAC	REPL	G		В			Space Heating	
168	Efficient Central Furnace	HVAC	REPL	G		В			Space Heating	
169	Programmable Thermostat	HVAC	RET	G		В			Space Heating	
170	Programmable Thermostat	HVAC	RET	0		В			Space Heating	
171	Programmable Thermostat	HVAC	RET	E		В			Space Heating	
172	Boiler Economizer	HVAC	RET	G		В			Space Heating	
173	Boiler Economizer	HVAC	RET	0		В			Space Heating	
174	Wi-Fi Thermostat, no cooling	HVAC	RET	G	İ	В			Space Heating	
175	Wi-Fi Thermostat, no cooling	HVAC	RET	0		В			Space Heating	
176	Wi-Fi Thermostat, no cooling	HVAC	RET	E	İ	В			Space Heating	
	Wi-Fi Thermostat, with		1		İ				-1	
177	cooling	HVAC	RET	G	E	В			Space Heating	Cooling
	Wi-Fi Thermostat, with	1	1	<u> </u>	-	T .				
178	cooling	HVAC	RET	0	E	В			Space Heating	Cooling
1,3	Wi-Fi Thermostat, with	,	1		-	1			- Space Heating	20011116
179	cooling	HVAC	RET	Е		В			Heating/Cooling	

				Primary	Secondary	Building	Number Per			
Meas			21	Fuel	Fuel	Туре	Apartment	Number Per Apartment		Secondary
ID	Measure Name	Category	Market ²¹	(E, G, O)	(E, G, O)	(S,L,B)	Unit	Source	Primary End-Use	End-Use
									Plug Loads/Cons	Space
180	Efficient Furnace Fans	HVAC	REPL	E	G	В			Elec/Other	Heating
									Plug Loads/Cons	Space
181	Efficient Furnace Fans	HVAC	REPL	E	0	В			Elec/Other	Heating
182	Boiler Pipe Insulation	HVAC	RET	G		В			Space Heating	

Meas			Energy Savings	Peak Coinc. Factor (H,	End-Use Fuel Savings	Water Savings
ID	Efficient Equipment Description	Baseline Equipment Description	(kWh)	A)	(MMBtu)	(gal)
	ENERGY STAR (v6.1) qualified commercial clothes	Standard commercial clothes washer meeting current (as of 1/8/2013) federal standards. "Energy conservation standards and their effective				
	washer in multifamily with MEF >= 2.2 and a WF	dates." 10 CFR 431.156. Assumes modified energy factor (MEF) of 2.00				
1	<=4.5.	and a water factor (WF) of 5.5.	95	Α	0	2516
		Standard commercial clothes washer meeting current (as of 1/8/2013)			_	
	ENERGY STAR (v6.1) qualified commercial clothes	federal standards. "Energy conservation standards and their effective				
	washer in multifamily with MEF >= 2.2 and a WF	dates." 10 CFR 431.156. Assumes modified energy factor (MEF) of 2.00				
2	<=4.5.	and a water factor (WF) of 5.5.	73	Α	0.08	2516
		Standard commercial clothes washer meeting current (as of 1/8/2013)				
	ENERGY STAR (v6.1) qualified commercial clothes	federal standards. "Energy conservation standards and their effective				
	washer in multifamily with MEF >= 2.2 and a WF	dates." 10 CFR 431.156. Assumes modified energy factor (MEF) of 2.00				
3	<=4.5.	and a water factor (WF) of 5.5.	37	Α	0.27	2516
		Standard commercial clothes washer meeting current (as of 1/8/2013)				
	ENERGY STAR (v6.1) qualified commercial clothes	federal standards. "Energy conservation standards and their effective				
	washer in multifamily with MEF >= 2.2 and a WF	dates." 10 CFR 431.156. Assumes modified energy factor (MEF) of 2.00				
4	<=4.5.	and a water factor (WF) of 5.5.	15	Α	0.34	2516
		Standard commercial clothes washer meeting current (as of 1/8/2013)				
	ENERGY STAR (v6.1) qualified commercial clothes	federal standards. "Energy conservation standards and their effective				
5	washer in multifamily with MEF >= 2.2 and a WF <=4.5.	dates." 10 CFR 431.156. Assumes modified energy factor (MEF) of 2.00	27		0.27	2516
5	<=4.5.	and a water factor (WF) of 5.5. Existing commercial clothes washer meeting previous (1/1/2007 to	37	Α	0.27	2516
	ENERGY STAR (v6.1) qualified commercial clothes	1/8/2013) federal standards. "Energy conservation standards and their				
	washer in multifamily with MEF >= 2.2 and a WF	effective dates." 10 CFR 431.156. Assumes modified energy factor (MEF)				
6	<=4.5.	of 1.26 and a water factor (WF) of 9.5.	190	Α	0.00	2796
ŭ		Existing commercial clothes washer meeting previous (1/1/2007 to	130		0.00	2750
	ENERGY STAR (v6.1) qualified commercial clothes	1/8/2013) federal standards. "Energy conservation standards and their				
	washer in multifamily with MEF >= 2.2 and a WF	effective dates." 10 CFR 431.156. Assumes modified energy factor (MEF)				
7	<=4.5.	of 1.26 and a water factor (WF) of 9.5.	106	Α	0.28	2796
		Existing commercial clothes washer meeting previous (1/1/2007 to				
	ENERGY STAR (v6.1) qualified commercial clothes	1/8/2013) federal standards. "Energy conservation standards and their				
	washer in multifamily with MEF >= 2.2 and a WF	effective dates." 10 CFR 431.156. Assumes modified energy factor (MEF)				
8	<=4.5.	of 1.26 and a water factor (WF) of 9.5.	104	Α	0.39	2796
		Existing commercial clothes washer meeting previous (1/1/2007 to				
	ENERGY STAR (v6.1) qualified commercial clothes	1/8/2013) federal standards. "Energy conservation standards and their				
	washer in multifamily with MEF >= 2.2 and a WF	effective dates." 10 CFR 431.156. Assumes modified energy factor (MEF)				
9	<=4.5.	of 1.26 and a water factor (WF) of 9.5.	21	Α	0.67	2796
	FNEDCY CTAD (C.4) and I'C. 1	Existing commercial clothes washer meeting previous (1/1/2007 to				
	ENERGY STAR (v6.1) qualified commercial clothes	1/8/2013) federal standards. "Energy conservation standards and their				
10	washer in multifamily with MEF >= 2.2 and a WF <=4.5.	effective dates." 10 CFR 431.156. Assumes modified energy factor (MEF)	104	_	0.30	2700
10	ENERGY STAR (v6.1) qualified clothes washer with an	of 1.26 and a water factor (WF) of 9.5.	104 284	A	0.39	2796 3385
TT	LINEINGT STAN (VO.1) quaimed clothes washer with an	Standard clothes washer meeting current (as of 1/1/2007) federal	284	А	0.00	3383

Meas ID	Efficient Equipment Description	Baseline Equipment Description	Energy Savings (kWh)	Peak Coinc. Factor (H,	End-Use Fuel Savings (MMBtu)	Water Savings (gal)
	MEF >= 2.2 and a WF <=6.0.	standards. "Energy and water conservation standards and their	(,	,	(**************************************	(84.7)
		compliance dates" 10 CFR 430.32(g). Assumes modified energy factor				
		(MEF) of 1.26 and a water factor (WF) of 9.5.				
		Standard clothes washer meeting current (as of 1/1/2007) federal				
	51/500/ (5740 / 6.4)	standards. "Energy and water conservation standards and their				
12	ENERGY STAR (v6.1) qualified clothes washer with an MEF >= 2.2 and a WF <=6.0.	compliance dates" 10 CFR 430.32(g). Assumes modified energy factor (MEF) of 1.26 and a water factor (WF) of 9.5.	184	Α	0.34	3385
12	WEF >- 2.2 dilu d WF <-0.0.	Standard clothes washer meeting current (as of 1/1/2007) federal	104	A	0.54	3303
		standards. "Energy and water conservation standards and their				
	ENERGY STAR (v6.1) qualified clothes washer with an	compliance dates" 10 CFR 430.32(g). Assumes modified energy factor				
13	MEF >= 2.2 and a WF <=6.0.	(MEF) of 1.26 and a water factor (WF) of 9.5.	137	Α	0.67	3385
		Standard clothes washer meeting current (as of 1/1/2007) federal				
		standards. "Energy and water conservation standards and their				
	ENERGY STAR (v6.1) qualified clothes washer with an	compliance dates" 10 CFR 430.32(g). Assumes modified energy factor				
14	MEF >= 2.2 and a WF <=6.0.	(MEF) of 1.26 and a water factor (WF) of 9.5.	37	Α	1.01	3385
		Standard clothes washer meeting current (as of 1/1/2007) federal				
	5N5D6V67AB / 6 A)	standards. "Energy and water conservation standards and their				
15	ENERGY STAR (v6.1) qualified clothes washer with an	compliance dates" 10 CFR 430.32(g). Assumes modified energy factor	127		0.67	2205
15	MEF >= 2.2 and a WF <=6.0. ENERGY STAR (v1.0) qualified electric clothes dryer	(MEF) of 1.26 and a water factor (WF) of 9.5.	137	Α	0.67	3385
16	with moisture sensor installed in a multifamily unit.	Standard electric clothes dryer	77	Α	0.00	
	ENERGY STAR (v1.0) qualified gas clothes dryer with	Standard electric clothes dryer	,,,	,	0.00	
17	moisture sensor installed in a multifamily unit.	Standard gas clothes dryer		Α	0.26	
	,	Standard refrigerator meeting current (as of 9/14/2014) federal				
		standards. "Energy and water conservation standards and their				
	ENERGY STAR (v5.0) refrigerator with top-mounted	compliance dates" 10 CFR 430.32(a). Assumes top-mounted freezer				
	freezer with automatic defrost and without automatic	with automatic defrost and without automatic icemaker with Adjusted				
18	icemaker with Adjusted Volume (AV) of 17.5 CF.	Volume (AV) of 17.5 CF.	38	Α	0.00	
		Existing refrigerator meeting previous (7/1/2001 to 9/15/2014) federal				
	ENERGY STAR (.F. O) refrigerence with the reconstant	standards. "Energy and water conservation standards and their				
	ENERGY STAR (v5.0) refrigerator with top-mounted freezer with automatic defrost and without automatic	compliance dates" 10 CFR 430.32(a). Assumes top-mounted freezer with automatic defrost and without automatic icemaker with Adjusted				
19	icemaker with Adjusted Volume (AV) of 17.5 CF.	Volume (AV) of 17.5 CF.	111	Α	0.00	
13	ENERGY STAR (v5.0) refrigerator with top-mounted	Existing refrigerator meeting previous (Pre-7/1/2001) federal standards.	111		0.00	
	freezer with automatic defrost and without automatic	Assumes top-mounted freezer with automatic defrost and without				
20	icemaker with Adjusted Volume (AV) of 17.5 CF.	automatic icemaker with Adjusted Volume (AV) of 17.5 CF.	255	Α	0.00	
	, ,	Standard refrigerator meeting current (as of 9/14/2014) federal				
		standards. "Energy and water conservation standards and their				
	CEE Tier 3 refrigerator with top-mounted freezer with	compliance dates" 10 CFR 430.32(a). Assumes top-mounted freezer				
	automatic defrost and without automatic icemaker	with automatic defrost and without automatic icemaker with Adjusted				
21	with Adjusted Volume (AV) of 17.5 CF.	Volume (AV) of 17.5 CF.	76	Α	0.00	
0.5	CEE Tier 3 refrigerator with top-mounted freezer with	Existing refrigerator meeting previous (7/1/2001 to 9/15/2014) federal	4.5		0.55	
22	automatic defrost and without automatic icemaker	standards. "Energy and water conservation standards and their	149	Α	0.00	

Meas ID	Efficient Equipment Description	Baseline Equipment Description	Energy Savings (kWh)	Peak Coinc. Factor (H, A)	End-Use Fuel Savings (MMBtu)	Water Savings (gal)
	with Adjusted Volume (AV) of 17.5 CF.	compliance dates" 10 CFR 430.32(a). Assumes top-mounted freezer with automatic defrost and without automatic icemaker with Adjusted Volume (AV) of 17.5 CF.				
23	CEE Tier 3 refrigerator with top-mounted freezer with automatic defrost and without automatic icemaker with Adjusted Volume (AV) of 17.5 CF.	Existing refrigerator meeting previous (Pre-7/1/2001) federal standards. Assumes top-mounted freezer with automatic defrost and without automatic icemaker with Adjusted Volume (AV) of 17.5 CF.	293	A	0.00	
24	ENERGY STAR (v5.0) compact upright freezer with manual defrost, Adjusted Volume (AV) of 5.2 CF.	Standard freezer meeting current (as of 9/14/2014) federal standards. "Energy and water conservation standards and their compliance dates" 10 CFR 430.32(a). Assumes compact upright freezer with manual defrost with Adjusted Volume (AV) of 5.2 CF.	27	A	0.00	
25	ENERGY STAR (v5.0) compact upright freezer with manual defrost, Adjusted Volume (AV) of 5.2 CF.	Existing freezer meeting previous (7/1/2001 to 9/15/2014) federal standards. "Energy and water conservation standards and their compliance dates" 10 CFR 430.32(a). Assumes compact upright freezer with manual defrost with Adjusted Volume (AV) of 5.2 CF.	58	А	0.00	
26	ENERGY STAR dishwasher (v5.2) with maximum 245 kWh/year and maximum 2.5 gallons/cycle	Standard dishwasher meeting current (as of 5/21/2013) federal standards. "Energy and water conservation standards and their compliance dates." 10 CFR 430.32(f)(2). Assumes 307 kWh/year and 5 gallons/cycle.	60	A	0.00	520
27	ENERGY STAR dishwasher (v5.2) with maximum 245 kWh/year and maximum 2.5 gallons/cycle	Standard dishwasher meeting current (as of 5/21/2013) federal standards. "Energy and water conservation standards and their compliance dates." 10 CFR 430.32(f)(2). Assumes 307 kWh/year and 5 gallons/cycle.	26	A	0.15	520
28	ENERGY STAR dishwasher (v5.2) with maximum 245 kWh/year and maximum 2.5 gallons/cycle	Standard dishwasher meeting current (as of 5/21/2013) federal standards. "Energy and water conservation standards and their compliance dates." 10 CFR 430.32(f)(2). Assumes 307 kWh/year and 5 gallons/cycle.	26	A	0.15	520
29	ENERGY STAR dishwasher (v5.2) with maximum 245 kWh/year and maximum 2.5 gallons/cycle	Existing dishwasher meeting previous (5/14/1994 to 1/1/2010) federal standards. "Energy and water conservation standards and their compliance dates." 10 CFR 430.32(f)(2). Assumes energy factor (EF) or cycles/kWh of 0.46.	200	A	0.00	520
30	ENERGY STAR dishwasher (v5.2) with maximum 245 kWh/year and maximum 2.5 gallons/cycle	Existing dishwasher meeting previous (5/14/1994 to 1/1/2010) federal standards. "Energy and water conservation standards and their compliance dates." 10 CFR 430.32(f)(2). Assumes energy factor (EF) or cycles/kWh of 0.46.	88	A	0.51	520
31	ENERGY STAR dishwasher (v5.2) with maximum 245 kWh/year and maximum 2.5 gallons/cycle	Existing dishwasher meeting previous (5/14/1994 to 1/1/2010) federal standards. "Energy and water conservation standards and their compliance dates." 10 CFR 430.32(f)(2). Assumes energy factor (EF) or cycles/kWh of 0.46.	88	А	0.52	520
32	ENERGY STAR dehumidifier (v3.0) with capacity >35 and <=45 pints/day at 1.85 L/kWh	Standard dehumidifier meeting current (as of 10/1/2012) federal standards. "Energy and water conservation standards and their compliance dates." 10 CFR 430.32(v). Assumes unit with capacity >35 and <=45 pints/day at 1.5 L/kWh	161	A	0.00	0
33	ENERGY STAR dehumidifier (v3.0) with capacity >35	Existing dehumidifier meeting previous (10/1/2007 to 10/1/2012)	292	Α	0.00	0

Meas ID	Efficient Equipment Description	Baseline Equipment Description	Energy Savings (kWh)	Peak Coinc. Factor (H, A)	End-Use Fuel Savings (MMBtu)	Water Savings (gal)
	and <=45 pints/day at 1.85 L/kWh	federal standards. "Energy and water conservation standards and their compliance dates." 10 CFR 430.32(v). Assumes unit with capacity >35 and <=45 pints/day at 1.3 L/kWh				
34	ENERGY STAR LED general service lamp (v1.1); assumes 15.6W per lamp.	Standard general service halogen incandescent lamp meeting current (as of 1/1/2014) federal standards. "Energy and water conservation standards and their compliance dates." 10 CFR 430.32(x)(1). Assumes 41W.	286	А		
35	ENERGY STAR LED general service lamp (v1.1); assumes 15.6W per lamp.	Standard general service halogen incandescent lamp meeting current (as of 1/1/2014) federal standards. "Energy and water conservation standards and their compliance dates." 10 CFR 430.32(x)(1). Assumes 41W.	526	A	-1.09	
36	ENERGY STAR LED general service lamp (v1.1); assumes 15.6W per lamp.	Standard general service halogen incandescent lamp meeting current (as of 1/1/2014) federal standards. "Energy and water conservation standards and their compliance dates." 10 CFR 430.32(x)(1). Assumes 41W.	526	A	-1.09	
37	ENERGY STAR LED general service lamp (v1.1); assumes 15.6W per lamp.	Standard general service halogen incandescent lamp meeting current (as of 1/1/2014) federal standards. "Energy and water conservation standards and their compliance dates." 10 CFR 430.32(x)(1). Assumes 41W.	526	А		
38	ENERGY STAR LED general service lamp (v1.1); assumes 15.6W per lamp.	Standard general service halogen incandescent lamp meeting current (as of 1/1/2014) federal standards. "Energy and water conservation standards and their compliance dates." 10 CFR 430.32(x)(1). Assumes 41W.	271	A		
39	ENERGY STAR LED general service lamp (v1.1); assumes 15.6W per lamp.	Standard general service halogen incandescent lamp meeting current (as of 1/1/2014) federal standards. "Energy and water conservation standards and their compliance dates." 10 CFR 430.32(x)(1). Assumes 41W.	510	A	-1.09	
40	ENERGY STAR LED general service lamp (v1.1); assumes 15.6W per lamp.	Standard general service halogen incandescent lamp meeting current (as of 1/1/2014) federal standards. "Energy and water conservation standards and their compliance dates." 10 CFR 430.32(x)(1). Assumes 41W.	510	А	-1.09	
41	ENERGY STAR LED general service lamp (v1.1); assumes 15.6W per lamp.	Standard general service halogen incandescent lamp meeting current (as of 1/1/2014) federal standards. "Energy and water conservation standards and their compliance dates." 10 CFR 430.32(x)(1). Assumes 41W.	510	A		
42	Post-2020 LED general service lamp; assumes 9.4W per lamp.	Standard general service lamp meeting minimum "backstop requirement" of the Energy Independence and Security Act of 2007, Sec. 321 (a)(3).	143	А		
43	Post-2020 LED general service lamp; assumes 9.4W per lamp.	Standard general service lamp meeting minimum "backstop requirement" of the Energy Independence and Security Act of 2007, Sec. 321 (a)(3).	262	А	-0.54	
44	Post-2020 LED general service lamp; assumes 9.4W per lamp.	Standard general service lamp meeting minimum "backstop requirement" of the Energy Independence and Security Act of 2007,	262	А	-0.54	

