

PUBLIC UTILITY COMMISSION

TECHNICAL REFERENCE MANUAL Volume 2: Residential Measures

State of Pennsylvania t 129 Energy Efficiency and Conservation Program & Act 213 Alternative Energy Portfolio Standards

> Issued August 2019 Revised February 2021

This Page Intentionally Left Blank

		TABLE OF CON	TENTS
_			
2-		ITIAL MEASURES	
		ghting	
		-ENERGY STAR Lighting	
		-Residential Occupancy Sensors	
	2.1.3	LED and Electroluminescent Nightlights	7
		-Holiday Lights	9
		VAC	
		High Efficiency Equipment: ASHP, CAC, GSHP, PTAC, PTHP	
		High Efficiency Equipment: Ductless Heat Pumps with Midstream Delivery Option	
		ECM Circulation Fans	
		-GSHP Desuperheaters	
	<u>2.2.5</u>	-Air Conditioner & Heat Pump Maintenance	
		-Fuel Switching: Electric Heat to Gas/Propane/Oil Heat	
		- ENERGY STAR Room Air Conditioners	
		-Room AC (RAC) Retirement	
		-Duct Sealing & Duct Insulation	41
		-Air Handler Filter Whistles	
		-ENERGY STAR® Certified Connected Thermostats	
		Furnace Maintenance	
		omestic Hot Water	 56
		-Heat Pump Water Heaters	56
		-Solar Water Heaters	62
	2.3.3	-Fuel Switching: Electric Resistance to Fossil Fuel Water Heater	65
		-Water Heater Tank Wrap	69
		-Water Heater Temperature Setback	72
	2.3.6	-Water Heater Pipe Insulation	75
	2.3.7 —	-Low Flow Faucet Aerators	77
	2.3.8	-Low Flow Showerheads	82
	<u>2.3.9</u>	-Thermostatic Shower Restriction Valves	87
	2.3.10-	-Drain Water Heat Recovery Units	91
	2.4—A	ppliances	 95
	2.4.1	-ENERGY STAR Refrigerators	95
	2.4.2	-ENERGY STAR Freezers	
	2.4.3	-Refrigerator / Freezer Recycling with and without Replacement	
	2.4.4	-ENERGY STAR Clothes Washers	113
	2.4.5	-ENERGY STAR Clothes Dryers	117
	2.4.6	-Heat Pump Clothes Dryers	
		-Fuel Switching: Electric Clothes Dryer to Gas Clothes Dryer	
	2.4.8	-ENERGY STAR Dishwashers	
	2.4.9	-ENERGY STAR Dehumidifiers	
	2.4.10 -	-Dehumidifier Retirement	
	2.4.11 -	-ENERGY STAR Ceiling Fans	134

State of Pennsylvania –	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
-------------------------	--	---	---------------------

2.4.12—ENERGY STAR Air Purifiers	
2.5 Consumer Electronics	139
2.5.1—ENERGY STAR Office Equipment	
2.5.2—Advanced Power Strips	
2.6—Building Shell	<u>146</u>
2.6.1—Residential Air Sealing	
2.6.2—Weather Stripping, Caulking, and Outlet Gaskets	
2.6.3—Ceiling/Attic, Wall, Floor and Rim Joist Insulation	
2.6.4 Basement or Crawl Space Wall Insulation	
2.6.5 ENERCY STAR Windows	
2.6.6—Residential Window Repair	
2.7Whole Home	
2.7.1—Residential New Construction	
2.7.2—ENERGY STAR Manufactured Homes	
2.7.3—Home Energy Reports	
2.8 Miscellaneous	
2.8.1—Variable Speed Pool Pumps	
2.9 Demand Response	193
2.9.1-Direct Load Control and Behavior-Based Demand Response Programs	

LIST OF FI	GURES
Figure 2-1: Daily Load Shapes for Hot Water Measures	
Figure 2-2: Daily Load Shapes for Hot Water Measures	
Figure 2-3: Daily Load Shapes for Hot Water Measures	
Figure 2-4: Daily Load Shapes for Hot Water Measures	
Figure 2-5: Example Regressions for Ductless Mini-splits in Climate Region A	147
Figure 2-6: Uo Baseline Requirements	

LIST OF TABLES
Table 2-1: Terms, Values, and References for ENERGY STAR Lighting
Table 2-2: Bulb and Fixture Hours of Use and Peak Coincidence Factor Values, by Room
Table 2-3: Energy and Demand HVAC Interactive Effects by EDC
Table 2-4: Terms, Values, and References for Residential Occupancy Sensors 5
Table 2-5: Terms, Values, and References for LED and Electroluminescent Nightlights
Table 2-6: Terms, Values, and References for Holiday Lights
Table 2-7: Terms, Values, and References for High Efficiency Equipment: ASHP, CAC, GSHP, PTAC, PTHP
Table 2-8: Default Baseline Equipment Efficiency for High Efficiency Equipment
Table 2-9: Default Oversize Factors for High Efficiency Equipment
Table 2-10: Terms, Values, and References for High Efficiency Equipment: Ductless Heat Pump
Table 2-11: Ductless Heat Pump Usage Zones
Table 2-12: Default Ductless Heat Pump Efficiencies
Table 2-13: Oversize and Duct Leakage Factors for High Efficiency Equipment
Table 2-14: Midstream DHP - SEER and EER Baseline Splits
Table 2-15: Midstream DHP HSPF Baseline Splits
Table 2-16: Midstream DHP – DLF and OF Baseline Splits
Table 2-17: Midstream DHP – DLF _{heat} and OF _{heat} Baseline Splits
Table 2-18: Midstream DHP - Composite EFLH Values
Table 2-19: Terms, Values, and References for ECM Furnace Fan
Table 2-20: Terms, Values, and References for GSHP Desuperheater
Table 2-21: Terms, Values, and References for Air Conditioner & Heat Pump Maintenance 29
Table 2-22: Terms, Values, and References for Fuel Switching: Electric Heat to Gas Heat 32
Table 2-23: Terms, Values, and References for ENERGY STAR Room AC
Table 2-24: RAC (without reverse cycle) Federal Minimum Efficiency and ENERGY STAR Version 4.1 Standards 35
Table 2-25: Casement-Only and Casement-Slider RAC Federal Minimum Efficiency and ENERGY STAR Version 4.1 Standards 35
Table 2-26: Reverse-Cycle RAC Federal Minimum Efficiency Standards and ENERGY STAR. Version 4.1 Standards 35
Table 2-27: Deemed EFLH and Default Energy Savings
Table 2-28: Terms, Values, and References for Room AC Retirement
Table 2-29: RAC Retirement-Only EFLH and Energy Savings by City
Table 2-30: Terms, Values, and References for Duct Sealing
Table 2-31: Distribution Efficiency by Climate Zone; Conditioned Air Type; Duct Location, Leakage & Insulation 43
Table 2-32: Distribution Efficiency Adders for Cond. Space (%) by Conditioned Air; Duct Location, Leakage & Insulation 44
Table 2-33: Terms, Values, and References for Air Handler Filter Whistle
Table 2-34: Default Air Handler Filter Whistle Savings

Table 2-35: Installation Classification 48
Table 2-36: Residential Electric HVAC Calculation Assumptions 49
Table 2-37: Cooling Energy Savings Factors (ESF _{cool})
Table 2-38: Heating Energy Savings Factors (ESFheat)
Table 2-39: Default Statewide Cooling Savings (kWh/yr)
Table 2-40: Default Statewide Heating Savings (kWh/yr)
Table 2-41: Default Statewide Total Heating and Cooling Savings (kWh/yr)
Table 2-42: Terms, Values, and References for Furnace Maintenance
Table 2-43: Default Savings per Input kBTU/h for Furnace Maintenance
Table 2-44: Terms, Values, and References for Heat Pump Water Heater
Table 2-45: Default Cooling and Heating System Efficiencies
Table 2-46: Draw Pattern Definitions
Table 2-47: Minimum Baseline Uniform Energy Factors Based on Rated Storage Volume and Draw Pattern 58
Table 2-48: UEF De-rating Factor for Various Installation Locations
Table 2-49: Terms, Values, and References for Solar Water Heater
Table 2-50: Terms, Values, and References for Fuel Switching: Electric Resistance to Fossil Fue Water Heater 66
Table 2-51: Energy Savings & Demand Reductions for Fuel Switching, Domestic Hot Water Electric to Fossil Fuel 67
Table 2-52: Fuel Consumption for Fuel Switching, Domestic Hot Water Electric to Fossil Fuel 67
Table 2-53: Terms, Values, and References for Water Heater Tank Wrap
Table 2-54: Deemed savings by water heater capacity
Table 2-55: Terms, Values, and References for Water Heater Temperature Setback
Table 2-56: Default Energy Savings and Demand Reductions
Table 2-57: Terms, Values, and References for Water Heater Pipe Insulation
Table 2-58: Low Flow Faucet Aerator Calculation Assumptions
Table 2-59: Average Number of Faucets per Home
Table 2-60: Default Savings for Low Flow Faucet Aerators
Table 2-61: Terms, Values, and References for Low Flow Showerhead
Table 2-62: Default Savings for Low Flow Showerheads
Table 2-63: Terms, Values, and References for Thermostatic Shower Restriction Valve
Table 2-64: Default Savings for Thermostatic Restriction Valve
Table 2-65: Terms, Values, and References for Drain Water Heat Recovery Units
Table 2-66: Default Savings for Drain Water Heat Recovery Unit 93
Table 2-67: Terms, Values, and References for ENERGY STAR Refrigerators
Table 2-68: Federal Standard and ENERGY STAR Refrigerators Maximum Annual Energy
Consumption if Configuration and Volume Known
Table 2-69: Default Savings Values for ENERGY STAR Refrigerators
Table 2-70: ENERGY STAR Most Efficient Annual Energy Usage if Configuration and Volume Known ^{Source-4} 99
Table 2-71: Default Savings Values for ENERGY STAR Most Efficient Refrigerators Source 4 101
Table 2-72: Terms, Values, and References for ENERGY STAR Freezers

Table 2-73: Federal Standard and ENERGY STAR Freezers Maximum Annual Consumption if Configuration and Volume Known Standard Stand	104
Table 2-74: Default Savings Values for ENERGY STAR Freezers	 105
Table 2-75: Terms, Values, and References for Refrigerator and Freezer Recycling	 109
Table 2-76: Terms, Values, and References for ENERGY STAR Clothes Washers	114
Table 2-77: Federal Standards and ENERGY STAR Specifications for Clothes Washers ^s	
Table 2-78: Default Clothes Washer Savings	
Table 2-79: Terms, Values, and References for ENERGY STAR Clothes Dryers	
Table 2-80: Combined Energy Factor for Federal Minimum Standard and ENERGY STAR	
Table 2-81: Default Energy Savings and Demand Reductions for ENERGY STAR Clothes	Dryers
Table 2-82: Terms, Values, and References for Heat Pump Clothes Dryers	
Table 2-83: Default Savings for Heat Pump Clothes Dryers	
Table 2-84: Terms, Values, and References for Fuel Switching: Electric Clothes Dryer	
Clothes Dryer.	
Table 2-85: Terms, Values, and References for ENERGY STAR Dishwashers	 125
Table 2-86: Federal Standard and ENERGY STAR v 6.0 Residential Dishwasher Standard	 126
Table 2-87: Default Dishwasher Energy Savings	 126
Table 2-88: Terms, Values, and References for ENERGY STAR Dehumidifier	 128
Table 2-89: Dehumidifier Minimum Federal Efficiency Standards	 129
Table 2-90: Dehumidifier ENERGY STAR Standards	 129
Table 2-91: Dehumidifier ENERGY STAR Most Efficient Criteria	 129
Table 2-92: Dehumidifier Default Energy Savings	
Table 2-93: Terms, Values, and References for Dehumidifier Retirement	<u> 132</u>
Table 2-94: Dehumidifier Retirement Annual Energy Savings (kWh)	 132
Table 2-95: Dehumidifier Retirement Peak Demand Reduction (kW)	<u> 132</u>
Table 2-96: Default Dehumidifier Retirement Annual Energy Savings (kWh)	 133
Table 2-97: Default Dehumidifier Retirement Peak Demand Reduction (kW)	 133
Table 2-98: Terms, Values, and References for ENERGY STAR Ceiling Fans	 135
Table 2-99: Assumed Wattage of ENERGY STAR Ceiling Fans on High Setting	 135
Table 2-100: Energy Savings and Demand Reductions for ENERGY STAR Ceiling Fans	 135
Table 2-101: Terms, Values, and References for ENERGY STAR Air Purifier	 137
Table 2-102: Energy Savings Calculation Default Values	 138
Table 2-103: Demand Savings Calculation Default Values	 138
Table 2-104: Terms, Values, and References for ENERGY STAR Office Equipment	
Table 2-105: ENERGY STAR Office Equipment Energy and Demand Savings Values	141
Table 2-106: Terms, Values, and References for Advanced Power Strips	
Table 2-107: Impact Factors for Advanced Power Strip Types	
Table 2-108: Default Savings for Advanced Power Strips	
Table 2-109: Terms, Values, and References for Residential Air Sealing	
Table 2-110: Default Residential Equipment Efficiency	 149

Table 2-111: Default Unit Energy Savings per Reduced CFM50 ² for Air Sealing
Table 2-112: Default Unit Energy Savings per Reduced CFM50 for Air Sealing
Table 2-113: Terms, Values, and References for Weather Stripping
Table 2-114: Correlation Factor Source 2
Table 2-115: Latent Multiplier Values by Climate Reference City
Table 2-116: Typical Reductions in Leakage Source 154
Table 2-117: Default Annual Energy Savings
Table 2-118: Default Summer Peak Demand Savings
Table 2-119: Terms, Values, and References for Basement Wall Insulation
Table 2-120: Default Base and Energy Efficient (Insulated) R Values
Table 2-121: Terms, Values, and References for Basement or Crawl Space Insulation
Table 2-122: Below-grade R-values
Table 2-123: Terms, Values, and References for ENERGY STAR Windows
Table 2-124: Default UESregion, system , kWh per Square Foot of Replaced Window 168
Table 2-125: Terms, Values, and References for Residential Window Repair
Table 2-126: Existing Infiltration Assumptions
Table 2-127: Terms, Values, and References for Residential New Construction
Table 2-128: Baseline Insulation and Fenestration Requirements by Component for Buildings Less Than 4 Stories (Equivalent U-Factors) ^{Source 10} 175
Table 2-129: Residential New Construction Baseline Building Values for Buildings Less Than 4 Stories
Table 2-130: Baseline Insulation and Fenestration Requirements by Component for Buildings 4 Stories or Higher (Equivalent U-Factors) ^{Source 13} 177
Table 2-131: Residential New Construction Baseline Building Values for Buildings 4 Stories or Higher 177
Table 2-132: Minimum Baseline Gas-Fired Uniform Energy Factors Based on Storage Volume and Draw Pattern
Table 2-133: ENERGY STAR Manufactured Homes References
Table 2-134: ENERGY STAR Manufactured Homes - User Defined Reference Home
Table 2-135: Home Energy Report Persistence Example
Table 2-136: Calculation of Avoided Decay and Incremental Annual Compliance Savings 187
Table 2 137: Terms, Values, and References for HER Persistence Protocol
Table 2-138: Terms, Values, and References for Variable Speed Pool Pumps
Table 2-139: Single Speed Pool Pump Specification
Table 2-140 Definition of Terms for Estimating DLC and Behavior-based Load Impacts

This Page Intentionally Left Blank

2016 TECHNICAL REFERENCE MANUAL

Page viii

2 RESIDENTIAL MEASURES

The following section of the TRM contains savings protocols for residential measures.

2.1 LIGHTING

2 ENERGY STAR RESIDENTIAL MEASURES

2.1 LIGHTING

2.1.1 RESIDENTIAL LED LIGHTING

Target Sector	Residential- Establishments	
Measure Unit	Light Bulb or Fixture	
Measure Life	LEDReplace on Burnout: 15 years ^{Source 1} Early Replacement: 2 years ^{4 Source 2}	Formatted: Font: Italic
Vintage	Replace on Burnout (Upstream <u>, Kit</u>) Early Replacement (Direct Install)	

Savings for residential energy efficientLED lighting products are based on a straightforward algorithm that calculates the difference between baseline and new wattage and the average daily hours of usage for the lighting unit being replaced. As of the writing of this TRM, federal standards for 2021 are uncertain. Baseline values in this measure represent the known EISA 2020 "backstop" provisions. An "in-service" rate is used to reflect the fact that not all lighting products purchased are actually installed. The algorithms include default values for estimating savings from sales to nonresidential customersScrew-based general service LED lamps are limited to direct install programs due to the US Department of Energy's codification of the 45 lumen per watt "backstop" requirement for general service lamps (GSLs). Linear LED fixtures are eligible measures while LED fixtures that effectively replace GSLs, such as downlighting, are not eligible.

ELIGIBILITY

Definition of Efficient Equipment

Table 2-1 provides a summary of the eligibility for residential LED lighting measures and program delivery channels.

Table 2-In order for this measure protocol to apply, the high-efficiency equipment must be a screwin ENERGY STAR LED bulb (general service or specialty bulb) or LED fixture.² 1: Eligibility for Residential LED Lighting

Efficient LED Lighting Product	<u>Lumen</u> <u>Range</u>	Program Delivery	<u>Eligibility</u>
<u>GSL bulb type, below</u> 310 lumens	Less than 310	All	Yes
CSI	210 to 2 200	<u>Retail / upstream</u>	<u>No</u>
<u>GSL</u>	<u>310 to 3,300</u>	<u>Kit</u>	No

⁴ Act 129 Legislation caps measure life at 15 years. Assuming 3 hours of use a day, 15 years equals 16,425 hours. As of December 2018, average rated life hours for ENERGY STAR qualified LEDs was >22,000 hours. See

https://www.energystar.gov/products/lighting_fans-

² The protocol also applies to products that are pending ENERGY STAR qualification.

VOLUME 2: Residential Measures

Formatted: Footer distance from edge: 0.35"

Formatted: Font: Bold

Lighting

Efficient LED Lighting Product	<u>Lumen</u> Range	Program Delivery	<u>Eligibility</u>
		Direct Install	Yes
GSL bulb type, above 3,300 lumens	Greater than 3,300	<u>All</u>	Yes
GSL, exempt bulb type / category	NA	<u>All</u>	Yes
Linear LED fixture	<u>NA</u>	<u>All</u>	Yes
All other fixtures	NA	All	No

Definition of Baseline Equipment

The baseline equipment is assumed to be a bulb or fixture with an efficacy equal to 45 lumens per watt. For upstream buy-down, retail (time of sale), or efficiency kit programs, baseline wattages can be determined using the methods described below. Forvaries by lighting product and delivery channel. GSLs^{Source 3} are only eligible for direct install programs where the wattage of the existing bulb is known, and the existing bulb was in working condition; the baseline wattage is the wattage of the existing lamp removed by the program-may be used as. For LED lamps outside the GSL lumen range (below 310 lumens or above 3,300 lumens) and/or exempt bulb type/categories, the baseline wattage, is the manufacturer rated comparable wattage. Baseline wattages for linear LED fixtures are defined in Table 2-3. GSLs are defined in accordance with the US DOE's updated definition of GSLs effective July 8, 2022, which expanded GSLs to include previously exempt bulb types such as, but not limited to, reflector lamps, rough service lamps, shatter-resistant lamps, 3-way lamps, candelabra lamps, and vibration service lamps. Source 4

ALGORITHMS

The general form of the equation for the ENERGY STAR or other high-efficiencyresidential LED lighting energy savings algorithm is:

Total Savings = Number of Units × Savings per Unit

Energy and demand savings algorithms include a term to account for cross-sector sales (i.e., lamps that end up in non-residential use). Default values for non-residential terms are based on values in Vol. 3, Sec. 3.1.7 Lighting Improvements for Midstream—

(http://www.puc.pa.gov/filing_resources/issues_laws_regulations/act_129_information/technical_r eference_manual.aspx). For direct install programs or other programs where it is known that all lamps will be in residential end uses, there are no non-residential energy or demand savings.

$$\Delta kWh_{res} = \frac{Watts_{base} - Watts_{EE}}{1000 \frac{W}{kW}} \times (1 + IE_{kWh, res}) \times ISR_{res} \times HOU_{res} \times 365 \frac{days}{yr} \times (1 - CSS)$$

$$\Delta kWh_{non-res} = \frac{Watts_{base} - Watts_{EE}}{1000 \frac{W}{kW}} \times (1 + IE_{kWh, non-res}) \times ISR_{non-res} \times HOU_{non-res}$$

$$\times 365 \frac{days}{yr} \times CSS$$

$$\Delta kW_{peak, res} = \frac{Watts_{base} - Watts_{EE}}{1000 \frac{W}{kW}} \times (1 + IE_{kW, res}) \times ISR_{res} \times CF_{res} \times (1 - CSS)$$

VOLUME 2: ENERGY STARResidential Measures

Lighting

$$\Delta kW_{peak,non-res} = \frac{Watts_{base} - Watts_{EE}}{1000 \frac{W}{kW}} \times (1 + IE_{kW,non-res}) \times ISR_{non-res} \times CF_{non-res} \times CSS$$

DEFINITION OF TERMS

 $\Delta kWh = \frac{Watts_{base} - Watts_{EE}}{1,000} \times (1 + L \times IE_{kWh}) \times ISR \times HOU \times 365$

 $\Delta kW_{summer \ peak} = \frac{Watts_{base} - Watts_{EE}}{1,000} \times \left(1 + L \times IE_{kW_s}\right) \times ISR \times CF_s$

 $\Delta kW_{winter \ peak} = \frac{Watts_{base} - Watts_{EE}}{1,000} \times \left(1 + L \times IE_{kW_w}\right) \times ISR \times CF_{w}$

For linear LED fixtures, the following algorithm is used to calculate Watts_{base} for use in the above formulas:

 $=\frac{Lumens_{ee}}{Efficacy_{base}}$

DEFINITION OF TERMS

Watts_{base}

Table 2-2: Terms, Values, and References for ENERGY STARResidential LED Lighting

Term	Unit	Value	Sources	
<i>Watts_{base}</i> , Wattage of baseline case lamp/fixture	Watts	Direct install: EDC Data Gathering ³ GSLs outside of EISA lumen range or see Baseline Wattage Values belowexempt bulb type: Manufacturer rated comparable wattage Linear LED fixture: EDC Data Gathering (Lumensee) and Table 2-3 (Efficacybase)	4 <u>EDC data</u> gathering, 3 and 4	Formatted: Font: 9 pt
WattsEE, Wattage of efficient case lamp/fixture	Watts	EDC Data Gathering	EDC Data Gathering	
HOU _{res} HOU, Average hours of use per day per unit installed for residential use	hours day	Table 2-4	2 <u>7</u>	
HOUnon-res, Average hours of use per day per unit installed for non-residential use <u>L</u> , Factor to adjust interactive effect factors to account for proportion of LEDs installed in interior locations	hours day	EDC Data Gathering Default = 6.85 <u>Interior:</u> 100% Exterior: 0% Unknown: 90.3%	5 <u>10</u>	Formatted: Font: Italic

³-EDCs may use the wattage of the replaced bulb for directly installed program bulbs

VOLUME 2: ENERGY STARResidential Measures

Lighting

I

Page 3

Formatted: Don't keep with next

Term	Unit	Value	Sources
Ierm	Unit		Sources
IEkWhree, HVAC Interactive Effect for LED		EDC Data Gathering	
energy for residential use	None	Default = <u>Table_</u> 2 <u>-</u> 5	3 <u>6</u>
		Exterior Fixtures: 0%	
IE _{kW_res} . HVAC s. Summer Interactive Effect for		EDC Data Gathering	
LED demand forDemand Factor – applies to	None	Default =Table 2-3	36
residential uselighting in conditioned residential	None	Table 2-5 Exterior	<u> 90</u>
spaces.		Fixtures: 0%	
IE KWD non-res - HVAC Interactive Effect for LED		EDC Data Gathering	_
energy for non-residential use	None	Default = 0%	5
		EDC Data Gathering	
<i>IE_{kW,non-res}</i> , <u>HVAC</u> , <u>w</u> , <u>Winter</u> Interactive Effect for LED demand for non-Demand Factor – applies		Default =	
to residential use lighting in conditioned	None	19.2% Default =Table	5 <u>6</u>
residential spaces.		2 <u>-</u> 5	
		Direct Install: 100%	
ISRres/SR, In-service rate per incented product		All other program	EDC Data
for residential use	%	delivery: EDC Data	Gathering4
		Gathering ⁴ ,	<u>contorning</u> .
		Default = 92% ⁵	
ISR _{non-res} , In-service rate per incented product for	%	EDC Data Gathering,	5
non-residential use	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Default = 98%	•
CFres, Demand <u>CFs</u> , Summer Coincidence Factor	<u>None</u> Proport	Table 2-20,101	2 5
for residential use	ion	10010 2 20.101	29
CFnon-res, Demand Coincidence Factor for non-	NoneProport	EDC Data Gathering,	5
residential use <u>CFw</u> , Winter coincidence factor	ion	Default = 0.60 <u>121</u>	5
CSS. Cross-sector sales. ShareLumensee.		EDC Data Gathering	
Lumen rating of the incentivized lamps that go to	% <u>Lumens</u>	Default = 7.4%	EDC Data Gathering6
non-residential uses.lighting product			Cathonig
Efficacybase, Efficacy of the baseline fixture type	Lumens/watt	Table 2-3	8, 9
for linear fluorescents	<u>Lumono man</u>		<u>0, 0</u>

VARIABLE INPUT VALUES

Baseline Wattage Values, Linear LEDs

For delivery methods where the install location is unknown, such as upstream programslinear LEDs, baseline wattage is dependent on lumen output. To determine the Wattsbase use the following formula:

 $Watts_{base} = Lumen \ Output \div 45 \frac{lumens}{watt}$,

where Lumen Output is the rated light output of the the least-efficient bulb, commercially-available, commonly-installed technology available in lumens.

⁴ For EDC Data Gathering, EDCs must use the method established in the DOE Uniform Methods Project, October 2017. (https://www.nrel.gov/docs/fy17osti/68562.pdf) ⁵-For direct install, giveaway, and energy kit program bulbs, EDCs have the option to use an evaluated ISR when verified through PA

program primary research.

VOLUME 2: ENERGY STARResidential Measures

Page 4

Lighting

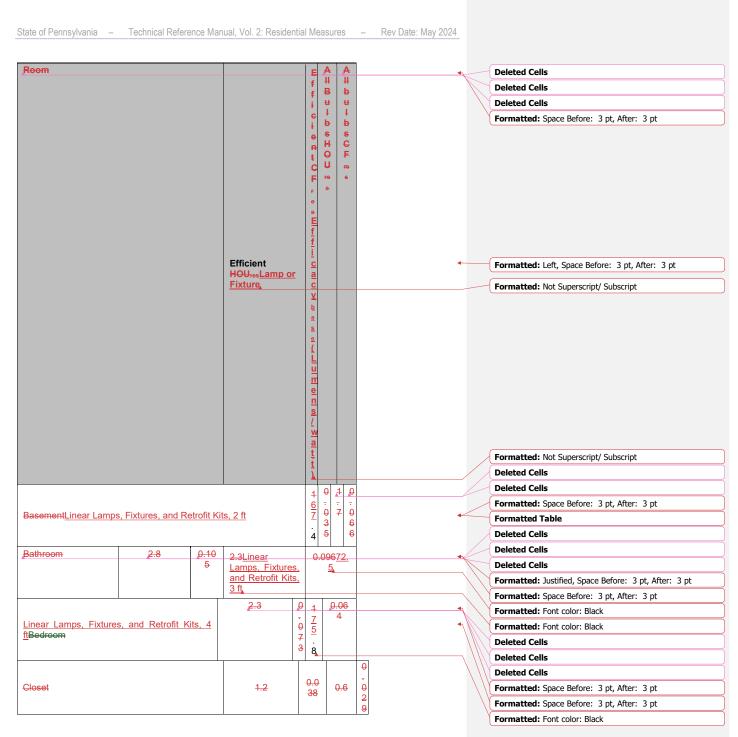
Rev Date: May 2024

For direct installation programs where the removed bulb is known, and the bulb is in working condition, EDCs may use thethe market. Linear LED baseline wattage of the replaced bulb in lieu of the formula.⁶(Wattsbase) is calculated by dividing Lumensee by Efficacybase (Table 2-3).

Hours of Use and Peak Coincidence Factor Values

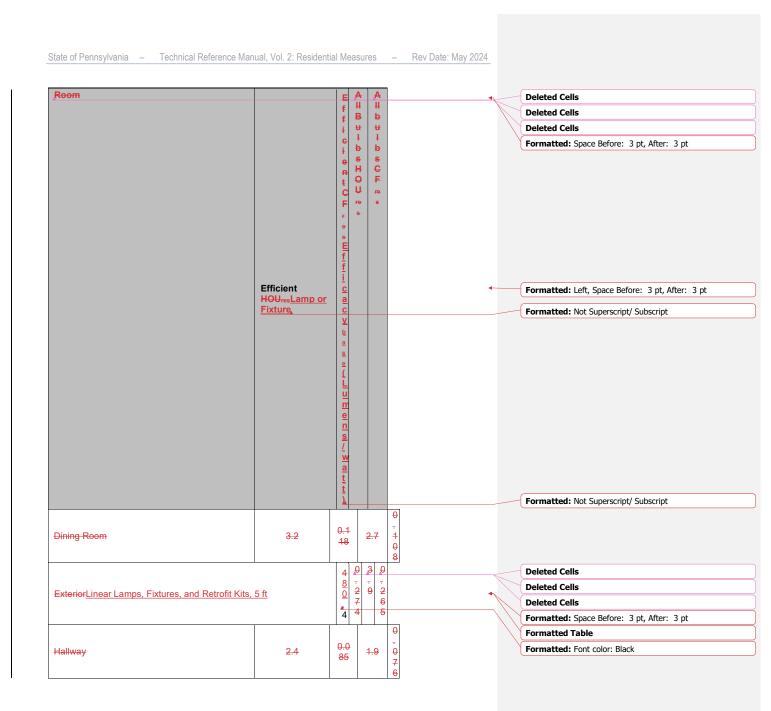
In the absence of more current EDC data gathering and analysis, the default values for daily hours of use (HOU_{res}) and coincidence factors (CF_{res}) are below in Table 2-2. The "all-bulbs" HOU_{res} should be used for programs where it is known that the majority (> 90% or entirety) of the home's sockets are retrofitted with efficient lighting (e.g., a direct installation program that replaces most of the bulbs in a home). All other programs, including upstream programs, should default to the efficient HOU_{res} and CF_{res}. Specific room-based HOU_{res} and CF_{res} may be used for programs where the room-type of installation is known and recorded, otherwise the whole house or unknown room value should serve as the estimate.

⁶-Bulbs that are not installed during the home visit do not qualify for this exemption. This includes bulbs that are left for homeowners to install. In these instances, baseline wattages should be calculated using the provided formula.


VOLUME 2: ENERGY STARResidential Measures

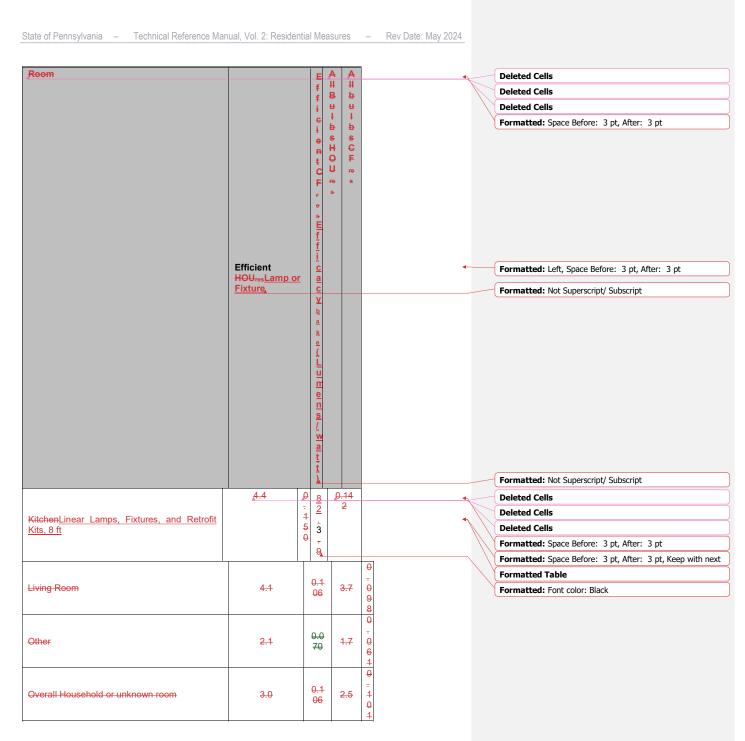
Lighting

Table 2-3: Bulb and Fixture Hours of Use and Peak Coincidence Factor Values, by Room: Baseline Wattage, Linear Lamps & Fixtures


VOLUME 2: ENERGY STARResidential Measures

Lighting

VOLUME 2: ENERGY STARResidential Measures


Lighting

VOLUME 2: ENERGY STARResidential Measures

Page 8

Lighting

VOLUME 2: ENERGY STARResidential Measures

Lighting

Interactive Effects Values

In the absence of EDC data gathering and analysis, the default values for Energy and Demand HVAC Interactive Effects are below. Exterior Fixtures should apply a 0% IE value.

Hours of Use

Daily hours of use (HOU) are provided in Table 2-4. Specific room-based HOU may be used for programs where the room-type of installation is known and recorded; otherwise, the overall household or unknown room value should serve as the estimate.

Table 2-4: EnergyBulb and Demand HVAC Interactive Effects Fixture Hours of Use by EDC⁷Room

EDCRoom	<mark>IE</mark> k₩h,	<mark>,IE</mark> k₩, res	Deleted Cells
	res <mark>HOU</mark>	4.0.0/	Formatted Table
Duquesne <u>Basement</u>	8% <u>1.7</u>	13%	Formatted: Subscript
FE (Met-Ed)Bathroom	-8% <u>2.3</u>	13%	Formatted: Font color: Auto
BedroomFE (Penelec)	<u>1%.8</u>	10%	Formatted: Font color: Auto
FE (Penn Power) <u>Closet</u>	0% <u>.6</u>	20%	Formatted: Font color: Auto
FE (WPP)Dining Room	- <u>2%.7</u>	30%	Formatted: Font color: Auto
ExteriorPPL	<u>-6%3.9</u>	12%	Formatted: Font color: Auto
PECOHallway	1% <u>.9</u>	23%	Formatted: Font color: Auto
Kitchen	:	3.9	Formatted: Font color: Auto
Living Room		3.7	Formatted: Font color: Auto
Other			Formatted: Font: 9 pt, Font color: Black
Overall Household or		<u>1.7</u>	Formatted: Font color: Auto
Unknown Room	2	2.5	Formatted: Font color: Auto
La constructione de la construction			Formatted: Font color: Auto

Interactive Effects Values

Default Energy and Demand HVAC Interactive Effects are provided in Table 2-5.

Table 2-5: Energy and Demand HVAC Interactive Effects by EDC

EDC	<u>IE</u> kWh	IE _{kW s}	<u>IE</u> kW_w
PECO	<u>-0.0007</u>	<u>0.1193</u>	<u>-0.0581</u>
<u>PPL</u>	<u>-0.0681</u>	<u>0.1046</u>	<u>-0.1480</u>
Duquesne Light	<u>0.0005</u>	<u>0.0957</u>	<u>-0.0291</u>
FE (Met-Ed)	<u>-0.0448</u>	<u>0.1193</u>	<u>-0.1242</u>
FE (Penelec)	<u>-0.0442</u>	<u>0.0736</u>	<u>-0.0872</u>
FE (Penn Power)	<u>-0.0102</u>	<u>0.1311</u>	<u>-0.0555</u>
FE (WPP)	<u>-0.0537</u>	<u>0.1001</u>	<u>-0.1163</u>

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer-_specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with

⁷-HVAC Interactive Effects modeled through REM/Rate models, using EDC specific inputs. Values were weighted to the saturation of HVAC equipment and housing types present in each EDC service territory as reported in the Pennsylvania Statewide Residential End Use and Saturation Study, 2012. PECO values are based on an analysis of PY4 as performed by Navigant.

VOLUME 2: ENERGY STARResidential Measures

Page 10

Formatted: Keep with next

Lighting

verification of open variables. The Pennsylvania Evaluation Framework[®] provides specific guidelines and requirements for evaluation procedures.

SOURCES

- 1) EISA standards require efficacy of 45 lumens/watt. https://www.energy.gov/sites/prod/files/2017/01/f34/gsI-irl-finalrule_2016-12-29_0.pdf
- 1) Act 129 Legislation caps measure life at 15 years. Assuming 3 hours of use a day, 15 years equals 16,425 hours. As of January 2024, average rated life hours for ENERGY STAR-qualified LEDs was >21,800 hours. Accessed January 2024. Weblink
- 2) Early replacement measure life calculated by multiplying one-half (the assumed proportion of remaining life) times the product of (1) the distribution of incandescent, halogen, and CFL bulbs from the 2023 PA residential baseline study and (2) the service lifetimes for incandescent, halogen, and CFL bulbs assumed in DOE Impact Statement for US Department of Energy Appliance and Equipment Standards Rulemakings and Notices. July 25, 2022. Weblink
- 3) US Department of Energy Appliance and Equipment Standards Rulemakings and Notices. July 25, 2022. Weblink
- 4) US Department of Energy Appliance and Equipment Standards Rulemakings and Notices. July 8, 2022. Weblink
- 5) Average "all bulb" probably of operation during PJM summer and winter peak periods calculated using load shapes from Statewide Evaluation Team for Pennsylvania Public Utilities Commission. (2014, January). Pennsylvania Statewide Act 129 2014 Commercial & Residential Light Metering Study. Appendix A Residential Load Shapes. Weblink
- 6) SWE Interactive Effect Calculator.
- 2)7)Statewide Evaluation Team (GDS Associates, Inc, Nexant, Research into Action, Apex-Analytics LLC), ") for Pennsylvania Public Utilities Commission. (2014, January). 2014 Commercial & Residential Light Metering Study", January 13, 2014. Based on data derived from Tables 1-2 & Pg 4, table 1-3 but exclusive of inefficient bulbs1. Weblink
- 3) GDS Simulation Modeling, September-November 2013. PECO values are based on an analysis of PY4 as performed by Navigant.
- 8) The ISR is based on an installation rate "trajectory" and includes savings for all program bulbs that are believed to be installed within three years of purchase as established in the DOE Uniform Methods Project (UMP), Chapter 6: Residential Lighting Evaluation Protocol. October 2017. This protocol estimates the three year ISR based on a researched first year ISR. For the purposes of this TRM, a 79% first year ISR was used based on intercept surveys conducted in the PECO service territory (Grainger Lighting Product Web Pages: Weblink1, Weblink2
- 9) PA 2026 TRM Appendix C. Weblink
- 10) 9.7% of LEDs observed for 2023 Pennsylvania Statewide Act 129 Residential Baseline study were exterior.

Formatted: List Paragraph,TT - Numbered List Paragraph,Bullet Styles para,TOC etc.,Bulleted List Paragraph, Tab stops: 0.25", List tab + Not at 0.5"

⁸ http://www.puc.pa.gov/filing_resources/issues_laws_regulations/act_129_information/act_129_statewide_evaluator_swe_.aspx

VOLUME 2: ENERGY STARResidential Measures

Lighting

- 4) Navigant Consulting, Inc.-"Final Annual Report to the Pennsylvania Public Utility Commission. Prepared for PECO. Program Year 5". November, 2014.)
- 5) See Pennsylvania TRM Vol. 3, Sec. 3.1.7 Lighting Improvements for Midstream. http://www.puc.pa.gov/filing_resources/issues_laws_regulations/act_129_information/technic al_reference_manual.aspx
- 6) Based on a savings-weighted average of EDC-reported cross-sector sales values for PY6-PY9.

http://www.puc.pa.gov/filing_resources/issues_laws_regulations/act_129_information/electric_distribution_company_act_129_reporting_requirements.aspx

VOLUME 2: ENERGY STARResidential Measures

Lighting

2.1.2 RESIDENTIAL OCCUPANCY SENSORS

Target Sector	Residential Establishments
Measure Unit	Occupancy Sensor
Measure Life	108 years ^{Source 3}
Vintage	Retrofit

Savings for residential occupancy sensors inside residential homes or common areas are based on a straightforward algorithm that calculates savings based on the wattage of the <u>bulb(s) or</u> fixture(s) being controlled by the occupancy sensor, the daily run hours before installation, and the daily run hours after installation. This protocol provides a deemed savings value for occupancy sensors sold through an upstream buy-down or retail (time of sale) program (and therefore the controlled wattage is unknown).

Formatted: Normal

Formatted: Normal

Formatted: Normal

Formatted: Body Text

Formatted: Not Superscript/ Subscript

ELIGIBILITY

ELIGIBILITY

This protocol is for the installation of occupancy sensors and/orhard-wired or plug-in occupancy			
sensors in single-family homes or inside multifamily units. It can also be used to estimate savings			
from connected (aka "smart") lighting inside residential homes. Occupancy sensors installed			
outdoors or in multifamily common areas- are not eligible under this protocol.			

ALGORITHMS

ALGORITHMS

 $\Delta - kWh$

 $=\frac{Watts_{controlled}}{1000\frac{W}{kW}} \times (RH_{old} - RH_{new})}\frac{Watts_{controlled}}{1,000} \times (1 + IE_{kWh})$ $\times (RH_{old} - RH_{new}) \times 365\frac{days}{W} \times ISR$

AKW_{peak}

DEFINITION OF TERMS

= 0

$\Delta k W_{summer \ peak}$	$= \frac{Watts_{controlled}}{1,000} \times (1 + IE_{kW_s}) \times \left(\frac{RH_{old} - RH_{new}}{RH_{old}}\right) \times ISR \times CF_s$
AW	$= \frac{Watts_{controlled}}{V} \times (1 + IF) \times (\frac{RH_{old} - RH_{new}}{V}) \times ISR \times CF$

 $\Delta kW_{winter \ peak} = \frac{1}{1,000} \times (1 + IE_{kW_w}) \times (\frac{1}{RH_{old}}) \times ISR \times CF_w$

DEFINITION OF TERMS

VOLUME 2: ENERGY STARResidential Measures

Lighting

Table 2-6: Terms, Values, and References for Residential Occupancy Sensors

Term	<u>Unit</u>	Value	<u>Source</u>
Residential Occupancy Sensors			

Term	Unit	Value		Source
Watts _{controlled} , Wattage of the fixture(s) being controlled by the occupancy sensor	₩	EDC Data Gathering Default = 105.5 W	EDC Data Gathering	
Wattscontrolled, Wattage of the bulb(s) or fixture(s) being controlled by the occupancy sensor	<u>W</u>	EDC Data Gathering, Hard-wired Default: 108W Plug-in Default: 9W		EDC Data Gathering, <u>7, 8</u>
IEkWh. HVAC Interactive Effect for lighting energy	e Effect for lighting <u>None</u>			<u>9</u>
IE _{kW, s.} Summer Interactive Demand Factor – applies to residential lighting in conditioned residential spaces.	<u>None</u>	<u>Table</u> 2 <u>-</u> 5		<u>9</u>
<u><i>IE_{kW, w}</i>, Winter Interactive Demand Factor</u> <u>– applies to residential lighting in</u> <u>conditioned residential spaces.</u>	<u>None</u>	Table 2 <u>-</u> 5		<u>9</u>
RHold , Daily run hours before installation	Hours	2.5		1
RH _{new} , Daily run hours after installation	Hours	1.75 (70% of RH_{old})		2

Formatted Table

DEEMED SAVINGS

For occupancy sensors for which the controlled wattage is unknown, the deemed savings are 28.9 kWh/year per occupancy sensor. This value is based on the Phase III Market Potential Study for Pennsylvania.^{Source 4}

<u><i>RH</i>new</u> , Daily run hours after installation	<u>Hours</u>	<u>1.5 (60% of RH_{old})</u>	2
ISR, In-service rate	<u>%</u>	EDC Data Gathering, Upstream Default: 95% Kit Hard-wired Default: 16% Kit Plug-in: EDC Data Gathering Direct Install Default: 100%	<u>5, 6, 7</u>
CF ₈ Summer coincidence factor	<u>None</u>	<u>0.101</u>	<u>4</u>
<u><i>CF</i>_w, Winter coincidence factor</u>	<u>None</u>	<u>0.121</u>	<u>4</u>

VOLUME 2: ENERGY STARResidential Measures

Lighting

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

- 1) Statewide Evaluation Team (GDS Associates, Inc, Nexant, Research into Action, Apex Analytics LLC), ") for Pennsylvania Public Utilities Commission. (2014, January). 2014 Commercial & Residential Light Metering Study", January 13, 2014. Weblink
- Lighting control savings fractions consistent with current programs offered by National Grid, Northeast Utilities, Long Island Power Authority, NYSERDA, and Energy Efficient Vermont
- GDS Associates, Inc. (2007). Measure Life Report: Residential and Commercial/Industrial Lighting and HVAC Measures. Prepared for The New England State Program Working Group.
- 4) Statewide Evaluation Team (GDS Associates, Inc, Nexant, Research into Action, Apex Analytics LLC), "2015 Energy Efficiency Potential Study for Pennsylvania", February 27, 2015. http://www.puc.pa.gov/pcdocs/1345079.pdf
- 2) Weighted average of percentage reduction by hours of use per room (excluding exterior and other). Navigant for Consortium for Energy Efficiency. (2014, January). Residential Lighting Controls Market Characterization. Pg 19, table 7. Weblink.
- 3) California Public Utilities Commission Database for Energy Efficient Resources (DEER) EUL Support Table for 2020.
- 4) Average "all bulb" probably of operation during PJM summer and winter peak periods calculated using load shapes from Statewide Evaluation Team for Pennsylvania Public Utilities Commission. (2014, January). Pennsylvania Statewide Act 129 2014 Commercial & Residential Light Metering Study. Appendix A Residential Load Shapes. Weblink
- 5) Maryland EmPOWER Technical Reference Manual Volume 2 Residential Measures. (2023, version 11.0). "Occupancy Sensor - Wall-Mounted".
- 6) Weighted average of evaluated PY13 and PY14 outlet gasket ISRs from FirstEnergy kits.
- Calculated as average number of bulbs controlled times average bulb wattage. Average 7) bulbs controlled is assumed to be the average bulbs per room found in the 2023 PA residential baseline study. Average bulb wattage is calculated by multiplying the distribution of bulb technologies (LED, CFL, linear fluorescent, incandescent, and halogen) found in the 2023 PA residential baseline study by the average wattage per technology reported in Buccitelli, N., Elliott, C., Schober, S., and Yamada, M. (2017, November). "2015 U.S. Lighting Market Characterization". Pg 54, table 4.5. Navigant Consulting. Weblink
- 8) Mean, median, and mode wattage of ENERGY STAR-certified 60w equivalent LEDs. Accessed August 2023. Weblink
- 9) SWE Interactive Effect Calculator.

VOLUME 2: ENERGY STARResidential Measures

Lighting

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
May 2024				

Residential

Formatted: Footer distance from edge: 0.35"

2.1.3 LED AND ELECTROLUMINESCENT NIGHTLIGHTS

Target Sector

T

 VOLUME
 2:
 ENERGY
 STARResidential

 Measures
 Formatted: Font: Bold

 Lighting
 Page 1

2.1.32.1.1 LED AND ELECTROLUMINESCENT NIGHTLIGHTS

Target Sector	Residential Establishments
Measure Unit	Nightlight
Measure Life	8 years ^{Source 1}
Vintage	Replace on Burnout

Savings from installation of plug-in LED and electroluminescent nightlights are based on a straightforward algorithm that calculates the difference between existing and new wattage and the average daily hours of usage for the lighting unit being replaced. An in-service rate is used to modify the savings based upon the outcome of participant surveys, which will inform the calculation. Demand savings is assumed to be zeroZero demand savings are assumed for this measure.

ELIGIBILITY

This measure documents the energy savings resulting from the installation of an LED or electroluminescent nightlight instead of a standard nightlight. The target sector is primarily residential.

ALGORITHMS

The general form of the equation for the nightlight energy savings algorithm is:

Δ -kWh	$=\frac{(W_{base} \times HOU_{base} - W_{ee} \times HOU_{ee})}{1000^{W}} \times$	$\leftarrow \frac{(W_{base} \times HOU_{base} - W_{ee} \times HOU_{ee})}{1,000}$
	$\frac{1000 \frac{W}{kW}}{\times ISR_{NL} \times 365 \frac{days}{W}}$	1,000
AKW peak	= 0 (assumed)	
$\Delta k W_{summer pea}$	k	= 0
$\Delta k W_{winter \ peak}$		= 0

DEFINITION OF TERMS

ENERGY

Table 2-7: Terms, Values, and References for LED and Electroluminescent Nightlights

STARResidential

Term	Unit	Value	Sources	
W _{base} , Watts per baseline nightlight	Watts	EDC Data Gathering Default = 7	1	
W_{ee} , Watts per efficient nightlight	Watts	EDC Data Gathering Default values:	2	
		LED = 1 Electroluminescent = 0.03		
<i>HOU</i> _{base} , Daily hours of use for baseline nightlight	hours day	12	1	
<i>HOU_{ee}</i> , Daily hours of use for efficient nightlight	hours day	LED = 12 Electroluminescent = 24	3	
ISR _{NL} , In-Service Rate per efficient nightlight	None	EDC Data Gathering Default = 0. <u>2014</u>	4	

Formatted: Font: Bold

VOLUME Measures Lighting 2:

Page 2

Formatted: Normal

Formatted: Normal

State of Pennsylvania – Technical Reference Manual, Vol. 2: Residential Measures – Rev Date: Feb. 2021 May 2024	
DEEMEDDEFAULT ENERGY SAVINGS	
LED ΔkWh = $\frac{(7 \times 12 - 1 \times 12)}{1000 \frac{W}{kW}} \times \frac{(7 \times 12 - 1 \times 12)}{1,000} \times 0.214 \times 365 \frac{days}{yr} = 5.3.7 kWh$	
Electroluminescent $\Delta kWh = \frac{(7 \times 12 - 0.03 \times 24)}{1000 \frac{4V}{kW}} \times \frac{(7 \times 12 - 0.03 \times 24)}{1,000} \times 0.214 \times 365 \frac{days}{yr} = 6.14.3 kWh$	
EVALUATION PROTOCOLS	Formatted: Equation, Tab stops: 1.5", Left
For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.	
Sources	Formatted: Body Text
EVALUATION PROTOCOLS	
For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer-specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.	
SOURCES	Formatted: Normal
 Southern California Edison Company, <u>(2009, February)</u>. "LED, Electroluminescent & Fluorescent Night Lights", Work Paper WPSCRELG0029 Rev. 1, February 2009, pppg. 2–3. 	
 Limelite Equipment Specification. Personal Communication, Ralph Ruffin, EL Products, 512- 357-2776/-ralph@limelite.com. 	
3) Electroluminescent nightlights are assumed to operate continuously.	
4) Based on ISR rates reported by FirstEnergy for nightlights in kits for PY9. See	
http://www.puc.pa.gov/filing_resources/issues_laws_regulations/act_129_information/electric	
 4) Weighted average of ISRs from surveys of FirstEnergy customers that received nightlights in 	
kits in PY13 and PY14.	
	Formatted: Font: Bold
VOLUME 2: ENERGY STARResidential Measures	

State of Pennsylvania	-	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
May 2024				

2.1.4 HOLIDAY LIGHTS

Target Sector	Residential Applications		
Measure Unit	One 50-bulb Strand of Holiday lights		
Measure Life	10 years Source 1, years Source 2		
Vintage	Replace on Burnout		

LED holiday lights reduce light strand energy consumption by up to 90%. Up to 25 strands can be connected end-to-end in terms of residential grade lights. Commercial grade lights require different power adapters and as a result, more strands can be connected end-to-end. There are no demand savings as holiday lights are assumed to operate only at night during the holiday season.

ELIGIBILITY

ELIGIBILITY

This protocol documents the energy savings attributed to the installation of LED holiday lights indoors and outdoors. LED lights must replace traditional instead of incandescent holiday lights.

ALGORITHMS

Algorithms yield kWh savings results per package (kWh/yr per package of LED holiday lights).

ΔkWh_{C9}

$= \frac{\{(INC_{c9} - LED_{c9}) \times \#Bulbs \times \#Strands \times HOU\}}{\{(INC_{c9} - LED_{c9}) \times \#Bulbs \times \#Strands \times HOU\}}$	$[(INC_{C9} - LED_{C9}) \times #Bulbs \times #Strands \times HOU]$
	1,000
ΔkWh_{C7}	

=	$\frac{[(INC_{C7} - LED_{C7}) \times \#Bulbs \times \#Strands \times HOU]}{W}$	$[(INC_{C7} - LED_{C7}) \times #Bulbs \times #Strands \times HOU]$
	1000.**	1,000

ΔkWh_{mini}

$\frac{[(INC_{mini} - LED_{mini}) \times #Bulbs \times #.}{[(INC_{mini} - LED_{mini}) \times #Bulbs \times #.}$	$\frac{Strands \times HOU}{[(INC_{mini} - LED_{mini}) \times #Bulbs \times #Strands \times HOU]}$
=	1,000
$\Delta k W_{summer \ peak}$	= 0
$\Delta k W_{winter \ peak}$	= 0

Key assumptions

- 1) All estimated values reflect the use of residential (50ct. per strand) LED bulb holiday lighting.
- 2) Secondary impacts for heating and cooling were not evaluated.
- 3) It is assumed that 50% of rebated lamps are of the "mini" variety, 25% are of the C7 variety, and 25% are of the C9 variety. If the lamp type is known or fixed by program design, then the savings can be calculated as described by the algorithms above. Otherwise, the savings for the mini, C7, and C9 varieties should be weighted by 0.5, 0.25 and 0.25, respectively, as in the algorithm below.

							Formatted: Font: Bold
VOLUME	2:	ENERGY	STARResidential				
Measures							
Lighting				Page 4			

Formatted: Footer distance from edge: 0.5"

Formatted: Normal

Formatted: Normal

$\Delta \, kWh_{Default} \qquad = [\%_{C9} \, \times \Delta \, kWh/yr_{C9}] + [\%_{C7} \, \times \Delta \, kWh/yr_{C7}] + [\%_{mini} \, \times \Delta \, kWh/yr_{mini}]$

DEFINITION OF TERMS

1

Table 2-8: Terms, Values, and References for Holiday Lights

Parameter	Unit	Value	Source
<i>LED_{mini}</i> , Wattage of LED mini bulbs	Watts/Bulb	0.08	1
<i>INC_{mini}</i> , Wattage of incandescent mini bulbs	Watts/Bulb	0.48 <u>35</u>	1
<i>LED</i> _{C7} , Wattage of LED C7 bulbs	Watts/Bulb	0.48 <u>08</u>	1
<i>INC_{C7}</i> , Wattage of incandescent C7bulbs	Watts/Bulb	6.0<u>5.25</u>	1
LED _{C9} , Wattage of LED C9 bulbs	Watts/Bulb	2. 0 <u>.28</u>	1
<i>INC_{C9}</i> , Wattage of incandescent C9 bulbs	Watts/Bulb	7.0	1
% _{Mini} , Percentage of holiday lights that are "mini"	%	50%	4 <u>2</u>
%c7, Percentage of holiday lights that are "C7"	%	25%	4 <u>2</u>
%c9 , Percentage of holiday lights that are "C9"	%	25%	4 <u>2</u>
# _{Bulbs} , Number of bulbs per strand	Bulbs/strand	EDC Data Gathering Default : 50 per strand Mini: 100 <u>Default C7: 25</u> <u>Default C9: 25</u>	<u>31</u>
# _{Strands} , Number of strands of lights per package	strands<u>Strands</u>/package	EDC Data Gathering Default: 1 strand	3 <u>1</u>
HOU , Annual hours of operation	Hours/yr	150	4 <u>2</u>

DEEMED DEFAULT SAVINGS

The <u>deemeddefault</u> savings for installation of LED C9, C7, and mini lights is <u>37.525.2</u> kWh, <u>4119.4</u> kWh, and <u>34.1</u> kWh, respectively. The weighted average savings are 24<u>13.2</u> kWh per strand. There are no demand savings as holiday lights only operate at night. Since the lights do not operate in the summer, the coincidence factor for this measure is 0.0.

EVALUATION PROTOCOL

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings. As these lights are used on a seasonal basis, verification

VOLUME 2: ENERGY STARResidential Measures

Lighting

Formatted: Font color: Auto Formatted: Font: Bold

must occur in the winter holiday season. Given the relatively small amount of impact evaluation risk that this measure represents, and given that the savings hinge as heavily on the actual wattage of the supplanted lights than the usage of the efficient LED lights, customer interviews should be considered as an appropriate channel for verification.

SOURCES

I

- 1) <u>The DSMore-Sample of 180 holiday lights gathered from HomeDepot.com and Walmart.com.</u> Accessed March 2024.
- 1)2)Michigan Database of Energy Efficiency-Measures: Based on spreadsheet calculations using collected data Database. Accessed January 2024. Weblink
- 2) <u>http://www.energyideas.org/documents/factsheets/HolidayLighting.pdf</u>
- 3) Typical values of lights per strand and strands per package at Home Depot and other stores.

Formatted: Hyperlink

2: Tes	E	NERGY	STARResidential

State of Pennsylvania -May 2024

Technical Reference Manual, Vol. 2: Residential Measures - Rev Date: Feb. 2021

2.2 HVAC

2.2.1 HIGH EFFICIENCY EQUIPMENT: ASHP, CAC, GSHP, PTAC, PTHP

Target Sector	Residential- Establishments	
Measure Unit	Central AC, ASHP, GSHP, PTAC or PTHP Unit	
Measure Life	15 ^{Source 1}	
Vintage	Early Replacement, Replace on Burnout, New Construction	

This measure defines the methods for determining energy impact savings from installation of residential high-efficiency cooling and heating equipment. Input data to savings algorithms are based both on fixed assumptions and data supplied from the high-efficiency equipment AEPS application form or EDC data gathering.