			Energy	Peak Coinc.	End-Use Fuel	Water
Meas			Savings	Factor (H,	Savings	Savings
ID	Efficient Equipment Description	Baseline Equipment Description	(kWh)	A)	(MMBtu)	(gal)
		Sec. 321 (a)(3).				
		Standard general service lamp meeting minimum "backstop				
	Post-2020 LED general service lamp; assumes 9.4W	requirement" of the Energy Independence and Security Act of 2007,				
45	per lamp.	Sec. 321 (a)(3).	262	Α		
		Standard general service lamp meeting minimum "backstop				
	Post-2020 LED general service lamp; assumes 9.4W	requirement" of the Energy Independence and Security Act of 2007,				
46	per lamp.	Sec. 321 (a)(3).	135	Α		
		Standard general service lamp meeting minimum "backstop				
	Post-2020 LED general service lamp; assumes 9.4W	requirement" of the Energy Independence and Security Act of 2007,				
47	per lamp.	Sec. 321 (a)(3).	254	Α	-0.54	
		Standard general service lamp meeting minimum "backstop				
	Post-2020 LED general service lamp; assumes 9.4W	requirement" of the Energy Independence and Security Act of 2007,				
48	per lamp.	Sec. 321 (a)(3).	254	Α	-0.54	
	D 1 2000 ISD	Standard general service lamp meeting minimum "backstop				
	Post-2020 LED general service lamp; assumes 9.4W	requirement" of the Energy Independence and Security Act of 2007,				
49	per lamp.	Sec. 321 (a)(3).	254	Α		
	ENERGY STAR CFL specialty lamp (v1.1) (e.g.,					
50	candelabra, 3-way, globe); assumes 15W per lamp.	Assumes 60W standard incandescent specialty lamp	508	Α		
	ENERGY STAR CFL specialty lamp (v1.1) (e.g.,		000		4.00	
51	candelabra, 3-way, globe); assumes 15W per lamp.	Assumes 60W standard incandescent specialty lamp	933	Α	-1.93	
	ENERGY STAR CFL specialty lamp (v1.1) (e.g.,	A COM at a dead to a select to the least	022		4.00	
52	candelabra, 3-way, globe); assumes 15W per lamp.	Assumes 60W standard incandescent specialty lamp	933	Α	-1.93	
F2	ENERGY STAR CFL specialty lamp (v1.1) (e.g.,	Assumes COM standard in an element or scientification	022			
53	candelabra, 3-way, globe); assumes 15W per lamp. ENERGY STAR CFL specialty lamp (v1.1) (e.g.,	Assumes 60W standard incandescent specialty lamp	933	Α		
54	candelabra, 3-way, globe); assumes 15W per lamp.	Assumes 60W standard incandescent specialty lamp	480	Α		
34	ENERGY STAR CFL specialty lamp (v1.1) (e.g.,	Assumes 60W standard incandescent specialty famp	460	A		
55	candelabra, 3-way, globe); assumes 15W per lamp.	Assumes 60W standard incandescent specialty lamp	905	Α	-1.93	
JJ	ENERGY STAR CFL specialty lamp (v1.1) (e.g.,	Assumes obvivistanuaru incanuescent specialty lamp	303	^	-1.95	
56	candelabra, 3-way, globe); assumes 15W per lamp.	Assumes 60W standard incandescent specialty lamp	905	Α	-1.93	
30	ENERGY STAR CFL specialty lamp (v1.1) (e.g.,	7.554mes 5544 Standard incumenscent specialty famp	303	/ .	1.55	
57	candelabra, 3-way, globe); assumes 15W per lamp.	Assumes 60W standard incandescent specialty lamp	905	Α		
31	canaciabia, 5 way, giobej, assumes 1500 per lamp.	Standard specialty lamp meeting minimum "backstop requirement" of	303	^		
		the Energy Independence and Security Act of 2007, Sec. 321 (a)(3).				
58	Assumes 6.7W LED specialty lamp.	Assumes 15W CFL specialty lamp.	94	Α		
	The special fame.	Standard specialty lamp meeting minimum "backstop requirement" of	1			
		the Energy Independence and Security Act of 2007, Sec. 321 (a)(3).				
59	Assumes 6.7W LED specialty lamp.	Assumes 15W CFL specialty lamp.	173	Α	-0.36	
		Standard specialty lamp meeting minimum "backstop requirement" of	1		2.00	
		the Energy Independence and Security Act of 2007, Sec. 321 (a)(3).				
60	Assumes 6.7W LED specialty lamp.	Assumes 15W CFL specialty lamp.	173	Α	-0.36	
61	Assumes 6.7W LED specialty lamp.	Standard specialty lamp meeting minimum "backstop requirement" of	173	Α		

Meas			Energy Savings	Peak Coinc. Factor (H,	End-Use Fuel Savings	Water Savings
ID	Efficient Equipment Description	Baseline Equipment Description	(kWh)	A)	(MMBtu)	(gal)
		the Energy Independence and Security Act of 2007, Sec. 321 (a)(3).				
		Assumes 15W CFL specialty lamp.				
		Standard specialty lamp meeting minimum "backstop requirement" of				
		the Energy Independence and Security Act of 2007, Sec. 321 (a)(3).				
62	Assumes 6.7W LED specialty lamp.	Assumes 15W CFL specialty lamp.	89	Α		
		Standard specialty lamp meeting minimum "backstop requirement" of				
		the Energy Independence and Security Act of 2007, Sec. 321 (a)(3).				
63	Assumes 6.7W LED specialty lamp.	Assumes 15W CFL specialty lamp.	168	Α	-0.36	
		Standard specialty lamp meeting minimum "backstop requirement" of				
		the Energy Independence and Security Act of 2007, Sec. 321 (a)(3).				
64	Assumes 6.7W LED specialty lamp.	Assumes 15W CFL specialty lamp.	168	Α	-0.36	
		Standard specialty lamp meeting minimum "backstop requirement" of]		
		the Energy Independence and Security Act of 2007, Sec. 321 (a)(3).				
65	Assumes 6.7W LED specialty lamp.	Assumes 15W CFL specialty lamp.	168	Α		
	Retrofit of standard T8 fixture with high-performance	Standard T8 fixture; assume 2-lamp F32T8 fixture with electronic ballast				
66	T8 fixture in common area.	(59 watts)	43	Α		
	Retrofit of standard T8 fixture with high-performance	Standard T8 fixture; assume 2-lamp F32T8 fixture with electronic ballast				
67	T8 fixture in common area.	(59 watts)	79	Α	-0.16	
60	Retrofit of standard T8 fixture with high-performance	Standard T8 fixture; assume 2-lamp F32T8 fixture with electronic ballast	70	١.	0.46	
68	T8 fixture in common area.	(59 watts)	79	Α	-0.16	
69	Retrofit of standard T8 fixture with high-performance T8 fixture in common area.	Standard T8 fixture; assume 2-lamp F32T8 fixture with electronic ballast (59 watts)	79			
09		,	79	Α		
70	Retrofit of standard T8 fixture with high-performance T8 fixture in common area.	Standard T8 fixture; assume 2-lamp F32T8 fixture with electronic ballast (59 watts)	40	A		
70	Retrofit of standard T8 fixture with high-performance	Standard T8 fixture; assume 2-lamp F32T8 fixture with electronic ballast	40	A		
71	T8 fixture in common area.	(59 watts)	76	Α	-0.16	
/1	Retrofit of standard T8 fixture with high-performance	Standard T8 fixture; assume 2-lamp F32T8 fixture with electronic ballast	70	Α	-0.10	
72	T8 fixture in common area.	(59 watts)	76	Α	-0.16	
12	Retrofit of standard T8 fixture with high-performance	Standard T8 fixture; assume 2-lamp F32T8 fixture with electronic ballast	70	Α	-0.10	
73	T8 fixture in common area.	(59 watts)	76	Α		
, ,	To fixed an common area.	Represents mix of standard general service halogen incandescent lamp	70	,,		
		meeting current (as of 1/1/2014) federal standards and CFLs. "Energy				
	ENERGY STAR LED general service lamp (v1.1);	and water conservation standards and their compliance dates." 10 CFR				
74	assumes 15.6W per lamp.	430.32(x)(1). Assumes 41W.	67	Α		
, ,	accounted 2010 to per further	Represents mix of standard general service halogen incandescent lamp	1	1		
		meeting current (as of 1/1/2014) federal standards and CFLs. "Energy]		
	ENERGY STAR LED general service lamp (v1.1);	and water conservation standards and their compliance dates." 10 CFR				
75	assumes 15.6W per lamp.	430.32(x)(1). Assumes 41W.	123	Α	-0.76	
	i Princip II	Represents mix of standard general service halogen incandescent lamp				
		meeting current (as of 1/1/2014) federal standards and CFLs. "Energy				
	ENERGY STAR LED general service lamp (v1.1);	and water conservation standards and their compliance dates." 10 CFR				
76	assumes 15.6W per lamp.	430.32(x)(1). Assumes 41W.	123	Α	-0.76	

Meas ID	Efficient Equipment Description	Baseline Equipment Description	Energy Savings (kWh)	Peak Coinc. Factor (H,	End-Use Fuel Savings (MMBtu)	Water Savings (gal)
		Represents mix of standard general service halogen incandescent lamp	, ,	,	Ì	,,,,
		meeting current (as of 1/1/2014) federal standards and CFLs. "Energy				
	ENERGY STAR LED general service lamp (v1.1);	and water conservation standards and their compliance dates." 10 CFR	122			
77	assumes 15.6W per lamp.	430.32(x)(1). Assumes 41W. Represents mix of standard general service halogen incandescent lamp	123	Α		
		meeting current (as of 1/1/2014) federal standards and CFLs. "Energy				
	ENERGY STAR LED general service lamp (v1.1);	and water conservation standards and their compliance dates." 10 CFR				
78	assumes 15.6W per lamp.	430.32(x)(1). Assumes 41W.	63	Α		
		Represents mix of standard general service halogen incandescent lamp				
		meeting current (as of 1/1/2014) federal standards and CFLs. "Energy				
70	ENERGY STAR LED general service lamp (v1.1);	and water conservation standards and their compliance dates." 10 CFR	110		0.76	
79	assumes 15.6W per lamp.	430.32(x)(1). Assumes 41W. Represents mix of standard general service halogen incandescent lamp	119	Α	-0.76	1
		meeting current (as of 1/1/2014) federal standards and CFLs. "Energy				
	ENERGY STAR LED general service lamp (v1.1);	and water conservation standards and their compliance dates." 10 CFR				
80	assumes 15.6W per lamp.	430.32(x)(1). Assumes 41W.	119	Α	-0.76	
	·	Represents mix of standard general service halogen incandescent lamp				
		meeting current (as of 1/1/2014) federal standards and CFLs. "Energy				
	ENERGY STAR LED general service lamp (v1.1);	and water conservation standards and their compliance dates." 10 CFR				
81	assumes 15.6W per lamp.	430.32(x)(1). Assumes 41W. Standard general service lamp meeting minimum "backstop	119	Α		
	Post-2020 LED general service lamp; assumes 9.4W	requirement" of the Energy Independence and Security Act of 2007,				
82	per lamp.	Sec. 321 (a)(3).	108	Α		
	per rampi	Standard general service lamp meeting minimum "backstop	100			
	Post-2020 LED general service lamp; assumes 9.4W	requirement" of the Energy Independence and Security Act of 2007,				
83	per lamp.	Sec. 321 (a)(3).	199	Α	-0.41	
		Standard general service lamp meeting minimum "backstop				
0.4	Post-2020 LED general service lamp; assumes 9.4W	requirement" of the Energy Independence and Security Act of 2007,	100		0.44	
84	per lamp.	Sec. 321 (a)(3). Standard general service lamp meeting minimum "backstop	199	Α	-0.41	
	Post-2020 LED general service lamp; assumes 9.4W	requirement" of the Energy Independence and Security Act of 2007,				
85	per lamp.	Sec. 321 (a)(3).	199	Α		
		Standard general service lamp meeting minimum "backstop				
	Post-2020 LED general service lamp; assumes 9.4W	requirement" of the Energy Independence and Security Act of 2007,				
86	per lamp.	Sec. 321 (a)(3).	102	Α		ļ
		Standard general service lamp meeting minimum "backstop				
07	Post-2020 LED general service lamp; assumes 9.4W	requirement" of the Energy Independence and Security Act of 2007,	103	_	0.41	
87	per lamp.	Sec. 321 (a)(3). Standard general service lamp meeting minimum "backstop	193	Α	-0.41	1
	Post-2020 LED general service lamp; assumes 9.4W	requirement" of the Energy Independence and Security Act of 2007,				
88	per lamp.	Sec. 321 (a)(3).	193	Α	-0.41	
	Post-2020 LED general service lamp; assumes 9.4W	Standard general service lamp meeting minimum "backstop				
89	per lamp.	requirement" of the Energy Independence and Security Act of 2007,	193	Α		

Meas ID	Efficient Equipment Description	Pacalina Equipment Description	Energy Savings (kWh)	Peak Coinc. Factor (H,	End-Use Fuel Savings (MMBtu)	Water Savings
עו	Efficient Equipment Description	Baseline Equipment Description Sec. 321 (a)(3).	(KVVII)	A)	(IVIIVIBLU)	(gal)
90	Exit sign with LED lamps	Incandescent or fluorescent exit sign	26	Α		
90	Exit sign with LED lamps	Incandescent or fluorescent exit sign	48	A	-0.10	
91			48	A	-0.10	
	Exit sign with LED lamps	Incandescent or fluorescent exit sign	_		-0.10	
93	Exit sign with LED lamps	Incandescent or fluorescent exit sign	48	A		
94	Exit sign with LED lamps	Incandescent or fluorescent exit sign	25	Α		
95	Exit sign with LED lamps	Incandescent or fluorescent exit sign	47	Α	-0.10	
96	Exit sign with LED lamps	Incandescent or fluorescent exit sign	47	Α	-0.10	
97	Exit sign with LED lamps	Incandescent or fluorescent exit sign	47	Α		
98	Exit sign with LED lamps	Incandescent or fluorescent exit sign	40	Α		
99	Exit sign with LED lamps	Incandescent or fluorescent exit sign	73	Α	-0.15	
100	Exit sign with LED lamps	Incandescent or fluorescent exit sign	73	Α	-0.15	
101	Exit sign with LED lamps	Incandescent or fluorescent exit sign	73	Α		
102	Exit sign with LED lamps	Incandescent or fluorescent exit sign	37	Α		
103	Exit sign with LED lamps	Incandescent or fluorescent exit sign	71	Α	-0.15	
104	Exit sign with LED lamps	Incandescent or fluorescent exit sign	71	Α	-0.15	
105	Exit sign with LED lamps	Incandescent or fluorescent exit sign	71	Α		
106	Outdoor LED parking/area lighting	High pressure sodium or metal halide lamp. Assumes average wattage of 212 W.	27	А		
107	Install bi-level dimming in stairwells	Stairwell lighting without bi-level dimming	194	Α		
		Standard showerhead meeting current (as of 1/1/1994) federal				
		standards. "Energy and water conservation standards and their				
108	Low flow showerhead 1.5 gpm - electric water heating	compliance dates." 10 CFR 430.32(o). Assumes 2.5 gpm.	174	Α		1501.2
		Standard showerhead meeting current (as of 1/1/1994) federal				
		standards. "Energy and water conservation standards and their				
109	Low flow showerhead 1.5 gpm - gas water heating	compliance dates." 10 CFR 430.32(o). Assumes 2.5 gpm.		Α	0.93	1811.4
		Standard showerhead meeting current (as of 1/1/1994) federal				
		standards. "Energy and water conservation standards and their				
110	Low flow showerhead 1.5 gpm - oil water heating	compliance dates." 10 CFR 430.32(o). Assumes 2.5 gpm.		Α	0.93	1811.4
		Standard bathroom faucet meeting current (as of 1/1/1994) federal				
	Low flow bathroom faucet aerator 1.0 gpm - electric	standards. "Energy and water conservation standards and their				
111	water heating	compliance dates." 10 CFR 430.32(o). Assumes 2.2 gpm.	40	Α		515.0
		Standard bathroom faucet meeting current (as of 1/1/1994) federal				
	Low flow bathroom faucet aerator 1.0 gpm - gas	standards. "Energy and water conservation standards and their				
112	water heating	compliance dates." 10 CFR 430.32(o). Assumes 2.2 gpm.		Α	0.21	621.4
		Standard bathroom faucet meeting current (as of 1/1/1994) federal				
	Low flow bathroom faucet aerator 1.0 gpm - oil water	standards. "Energy and water conservation standards and their				
113	heating	compliance dates." 10 CFR 430.32(o). Assumes 2.2 gpm.		Α	0.21	621.4
	Low flow kitchen faucet aerator 1.0 gpm - elec water					
114	heating	Standard kitchen faucet with 2.75 gpm usage	142	Α		1479.1
115	Low flow kitchen faucet aerator 1.0 gpm - gas water heating	Standard kitchen faucet with 2.75 gpm usage		А	0.75	1784.7

Meas			Energy Savings	Peak Coinc. Factor (H,	End-Use Fuel Savings	Water Savings
ID	Efficient Equipment Description	Baseline Equipment Description	(kWh)	A)	(MMBtu)	(gal)
	Low flow kitchen faucet aerator 1.0 gpm - oil water					
116	heating	Standard kitchen faucet with 2.75 gpm usage		Α	0.75	1784.7
117	Electric heat pump water heater <55 gallons	Standard efficiency electric resistance water heater, <55 gallons, .90 EF	987	_		
118	Pipe wrap with R3 insulation for electric water heaters	Uninsulated pipes		Α	1.56	
119	Pipe wrap with R3 insulation for gas water heaters	Uninsulated pipes	30.6	Α		
120	Pipe wrap with R3 insulation for oil water heaters	Uninsulated pipes		Α	1.56	
121	Insulating tank wrap	Uninsulated hot water tank	97	Α		
122	Insulating tank wrap	Uninsulated hot water tank		Α	0.32	
123	Insulating tank wrap	Uninsulated hot water tank		Α	0.32	
124	High efficiency gas water heater 0.70 EF	Standard efficiency gas storage tank water heater		Α	1.78	
	High efficiency electric water heater with a 0.94					
125	energy factor	Standard efficiency electric storage tank water heater	72	Α		
126	High efficiency oil water heater 0.70 EF	Standard efficiency oil storage tank water heater		Α	1.78	
	Air sealing in a multifamily unit with electric heat and					
407	central AC. Assumes 22% average infiltration	AA INST ST	2.40	1		
127	reduction.	Multifamily unit with partial or poor air sealing	349	Α		
	Air sealing in a multifamily unit with gas heat and					
120	central AC. Assumes 22% average infiltration	Na delfa acili conita coita acade a contra acade acade ac	21	l	1 44	
128	reduction.	Multifamily unit with partial or poor air sealing	21	Н	1.44	
	Air sealing in a multifamily unit with oil heat and central AC. Assumes 22% average infiltration					
129	reduction.	Multifamily unit with partial or poor air sealing	21	н	1.44	
129	Retrofit installation of insulation from R5 to R15 in a	ividicitating drift with partial of poor all sealing	21	11	1.44	
130	multifamily unit with electric heat and central AC	R5 insulation	458	Α		
130	Retrofit installation of insulation from R5 to R15 in a	No insulation	436	Λ		
131	multifamily unit with electric heat and central AC	R5 insulation	74	Н	2.23	
131	Retrofit installation of insulation from R5 to R15 in a	No modulation	1 7		2.23	
132	multifamily unit with electric heat and central AC	R5 insulation	74	Н	2.23	
101	Duct sealing in a multifamily unit with electric heating	The mediation	1			
133	and central AC	Multifamily unit with leaky ducts	229	Α		
	Duct sealing in a multifamily unit with gas heating and					
134	central AC	Multifamily unit with leaky ducts	28	Н	0.76	
	Duct sealing in a multifamily unit with oil heating and	,				
135	central AC	Multifamily unit with leaky ducts	28	н	0.78	
	Installation of basement insulation in multifamily	,				
136	buildings with electric heat and central AC	Buildings without basement insulation	568	Α		
	Installation of basement insulation in multifamily					
137	buildings with gas heat and central AC	Buildings without basement insulation	-62	Н	2.94	
	Installation of basement insulation in multifamily					
138	buildings with oil heat and central AC	Buildings without basement insulation	-62	Н	2.94	
	Installation of Energy STAR windows in multifamily					
139	units with electric heating	Standard windows	668	Α		