The algorithms applicable for this program measure the energy savings directly related to the more efficient hardware installation.

Cooling savings may also be claimed under this measure for quality installation of properly sized new equipment.

Larger commercial air conditioning and heat pump applications are dealt withaddressed in Section 3 of Volume 3: Commercial and Industrial Measures of this Manual, including GSHP systems over $65 \frac{kBTU}{hr}$.

ELIGIBILITY

This measure requires the purchase of a high-efficiency Central Air Conditioner (CAC), Air Source Heat Pump (ASHP), Ground Source Heat Pump (GSHP), Packaged Terminal Air Conditioner (PTAC) or Packaged Terminal Heat Pump (PTHP). Cooling and heating savings claimed from proper sizing requires Manual J calculations, following of ENERGY STAR HVAC Quality Installation procedures, or similar calculations. Residential establishmentsbuildings with properly sized baseline equipment are excluded from claiming savings from proper sizing.

VOLUME 2: ENERGY STARResidential Measures

HVAC

Formatted: Outline numbered + Level: 2 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0" + Indent at: 0.4"

ALGORITHMS

This algorithm is used for the installation of new high efficiency air conditioners or heat pumps. ASHP and CAC measures:

∆kWh	$= \Delta kWh_{cool} + \Delta kWh_{heat} + \Delta kWh_{PSF}$	
	$\underline{AkWh_{cool}} = CAPY_{cool} \times \left(\frac{OF_{cool}}{SEER\ base} - \frac{1}{SEER^2_{ee}}\right) \times EFLH_{cool}$	
	$\underline{AkWh_{heat}} = CAPY_{heat} \times \left(\frac{OF_{heat}}{HSPF_{base}} - \frac{1}{HSPF_{ee}}\right) \times EFLH_{heat}$	
	$\underline{\Delta kWh_{PSF}} = \frac{CAPY_{cool}}{SEER_{ee}} \times PSF \times EFLH_{cool} + \frac{CAPY_{heat}}{HSPF_{ee}} \times PSF \times EFLH_{heat}$	
<u> AkWsummer peak</u>	$_= \Delta k W_{cool} + \Delta k W_{PSF \ cool}$	
	$\underline{\Delta k W_{cool}} = CAPY_{cool} \times \left(\frac{OF_{cool}}{EER2_{base}} - \frac{1}{EER2_{ee}}\right) \times CF_{summer}$	
	$\Delta kW_{PSFcool} = \frac{CAPY_{cool}}{EER2_{ee}} \times PSF \times CF_{summer}$	
<u> AkWwinter peak</u>	$_= \Delta k W_{heat} + \Delta k W_{PSF_heat}$	
	$\underline{\Delta kW_{heat}} = CAPY_{heat} \times \left(\frac{OF_{heat}}{COP_{base}} - \frac{1}{COP_{ee}}\right) \times \frac{1}{3.412\frac{\text{BTU}}{\text{W} \cdot \text{h}}} \times CF_{winter}$	
	$\underline{AkW_{PSFheat}} = \frac{CAPY_{heat}}{COP_{ee} \times 3.412 \frac{BTU}{W \cdot h}} \times PSF \times CF_{winter}$	
This algorithm	is used for the installation of GSHP, PTAC and PTHP measures:	
<u>AkWh</u>	$_= \Delta kWh_{cool} + \Delta kWh_{heat} + \Delta kWh_{PSF}$	
	$\Delta kWh_{cool} = CAPY_{cool} \times \left(\frac{OF_{cool}}{SEER_{base}} - \frac{1}{SEER_{ee}}\right) \times EFLH_{cool}$	
	$\Delta kWh_{heat} = CAPY_{hea} \times \left(\frac{OF_{heat}}{HSPF_{base}} - \frac{1}{HSPF_{ee}}\right) \times EFLH_{heat}$	
	$\underline{\Delta kWh_{PSF}} = \frac{\underline{CAPY_{cool}}}{\underline{SEER_{ee}}} \times PSF \times EFLH_{cool} + \frac{\underline{CAPY_{heat}}}{\underline{HSPF_{ee}}} \times PSF \times EFLH_{heat}$	
▲ 	$= \frac{\Delta k W_{enol} + \Delta k W_{PSF}}{4}$	Formatted: Font: Arial, Not Italic, Subscript
		Formatted: Equation
<u> ////////////////////////////////////</u>	$_= \Delta k W_{cool} + \Delta k W_{PSF_cool}$	
	$\Delta kW_{cool} = CAPY_{cool} \times \left(\frac{OF_{cool}}{EER_{base}} - \frac{1}{EER_{ee}} \right) \times CF \left(\frac{OF_{cool}}{EER_{base}} - \frac{1}{EER_{ee}} \right) \times CF_{summer} \leftarrow$	Formatted: Body Text
	$\Delta k W_{PSF_{cool}} = \frac{CAPY_{cool}}{EER_{ee}} \times PSF \times \frac{CFCF_{summer}}{EFCF_{summer}} $	Formatted: Normal
	ERGY STARResidential Measures	
HVAC	Page 8	

<u> AkWwinter peak</u>	$\Delta k W_{heat} + \Delta k W_{PSF heat}$		
	$\underline{\Delta kW_{heat}} = CAPY_{heat} \times \left(\frac{OF_{heat}}{COP_{base}} - \frac{1}{COP_{ee}}\right) \times \frac{1}{3.412\frac{BTU}{W\cdot h}} \times CF_{winter}$		
	$\underline{\Delta k W_{PSF heat}} = \frac{CAPY_{hea}}{COP_{ee} \times 3.412 \frac{BTU}{W \cdot h}} \times PSF \times CF_{winter}$		Formathed Forth Countries Math. The line
Baseline: R	coom Air Conditioner(s)	\sim	Formatted: Font: Cambria Math, Italic Formatted: Tab stops: 1", Left + Not at 2"
in use in the	collect information about the total capacity of the (kBTU/hr) of existing RACs ($CAPY_{RAC}$) a home to determine the replaced capacity. An oversizing factor is calculated from the eline to qualifying capacity:		
OFcool	$=\frac{\sum CAPY_{RAC}}{CAPY_{cool}}$		
or electric ba	collect information about the capacity of the existing space heaters, electric furnaces, aseboards. Capacity is determined using the total wattage of electric heat in use, where ratio of the existing electric capacity to the capacity of the new equipment: $=\frac{\sum kWspaceheat \times 3.412\frac{BTU}{Wh}}{CAPY_{Heat}}$		
L			Formatted: Font: Bold
GSHP efficie	Ground Source Heat Pump encies are typically calculated differently than air-source units, baseline and qualifying cies should be converted as follows:		
SEER	$= EER_g \times \frac{GSHPDF}{CSER} \times GSER$		
EER	$= EER_g \times GSPK$		
HSPF	$= COP_s \times GSHPDF \times 3.412 \frac{BTU}{Wh}$		
Qualifying:	Package Terminal Heat Pumps, Package Terminal Air Conditioners,	\sim	Formatted: Font: Cambria Math, Italic
SEER			Formatted: Tab stops: 1", Left Formatted: Font: 11 pt
UCDE	$-COP \times 3.412^{\text{BTU}}$		Formatted: Font: Bold
HSPF	W-ba	_	Formatted: SubStyle
1131'1	*		
	+		
Definiti	←		· · ·
Definiti <u>HSPF</u>	$= COP_g \times 3.412 \frac{\text{BTU}}{\text{W-h}} \times GSOP$		· · ·
Definiti <i>HSPF</i>			· ·
DEFINITI HSPF COP	$= COP_g \times 3.412 \frac{\text{BTU}}{\text{W-h}} \times GSOP$		· · ·
DEFINITI HSPF COP Qualifying:	$= COP_g \times 3.412 \frac{BTU}{W \cdot h} \times GSOP$ $= COP_g$		· · ·
DEFINITI HSPF COP	$= COP_g \times 3.412_{W \cdot h}^{BTU} \times GSOP$ $= COP_g$ Package Terminal Heat Pumps, Package Terminal Air Conditioners		,
DEFINITI HSPF COP Qualifying: SEER	$= COP_{g} \times 3.412^{\text{BTU}}_{\text{W}\text{h}} \times GSOP$ $= COP_{g}$ Package Terminal Heat Pumps, Package Terminal Air Conditioners $= EER$		Formatted: SubStyle
DEFINITI HSPF COP Qualifying: SEER HSPF	$= COP_{g} \times 3.412^{\text{BTU}}_{\text{W}\text{h}} \times GSOP$ $= COP_{g}$ Package Terminal Heat Pumps, Package Terminal Air Conditioners $= EER$		
DEFINITI HSPF COP Qualifying: SEER HSPF	$= COP_{g} \times 3.412_{Wh}^{BTU} \times GSOP$ $= COP_{g}$ Package Terminal Heat Pumps, Package Terminal Air Conditioners $= EER$ $= COP \times 3.412_{Wh}^{BTU}$		
DEFINITI HSPF COP Qualifying: SEER HSPF	$= COP_{g} \times 3.412_{Wh}^{BTU} \times GSOP$ $= COP_{g}$ Package Terminal Heat Pumps, Package Terminal Air Conditioners $= EER$ $= COP \times 3.412_{Wh}^{BTU}$		
DEFINITI HSPF COP Qualifying: SEER HSPF	$= COP_{g} \times 3.412_{Wh}^{BTU} \times GSOP$ $= COP_{g}$ Package Terminal Heat Pumps, Package Terminal Air Conditioners $= EER$ $= COP \times 3.412_{Wh}^{BTU}$		

Table 2-9: Terms, Values, and References for High Efficiency Equipment: ASHP, CAC, GSHP, PTAC, PTHP

Term	Unit	Value	Sources	
\mathcal{CAPY}_{cool} , The cooling capacity of the quipment being installed ⁹	kBTU/hr	EDC Data Gathering	AEPS Application; EDC Data Gathering	Formatted Table
CAPY _{heat} , The heating capacity of the heat pump being installed ¹⁰ <u>(Auxiliary electric</u> resistance heat is not included)	kBTU/hr	EDC Data Gathering	AEPS Application; EDC Data Gathering	
$CAPY_{RAC}$, The cooling capacity of the room AC for the RAC cooling baseline	kBTU/hr	EDC Data Gathering	EDC Data Gathering	
$KW_{spaceheat}$, The heating capacity of the space heaters in kilowatts.	kW	EDC Data Gathering	EDC Data Gathering	
<u>SEER2base</u> _SEERbase_, Seasonal Energy Efficiency Ratio of the Baseline Unit	$\frac{BTU}{W \cdot h}$	EDC Data Gathering, Default see Table 2-8	2; EDC Data Gathering	Merged Cells
		Default: see Table 2-10	2	Merged Cells
<u>SEER2ee.</u> SEERee., Seasonal Energy Efficiency Ratio of the qualifying unit being installed ^{#4}	$\frac{BTU}{W \cdot h}$	EDC Data Gathering	AEPS Application;◀ EDC Data Gathering	Formatted Table
EER2base, EERbase, Energy Efficiency Ratio	BTU	EDC Data Gathering,	3; EDC Data	Merged Cells
of the Baseline Unit	$W \cdot h$	Default see Table 2-8 Default: see Table 2-10	Gathering <u>2</u>	Merged Cells
<u>EER2ee</u> , EERee, Energy Efficiency Ratio of the unit being installed ⁴²	$\frac{BTU}{W \cdot h}$	EDC Data Gathering Default: -0.0228 × -SEER ² + 1.1522 × -SEER	4; EDC Data Gathering; AEPS Application	Formatted Table
		$\frac{\text{Default:}}{\text{EERee:} - 0.02 \times}$ $\frac{\text{SEER}^2 + 1.12 \times}{\text{SEER}}$	<u>3.4</u>	
<i>EER</i> _g , Energy Efficiency Ratio of a GSHP, this is measured differently than EER of an air source heat pump and must be converted	$\frac{BTU}{W\cdot h}$	EDC Data Gathering	EDC Data Gathering	Formatted Table
HSPF2 _{base} _HSPF _{base} _, Heating Seasonal	BTU	EDC Data Gathering,	2; EDC Data	Merged Cells
Performance Factor of the Baseline Unit	$W \cdot h$	Default see Table 2-8	Gathering	Merged Cells
		Default: see_Table 2-10	2	
<u>HSPF2ee.</u> HSPFee Heating Seasonal Performance Factor of the unit being	BTU	EDC Data Cathering	AEPS Application;◀ EDC Data	Formatted: Font: Italic, Not Superscript/ Subscript
renormance Factor of the unit being installed.	$\overline{W\cdot h}$	EDC Data Gathering	Gathering	Formatted Table
PSF , Proper Sizing Factor or the assumed savings due to proper sizing and proper installation	Proportion	Not properly sized or properly sized baseline equipment: 0	40 <u>5</u>	Formatted: Not Highlight
		Properly sized: 0.05		

⁹ This data is obtained from the AEPS Application Form or EDC's data gathering based on the model number.
 ⁴⁰ Ibid. This refers to the capacity of the heat pump and not any auxiliary electric resistance heat.
 ⁴¹ Ibid.
 ⁴² Ibid.

VOLUME 2: ENERGY STARResidential Measures

HVAC

Term	Unit	Value	Sources	
COP _{base} , Coefficient of Performance of the baseline unit. This is a measure of the		EDC Data Gathering	EDC Data Gathering	
efficiency of a heat pump	Proportion	<u>Default: see</u> Table 2-10	2	
COP_{ee} , Coefficient of Performance of the unit being installed. This is a measure of the efficiency of a heat pump	Proportion	EDC Data Gathering	AEPS Application;◄ EDC Data Gathering	Formatted Table
OF _{cool} , Oversize factor	None	EDC Data Gathering , Default see Table 2-9	5 <u>EDC Data</u>	Merged Cells
		Default: see Table	<u>Gathering</u>	Merged Cells
		2 <u>-</u> 12	<u>6</u>	
<i>OF_{heat}</i> , Oversize factor	None	EDC Data Gathering , Default see Table 2-9	6 <u>EDC Data</u> <u>Gathering</u>	Formatted: Not Highlight
		Default: see Table 2 <u>-</u> 12	<u>7</u>	Formatted Table Formatted: Not Highlight
GSER, Factor used to determineconvert <u>EER_q</u> to the SEER <u>equivalent HSPF</u> of a <u>GSHP</u> based on its EER _g an air-source unit to enable comparisons to the baseline unit	$\frac{BTU}{W \cdot h}$	1.02 <u>See Table</u> 2 <u>-</u> 13	7 <u>8</u>	Formatted Table
<u>GSPKGSOP</u> , Factor to convert EER _{gCOP} to the equivalent <u>EERCOP</u> of an air <u>conditioner-source</u> unit to enable comparisons to the baseline unit	Proportion	0.8416 <u>See Table 2-</u> 13	7 <u>8</u>	
GSHPDF, Ground Source Heat Pump De- rate Factor	Proportion	0.885	8	
<i>EFLH_{cool}</i> , Equivalent Full Load Hours of operation during the cooling season for the average unit	hours yr	See <i>EFLH_{cool}</i> in Vol. 1, App. A	9	Formatted Table
<i>EFLH_{heat}</i> , Equivalent Full Load Hours of operation during the heating season for the average unit	hours yr	See <i>EFLH_{heat}</i> in Vol. 1, App. A	9	
<i>GFCF_{summer}</i> , Demand Coincidence Factor <u>during the summer months</u>	Proportion	See <i>CF</i> in Vol. 1, App. A	9	
<i>CF_{winter}</i> . Demand Coincidence Factor during the winter months	<u>Proportion</u>	<u>See CF in Vol. 1, App.</u> <u>A</u>	<u>9</u>	

Note: Where appropriate, nameplate data collected for usage in savings calculations (i.e., SEER, EER, HSPF) should be converted to new efficiency metrics (i.e., SEER2, EER2, HSPF2) using conversion equations laid out in Vol. 1 App. A.

Table 2-10: Default Baseline Equipment Efficiency for High Efficiency Equipment

Baseline		Early Don	lacomont	Replace on Burnout / New Construction				
Equip.		сапу кер	hacement					
	SEER2 _{base}	EER2 _{base}	HSPF2 _{base}	<u>COP_{base}</u>	SEER2 _{base}	EER2 _{base}	HSPF2 _{base}	COF

 Merged Cells

 Formatted: Font color: Black

 Formatted: Left, Don't keep with next

 Formatted: Font color: Black

 Formatted: Don't keep with next

 Formatted: Font: Bold, Font color: Black

 Formatted: Font: Bold, Font color: Black

 Formatted: Font color: Black

VOLUME 2: ENERGY STARResidential Measures

HVAC

														1	\succ	Formatted	(
			_		-					_				K	\sim	Formatted	
		ania -	- Tec	chnical	Reference	Manual, V	ol. 2: Residen	tial Measure	es – R	lev Date	e: Feb. 202	1			\succ	Inserted Cells	
<u>ay 20</u>	<u>024</u>														I	Inserted Cells	
		1		1			1	1				_		Щ	F	Formatted	·
	<u>IP (Split</u> ems)							<u>14.3</u>	<u>11.8</u>	b	<u>7.5</u>		2	6	F	Formatted	
ASH		14	1.1ª	1.	1.7 ^b	7.2	<u>2.5°</u>							#	E	ormatted	
(Sing	gle-							<u>13.4</u>	<u>11.2</u>	b	<u>6.7</u>		Ż	3	F	Formatted	
	kage)													#(F	ormatted	[]
	<u>) (Split</u> ems and												\mathbb{N}	$\parallel \mid$	F	ormatted	 []
Sing	le-	1	<u>3.2</u>	<u>1</u>	<u>1.1^b</u>	=	=	<u>13.4</u>	<u>11.2</u>		=		ŧ	Ħľ	F	ormatted	
	(age)											\square	H	H	\sim	Inserted Cells	
Equi	<u>eline</u> ip.			Ea	rly Repla	<u>cement</u>		Repla	ace on Bur	nout / I	New Cons	stry	ctic	'n	\vdash	Inserted Cells	()
Bas	eline	SEE	R _{base}	FF	Rbase	HSPFbase	COPbase	SEERba	se EERb	200	HSPFbase	20	clor	B.	\succ	Formatted	
Equi		021		1			<u>oor base</u>					- 10		Ä	≻		
ASI			13.5	-	11.4	8.2		-14	12.0		<u>8.2</u>		HW/	1/2	\succeq	Formatted	()
CA	e		12.1	4	10.6 ª	-		13	11.3		8.2		Щ/	Λ	\succeq	Formatted	(
GS	HP		15.0	4	1 6.6 ª	10.	•	-14	12.0		8.2			Δ	Ľ	ormatted	
Elec		<u></u>			3.4124	- <u>1.0</u>						-	[]]	Ά	ſ	ormatted	
Base Elec	eboard								1			4	Ľ	-	ſ	ormatted	(
	lace ¹³	<u></u>		<u> </u>	3.2412	<u> </u>						K	_	-	F	ormatted	
Spac		_		_	3.4124	<u> </u>						-	T.		F	ormatted	
Heat	ters <u>.</u> EER _{base} :				A	* ····×				1		1	4	A	F	ormatted	(
L L L L	10.9 –		FF	R _{base}									1/	Y	\succeq	Formatted	
ğ.	(0.213 ×		14	.0 —					1	1		-10	// //	1	\succeq	Formatted	
161	<i>CAPY_{cool}</i> Water-	<u>-18.5</u>	(0	. <u>3 ×</u>	-10.89		18.7 ^h	18.0	<u>10.2</u> ⁱ		<u>3.7</u>			$\langle \rangle$	\geq		
	to-air,		CAL	<i>PY_{coot}</i> 8.0⁵	t,									11	\succ	Formatted	(
	<u>ground</u> water,			0.0				-	1						\geq	Formatted	
	Brine-to-									1			11	th!	\succ	Formatted	
	air,						<u>14.5^h</u>	<u>14.1</u>	<u>9.5ⁱ</u>		<u>3.2</u>				F	ormatted	
	ground loop													<u> </u> [F	ormatted	
	Water-							EER _{base}	3.412 Btu	EER:	3.4	2	Į ų	HA)	F	ormatted	
	<u>to-</u> water,						PTHP	10.8 –	(2.9 –	14.0	- 0.05	2	TA	p	F	ormatted	(
	ground	A				<u>3.7</u> ^f	15 ^{.16,17} .2	(0.213 × CAPY _{coo}		(0.3 CAP					F	ormatted	(
!	water						1	<u>16.3</u>	T CAPY _{coot}	<u>3.1</u>					F	Formatted	(
	Brine-to-				1	1						-			┢	Merged Cells	
	<u>water,</u> ground														\vdash	Formatted	
a	loop														\succ		
e t															\succ	Merged Cells	(
ŧ.							11.6 ^h	12.1	. <u>7.6</u> i		2.5				1	Formatted	(
a 1																inserted Cells	
Ð															I	inserted Cells	
d H															ľ	Merged Cells	
si														I	I	Merged Cells	
															F	ormatted	
							tric resistance h	eating. Elect	ric furnace effi	iciency ty	ypically varie	s		M	F	Formatted	
	95 to 1.00, tl						241. calculation. If th	e unit's cons	noity is greater	than 15	kBTI /h .uo				F	Formatted	(
	: unit s capa U/hr in the c			RD I U/I	п, use / КВ		calculatiOH. II tf	ю ини 5 Сар а	iony io greater	- 11011-13	- KB I O/II, US	4			\succ	Formatted	(
"Earl	y Replacem	ent" is fo	r nonstan				r conditioners a								\succ	Formatted	
terna	a wall openir	ng ot less	than 16	in. high	or less that	1 42 in. wide	and having a ci ations only: not	to be installe	a area less that	an 670 se	q. in. Shall b projecte "	0			\succ	Formatted	
"New	Constructio	on" is inte	nded for a	applica	tions with ne	w, standard	size exterior wa	all openings.	A THIN OUT	a aoaon	P ^{10]0010.}				\succ		
							_	-							\succ	Formatted	(
/OLI	UME 2: EN	VERG)	STAR	Resi	dential N	easures									\succ	Deleted Cells	
VA	С										Page 1	2				Inserted Cells	
															\succ	Inserted Cells	
															F	Formatted	
															Ŀ	Formatted	
															F	Formatted	
															F	Formatted	
														I	F	Formatted	(
															\succ	Inserted Cells	(
															\succ	Inserted Cells	
															\succ		
															\succ	Inserted Cells	
																inserted Cells	

Inserted Cells

... [54]

State of Pennsylvania	_	Technical Reference Manual,	Vol. 2: Residential	Measures	_	Rev Date: Feb. 2021
May 2024						

ਸ ਉ≵ h e e f u a ti o n fr o ff S o u f c e 4								E	ormatted: Font: 9 pt, Font color: Black
PTAC ⁱ	<u>13.8 - (0.3 x</u> <u>CAPY_{cool})</u>	=	=	<u>13.8 - ((</u> CAPY)	<u>0.3 x</u>)	=	=	Ċ	
<u>PTHP</u> ⁱ	<u>14.0 - (0.3 x</u> <u>CAPY_{cool})</u>	<u>3.412 x</u> (<u>3.7 -</u> <u>0.052 x</u> <u>CAPY</u> _{co} <u>ol</u>)	<u>3.7 -</u> (0.052 <u>×</u> <u>CAPYc</u> <u>ool</u>)	<u>14.0 - ((</u> <u>CAPY</u>	<u>cool)</u>	<u>3.412 x</u> (<u>3.7 -</u> <u>0.052 x</u> <u>CAPY</u> _{co} <u>ol</u>)	<u>3.7 - (0.052 x CA</u>	APY _{cool})	
	d ASHP values from t								
	ulated based on conve	ersion equat	<u>ions laid o</u>	ut in Vol 1. A	Appendix	A and EER	= -0.02 x SEER ²		
+ 1.12 x SEER									
value is calcu	ulated based on conve	ersion equat	ions laid o	ut in vol 1. A	ppendix .	A and COP	<u>= HSPF / 3.412.</u>		
	OPs vary between 0		<u>U. Using th</u>	ne tormula H	ISPF = C	OP x 3.412	2, a COP of 0.95		
	tes to an HSPF of 3.2 ted using the average		D velves live	stad in Table	0.11 and	the fellowin			

EER x GSER. Value is from 2023 Pennsylvania Statewide Act 129 Residential Baseline Study, but capped to current federal efficiency

⁹ Value calculated using the average of the GSOP values listed in Table 2-11 and the following formula: HSPF COP x 3.412 x GSOP
 Value calculated using the corresponding GSER value listed in Table 2-11 and the following formula: SEER

= EER x GSER.

Value calculated using the corresponding GSOP value listed in Table 2-11 and the following formula: HSPF

= COP x 3.412 x GSOP If the unit's capacity is less than 7 kBTU/hr, use 7 kBTU/hr in the calculation. If the unit's capacity is greater than 15 kBTU/h, use 15 kBTU/hr in the calculation.

Formatted: Caption, Table Caption, Footnotes

Table 2-11: Proper Size Factors for High Efficiency Equipment

Proper Size Factor	ASHP	CAC	<u>PTAC</u>	PTHP	<u>GSHP</u>
<u>AkW_{PSF} cool</u>	<u>0</u>	<u>0.05</u>	<u>0.05</u>	<u>0</u>	<u>0</u>
<u> AkW_{PSF heat}</u>	<u>0.05</u>	<u>0</u>	<u>0</u>	0.05	<u>0.05</u>

Note: The implicit assumption is that ASHP, GSHP and PTHP have been sized to meet the heating load of the residential establishment and standalone AC systems have been sized to meet the cooling load

VOLUME 2: ENERGY STARResidential Measures

HVAC

Table 2-12: Default Oversize Factors for High Efficiency Equipment

	Oversize	Existing									
Qualifying	Factor	ASHP	CAC	Electric Baseboard	Electric Furnace	GSHP	RAC	Space Heaters			
CAC, PTAC	OFcool	1	1	0	0	1	1	0			
HP	OFheat	1	1	1	1	1	0	0.6			
пр	OFcool	1	1	0	0	1	1	0			

Table 2-13: Conversion factors to derive Air-source equivalent metrics of a Ground source heat pump

GSHP Type	<u>GSER</u>	<u>GSOP</u>
Water-to-Air: Ground water	<u>1.04</u>	<u>0.81</u>
Brine-to-Air: Ground loop	<u>1.03</u>	<u>0.87</u>
Water-to-Water: Ground water	<u>0.93</u>	<u>0.84</u>
Brine-to-Water: Ground loop	<u>0.96</u>	<u>0.89</u>

EVALUATION PROTOCOLS

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings.

SOURCES

- California Public Utilities Commission Database for Energy Efficient Resources (DEER) EUL Support Table for 2020, http://www.deeresources.com/files/DEER2020/download/SupportTable-EUL2020.xlsx Accessed December 2018
- 1) For-California Electronic Technical Reference Manual. "SEER Rated AC and HP HVAC Equipment, Residential". Accessed February 2024. Weblink
- 2) For early replacement ASHP/CAC: NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 Residential Baseline Study. Sec 8.1.4 Table 87 and Sec 8.2.1 Table 97 and 98. Baseline findings are capped to current Federal Standards. Weblink

For new construction ASHP/CAC: Federal Code of Regulations 10 CFR 430.32(c). Weblink For early replacement GSHP: existing systems were assumed to be two-thirds through an assumed 15 year equipment life. Therefore, the minimum required efficiency at the date of installation for an existing GSHP system is estimated to have been set by IECC 2015 requirements. The values in the table represent the minimum efficiency values from IECC 2015. Weblink

For New Construction GSHP: IECC 2021 - Weblink Table 14 All PTAC and PTHP: Standard sizing minimums, Federal Code of Regulations 10 CFR 431.97(c): Weblink

As per IECC Residential code (Section R403.7), the requirements for all mechanical systems are stipulated to be federal minimums. Since there are no federal standards for Residential GSHP/PTAC/PTHPs, the C&I standards acts as a proxy.

2) Early Replacement ASHP, CAC: Pennsylvania Act 129 2018 Residential Baseline Study [http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3_Res_Baseline_Study_Rpt021219.pdf] For Early Replacement GSHP: the values represent the minimum efficiency values for GSHP in BEopt v2.8.0. For Replace on Burnout/New Construction ASHP, CAC, GSHP: Federal Code of Regulations 10 CFR 430.

VOLUME 2: ENERGY STARResidential Measures

HVAC

https://www.gpo.gov/fdsys/pkg/CFR-2017-title10-vol3/pdf/CFR-2017-title10-vol3-sec430-32.pdf. For PTAC and PTHP: standards are based on requirements of ASHRAE 90.1-2016, Energy Standard for Buildings Except Low-Rise Residential Buildings, Table 6.8.1-4, https://www.ashrae.org/technical-resources/standards-and-guidelines/read-only-versions-ofashrae-standards.

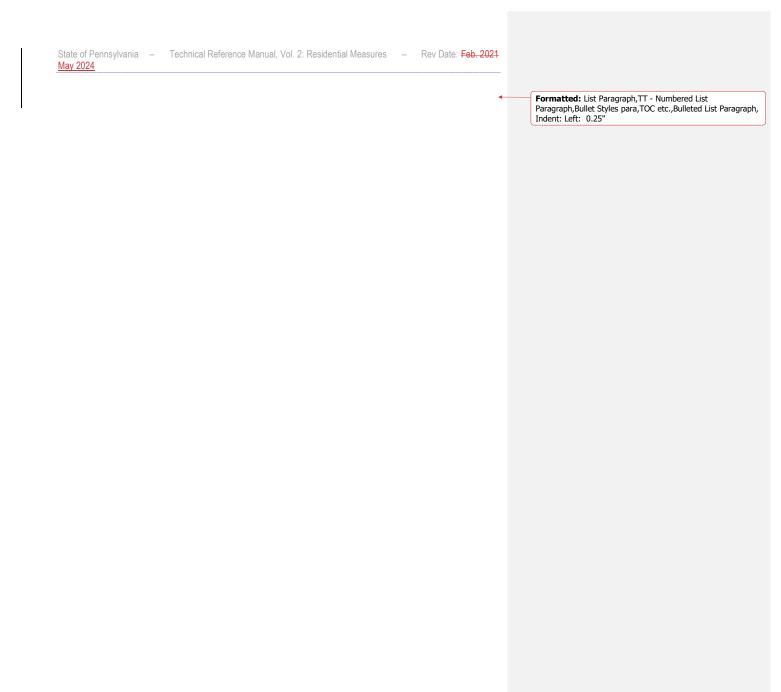
- 3) Average EER for SEER 13 units as calculated by EER = -0.02 × SEER² + 1.12 × SEER based on Wassmer, M., (2003), "A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations" as cited in U.S. DOE Building America House Simulation Protocol, Revised 2010. <u>https://www.nrel.gov/docs/fy11osti/49246.pdfWeblink</u>
- 4) "Methodology for Calculating Cooling and Heating Energy Input-Ratio (EIR) from the Rated Seasonal Performance Efficiency (SEER OR HSPF)" (Kim, Baltazar, Haberl). April 2013 Accessed December 2018. <u>http://oaktrust.library.tamu.edu/bitstream/handle/1969.1/152118/ESL-TR-13-04-</u> 01.pdfWeblink
- 5) Northeast Energy Efficiency Partnerships, Inc., "Strategies to Increase Residential HVAC Efficiency in the Northeast", (February 2006): Appendix C Benefits of HVAC Contractor Training: Field Research Results 03-STAC-01, p. 4.

5)6)Based on REM/Rate modeling using models from the PA 2012 Potential Study. EFLH calculated from kWh consumption for cooling and heating. Models assume 50% over-sizing of air conditioners¹⁷-and 40% oversizing of heat pumps.¹⁸ and 40% oversizing of heat pumps. Thus assuming for most baseline oversize factors to be unitary. Neme, Proctor, Nadal, "National Energy Savings Potential From Addressing Residential HVAC Installation Problems". ACEEE, February 1, 1999. Weblink Confirmed also by Central Air Conditioning in Wisconsin, a compilation of recent field research. Energy Center of Wisconsin. May 2008, emended December 15, 2010. Weblink ACCA, "Verifying ACCA Manual S Procedures," Weblink

- 6)7) Assumptions used to calculate a default value for de facto heating system OF: Four (4) 1500W portable electric space heaters in use in the home with capacity of $4 \times 1.5kW \times 3412 \frac{BTU}{kWh} = 20,472 BTU$, replaced by DHP with combined heating capacity of 36kBTU. $OF = \frac{20,472}{36,000} \approx 0.6$
- 7) VEIC estimate. Extrapolation of manufacturer data.
- McQuay Application Guide 31-008, Geothermal Heat Pump Design Manual, 2002. Engineering Estimate - See System Performance of Ground Source Heat Pumps
- 8) Factors are derived from the conversion algorithms depicted in the Heat Pump Water-to-air Ground Source (GSHP) Measure of the Version 11 of the NY TRM Weblink Substituing for defaults where applicable and borrowing current market data from the AHRI Database Weblink.
- 9)—Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service.<u>https://www.ecobee.com/donateyourdata/</u>
- (Weblink) and updated based on the latest CDD and HDD values from NOAA's 15-yearannual climate Normals (Northeast Energy Efficiency Partnerships, Inc., "Strategies to Increase Residential HVAC Efficiency in the Northeast", (February-2006): Appendix C Benefits of HVAC Contractor Training: Field Research Results 03-STAC-01, p. 4.–2020) (Weblink)

VOLUME 2: ENERGY STARResidential Measures

Page 15


Formatted: List Paragraph,TT - Numbered List Paragraph,Bullet Styles para,TOC etc.,Bulleted List Paragraph, Space After: 0 pt

HVAC

¹⁷ Neme, Proctor, Nadal, "National Energy Savings Potential From Addressing Residential HVAC Installation Problems". ACEEE, February 1, 1999.

https://www.proctoreng.com/dnld/NationalEnergySavingsPotentialfromAddressingResidentialHVACInstallationProblems.pdf Confirmed also by *Central Air Conditioning in Wisconsin, a compilation of recent field research.* Energy Center of Wisconsin. May 2008, emended December 15, 2010. https://www.seventhwave.org/publications/central-air-conditioning-wisconsin-compilationrecent field-research

⁸ ACCA, "Verifying ACCA Manual S Procedures," <u>http://www.acca.org/wp-content/uploads/2014/01/Manual-S-Brochure-Final.pdf</u>

VOLUME 2: ENERGY STARResidential Measures

HVAC

VOLUME Measures 2: ENERGY STARResidential

HVAC

2.2.2 HIGH EFFICIENCY EQUIPMENT: DUCTLESS HEAT PUMPS WITH FOR MIDSTREAM DELIVERY OPTION: ASHP, CAC, PTAC, PTHP

Target Sector	Residential-Establishments
Measure Unit	CAC, ASHP, PTAC or PTHP Unit
Measure Life	15 ^{Source 1}
Vintage	Replace on Burnout, New Construction
Measure Unit	Ductless Heat Pump Unit
Measure Life	15 years ^{Source 1}
Vintage	Early Replacement, Replace on Burnout, New Construction

This protocol defines the methods for determining the annual electric energy and peak demand savings from installation of residential high-efficiency cooling and heating equipment that is sold to trade allies and customers through commercial channels such as HVAC distributors, dealers, supply houses, and direct relationships with manufacturers. This complements other delivery channels (such as downstream rebates to trade allies and customers) by providing incentives to encourage distributors to stock, promote, and sell more-efficient HVAC equipment. Input data to savings algorithms are based both on stipulated code minimum baselines and operating distributors. EDCs, their implementation CSPs, and participating distributors are expected to collect AHRI reference numbers and use the AHRI rated capacity and efficiency metrics to calculate savings. The algorithms for this measure path assume a 1:1 installation of a high-efficiency unit in lieu of a code minimum papelications are dealt with in Section 3 of Volume 3: Commercial and Industrial Measures of the 2026 Technical Reference Manual.

ELIGIBILITY

This protocol requires the purchase of a high-efficiency Central Air Conditioner (CAC), Air Source Heat Pump (ASHP), Cold Climate Heat Pump (ccHP), Packaged Terminal Air Conditioner (PTAC) or Packaged Terminal Heat Pump (PTHP). To be eligible under this protocol, the qualifying equipment must be purchased through a commercial channel (such as an HVAC contractor or distributor) for installation in a residential setting. The distributor will need to collect information on the installation address for verification purposes.

For the purposes of the midstream protocol, the minimum efficiency levels for each eligible unit type are defined by ENERGY STAR version 6.1 requirements as follows: Source 2

- CAC: greater than or equal to 15.2 SEER2
- ASHP: Greater than or equal to 15.2 SEER2 or 7.8 HSPF2 (Split systems)/7.2 HSPF2 (Single package systems)
- ccHP: Greater than or equal to 15.2 SEER2 or 8.5 HSPF2 (Non-ducted split systems)/8.1
 HPSF2 (All other systems)
- **PTAC**: $EER \ge 14.0 (0.3 \times CAPY_{cool})$
- **PTHP**: $EER \ge 14.0 (0.3 \times CAPY_{cool})$ or $HSPF = 3.412 \times (3.7 0.052 \times CAPY_{cool})$

VOLUME 2: ENERGY STARResidential Measures

HVAC

<u>Heat pump equipment (ASHP and PTHP) must meet at least one of the cooling or heating minimum efficiencies.</u> This will allow EDCs to incentivize equipment which are engineered for heating performance over cooling efficiency.

ALGORITHMS

This algorithm is used for the installation of ASHP and CAC measures:

 $\underline{\Delta kWh} = \Delta kWh_{cool} + \Delta kWh_{heat}$ $\underline{\Delta kWh_{cool}} = CAPY_{cool} \times \left(\frac{OF_{cool}}{SEER2_{base}} - \frac{1}{SEER2_{ee}}\right) \times EFLH_{cool}$

 $\underline{\Delta kWh_{heat}} = CAPY_{heat} \times \left(\frac{OF_{heat}}{HSPF2_{base}} - \frac{1}{HSPF2_{ee}}\right) \times EFLH_{heat}$

 $\underline{\Delta kW_{summerpeak}} = CAPY_{cool} \times \left(\frac{OF_{cool}}{EER2_{hase}} - \frac{1}{EER2_{ee}}\right) \times CF_{summer}$

 $\underline{\Delta kW_{winterpeak}} = CAPY_{heat} \times \left(\frac{OF_{cool}}{COP_{base}} - \frac{1}{COP_{ee}}\right) \times \frac{1}{3.412 \frac{\text{BTU}}{\text{Wh}}} \times CF_{winter}$

This algorithm is used for the installation of PTAC and PTHP measures:

 $\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$

 $\underline{AkWh_{cool}} = CAPY_{cool} \times \left(\frac{OF_{cool}}{SEER_{base}} - \frac{1}{SEER_{ee}}\right) \times EFLH_{cool}$

$$\underline{\Delta kWh_{heat}} = CAPY_{heat} \times \left(\frac{OF_{heat}}{HSPF_{hase}} - \frac{1}{HSPF_{ee}}\right) \times EFLH_{heat}$$

 $\underline{\Delta k W_{summer peak}} = CAPY_{cool} \times \left(\frac{OF_{cool}}{EER_{base}} - \frac{1}{EER_{ee}}\right) \times CF_{summer}$

 $\underline{\Delta kW_{winter peak}} = CAPY_{heat} \times \left(\frac{OF_{cool}}{COP_{base}} - \frac{1}{COP_{ee}}\right) \times \frac{1}{3.412\frac{\text{BTU}}{\text{W}\text{h}}} \times CF_{winter}$

	\sim	Formatteu: Font: Campha Math, Italic
Qualifying: Package Terminal Heat Pumps, Package Terminal Air Conditioners,		Formatted: Tab stops: 1", Left
$\underline{SEER} = \underline{EER}$		Formatted: Font: 11 pt
<u>HSPF = $COP \times 3.412^{\text{BTU}}_{\text{Wba}}$</u>		Formatted: Font: Bold
		Formatted: SubStyle

DEFINITION OF TERMS

Table 2-14: Terms, Values, and References for High Efficiency Equipment: ASHP, ccHP, CAC, PTAC, PTHP

Term	<u>Unit</u>	<u>Value</u>	Sources
CAPY _{cool} , The cooling capacity of the equipment being installed	<u>kBTU/hr</u>	Rated Value from AHRI Certificate • CAC, ASHP. ccHP: Cooling Capacity at 95 degrees (F) • PTAC, PTHP: Cooling Capacity	<u>3, EDC Data</u> Gathering

VOLUME Measures	ENERGY	STARResidential	
HVAC			Page 19

Formatted: Font: 11 pt

attad. Font: Combrin Math Itali

Term	Unit	Value	Sources
		at 230V if dual voltage	
<u>CAPY_{heat}. The heating capacity of the heat</u> pump being installed (Auxiliary electric heat resistance not included)	<u>kBTU/hr</u>	Rated Value from AHRI Certificate • ASHP, ccHP: Heating Capacity at 47 degrees (F) • PTHP: Heating Capacity at 230V if dual voltage	<u>3, EDC Data</u> Gathering
<u>SEER2_{base}</u> <u>SEER_{base}</u> <u>Seasonal</u> <u>Energy</u> <u>Efficiency Ratio of the Baseline Unit</u>	$\frac{BTU}{W \cdot h}$	See_Table 2-10	<u>4</u>
<u>SEER2ee</u> , <u>SEERee</u> <u>Seasonal</u> <u>Energy</u> Efficiency Ratio of the qualifying unit being <u>installed</u>	$\frac{BTU}{W \cdot h}$	Rated Value from AHRI Certificate	<u>3, EDC Data</u> Gathering
EER2 _{base} , EER _{base} Energy Efficiency Ratio of the Baseline Unit	$\frac{BTU}{W \cdot h}$	See_Table 2-10	<u>5</u>
<u>EER2_{ee.} EER_{ee} Energy Efficiency Ratio of</u> the unit being installed	$\frac{BTU}{W \cdot h}$	Rated Value from AHRI Certificate. At • CAC, ASHP, • CHP: EER at 95 degrees (F) • PTAC, PTHP: EER at 230V if dual voltage	<u>3; EDC Data</u> Gathering
<u>HSPF2_{base}. HSPF_{base} Heating Seasonal</u> <u>Performance Factor of the Baseline Unit</u>	$\frac{BTU}{W \cdot h}$	See_Table 2-10	<u>4</u>
<u>HSPF2ee</u> , <u>HSPFee</u> <u>Heating</u> <u>Seasonal</u> <u>Performance</u> <u>Factor</u> of the <u>unit</u> <u>being</u> <u>installed</u>	$\frac{BTU}{W \cdot h}$	Rated Value from AHRI Certificate	<u>3, EDC Data</u> Gathering
<u>COPee</u> , Coefficient of Performance of the unit being installed. This is a measure of the efficiency of a PTHP	<u>Proportion</u>	Rated Value from AHRI Certificate	<u>3, EDC Data</u> <u>Gathering</u>
EFLH _{cool} , Equivalent Full Load Hours of operation during the cooling season for the average unit	hours yr	See Table 2-15	<u>6</u>
<u>EFLH_{heat}</u> , <u>Equivalent</u> Full Load Hours of operation during the heating season for the average unit	hours yr	See Table 2-15	<u>6</u>
<i>CF_{summer_}</i> , Demand Coincidence Factor during the summer months	<u>Proportion</u>	See Table 2-15	<u>6</u>
CF _{winter} , Demand Coincidence Factor during the winter months	Proportion	See Table 2-15	<u>6</u>

Note: Where appropriate, nameplate data collected for usage in savings calculations (i.e., SEER, EER, HSPF) should be converted to new efficiency metrics (i.e., SEER2, EER2, HSPF2) using conversion equations laid out in Vol. 1 App. A

VOLUME Measures 2:

ENERGY STARResidential

HVAC

Table 2-15: EDC Climate Region Weighted Composite Factors

EDC	EFLH _{cool}	<u>EFLH_{heat}</u>	Summer CF	Winter CF
<u>Duquesne</u>	<u>670</u>	<u>1,262</u>	<u>0.37</u>	<u>0.36</u>
Met-Ed	<u>870</u>	<u>1,122</u>	<u>0.44</u>	<u>0.33</u>
Penelec	<u>612</u>	<u>1,321</u>	<u>0.33</u>	<u>0.38</u>
Penn Power	<u>657</u>	<u>1,283</u>	<u>0.35</u>	<u>0.37</u>
West Penn Power	<u>675</u>	<u>1,265</u>	<u>0.37</u>	<u>0.37</u>
PECO	<u>972</u>	<u>1,027</u>	<u>0.48</u>	<u>0.29</u>
PPL	<u>764</u>	<u>1,198</u>	<u>0.41</u>	<u>0.35</u>

The composite factors in Table 2-15: EDC Climate Region Weighted Composite Factors are based on the climate dependent values from Appendix A of the 2026 Technical Reference Manual. Appendix A provides heating and cooling Equivalent Full Load Hours (EFLH) and Coincident Factors (CF) for each climate region, as well as climate region weights for each EDC, based on the overlap of the EDC territories and climate regions. EDCs are encouraged to use the factors for the installation location's climate region, if it is possible to identify the region based on the premise address. Otherwise, the composite factors can be used as the default value for each EDC. The composite factors were developed as a weighted average of the EFLH and CF climate region values and the EDC weights for each climate region.

EVALUATION PROTOCOLS

Midstream program delivery reduces the data collection requirements of EDCs, their implementation CSPs, and program participants. However, EDC evaluation contractors should validate the make and model of a statistically representative sample of program-supported equipment. The EDC evaluation contractor should also confirm that the installation premise is (a) served by the EDC that supplied the incentive (b) metered on a residential or master-metered multifamily electric tariff, using the installation address collected by the distributor. EDC evaluation contractors may also choose to recalculate the weighted average EFLH values in Table 2-15: EDC Climate Region Weighted Composite Factors based on actual program participation.

SOURCES

- 1) California Electronic Technical Reference Manual. "SEER Rated AC and HP HVAC Equipment, Residential". Accessed February 2024. Weblink
- 2) U.S. EPA. (2022). ENERGY STAR Program Requirements Product Specification for Central Air Conditioner and Heat Pump Equipment. Eligibility Criteria Version 6.1. Weblink
- 3) AHRI Institute Directory of Certified Product Performance, Weblink
- 4) For ASHP, CAC: Federal Code of Regulations 10 CFR 430.32(c). Federal Code of Regulations 10 CFR 430.32(c). Weblink For PTAC/PTHPs: Federal Code of Regulations 10 CFR 431.97(c): Weblink As per IECC Residential code (Section R403.7), the requirements for all mechanical systems are stipulated to be federal minimums. Since there are no federal standards for Residential GSHP/PTAC/PTHPs, the C&I standards act as a proxy.
- 5) Average EER for SEER 13 units as calculated by EER = -0.02 × SEER² + 1.12 × SEER based on Wassmer, M., (2003), "A Component-Based Model for Residential Air Conditioner and Heat Pump Energy Calculations" as cited in U.S. DOE Building America House Simulation Protocol, Revised 2010. Weblink

VOLUME Measures	2:	ENERGY	STARResidential	
HVAC				

Formatted: Font: Arial

6) Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service (Weblink) and updated based on the latest CDD and HDD values from NOAA's 15-year annual climate Normals (2006–2020) (Weblink)

VOLUME Measures 2:

ENERGY STARResidential

HVAC

2.2.3 HIGH EFFICIENCY EQUIPMENT: DUCTLESS HEAT PUMPS WITH MIDSTREAM DELIVERY OPTION

Target Sector	Residential
Measure Unit	Ductless Heat Pump Unit
Measure Life	15 years ^{Source 1}
Vintage	Early Replacement, Replace on Burnout, New Construction

5.0ENERGY STAR Version 6.1 ductless "mini-split" heat pumps technology is typically used to convert an electric resistance heated home into an efficient single or multi-zonal ductless heat pump system. Equipment will be considered eligible if it meets the efficiency requirements in ENERGY STAR Version 6.1. ^{Source 2}

Cooling savings may also be claimed under this measure for quality installation of properly sized new equipment, though not for equipment delivered through midstream programs.

ELIGIBILITY

This protocol documents the energy savings attributed to ductless heat pumps. Eligible equipment must meet ENERGY STAR Version 6.1 requirements.

The baseline heating system could be:

- 1) Existing electric resistance heating
- 2) Electric space heaters used as the primary heating source when fossil fuel (other than natural gas) heating systems failed (referred to as de facto heating)
- 3) A lower-efficiency ductless heat pump system

4) A ducted heat pump

5) Electric furnace

Cooling-savings may also be claimed under this measure for quality installation of properly-sized new equipment, though not for equipment delivered through midstream programs.

ELIGIBILITY

This protocol documents the energy savings attributed to ductless heat pumps. Eligible equipment must meet ENERGY STAR Version 5.0 requirements. The baseline heating system could be:

1) Existing electric resistance heating

2)<u>1)Electric space heaters used as the primary heating source when fossil fuel (other than natural gas) heating systems failed (referred to as de facto heating)¹⁹</u>

3)1)A lower-efficiency ductless heat pump system

4)1)A ducted heat pump

5)1)Electric furnace

 A non-electric fuel-based system. (Implicit assumption in the Midstream route that a nonelectric fuel/no heat baseline will be replaced with a minimum efficiency electric system).

The baseline cooling system can be:

¹⁹ This baseline is for participants with broken-beyond-repair oil heating systems who are heating their homes with portable electric space heaters.

VOLUME Measures	2:	ENERGY	STARResidential	
HVAC				P

Formatted: Indent: Left: 0", Don't add space between paragraphs of the same style, Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Indent at: 0.5", Font Alignment: Auto

State of Penns May 2024		
11109 2024	ylvania – Technical Reference Manual, Vol. 2: Residential Measures – Rev Date: Feb. 2021	
 A = t =		
· ·	ard efficiency heat pump system al air conditioning system	
	air conditioner	
<u>5) A 100111</u>		Formatted: Body Text
ductless uni system for savings clai HVAC Quali	nstruction or addition applications, the baseline assumption is a standard-efficiency it (See Table 2-16). DHP systems may be installed as the primary heating or cooling the house or as a secondary heating or cooling system for a single room. Cooling med from proper sizing requires Manual J calculations, following of ENERGY STAR ity Installation procedures, or similar calculations. e cooling system can be:	· ·
	ard efficiency heat pump system	
,	al air conditioning system	
/	air conditioner	
, <u> </u>	←	Formatted: Body Text
	nstruction or addition applications, the baseline assumption is a standard-efficiency← t (Table 2-12) -DHP systems may be installed as the primary heating or cooling system	Formatted: Space After: 0 pt
for the hous claimed from Quality Insta	se or as a secondary heating or cooling system for a single room. Cooling savings n proper sizing requires Manual J calculations, following of ENERGY STAR HVAC allation procedures, or similar calculations. Residential establishments <u>buildings</u> with ed baseline equipment are excluded from claiming savings from proper sizing.	
MIDSTRE	AM HVAC OVERVIEW	
distributors	ducts sold to trade allies and customers through residential sales channels such as of HVAC products. This complements other delivery channels (such as downstream rade allies and customers) by providing incentives to encourage distributors to stock	Formatted: Space Before: 0 pt, After: 0 pt
distributors rebates to tu promote, an Midstream s historical pa from PY8 to program. Se	of HVAC products. This complements other delivery channels (such as downstream rade allies and customers) by providing incentives to encourage distributors to stock, d sell more efficient systems. savings calculations rely on composite baseline information formulated by blending rticipant data from PECO's downstream programs for PY8 to PY9 and PPL's programs o PY10Q1 with the existing PA TRM deemed values for the downstream incentive e "Midstream Composite Baseline Calculations" below. Cooling savings from proper	romatea. Space before. Ope, Arter. Ope
distributors rebates to tu promote, an Midstream s historical pa from PY8 to program. Se	of HVAC products. This complements other delivery channels (such as downstream rade allies and customers) by providing incentives to encourage distributors to stock, d sell more efficient systems. savings calculations rely on composite baseline information formulated by blending rticipant data from PECO's downstream programs for PY8 to PY9 and PPL's programs or PY10Q1 with the existing PA TRM deemed values for the downstream incentive e "Midstream Composite Baseline Calculations" below. Cooling savings from proper ot be claimed under midstream delivery programs.	(Tormatter , space before, o pr, Aiter, o pr
distributors rebates to tr promote, an Midstream s historical pa from PY8 tr program. Se sizing canno A L G O R I T The savings system), an efficiency air zones, each	of HVAC products. This complements other delivery channels (such as downstream rade allies and customers) by providing incentives to encourage distributors to stock, d sell more efficient systems. savings calculations rely on composite baseline information formulated by blending rticipant data from PECO's downstream programs for PY8 to PY9 and PPL's programs or PY10Q1 with the existing PA TRM deemed values for the downstream incentive e "Midstream Composite Baseline Calculations" below. Cooling savings from proper ot be claimed under midstream delivery programs.	
distributors rebates to tr promote, an Midstream s historical pa from PY8 tr program. Se sizing canno ALGORIT The savings system), an efficiency air	of HVAC products. This complements other delivery channels (such as downstream rade allies and customers) by providing incentives to encourage distributors to stock, d sell more efficient systems. savings calculations rely on composite baseline information formulated by blending ricipant data from PECO's downstream programs for PY8 to PY9 and PPL's programs or PY10Q1 with the existing PA TRM deemed values for the downstream incentive e "Midstream Composite Baseline Calculations" below. Cooling savings from proper of be claimed under midstream delivery programs.	romatear space before. Opp, Ater: Ope
distributors rebates to tr promote, an Midstream s historical pa from PY8 tr program. Se sizing canno A L G O R I T The savings system), an efficiency air zones, each provided.	of HVAC products. This complements other delivery channels (such as downstream rade allies and customers) by providing incentives to encourage distributors to stock, d sell more efficient systems. savings calculations rely on composite baseline information formulated by blending ricipant data from PECO's downstream programs for PY8 to PY9 and PPL's programs or PY10Q1 with the existing PA TRM deemed values for the downstream incentive ee "Midstream Composite Baseline Calculations" below. Cooling savings from proper of be claimed under midstream delivery programs. THM S depend on three main factors: baseline condition, usage (primary or secondary heating d the capacity of the indoor unit. This algorithm is used for the installation of new high r conditioners or heat pumps. For non-midstream delivery methods, if there are multiple zone should be calculated separately. For midstream delivery, composite values are $= \Delta kWh_{cool} + \Delta kWh_{heat} + \Delta kWh_{PSF}$	
distributors rebates to tr promote, an Midstream s historical pa from PY8 tr program. Se sizing canno ALGORIT The savings system), an efficiency air zones, each provided.	of HVAC products. This complements other delivery channels (such as downstream rade allies and customers) by providing incentives to encourage distributors to stock, d sell more efficient systems. savings calculations rely on composite baseline information formulated by blending rticipant data from PECO's downstream programs for PY8 to PY9 and PPL's programs or PY10Q1 with the existing PA TRM deemed values for the downstream incentive be "Midstream Composite Baseline Calculations" below. Cooling savings from proper of be claimed under midstream delivery programs. THMS depend on three main factors: baseline condition, usage (primary or secondary heating d the capacity of the indoor unit. This algorithm is used for the installation of new high r conditioners or heat pumps. For non-midstream delivery methods, if there are multiple a zone should be calculated separately. For midstream delivery, composite values are $= \Delta kWh_{cool} + \Delta kWh_{heat} + \Delta kWh_{PSF}$ $\Delta kWh_{cool} = CAPY_{cool} \times \left(\frac{OF_{cool} \times DLF}{SEER_{base}} - \frac{1}{SEER_{base}} - \frac{1}{SEER_{base}} - \frac{1}{SEER_{base}} - \frac{1}{SEER_{cool}} \times + \frac{1}{SEER_{base}} + \frac{1}{$	
distributors rebates to tr promote, an Midstream s from PY8 tr program. Se sizing canno A L G O R I T The savings system), an efficiency ai zones, each provided. <i>ΔkWh</i>	of HVAC products. This complements other delivery channels (such as downstream rade allies and customers) by providing incentives to encourage distributors to stock, d sell more efficient systems. savings calculations rely on composite baseline information formulated by blending riticipant data from PECO's downstream programs for PY8 to PY9 and PPL's programs of PY10Q1 with the existing PA TRM deemed values for the downstream incentive ee "Midstream Composite Baseline Calculations" below. Cooling savings from proper of be claimed under midstream delivery programs. THM S request of the indoor unit. This algorithm is used for the installation of new high r conditioners or heat pumps. For non-midstream delivery methods, if there are multiple a zone should be calculated separately. For midstream delivery, composite values are $= \Delta kWh_{cool} + \Delta kWh_{heat} + \Delta kWh_{PSF}$ $\Delta kWh_{cool} = CAPY_{cool} \times \frac{(PF_{cool} \times DLF}{SEER_{base}} - \frac{1}{SEER_{2ee}}) \times \bullet EFLH_{cool,zone} \times n_{MS zones}$	
distributors rebates to tr promote, an Midstream s from PY8 tr program. Se sizing canno A L G O R I T The savings system), an efficiency ai zones, each provided. <i>ΔkWh</i>	of HVAC products. This complements other delivery channels (such as downstream rade allies and customers) by providing incentives to encourage distributors to stock, d sell more efficient systems. savings calculations rely on composite baseline information formulated by blending ritcipant data from PECO's downstream programs for PY8 to PY9 and PPL's programs of PY10Q1 with the existing PA TRM deemed values for the downstream incentive be "Midstream Composite Baseline Calculations" below. Cooling savings from proper of be claimed under midstream delivery programs. FHMS depend on three main factors: baseline condition, usage (primary or secondary heating d the capacity of the indoor unit. This algorithm is used for the installation of new high r conditioners or heat pumps. For non-midstream delivery methods, if there are multiple a zone should be calculated separately. For midstream delivery, composite values are $= \Delta kWh_{cool} = CAPY_{cool} \times \left(\frac{OF_{cool} \times DLF}{SEER_{base}} - \frac{1}{SEER_{base}} - \frac{1}{SEER_{cool}}\right) \left(\frac{OF_{cool} \times DLF}{SEER_{base}} - \frac{1}{SEER_{2ee}}\right) \times \bullet$ The to use <i>EFLH</i> _{cool} of Room ACs for secondary cooling zones. See Table 2-11.	
distributors rebates to tr promote, an Midstream s from PY8 tr program. Se sizing canno A L G O R I T The savings system), an efficiency ai zones, each provided. <i>ΔkWh</i>	of HVAC products. This complements other delivery channels (such as downstream rade allies and customers) by providing incentives to encourage distributors to stock, d sell more efficient systems. savings calculations rely on composite baseline information formulated by blending ritcipant data from PECO's downstream programs for PY8 to PY9 and PPL's programs of PY10Q1 with the existing PA TRM deemed values for the downstream incentive be "Midstream Composite Baseline Calculations" below. Cooling savings from proper of be claimed under midstream delivery programs. FHMS depend on three main factors: baseline condition, usage (primary or secondary heating d the capacity of the indoor unit. This algorithm is used for the installation of new high r conditioners or heat pumps. For non-midstream delivery methods, if there are multiple a zone should be calculated separately. For midstream delivery, composite values are $= \Delta kWh_{cool} = CAPY_{cool} \times \left(\frac{OF_{cool} \times DLF}{SEER_{base}} - \frac{1}{SEER_{base}} - \frac{1}{SEER_{cool}}\right) \left(\frac{OF_{cool} \times DLF}{SEER_{base}} - \frac{1}{SEER_{2ee}}\right) \times \bullet$ The to use <i>EFLH</i> _{cool} of Room ACs for secondary cooling zones. See Table 2-11.	Formatted: Indent: Left: 1"
distributors rebates to tr promote, an Midstream s from PY8 tr program. Se sizing canno A L G O R I T The savings system), an efficiency ai zones, each provided. <i>ΔkWh</i>	of HVAC products. This complements other delivery channels (such as downstream rade allies and customers) by providing incentives to encourage distributors to stock, d sell more efficient systems. savings calculations rely on composite baseline information formulated by blending ricipant data from PECO's downstream programs for PY8 to PY9 and PPL's programs or PY10Q1 with the existing PA TRM deemed values for the downstream incentive e "Midstream Composite Baseline Calculations" below. Cooling savings from proper of the claimed under midstream delivery programs. FHMS depend on three main factors: baseline condition, usage (primary or secondary heating d the capacity of the indoor unit. This algorithm is used for the installation of new high r conditioners or heat pumps. For non-midstream delivery methods, if there are multiple a zone should be calculated separately. For midstream delivery, composite values are $= \Delta kWh_{cool} + \Delta kWh_{heat} + \Delta kWh_{PSF}$ $\Delta kWh_{cool} = CAPY_{cool} \times \left(\frac{OF_{cool} \times DLF}{SEER_{base}} - \frac{1}{SEER_{base}}\right) \left(\frac{OF_{cool} \times DLF}{SEER_{base}} - \frac{1}{SEER_{base}}\right) \times \bullet$ The to use <i>EFLH</i> _{cool} of Room ACs for secondary cooling zones. See Table 2-11.	Formatted: Indent: Left: 1" Formatted: Space Before: 0 pt, Tab stops: 1", Left
distributors rebates to tr promote, an Midstream s historical pa from PY8 tr program. Se sizing canno A L G O R I T The savings system), an efficiency ali zones, each provided. <i>AkWh</i> Note: Be sur	of HVAC products. This complements other delivery channels (such as downstream rade allies and customers) by providing incentives to encourage distributors to stock, d sell more efficient systems. savings calculations rely on composite baseline information formulated by blending ricipant data from PECO's downstream programs for PY8 to PY9 and PPL's programs or PY10Q1 with the existing PA TRM deemed values for the downstream incentive be "Midstream Composite Baseline Calculations" below. Cooling savings from proper of the claimed under midstream delivery programs. THMS redepend on three main factors: baseline condition, usage (primary or secondary heating d the capacity of the indoor unit. This algorithm is used for the installation of new high r conditioners or heat pumps. For non-midstream delivery methods, if there are multiple a zone should be calculated separately. For midstream delivery, composite values are $= \Delta kWh_{cool} = CAPY_{cool} \times \frac{(PF_{east} \times DLF)}{(SEER_{base})} - \frac{4}{SEER_{base}} - \frac{0}{SEER_{base}} - \frac{1}{SEER_{base}} \times \frac{1}{SEER_{base}} \times \frac{1}{SEER_{base}} \times \frac{1}{SEER_{base}} \times \frac{1}{SEER_{base}} - \frac{1}{SEER_{base}} \times \frac{1}{SEER_{base}} \times \frac{1}{SEER_{base}} \times \frac{1}{SEER_{base}} - \frac{1}{SEER_{base}} \times \frac{1}{SEER_{base}} \times \frac{1}{SEER_{base}} - \frac{1}{SEER_{base}} \times \frac{1}{SEER_{base}} \times \frac{1}{SEER_{base}} \times \frac{1}{SEER_{base}} - \frac{1}{SEER_{base}} \times \frac{1}{SEER_{base}} \times \frac{1}{SEER_{base}} \times \frac{1}{SEER_{base}} \times \frac{1}{SEER_{base}} - \frac{1}{SEER_{base}} \times 1$	Formatted: Indent: Left: 1" Formatted: Space Before: 0 pt, Tab stops: 1", Left
distributors rebates to tr promote, an Midstream s historical pa from PY8 tr program. Se sizing canno A L G O R I T The savings system), an efficiency all zones, each provided. <i>AkWh</i>	of HVAC products. This complements other delivery channels (such as downstream rade allies and customers) by providing incentives to encourage distributors to stock, d sell more efficient systems. savings calculations rely on composite baseline information formulated by blending rticipant data from PECO's downstream programs for PY8 to PY9 and PPL's programs o PY10Q1 with the existing PA TRM deemed values for the downstream incentive be "Midstream Composite Baseline Calculations" below. Cooling savings from proper of be claimed under midstream delivery programs. THMS depend on three main factors: baseline condition, usage (primary or secondary heating d the capacity of the indoor unit. This algorithm is used for the installation of new high r conditioners or heat pumps. For non-midstream delivery methods, if there are multiple a zone should be calculated separately. For midstream delivery, composite values are $= \Delta kWh_{cool} + \Delta kWh_{heat} + \Delta kWh_{PSF}$ $\Delta kWh_{cool} = CAPY_{cool} \times \left(\frac{OF_{cool} \times DLF}{SEER_{base}} - \frac{1}{SEER_{base}}\right) \left(\frac{OF_{cool} \times DLF}{SEER_{base}} - \frac{1}{SEER_{cool}}\right) \times +$ $EFLH_{cool,zone} \times n_{MS zones}$ re to use <i>EFLH_cool</i> of Room ACs for secondary cooling zones. See Table 2-11. $\Delta kWh_{heat} = CAPY_{heat} \times \left(\frac{OF_{heat} \times DLF}{HSPF_{base}} - \frac{1}{HSPF_{cool}}\right) \left(\frac{OF_{heat} \times DLF}{HSPF_{2base}} - \frac{1}{HSPF_{2base}}\right) \times +$ $EFLH_{heat,HP,zone} \times n_{MS zones}$	Formatted: Indent: Left: 1" Formatted: Space Before: 0 pt, Tab stops: 1", Left