Meas			Energy Savings	Peak Coinc. Factor (H,	End-Use Fuel Savings	Water Savings
ID	Efficient Equipment Description	Baseline Equipment Description	(kWh)	A)	(MMBtu)	(gal)
140	Installation of Energy STAR windows in multifamily	Standard windows	-66	н	2.86	
140	units with gas heating Installation of Energy STAR windows in multifamily	Standard windows	-00	П	2.80	
141	units with oil heating	Standard windows	-66	Н	2.94	
141	Installation of window film to windows in multifamily	Standard Willdows	-00	П	2.94	
142	units with gas heat and central AC	Standard windows	1075	Н	-9.63	
142	Installation of window film to windows in multifamily	Standard willdows	1075	П	-9.03	
143	units with oil heat and central AC	Standard windows	1075	н	-9.88	
143	Installation of cool roof in a multifamily building with	Standard Willdows	1073	''	-3.88	
144	gas heat and central AC	Standard roof	174	Н	-0.65	
144	Installation of cool roof in a multifamily building with	Standard 1001	1/4	11	-0.03	
145	oil heat and central AC	Standard roof	174	н	-0.67	
143	Implementation of an indirect feedback program on	Standard 1001	1/4	''	-0.07	
	energy habits designed to create a behavior induced					
146	reduction in energy usage	No program	94	Α		
110	Implementation of an indirect feedback program on	The program	3.	,,		
	energy habits designed to create a behavior induced					
147	reduction in energy usage	No program	83	Α	0.29	
	Implementation of an indirect feedback program on					
	energy habits designed to create a behavior induced					
148	reduction in energy usage	No program	83	Α	0.33	
	Optimizing energy usage of existing buildings and	- P O -				
149	systems using O&M, control calibration, etc.	Existing building that has not been commissioned	240	Α		
	Optimizing energy usage of existing buildings and					
150	systems using O&M, control calibration, etc.	Existing building that has not been commissioned			2.40	
	Optimizing energy usage of existing buildings and					
151	systems using O&M, control calibration, etc.	Existing building that has not been commissioned			2.40	
	Replacement of standard power strips with Tier 1					
152	advanced power strips, 2 per multifamily unit	Standard power strips	206			
	Installation of high-efficiency set-top cable boxes.					
	Average of standalone cable box and cable box with					
	DVR function. Assumes 75 kWh a year in annual usage	Standard efficiency cable box with 169 kWh annual usage and cable DVR				
153	for cable base and 105 kWh for Cable DVR system.	with 243 kWh in annual usage.	212			
	Installation of high-efficiency satellite set-top box with					
154	annual usage of 47 kWh	Standard efficiency satellite set-top box with annual usage of 123 kWh	119			
155		Existing unit residential central air conditioning unit that has not been serviced for at least 3 years.	34	Н		
		Existing unit residential air source heat pump unit that has not been				
156		serviced for at least 3 years.	364	Н		
	High-efficiency window AC unit without reverse cycle,	Existing room air conditioner meeting previous (10/1/2000 to				
	with louvered sides, and 12,000 Btu/h, with efficiency	5/31/2014) federal standards. "Energy and water conservation				
157	of 11.3 EER. Based on a review of available units in the	standards and their compliance dates" 10 CFR 430.32(b). Assuming unit	295	Н		

Meas ID	Efficient Equipment Description	Baseline Equipment Description	Energy Savings (kWh)	Peak Coinc. Factor (H, A)	End-Use Fuel Savings (MMBtu)	Water Savings (gal)
	ENERGY STAR qualifying product list.	without reverse cycle, with louvered sides, and 12,000 Btu/h, the baseline efficiency is 9.8 EER.				
158	High-efficiency window AC unit without reverse cycle, with louvered sides, and 12,000 Btu/h, with efficiency of 11.3 EER. Based on a review of available units in the ENERGY STAR qualifying product list.	New room air conditioner meeting current (as of 6/1/2014) federal standard. "Energy and water conservation standards and their compliance dates" 10 CFR 430.32(b). Assuming unit without reverse cycle, with louvered sides, and 12,000 Btu/h, the baseline efficiency is 10.9 EER.	71	Н		
159	High-efficiency central air conditioner split system with SEER of 15 and 12.5 EER.	New central air conditioner meeting current (as of 1/23/2006) federal standard. "Energy and water conservation standards and their compliance dates" 10 CFR 430.32(c)(2). Baseline efficiency is 13 SEER, 11.2 EER.	69	Н		
160	High-efficiency central air-source heat pump split system with SEER of 15 and 12.5 EER.	New central air-source heat pump meeting current (as of 1/23/2006) federal standard. "Energy and water conservation standards and their compliance dates" 10 CFR 430.32(c)(2). Baseline efficiency is 13 SEER, 11.2 EER, and 7.7 HSPF.	425	н		
161	Estimate building peak cooling load and correct system over-sizing when replacing residential central air conditioners.		16	Н		
162	Estimate building peak cooling load and correct system over-sizing when replacing residential central heat pumps.		16	Н		
163	High-efficiency gas-fired hot water boiler serving multiple apartment units with thermal efficiency of 95%.	New gas-fired hot water boiler serving multiple apartment units meeting current (as of 3/2/2012) federal standard. "Energy conservation standards and their effective dates" 10 CFR 431.87. For baseline efficiency purposes, assumes boiler >=300,000 and <2,500,000 Btu/h with 80% thermal efficiency.	0	A	6.0	
164	High-efficiency gas-fired hot water boiler serving multiple apartment units with thermal efficiency of 95%.	New gas-fired hot water boiler serving multiple apartment units meeting current (as of 3/2/2012) federal standard. "Energy and water conservation standards and their compliance dates" 10 CFR 431.87. For baseline efficiency purposes, assumes boiler <2,500,000 Btu/h with 82% combustion efficiency.	0	А	5.0	
165	High-efficiency oil-fired hot water boiler serving multiple apartment units with thermal efficiency of 95%.	New oil-fired hot water boiler serving multiple apartment units meeting current (as of 3/2/2012) federal standard. "Energy conservation standards and their effective dates" 10 CFR 431.87. For baseline efficiency purposes, assumes boiler >=300,000 and <2,500,000 Btu/h with 82% thermal efficiency.	0	A	5.0	
166	High-efficiency oil-fired hot water boiler serving multiple apartment units with thermal efficiency of 95%.	New oil-fired hot water boiler serving multiple apartment units meeting current (as of 3/2/2012) federal standard. "Energy conservation standards and their effective dates" 10 CFR 431.87. For baseline efficiency purposes, assumes boiler <2,500,000 Btu/h with 84% combustion efficiency.	0	A	4.2	
167	High-efficiency in-unit gas-fired furnace with 95% AFUE.	New gas-fired furnace meeting current federal standard. "Energy and water conservation standards and their compliance dates" 10 CFR	0	А	6.9	

Meas			Energy Savings	Peak Coinc. Factor (H,	End-Use Fuel Savings	Water Savings
ID	Efficient Equipment Description	Baseline Equipment Description	(kWh)	A)	(MMBtu)	(gal)
		430.32(e)(1)(i) and (e)(2)(i). Baseline efficiency is 78% AFUE.				
168	High-efficiency central gas-fired furnace with 95% AFUE.	New gas-fired furnace meeting current (as of 1/1/94) federal standard. "Energy and water conservation standards and their compliance dates" 10 CFR 431.77. Baseline is 80% thermal efficiency.	0	А	6.0	
	Reduce heating energy consumption by installing (or reprogramming an existing) programmable thermostat to automatically set-back temperature	New or existing non-programmable thermostat, or existing				
169	during unoccupied or reduced demand times.	programmable thermostat functioning as a manual thermostat.	0	Α	2.0	
170	Reduce heating energy consumption by installing (or reprogramming an existing) programmable thermostat to automatically set-back temperature during unoccupied or reduced demand times.	New or existing non-programmable thermostat, or existing programmable thermostat functioning as a manual thermostat.	0	A	2.0	
170	Reduce heating energy consumption by installing (or reprogramming an existing) programmable thermostat to automatically set-back temperature	New or existing non-programmable thermostat, or existing		A	2.0	
171	during unoccupied or reduced demand times.	programmable thermostat functioning as a manual thermostat.	472	Α	0	
172	Install a boiler economizer using exhaust gases to preheat boiler feedwater.	Existing boiler with no installed economizer.	0	А	1.6	
173	Install a boiler economizer using exhaust gases to preheat boiler feedwater.	Existing boiler with no installed economizer.	0	А	1.6	
174	Reduce heating energy consumption by installing a "smart" thermostat capable of wi-fi communication to automatically set-back temperature during unoccupied or reduced demand times.	New or existing non-programmable thermostat, or existing programmable thermostat functioning as a manual thermostat.	0	A	3.5	
175	Reduce heating energy consumption by installing a "smart" thermostat capable of wi-fi communication to automatically set-back temperature during unoccupied or reduced demand times.	New or existing non-programmable thermostat, or existing programmable thermostat functioning as a manual thermostat.	0	А	3.5	
176	Reduce heating energy consumption by installing a "smart" thermostat capable of wi-fi communication to automatically set-back temperature during unoccupied or reduced demand times.	New or existing non-programmable thermostat, or existing programmable thermostat functioning as a manual thermostat.	837	А	0	
177	Reduce heating energy consumption by installing a "smart" thermostat capable of wi-fi communication to automatically set-back temperature during unoccupied or reduced demand times.	New or existing non-programmable thermostat, or existing programmable thermostat functioning as a manual thermostat.	68	А	3.5	
178	Reduce heating energy consumption by installing a "smart" thermostat capable of wi-fi communication to automatically set-back temperature during unoccupied or reduced demand times.	New or existing non-programmable thermostat, or existing programmable thermostat functioning as a manual thermostat.	68	А	3.5	
179	Reduce heating energy consumption by installing a "smart" thermostat capable of wi-fi communication to automatically set-back temperature during	New or existing non-programmable thermostat, or existing programmable thermostat functioning as a manual thermostat.	905	A	0	

Meas			Energy Savings	Peak Coinc. Factor (H,	End-Use Fuel Savings	Water Savings
ID	Efficient Equipment Description	Baseline Equipment Description	(kWh)	A)	(MMBtu)	(gal)
	unoccupied or reduced demand times.					
	New furnace with a brushless permanent magnet (BPM) blower motor. This measure characterizes only					
180	the electric savings associated with the fan.	New or existing furnace with low efficiency (non-BPM) fan motor.	418	Α	-1.42	
	New furnace with a brushless permanent magnet (BPM) blower motor. This measure characterizes only					
181	the electric savings associated with the fan.	New or existing furnace with low efficiency (non-BPM) fan motor.	418	Α	-1.42	
	Install adequate pipe insulation on boiler distribution					
182	piping.	Existing poorly insulated or uninsulated boiler distribution piping.	0	Α	1.69	

Mana				Incress		
Meas ID	Carrings Corres	о&м ²²	O&M Source	Increm	entai	Cost Source
עו	Savings Source EPA 2014; Assumes default assumptions from calculation tool in a multifamily	UQIVI	O&IVI Source	Cost		Cost Source
1	common area application.	0		\$	32	EPA 2014
	EPA 2014; Assumes default assumptions from calculation tool in a multifamily	0		ې	32	LFA 2014
2	common area application.	0		\$	32	EPA 2014
	EPA 2014; Assumes default assumptions from calculation tool in a multifamily	0		7	32	LI A 2014
3	common area application.	0		\$	32	EPA 2014
	EPA 2014; Assumes default assumptions from calculation tool in a multifamily	0		7	32	LIA 2014
4	common area application.	0		\$	32	EPA 2014
	EPA 2014; Assumes default assumptions from calculation tool in a multifamily	1		Υ		
5	common area application.	0		\$	32	EPA 2014
	EPA 2014; Assumes modified baseline assumptions for conventional unit from			T		
6	calculation tool in a multifamily common area application.	0		\$	235	RTF 2014
	EPA 2014; Assumes modified baseline assumptions for conventional unit from					
7	calculation tool in a multifamily common area application.	0		\$	235	RTF 2014
	EPA 2014; Assumes modified baseline assumptions for conventional unit from					
8	calculation tool in a multifamily common area application.	0		\$	235	RTF 2014
	EPA 2014; Assumes modified baseline assumptions for conventional unit from					
9	calculation tool in a multifamily common area application.	0		\$	235	RTF 2014
	EPA 2014; Assumes modified baseline assumptions for conventional unit from					
10	calculation tool in a multifamily common area application.	0		\$	235	RTF 2014
	EPA 2014; Assumes default assumptions from calculation tool in a residential					
11	application.	0		\$	50	EPA 2014
	EPA 2014; Assumes default assumptions from calculation tool in a residential					
12	application.	0		\$	50	EPA 2014
	EPA 2014; Assumes default assumptions from calculation tool in a residential					
13	application.	0		\$	50	EPA 2014
1.1	EPA 2014; Assumes default assumptions from calculation tool in a residential	0			50	FDA 2014
14	application.	0		\$	50	EPA 2014
15	EPA 2014; Assumes default assumptions from calculation tool in a residential application.	0		\$	50	EPA 2014
15	EPA 2014; Assumes default assumptions from calculation tool in a residential	0		Ş	30	EFA 2014
	application. Dryer savings assume 20% reduction in the average dryer					
	consumption when paired with either a conventional or ENERGY STAR qualified					
16	residential clothes washer.	0		\$	150	GDS 2013
	EPA 2014; Assumes default assumptions from calculation tool in a residential	1		Υ	100	050 1010
	application. Dryer savings assume 20% reduction in the average dryer					
	consumption when paired with either a conventional or ENERGY STAR qualified					
17	residential clothes washer.	0		\$	150	GDS 2013
	SAG 2014, energy savings algorithm; Energy Center of Wisconsin 2013, assumes					
	typical 15 CF refrigerator with top-mounted freezer with 11 CF fresh volume and 4					
18	CF freezer volume. Adjusted Volume calculated as follows: 11 (Fresh Volume) +	0		\$	40	SAG 2014

[.]

 $^{^{22}\,\}mathrm{O\&M''}$ is operation and maintenance

Meas			1	Increme	ntal	
ID	Savings Source	о&м ²²	O&M Source	Cost	entai	Cost Source
שו	1.63 x 4 (Freezer Volume) = 17.5 CF.	Odivi	Odivi Source	Cost		cost source
	SAG 2014, energy savings algorithm; Energy Center of Wisconsin 2013, assumes					
	typical 15 CF refrigerator with top-mounted freezer with 11 CF fresh volume and 4					
19	CF freezer volume. Adjusted Volume calculated as follows: 11 (Fresh Volume) + 1.63 x 4 (Freezer Volume) = 17.5 CF.	0		\$	456	SAG 2014
19	SAG 2014, energy savings algorithm; Energy Center of Wisconsin 2013, assumes	U		ş	430	3AG 2014
	typical 15 CF refrigerator with top-mounted freezer with 11 CF fresh volume and 4					
	CF freezer volume. Adjusted Volume calculated as follows: 11 (Fresh Volume) +					
	1.63 x 4 (Freezer Volume) = 17.5 CF. LBNL 2004, approximate consumption of 15					
20	CF existing refrigerator (590 kWh).	0		\$	456	SAG 2014
20	CEE 2014, efficient unit consumption; SAG 2014, energy savings algorithm; Energy	0		7	430	3AG 2014
	Center of Wisconsin 2013, assumes typical 15 CF refrigerator with top-mounted					
	freezer with 11 CF fresh volume and 4 CF freezer volume. Adjusted Volume					
21	calculated as follows: 11 (Fresh Volume) + 1.63 x 4 (Freezer Volume) = 17.5 CF.	0		Ś	141	SAG 2014
	CEE 2014, efficient unit consumption; SAG 2014, energy savings algorithm; Energy	0		۲	747	5NG 2014
	Center of Wisconsin 2013, assumes typical 15 CF refrigerator with top-mounted					
	freezer with 11 CF fresh volume and 4 CF freezer volume. Adjusted Volume					
22	calculated as follows: 11 (Fresh Volume) + 1.63 x 4 (Freezer Volume) = 17.5 CF.	0		\$	557	SAG 2014
	CEE 2014, efficient unit consumption; SAG 2014, energy savings algorithm; Energy	,		<u> </u>	337	0.101011
	Center of Wisconsin 2013, assumes typical 15 CF refrigerator with top-mounted					
	freezer with 11 CF fresh volume and 4 CF freezer volume. Adjusted Volume					
	calculated as follows: 11 (Fresh Volume) + 1.63 x 4 (Freezer Volume) = 17.5 CF.					
23	LBNL 2004, approximate consumption of 15 CF existing refrigerator (590 kWh).	0		\$	557	SAG 2014
	SAG 2014, energy savings algorithm; DOE 2011b, most common compact freezer					
	product class; EPA 2014, assumes typical 3 CF compact upright freezer with					
	manual defrost. Adjusted Volume calculated as follows: 1.73 x 3 (Freezer Volume)					
24	= 5.2 CF.	0		\$	35	SAG 2014
	SAG 2014, energy savings algorithm; DOE 2011b, most common compact freezer					
	product class; EPA 2014, assumes typical 3 CF compact upright freezer with					
	manual defrost. Adjusted Volume calculated as follows: 1.73 x 3 (Freezer Volume)					
25	= 5.2 CF.	0		\$	235	OEI 2014
	EPA 2014; except where noted, assumes default assumptions from calculation tool					
26	in a residential application.	0		\$	6	RTF 2014
	EPA 2014; except where noted, assumes default assumptions from calculation tool					
27	in a residential application.	0		\$	6	RTF 2014
	EPA 2014; except where noted, assumes default assumptions from calculation tool					
28	in a residential application.	0		\$	6	RTF 2014
						OEI 2014, typical material cost of least
						expensive unit plus incremental cost of REPL
	EPA 2014; except where noted, assumes default assumptions from calculation tool	_			25.5	measure. Assume typical installation cost of
29	in a residential application.	0		\$	356	\$100.
						OEI 2014, typical material cost of least
						expensive unit plus incremental cost of REPL
20	EPA 2014; except where noted, assumes default assumptions from calculation tool			_	256	measure. Assume typical installation cost of
30	in a residential application.	0	<u>l</u>	\$	356	\$100.

Meas		1		Increm	antal	<u> </u>
ID	Savings Source	о&м ²²	O&M Source	Cost	lentai	Cost Source
טו	Savings Source	Odivi	Odivi Source	Cost		OEI 2014, typical material cost of least
						expensive unit plus incremental cost of REPL
	FDA 2014, except where noted assumes default assumptions from calculation tool					
24	EPA 2014; except where noted, assumes default assumptions from calculation tool			4	256	measure. Assume typical installation cost of
31	in a residential application.	0		\$	356	\$100.
	SAG 2014			\$	60	SAG 2014
33	SAG 2014	0		\$	185	OEI 2014
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 57W					
	average incandescent wattage (p.57) scaled to EISA 2007-compliant halogen					
	incandescent with 41W; SAG 2014, energy savings algorithms, LED wattage scaled					
34	from nearest entry in TRM. Assumes electric resistance heat and space cooling.	8.9	SAG 2014	\$	206	SAG 2014, assumes year 2015 value
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 57W					
	average incandescent wattage (p.57) scaled to EISA 2007-compliant halogen					
	incandescent with 41W; SAG 2014, energy savings algorithms, LED wattage scaled					
35	from nearest entry in TRM. Assumes gas heat and space cooling.	8.9	SAG 2014	\$	206	SAG 2014, assumes year 2015 value
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 57W					
	average incandescent wattage (p.57) scaled to EISA 2007-compliant halogen					
	incandescent with 41W; SAG 2014, energy savings algorithms, LED wattage scaled					
36	from nearest entry in TRM. Assumes oil heat and space cooling.	8.9	SAG 2014	\$	206	SAG 2014, assumes year 2015 value
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 57W					
	average incandescent wattage (p.57) scaled to EISA 2007-compliant halogen					
	incandescent with 41W; SAG 2014, energy savings algorithms, LED wattage scaled					
37	from nearest entry in TRM. Assumes no heat and space cooling	8.9	SAG 2014	\$	206	SAG 2014, assumes year 2015 value
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 57W					
	average incandescent wattage (p.57) scaled to EISA 2007-compliant halogen					
	incandescent with 41W; SAG 2014, energy savings algorithms, LED wattage scaled					
38	from nearest entry in TRM. Assumes electric resistance heat and no cooling.	8.9	SAG 2014	\$	206	SAG 2014, assumes year 2015 value
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 57W					
	average incandescent wattage (p.57) scaled to EISA 2007-compliant halogen					
	incandescent with 41W; SAG 2014, energy savings algorithms, LED wattage scaled					
39	from nearest entry in TRM. Assumes gas heat and no cooling.	8.9	SAG 2014	\$	206	SAG 2014, assumes year 2015 value
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 57W					·
	average incandescent wattage (p.57) scaled to EISA 2007-compliant halogen					
	incandescent with 41W; SAG 2014, energy savings algorithms, LED wattage scaled					
40	from nearest entry in TRM. Assumes oil heat and no cooling.	8.9	SAG 2014	\$	206	SAG 2014, assumes year 2015 value
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 57W					
	average incandescent wattage (p.57) scaled to EISA 2007-compliant halogen					
	incandescent with 41W; SAG 2014, energy savings algorithms, LED wattage scaled					
41	from nearest entry in TRM. Assumes no heat and no cooling	8.9	SAG 2014	\$	206	SAG 2014, assumes year 2015 value
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 22W	İ				
	EISA 2007 "backstop requirement"-compliant scaled from EISA 2007-compliant					
	halogen incandescent with 41W using efficacy and maximum wattage					
	requirements; SAG 2014, energy savings algorithms, LED wattage scaled based on					
	efficacy projections from PNNL 2013. Assumes electric resistance heat and space					SAG 2014, assumes year 2015 value adjusted
42	cooling.	8.9	SAG 2014	\$	100	using "\$/klm" projections from PNNL 2013
43	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 22W	8.9	SAG 2014	\$	100	SAG 2014, assumes year 2015 value adjusted

Meas			1	Incremental	
ID	Savings Source	о&м ²²	O&M Source	Cost	Cost Source
טו	EISA 2007 "backstop requirement"-compliant scaled from EISA 2007-compliant	Odivi	Odivi Source	Cost	using "\$/klm" projections from PNNL 2013
	halogen incandescent with 41W using efficacy and maximum wattage				using 3/kim projections from PNNL 2015
	0 , 0				
	requirements; SAG 2014, energy savings algorithms, LED wattage scaled based on				
	efficacy projections from PNNL 2013. Assumes gas heat and space cooling.				
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 22W				
	EISA 2007 "backstop requirement"-compliant scaled from EISA 2007-compliant				
	halogen incandescent with 41W using efficacy and maximum wattage				
	requirements; SAG 2014, energy savings algorithms, LED wattage scaled based on			4 400	SAG 2014, assumes year 2015 value adjusted
44	efficacy projections from PNNL 2013. Assumes oil heat and space cooling.	8.9	SAG 2014	\$ 100	using "\$/klm" projections from PNNL 2013
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 22W				
	EISA 2007 "backstop requirement"-compliant scaled from EISA 2007-compliant				
	halogen incandescent with 41W using efficacy and maximum wattage				
	requirements; SAG 2014, energy savings algorithms, LED wattage scaled based on				SAG 2014, assumes year 2015 value adjusted
45	efficacy projections from PNNL 2013. Assumes no heat and space cooling	8.9	SAG 2014	\$ 100	using "\$/klm" projections from PNNL 2013
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 22W				
	EISA 2007 "backstop requirement"-compliant scaled from EISA 2007-compliant				
	halogen incandescent with 41W using efficacy and maximum wattage				
	requirements; SAG 2014, energy savings algorithms, LED wattage scaled based on				
	efficacy projections from PNNL 2013. Assumes electric resistance heat and no				SAG 2014, assumes year 2015 value adjusted
46	cooling.	8.9	SAG 2014	\$ 100	using "\$/klm" projections from PNNL 2013
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 22W				
	EISA 2007 "backstop requirement"-compliant scaled from EISA 2007-compliant				
	halogen incandescent with 41W using efficacy and maximum wattage				
	requirements; SAG 2014, energy savings algorithms, LED wattage scaled based on				SAG 2014, assumes year 2015 value adjusted
47	efficacy projections from PNNL 2013. Assumes gas heat and no cooling.	8.9	SAG 2014	\$ 100	using "\$/klm" projections from PNNL 2013
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 22W				
	EISA 2007 "backstop requirement"-compliant scaled from EISA 2007-compliant				
	halogen incandescent with 41W using efficacy and maximum wattage				
	requirements; SAG 2014, energy savings algorithms, LED wattage scaled based on				SAG 2014, assumes year 2015 value adjusted
48	efficacy projections from PNNL 2013. Assumes oil heat and no cooling.	8.9	SAG 2014	\$ 100	using "\$/klm" projections from PNNL 2013
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 22W			,	, , , , , , , , , , , , , , , , , , ,
	EISA 2007 "backstop requirement"-compliant scaled from EISA 2007-compliant				
	halogen incandescent with 41W using efficacy and maximum wattage				
	requirements; SAG 2014, energy savings algorithms, LED wattage scaled based on				SAG 2014, assumes year 2015 value adjusted
49	efficacy projections from PNNL 2013. Assumes no heat and no cooling	8.9	SAG 2014	\$ 100	
	SAG 2014, energy savings algorithms, savings assume measure defaults and		0.10 = 0 = 1	7 -55	SAG 2014, assumes Direct Install program
50	"Specialty - Generic" category. Assumes electric resistance heat and space cooling.	71.4	SAG 2014	\$ 257	approach
30	SAG 2014, energy savings algorithms, savings assume measure defaults and	71.7	3AG 2014	ÿ 257	SAG 2014, assumes Direct Install program
51	"Specialty - Generic" category. Assumes gas heat and space cooling.	71.4	SAG 2014	\$ 257	approach
31	SAG 2014, energy savings algorithms, savings assume measure defaults and	/1.4	3AU 2014	257	SAG 2014, assumes Direct Install program
E2		71.4	\$46.2014	\$ 257	
52	"Specialty - Generic" category. Assumes oil heat and space cooling.	/1.4	SAG 2014	\$ 257	approach
F2	SAG 2014, energy savings algorithms, savings assume measure defaults and	71.	CAC 2014	6 357	SAG 2014, assumes Direct Install program
53	"Specialty - Generic" category. Assumes no heat and space cooling.	71.4	SAG 2014	\$ 257	approach
	SAG 2014, energy savings algorithms, savings assume measure defaults and				SAG 2014, assumes Direct Install program
54	"Specialty - Generic" category. Assumes electric resistance heat and no cooling.	71.4	SAG 2014	\$ 257	approach

Meas				Increm	ental	
ID	Savings Source	о&м ²²	O&M Source	Cost	iciitai	Cost Source
10	SAG 2014, energy savings algorithms, savings assume measure defaults and	OGIVI	Odivi Source	COSC		SAG 2014, assumes Direct Install program
55	"Specialty - Generic" category. Assumes gas heat and no cooling.	71.4	SAG 2014	\$	257	approach
- 55	SAG 2014, energy savings algorithms, savings assume measure defaults and	71.4	3AG 2014	7	237	SAG 2014, assumes Direct Install program
56	"Specialty - Generic" category. Assumes oil heat and no cooling.	71.4	SAG 2014	\$	257	approach
30	SAG 2014, energy savings algorithms, savings assume measure defaults and	71.4	3AG 2014	۲	237	SAG 2014, assumes Direct Install program
57		71.4	SAG 2014	\$	257	. =
57	"Specialty - Generic" category. Assumes no heat and no cooling.	71.4	SAG 2014	Ş	257	approach SAG 2014, assumes Direct Install program
58	SAG 2014, energy savings algorithms, savings assume measure defaults and "Specialty - Generic" category. Assumes electric resistance heat and space cooling.	71.4	SAG 2014	\$	257	. =
56	. , , , , , , , , , , , , , , , , , , ,	/1.4	SAG 2014	Ş	257	approach
F0	SAG 2014, energy savings algorithms, savings assume measure defaults and	71.4	CAC 2014	,	257	SAG 2014, assumes Direct Install program
59	"Specialty - Generic" category. Assumes gas heat and space cooling.	71.4	SAG 2014	\$	257	approach
60	SAG 2014, energy savings algorithms, savings assume measure defaults and	74.4	CA C 2014	_	257	SAG 2014, assumes Direct Install program
60	"Specialty - Generic" category. Assumes oil heat and space cooling.	71.4	SAG 2014	\$	257	approach
	SAG 2014, energy savings algorithms, savings assume measure defaults and		64.6.004.4	_	255	SAG 2014, assumes Direct Install program
61	"Specialty - Generic" category. Assumes no heat and space cooling.	71.4	SAG 2014	\$	257	approach
	SAG 2014, energy savings algorithms, savings assume measure defaults and					SAG 2014, assumes Direct Install program
62	"Specialty - Generic" category. Assumes electric resistance heat and no cooling.	71.4	SAG 2014	\$	257	approach
	SAG 2014, energy savings algorithms, savings assume measure defaults and					SAG 2014, assumes Direct Install program
63	"Specialty - Generic" category. Assumes gas heat and no cooling.	71.4	SAG 2014	\$	257	approach
	SAG 2014, energy savings algorithms, savings assume measure defaults and					SAG 2014, assumes Direct Install program
64	"Specialty - Generic" category. Assumes oil heat and no cooling.	71.4	SAG 2014	\$	257	approach
	SAG 2014, energy savings algorithms, savings assume measure defaults and					SAG 2014, assumes Direct Install program
65	"Specialty - Generic" category. Assumes no heat and no cooling.	71.4	SAG 2014	\$	257	approach
	SAG 2014, baseline assumes 2-lamp F32T8 fixture with electronic ballast (59					
	watts). Saving estimated on a per lamp basis. Assumes electric resistance heat and					
66	space cooling.	-11.1	SAG 2014	\$	74	SAG 2014
	SAG 2014, baseline assumes 2-lamp F32T8 fixture with electronic ballast (59					
67	watts). Saving estimated on a per lamp basis. Assumes gas heat and space cooling.	-11.1	SAG 2014	\$	74	SAG 2014
	SAG 2014, baseline assumes 2-lamp F32T8 fixture with electronic ballast (59					
68	watts). Saving estimated on a per lamp basis. Assumes oil heat and space cooling.	-11.1	SAG 2014	\$	74	SAG 2014
	SAG 2014, baseline assumes 2-lamp F32T8 fixture with electronic ballast (59					
69	watts). Saving estimated on a per lamp basis. Assumes no heat and space cooling.	-11.1	SAG 2014	\$	74	SAG 2014
	SAG 2014, baseline assumes 2-lamp F32T8 fixture with electronic ballast (59					
	watts). Saving estimated on a per lamp basis. Assumes electric resistance heat and					
70	no cooling.	-11.1	SAG 2014	\$	74	SAG 2014
	SAG 2014, baseline assumes 2-lamp F32T8 fixture with electronic ballast (59					
71	watts). Saving estimated on a per lamp basis. Assumes gas heat and no cooling.	-11.1	SAG 2014	\$	74	SAG 2014
	SAG 2014, baseline assumes 2-lamp F32T8 fixture with electronic ballast (59					
72	watts). Saving estimated on a per lamp basis. Assumes oil heat and no cooling.	-11.1	SAG 2014	\$	74	SAG 2014
	SAG 2014, baseline assumes 2-lamp F32T8 fixture with electronic ballast (59					
73	watts). Saving estimated on a per lamp basis. Assumes no heat and no cooling.	-11.1	SAG 2014	\$	74	SAG 2014
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 57W		SAG 2014, scaled			
	average incandescent wattage (p.57) scaled to EISA 2007-compliant halogen		based on ratio of			
	incandescent with 41W; SAG 2014, energy savings algorithms, LED wattage scaled		in-unit to common			
74	from nearest entry in TRM. Assumes electric resistance heat and space cooling.	6.8	area hours of use.	\$	29	SAG 2014, assumes year 2015 value

Mass				Incremental	
Meas ID	Savings Source	о&м ²²	O&M Source	Cost	Cost Source
טו	Savings Source KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 57W	UQIVI	SAG 2014. scaled	CUST	Cost Source
	average incandescent wattage (p.57) scaled to EISA 2007-compliant halogen		based on ratio of		
	incandescent with 41W; SAG 2014, energy savings algorithms, LED wattage scaled		in-unit to common		
75	from nearest entry in TRM. Assumes gas heat and space cooling.	6.8	area hours of use.	\$ 29	SAG 2014, assumes year 2015 value
/3	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 57W	0.8	SAG 2014, scaled	\$ 29	SAG 2014, assumes year 2013 value
	, , ,		based on ratio of		
	average incandescent wattage (p.57) scaled to EISA 2007-compliant halogen		in-unit to common		
76	incandescent with 41W; SAG 2014, energy savings algorithms, LED wattage scaled	6.8	area hours of use.	\$ 29	CAC 2014 assumes year 2015 yelve
/6	from nearest entry in TRM. Assumes oil heat and space cooling.	0.8	SAG 2014, scaled	\$ 29	SAG 2014, assumes year 2015 value
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 57W average incandescent wattage (p.57) scaled to EISA 2007-compliant halogen		based on ratio of		
			in-unit to common		
77	incandescent with 41W; SAG 2014, energy savings algorithms, LED wattage scaled	6.8	area hours of use.	\$ 29	CAC 2014 assumes year 2015 yelve
	from nearest entry in TRM. Assumes no heat and space cooling	0.8		<i>γ</i> 29	SAG 2014, assumes year 2015 value
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 57W		SAG 2014, scaled based on ratio of		
	average incandescent wattage (p.57) scaled to EISA 2007-compliant halogen				
78	incandescent with 41W; SAG 2014, energy savings algorithms, LED wattage scaled	6.8	in-unit to common area hours of use.	\$ 29	SAC 2014 assumes year 2015 yelve
/8	from nearest entry in TRM. Assumes electric resistance heat and no cooling.	0.8		ب 29	SAG 2014, assumes year 2015 value
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 57W		SAG 2014, scaled		
	average incandescent wattage (p.57) scaled to EISA 2007-compliant halogen		based on ratio of		
70	incandescent with 41W; SAG 2014, energy savings algorithms, LED wattage scaled	6.0	in-unit to common	\$ 29	CA C 2014
79	from nearest entry in TRM. Assumes gas heat and no cooling.	6.8	area hours of use.	\$ 29	SAG 2014, assumes year 2015 value
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 57W		SAG 2014, scaled		
	average incandescent wattage (p.57) scaled to EISA 2007-compliant halogen		based on ratio of		
00	incandescent with 41W; SAG 2014, energy savings algorithms, LED wattage scaled	6.0	in-unit to common	ć 20	CA C 2014 2015
80	from nearest entry in TRM. Assumes oil heat and no cooling.	6.8	area hours of use.	\$ 29	SAG 2014, assumes year 2015 value
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 57W		SAG 2014, scaled		
	average incandescent wattage (p.57) scaled to EISA 2007-compliant halogen		based on ratio of		
0.4	incandescent with 41W; SAG 2014, energy savings algorithms, LED wattage scaled	6.0	in-unit to common	ć 20	CA C 2014 2015
81	from nearest entry in TRM. Assumes no heat and no cooling	6.8	area hours of use.	\$ 29	SAG 2014, assumes year 2015 value
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 22W				
	EISA 2007 "backstop requirement"-compliant scaled from EISA 2007-compliant				
	halogen incandescent with 41W using efficacy and maximum wattage		SAG 2014, scaled		
	requirements; SAG 2014, energy savings algorithms, LED wattage scaled based on		based on ratio of		CAC 2014
00	efficacy projections from PNNL 2013. Assumes electric resistance heat and space	6.6	in-unit to common	<u> </u>	SAG 2014, assumes year 2015 value adjusted
82	cooling.	6.8	area hours of use.	\$ 14	using "\$/klm" projections from PNNL 2013
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 22W		CAC 2014		
	EISA 2007 "backstop requirement"-compliant scaled from EISA 2007-compliant		SAG 2014, scaled		
	halogen incandescent with 41W using efficacy and maximum wattage		based on ratio of		CAC 2014
00	requirements; SAG 2014, energy savings algorithms, LED wattage scaled based on		in-unit to common		SAG 2014, assumes year 2015 value adjusted
83	efficacy projections from PNNL 2013. Assumes gas heat and space cooling.	6.8	area hours of use.	\$ 14	using "\$/klm" projections from PNNL 2013
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 22W				
	EISA 2007 "backstop requirement"-compliant scaled from EISA 2007-compliant		SAG 2014, scaled		
	halogen incandescent with 41W using efficacy and maximum wattage		based on ratio of		2015
	requirements; SAG 2014, energy savings algorithms, LED wattage scaled based on		in-unit to common		SAG 2014, assumes year 2015 value adjusted
84	efficacy projections from PNNL 2013. Assumes oil heat and space cooling.	6.8	area hours of use.	\$ 14	using "\$/klm" projections from PNNL 2013
85	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 22W	6.8	SAG 2014, scaled	\$ 14	SAG 2014, assumes year 2015 value adjusted