State of Pennsylvania – Technical Refe	rongo Manual Val. 2: E	Posidential Measures	Rev Date: Feb. 2021	
May 2024	rence Manual, vol. 2. r	cesidential measures –	Rev Date. Feb. 2021	
$\Delta kWh_{PSF} = \frac{CA}{CA}$	PY _{cool} V DSE V FEII	$H_{cool} + \frac{CAPY_{heat}}{HSPF2_{ee}} \times PSF \times$	FEIH	
	ER_{ee}	Icool + HSPF2 _{ee} × FSF ×	LI ⁻ LI ⁻ heat	
$\frac{\Delta kW}{\Delta kW_{cool}} + \Delta kW_{PSF}$				
$\Delta kW_{summer peak} = \Delta kW_{cool} + \Delta kW_{l}$	PSF,cool			
$\frac{\Delta k W_{cool}}{MS \text{ zones}} \left(\frac{OF_{cool} \times DLF}{EER2_{base}} - \frac{1}{EER2_{ee}} \right) \times CF_{s}$	$PY_{cool} \times \frac{OP_{cool} \times D}{EER_{base}}$	$\frac{t+}{EER_{ee}} \times CF \times$		Formatted: Subscript
$n_{MS \ zones} \left(\frac{OF_{cool} \times DLF}{FEP2} - \frac{1}{FEP2} \right) \times CF_s$	$ummer \times n_{MS \ zones}$			Formatted: Font: 10 pt
(EERZbase EERZee)				Formatted: Font: 11 pt, Italic
$\Delta k W_{PSF,cool} = \frac{CA}{E}$	$\frac{PY_{cool}}{FP} \times PSF \times CF$			Formatted: Font: 11 pt
E	ERee		•	Formatted: Font: Italic
Note: Be sure to use <i>EFLH_{heat}</i> of Seco	ondarv HP for seco	ndarv heating zones. Se	e Table 2-11.	Formatted: Normal
$AkW_{winten mark} = AkW_{v} + AkW_{v}$				
$\underline{\Delta k W_{heat}} = C A$	$APY_{heat} \times \left(\frac{OF_{heat} \times D}{COP}\right)$	$\frac{DLF}{D} - \frac{1}{COP_{ee}} \times \frac{1}{3.412 \frac{\text{BTU}}{\text{Web}}}$	$\times CF_{winter} \times$	
$n_{MS \ zones}$	(COT base	3.412 W·h		
Toms zones				
$\Delta k W_{PSF,heat} = \frac{CA}{C}$	$\frac{PY_{heat}}{COP} \times PSF \times CF$			
C.	UT ee		•	Formatted: Font: Cambria Math
Baseline: Room Air Conditioner(s)				Formatted: Tab stops: 1", Left + Not at 2"
EDCs may collect information about				
determine the replaced capacity. An qualifying capacity:	oversizing factor i	s calculated from the r	atio of baseline to	
$OF_{cool} = \frac{\sum CAPY_{RAC}}{CAPY_{cool}}$				
CAPY _{cool}				
Baseline: Spaceheater(s), Electric	Baseboards			
EDCs may collect information about	the capacity of the	existing space heaters	, electric furnaces,	
or electric baseboards. Capacity is d				
n use, where OF_{heat} is the ratio of the e	existing electric cap	acity to the capacity of the	ne new equipment:	
$\Sigma kW_{spaceheat} \times 3.412 \frac{BT}{W}$				
$OF_{heat} = \frac{\sum kW_{spaceheat} \times 3.412 \frac{BT}{W}}{CAPY_{Heat}}$	<u> </u>			
DEFINITION OF TERMS				
Table 2-16: Terms, Values, and References	for Linh Efficiency F	auinmont: Ductions Hast F	lumn	
	, ,		·	
Term	Unit	Value	Sources AEPS Application;	
CAPY _{cool} , The cooling capacity or central air conditioner or heat pump installed ²⁰		EDC Data Gathering	EDC Data Gathering	
CAPY _{heat} , The heating capacity of the	heat , part a	EDC Data Gathering	AEPS Application;	
pump being installed ²⁴	kBTU/hr		EDC Data Gathering	
L		1		

Page 25

I

I

VOLUME2:MeasuresHVAC

²⁰ This data is obtained from the AEPS Application Form or EDC's data gathering based on the model number. ²¹ Ibid.

ENERGY STARResidential

$\frac{CAPY_{RAC}}{AC}, \text{ The cooling capacity of the room} AC. Used only for the RAC cooling baseline} kBTU/hr = EDC Data Gathering = EDC D Gathering = EDC D$		
space heaters in watts. KW EDC Data GatheringGatherSEERbase SEER2base, Seasonal Energy $\frac{BTU}{W \cdot h}$ EDC Data GatheringEDC DEfficiency Ratio of the Baseline Unit $\frac{BTU}{W \cdot h}$ Table 2-18 or Table 2-10 in Sec. 2.2.1EDC D	ing	
SEERbase SEER2base, Seasonal Energy BTU Default:Efficiency Ratio of the Baseline Unit $W \cdot h$ Table 2-18 or Table 2-10 in Sec. 2.2.1EDC D Gathering;		
$\frac{SEER_{base} SEER_{2base}}{Efficiency Ratio of the Baseline Unit} \qquad \qquad \frac{BTU}{W \cdot h} \qquad \begin{array}{c} EDC D \\ Table 2-18 \text{ or Table} \\ 2-10 \text{ in Sec. 2.2.1} \end{array} \qquad \begin{array}{c} EDC D \\ Gathering; \\ \end{array}$		
Efficiency Ratio of the Baseline Unit $\overline{W \cdot h}$ Table 2-18 or Table 2-10 in Sec. 2.2.1 Gathering;		
Midstream: <u>12.1<u>13.6</u></u>		
	ata	
EDC Data Gathering		
of the Baseline Unit $\overline{W \cdot h}$ Gathering	EDC Data Gathering; 3 <u>. 4, 5</u>	
Table 2-12 Midstream: 11.4		
EERee EER2ee , Energy Efficiency Ratio of BTU Default EERee: EDC D		
the unit being installed ²³ $\begin{bmatrix} \frac{1}{W} \cdot h \\ \frac{1}{W} \cdot h \end{bmatrix} = \begin{bmatrix} -0.022802 \times \\ \frac{5EER_{ee}^2}{ee} + \\ 1.152212 \times SEER_{ee} \end{bmatrix}$ Gathering Application		
EDC Data Gathering		
Default:		
	EDC Data Gathering; 2; <u>3,</u> 10	
Midstream: 6.7 <u>0</u>		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	ata	
PSF, Proper Sizing Factor or the assumed savings due to proper sizing and proper installation Proportion Proportion 11		

Formatted: Not Highlight

²²-Ibid.
 ²³-Ibid.
 ²⁴-This data is obtained from the AEPS Application Form or EDC's data gathering.
 ²⁴-This data is obtained from the AEPS Application Form or EDC's data gathering.

VOLUME Measures

HVAC

Term	Unit	Value	Sources	
		EDC Data Gathering		
OF _{cool} , Oversize factor	None	Default: Table 2-19	EDC Data	Field Code Changed
		Midstream: 1.4 <u>0</u>	Gathering; 5 6	
		EDC Data Gathering		
OF _{heat} , Oversize factor	None	Default: Table 2-19	EDC Data Gathering ;6 7	Formatted: Not Highlight
		Midstream: 1.30		Field Code Changed
DLF, "Duct Leakage Factor" accounts for		Depends on baseline & efficient conditions: ,Table 2-19		Formatted: Not Highlight Formatted: Not Highlight
but not ductless ones	None	Midstream, cooling: 1.02 Midstream, heating:	7; <u>8,</u> 10	Pormatted. Not highlight
		1. <mark>01<u>02</u></mark>		
<i>zone</i> , Primary or secondary usage level of a space, this affects <i>EFLH_{cool}</i> and <i>EFLH_{heat}</i> . For midstream delivery, use provided composite <i>EFLH</i> values.	None	See Table 2-17		-
$n_{MS\ zones}$, Average number of heating and cooling zones per site. Note: this factor applies to mid-stream delivery only.	None	1.18	10	
		See <i>EFLH_{cool}</i> in Vol. 1, App. A		
$\textit{EFLH}_\textit{cool}$, Equivalent Full Load Hours of operation during the cooling season for the average unit	hours yr	Use Room AC hours for secondary zones.	8 <u>9</u>	
		Midstream: Table 2-18 Table 2-24		Formatted: Not Highlight
<i>EFLH</i> _{heet,HP} , Equivalent Full Load Hours of operation during the heating season for the average unit	<u>hours</u> yr	See <i>EFLH_{neet}</i> in Vol. 1, App. A Use Secondary HP for secondary zones. Midstream: Table 2-24: Midstream DHP – Composite EFLH Values,	8 <u>9</u>	Formatted: Not Highlight
<i>GFCF_{summer}</i> , Demand Coincidence Factor <u>during the summer months</u>	Proportion	See <i>CF</i> in Vol. 1, App.	<u>89</u>	Formatted: Not Highlight
CF _{winter} Demand Coincidence Factor during the winter months	<u>Proportion</u>	See CF in Vol. 1, App. <u>A</u>	<u>9</u>	
ote: Where appropriate, nameplate data ER, HSPF) should be converted to new priversion equations laid out in Vol. 1 App (OLUME 2: ENERGY STARResi	efficiency me <u>A</u>			

Measures HVAC

I

I

Table 2-17: Ductless Heat Pump Usage Zones

Usage Zone	Definition
Primary	Dining room Family room House hallway Living room Kitchen areas Recreation room
Secondary	Basement Bathroom Bedroom Laundry/Mudroom Office/Study Storage room Sunroom/Seasonal room

Table 2-18: Default Ductless Heat Pump Efficiencies

Basel	Ea	rly Replaceme	ent	Replace on I	Burnout/New (Construction
ine Equip	SEER _{base} SEE <u>R2_{base}</u>	EER _{base} EE R2 _{base}	HSPF _{base} HSP F2 _{base}	SEER _{base} SEE <u>R2_{base}</u>	EER _{base} EE R2 _{base}	HSPF _{base} HSP F2 _{base}
Ductle ss	13<u>14.3</u>	11.3	8.2 7.5	14 <u>.3</u>	12 11.7	8.2 7.5

Note: Early replacement defaults, though stemming from the Baseline study, have been capped to New construction/Replace on Burnout values (Federal standards)

Table 2-19: Oversize and Duct Leakage Factors for High Efficiency Equipment

DLF 1.15 1.15 1 1 1 • Formatted Table OF _{heat} 1.4 0 1 1.4 1 0 0.6	Factors	ASHP	CAC	Ductless	Electric Baseboard	Electric Furnace	New Construction	RAC	Space Heaters		Formatted: Centered
OF _{heat} 1.4 0 1 1.4 1 0 0.6	DLF	1.15	1.15	1	1	1.15	1	1	1 🔺		Formatted Table
	OFheat	1.4	0	1	1.4	1 .4	1	0	0.6	1	(
OF _{cool} 1.4 1.5 1 0 0 1 1 0	OFcool	1 .4	1 .5	1	0	0	1	1	0	1	

MIDSTREAM COMPOSITE BASELINE CALCULATIONS

The Midstream Delivery Program This measure estimates the baseline system using composite values calculated from historical participant data. The composite

SEER2, EER2, and HSPF2 values of the baseline inputs (SEER, EER, OF, DLF, and HSPF) are based on the PA TRM values Table 2-8 new construction/replace on burnout vintages and baseline heating and cooling system splits from historical PECO PY8 to PY9 and PPL PY8 to PY10Q1 data. the 2023 Residential Baseline Study for early replacement vintages. Source 3

The composite EFLH values assume a 50/50 split between primary and secondary installations and are a weighted average of EFLH values in Appendix A: Climate Dependent Values. Table 2-14 through Table 2-18

Table 2-20: Midstream DHP – <u>SEER2</u> and <u>EER2</u> Baseline Splits <u>through</u> Table 2-24: Midstream DHP – Composite EFLH+ Values show the inputs for the calculation of each composite baseline value. The composite baseline values will be updated as needed from the downstream program participation data set. <u>The split</u> represents the approximate percentage of projects in the PECO and PPL territories that have the indicated Cooling Type. The split is calculated by dividing the number of projects with the indicated

VOLUME Measures	2:	ENERGY	STARResidential	
HVAC				

Page 28

Formatted: Font: Arial, 10 pt

Formatted: Font: Arial, 10 pt
Formatted: Font: Arial, 10 pt
Formatted: Font: Arial, 10 pt

Formatted: Font: Arial, 10 pt

Formatted: Footnote Text,Footnote Text1 Char,Footnote Text Char Ch,Footnote Text Char Ch Char Char,Footnote Text Char Ch Char Char,Footnote Text1 Char Char Char,Footnote Text Char Ch Char,ft Char,ft,ALTS FOOTNOTE,fn,Footnote Text 2,Footnote text,FOOTNOTE Formatted: Font: Arial, 10 pt

Cooling Type by the total number of projects in PECO PY8 to PY9 and PPL PY8 to PY10Q1 historical data set. The split is rounded to the nearest percent.

The composite value represents the weighted average of the system type based on the relative system splits.

For "No existing cooling" and "Room AC Cooling" Types, we make the assumption that the customer was initially upgrading to a Central Air Conditioning system and is incentivized to upgrade to a DHP. Similarly, for "No existing or non-electric heating" and "Standard DHP" types, the assumption is that the customer was upgrading to an "Air Source Heat Pump."

Table 2-20: Midstream DHP – SEERSEER2 and EEREER2 Baseline Splits

Cooling Type	SEER _{base} SEER2 _{base}	EERbase	Split ²⁵
Central AC	13. <mark>04</mark>	11. <mark>32</mark>	4%
DHP or ASHP	14. 0 <u>3</u>	12.0<u>11.8</u>	8%
No existing cooling for primary space	13. 0<u>4</u>	11. 3 2	29%
No existing cooling for secondary space	11.3<u>13.4</u>	9.8<u>11.2</u>	30%
Room AC	11.3<u>13.4</u>	9.8<u>11.2</u>	30%
Composite ²⁶	12.1<u>13.6</u>	<u> 10.511.4</u>	100%

Table 2-21: Midstream DHP – HSPFHSPF2 Baseline Splits

Heating Type	HSPF _{base} HSPF2 _{base}	Split
ASHP	<u>8.27.5</u>	3%
Electric furnace	3. 2 <u>.7</u>	1%
Electric resistance or de facto space heaters	3.4<u>2.9</u>	32%
No existing or non-electric heating	8.2 7.5	57%
Standard DHP	8.2<u>7.5</u>	8%
Composite	6.7 <u>0</u>	100%

²⁵ The split represents the approximate percentage of projects in the PECO and PPL territory that have the indicated Cooling Type. The split is calculated by dividing the number of projects with the indicated Cooling Type by the total number of projects in PECO PY8 to PY9 and PPL PY8 to PY10Q1 historical data set. The split is rounded to the nearest percent.

²⁶ The composite value represents the weighted average of the system type based on the relative system splits. The computed average is rounded to the nearest tenth.

VOLUME	2:	ENERGY	STARResidential	
Manauman				

Measures HVAC

Page 29

Formatted Table

May 2024

State of Pennsylvania – Technical Reference Manual, Vol. 2: Residential Measures – Rev Date: Feb. 2021

Table 2-22: Midstream DHP – DLFcool and OFcool Baseline Splits

Cooling Type	DLFcool	OFcool	Split
Central AC	1.15	1. 5 0	8%
Central ASHP	1.15	1.4 <u>0</u>	5%
Ductless Heat Pump	1.00	1.0	19%
Room AC	1.00	1.0	69%
Composite	1.02	1.4 <u>0</u>	100%

Table 2-23: Midstream DHP – DLFheat and OFheat Baseline Splits

Heating Type	DLFheat	OFheat	Split
Central ASHP	1.15	1.4 <u>0</u>	6%
De facto Space Heaters	1.00	0.6	5%
Ductless Heat Pump	1.00	1.0	26%
Electric Baseboard	1.00	1.4 <u>0</u>	62%
Electric Furnace	1.15	1.4 <u>0</u>	1%
Composite	1. 01<u>02</u>	1.3 <u>0</u>	100%

Table 2-24: Midstream DHP – Composite EFLH Values

Reference City	ZoneClimate Region	Composite EFLH _{cool}	Composite EFLH _{heat}	
Allentown	C,	377<u>497</u>	<u>10401,008</u>	
Binghamton, NY	Ą	<u>218253</u>	<u>12771,305</u>	
Bradford	G	135 201	<u>14451,325</u>	
Erie		<u>307410</u>	<u>12131,131</u>	
Harrisburg	E	479 <u>562</u>	<u>1129959</u>	
Philadelphia	D,	<u>512637</u>	906<u>850</u>	
Pittsburgh	H	356<u>4</u>39	<u>10731,069</u>	
Scranton	B	310<u>427</u>	<u>11431,089</u>	
Williamsport	F	366<u>433</u>	<u> 10851,083</u>	

EVALUATION PROTOCOLS

EVALUATION PROTOCOLS

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings.

SOURCES

1) California Public Utilities Commission Database for Energy Efficient Resources (DEER) EUL Support Table for 2020,

VOLU Meas		ENERGY	STARResidential	
HVAC				

Formatted	[69]
Formatted	[70]
Formatted	[71]
Formatted	[72]
Formatted	[74]
Formatted	[75]
Formatted	[[76]
Formatted	[77]
Formatted	[73]
Formatted	[79]
Formatted	[[80]
Formatted	[81]
Formatted	[82]
Formatted	[78]
Formatted	[[84]
Formatted	([85]
Formatted	[[86]
Formatted	[87]
Formatted	([83]
Formatted	<u> [89]</u>
Formatted	([90]
Formatted	<u>([90]</u>
Formatted	<u>([91]</u> ([92])
Formatted	([<u>92</u>]
Formatted	([93]
Formatted	[93] [94]
Formatted	<u>[[94]</u> [[95]
Formatted	
Formatted	[96]
Formatted	[97]
Formatted	<u>[[99]</u>
Formatted	[[100]
Formatted	([101] ([102])
Formatted	
Formatted	[98]
Formatted	[[104]
Formatted	[105]
Formatted	[[106]
Formatted	[107]
Formatted	[103]
Formatted	[[109]
	[[110]
Formatted	[[111]
Formatted	[112]
Formatted	[[108]
Formatted	[[114]
Formatted	[115]
Formatted	[116]
Formatted	[117]
Formatted	[113]
Formatted	[118]

State of Pennsylvania – Technical Reference Manual, Vol. 2: Residential Measures – Rev Date: Feb. 2021	
<u>May 2024</u>	
<u>http://www.deeresources.com/files/DEER2020/download/SupportTable-EUL2020.xlsx.</u> Accessed December 2018.	
2) Federal Code of Regulations 10 CFR 430. https://www.gpo.gov/fdsys/pkg/CFR-2017-	
title10-vol3/pdf/CFR-2017-title10-vol3-sec430-32.pdf	
3) Average EER for SEER 13 units as calculated by EER = -0.02 × SEER ² + 1.12 × SEER	Formatted: Font: Arial
based on Wassmer, M., (2003), "A Component-Based Model for Residential Air	
Conditioner and Heat Pump Energy Calculations" as cited in U.S. DOE Building America House Simulation Protocol. Revised 2010. https://www.nrel.gov/docs/fy11osti/49246.pdf	
SOURCES	
1) California Electronic Technical Reference Manual. "Ductless Heat Pump, Residential".	
Accessed February 2024 Weblink	
2) U.S. EPA. (2022). ENERGY STAR Program Requirements Product Specification for Central	
Air Conditioner and Heat Pump Equipment. Eligibility Criteria Version 6.1. Weblink	
3) For Early Replacement: NMR Group for the Pennsylvania Public Utility Commission. (Year,	
Month). 2023 Pennsylvania Statewide Act 129 Residential Baseline Study. Section/Chapter, pages, table reference. Weblink	
For new Construction: Federal Code of Regulations 10 CFR 430: Weblink	
4) Average EER for SEER 13 units as calculated by EER = -0.02 × SEER ² + 1.12 × SEER	
based on Wassmer, M., (2003), "A Component-Based Model for Residential Air Conditioner	
and Heat Pump Energy Calculations" as cited in U.S. DOE Building America House Simulation Protocol, Revised 2010.Weblink	
4)5)"Methodology for Calculating Cooling and Heating Energy Input-Ratio (EIR) from the Rated ←	Formatted: Indent: Left: 0"
Seasonal Performance Efficiency (SEER OR HSPF)" (Kim, Baltazar, Haberl). April 2013	Tormatted. Indent. Lent. O
Accessed December 2018.	
http://oaktrust.library.tamu.edu/bitstream/handle/1969.1/152118/ESL-TR-13-04- 01.pdfWeblink	Formatted: Hyperlink
5)6)Based on REM/Rate modeling using models from the PA 2012-Potential Study Models	
assume 50% over-sizing of air conditioners ²⁷ and 40% oversizing of heat pumps. ²⁸	
Neme, Proctor, Nadal, "National Energy Savings Potential From Addressing Residential	
<u>HVAC Installation Problems". ACEEE, February 1, 1999. Weblink</u> Central Air Conditioning in Wisconsin, a compilation of recent field research. Energy Center	
of Wisconsin. May 2008, emended December 15, 2010. Weblink	
ACCA, "Verifying ACCA Manual S Procedures," Weblink	
6)7)Assumptions used to calculate a default value for de facto heating system OF: Four (4)	Formatted: Indent: Left: 0"
1500W portable electric space heaters in use in the home with capacity of $4 \times 1.5kW \times 2412^{BTU}$ = 20.472 pTU, conjugate by DUD with combined bacting conscience of 26kpTU.	
$3412 \frac{BTU}{kW/h} = 20,472 BTU$, replaced by DHP with combined heating capacity of 36kBTU. $OF = 20,472 BTU$	
$\frac{20.472}{36,000} \approx 0.6$	
7)8)Assumption used in Illinois 2014 TRM, Ductless Heat Pumps Measure, p. 531, footnote 877.	
ReasonableEngineering judgement: Conservative assumption when comparedfor duct leakage to http://www.energystar.gov/index.cfm?	
c=home_improvement.hm_improvement_ducts and be around 15%. ENERGY STAR. "Duct	
Sealing". Accessed March 2024. CIEE/PG&E. (2002, May). Residential HVAC and	
²⁷ Neme, Proctor, Nadal, "National Energy Savings Potential from Addressing Residential HVAC Installation Problems. ACEEE,	
February 1, 1999. Confirmed also by Central Air Conditioning in Wisconsin, a compilation of recent field research. Energy Center of Wisconsin. May 2008, emended December 15, 2010, http://ecw.org/sites/default/files/241-1_0.pdf	
28 ACCA, "Verifying ACCA Manual S Procedures," <u>http://www.acca.org/wp-content/uploads/2014/01/Manual-S-Brochure-Final.pdf</u>	
VOLUME 2: ENERGY STARResidential	
Measures	
HVAC Page 31	

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
May 2024				

Distribution Research Implementation, <u>Berkeley Labs. May, 2002, p. Page</u> 6. <u>http://epb.lbl.gov/publications/pdf/lbnl-47214.pdfWeblink</u>

- 8)—Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service.<u>https://www.ecobee.com/donateyourdata/</u>
- 9) Assumptions used to calculate a default value for de facto heating system OF: Four (4) 1500 ← W portable electric space heaters in use in (Weblink) and updated based on the home with capacity of 1500 × 3.412 × 4 = 20,472 BTU, replaced by DHP with combined heating capacity of 36,000 BTU. OF = 20,472 / 36,000 = 0.6.latest CDD and HDD values from NOAA's 15-year annual climate Normals (2006–2020) (Weblink)
- PECO PY8 to PY9 Program Participation Data and PPL PY8 to PY10Q1 Program Participation
 Data
- Northeast Energy Efficiency Partnerships, Inc., "Strategies to Increase Residential HVAC Efficiency in the Northeast", (February 2006): Appendix C Benefits of HVAC Contractor Training: Field Research Results 03-STAC-01, p. 4.