Meas		1		Incremental	
ID	Savings Source	о&м ²²	O&M Source	Cost	Cost Source
יו	EISA 2007 "backstop requirement"-compliant scaled from EISA 2007-compliant	Jan	based on ratio of	COST	using "\$/klm" projections from PNNL 2013
	halogen incandescent with 41W using efficacy and maximum wattage		in-unit to common		using symm projections from three 2015
	requirements; SAG 2014, energy savings algorithms, LED wattage scaled based on		area hours of use.		
	efficacy projections from PNNL 2013. Assumes no heat and space cooling				
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 22W				
	EISA 2007 "backstop requirement"-compliant scaled from EISA 2007-compliant				
	halogen incandescent with 41W using efficacy and maximum wattage		SAG 2014, scaled		
	requirements; SAG 2014, energy savings algorithms, LED wattage scaled based on		based on ratio of		
	efficacy projections from PNNL 2013. Assumes electric resistance heat and no		in-unit to common		SAG 2014, assumes year 2015 value adjusted
86	cooling.	6.8	area hours of use.	\$ 14	using "\$/klm" projections from PNNL 2013
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 22W			'	, , , , , , , , , , , , , , , , , , ,
	EISA 2007 "backstop requirement"-compliant scaled from EISA 2007-compliant		SAG 2014, scaled		
	halogen incandescent with 41W using efficacy and maximum wattage		based on ratio of		
	requirements; SAG 2014, energy savings algorithms, LED wattage scaled based on		in-unit to common		SAG 2014, assumes year 2015 value adjusted
87	efficacy projections from PNNL 2013. Assumes gas heat and no cooling.	6.8	area hours of use.	\$ 14	using "\$/klm" projections from PNNL 2013
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 22W				
	EISA 2007 "backstop requirement"-compliant scaled from EISA 2007-compliant		SAG 2014, scaled		
	halogen incandescent with 41W using efficacy and maximum wattage		based on ratio of		
	requirements; SAG 2014, energy savings algorithms, LED wattage scaled based on		in-unit to common		SAG 2014, assumes year 2015 value adjusted
88	efficacy projections from PNNL 2013. Assumes oil heat and no cooling.	6.8	area hours of use.	\$ 14	using "\$/klm" projections from PNNL 2013
	KEMA 2011, Energy Center of Wisconsin 2013, GDS 2014a, baseline assumes 22W			,	5 ·· 1 · 3
	EISA 2007 "backstop requirement"-compliant scaled from EISA 2007-compliant		SAG 2014, scaled		
	halogen incandescent with 41W using efficacy and maximum wattage		based on ratio of		
	requirements; SAG 2014, energy savings algorithms, LED wattage scaled based on		in-unit to common		SAG 2014, assumes year 2015 value adjusted
89	efficacy projections from PNNL 2013. Assumes no heat and no cooling	6.8	area hours of use.	\$ 14	using "\$/klm" projections from PNNL 2013
	SAG 2014, baseline assumes simple average wattage of fluorescent and				
90	incandescent. Assumes electric resistance heat and space cooling.			\$ 8	SAG 2014
	SAG 2014, baseline assumes simple average wattage of fluorescent and				
91	incandescent. Assumes gas heat and space cooling.			\$ 8	SAG 2014
	SAG 2014, baseline assumes simple average wattage of fluorescent and				
92	incandescent. Assumes oil heat and space cooling.			\$ 8	SAG 2014
	SAG 2014, baseline assumes simple average wattage of fluorescent and				
93	incandescent. Assumes no heat and space cooling.			\$ 8	SAG 2014
	SAG 2014, baseline assumes simple average wattage of fluorescent and				
94	incandescent. Assumes electric resistance heat and no cooling.			\$ 8	SAG 2014
	SAG 2014, baseline assumes simple average wattage of fluorescent and				
95	incandescent. Assumes gas heat and no cooling.			\$ 8	SAG 2014
	SAG 2014, baseline assumes simple average wattage of fluorescent and				
96	incandescent. Assumes oil heat and no cooling.			\$ 8	SAG 2014
	SAG 2014, baseline assumes simple average wattage of fluorescent and				
97	incandescent. Assumes no heat and no cooling.			\$ 8	SAG 2014
	SAG 2014, baseline assumes simple average wattage of fluorescent and				
98	incandescent. Assumes electric resistance heat and space cooling.			\$ 12	SAG 2014
	SAG 2014, baseline assumes simple average wattage of fluorescent and			<u> </u>	
99	incandescent. Assumes gas heat and space cooling.			\$ 12	SAG 2014

Meas				Incre	emental	
ID	Savings Source	о&м ²²	O&M Source	Cost		Cost Source
10	SAG 2014, baseline assumes simple average wattage of fluorescent and	Odivi	Odivi Source	COSE		cost source
100	incandescent. Assumes oil heat and space cooling.			\$	12	SAG 2014
100	SAG 2014, baseline assumes simple average wattage of fluorescent and			7	12	3AG 2014
101	incandescent. Assumes no heat and no cooling.			\$	12	SAG 2014
101	SAG 2014, baseline assumes simple average wattage of fluorescent and			۲	12	3AG 2014
102	incandescent. Assumes electric resistance heat and no cooling.			\$	12	SAG 2014
102	SAG 2014, baseline assumes simple average wattage of fluorescent and			۲	12	3AG 2014
103	incandescent. Assumes gas heat and no cooling.			\$	12	SAG 2014
103	SAG 2014, baseline assumes simple average wattage of fluorescent and			۲	12	3AG 2014
104	incandescent. Assumes oil heat and no cooling.			\$	12	SAG 2014
104	SAG 2014, baseline assumes simple average wattage of fluorescent and			۲	12	3AG 2014
105	incandescent. Assumes no heat and no cooling.			\$	12	SAG 2014
103	Navigant 2012, baseline assumes weighted average wattage of HPS and MH lamps			Ş	12	3AG 2014
	in parking applications (212W), 16 hours of use per day; SAG 2012, efficient					
	wattage scaled based on ratio of baseline and efficient wattage for "LED Outdoor	\$				
106	Pole/Arm Mounted Parking/Roadway, 30W - 75W" measure.	3.33	SAG 2014	\$	19	SAG 2014, assumes \$250 per fixture
107	CEC 2005	3.33	3AG 2014	\$	119	CEC 2005
107	GDS 2013			\$	24	GDS 2013
109	GDS 2013			\$	24	GDS 2013
110	GDS 2013			\$	24	GDS 2013
111					13	
	GDS 2013			\$		GDS 2013
112	GDS 2013			\$	13	GDS 2013
113	GDS 2013			\$	13	GDS 2013
114	GDS 2013			\$	10	GDS 2013
115	GDS 2013			\$	10	GDS 2013
116	GDS 2013			\$	10	GDS 2013
117	ODC 2012			\$	950	ODC 2012
118	GDS 2013			\$	5	GDS 2013
119	GDS 2013			\$	5	GDS 2013
120	GDS 2013			\$	5	GDS 2013
121	GDS 2014b			\$	35	GDS 2013
122	GDS 2013			\$	35	GDS 2013
123	GDS 2013			\$	35	GDS 2013
124	GDS 2013			\$	235	GDS 2013
125	GDS 2014b			\$	99	GDS 2014b
126	GDS 2013			\$	235	GDS 2013
127	GDS 2013			\$	111	GDS 2013
128	GDS 2013			\$	111	GDS 2013
129	GDS 2013			\$	111	GDS 2013
130	SAG 2014			\$	1,416	GDS 2014b
131	SAG 2014			\$	1,416	GDS 2014b
132	SAG 2014			\$	1,416	GDS 2014b
133	GDS 2014b			\$	245	GDS 2014b
134	GDS 2014b			\$	245	GDS 2014b

Meas				Increm	ental	
ID	Savings Source	о&м ²²	O&M Source	Cost		Cost Source
135	GDS 2014b			\$	245	GDS 2014b
136	GDS 2013			\$	640	GDS 2013
137	GDS 2013			Ś	640	GDS 2013
138	GDS 2013			\$	640	GDS 2013
139	GDS 2014b			\$	426	GDS 2014b
140	GDS 2014b			\$	426	GDS 2014b
141	GDS 2014b			Ś	426	GDS 2014b
142	GDS 2013			\$	296	GDS 2013
143	GDS 2013			\$	296	GDS 2013
144	GDS 2013			\$	710	GDS 2013
145	GDS 2013			Ś	710	GDS 2013
143	GDS 2013, assumes percent savings applied to total consumption for EIA 2013			7	710	055 2015
146	analysis			\$	7	GDS Michigan Potential Study (2013)
140	GDS 2013, assumes percent savings applied to total consumption for EIA 2013					GBS Wildingari Fotoritial Study (2013)
147	analysis			\$	7	GDS Michigan Potential Study (2013)
	GDS 2013, assumes percent savings applied to total consumption for EIA 2013			· ·	•	ess mangan recentiar stacy (2015)
148	analysis			\$	7	GDS Michigan Potential Study (2013)
1.0	ununyoto			· ·	•	PNNL 2014, assume the same as for gas and oil
149	PNNL 2014			\$	78	heat.
				т		PNNL 2014, only rec's RCx measures with 5 year
						payback or less. Assume average 4 year
150	PNNL 2014			\$	78	payback
				'		PNNL 2014, source only recommends RCx
						measures with 5 year payback or less. Assume
151	PNNL 2014			\$	78	average 4 year payback
152	SAG 2014			\$	48	SAG 2014
	Department of Energy Notice of Data Availability, NYSERDA Power Management					Department of Energy Notice of Data
153	Research Report			\$	16	Availability (2013)
	Department of Energy Notice of Data Availability, NYSERDA Power Management					Department of Energy Notice of Data
154	Research Report			\$	11	Availability (2013)
155	Engineering estimate			\$	61	SAG 2014, Commercial AC Tune-up
156	Engineering estimate			\$	61	SAG 2014, Commercial AC Tune-up
157	Engineering estimate			\$	448	SAG 2014
158	Engineering estimate			\$	40	SAG 2014
159	Engineering estimate			\$	417	SAG 2014
160	Engineering estimate			\$	480	SAG 2014
						Cost set to negligible negative value for analysis
						purposes assuming savings from reduced
						equipment costs compensate for HVAC design
161	TecMarket Works 2010			\$	(0)	labor
						Cost set to negligible negative value for analysis
						purposes assuming savings from reduced
						equipment costs compensate for HVAC design
162	TecMarket Works 2010			\$	(0)	labor

Meas				Increme	ental	
ID	Savings Source	о&м ²²	O&M Source	Cost		Cost Source
						Navigant 2011, assume 900 kBtu/h boiler,
						according to assumptions regarding capacity
163	SAG 2014			\$	279	per unit and number of units
						Navigant 2011, study shows inc cost of \$4.8 per
						kBtu for largest size boiler. Extrapolate to 3,300
164	SAG 2014			\$	211	kbtu implied by capacity * number of units
						Navigant 2011, assume 900 kBtu/h boiler,
						according to assumptions regarding capacity
165	SAG 2014			\$	279	per unit and number of units
						Navigant 2011, study shows inc cost of \$4.8 per
						kBtu for largest size boiler. Extrapolate to 3,300
166	SAG 2014			\$	211	kbtu implied by capacity * number of units
						SAG 2014, in-unit furnace incremental cost is
						\$1,438, but this cost probably assumes a much
						larger unit than the typical MF residence would
						require. Assume incremental costs consistent
167	SAG 2014			\$	295	with the central furnace measure.
						SAG 2011; this cost appears to be associated
						with a <=225,000 Btu/h unit. Incremental costs
						are not provided for larger units. Assume
						several central furnaces would be necessary to
168	SAG 2014			\$	295	service a typical multifamily building
169	SAG 2014			\$	30	SAG 2011
170	SAG 2014			\$	30	SAG 2011
171	SAG 2014			\$	30	SAG 2011
172	Cadmus 2012			\$	352	Cadmus 2012
173	Cadmus 2012			\$	352	Cadmus 2012
174	Cadmus 2012b	_	-	\$	225	OEI 2014b
175	Cadmus 2012b	_		\$	225	OEI 2014b
176	Cadmus 2012b	_	_	\$	225	OEI 2014b
177	Cadmus 2012b	_	_	\$	225	OEI 2014b
178	Cadmus 2012b	_	_	\$	225	OEI 2014b
179	Cadmus 2012b	_		\$	225	OEI 2014b
180	SAG 2014			\$	97	SAG 2014
181	SAG 2014			\$	97	SAG 2014
	TecMarket Works 2010, assume 2 inch steel pipe. Pipe feet per unit derived from					
	NY Standard water heating pipe wrap data and MI total savings per unit data. See					
182	spreadsheet.			\$	5	GDS 2013

Meas ID	Is Early Retire- ment Retrofit	Early Retirement Baseline ²³ Shift	Early Retirement Adjusted Life	Avoid Repla Cost	cement	ARC Source	Measure Life (years)	Measure Life Source	Start Year	End Year	Use No Heating Fuel Share (TRUE, FALSE)	AC Saturation : Central Shared, Central In-Unit, Window, In-Unit, All, None, NA)
1			4		·		11	DOE 2009	2015	2034	,	NA
2			4				11	DOE 2009	2015	2034		NA
3			4				11	DOE 2009	2015	2034		NA
4			4				11	DOE 2009	2015	2034		NA
5			4				11	DOE 2009	2015	2034		NA
6	TRUE	50%	7	\$	156	RTF 2014	11	DOE 2009	2015	2034		NA
7	TRUE	50%	7	\$	156	RTF 2014	11	DOE 2009	2015	2034		NA
8	TRUE	53%	8	\$	156	RTF 2014	11	DOE 2009	2015	2034		NA
9	TRUE	53%	8	\$	156	RTF 2014	11	DOE 2009	2015	2034		NA
10	TRUE	53%	8	\$	156	RTF 2014	11	DOE 2009	2015	2034		NA
11			5				14	DOE 2012	2015	2034		NA
12			5				14	DOE 2012	2015	2034		NA
13			5				14	DOE 2012	2015	2034		NA
14			5				14	DOE 2012	2015	2034		NA
15			5				14	DOE 2012	2015	2034		NA
16			6				16	DOE 2011	2015	2034		NA
17			6				16	DOE 2011	2015	2034		NA
18			4				12	SAG 2014	2015	2034		NA
19	TRUE	34%	7	\$	394	SAG 2014	12	SAG 2014	2015	2034		NA
20	TRUE	15%	5	\$	394	SAG 2014	12	SAG 2014	2015	2034		NA
21			4				12	SAG 2014	2015	2034		NA
22	TRUE	51%	8	\$	394	SAG 2014	12	SAG 2014	2015	2034		NA
23	TRUE	26%	6	\$	394	SAG 2014	12	SAG 2014	2015	2034		NA
24			4				11	SAG 2014	2015	2034		NA
25	TRUE	47%	7	\$	200	OEI 2014	11	SAG 2014	2015	2034		NA
26			5				13	SAG 2014	2015	2034		NA
27			5				13	SAG 2014	2015	2034		NA
28			5				13	SAG 2014	2015	2034		NA
						OEI 2014, typical material cost of least expensive unit. Assume typical installation						
29	TRUE	30%	7	\$	350	cost of \$100	13	SAG 2014	2015	2034		NA
30	TRUE	30%	7	\$	350	OEI 2014, typical material cost of least expensive unit. Assume	13	SAG 2014	2015	2034		NA

²³ See explanation p. 45.

Section Sect	Meas ID	Is Early Retire- ment Retrofit	Early Retirement Baseline ²³ Shift	Early Retirement Adjusted Life	Avoided Replacement Cost (ARC)	ARC Source	Measure Life (years)	Measure Life Source	Start Year	End Year	Use No Heating Fuel Share (TRUE, FALSE)	AC Saturation : Central Shared, Central In-Unit, Window, In-Unit, All, None, NA)
September Sept												
32						OEI 2014, typical material cost of least expensive unit. Assume						
33 TRUE	31	TRUE	30%	7	\$ 350	cost of \$100	13	SAG 2014	2015	2034		NA
Approximated based on typical lamp lifetime of 25,000 hours and typical application hours of use, capped at 15 years. 2015 2034 All	32			4			12	1	2015	2034		NA
Section Sect	33	TRUE		4	\$ 125	OEI 2014	12		2015	2034		NA
Approximated based on typical lamp lifetime of 25,000 hours and typical application hours of use, capped at 15 years. 2015 2019 All								lamp lifetime of 25,000 hours and typical application hours of				
Implifetime of 25,000 hours and typical application hours of use, capped at 15 years. 2015 2019 All	34			5			15		2015	2034		All
Approximated based on typical lamp lifetime of 25,000 hours and typical application hours of use, capped at 15 years. 2015 2019 All								lamp lifetime of 25,000 hours and typical application hours of				
lamp lifetime of 25,000 hours and typical application hours of use, capped at 15 years. 2015 2019 All	35			5			15		2015	2019		All
Approximated based on typical lamp lifetime of 25,000 hours and typical application hours of use, capped at 15 years. 2015 2019 TRUE All Approximated based on typical lamp lifetime of 25,000 hours and typical application hours of use, capped at 15 years. 2015 2019 TRUE All Approximated based on typical lamp lifetime of 25,000 hours and typical application hours of use, capped at 15 years. 2015 2019 None Approximated based on typical lamp lifetime of 25,000 hours and typical application hours of use, capped at 15 years. 2015 2019 None Approximated based on typical lamp lifetime of 25,000 hours and typical application hours of use, capped at 15 years. 2015 2019 None Approximated based on typical lamp lifetime of 25,000 hours and typical application hours of use, capped at 15 years. 2015 2019 None Approximated based on typical lamp lifetime of 25,000 hours and typical application hours of use, capped at 15 years. 2015 2019 None Approximated based on typical lamp lifetime of 25,000 hours and typical application hours of lamp lifetime of 25,000 hours and typical application hours of lamp lifetime of 25,000 hours and typical application hours of lamp lifetime of 25,000 hours and typical application hours of lamp lifetime of 25,000 hours and typical application hours of lamp lifetime of 25,000 hours and typical application hours of lamp lifetime of 25,000 hours and typical application hours of lamp lifetime of 25,000 hours and typical application hours of lamp lifetime of 25,000 hours and typical application hours of lamp lifetime of 25,000 hours and typical application hours of lamp lifetime of 25,000 hours and typical application hours of lamp lifetime of 25,000 hours and typical application hours of lamp lifetime of 25,000 hours and typical application hours of lamp lifetime of 25,000 hours and typical application hours of lamp lifetime of 25,000 hours and typical application hours of lamp lifetime of 25,000 hours and typical application hours of lamp lifetime of 25,000 hours and typical application hours of				_				lamp lifetime of 25,000 hours and typical application hours of				
Approximated based on typical lamp lifetime of 25,000 hours and typical application hours of use, capped at 15 years. Solution 15 use, capped at 15 years. Solution 25 use, capped at 15 years. Solution 26 use, capped at 15 years. Solution 39 Solution hours of use, capped at 15 years. Solution 39 use, capped at 15 years. Solution 30 use, capped at 15 years. Solution 30 use, capped at 15 years. Solution 30 use, capped at 15 years. Solution 30 use, capped at 15 years. Solution 30 use, capped at 15 years. Solution 30 use, capped at 15 years. Solution 30 use, capped at 15 years. Solution 30 use, capped at 15 years. Solution 40 use, capped at 15 years. Solution 30 use, capped at 15 years. Solut							15	Approximated based on typical lamp lifetime of 25,000 hours	2015			All
lamp lifetime of 25,000 hours and typical application hours of use, capped at 15 years. 2015 2019 None Approximated based on typical lamp lifetime of 25,000 hours and typical application hours of use, capped at 15 years. 2015 2019 None Approximated based on typical lamp lifetime of 25,000 hours and typical application hours of use, capped at 15 years. 2015 2019 None Approximated based on typical lamp lifetime of 25,000 hours and typical application hours of use, capped at 15 years. 2015 2019 None Approximated based on typical lamp lifetime of 25,000 hours and typical lamp lifetime of 25,000 hours and typical lamp lifetime of 25,000 hours and typical lamp lifetime of 25,000 hours and typical lamp lifetime of 25,000 hours and typical lamp lifetime of 25,000 hours and typical application hours of	37			5			15		2015	2019	TRUE	All
Approximated based on typical lamp lifetime of 25,000 hours and typical application hours of use, capped at 15 years. 2015 2019 None Approximated based on typical lamp lifetime of 25,000 hours and typical application hours of use, capped at 15 years. 2015 2019 None 40 5 15 use, capped at 15 years. 2015 2019 None Approximated based on typical lamp lifetime of 25,000 hours and typical lamp lifetime of 25,000 hours and typical application hours of	20			_				lamp lifetime of 25,000 hours and typical application hours of	2045	2010		
Approximated based on typical lamp lifetime of 25,000 hours and typical application hours of use, capped at 15 years. 2015 2019 None Approximated based on typical lamp lifetime of 25,000 hours and typical application hours of	38			5			15	Approximated based on typical lamp lifetime of 25,000 hours	2015	2019		None
lamp lifetime of 25,000 hours and typical application hours of use, capped at 15 years. 2015 2019 None Approximated based on typical lamp lifetime of 25,000 hours and typical application hours of	39			5			15	use, capped at 15 years.	2015	2019		None
Approximated based on typical lamp lifetime of 25,000 hours and typical application hours of	40			5			15	lamp lifetime of 25,000 hours and typical application hours of	2015	2019		None
	41			5			15	Approximated based on typical lamp lifetime of 25,000 hours and typical application hours of	2015	2019	TRUE	None