Formatted: List Paragraph,TT - Numbered List Paragraph,Bullet Styles para,TOC etc.,Bulleted List Paragraph, Indent: Left: 0", Space After: 0 pt

Formatted: Indent: Left: 0"

VOLUME Measures 2:

ENERGY STARResidential

HVAC

2.2.32.2.4 ECM CIRCULATION FANS

Target Sector	Residential Establishments]	
Measure Unit	ECM Circulation Fan]	
Measure Life	155 years ^{Source}		Formatted: Not Highlight
Measure Vintage	Early Replacement, Replace on Burnout		

This protocol covers energy and demand savings associated with retrofit of permanent-split capacitor (PSC) evaporator fan motors in an air handling unit with an electronically commutated motor (ECM).

ELIGIBILITY

This measure is targeted to residential customers whose air handling equipment currently uses a standard low-efficiency permanent split capacitor (PSC) fan motor rather than an ECM.

The targeted fan can supply heating or cooling only, or both heating and cooling. A default savings option is offered if motor input wattage is not known. However, these parameters should be collected by EDCs for greatest accuracy.

Acceptable baseline conditions are an existing circulating fan with a PSC fan motor.

Efficient conditions are a circulating fan with an ECM.

ALGORITHMS

This algorithm is used for the installation of new high efficiency circulating fans, or air handler replacement that includes a high efficiency fan.

ΔkWh_{heat}	$= ECM_{kW} \times EFLH_{heat}$
ΔkWh_{cool}	$= ECM_{kW} \times EFLH_{cool}$
⊿ <u>k₩kW_{summer pe}</u>	$= ECM_{kW} \times \frac{CF}{CF}CF_{summer}$
<u>∆kW</u> winter peak	$= ECM_{kW} \times CF_{winter}$

DEFINITION OF TERMS

Table 2-25: Terms, Values, and References for ECM Furnace Fan

Term	Unit	Value	Sources
ECM _{kw} , Reduced energy demand of the efficient ECM vs. baseline PSC motor.	kW	EDC Data Gathering, Default: 0.116	2, EDC Data Gathering
<i>EFLH_{cool}</i> , Equivalent Full Load Hours of operation during the cooling season for the average unit	$\frac{hours}{yr}$	See <i>EFLH_{cool}</i> in Vol. 1, App. A	3
<i>EFLH_{heat}</i> , Equivalent Full Load Hours of operation during the heating season for the average unit	$\frac{hours}{yr}$	See <i>EFLH_{heat}</i> in Vol. 1, App. A	3
<i>CFCF_{summer}</i> , Demand Coincidence Factor during the summer months	Proportion	See CF in Vol. 1, App. A	3
CF _{winter} , Demand Coincidence Factor during the winter months	<u>Proportion</u>	See CF in Vol. 1, App. <u>A</u>	<u>3</u>

VOLUME 2: ENERGY STARResidential Measures

HVAC

Page 33

Formatted: Indent: Left: 0", First line: 0"

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

- "Energy Savings from Efficient Furnace Fan Air Handlers in Massachusetts," ACEEE, Sachs and Smith, 2003. For the purpose of calculating the total Resource Cost Test for Act 129, measure cannot claim savings for more than fifteen years.
- 1) California Electronic Technical Reference Manual. "Brushless Fan Motor Replacement". Residential. Accessed January 2024. Weblink
- 2) Cadmus (<u>for the</u> Public Service Commission of Wisconsin), (2014, November). "Focus on Energy Evaluated Deemed Savings Changes", <u>November 2014</u>, Table 3 Description of Variables for Furnaces with ECM. <u>https://focusonenergy.com/sites/default/files/FoE_Deemed_WriteUp%20CY14%20Final.pdfW</u> eblink
- 3) Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service. Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service, https://www.ecobee.com/donateyourdata/.
- 3) Weblink Updated based on the latest CDD and HDD values from NOAA's 15-year annual climate Normals (2006–2020). Weblink

Formatted: Equation, Tab stops: 1.5", Left

Formatted: Body Text

VOLUME Measures 2:

ENERGY STARResidential

HVAC

2.2.42.2.5 GSHP DESUPERHEATERS

Target Sector	Residential Establishments					
Target Sector	Residential					
Measure Unit	GSHP Desuperheater					
Measure Life	15 years Source 1					
Vintage	Retrofit					

ELIGIBILITY

Measure Life	15 years
Vintage	Retrofit

ELIGIBILITY

Installation of a desuperheater on ana new or existing Ground Source Heat Pump to replace any type of electric water heater.

ALGORITHMS

This algorithm is used for the installation of a desuperheater for a GSHP unit.

∆kWh ∆kW $= \frac{\frac{EF_{SH}}{UEF_{Base}} \times HW \times 365 \frac{days}{yr} \times 8.3 \frac{BTU}{gal^{\circ}F} \times (T_{hot} - T_{cold})}{3,412 \frac{BTU}{kWh}}$ $= \frac{\Delta kWh \times ETDF}{2}$

 $\Delta kW_{summer peak} = \Delta kWh \times ETDF_{summer}$

 $\Delta k W_{winter \ peak} = 0$

DEFINITION OF TERMS

Table 2-26: Terms, Values, and References for GSHP Desuperheater

Term	Unit	Value	Sources
EFSH, Energy Factor per desuperheater	None	0.17	<u>1, 2, 3</u>
HW, Daily hot water use	Gallons/Day	45.5	7
T _{hot} , Hot Water Temperature	°F	119	<u>34</u>
T _{cold} , Cold Water Temperature	°F	52	4 <u>5</u>
<i>UEF</i> _{base} , Uniform Energy Factor of Electric Water Heater	None	EDC Data Gathering, Default: <u>1.030.92</u>	EDC Data Gathering, <u>56</u>

VOLUME 2: Measures ENERGY STARResidential

HVAC

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
May 2024				

Term	Unit	Value	Sources	
<i>ETDF</i> , <i>ETDF</i> _{summer} . Energy to Demand Factor	<u>kW/kWh/year</u> None	0.00008047 <u>Table</u> 2 <u>-</u> 27		Formatted Table Formatted: Font: 10 pt

VOLUME 2: ENERGY STARResidential Measures

HVAC

tate of Pennsylvania – Technical Reference Manual, Vol. 2: ay 2024 able 2:27: Energy to Demand Factor for GSHP Desuperheater Building Type	ETDF _{summer}	- Rev Date: Feb. 2021	
able 2-27: Energy to Demand Factor for GSHP Desuperheater Building Type	ETDF _{summer}		
Building Type	ETDF _{summer}		
Mobile Home	0.0001011		
Multi-Family with 2 - 4 Units	0.0001006		
Multi-Family with 5+ Units	0.0001007		
Single-Family Attached	<u>0.0001026</u>		
Single-Family Detached	<u>0.0001070</u>		
VALUATION BROTOCOLS			Formatted: Equation, Tab stops: 1.5", Left
VALUATION PROTOCOLS			
or most projects, the appropriate evaluation protocol f default values. For projects using customer specifi	c data for open varia	oles, the appropriate	Formatted: Right: 0"
valuation protocol is to verify installation and prope erification of open variables. The Pennsylvania Evalua			
nd requirements for evaluation procedures.		←	Formatted: Body Text
OURCES			
NY TRM (October 2023, V11) Heat PUMP – Water P, Effective Useful Life (EUL, Single and Multi-Fam Ground Source Weblink. The Desuperheater is assumed to have an equal E			
of Act 129 the EUL for this measure will be capped			
<u>"Residential Ground Source Heat Pumps with In</u> <u>Performance Results from Long-Term Monitoring</u> <u>2012.</u>			
<u>) Desuperheater Study, New England Electric Systems</u> 2011) and 10 C.F.R. 430.32 (x) (2011).	em, 1998 42 U.S.C.A	<u>6295(i) (West Supp.</u>	
) Pennsylvania Statewide Residential End-Use and	Saturation Study, 2014	<u>, Weblink</u>	
ISING ROCK SPRING, PA (SITE 2036 OIL TEMPERATURE AT 40 INCH DEP SING DAILY SCAN STANDARD - PE IPRIL 1999 TO DECEMBER 2018 FR CONSERVATION SERVICE DATABASE OLLOWS MISSOURI TRM 2017 VC	TH IS 51.861 RIOD OF RECOR OM THE NATUR . WEBLINK	CALCULATED RD DATA FROM AL RESOURCE METHODOLOGY	
NDUSTRIAL MEASURES. P. 78. <mark>Evalu</mark>	ATION PROTOC	0L\$	
or most projects, the appropriate evaluation protocol f default values. For projects using customer specifi valuation protocol is to verify installation and propo prification of open variables. The Pennsylvania Evalua nd requirements for evaluation procedures.	c data for open varia e r application of TRM	eles, the appropriate	
EFAULT SAVINGS	Formatted: Normal		
efault savings are 446.7 kWh and 0.036 kW demand			
OURCES			
VOLUME 2: ENERGY STARResidential Measures			
VAC		Page 37	

- "Residential Ground Source Heat Pumps with Integrated Domestic Hot Water Generation: <u>Performance Results from Long-Term Monitoring</u>", U.S. Department of Energy, November <u>2012.</u>
- 2)1)Desuperheater Study, New England Electric System, 1998-42 U.S.C.A 6295(i) (West Supp. 2011) and 10 C.F.R. 430.32 (x) (2011).
- 3)1)Pennsylvania Statewide Residential End-Use and Saturation Study, 2014, http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-2014_PA_Statewide_Act129_Residential_Baseline_Study.pdf.
- 4)5)Using Rock Spring, PA (Site 2036) as a proxy, the mean of soil temperature at 40 inch depth is 51.861. Calculated using Daily SCAN Standard - Period of Record data from April 1999 to December 2018 from the Natural Resource Conservation Service Database. <u>https://wcc.sc.egov.usda.gov/nwcc/rgrpt?report=daily_scan_por&state=PA. Methodology</u> follows Missouri TRM 2017 Volume 2: Commercial and Industrial Measures. p. 78. <u>https://energy.mo.gov/sites/energy/files/MOTRM2017Volume2.pdf</u>Weblink.
- 5) The default value of 1.030.92 UEF includes both standard and heat pumpfor electric water heaters.heater is from NMR Group for the Pennsylvania Act 129 2018 Residential Baseline Study, <u>http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-</u> Phase3_Res_Baseline_Study_Rpt021219.pdf.
- 6) Straub, Mary and Switzer, Sheldon. "Using Available Information for Efficient Evaluation of Demand Side Management Programs". Study by BG&E. The Electricity Journal, Aug/Sept. 2011. p. 95. http://www.sciencedirect.com/science/article/pii/S1040619011001941
- 7)6)"Public Utility Commission. (Year, Month). 2023 Pennsylvania Statewide Act 129 Residential ← End Uses of Water, Version 2." Baseline Study. Section/Chapter, pages, table reference. Weblink Water Research Foundation. (Apr 2016), p. 5. https://www.circleofblue.org/wpcontent/uploads/2016/04/WRF_REU2016.pdf
- 7) "Residential End Uses of Water, Version 2." Water Research Foundation. (Apr 2016), p. 5. Weblink.
- 8) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink

Formatted: List Paragraph,TT - Numbered List Paragraph,Bullet Styles para,TOC etc.,Bulleted List Paragraph, Space After: 0 pt, Tab stops: Not at 0.56"

Formatted: Font: Not Italic

VOLUME 2: ENERGY Measures

RGY STARResidential

Page 38

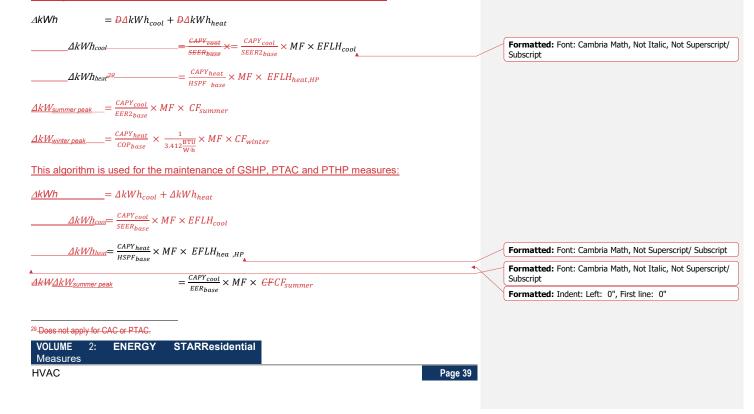
HVAC

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
May 2024				

2.2.52.2.6 AIR CONDITIONER & HEAT PUMP MAINTENANCE

Target Sector	Residential Establishments
Target Sector	Residential
Measure Unit	Central A/C, ASHP, Ductless Mini-Split HP, GSHP, PTAC or PTHP Unit
Measure Life	3 years ^{Source 1}
Vintage	Retrofit

This algorithm is used for measures providing services to maintain, service or tune-up refrigerantdriven Central A/C and heat pump units. The tune-up must include the following at a minimum:


- Check refrigerant charge level and correct as necessary
- Clean filters as needed
- Inspect and lubricate bearings
- Inspect and clean condenser and, if accessible, evaporator coil

ELIGIBILITY

An existing central A/C, air source heat pump, ground source heat pump, ductless mini-split heat pump, PTAC, or PTHP unit.

ALGORITHMS

This algorithm is used for the maintenance of ASHP, DHP and CAC measures:

State of Pennsylvania – Technical Reference Manual, Vol. 2: Residential Measures – Rev Date: Feb. 2021 May 2024	
Ground Source Heat Pumps (GSHP)	
$\begin{array}{l} \hline \text{GSHP efficiencies are typically calculated differently than air-source units and} \\ \underline{AkW_{winterpeak}} = \frac{CAPY_{hea}}{COP_{base}} \times \frac{1}{3.412 \frac{\text{BTU}}{\text{W} \cdot \text{h}}} \times MF \times CF_{winter} \end{array}$	
Qualifying: Ground Source Heat Pump	
<u>GSHP efficiencies are typically calculated differently than air-source units</u> , baseline and qualifying <u>unit</u> efficiencies should be converted as follows:	 Formatted: Font: Italic
$\frac{SEER_{base}SEER}{SEER} = EER_g \times \frac{GSHPDF \times GSER}{SEER}$	 Formatted: Font: Italic
$\frac{EER_{base}EER}{EER} = EER_g \times \frac{GSPK}{EER}$	
$HSPF_{base} = HSPF = COP_g \times GSHPDF \times 3.412 \frac{BTU}{Wh} \times GSOP$	Formatted: Font: Not Bold
- W-h	 Formatted: Tab stops: Not at 1"
PTAC and PTHP	
<u>COP = COP_g</u>	

PTAC and PTHPSEERbase= EERbase

VOLUME 2: ENERGY STARResidential Measures

Page 40

HVAC

DEFINITION OF TERMS

Table 2-28: Terms, Values, and References for Air Conditioner & Heat Pump Maintenance

Term	Unit	Value	Sources		
CAPY _{cool} , The cooling capacity of the central air conditioner or heat pump being installed ³⁰	kBTU/hr	EDC Data Gathering	AEPS Application;◄ EDC Data Gathering	(Formatted Table
$CAPY_{heat},$ The heating capacity of the heat pump being installed 31	kBTU/hr	EDC Data Gathering	AEPS Application; EDC Data Gathering		
<i>MF</i> -, Maintenance Factor or assumed savings due to completing recommended maintenance on installed cooling equipment	Proportion	0.05	2	(Formatted: Not Highlight
<i>EFLH_{cool}</i> , Equivalent Full Load Hours of operation during the cooling season for the average unit	hours yr	See <i>EFLH_{cool}</i> in Vol. 1, App. A	3		
<i>EFLH</i> _{heat,HP} , Equivalent Full Load Hours of operation during the heating season for the average unit	hours yr	See <i>EFLH_{heat}</i> in Vol. 1, App. A	3		
<i>SEER</i> _{base} , Seasonal Energy Efficiency Ratio of the Baseline Unit	BTU W · h	EDC Data Gathering Default: See Early Replacement values in Table 2-8 in Sec. 2.2.1	EDC Data Gathering 4	\sum	Merged Cells Formatted: TableCell, Space After: 0.4 line
		Default: See Early Replacement values in Table 2-10	4		Merged Cells Field Code Changed
HSPF _{base} , Heating Seasonal Performance Factor of the Baseline Unit	$\frac{BTU}{W \cdot h}$	EDC Data Gathering Default: See Early Replacement values in Table 2-8 in Sec. 2.2.1	EDC Data Gathering 4	\sim	Formatted: TableCell, Space After: 0.4 line Formatted Table
		Default: See Early Replacement values in Table 2-10	<u>4</u>		
<i>EERg</i> , Energy Efficiency Ratio of a GSHP, this is measured differently than EER of an air source heat pump and must be converted	$\frac{BTU}{W \cdot h}$	EDC Data Gathering Default: 16.6	4EDC Data Gathering		Formatted Table Formatted: Not Highlight
		Default: 16.6	4		
<i>EER</i> _{base} , Energy Efficiency Ratio of the Baseline Unit	$\frac{BTU}{W \cdot h}$	EDC Data Gathering Default: See Early Replacement values in Table 2-8 in Sec. 2.2.1	<u>EDC Data</u> ◄ <u>Gathering</u>	\sim	Formatted: TableCell, Space After: 0.4 line Formatted Table
		Default: See Early Replacement values in Table 2-10	4		
COP_g , Coefficient of Performance. This is a measure of the efficiency of a ground source heat pump	None	EDC Data Gathering Default: 3.6	AEPS Application;◄ EDC Data Gathering		Formatted Table
		Default: 3.6	<u>4</u>		

³⁰-This data is obtained from the AEPS Application Form or EDC's data gathering based on the model number. ³¹-Ibid.

VOLUME 2: ENERGY STARResidential Measures

HVAC

Term	Unit	Value	Sources	
$GSER$, Factor used to determine the SEER of a GSHP based on its EER_{a}	$\frac{BTU}{W \cdot h}$	1.02 <u>See Table</u> 2-13	5	Formatted Table
	vv · n			Formatted: Font: Cambria Math
GSPKGSOP, Factor to convert EER _g COP _g to the equivalent EERCOP of an air	Duranting	0.04400 - T-bla 0.40	-	Formatted: TableCell, Space Before: 3 pt, After: 3 pt
conditioner-source unit to enable	Proportion	0.8416See Table 2-13	5	Formatted: Font: Not Italic
comparisons to the baseline unit				Formatted: Font: Not Italic
rate FactorCF _{summer} , Demand		0.885 See <i>CF</i> in Vol. 1.		
Coincidence Factor during the summer	Proportion	App. A	<u>63</u>	 Formatted: Font: Not Italic
months				Formatted: Font: Not Italic
CFCF _{winter} , Demand Coincidence Factor	Dura a stir a	See CF in Vol. 1, App.	0	
during the winter months	Proportion	A	3	 Formatted: Font: Italic
ata: Mhara appropriata, pomoplata data d			tione (i.e. OFFD	Formatted: Not Highlight

Formatted: Font: Italic

Note: Where appropriate, nameplate data collected for usage in savings calculations (i.e., SEER, EER, HSPF) should be converted to new efficiency metrics (i.e., SEER2, EER2, HSPF2) using conversion equations laid out in Vol. 1 App. A

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

Formatted: Font: Italic **EVALUATION PROTOCOLS** Formatted: Normal, Tab stops: Not at 1.5" For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures. Formatted: SubStyle Formatted: Left, Tab stops: 3", Centered SOURCES 1) California Public Utilities Commission Database for Energy Efficient Resources (DEER) EUL Support Table for 2020, http://www.deeresources.com/files/DEER2020/download/SupportTable-EUL2020.xlsx. Accessed December 2018. 1) California Electronic Technical Reference Manual. "Refrigerant Charge – Residential" and Clean Condenser Coils – Residential" listed in the CPUC Support Table "Effective Useful Life and Remaining Useful Life". Accessed December 2023. Weblink 2) Energy Center of Wisconsin, . (2008, May). "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research", May 2008.". Weblink 3) Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from Formatted: List Paragraph,TT - Numbered List ecobee's Donate Your Data research service. https://www.ecobee.com/donateyourdata/ Paragraph, Bullet Styles para, TOC etc., Bulleted List Paragraph, (Weblink) and updated based on the latest CDD and HDD values from NOAA's 15-year Space After: 0 pt annual climate Normals (2006-2020) (Weblink) VOLUME ENERGY STARResidential

Measures	
IVAC	Page 42

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
May 2024				

- <u>Pennsylvania NMR Group for the Pennsylvania Public Utility Commission. (2023, March).</u>
 <u>2023 Pennsylvania Statewide</u> Act 129 2018 Residential Baseline Study, <u>http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-</u>
 <u>Phase3 Res_Baseline_Study_Rpt021219.pdf. Weblink.</u> Due to small sample size for GSHP in Pennsylvania Act 129 20182023 Residential Baseline Study this value is lowest efficiency value from BEopt v2.8v3.0. PTAC and PTHP standards1.0.
- 4) <u>Factors</u> are based on requirements of ASHRAE 90.1-2016, Energy Standard for Buildings Except Low-Rise Residential Buildings, Table 6.8.1-4, <u>https://www.ashrae.org/technical-resources/standards-and-guidelines/read-only-versions-of-ashrae-standards.</u>

- 5) VEIC estimate. Extrapolation of manufacturer data.
- 6) McQuay Application Guide 31-008, Geothermal derived from the conversion algorithms depicted in the Heat Pump Design Manual, 2002. Engineering Estimate - See System Performance of __Water-to-air Ground Source Heat Pumps

VOLUME Measures 2:

ENERGY STARResidential

HVAC

Formatted: Font: ArialMT, Font color: Black

2.2.6 FUEL SWITCHING: ELECTRIC HEAT TO GAS/PROPANE/OIL HEAT

Target Sector	Residential Establishments
Measure Unit	Gas, Propane, or Oil Heater
Measure Life	15 years
Vintage	Replace on Burnout

This protocol documents the energy savings attributed to converting from an existing electric heating system to a new natural gas, propane, or oil furnace or boiler in a residential home.

The baseline for this measure is an existing residential home with an electric primary heating source. The heating source can be electric baseboards, electric furnace, or electric air source heat pump.

ELIGIBILITY

The target sector primarily consists of single-family residences.

EDCs may provide incentives for equipment with efficiencies greater than or equal to the applicable ENERGY STAR requirement per the following table.

Equipment	Energy Star Requirements
Gas Furnace ^{Source 1}	AFUE rating of 95% or greater Furnace fan must have electronically commutated fan motor (ECM) Less than or equal to 2.0% air leakage
Oil Furnace Source 1	AFUE rating of 85% or greater Furnace fan must have electronically commutated fan motor (ECM) Less than or equal to 2.0% air leakage
Gas Boiler Source 2	AFUE rating of 90% or greater
Oil Boiler Source 2	AFUE rating of 87% or greater
(GSHP) Measure of	

Formatted: Font: 11 pt

Formatted: Font: ArialMT, Font color: Black

Formatted: Font: ArialMT, Font color: Black

ALGORITHMS

The energy savings are the full energy consumption of the electric heating source minus the energy consumption Version 11 of the fossil fuel furnace blower motor. EDCs may use billing analysis using program participant data to claim measure savings, in lieu of the defaults provided in this measure protocol. The energy savings are obtained through the following formulas:

Heating savings with electric furnace (assumes 95% efficiency):32

 $\Delta kWh = EFLH_{heat,mon-HP} \times \frac{CAPY_{elee}}{3.241\frac{BTU}{Wh}}$

³² Using the relation HSPF=COP×3.412, where HSPF=3.412 for electric resistance heating. Electric furnace efficiency typically varies from 0.95 to 1.00, therefore a COP of 0.95 equates to an HSPF of 3.241.

VOLUME	2:	ENERGY	STARResidential
Measures			

HVAC

Heating savings with electric baseboards (assumes 100% efficiency):
$\Delta kWh = EFLH_{heat,non-HP} \times \left(\frac{CAPY_{elee}}{3.412\frac{BTU}{Wh}} - \frac{HP_{motor} \times 0.746\frac{kW}{hp}}{\eta_{motor}}\right)$
Heating savings with electric air source heat pump:
$\Delta kWh = \frac{EFLH_{heat,HP} \times GAPY_{HP,heat}}{HSPF} \xrightarrow{EFLH_{heat,Ron-HP} \times HP_{motor} \times 0.746 \frac{kW}{hp}}{\eta_{motor}}$
For boilers, the annual pump energy consumption is negligible (<50 kWh per year) and not included in this calculation. ³³

Technical Reference Manual, Vol. 2: Residential Measures - Rev Date: Feb. 2021

There are no peak demand savings as it is a heating-only measure.

Although there is a significant electric savings, there is also an associated increase in natural gas energy consumption:

 $\Delta MMBTU = -\Delta kWh \times 0.003412 \frac{MMBTU}{kM/h}$

DEFINITION OF TERMS

State of Pennsylvania –

May 2024

The default values for each term are shown in the table below.

Table 2-22: Terms, Values, and References for Fuel Switching: Electric Heat to Gas Heat

Formatted: Font: Bold

Term	Units	Value	Source
CAPY _{elec.} , Total heating capacity of existing electric baseboards or electric furnace	kBTU hr	EDC Data Gathering	EDC Data Gathering
CAPY _{HP heat} , Total heating capacity of existing electric ASHP	kBTU hr	EDC Data Gathering	EDC Data Gathering
EFLH _{heat.HP} , Equivalent Full Load Heating hours for Air Source Heat Pumps	hours yr	See- <i>EFLH_{heat,HP}-values in</i> Vol. 1, App. A	З
EFLH _{heat,non-HP} , Equivalent Full Load Heating hours for furnaces, boilers, and electric baseboards	hours yr	See EFLH _{heet.non-HP} values in Vol. 1, App. A	3
HSPF, Heating Seasonal Performance Factor for existing heat pump	BTU Whr	EDC Data Gathering or Default = 8.2	EDC Data Gathering 4
AFUE _{fuel_heat} -, Annual_Fuel_Utilization Efficiency for the new gas or oil furnace or boiler	%	EDC Data Gathering or Defaults: NG/LPG furnace = 95% NG/LPG boiler = 90% Oil furnace = 85% Oil boiler = 87%	EDC Data Gathering 1,2
HP _{motor} , Furnace blower motor horsepower	hр	EDC Data Gathering or Default = ½	EDC Data Gathering

³³ Pump motors are typically 1/25 HP. With 1,000 hour runtime and 80% assumed efficiency, this translates to 37 kWh.

VOLUME	2:	ENERGY	STARResidential
Measures			

HVAC

Term	Units	Value	Source
			5
n _{motor} , Efficiency of furnace blower motor	%	EDC Data Gathering or Default = 50%	EDC Data Gathering Typical efficiency of ½ HP blower motor

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

1) ENERGY STAR Program Requirements: Product Specification for Boilers, v3.0. https://www.energystar.gov/sites/default/files/specs//private/Boilers%20Program%20Require ments%20Version%203%200.pdf

- 2)5)ENERGY_STAR_Program_Requirements: Product_Specification for Furnaces, v4.1.NY_TRM https://www.energystar.gov/sites/default/files/Furnaces%20Version%204.1_Program%20Reg uirements_0.pdfWeblink
- 3) Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service. https://www.ecobee.com/donateyourdata/
- 4) Pennsylvania Act 129 2018 Residential Baseline Study, http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3_Res_Baseline_Study_Rpt021219.pdf.
- 5) Average blower motor capacity for gas furnace, typical range = 1/4 to 3/4 HP.

Formatted: Font: ArialMT, Font color: Black Formatted: List Paragraph,TT - Numbered List Paragraph,Bullet Styles para,TOC etc.,Bulleted List Paragraph, Indent: Left: 0", Line spacing: single, Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Indent at: 0.5"

Formatted: Equation, Tab stops: 1.5", Left

Field Code Changed

Formatted: Right: 0"

Formatted: Body Text

Formatted: Font: ArialMT

VOLUME 2: ENER Measures

ENERGY STARResidential

Page 46

HVAC

ENERGY STAR

VOLUME Measures

2:

ENERGY STARResidential

HVAC

2.2.7 ROOM AIR CONDITIONERS

Target Sector	Residential Establishments	
Target Sector	Residential	
Measure Unit	Room Air Conditioner	
Measure Life	9 years ^{Source 1}	
Vintage	Replace on Burnout	

ELIGIBILITY

This measure relates to the purchase and installation of a room air conditioner meeting ENERGY*-STAR Version 4.1exceeding efficiency criteria. prescribed by federal standards.

ALGORITHMS

To determine resource savings, the per-unit estimates in the algorithms will be multiplied by the number of room air conditioners. The number of room air conditioners will be determined using market assessments and market tracking.

As of June 1, 2014 RAC units haveare rated using a CEER rating as well as an EER. CEER is the (Combined Energy Efficiency Ratio₇), which incorporates standby power into the calculation. This will be the value used in the savings algorithm.

$$\Delta kWh$$

$$= CAPY \times \left(\frac{1}{CEER_{base}} - \frac{1}{CEER_{ee}}\right) \times EFLH_{RAC}$$

$$\Delta kW_{peak} = kW_{summer \ peak} = CAPY \times \left(\frac{1}{CEER_{base}} - \frac{1}{CEER_{base}}\right) \times \frac{CFCF_{summer}}{CEER_{base}}$$

 $\Delta k W_{winter \, peak} = 0$

DEFINITION OF TERMS

DEFINITION OF TERMS

Table 2-29: Terms, Values, and References for ENERGY STAR Room AC

Term	Unit	Value	Sources
CAPY, The cooling capacity of the room air conditioner (RAC) being installed	kBTU h	EDC Data Gathering Default = 7.5	5 <u>EDC Data</u> Gathering ↓
	Default		<u>2</u>
CEER _{base} , Combined Energy Efficiency ratio of the baseline unit	$\frac{BTU}{W \cdot h}$	Federal Standard Values in Table 2-24, Table 2-25, or Table 2-26 Federal Standard Values Table 2-30: RAC (without reverse cycle) Federal Minimum <u>CEER</u> StandardsTable 2-30.	2 <u>3</u>

	Merged Cells
1	Formatted Table
1	Formatted: Space Before: 6 pt, After: 6 pt
	Merged Cells
Y	Formatted: Left

Formatted: Normal

VOLUME	2:	ENERGY	STARResidential
Measures			

HVAC

Technical Reference Manual, Vol. 2: Residential Measures State of Pennsylvania -Rev Date: Feb. 2021 _ May 2024

		Table 2-31 <u>. or</u> Table 2-32Table 2-32 Default = <u>1116</u> .0		
$CEER_{\rm ee},$ Combined Energy efficiency ratio of the RAC being installed	$\frac{BTU}{W\cdot h}$	EDC Data Gathering Default = ENERGY STAR values in in Table 2-24, Table 2-25, or Table 2-26	3 <u>EDC Data</u> <u>Gathering</u>	
<i>EFLH_{RAC}</i> , Equivalent full load hours of the RAC being installed	hours year	See <i>EFLH_{RAC}</i> in Vol. 1, App. A	4	
CF, Demand coincidence factorCF _{summer} Demand Coincidence Factor during the summer months	Proportion	See CF in Vol. 1, App. A	4	

Table 2-24Table 2-30: RAC (without reverse cycle) Federal Minimum CEER StandardsTable 2-30 lists the minimum federal efficiency standards as of October 2018 and minimum ENERGY STAR efficiency standardsMay 2026 for RAC units of various capacity ranges and with and without louvered sides. Units without louvered sides are also referred to as "through the wall" units or "builtin" units. Note that the new federal standards are based on the Combined Energy Efficiency Ratio metric (CEER), which is a metric that incorporates energy use in all modes, including standby and off modes.

Table 2-30: RAC (without reverse cycle) Federal Minimum Efficiency and ENERGY STAR Version 4.1CEER Standards

ENERGY Federal ENERGY **Deleted Cells** Federal STAR Standard STAR Deleted Cells StandardMinimum Capacity CEER, CEER. CEER, (kBTU/h) CEER, with with without without Deleted Cells louvered sides louvered louvered louvered sides sides sides With Louvered Without Louvered Sides Sides 10.0 ,11.0 **Deleted Cells** 11.013.1 < 6 12.<mark>18</mark> Deleted Cells 6<8 13.7 Split Cells 10.6 8<11 10.9 <u>1216</u>.0 9.614.1 Formatted: Font: Not Bold 10.5 11<14 <u>13.9.5</u> Formatted: Font: Not Bold 11.8 9.3 10.2 14<20 . <u> 1013</u>.7 Formatted Table 9.4 10.3 20<28 9.413.8 10.313.8 **Deleted Cells** 94 10.3 ≥28 9.013.2 9.9 Formatted: Font: Not Bold **Deleted Cells**

Table 2-25Table 2-31 lists the minimum federal efficiency standards and minimum ENERGY STAR efficiency standards for casement-only and casement-slider RAC units. Casement-only refers to a RAC designed for mounting in a casement window with an encased assembly with a width of 14.8 inches or less and a height of 11.2 inches or less. Casement-slider refers to a RAC with an encased assembly designed for mounting in a sliding or casement window with a width of 15.5 inches or less.

VOLUME ENERGY STARResidential 2: Measures HVAC

Page 49

Deleted Cells Deleted Cells Formatted: Font: Not Bold Inserted Cells Merged Cells Formatted: Font: Not Bold Formatted: Right: 0"

Formatted: Space After: 0 pt

Formatted Table

Formatted: Space Before: 6 pt, After: 6 pt

Formatted: Don't keep with next

Table 2-31: Casement-Only and Casement-Slider RAC Federal Minimum Efficiency and ENERGY STAR Version 4.1CEER Standards

Casem ent	Fede ral Stan dard Mini <u>mum</u> CEE R	ENERGY STAR-CEER		_(
R	40.5				Formatted Table
<u>13.</u> 9. <u>10.5</u> 5	10.5				Formatted: Left
10.41 11.4 5.3	11.4		•	(Formatted: Left

Table 2-26 Table 2-32 Table 2-32 lists the minimum federal efficiency standards and minimum ENERGY STAR efficiency standards for reverse-cycle RAC units.

Table 2-32: Reverse-Cycle RAC Federal Minimum EfficiencyCEER Standards and ENERGY STAR Version 4.1 Standards

Capacity (kBTU/h)	Federal Standard <u>Minimum</u> CEER , with Iouvered sides	ENERGY STAR CEER, with louvered sides	Fodoral Standard CEER, without louvered sides	ENERGY STAR CEER, without louvered sides		
	With Louvered			_ouvered		
< 14 ≥ 14	n/a		<u>n/a</u> 12.		9.3 9.6	_10.2
< 20	9.8<u>14.4</u>	10.8		'a	n/a	
≥ 20	9.3<u>13.7</u>		10.2		A	

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

DEFAULT SAVINGS

Default energy savings values assume a CAPY=7.5 kBTU/hr^{Source 5}, louvered sides, no reverse cycle unit (CEER_{base} = 11.0, CEER_{ee} = 12.1).

ENERGY STARResidential

HVAC

Deleted Cells Deleted Cells Merged Cells Merged Cells **Deleted Cells** Split Cells Formatted: Font: Times New Roman, 10 pt, Font color: Auto Formatted: Left **Deleted Cells** Formatted: Font: Calibri Formatted: Font: Times New Roman, 10 pt, Font color: Auto Formatted: Left Formatted: Left Split Cells Formatted: Font: Times New Roman, 10 pt, Font color: Auto Formatted: Left Deleted Cells Formatted: Font: Calibri Merged Cells Formatted: Left Formatted: Font: Times New Roman, 10 pt, Font color: Auto Formatted: Font: Italic

Formatted: Normal, Tab stops: Not at 1.5"

Formatted: Left, Tab stops: 3", Centered

Formatted: SubStyle

Deleted Cells

Table 2-27: Deemed EFLH and Default Energy Savings

Climate Region	Reference City	<mark>∆kWh/yr</mark>	<mark>∆kW</mark> peak
C	Allentown	11.0	0.022
A	Binghamton, NY	6.4	0.016
G	Bradford	4.0	0.014
4	Erie	9.0	0.016
Ę	Harrisburg	14.1	0.028
Ð	Philadelphia	15.0	0.026
Ħ	Pittsburgh	10.5	0.023
B Scranton		9.1	0.020
F	Williamsport	<u>10.7</u>	0.024

1) California Electronic Technical Reference Manual. "Room Air Conditioner, Residential". Accessed August 2023. Weblink.

2) NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 Residential Baseline Study. Sec 8.2.2 Table 104. Statewide average for all housing types. Weblink

3) Federal code of regulation. Room air conditioners. 10 C.F.R. § 430.32 (b)(2). Weblink

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

1)	California Public Utilities Commission Database for Energy Efficient Resources (DEER) EUL
	Support Table for 2020,
	http://www.deeresources.com/files/DEER2020/download/SupportTable-EUL2020.xlsx .
	Accessed December 2018.

 Federal standards: U.S. Department of Energy. Code of Federal Regulations. 10 CFR, part 430.32(b). Effective June 1, 2014.

http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/41

) ENERGY STAR Program Requirements Product Specification for Room Air Conditioners, Eligibility Criteria Version 4.1. October 26, 2015.

https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Version%204.1%20Ro om%20Air%20Conditioners%20Specification_0.pdf

 Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service, <u>https://www.ecobee.com/donateyourdata/.</u>

5)4)Statewide average for all housing types (Weblink) and updated based on the latest CDD and <u>HDD values</u> from Pennsylvania Act 129 2018 Residential Baseline Study, <u>http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-</u> <u>Phase3_Res_Baseline_Study_Rpt021219.pdf.NOAA's 15-year annual climate Normals</u> (2006–2020) (Weblink)

VOLUME 2: ENERGY STARResidential Measures

HVAC

Page 51

Formatted: Normal

Formatted: Body Text

Formatted: Justified, Tab stops: Not at 3"

Formatted: Font color: Auto, Pattern: Clear

Alignment: Auto

Formatted: Space After: 5 pt, Add space between

paragraphs of the same style, Line spacing: single, Allow hanging punctuation, Adjust space between Latin and Asian

text, Adjust space between Asian text and numbers, Font

VOLUME 2: Measures ENERGY STARResidential

HVAC

2.2.8 ROOM AC (RAC) RETIREMENT

VOLUME Measures

2:

ENERGY STARResidential

HVAC

2.2.82.1.1 ROOM AC (RAC) RETIREMENT

Target Sector	Residential Establishments
Target Sector	Residential
Measure Unit	Room A/C
Measure Life	<u>3 years Source 1</u>
Vintage	Early Retirement, Early Replacement
Measure Life	3 years Source-1

 Vintage
 Early Retirement, Early Replacement

 This measure is defined as retirement and recycling without replacement of an operable but older

and inefficient room AC (RAC) unit that would not have otherwise been recycled. The assumption is that these units will be permanently removed from the grid rather than handed down or sold for use in another location by another EDC customer, and furthermore that they would not have been recycled without this program. This measure is quite different from other energy-efficiency measures in that the energy/demand savings is not the difference between a pre- and postconfiguration, but is instead the result of complete elimination of the existing RAC.

ELIGIBILITY

The savings are *not* attributable to the customer that owned the RAC, but instead are attributed to a *hypothetical user of the equipment had it not been recycled*. Energy and demand savings is the estimated energy consumption of the retired unit over its remaining useful life (RUL).

ALGORITHMS

Although this is a fully deemed approach, any of these values can and should be evaluated and used to improve the savings estimates for this measure in subsequent TRM revisions.

Retirement-Only

All EDC programs are currently operated under this scenario. For this approach, impacts are based only on the existing unit, and savings apply only for the remaining useful life (RUL) of the unit.

$$\Delta kWh = \left(\frac{CAPY}{EER_{RetRAC}}\right) \times EFLH_{RAC}$$

$$\Delta \frac{kW_{peak}}{kW_{summer \ peak}} = \left(\frac{CAPY}{EER_{RetRAC}}\right) \times \frac{CFCF_{summer}}{CFCF_{summer}}$$

 $\Delta k W_{winter peak} = 0$

Replacement and Recycling

For this approach, the ENERGY STARefficient RAC upgrade measure would have to be combined with recycling via a turn-in event at a retail appliance store, where the old RAC is turned in at the same time that a new one is purchased. Unlike the retirement-only measure, the savings here are attributed to the customer that owns the retired RAC_τ and are based on the old unit and original unit being of the same size and configuration. In this case, two savings calculations would be used for the rest of the effective useful life, as explained below.

Page 54

Formatted: Body Text

For the remaining useful life (RUL) of the existing RAC: The baseline value is the EER of the retired unit.

$$\Delta kWh = CAPY \times \left(\frac{1}{EEEER_{RetRAC}} - \frac{1}{EER_{ee}}\right) \times EFLH_{RAC}$$
$$\Delta kW_{peak} kW_{summer peak} = CAPY \times \left(\frac{1}{EER_{RetRAC}} - \frac{1}{EER_{ee}}\right) \times CFCF_{summer}$$

 $\Delta k W_{winter \ peak} = 0$

After the RUL for (EUL-RUL) years: The baseline EER would revert to the minimum Federal appliance standard CEER. RAC units have a "CEER" rating in addition to an "EER". CEER is the "Combined Energy Efficiency Ratio", which incorporates standby power into the calculation. This will be the value used in the ΔkWh calculation.

$$\Delta kWh = CAPY \times \left(\frac{1}{CEER_{base}} - \frac{1}{CEER_{ee}}\right) \times EFLH_{RAC}$$

 $\Delta \frac{kW_{peak}}{kW_{summer peak}} = CAPY \times \left(\frac{1}{CEER_{base}} - \frac{1}{CEER_{ee}}\right) \times \frac{CFCF_{summer}}{CEER_{ee}}$

 $\Delta k W_{winter \ peak} = 0$

DEFINITION OF TERMS

DEFINITION OF TERMS

Formatted: Font: Italic Formatted: Not Superscript/ Subscript Formatted: Normal Formatted: SubStyle	
Formatted: Font: Italic Formatted: Not Superscript/ Subscript Formatted: Normal	Formatted: Font: Italic
Formatted: Font: Italic Formatted: Not Superscript/ Subscript Formatted: Normal	Formatted: Font: Italic
Formatted: Font: Italic Formatted: Not Superscript/ Subscript Formatted: Normal	Formatted: Font: Italic
Formatted: Font: Italic Formatted: Font: Italic Formatted: Font: Italic Formatted: Font: Italic Formatted: Font: Italic Formatted: Font: Italic Formatted: Not Superscript/ Subscript Formatted: Normal	Formatted: Font: Italic
Formatted: Font: Italic Formatted: Font: Italic Formatted: Font: Italic Formatted: Font: Italic Formatted: Not Superscript/ Subscript Formatted: Normal	Formatted: Font: Italic
Formatted: Font: Italic Formatted: Font: Italic Formatted: Font: Italic Formatted: Not Superscript/ Subscript Formatted: Normal	Formatted: Font: Italic
Formatted: Font: Italic Formatted: Font: Italic Formatted: Not Superscript/ Subscript Formatted: Normal	Formatted: Font: Italic
Formatted: Font: Italic Formatted: Not Superscript/ Subscript Formatted: Normal	Formatted: Font: Italic
Formatted: Not Superscript/ Subscript Formatted: Normal	Formatted: Font: Italic
Formatted: Normal	Formatted: Font: Italic
	Formatted: Not Superscript/ Subscript
Formatted: SubStyle	Formatted: Normal
· · · · · · · · · · · · · · · · · · ·	Formatted: SubStyle

VOLUME 2: ENERGY ST Measures

RGY STARResidential

Page 55

HVAC

Table 2-33: Terms, Values, and References for Room AC Retirement

Term	Unit	Value	Sources
EFLH _{RAC} , Equivalent Full Load Hours of operation for the installed measure. In actuality, the number of hours and time of operation can vary drastically depending on the RAC location (living room, bedroom, home office, etc.).	hours- yr	S ee EFLH_{RAC} in Vol. 1, App. A	4
CAPY, Rated cooling capacity (size) of the RAC unit.	h	EDC Data Gathering Default: 7.5	3
EER _{RelFAC} , The Energy Efficiency Ratio of the unit being retired- recycled. ³⁴	BTU ₩•h	EDC Data Gathering Default: 9.8	4
EERee , The Energy Efficiency Ratio for an ENERGY STAR RAC	BTU ₩・h	12.1	6
CEER _{base} _(for a 8,000 BTU/h unit), The Combined Energy Efficiency Ratio of a RAC that meets the minimum federal appliance standard efficiency.	BTU ₩•h	11.0	5
CEERee , (for a 8,000 BTU/h unit), The Combined Energy Efficiency Ratio for an ENERGY STAR RAC.	BTU ₩•h	EDC Data Gathering Default=12.1	5
CF, Demand Coincidence Factor	Proportion	S ee CF in Vol. 1, App. A	2

Table 2-29: RAC Retirement-Only EFLH and Energy Savings by City

Climate Region	Reference City	Energy Impact (kWh)	Demand Impact (kW)
C	Allentown	136.2	0.271
A	Binghamton, NY	78.8	0.203
G	Bradford	4 9.0	0.167
F	Erie	111.0	0.203
E	Harrisburg	173.7	0.345
Ð	Philadelphia	185.2	0.324
H	Pittsburgh	129.3	0.282
B	Scranton	112.5	0.249
F	Williamsport	132.4	0.299

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

³⁴-Note that this value is the EER value, as CEER were introduced later.

VOLUME Measures	ENERGY	STARResidential	
HVAC			

Page 56

Formatted: Normal

Formatted: Normal

CAPY, Rated cooling capacity (size) of the RAC unit.	kBTU	EDC Data Gathering	<u>EDC Data</u> <u>Gathering</u>
	h	Default: 7.2	<u>2</u>
EERReIRAC, The Energy Efficiency Ratio of the unit being retired- recycled	BTU	<u>EDC Data</u> <u>Gathering</u>	<u>EDC Data</u> <u>Gathering</u>
	$\overline{W\cdot h}$	Default: 9.8	<u>2</u>
EFLH _{RAC} .Equivalent Full Load Hours of operation for the installed measure. In actuality, the number of hours and time of operation can vary drastically depending on the RAC location (living room, bedroom, home office, etc.).	hours yr	<u>See EFLH_{RAC} in</u> Vol. 1, App. A	<u>3</u>
CF _{summer} , Demand Coincidence Factor during the summer months	<u>Proportion</u>	<u>See CF in Vol. 1,</u> <u>App. A</u>	<u>3</u>
EERee , The Energy Efficiency Ratio for an energy efficient RAC	$\frac{BTU}{W \cdot h}$	EDC Data Gathering	EDC Data Gathering
CEER _{base} , Combined Energy Efficiency ratio of the baseline unit	$\frac{BTU}{W \cdot h}$	Federal Standard Values in Table 2-30: RAC (without reverse cycle) Federal Minimum CEER StandardsTable 2-30, Table 2-31, or Table 2-32Table 2-32 Default = 16.0	<u>4</u>
CEERee, Combined Energy efficiency ratio of the RAC being installed	$\frac{BTU}{W \cdot h}$	EDC Data Gathering	EDC Data Gathering

EVALUATION PROTOCOLS

Accessed December 2018.

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

- California Public Utilities Commission Database for Energy Efficient Resources (DEER) EUL Support Table for 2020, http://www.deeresources.com/files/DEER2020/download/SupportTable-EUL2020.xlsx.
- 1) California Electronic Technical Reference Manual. "Room Air Conditioner, Residential". Accessed August 2023. Weblink
- 2) NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 Residential Baseline Study. Sec 8.2.2 Table 104. Statewide average for all housing types. Weblink

Formatted: Caption, Table Caption, Footnotes

Formatted: SubStyle

2)3)Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service, <u>https://www.ecobee.com/donateyourdata/Weblink.-</u> and updated based on the latest CDD and HDD values from NOAA's 15-year annual climate Normals (2006–2020) (Weblink)

3) Mid Atlantic TRM Version 7.0. <u>May, 2017</u>. Prepared by Vermont Energy Investment Corporation. An adjustment to the ES RAC EFLHs of 31% was used for the "Window A/C" measure. The average ratio of EFLH for Room AC provided in RLW Report: Final Report Coincidence Factor Study Residential Room Air Conditioners, June 23, 2008 (<u>http://www.puc.nh.gov/Electric/Monitoring%20and%20Evaluation%20Reports/National%20G</u> rid/117_RLW_CF %20Res%20RAC.pdf) to FLH for Central Cooling for the same location (provided by AHRI: http://www.energystar.gov/ia/business/bulk_purchasing/bpsavings_calc/ Calc_CAC.xls is 31%. This factor was applied to the EFLH for Central Cooling provided for PA cities and averaged to come up with the assumption for EFLH for Room AC." https://neep.org/sites/default/files/resources/Mid_Atlantic_TRM_V7_FINAL.pdf

4) Statewide average capacity of RAC units, Pennsylvania Act 129 2018 Residential Baseline Study, <u>http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-</u> <u>Phase3_Res_Baseline_Study_Rpt021219.pdf</u>.

<u>4) Minimum Federal Standard for most common room AC type (8000-14,999 capacity range with louvered sides) per federal standards from 10/1/2000 to 5/31/2014. Note that this value is the EER value, as CEER were introduced later.Federal code of regulation. Room air conditioners. 10 C.F.R. § 430.32 (b)(2). Weblink</u>

VOLUME 2: ENERGY STARResidential Measures

HVAC

2.2.9 WINDOW HEAT PUMP

om%20Air%20Conditioners%20Specification_0.pdf

 5)
 6) ENERGY STAR Program Requirements Product Specification for Room Air Conditioners, Eligibility Criteria Version 4.1. October 26, 2015. https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Version%204.1%20Ro

VOLUME Measures 2:

ENERGY STARResidential

HVAC

Page 59

Formatted: Left, Space After: 0 pt, No bullets or numbering

2.2.9 DUCT SEALING & DUCT INSULATION

Target Sector	Residential-Establishments	-	-(Formatted: Font color: Auto
Measure Unit	Window Heat Pump	1	$\langle \langle$	Formatted: Font color: Auto
Measure Life	9 years ^{Source 1}		\backslash	Formatted: Line spacing: Multiple 1.15 li
			Y	Formatted Table
<u>Vintage</u>	Early Replacement			

Window heat pumps for single-room applications could provide an energy-and-cost saving alternative to built-in or portable electric resistance heating in the residential market. Window heat pumps are more energy-efficient than resistance heaters because of their ability to extract thermal energy from the environment that is freely available.

ELIGIBILITY

This protocol documents the energy savings attributed to window heat pumps. Eligible equipment must meet direct-install requirements. The baseline heating system could be:

1) Existing electric resistance heating

2) Electric space heaters used as the primary heating source when fossil fuel (other than natural gas) heating systems failed (referred to as de facto heating)

a. This baseline is for participants with broken-beyond-repair oil heating systems who are heating their homes with portable electric space heaters.

3) Electric furnace

Cooling savings may be claimed if the window heat pump exceeds efficiency criteria prescribed by federal standards.

ALGORITHMS

The energy savings algorithms depend on three main factors: baseline condition, usage (secondary heating system), and the capacity of the unit.

 $\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$

 $\underline{\Delta kWh_{heat}} = CAPY_{heat} \times \frac{1}{3.412} \times \left(\frac{OF_{hea}}{COP_{base}} - \frac{1}{COP_{ee}}\right) \times EFLH_{heat,HP}.$

$$\frac{\Delta kWh_{cool}}{\Delta kW_{peak summer}} = CAPY_{cool} \times \left(\frac{1}{CEER_{base}} - \frac{1}{CEER_{ee}}\right) \times EFLH_{RAC}$$

 $\Delta k W_{peak winter}$

Baseline: Spaceheater(s), Electric Baseboards

= 0

EDCs may collect information about the capacity of the existing space heaters, electric furnaces, or electric baseboards. Capacity is determined using the total wattage of electric heat in use, where <u>OFheat</u> is the ratio of the existing electric capacity to the capacity of the new equipment:

 $\underline{OF_{heat}} = \frac{\sum kW_{Spaceheat} \times 3.412 \frac{BTU}{Wh}}{CAPY_{Heat}}$

DEFINITION OF TERMS

VOLUME 2: ENERGY STARResidential Measures HVAC Formatted: Body Text

Formatted: Indent: Left: 0", Don't add space between paragraphs of the same style, Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Indent at: 0.5", Font Alignment: Auto

Table 2-34: Terms, Values, and References for Window Heat Pumps

Term	Unit	Value	Sources
CAPY _{heat} , The heating capacity of the heat pump being installed	<u>kBTU/hr</u>	EDC Data Gathering	AEPS Application; EDC Data Gathering
<u>CAPY_{cool}, The cooling capacity of the heat</u> pump being installed	<u>kBTU/hr</u>	EDC Data Gathering	AEPS Application; EDC Data Gathering
<u>CEER_{base}</u> Combined Energy Efficiency ratio of the baseline unit	$\frac{BTU}{W \cdot h}$	<u>Federal Standard</u> <u>Values in Table 2-</u> 37	2
<u>CEERee</u> , Combined Energy efficiency ratio of the window heat pump (WHP) being installed	$\frac{BTU}{W \cdot h}$	EDC Data Gathering	EDC Data Gathering
<u>COP_{base}, Heating Seasonal Performance</u> Factor of the Baseline Unit	Proportion	EDC Data Gathering	EDC Data Gathering
		Default: Table 2-35	<u>3</u>
<u>COPee</u> <u>Heating</u> Seasonal Performance Factor of the unit being installed	<u>Proportion</u>	EDC Data Gathering	AEPS Application; EDC Data Gathering
<i>OF_{heat}</i> , Oversize factor	None	EDC Data Gathering	EDC Data Gathering
		Default: Table 2-36	<u>4</u>
EFLH _{RAC} , Equivalent Full Load Hours of operation during the cooling season for the average unit	hours yr	<u>See EFLH_{cool} in Vol. 1, App. A</u>	<u>5</u>
EFLH _{heat.HP} , Equivalent Full Load Hours of operation during the heating season for the average unit	hours yr	<u>See Table </u> 2 <u>-</u> 38	<u>6</u>
CF _{summer} Demand Coincidence Factor during the summer months	Proportion	<u>See CF in Vol. 1,</u> <u>App. A</u>	<u>5</u>
<i>CF_{winter}</i> , <u>Demand Coincidence Factor</u> <u>during the winter months</u>	Proportion	<u>See <i>CF</i> in Vol. 1,</u> <u>App. A</u>	<u>5</u>

Table 2-35: Default Baseline Equipment Efficiency

	Early Replacement
Baseline Equip.	<u>COP_{base}</u>
Elec. Baseboard	<u>1.00</u>
Elec. Furnace	<u>0.95</u>
Space Heaters	<u>1.00</u>

VOLUME	2:	ENERGY	STARResidential
Measures			

HVAC

Table 2-36: Oversize Factors for High Efficiency Equipment

	Electric	Electric	<u>Space</u>
	Baseboard	Furnace	Heaters
<u>OFheat</u>	<u>1.0</u>	<u>1.0</u>	<u>0.5</u>

Table 2-37: Reverse-Cycle RAC Federal Minimum Efficiency Standards

<u>Capacity</u> (kBTU/h)	Federal Standard CEER, with louvered sides	Federal Standard CEER, without louvered sides
<u>< 14</u>	n/a	<u>13.7</u>
<u>≥ 14</u>	<u>11/a</u>	<u>12.8</u>
<u>< 20</u>	<u>14.4</u>	nlo
≥ 20	13.7	<u>n/a</u>

Table 2-38: EFLHheat for Window Heat Pumps

Climate Region	Reference City	<u>EFLH_{heat.HP}</u>
<u>C</u>	Allentown	<u>219</u>
<u>A</u>	Binghamton, NY	<u>171</u>
G	Bradford	<u>164</u>
<u>l</u>	<u>Erie</u>	<u>209</u>
E	<u>Harrisburg</u>	<u>238</u>
D	Philadelphia	<u>257</u>
H	Pittsburgh	<u>211</u>
B	Scranton	<u>201</u>
<u>F</u>	<u>Williamsport</u>	<u>208</u>

DEFAULT SAVINGS

There are no default savings for this measure. **EVALUATION PROTOCOLS**

For most installation, the appropriate evaluation protocol is to verify installation coupled with assignment of stipulated energy savings. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

- 1) California Electronic Technical Reference Manual. "Room Air Conditioner, Residential". Accessed March 2024. Weblink.
- 2) Federal code of regulation. Room air conditioners. 10 C.F.R. § 430.32 (b)(2). Weblink
- 3) Using the relation HSPF=COP×3.412, where HSPF = 3.412 for electric resistance heating. Electric furnace efficiency typically varies from 0.95 to 1.00, therefore a COP of 0.95 equates to an HSPF of 3.241.
- 4) Assumptions used to calculate a default value for de facto heating system oversize factor: A 1500W portable electric space heater in use in the home with capacity of $1.5kW \times 3412 \frac{BTU}{kW/h} = 5,118 BTU/h$, replaced by window heat pump with heating capacity of 10,000 Btu/h, $OF = \frac{5,118}{10,000} \approx 0.5$.