Meas ID	Is Early Retire- ment Retrofit	Early Retirement Baseline 23 Shift	Early Retirement Adjusted Life	Avoided Replacement Cost (ARC)	ARC Source	Measure Life (years)	Measure Life Source	Start Year	End Year	Use No Heating Fuel Share (TRUE, FALSE)	AC Saturation : Central Shared, Central In-Unit, Window, In-Unit, All, None, NA)
			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,		(7 = = -7	Approximated based on typical				,, ,
							lamp lifetime of 25,000 hours				
							and typical application hours of use, capped at 20 years.				
							Assumes technology lifetime				
							will be closer to nominal values				
42			7			20	by 2020.	2020	2034		All
							Approximated based on typical				
							lamp lifetime of 25,000 hours				
							and typical application hours of use, capped at 20 years.				
							Assumes technology lifetime				
							will be closer to nominal values				
43			7			20	by 2020.	2020	2034		All
							Approximated based on typical				
							lamp lifetime of 25,000 hours				
							and typical application hours of				
							use, capped at 20 years. Assumes technology lifetime				
							will be closer to nominal values				
44			7			20	by 2020.	2020	2034		All
							Approximated based on typical				
							lamp lifetime of 25,000 hours				
							and typical application hours of use, capped at 20 years.				
							Assumes technology lifetime				
							will be closer to nominal values				
45			7			20	by 2020.	2020	2034	TRUE	All
							Approximated based on typical				
							lamp lifetime of 25,000 hours				
							and typical application hours of				
							use, capped at 20 years. Assumes technology lifetime				
							will be closer to nominal values				
46			7			20	by 2020.	2020	2034		None
							Approximated based on typical				
							lamp lifetime of 25,000 hours				
							and typical application hours of use, capped at 20 years.				
							Assumes technology lifetime				
							will be closer to nominal values				
47			7			20	by 2020.	2020	2034		None

Meas ID	Is Early Retire- ment Retrofit	Early Retirement Baseline ²³ Shift	Early Retirement Adjusted Life	Avoided Replacement Cost (ARC)	ARC Source	Measure Life (years)	Life (years) Measure Life Source		End Year	Use No Heating Fuel Share (TRUE, FALSE)	AC Saturation : Central Shared, Central In-Unit, Window, In-Unit, All, None, NA)
			Í	, ,		, ,	Approximated based on typical			,	
							lamp lifetime of 25,000 hours				
							and typical application hours of				
							use, capped at 20 years.				
							Assumes technology lifetime				
							will be closer to nominal values				
48			7			20	by 2020.	2020	2034		None
							Approximated based on typical				
							lamp lifetime of 25,000 hours				
							and typical application hours of				
							use, capped at 20 years.				
							Assumes technology lifetime will be closer to nominal values				
49			7			20	by 2020.	2020	2034	TRUE	None
50			2			7	SAG 2014	2015	2019	TROL	All
51			2			7	SAG 2014	2015	2019		All
52			2			7	SAG 2014	2015	2019		All
53			2			7	SAG 2014	2015	2019	TRUE	All
54			2			7	SAG 2014	2015	2019	INOL	None
55			2			7	SAG 2014	2015	2019		None
56			2			7	SAG 2014	2015	2019		None
57			2			7	SAG 2014	2015	2019	TRUE	None
58			2			7	SAG 2014	2020	2034		All
59			2			7	SAG 2014	2020	2034		All
60			2			7	SAG 2014	2020	2034		All
61			2			7	SAG 2014	2020	2034	TRUE	All
62			2			7	SAG 2014	2020	2034		None
63			2			7	SAG 2014	2020	2034		None
64			2			7	SAG 2014	2020	2034		None
65			2			7	SAG 2014	2020	2034	TRUE	None
66			5			15	SAG 2014	2015	2034		All
67			5			15	SAG 2014	2015	2034		All
68			5			15	SAG 2014	2015	2034		All
69			5			15	SAG 2014	2015	2034	TRUE	All
70			5			15	SAG 2014	2015	2034		None
71			5			15	SAG 2014	2015	2034		None
72			5			15	SAG 2014	2015	2034		None
73			5			15	SAG 2014	2015	2034	TRUE	None
							Approximated based on typical				
74			1			4	lamp lifetime of 25,000 hours	2015	2010		All
74			1			4	and typical application hours of	2015	2019		All

	Is Early	Early								Use No Heating	AC Saturation : Central Shared.
	Retire-	Retirement	Early	Avoided		Measure				Fuel Share	Central In-Unit,
Meas	ment	Baseline 23	Retirement	Replacement		Life		Start	End	(TRUE,	Window, In-Unit,
ID	Retrofit	Shift	Adjusted Life	Cost (ARC)	ARC Source	(years)	Measure Life Source	Year	Year	FALSE)	All, None, NA)
							use, capped at 15 years.				
							Approximated based on typical				
							lamp lifetime of 25,000 hours				
							and typical application hours of				
75			1			4	use, capped at 15 years.	2015	2019		All
							Approximated based on typical				
							lamp lifetime of 25,000 hours				
							and typical application hours of				
76			1			4	use, capped at 15 years.	2015	2019		All
1							Approximated based on typical				
	1						lamp lifetime of 25,000 hours				
							and typical application hours of				
77			1			4	use, capped at 15 years.	2015	2019	TRUE	All
							Approximated based on typical				
							lamp lifetime of 25,000 hours				
							and typical application hours of				
78			1			4	use, capped at 15 years.	2015	2019		None
							Approximated based on typical				
							lamp lifetime of 25,000 hours				
							and typical application hours of				
79			1			4	use, capped at 15 years.	2015	2019		None
							Approximated based on typical				
							lamp lifetime of 25,000 hours				
							and typical application hours of				
80			1			4	use, capped at 15 years.	2015	2019		None
							Approximated based on typical				
							lamp lifetime of 25,000 hours				
							and typical application hours of				
81			1			4	use, capped at 15 years.	2015	2019	TRUE	None
							Approximated based on typical				
							lamp lifetime of 25,000 hours				
02	1						and typical application hours of	2020	2024		All
82			1			4	use, capped at 15 years.	2020	2034		All
							Approximated based on typical				
	1						lamp lifetime of 25,000 hours				
02]		_			A	and typical application hours of	2020	2024		All
83			1			4	use, capped at 15 years.	2020	2034		All
							Approximated based on typical				
							lamp lifetime of 25,000 hours				
0.4			4			A	and typical application hours of	2020	2024		All
84			1			4	use, capped at 15 years.	2020	2034	TDUE	All
85			1			4	Approximated based on typical	2020	2034	TRUE	All

Meas ID	Is Early Retire- ment Retrofit	Early Retirement Baseline ²³ Shift	Early Retirement Adjusted Life	Avoided Replacement Cost (ARC)	ARC Source	Measure Life (years)	Measure Life Source	Start Year	End Year	Use No Heating Fuel Share (TRUE, FALSE)	AC Saturation : Central Shared, Central In-Unit, Window, In-Unit, All, None, NA)
			-				lamp lifetime of 25,000 hours			_	
							and typical application hours of				
							use, capped at 15 years.				
							Approximated based on typical				
							lamp lifetime of 25,000 hours				
							and typical application hours of				
86			1			4	use, capped at 15 years.	2020	2034		None
							Approximated based on typical				
							lamp lifetime of 25,000 hours				
0.7			4				and typical application hours of	2020	2024		Nama
87			1			4	use, capped at 15 years.	2020	2034		None
							Approximated based on typical lamp lifetime of 25,000 hours				
							and typical application hours of				
88			1			4	use, capped at 15 years.	2020	2034		None
- 00			_				Approximated based on typical	LULU	2031		TOTIC
							lamp lifetime of 25,000 hours				
							and typical application hours of				
89			1			4	use, capped at 15 years.	2020	2034	TRUE	None
90			6			16	SAG 2014	2015	2034		All
91			6			16	SAG 2014	2015	2034		All
92			6			16	SAG 2014	2015	2034		All
93			6			16	SAG 2014	2015	2034	TRUE	All
94			6			16	SAG 2014	2015	2034		None
95			6			16	SAG 2014	2015	2034		None
96			6			16	SAG 2014	2015	2034		None
97			6			16	SAG 2014	2015	2034	TRUE	None
98			6			16	SAG 2014	2015	2034		All
99			6			16	SAG 2014	2015	2034		All
100			6			16	SAG 2014	2015	2034		All
101			6			16	SAG 2014	2015	2034	TRUE	All
102			6			16	SAG 2014	2015	2034		None
103			6			16	SAG 2014	2015	2034		None
104			6			16	SAG 2014	2015	2034		None
105			6			16	SAG 2014	2015	2034	TRUE	None
106			3			9	SAG 2014	2015	2034		NA
107			5			15	SAG 2014	2015	2034		NA
108			4			10	GDS 2013	2015	2034		NA
109			4			10	GDS 2013	2015	2034		NA
110			4			10	GDS 2013	2015	2034		NA
111			4			10	GDS 2013	2015	2034		NA

Meas	Is Early Retire- ment	Early Retirement Baseline 23	Early Retirement	Avoided Replacement		Measure Life		Start	End	Use No Heating Fuel Share (TRUE,	AC Saturation : Central Shared, Central In-Unit, Window, In-Unit,
ID	Retrofit	Shift	Adjusted Life	Cost (ARC)	ARC Source	(years)	Measure Life Source	Year	Year	FALSE)	All, None, NA)
112			4	, ,		10	GDS 2013	2015	2034	,	NA
113			4			10	GDS 2013	2015	2034		NA
114			4			10	GDS 2013	2015	2034		NA
115			4			10	GDS 2013	2015	2034		NA
116			4			10	GDS 2013	2015	2034		NA
117			4			10	ODC 2012	2015	2034		NA
118			2			6	GDS 2013	2015	2034		NA
119			2			6	GDS 2013	2015	2034		NA
120			2			6	GDS 2013	2015	2034		NA
121			2			7	GDS 2014b	2015	2034		NA
122			2			7	GDS 2014b	2015	2034		NA
123			2			7	GDS 2014b	2015	2034		NA
124			5			15	GDS 2013	2015	2034		NA
125			5			14	GDS 2014b	2015	2034		NA
126			5			15	GDS 2013	2015	2034		NA
127			5			13	GDS 2013	2015	2034		All
128			5			13	GDS 2013	2015	2034		All
129			5			13	GDS 2013	2015	2034		All
130			9			25	GDS 2014b	2015	2034		All
131			9			25	GDS 2014b	2015	2034		All
132			9			25	GDS 2014b	2015	2034		All
133			5			14	GDS 2014b	2015	2034		All
134			5			14	GDS 2014b	2015	2034		All
135			5			14	GDS 2014b	2015	2034		All
136			7			20	GDS 2013	2015	2034		All
137			7			20	GDS 2013	2015	2034		All
138			7			20	GDS 2013	2015	2034		All
139			7			20	GDS 2014b	2015	2034		All
140			7			20	GDS 2014b	2015	2034		All
141			7			20	GDS 2014b	2015	2034		All
142			4			10	GDS 2013	2015	2034		All
143			4			10	GDS 2013	2015	2034		All
144			7			20	GDS 2013	2015	2034		All
145			7			20	GDS 2013	2015	2034		All
146			0			1	GDS 2013	2015	2034		NA
147			0			1	GDS 2013	2015	2034		NA
148			0			1	GDS 2013	2015	2034		NA
149			2			7	GDS 2013	2015	2034		NA
150			2			7	GDS 2013	2015	2034		NA
151			2			7	GDS 2013	2015	2034		NA

Meas ID	Is Early Retire- ment Retrofit	Early Retirement Baseline 23 Shift	Early Retirement Adjusted Life	Avoided Replacement Cost (ARC)	ARC Source	Measure Life (years)	Measure Life Source	Start Year	End Year	Use No Heating Fuel Share (TRUE, FALSE)	AC Saturation : Central Shared, Central In-Unit, Window, In-Unit, All, None, NA)
טו	Ketront	Siliit	Aujusteu Life	COST (ARC)	ARC Source	(years)	NYSERDA Advanced Power Strip	Teal	Teal	FALSE	All, Nolle, NA)
152			4			10	Research Report (2011)	2015	2034		NA
153			2			5	GDS 2013	2015	2034		NA
154			2			5	GDS 2013	2015	2034		NA
155			1			2	SAG 2014	2015	2034		Central Shared
156			1			2	SAG 2014	2015	2034		Central Shared
					SAG 2014; Estimated as the difference between the RET full cost and the						
157	TRUE	24%	6	\$ 408	REPL cost.	12	GDS 2007	2015	2034		Window
158			4			12	GDS 2007	2015	2034		Window
159			6			18	GDS 2007	2015	2034		Central In-Unit
160			6			18	GDS 2007	2015	2034		Central In-Unit
161			6			18	GDS 2007	2015	2034		Central Shared
162			6			18	GDS 2007	2015	2034		Central Shared
163			7			20	SAG 2014	2015	2034		NA
164			7			20	SAG 2014	2015	2034		NA
165			7			20	SAG 2014	2015	2034		NA
166			7			20	SAG 2014	2015	2034		NA
167			7			20	SAG 2014	2015	2034		NA
168			6			16.5	SAG 2014	2015	2034		NA
169			2			5	SAG 2014	2015	2034		NA
170			2			5	SAG 2014	2015	2034		NA
171			2			5	SAG 2014	2015	2034		NA
172			5			15	MA Potential Study	2015	2034		NA
173			5			15	MA Potential Study	2015	2034		NA
174			5			15	MA 2012; uses same assumption as programmable thermostat	2015	2034		None
175			5			15	MA 2012; uses same assumption as programmable thermostat	2015	2034		None
176			5			15	MA 2012; uses same assumption as programmable thermostat	2015	2034		None
177			5			15	MA 2012; uses same assumption as programmable thermostat	2015	2034		All
178			5			15	MA 2012; uses same	2015	2034		All

Meas ID	Is Early Retire- ment Retrofit	Early Retirement Baseline ²³ Shift	Early Retirement Adjusted Life	Avoided Replacement Cost (ARC)	ARC Source	Measure Life (years)	Measure Life Source	Start Year	End Year	Use No Heating Fuel Share (TRUE, FALSE)	AC Saturation : Central Shared, Central In-Unit, Window, In-Unit, All, None, NA)
							assumption as programmable				
							thermostat				
							MA 2012; uses same				
							assumption as programmable				
179			5			15	thermostat	2015	2034		All
180			7			20	IL TRM	2015	2034		NA
181			7			20	IL TRM	2015	2034		NA
182			2			6	GDS 2013	2015	2034		NA

						Achievable
Meas			Not		Interaction	Penetration
ID	Applicability	Applicability Source	Complete	Not Complete Source	Factor	Profile
				Energy Center of Wisconsin 2013,		
1	0.88	Energy Center of Wisconsin 2013, p.42	0.94	p.42	0.8	Appliances
				Energy Center of Wisconsin 2013,		
2	0.88	Energy Center of Wisconsin 2013, p.42	0.94	p.42	0.8	Appliances
				Energy Center of Wisconsin 2013,		
3	0.88	Energy Center of Wisconsin 2013, p.42	0.94	p.42	0.8	Appliances
				Energy Center of Wisconsin 2013,		
4	0.88	Energy Center of Wisconsin 2013, p.42	0.94	p.42	0.8	Appliances
_	0.00	5 0 1 (14) 1 2040 40		Energy Center of Wisconsin 2013,		
5	0.88	Energy Center of Wisconsin 2013, p.42	0.94	p.42	0.8	Appliances
6	0.88	Fnormy Contag of Missonsin 2012 in 42	0.94	Energy Center of Wisconsin 2013, p.42	0.8	Annliances
ь	0.88	Energy Center of Wisconsin 2013, p.42	0.94	Energy Center of Wisconsin 2013,	0.8	Appliances
7	0.88	Energy Center of Wisconsin 2013, p.42	0.94	p.42	0.8	Appliances
	0.88	Effergy Certical of Wisconsin 2013, p.42	0.54	Energy Center of Wisconsin 2013,	0.8	Appliances
8	0.88	Energy Center of Wisconsin 2013, p.42	0.94	p.42	0.8	Appliances
- 0	0.00	Lifetgy center of wisconsin 2013, p.42	0.54	Energy Center of Wisconsin 2013,	0.0	Арриансез
9	0.88	Energy Center of Wisconsin 2013, p.42	0.94	p.42	0.8	Appliances
	0.00	2016, 67 (2016) 01 (1100) 01 (110) 01 (110)	0.5 .	Energy Center of Wisconsin 2013,	0.0	, ippiiditees
10	0.88	Energy Center of Wisconsin 2013, p.42	0.94	p.42	0.8	Appliances
		37		GDS 2014a, p.80; Energy Center of		
				Wisconsin 2013, p.2; Cadmus 2011,		
11	0.10	Energy Center of Wisconsin 2013, p.42	0.85	p.43	0.8	Appliances
				GDS 2014a, p.80; Energy Center of		
				Wisconsin 2013, p.2; Cadmus 2011,		
12	0.10	Energy Center of Wisconsin 2013, p.42	0.85	p.43	0.8	Appliances
				GDS 2014a, p.80; Energy Center of		
				Wisconsin 2013, p.2; Cadmus 2011,		
13	0.10	Energy Center of Wisconsin 2013, p.42	0.85	p.43	0.8	Appliances
				GDS 2014a, p.80; Energy Center of		
	0.10	5 0 1 (14) 1 2040 40	0.05	Wisconsin 2013, p.2; Cadmus 2011,		
14	0.10	Energy Center of Wisconsin 2013, p.42	0.85	p.43	0.8	Appliances
				GDS 2014a, p.80; Energy Center of		
15	0.10	Energy Center of Wicconcin 2012 in 42	0.85	Wisconsin 2013, p.2; Cadmus 2011, p.43	0.8	Appliances
12	0.10	Energy Center of Wisconsin 2013, p.42 GDS 2014a, Cadmus 2011, Energy Center of Wisconsin 2013; Applicability varies	0.85	Cadmus 2011: assumes ENERGY	0.8	Appliances
		significantly by source. Consistent with in-unit clothes washer measure, assume		STAR clothes dryers are equally as		
		10% of units have an in-unit clothes washer. Of those units, assume 90% have an		prevalent ENERGY STAR clothes		
16	0.08	in-unit dryer. Finally, assume 85% of in-unit dryers are electric-type.	0.86	washers.	0.95	Appliances
10	0.00	GDS 2014a, Cadmus 2011, Energy Center of Wisconsin 2013; Applicability varies	0.00	Cadmus 2011; assumes ENERGY	0.55	pp
		significantly by source. Consistent with in-unit clothes washer measure, assume		STAR clothes dryers are equally as		
17	0.01	10% of units have an in-unit clothes washer. Of those units, assume 90% have an	0.86	prevalent ENERGY STAR clothes	0.95	Appliances

						Achievable
Meas			Not		Interaction	Penetration
ID	Applicability	Applicability Source	Complete	Not Complete Source	Factor	Profile
		in-unit dryer. Finally, assume 15% of in-unit dryers are gas-type.		washers.		
18	1.00	N/A, units per apartment based on 100% applicability	0.75	GDS 2014a, p.80	1	Appliances
		Energy Center of Wisconsin 2013, estimated portion of existing refrigerators				
19	0.30	manufactured between 7/1/2001 and 2005.	0.75	GDS 2014a, p.80	1	Appliances
		Energy Center of Wisconsin 2013, estimated portion of existing refrigerators				
20	0.28	manufactured prior to 7/1/2001.	0.75	GDS 2014a, p.80	1	Appliances
21	1.00	N/A, units per apartment based on 100% applicability	0.75	GDS 2014a, p.80	1	Appliances
		Energy Center of Wisconsin 2013, estimated portion of existing refrigerators				
22	0.30	manufactured between 7/1/2001 and 2005.	0.75	GDS 2014a, p.80	1	Appliances
		Energy Center of Wisconsin 2013, estimated portion of existing refrigerators				
23	0.28	manufactured prior to 7/1/2001.	0.75	GDS 2014a, p.80	1	Appliances
24	0.08	KEMA 2011, p.76; Cadmus 2012, p.29	0.88	GDS 2014a, p.80	1	Appliances
25	0.08	KEMA 2011, p.76; Cadmus 2012, p.29	0.88	GDS 2014a, p.80	1	Appliances
26	0.60	Energy Center of Wisconsin, p.43; KEMA 2011, p.76	0.69	GDS 2014a, p.80	0.8	Appliances
27	0.60	Energy Center of Wisconsin, p.43; KEMA 2011, p.76	0.69	GDS 2014a, p.80	0.8	Appliances
28	0.60	Energy Center of Wisconsin, p.43; KEMA 2011, p.76	0.69	GDS 2014a, p.80	0.8	Appliances
29	0.60	Energy Center of Wisconsin, p.43; KEMA 2011, p.76	0.69	GDS 2014a, p.80	0.8	Appliances
30	0.60	Energy Center of Wisconsin, p.43; KEMA 2011, p.76	0.69	GDS 2014a, p.80	0.8	Appliances
31	0.60	Energy Center of Wisconsin, p.43; KEMA 2011, p.76	0.69	GDS 2014a, p.80	0.8	Appliances
32	0.07	KEMA 2011, p.76; Cadmus 2012, p.29, GDS 2014a, p.77	0.59	GDS 2013	1	Appliances
33	0.07	KEMA 2011, p.76; Cadmus 2012, p.29, GDS 2014a, p.77	0.59	GDS 2013	1	Appliances
				KEMA 2011, Cadmus 2012, Cadmus		
		KEMA 2011, Cadmus 2012, Cadmus 2011, Energy Center of Wisconsin 2013, GDS		2011, Energy Center of Wisconsin		
34	0.91	2014a, Ecotope 2013	0.69	2013, GDS 2014a, Ecotope 2013	1	Lighting
				KEMA 2011, Cadmus 2012, Cadmus		
		KEMA 2011, Cadmus 2012, Cadmus 2011, Energy Center of Wisconsin 2013, GDS		2011, Energy Center of Wisconsin		
35	0.91	2014a, Ecotope 2013	0.69	2013, GDS 2014a, Ecotope 2013	1	Lighting
				KEMA 2011, Cadmus 2012, Cadmus		
		KEMA 2011, Cadmus 2012, Cadmus 2011, Energy Center of Wisconsin 2013, GDS		2011, Energy Center of Wisconsin		
36	0.91	2014a, Ecotope 2013	0.69	2013, GDS 2014a, Ecotope 2013	1	Lighting
				KEMA 2011, Cadmus 2012, Cadmus		
		KEMA 2011, Cadmus 2012, Cadmus 2011, Energy Center of Wisconsin 2013, GDS		2011, Energy Center of Wisconsin		
37	0.91	2014a, Ecotope 2013	0.69	2013, GDS 2014a, Ecotope 2013	1	Lighting
			1	KEMA 2011, Cadmus 2012, Cadmus		
		KEMA 2011, Cadmus 2012, Cadmus 2011, Energy Center of Wisconsin 2013, GDS		2011, Energy Center of Wisconsin		
38	0.91	2014a, Ecotope 2013	0.69	2013, GDS 2014a, Ecotope 2013	1	Lighting
				KEMA 2011, Cadmus 2012, Cadmus		
		KEMA 2011, Cadmus 2012, Cadmus 2011, Energy Center of Wisconsin 2013, GDS	1	2011, Energy Center of Wisconsin		
39	0.91	2014a, Ecotope 2013	0.69	2013, GDS 2014a, Ecotope 2013	1	Lighting
			1	KEMA 2011, Cadmus 2012, Cadmus		
		KEMA 2011, Cadmus 2012, Cadmus 2011, Energy Center of Wisconsin 2013, GDS		2011, Energy Center of Wisconsin		_
40	0.91	2014a, Ecotope 2013	0.69	2013, GDS 2014a, Ecotope 2013	1	Lighting
41	0.91	KEMA 2011, Cadmus 2012, Cadmus 2011, Energy Center of Wisconsin 2013, GDS	0.69	KEMA 2011, Cadmus 2012, Cadmus	1	Lighting

						Achievable
Meas			Not		Interaction	Penetration
ID	Applicability	Applicability Source	Complete	Not Complete Source	Factor	Profile
		2014a. Ecotope 2013	- Compress	2011, Energy Center of Wisconsin		
				2013, GDS 2014a, Ecotope 2013		
				KEMA 2011, Cadmus 2012, Cadmus		
		KEMA 2011, Cadmus 2012, Cadmus 2011, Energy Center of Wisconsin 2013, GDS		2011, Energy Center of Wisconsin		
42	0.91	2014a, Ecotope 2013	0.69	2013, GDS 2014a, Ecotope 2013	1	Lighting
				KEMA 2011, Cadmus 2012, Cadmus		0 0
		KEMA 2011, Cadmus 2012, Cadmus 2011, Energy Center of Wisconsin 2013, GDS		2011, Energy Center of Wisconsin		
43	0.91	2014a, Ecotope 2013	0.69	2013, GDS 2014a, Ecotope 2013	1	Lighting
				KEMA 2011, Cadmus 2012, Cadmus		
		KEMA 2011, Cadmus 2012, Cadmus 2011, Energy Center of Wisconsin 2013, GDS		2011, Energy Center of Wisconsin		
44	0.91	2014a, Ecotope 2013	0.69	2013, GDS 2014a, Ecotope 2013	1	Lighting
				KEMA 2011, Cadmus 2012, Cadmus		
		KEMA 2011, Cadmus 2012, Cadmus 2011, Energy Center of Wisconsin 2013, GDS		2011, Energy Center of Wisconsin		
45	0.91	2014a, Ecotope 2013	0.69	2013, GDS 2014a, Ecotope 2013	1	Lighting
				KEMA 2011, Cadmus 2012, Cadmus		
		KEMA 2011, Cadmus 2012, Cadmus 2011, Energy Center of Wisconsin 2013, GDS		2011, Energy Center of Wisconsin		
46	0.91	2014a, Ecotope 2013	0.69	2013, GDS 2014a, Ecotope 2013	1	Lighting
				KEMA 2011, Cadmus 2012, Cadmus		
		KEMA 2011, Cadmus 2012, Cadmus 2011, Energy Center of Wisconsin 2013, GDS		2011, Energy Center of Wisconsin		
47	0.91	2014a, Ecotope 2013	0.69	2013, GDS 2014a, Ecotope 2013	1	Lighting
				KEMA 2011, Cadmus 2012, Cadmus		
		KEMA 2011, Cadmus 2012, Cadmus 2011, Energy Center of Wisconsin 2013, GDS		2011, Energy Center of Wisconsin		
48	0.91	2014a, Ecotope 2013	0.69	2013, GDS 2014a, Ecotope 2013	1	Lighting
				KEMA 2011, Cadmus 2012, Cadmus		
		KEMA 2011, Cadmus 2012, Cadmus 2011, Energy Center of Wisconsin 2013, GDS		2011, Energy Center of Wisconsin		
49	0.91	2014a, Ecotope 2013	0.69	2013, GDS 2014a, Ecotope 2013	1	Lighting
50	0.09	GDS 2014a	0.99	GDS 2014a, p.55	1	Lighting
51	0.09	GDS 2014a	0.99	GDS 2014a, p.55	1	Lighting
52	0.09	GDS 2014a	0.99	GDS 2014a, p.55	1	Lighting
53	0.09	GDS 2014a	0.99	GDS 2014a, p.55	1	Lighting
54	0.09	GDS 2014a	0.99	GDS 2014a, p.55	1	Lighting
55	0.09	GDS 2014a	0.99	GDS 2014a, p.55	1	Lighting
56	0.09	GDS 2014a	0.99	GDS 2014a, p.55	1	Lighting
57	0.09	GDS 2014a	0.99	GDS 2014a, p.55	1	Lighting
58	0.09	GDS 2014a	0.99	GDS 2014a, p.55	1	Lighting
59	0.09	GDS 2014a	0.99	GDS 2014a, p.55	1	Lighting
60	0.09	GDS 2014a	0.99	GDS 2014a, p.55	1	Lighting
61	0.09	GDS 2014a	0.99	GDS 2014a, p.55	1	Lighting
62	0.09	GDS 2014a	0.99	GDS 2014a, p.55	1	Lighting
63	0.09	GDS 2014a	0.99	GDS 2014a, p.55	1	Lighting
64	0.09	GDS 2014a	0.99	GDS 2014a, p.55	1	Lighting
65	0.09	GDS 2014a	0.99	GDS 2014a, p.55	1	Lighting
66	0.34	Cadmus 2012, Energy Center of Wisconsin 2013, Ecotope 2013	0.90	OEI Assumption	1	Lighting

			1	<u> </u>	1	Achievable
Meas			Not		Interaction	Penetration
ID	Applicability	Applicability Source	Complete	Not Complete Source	Factor	Profile
67	0.34	Cadmus 2012, Energy Center of Wisconsin 2013, Ecotope 2013	0.90	OEI Assumption	1	Lighting
68	0.34	Cadmus 2012, Energy Center of Wisconsin 2013, Ecotope 2013	0.90	OEI Assumption	1	Lighting
69	0.34	Cadmus 2012, Energy Center of Wisconsin 2013, Ecotope 2013	0.90	OEI Assumption	1	Lighting
70	0.34	Cadmus 2012, Energy Center of Wisconsin 2013, Ecotope 2013	0.90	OEI Assumption	1	Lighting
71	0.34	Cadmus 2012, Energy Center of Wisconsin 2013, Ecotope 2013	0.90	OEI Assumption	1	Lighting
72	0.34	Cadmus 2012, Energy Center of Wisconsin 2013, Ecotope 2013	0.90	OEI Assumption	1	Lighting
73	0.34	Cadmus 2012, Energy Center of Wisconsin 2013, Ecotope 2013	0.90	OEI Assumption	1	Lighting
74	0.65	Cadmus 2012, Energy Center of Wisconsin 2013, Ecotope 2013	0.99	OEI Assumption	1	Lighting
75	0.65	Cadmus 2012, Energy Center of Wisconsin 2013, Ecotope 2013	0.99	OEI Assumption	1	Lighting
76	0.65	Cadmus 2012, Energy Center of Wisconsin 2013, Ecotope 2013	0.99	OEI Assumption	1	Lighting
77	0.65	Cadmus 2012, Energy Center of Wisconsin 2013, Ecotope 2013	0.99	OEI Assumption	1	Lighting
78	0.65	Cadmus 2012, Energy Center of Wisconsin 2013, Ecotope 2013	0.99	OEI Assumption	1	Lighting
79	0.65	Cadmus 2012, Energy Center of Wisconsin 2013, Ecotope 2013	0.99	OEI Assumption	1	Lighting
80	0.65	Cadmus 2012, Energy Center of Wisconsin 2013, Ecotope 2013	0.99	OEI Assumption	1	Lighting
81	0.65	Cadmus 2012, Energy Center of Wisconsin 2013, Ecotope 2013	0.99	OEI Assumption	1	Lighting
82	0.65	Cadmus 2012, Energy Center of Wisconsin 2013, Ecotope 2013	0.99	OEI Assumption	1	Lighting
83	0.65	Cadmus 2012, Energy Center of Wisconsin 2013, Ecotope 2013	0.99	OEI Assumption	1	Lighting
84	0.65	Cadmus 2012, Energy Center of Wisconsin 2013, Ecotope 2013	0.99	OEI Assumption	1	Lighting
85	0.65	Cadmus 2012, Energy Center of Wisconsin 2013, Ecotope 2013	0.99	OEI Assumption	1	Lighting
86	0.65	Cadmus 2012, Energy Center of Wisconsin 2013, Ecotope 2013	0.99	OEI Assumption	1	Lighting
87	0.65	Cadmus 2012, Energy Center of Wisconsin 2013, Ecotope 2013	0.99	OEI Assumption	1	Lighting
88	0.65	Cadmus 2012, Energy Center of Wisconsin 2013, Ecotope 2013	0.99	OEI Assumption	1	Lighting
89	0.65	Cadmus 2012, Energy Center of Wisconsin 2013, Ecotope 2013	0.99	OEI Assumption	1	Lighting
				Energy Center of Wisconsin 2013,		
90	1.00		0.07	p.143	1	Lighting
				Energy Center of Wisconsin 2013,		
91	1.00		0.07	p.143	1	Lighting
				Energy Center of Wisconsin 2013,		
92	1.00		0.07	p.143	1	Lighting
00	4.00		0.07	Energy Center of Wisconsin 2013,		
93	1.00		0.07	p.143	1	Lighting
94	1.00		0.07	Energy Center of Wisconsin 2013, p.143	1	Lighting
94	1.00		0.07	Energy Center of Wisconsin 2013,	1	Lighting
95	1.00		0.07	p.143	1	Lighting
95	1.00		0.07	Energy Center of Wisconsin 2013,	1	Lighting
96	1.00		0.07	p.143	1	Lighting
30	1.00		0.07	Energy Center of Wisconsin 2013,	1	Ligitung
97	1.00		0.07	p.143	1	Lighting
57	1.00		5.07	Energy Center of Wisconsin 2013,	 	E-B-1-CITE
98	1.00		0.07	p.143	1	Lighting
- 55	2.00		3.07	Energy Center of Wisconsin 2013,	1 -	0
99	1.00		0.07	p.143	1	Lighting

				1		Achievable
Meas			Not		Interaction	Penetration
ID	Applicability	Applicability Source	Complete	Not Complete Source	Factor	Profile
- 10	Applicability	Applicability Source	Complete	Energy Center of Wisconsin 2013,	Tactor	FIONE
100	1.00		0.07	p.143	1	Lighting
100	1.00		0.07	Energy Center of Wisconsin 2013,		Ligiting
101	1.00		0.07	p.143	1	Lighting
101	1.00		0.07	Energy Center of Wisconsin 2013,	1	Ligitting
102	1.00		0.07	p.143	1	Lighting
102	1.00		0.07	Energy Center of Wisconsin 2013,	1	Ligitting
103	1.00		0.07	p.143	1	Lighting
103	1.00		0.07	Energy Center of Wisconsin 2013,	1	Ligitting
104	1.00		0.07	p.143	1	Lighting
104	1.00		0.07	Energy Center of Wisconsin 2013,	1	Lighting
105	1.00		0.07		1	Linktinn
105	1.00	OFLA	0.07	p.143	1	Lighting
100	0.50	OEI Assumption, Adjusted downward from 100% assuming not all multifamily	0.00	0514		L'abria
106	0.50	buildings have illuminated parking areas.	0.90	OEI Assumption	1	Lighting
107	0.10	Energy Center of Wisconsin 2013	0.90	OEI Assumption	0.95	Lighting
				Energy Center of Wisconsin 2013,		
108	1.00	N/A, units per apartment based on 100% applicability	0.79	p.143, KEMA 2011, p.74	0.8	Water Heating
				Energy Center of Wisconsin 2013,		
109	1.00	N/A, units per apartment based on 100% applicability	0.79	p.143, KEMA 2011, p.74	0.8	Water Heating
				Energy Center of Wisconsin 2013,		
110	1.00	N/A, units per apartment based on 100% applicability	0.79	p.143, KEMA 2011, p.74	0.8	Water Heating
				Energy Center of Wisconsin 2013,		
111	1.00	N/A, units per apartment based on 100% applicability	0.74	p.143, KEMA 2011, p.74	0.8	Water Heating
				Energy Center of Wisconsin 2013,		
112	1.00	N/A, units per apartment based on 100% applicability	0.74	p.143, KEMA 2011, p.74	0.8	Water Heating
				Energy Center of Wisconsin 2013,		
113	1.00	N/A, units per apartment based on 100% applicability	0.74	p.143, KEMA 2011, p.74	0.8	Water Heating
				Energy Center of Wisconsin 2013,		
114	1.00	N/A, units per apartment based on 100% applicability	0.74	p.143, KEMA 2011, p.74	0.8	Water Heating
				Energy Center of Wisconsin 2013,		
115	1.00	N/A, units per apartment based on 100% applicability	0.74	p.143, KEMA 2011, p.74	0.8	Water Heating
				Energy Center of Wisconsin 2013,		
116	1.00	N/A, units per apartment based on 100% applicability	0.74	p.143, KEMA 2011, p.74	0.8	Water Heating
117	0.39	EIA 2013 analysis, represents portion of total units with in-unit water heaters.	1.00	GDS 2014a	1	Water Heating
118	1.00	, , ,	0.89	GDS 2014a, p.72	0.9	Water Heating
119	1.00		0.89	GDS 2014a, p.72	0.9	Water Heating
120	1.00		0.89	GDS 2014a, p.72	0.9	Water Heating
121	1.00		0.95	GDS 2014a, p.72	0.9	Water Heating
122	1.00		0.95	GDS 2014a, p.72	0.9	Water Heating Water Heating
123	1.00		0.95	GDS 2014a, p.72 GDS 2014a, p.72	0.9	Water Heating Water Heating
124	1.00		0.71	GDS 2013	1	Water Heating
125	1.00		0.71	GDS 2013	1	Water Heating
126	1.00		0.71	GDS 2013	1	Water Heating

						Achievable
Meas ID	Applicability	Applicability Source	Not Complete	Not Complete Source	Interaction Factor	Penetration Profile
	repricability	7.ppincusincy source	Complete	GDS 2014a, p.39. Represents sum	Tueto.	1101110
				for "Poorly" and "Partially" sealed		
				Multifamily. "Unable to Assess"		
127	1.00		0.77	apportioned.	0.6	Envelope
				GDS 2014a, p.39. Represents sum		
				for "Poorly" and "Partially" sealed		
				Multifamily. "Unable to Assess"		
128	1.00		0.77	apportioned.	0.97	Envelope
				GDS 2014a, p.39. Represents sum		
				for "Poorly" and "Partially" sealed		
				Multifamily. "Unable to Assess"		
129	1.00		0.77	apportioned.	0.97	Envelope
130	1.00		0.87	GDS 2014a, p.80	0.6	Envelope
131	1.00		0.87	GDS 2014a, p.80	0.97	Envelope
132	1.00		0.87	GDS 2014a, p.80	0.97	Envelope
				GDS 2014a, p.40. Represents sum		
		EIA 2013 analysis; OEI Assumption, derated from 53% as this measure is only		for "Some observable leaks" and		
133	0.13	applicable to ducted heat pump systems	0.41	,	0.97	Envelope
				GDS 2014a, p.40. Represents sum		
				for "Some observable leaks" and		
134	0.53	EIA 2013 analysis	0.41	"Significant leaks" in Multifamily.	0.97	Envelope
				GDS 2014a, p.40. Represents sum		
				for "Some observable leaks" and		
135	0.53	EIA 2013 analysis	0.41	"Significant leaks" in Multifamily.	0.97	Envelope
400	0.05	GDS 2013; OEI Assumption, derated from 16% assuming basement wall	0.00	0000000	2.27	
136	0.05	insulation would affect a limited number of units.	0.29	GDS 2013	0.97	Envelope
427	0.05	GDS 2013; OEI Assumption, derated from 16% assuming basement wall	0.20	CDC 2042	0.07	Elana
137	0.05	insulation would affect a limited number of units.	0.29	GDS 2013	0.97	Envelope
120	0.05	GDS 2013; OEI Assumption, derated from 16% assuming basement wall	0.20	CDC 2012	0.07	Farrelana
138 139	0.05 1.00	insulation would affect a limited number of units.	0.29	GDS 2013 GDS 2014a, p.80	0.97 0.95	Envelope
140	1.00		0.98	GDS 2014a, p.80	0.95	Envelope
141	1.00		0.98		0.95	Envelope
141	1.00		0.98	GDS 2014a, p.80	0.95	Envelope
142				GDS 2014a, p.104	0.95	Envelope
	1.00		0.96	GDS 2014a, p.104		Envelope
144	1.00		0.96	GDS 2014a, p.104	0.95 0.95	Envelope
145	1.00		0.96	GDS 2014a, p.104	+	Envelope
146	1.00		1.00	OEI Assumption	1	Behavior
147			1.00	OEI Assumption	1	Behavior
148	1.00		1.00	OEI Assumption	1	Behavior
149 150	1.00	A souther hitter to all ordered to a souther a	1.00	Not complete included in savings	1	Central HVAC
	1.00	Applicability included in savings	1.00	Not complete included in savings	1	Central HVAC
151	1.00	Applicability included in savings	1.00	Not complete included in savings	1	Central HVAC

						Achievable
Meas			Not		Interaction	Penetration
ID	Applicability	Applicability Source	Complete	Not Complete Source	Factor	Profile
					1	Consumer
152	1.00		0.98	GDS 2014a, LI figure p.86	1	Electronics
				, J		Consumer
153	0.45	Cadmus 2012, p.35	0.37	GDS 2013	1	Electronics
						Consumer
154	0.19	Cadmus 2012, p.35 - figure derived using ratio in NYSERDA report	0.37	GDS 2013	1	Electronics
155	0.79	EIA 2013 analysis	0.90	OEI Assumption	1	Central HVAC
156	0.22	EIA 2013 analysis	0.90	OEI Assumption	1	Central HVAC
157	1.00	EIA 2013 analysis	0.90	OEI Assumption	1	In-unit HVAC
158	1.00	EIA 2013 analysis	0.90	OEI Assumption	1	In-unit HVAC
159	0.79	EIA 2013 analysis	0.95	OEI Assumption	0.97	In-unit HVAC
160	0.05	EIA 2013 analysis	0.90	OEI Assumption	1	In-unit HVAC
161	0.79	EIA 2013 analysis	0.85	OEI Assumption	0.95	Central HVAC
162	0.22	EIA 2013 analysis	0.85	OEI Assumption	0.95	Central HVAC
163	0.33	EIA 2013 analysis	0.95	OEI Assumption	1	Central HVAC
164	0.33	EIA 2013 analysis	0.95	OEI Assumption	1	Central HVAC
165	0.80	EIA 2013 Analysis	0.95	OEI Assumption	1	Central HVAC
166	0.80	EIA 2013 Analysis	0.95	OEI Assumption	1	Central HVAC
167	0.33		0.90	OEI Assumption	1	In-unit HVAC
168	0.13		0.90	OEI Assumption	1	Central HVAC
						Programmable
169	0.64		0.88	EIA 2013 Analysis	0.95	Thermostat
						Programmable
170	0.64		0.88	EIA 2013 Analysis	0.95	Thermostat
						Programmable
171	0.64		0.88	EIA 2013 Analysis	0.95	Thermostat
172	0.33		0.30	OEI Assumption	0.97	Central HVAC
173	0.80	EIA 2013 Analysis	0.30	OEI Assumption	0.97	Central HVAC
						Programmable
174	0.64		0.88	EIA 2013 Analysis	0.95	Thermostat
						Programmable
175	0.64		0.88	EIA 2013 Analysis	0.95	Thermostat
						Programmable
176	0.64		0.88	EIA 2013 Analysis	0.95	Thermostat
						Programmable
177	0.64		0.88	EIA 2013 Analysis	0.95	Thermostat
				514 2042 4 1 :		Programmable
178	0.64		0.88	EIA 2013 Analysis	0.95	Thermostat
470	0.55			514 2042 4 1 :		Programmable
179	0.64		0.88	EIA 2013 Analysis	0.8	Thermostat
180	0.33		0.90	OEI Assumption	1	In-unit HVAC
181	0.33		0.90	OEI Assumption	1	In-unit HVAC
182	0.33		0.80	OEI Assumption	1	Central HVAC

APPENDIX F: LOCATION-DEPENDENT PARAMETERS

The first table below indicates which location-dependent parameter category is associated with each electric utility service territory. The following tables present the parameter values assumed for each category. Note that the climate factors are grouped and categorized by cooling degree days (i.e., the "Very High" category indicates very high cooling degree days).

Table F1 | Location-Dependent Parameter Categories by Utility Territory

State	Utility	Climate Factor	Lighting HOU	Measure Cost Factor	Electric Avoided Costs	Natural Gas Avoided Costs	Fuel Oil Avoided Cost
NY	New York State Electric & Gas Corp.	L	L	М	L	L	Н
NY	Rochester Gas & Electric	L	L	М	L	L	Н
NY	Orange and Rockland Utilities	L	L	Н	L	Н	Н
NY	Niagara Mohawk	L	L	M	L	L	Н
NY	Long Island Power Authority	L	L	Н	L	Н	Н
NY	Con Edison of NY	М	Н	Н	Н	Н	Н
NY	Central Hudson Gas & Electric Corp.	L	L	Н	L	Н	Н
NY	Other	L	L	Н	L	L	Н
IL	Commonwealth Edison Company	L	L	Н	L	Н	N/A
IL	Ameren Services	М	L	Н	L	Н	N/A
IL	MidAmerican Energy Company	L	L	М	L	Н	N/A
IL	Other	M	L	Н	L	Н	N/A
MD	Potomac Edison	M	L	M	Н	Н	N/A
MD	Potomac Electric Power Co.	M	L	M	Н	Н	N/A
MD	Baltimore Gas and Electric Company	М	L	М	Н	Н	N/A
MD	Delmarva Power	М	L	L	Н	Н	N/A
MD	Southern Maryland Electric Cooperative	М	L	М	Н	Н	N/A
MD	Other	М	L	М	Н	Н	N/A
MI	Consumers Energy	L	L	М	Н	L	N/A
MI	DTE Energy Company	L	L	Н	Н	L	N/A
MI	Indiana Michigan Power	L	L	М	Н	L	N/A
MI	Other Investor Owned Utilities (IOUs)	L	L	M	Н	L	N/A
MI	Other	L	L	M	Н	L	N/A
МО	Ameren Missouri	M	L	Н	L	L	N/A
MO	Kansas City Power & Light	M	L	Н	L	L	N/A
МО	Empire District	M	L	M	L	L	N/A
МО	City Utilities of Springfield	M	L	M	L	L	N/A
МО	Other	M	L	M	L	L	N/A
NC	Carolina Power & Light	Н	L	L	L	L	N/A
NC	Virginia Electric and Power Company	Н	L	L	L	L	N/A
NC	Duke Energy Carolinas, LLC	Н	L	L	L	L	N/A

						Natural	
		Climate	Lighting	Measure Cost	Electric Avoided	Gas Avoided	Fuel Oil Avoided
State	Utility	Factor	HOU	Factor	Costs	Costs	Cost
NC	EnergyUnited	Н	L	L	L	L	N/A
NC	Other	Н	L	L	L	L	N/A
PA	Duquesne Light	L	L	Н	Н	Н	N/A
PA	PECO Energy Company	L	L	Н	L	Н	N/A
PA	Metropolitan Edison Company	L	L	M	L	Н	N/A
PA	Pennsylvania Electric Company	L	L	M	L	Н	N/A
PA	PPL Electric Utilities	L	L	M	Н	Н	N/A
PA	Pennsylvania Power Co.	L	L	M	L	Н	N/A
PA	West Penn Power Company	L	L	M	L	Н	N/A
PA	Other	L	L	Н	L	Н	N/A
GA	Georgia Power	VH	L	L	L	L	N/A
GA	All Coops	VH	L	L	L	L	N/A
GA	All Munis/Public Power	VH	L	L	L	L	N/A
GA	Savannah Electric & Power Company	VH	L	L	L	L	N/A
GA	Other	VH	L	L	L	L	N/A
VA	Appalachian Power	M	L	L	L	L	N/A
VA	Dominion	M	L	M	L	L	N/A
VA	Kentucky Utilities Co. (Old Dominion/PPL)	M	L	L	L	L	N/A
VA	NOVEC	M	L	M	L	L	N/A
VA	PEPCO Delmarva (VA only)	M	L	L	L	L	N/A
VA	Potomac Edison (VA only)	M	L	M	L	L	N/A
VA	Rappahannock Electric Cooperative	M	L	M	L	L	N/A
VA	All Munis/Public Power	M	L	M	L	L	N/A
VA	All Coops except NOVEC/Rappahannock	M	L	M	L	L	N/A
VA	Other	М	L	М	L	L	N/A

Table F2 | Measure Cost Factors

Category	Cost Factor
Low	0.82
Medium	0.94
High	1.13

Table F3 | Climate Factors

Category	Full Load Hours Cooling, Room AC	Full Load Hours Cooling, Central AC	Full Load Hours Heating, Heat Pumps	Full Load Hours Heating, Boilers/ Furnaces	Cooling Degree Days	Heating Degree Days
Low	603	187	2,647	1,012	514	6,915
Medium	1,038	322	2,137	723	1,143	4,983
High	1,289	400	1,853	400	1,349	3,715
Very High	1,706	529	1,461	279	1,924	2,587

Table F4 | Lighting Hours of Use

	Lighting Hours of
Category	Use
Low	1,059
High	1,862

Table F5 | Space Heating Fuel Shares by Building Size

Buildings with 5-49 units		Buildings with 50 or more units				
State	Electric	Natural Gas	Fuel Oil	Electric	Natural Gas	Fuel Oil
Georgia	72%	27%	0%	81%	18%	0%
Illinois	30%	68%	0%	40%	56%	0%
Maryland	51%	47%	0%	58%	39%	0%
Michigan	27%	69%	0%	31%	64%	0%
Missouri	58%	39%	0%	73%	25%	0%
North Carolina	88%	11%	0%	90%	9%	0%
New York	21%	58%	17%	19%	44%	33%
Pennsylvania	48%	46%	0%	53%	41%	0%
Virginia	66%	32%	0%	69%	28%	0%

Table F6 | Water Heating Fuel Shares

		Natural	
State	Electric	Gas	Fuel Oil
Georgia	60%	40%	-
Illinois	21%	65%	-
Maryland	51%	49%	-
Michigan	7%	88%	-
Missouri	76%	24%	-
North Carolina	86%	14%	-
New York	14%	64%	19%
Pennsylvania	39%	57%	-
Virginia	61%	39%	-

Table F7 | Cooling Equipment Saturations

		Central	Central Central	
State	No AC	In-Unit	Shared	/Wall
Georgia	0%	90%	7%	3%
Illinois	16%	36%	5%	43%
Maryland	13%	38%	26%	23%
Michigan	17%	24%	36%	23%
Missouri	2%	85%	5%	8%
North				
Carolina	0%	94%	2%	4%
New York	29%	7%	3%	61%
Pennsylvania	13%	45%	17%	26%
Virginia	5%	71%	6%	18%

APPENDIX G: AVOIDED COSTS

Table G1 | Avoided Energy Supply Costs by Fuel by Year

		Flee	ctric	-	Natur	Fuel Oil	
	High/High	High/Low	Low/High	Low/Low	Matai	ui Gus	ruer on
	Coincidence	Coincidence	Coincidence	Coincidence	High	Low	High
Year	(\$/kWh)	(\$/kWh)	(\$/kWh)	(\$/kWh)	(\$/MMBtu)	(\$/MMBtu)	(\$/MMBtu)
2015	0.083	0.073	0.052	0.048	6.952	5.346	28.660
2016	0.083	0.074	0.053	0.049	7.160	5.400	29.139
2017	0.084	0.075	0.053	0.049	7.091	5.454	29.651
2018	0.085	0.075	0.054	0.050	7.162	5.508	29.790
2019	0.086	0.076	0.055	0.050	7.234	5.563	29.955
2020	0.087	0.077	0.055	0.051	7.306	5.619	30.148
2021	0.088	0.078	0.056	0.051	7.379	5.675	30.416
2022	0.088	0.078	0.056	0.052	7.453	5.732	30.622
2023	0.089	0.079	0.057	0.052	7.528	5.789	30.826
2024	0.090	0.080	0.057	0.053	7.603	5.847	31.047
2025	0.091	0.081	0.058	0.053	7.679	5.906	31.356
2026	0.092	0.082	0.058	0.054	7.756	5.965	31.500
2027	0.093	0.082	0.059	0.054	7.833	6.024	31.736
2028	0.094	0.083	0.060	0.055	7.912	6.084	31.962
2029	0.095	0.084	0.060	0.055	7.991	6.145	32.128
2030	0.096	0.085	0.061	0.056	8.071	6.207	32.409
2031	0.097	0.086	0.061	0.057	8.151	6.269	32.595
2032	0.098	0.087	0.062	0.057	8.233	6.332	32.777
2033	0.099	0.088	0.063	0.058	8.315	6.395	32.934
2034	0.100	0.088	0.063	0.058	8.398	6.459	33.057
2035	0.101	0.089	0.064	0.059	8.482	6.523	33.057
2036	0.102	0.090	0.065	0.059	8.567	6.589	33.057
2037	0.103	0.091	0.065	0.060	8.653	6.654	33.057
2038	0.104	0.092	0.066	0.061	8.739	6.721	33.057
2039	0.105	0.093	0.067	0.061	8.827	6.788	33.057
2040	0.106	0.094	0.067	0.062	8.915	6.856	33.057
2041	0.107	0.095	0.068	0.062	9.004	6.925	33.057
2042	0.108	0.096	0.069	0.063	9.094	6.994	33.057
2043	0.109	0.097	0.069	0.064	9.185	7.064	33.057
2044	0.110	0.098	0.070	0.064	9.277	7.135	33.057
2045	0.111	0.099	0.071	0.065	9.370	7.206	33.057
2046	0.111	0.099	0.071	0.065	9.370	7.206	33.057
2047	0.111	0.099	0.071	0.065	9.370	7.206	33.057
2048	0.111	0.099	0.071	0.065	9.370	7.206	33.057
2049	0.111	0.099	0.071	0.065	9.370	7.206	33.057
2050	0.111	0.099	0.071	0.065	9.370	7.206	33.057

		Elec	ctric	Natur	Natural Gas			
	High/High Coincidence	High/Low Coincidence	Low/High Coincidence	Low/Low Coincidence	High Low		High	
Year	(\$/kWh)	(\$/kWh)	(\$/kWh)	(\$/kWh)	(\$/MMBtu)	(\$/MMBtu)	(\$/MMBtu)	
2051	0.111	0.099	0.071	0.065	9.370	7.206	33.057	
2052	0.111	0.099	0.071	0.065	9.370	7.206	33.057	
2053	0.111	0.099	0.071	0.065	9.370	7.206	33.057	
2054	0.111	0.099	0.071	0.065	9.370	7.206	33.057	
2055	0.111	0.099	0.071	0.065	9.370	7.206	33.057	
2056	0.111	0.099	0.071	0.065	9.370	7.206	33.057	
2057	0.111	0.099	0.071	0.065	9.370	7.206	33.057	
2058	0.111	0.099	0.071	0.065	9.370	7.206	33.057	
2059	0.111	0.099	0.071	0.065	9.370	7.206	33.057	
2060	0.111	0.099	0.071	0.065	9.370	7.206	33.057	
2061	0.111	0.099	0.071	0.065	9.370	7.206	33.057	
2062	0.111	0.099	0.071	0.065	9.370	7.206	33.057	
2063	0.111	0.099	0.071	0.065	9.370	7.206	33.057	
2064	0.111	0.099	0.071	0.065	9.370	7.206	33.057	

APPENDIX H: NON-ENERGY BENEFIT FACTORS

The table below presents the non-energy benefit factors used in the sensitivity analyses. The factors are presented by fuel, avoided costs, and NEBs scenario. The particular factors used for a given utility service territory depend on the avoided costs "bin" (for explanation, see p. 47) assigned to that utility and sensitivity scenario analyzed.

Table H1 | Non-Energy Benefits Factors

Fuel, Avoided Cost	NEBs Scenario	Avoided Costs Multiplier
Electric, Low/Low Coincidence	Low NEBs	2.28
Electric, Low/High Coincidence	Low NEBs	2.30
Electric, High/Low Coincidence	Low NEBs	1.84
Electric, High/High Coincidence	Low NEBs	1.83
Natural Gas, Low	Low NEBs	1.78
Natural Gas, High	Low NEBs	1.60
Fuel Oil, High	Low NEBs	1.60
Electric, Low/Low Coincidence	High NEBs	3.56
Electric, Low/High Coincidence	High NEBs	3.61
Electric, High/Low Coincidence	High NEBs	2.69
Electric, High/High Coincidence	High NEBs	2.66
Natural Gas, Low	High NEBs	2.56
Natural Gas, High	High NEBs	2.20
Fuel Oil, High	High NEBs	2.20

APPENDIX I: PENETRATION PROFILES

The table below presents the maximum achievable penetration rates used in the analysis. The rates are presented by end use or technology type. The rates are also differentiated by market. Note that the penetrations for replacement ("REPL") measures are typically much higher than those for the corresponding retrofit ("RET") measures as the replacement penetrations are applied only to the fraction of units where equipment needs to be replaced in a given year (i.e., the "turnover") whereas the retrofit penetrations are multiplied by the total unit counts.

Table I1: Maximum Achievable Penetration Rates

Profile	Market	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
Water Heating	REPL	0.100	0.188	0.275	0.363	0.450	0.480	0.510	0.540	0.570	0.600
Water Heating	RET	0.002	0.004	0.005	0.009	0.012	0.018	0.026	0.033	0.040	0.046
Central HVAC	REPL	0.150	0.217	0.283	0.350	0.417	0.483	0.550	0.617	0.683	0.750
Central HVAC	RET	0.002	0.004	0.006	0.009	0.013	0.019	0.028	0.036	0.043	0.049
In-unit HVAC	REPL	0.100	0.167	0.233	0.300	0.367	0.433	0.500	0.567	0.633	0.700
In-unit HVAC	RET	0.002	0.004	0.005	0.009	0.012	0.018	0.026	0.033	0.040	0.046
Appliances	REPL	0.150	0.211	0.272	0.333	0.394	0.456	0.517	0.578	0.639	0.700
Appliances	RET	0.002	0.004	0.005	0.009	0.012	0.018	0.026	0.033	0.040	0.046
Envelope	REPL	0.330	0.373	0.415	0.458	0.500	0.540	0.580	0.620	0.660	0.700
Envelope	RET	0.002	0.004	0.005	0.009	0.012	0.018	0.026	0.033	0.040	0.046
Fuel Total	RET	0.002	0.004	0.006	0.009	0.013	0.019	0.028	0.036	0.043	0.049
Behavior	REPL	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Consumer Electronics	REPL	0.500	0.533	0.565	0.598	0.630	0.654	0.678	0.702	0.726	0.750
Lighting	REPL	0.500	0.533	0.565	0.598	0.630	0.654	0.678	0.702	0.726	0.750
Lighting	RET	0.002	0.004	0.006	0.009	0.013	0.019	0.028	0.036	0.043	0.049
Programmable Thermostat	RET	0.002	0.004	0.006	0.009	0.013	0.019	0.028	0.036	0.043	0.049

Profile	Market	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034
Water Heating	REPL	0.600	0.600	0.600	0.600	0.600	0.600	0.600	0.600	0.600	0.600
Water Heating	RET	0.049	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051
Central HVAC	REPL	0.750	0.750	0.750	0.750	0.750	0.750	0.750	0.750	0.750	0.750
Central HVAC	RET	0.053	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054
In-unit HVAC	REPL	0.700	0.700	0.700	0.700	0.700	0.700	0.700	0.700	0.700	0.700
In-unit HVAC	RET	0.049	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051
Appliances	REPL	0.700	0.700	0.700	0.700	0.700	0.700	0.700	0.700	0.700	0.700
Appliances	RET	0.049	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051
Envelope	REPL	0.700	0.700	0.700	0.700	0.700	0.700	0.700	0.700	0.700	0.700
Envelope	RET	0.049	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051	0.051
Fuel Total	RET	0.053	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054
Behavior	REPL	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Consumer Electronics	REPL	0.750	0.750	0.750	0.750	0.750	0.750	0.750	0.750	0.750	0.750
Lighting	REPL	0.750	0.750	0.750	0.750	0.750	0.750	0.750	0.750	0.750	0.750
Lighting	RET	0.053	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054
Programmable Thermostat	RET	0.053	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054	0.054