VOLUME 2: ENERGY STARResidential Measures

HVAC

5) Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service (Weblink) and updated based on the latest CDD and HDD values from NOAA's 15-year annual climate Normals (2006–2020) (Weblink)

6) At outdoor air temperatures below 40°F, window heat pumps switch from heat pump heating to electric resistance heating. (Weblink). EFLHheat, HP values are calculated by multiplying Secondary HP EFLHheat values presented in Volume 1 Appendix A by the ratio of annual heating degree hours (base 65°F) during times when outdoor air temperature is between 40°F and 65°F and the annual heating degree hours (base 65°F) during all times when outdoor air temperature is below 65°F.

VOLUME Measures 2:

ENERGY STARResidential

HVAC

2.2.10 DUCT SEALING & DUCT INSULATION

Target Sector	Residential
Measure Unit	Duct Sealing and/or Insulation Project
Measure Life	15 years ^{Source 1}
Vintage	Retrofit

This measure describes evaluating the savings associated with performing duct sealing using mastic sealant or metal tape to the distribution system of homes with either central air conditioning or a ducted heating system. The measure also applies to insulating ductwork in unconditioned and semi-conditioned spaces of residential buildings.

If duct insulation is involved with the improvement, the first method, "Evaluation of Distribution Efficiency," must be used to estimate energy savings.

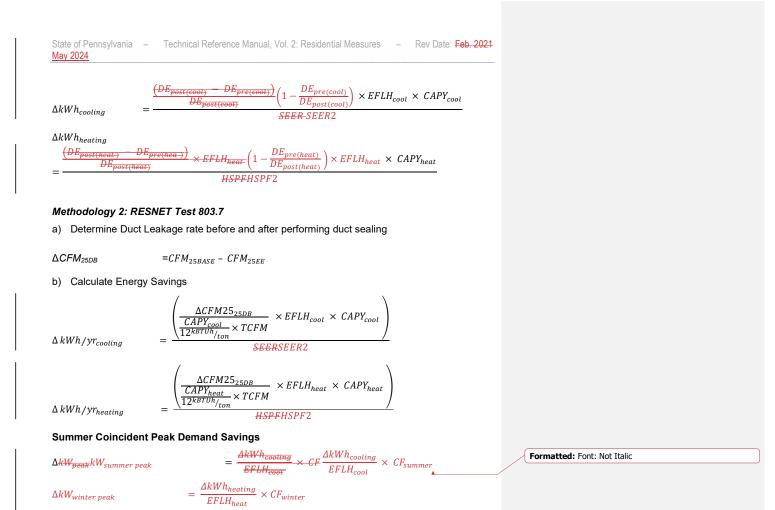
- Evaluation of Distribution Efficiency this methodology requires the evaluation of three duct characteristics below, and use of the Building Performance Institute's (BPI) "Guidance on Estimating Distribution Efficiency", ^{Source 2} which are summarized in Table 2-31 Table 2-40 and Table 2-41 for convenience.
 - a. Duct location, including percentage of duct work found within the conditioned space
 - b. Duct leakage evaluation. The duct leakage assessment values are based on an assumption of 6.5% of assumed air handler flow (tight); 21% (average); or 35% (leaky).^{Source7Source6}
 - c. Duct insulation evaluation
- 2) RESNET Test 380 4.4.2 this method involves the pressurization of the house to 25 Pascals with reference to outside and a simultaneous pressurization of the duct system to reach equilibrium with the envelope or inside pressure of zero Pascals. A blower door is used to pressurize the building to 25 Pascals with reference to outside, when that is achieved the duct blaster is used to equalize the pressure difference between the duct system and the house. The amount of air required to bring the duct system to zero Pascals with reference to the building is the amount of air leaking through the ductwork to the outside. This technique is described in detail in section 4.4.2 of the ANSI/RESNET/ICC 380 2016 Standards: http://www.resnet.us/professional/standards

ELIGIBILITY

The efficient condition is sealed duct work throughout the unconditioned space in the home. The existing baseline condition is leaky duct work within the unconditioned space in the home.

ALGORITHMS

Methodology 1: Evaluation of Distribution Efficiency


Determine Distribution Efficiency by evaluating duct system before and after duct sealing using Building Performance Institute "Guidance on Estimating Distribution Efficiency" or the values reproduced from that document in Table 2-31 Table 2-40 that match the duct system, and if the majority of the duct system is in conditioned space add the matching value from Table 2-41, not to exceed 100%.

VOLUME 2: ENERGY STARResidential Measures

HVAC

Page 64

Field Code Changed

DEFINITION OF TERMS

Table 2-39: Terms, Values, and References for Duct Sealing

Term	Unit	Value	Source
CFCF _{summer} , Demand Coincidence Factor <u>during the summer months</u>	Proportion	See <i>CF</i> in Vol. 1, App. A	4
CF _{winter} , Demand Coincidence Factor during the winter months	<u>Proportion</u>	See CF in Vol. 1, App. A	<u>4</u>
CFM_{25BASE} , Standard Duct Leakage test result at 25 Pascal pressure differential of the duct system prior to sealing, calculated from the duct blaster fan flow chart	$\frac{ft^3}{min}$	EDC Data Gathering	3
CFM _{25DB} , Cubic feet per minute of air leaving the duct system at 25 Pascals	$\frac{ft^3}{min}$	EDC Data Gathering	3

VOLUME 2: ENERGY STARResidential

Measures HVAC

Term	Unit	Value	Source
<i>CFM</i> _{25EE} , Standard Duct Leakage test result at 25 Pascal pressure differential of the duct system after sealing, calculated from the duct blaster fan flow chart	$\frac{ft^3}{min}$	EDC Data Gathering	3
CAPY _{cool} , Capacity of Air Cooling System	kBTU/hr	EDC Data Gathering	EDC Data Gathering
CAPY _{heat} , Capacity of Air Heating System	kBTU/hr	EDC Data Gathering	EDC Data Gathering
<i>TCFM</i> , Conversion from tons of cooling to CFM	CFM ton	400	5 <u>Conversion</u> <u>factor</u>
SEER2, SEER , Efficiency of cooling		EDC Data Gathering	
equipment	$\frac{BTU}{W \cdot h}$	Default: See Early Replacement values in Table 2-10 in Sec. 2.2.1	6 <u>5</u>
HSPF2. HSPF , Efficiency of Heating	None	EDC Data Gathering	
Equipment		Default: See Early Replacement values in Table 2-10 in Sec. 2.2.1	6 <u>5</u>
<i>EFLH_{cool}</i> , Cooling equivalent full load hours	hours year	See <i>EFLH_{cool}</i> in Vol. 1, App. A	4
$\textit{EFLH}_{\textit{heat}}$, Heating equivalent full load hours	hours year	See <i>EFLH_{heat}</i> in Vol. 1, App. A	4
<i>DE_{post}</i> , Distribution efficiency after duct sealing and insulation	None	Table 2-31, Table 2-32Table 2-40_Table 2-41Not to exceed 100%	2
<i>DE_{pre}</i> , Distribution efficiency before duct sealing and insulation	None	Table 2-31, Table 2-32 Table 2-40, Table 2-41 Not to exceed 100%	2

Note: Where appropriate, nameplate data collected for usage in savings calculations (i.e., SEER, EER, HSPF) should be converted to new efficiency metrics (i.e., SEER2, EER2, HSPF2) using conversion equations laid out in Vol. 1 App. A

VOLUME Measures 2:

ENERGY STARResidential

HVAC

	Location		At	tic			Base	ment			Venteo	l Crawl	
Insulation	HVAC Type	He	Heat		Cool		Heat		Cool		eat	Cool	
	Leakage \ CZ*	4&5	6	4&5	6	4&5	6	4&5	6	4&5	6	4&5	6
	Leaky	69%	64%	61%	61%	93%	92%	81%	92%	74%	71%	76%	90%
R-0	Average	73%	68%	64%	66%	94%	94%	87%	95%	78%	74%	83%	93%
	Tight	77%	73%	73%	74%	95%	95%	94%	98%	82%	78%	91%	97%
	Leaky	76%	73%	65%	67%	94%	94%	83%	92%	80%	78%	78%	91%
R-2	Average	82%	79%	74%	75%	96%	95%	88%	95%	85%	83%	85%	94%
	Tight	87%	85%	84%	85%	97%	97%	95%	98%	90%	88%	93%	97%
	Leaky	79%	76%	67%	70%	95%	95%	83%	93%	82%	80%	79%	91%
R-4+	Average	84%	82%	77%	78%	96%	96%	89%	95%	87%	85%	86%	94%
	Tight	90%	89%	87%	88%	98%	98%	95%	98%	92%	91%	94%	97%
	Leaky	80%	78%	69%	71%	95%	95%	83%	93%	84%	82%	79%	91%
R-8+	Average	86%	84%	79%	80%	97%	97%	89%	95%	89%	87%	87%	94%
	Tight	92%	91%	90%	90%	98%	98%	95%	98%	94%	93%	94%	98%

Table 2-40: Distribution Efficiency by Climate Zone; Conditioned Air Type; Duct Location, Leakage & Insulation

* Climate Regions A and G correspond to IECC Climate Zone 6, the rest of the state is IECC Climate Zone 4 or 5. Table 2-41: Distribution Efficiency Adders for Cond. Space (%) by Conditioned Air; Duct Location, Leakage & Insulation

Location Att			tic	ic Basement				Vented Crawl				
HVAC Type	Heat		Cool		Heat		Cool		Heat		Cool*	
Insulation \ Conditioned	50%	80%	50%	80%	50%	80%	50%	80%	50%	80%	50%	80%
R-0	6%	4 <u>11</u> %	<u>114</u> %	9%	2%	<mark>32</mark> %	<mark>23</mark> %	3%	6%	3 <u>11</u> %	<u> 113</u> %	5%
R-2	4%	<mark>56</mark> %	6 <u>5</u> %	7%	1%	1%	1%	2%	3%	2 <u>5</u> %	<mark>52</mark> %	3%
R-4+	3%	<u>34</u> %	4 <u>3</u> %	5%	1%	1%	1%	1%	2%	<u>14</u> %	4 <u>1</u> %	3%
R-8+	3%	<mark>23</mark> %	<u>32</u> %	3%	1%	1%	1%	1%	2%	4 <u>2</u> %	<mark>2<u>1</u>%</mark>	2%

* In Climate Zone 6 (Climate Regions A & G), the cooling adder is fixed at 1% for ductwork in 80% conditioned space.

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

1) California Public Utilities Commission Database for Energy Efficient Resources (DEER) EUL Support Table for 2020, http://www.deeresources.com/files/DEER2020/download/SupportTable-EUL2020.xlsx-Accessed December 2018. Limited to Act 129 maximum of 15 years. 1) California Electronic Technical Reference Manual. "Duct Sealing". Residential. Accessed August 2023. (Capped at 15 years in accordance with Act 129) Weblink 2) Building Performance Institute, (n.d.). Distribution Efficiency Table, http://www.bpi.org/sites/default/files/Guidance%20on%20Estimating%20Distribution%20Effici ency.pdfWeblink .- (Reproduced by permission-) VOLUME 2: ENERGY STARResidential Measures Page 67 HVAC

Formatted: Body Text

Formatted: Body Text

- 3) Resnet Energy Services Network, (2012, May 12). Standard for Testing Airtightness of Building, Dwelling Unit, and Sleeping Unit Enclosures; Airtightness of Heating and Cooling Air Distribution Systems; and Airflow of Mechanical Ventilation Systems Standards for Performance Testing, http://www.resnet.us/blog/wp-content/uploads/2016/01/ANSI-RESNET-ICC - 380-2016-posted-Weblink
- 3)4)Based on-website-6- the Phase III SWE team's analysis of regional HVAC runtime data collected from Ecobee's Donate Your Data research service. Weblink Updated based on the latest CDD and HDD values from NOAA's 15-16.pdfyear annual climate Normals (2006– 2020). Weblink
- 4) Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service. <u>https://www.ecobee.com/donateyourdata/</u>
- 5) Heating, Air conditioning & Refrigeration Distributors International https://energy.mo.gov/sites/energy/files/61-why_400-cfm-per-ton.pdf
- 6)5)Pennsylvania Act 129 2018 Residential Basline Study , http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3_Res_Baseline_Study_Rpt021219.pdf._NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 Residential Baseline Study. Sec 8.1.4 Table 87 and Sec 8.2.1 Table 97 & 98. Baseline findings are capped to current Federal Standards. Weblink (Due to small sample sizes, GSHP is lowest efficiency value from BEopt v2.8.0, and PTAC and PTHP are minimum federal standard efficiencies-)

7)6)Communication with Building Performance Institute.

Formatted: No underline, Font color: Auto

Formatted: No underline, Font color: Auto

Formatted: List Paragraph,TT - Numbered List Paragraph,Bullet Styles para,TOC etc.,Bulleted List Paragraph, Space After: 0 pt

Formatted: No underline, Font color: Auto

VOLUME 2: Measures ENERGY STARResidential

HVAC

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
May 2024				

2.2.102.2.11 AIR HANDLER FILTER WHISTLES

Target Sector	Residential-Establishments
Measure Unit	Filter whistle (to promote regular filter change-out)
Measure Life	5 years ^{Source 61}
Vintage	Retrofit

Dirty air handler filters increase electricity consumption for the circulating fan. Filter whistles attach to the filter in the air handler, and make a sound when it is time to replace the filter. Source 72

ELIGIBILITY

Savings estimates are based on reduced blower fan motor power requirements for winter and summer use of the blower fan motor. This air handler filter whistle measure applies to central forced-air furnaces, central AC and heat pump systems. Where homes do not have A/C or heat pump systems for cooling, only the annual heating savings will apply.

ALGORITHMS

AkWh	$= DkWh_{heat} + DkWh_{cool} \Delta kWh_{} = \Delta kWh_{heat} + \Delta kWh_{cool}$	 Formatted: Portuguese (Brazil)
∆kWh _{heat}	$= kW_{motor} \times EFLH_{heat} \times EI \times ISR$	
∆kWh _{cool}	$= kW_{motor} \times EFLH_{cool} \times EI \times ISR$	
<u>∆k₩kW_{summer} p</u>	$= \Delta kWh_{cool} \div EFLH_{cool} \times \frac{CFCF_{summers}}{CFCF_{summers}}$	 Formatted: Font: Cambria Math

Formatted: Portuguese (Brazil)

Formatted: Space Before: 0 pt

 $\underline{\Delta k W_{winter \, peak}} = \Delta k W h_{heat} \div EFLH_{heat} \times CF_{winter}$

DEFINITION OF TERMS

Table 2-42: Terms, Values, and References for Air Handler Filter Whistle

Term	Unit	Value	Sources
$kW_{ m motor}$, Average motor full load electric demand	kW	0.377	4 <u>3</u>
$EFLH_{heat}$, Estimated Full Load Hours (Heating)	$\frac{hours}{yr}$	See <i>EFLH_{heat}</i> in Vol. 1, App. A	5 <u>4</u>
<i>EFLH_{cool}</i> , Estimated Full Load Hours (Cooling)	$\frac{hours}{yr}$	See <i>EFLH_{cool}</i> in Vol. 1, App. A	5 <u>4</u>
El , Efficiency Improvement	%	15%	2, 4<u>5, 6</u>
ISR , In-service Rate	%	EDC Data Gathering Default = <u>157</u> %	3 <u>7</u>
CF ,CF summer . Demand Coincidence Factor during the summer months	Proportion	See CF in Vol. 1., App. A	5 <u>4</u>
CF _{winter_} , Demand Coincidence Factor during the winter months	<u>Proportion</u>	See CF in Vol. 1, App. <u>A</u>	<u>4</u>

VOLUME 2: ENERGY Measures

STARResidential

HVAC

DEFAULT SAVINGS

The following table presents the assumptions and the results of the deemed savings for each reference location.

Table 2-43: Default Air Handler Filter Whistle Savings

				Heating		Coc	oling		J	
Clim ate Regi on	Reference City		ASHP kWh	Furnac e kWh	ASH P kWh <u>Wint</u> er kW	kWh	<u>Summ</u> <u>er</u> kW		Inserted Cells	
		7.7	_ 10.5			0. 00				Deleted Cells
С	Allentown			4. 9 75	3.27	3 <u>001</u> 4	3.01	0.0017		Deleted Cells
Α	Binghamtor	NY			<u>12.74.6</u>	<u>2.80.</u>		0. 002 0		Formatted Table
<u>^</u>	Diriginaritor	1, 111		9.8<u>6.00</u>	3	0018	<u>1.53</u>	<u>010</u>		Inserted Cells
G	Bradford					0.00 <u>18</u> 14		0.0020	\`	Inserted Cells
-				<u>6.12</u>	11.4.71	-2	1.7 <u>21</u>	009		Inserted Cells
1	Erie			8.9 5.27	<u>12.13.7</u> 4	4.0 <u>.0</u> 015	2.48	0. <u>0020</u> 012		Formatted: Font: 9 pt, Font color: Auto
Е	Harrisburg			0.0 <u>0.21</u>	<u>11.23.1</u>	<u>6.20.</u>	2.40	0.0040		Inserted Cells
-	Harrisburg			8.5<u>4.53</u>	<u>0</u>	<u>0013</u>	<u>3.40</u>	<u>017</u>		Formatted: Font color: Black
D	Philadelphia	а		6.5 4.07	9. 2.70	<u>6.60.</u> 0011	3.85	0.004 <u>0</u> 019		Formatted: Font color: Auto
	Ditta humah			0.04.01	10.83.5	4. 6 0.	0.00	0.0030		
Н	Pittsburgh			<u>8.05.00</u>	<u>1</u>	<u>0014</u>	<u>2.65</u>	<u>015</u>		Inserted Cells
в	Scranton			° 5 00	11.4<u>3.5</u> 9	4 <u>.0.0</u>	2 5 9	0.0030		
				8. 5 <u>.09</u>	<u>9</u> 10.9 3.6	<u>015</u> 4.70.	<u>2.58</u>	<u>014</u> 0. 003 0		
F	Williamspor	t		7.9 5.06	10.9 <u>3.0</u> 0	0015	2.62	0.0030		

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

- 1) California Public Utilities Commission Database for Energy Efficient Resources (DEER) EUL Support Table for 2020
- 2) Your Filter Connection, "What is a Furnace Filter Whistle?". Weblink. Accessed December, 2018.
- 3) Typical blower motor capacity for gas furnace is $\frac{1}{4}$ to $\frac{3}{4}$ HP, $\frac{1}{2}$ HP × $0.746\frac{kW}{hp} = 0.377$ kW.

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with

VOLUME Measures	ENERGY	STARResidential
IVAC		

Formatted: Normal

Formatted: Body Text

Page 70

Formatted: Caption, Table Caption, Footnotes

Formatted: Justified, Tab stops: Not at 3"

verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

1) Typical blower motor capacity for gas furnace is $\frac{1}{4}$ to $\frac{3}{4}$ HP, $\frac{1}{2}$ HP × 0.746 $\frac{kw}{kw}$ = 0.377kW.

- 4) Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service (Weblink) and updated based on the latest CDD and HDD values from NOAA's 15-year annual climate Normals (2006–2020) (Weblink)
- 3) The In Service Rate is the average of values reported by FirstEnergy EDCs for kits including an air handler furnace whistle for PY9. See http://www.puc.pa.gov/filing_resources/issues_laws_regulations/act_129_information/electric __distribution_company_act_129_reporting_requirements.aspx
- 4)6)Energy.gov. "Maintaining Your Air Conditioner". Accessed 7/16/2014. Says that replacing a dirty air filter with a clean one can lower total air conditioner energy consumption by 5-15%. Since the algorithms in this measure only take into account the blower fan energy use, a 15% savings seems reasonable-
- 5) Based on the Phase III SWE team's analysis of regional HVAC runtime data collectedweighted average of ISRs from ecobee's Donate Your Data research service, https://www.ecobee.com/donateyourdata/.
- California Public Utilities Commission Database for Energy Efficient Resources (DEER) EUL Support Table for 2020, http://www.deeresources.com/files/DEER2020/download/SupportTable-EUL2020.xlsx -Accessed December 2018.
- 7) Your Filter Connection, "What is a Furnace Filter Whistle?". https://yourfilterconnection.com/blogs/help/what-is-a-furnace-filter-whistle. Accessed December, 2018surveys of FirstEnergy customers that received air handler filter whistles in kits in PY13 and PY14,

Formatted: Pattern: Clear
Formatted: Pattern: Clear
Formatted: Pattern: Clear
Formatted: Pattern: Clear

Formatted: Pattern: Clear

Formatted: Underline

Formatted: Normal

VOLUME 2: ENERGY

ERGY STARResidential

Measures HVAC

2.2.112.2.12 ENERGY STAR® CERTIFIED CONNECTED THERMOSTATS

Target Sector	Residential Homes, including single or multifamily in-unit spaces
Measure Unit	Residential Thermostat
Measure Life	119 years ^{Source 51}
Vintage	Retrofit, Replace on Burnout, or new constructionNew Construction

ENERGY STAR[®]-certified connected thermostats (CT) save heating and cooling energy by operating residential HVAC systems more efficiently. CTs that meet the ENERGY STAR[®] specification⁸specification⁵ource 2</sup> will have functions that are located in the home and on the Internet (the cloud). Homes must have Wi-Fi to enable full operating capabilities.

ENERGY STAR[®]-certified connected thermostats may replace either a manual thermostat or a conventional programmable thermostat. The energy savings assume an existing ducted HVAC system with either an air source heat pump, fossil fuel heating with central AC, or an electric furnace with central AC. Electric resistance baseboard heating as the primary heating system is not eligible for savings to be claimed through this measure protocol because CTs are low voltage thermostats, which use 24 volts. Electric baseboard heating requires line-voltage thermostats, which can be either 120 or 240 volts.

ELIGIBILITY

This measure documents the energy savings resulting from the following product installations:

ENERGY STAR[®]-certified connected thermostat (CT)

Savings are assessed in this protocol for three different installation scenarios:

- Customer self-installation of CT (no education). Under this scenario, customers purchase and install the CT on their own without any education on installing and operating the thermostat (aside from any manufacturer instructions included in the CT box at the time of purchase). This scenario applies to upstream programs where EDCs discount the device cost at the point of purchase.
- 2) Customer self-installation with education on installation and operation of CT. Under this scenario, customers purchase the program-qualified CT and, in order to receive the incentive, certify in the incentive application that they have completed the specified education on how to install and operate the thermostat. The education may consist of viewing of videos and/or completion of a short online training module on the installation and operational details of the thermostat.
- 3) Professional installation with instructions on operating the CT. For professional installation with operational instructions, the thermostat must be installed by a utility representative, ICSP, or program affiliated trade ally, at the time of the installation, the installer must explain the operational details of the thermostat to the customer. It is important to note that professional installation by contractors unaffiliated with the program may not focus on the energy savings capabilities of the device and would not produce higher savings. For example, an electrician might only focus on the wiring needs and provide little or no direction to the homeowner on how to leverage device capabilities for energy savings.

VOLUME 2: ENERGY STARResidential Measures

HVAC

Page 72

Formatted: Not Superscript/ Subscript

Table 2-44: Installation Classification

Installation Scenario	Installation Cost Paid By	Installation Type	Capacity Term(s)
Thermostat installed by EDC contractor during audit or other visit	EDC	Professional	EDC Data Gathering, Default
Thermostat installed by contractor affiliated with EDC program (ICSP or trade ally)	EDC or Participant	Professional	EDC Data Gathering, Default
Thermostat installed by licensed electrical or HVAC contractor - invoice, work order, etc. provided	Participant	Professional	EDC Data Gathering, Default
Thermostat installed by homeowner or friend/family who certifies receiving education on operating the thermostat at the time of applying for the rebate.	Participant	Self-Installation + Education	Default
Thermostat installed by licensed electrical or HVAC contractor - no invoice, work order or other documentation supplied	Participant	Self-Installation + Education	Default
Thermostat installed by homeowner or friend/family	Participant	Self-Installation	Default

Finally, energy saving factor (ESF) values are specified based on whether the thermostat is installed by the customer (self-installation), the customer with education (self-installation + education), or by a professional contractor/utility representative (professional installation). A peak demand saving factor (PDSF) is applied to the ESF_{cool} assumptionand ESF_{heat} assumptions so the peak demand savings values per thermostat also vary by installation type.

ALGORITHMS

Energy Savings

Total savings are calculated as a combination of heating and cooling season savings. The heating savings calculation varies depending on whether heat is provided by a heat pump, electric furnace, or gas furnace. There are no heating savings for boilers.

ΔkWh	$= \Delta kWh_{cool} + \Delta kWh_{heat}$
ΔkWh_{cool}	$= CAPY_{cool} \times \frac{EFLH_{cool}}{SEER \times Eff_{duct}} \frac{EFLH_{cool}}{SEER 2 \times Eff_{duct}} \times ESF_{cool}$
$\Delta kWh_{heat,HP}$	$= CAPY_{HP} \times \frac{\frac{EFLH_{heat,HP}}{HSPF \times Eff_{duct}}}{HSPF 2 \times Eff_{duct}} \times ESF_{heat}$
$\Delta kWh_{heat,electurrn}$	$= CAPY_{elecfurn} \times \frac{\frac{EFLH_{hea}, non-HP}{3.412\frac{BTU}{Wh} \times Eff_{duct}} \times \frac{ESF_{neat}}{HSPF \times Eff_{duct}} \times \frac{EFLH_{heat, non-}}{HSPF \times Eff_{duct}} \times \frac{EFH}{HSPF \times E$
$ESF_{heat} \times DF$	17 H
$\Delta kWh_{heat, fuelfurn}$	$=\frac{HP_{motor}\times 0.746\frac{kW}{HP}}{\eta_{motor}}\times EFLH_{heat,non-H} \times ESF_{heat}$

Derate Factor

Heating ESF estimates are largely based on results from studies looking at connected thermostats applied to natural gas furnaces. However, it is likely that customers with electric furnaces are already more conscious of managing their energy consumption than those with gas furnaces due to the higher cost of electric resistance heat, thus savings from a gas furnace study may be overstated if not adjusted.

VOLUME Measures	ENERGY	STARResidential	
HVAC			Page 73

Formatted: Don't keep lines together

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
May 2024				

Blended Baseline

The ESF value applied in the equations above is determined based on the type of thermostat being replaced (manual, programmable, or unknown baseline), the existing heating and/or cooling HVAC equipment in the home, and the program design type. When a known blended baseline of manual and programmable thermostats is present, the following equation may be used to find the appropriate ESF value for the blended baseline.

 $ESF_{connected over mixed} = (ESF_{connected over manual} \times \mathcal{M}_{Manual}) + (ESF_{connected over prog.} \times \mathcal{M}_{Programmable})$

Demand Savings

Savings from connected thermostats installed in systems with ducted air conditioning and/or heating have been shown to generally follow cooling and/or heating load, however the percent reduction during the system peak hours is expected to be lower than during off-peak hours. The PDSF term reduces the ESF_{cool} valueand ESF_{heat} values used to calculate energy savings by 50%. Peak demand savings are a function of the system size, efficiency, installation type, and coincidence factor.

 $= \frac{kW_{summer \ peak}}{\frac{CAPY_{cool}}{EER \times Eff_{duct}}} \times ESF_{cool} \times PDSF \times CFCF_{summer}$ ∆kW_{peak} −

Formatted: Font: 10 pt Formatted: Font: Not Italic

 $\frac{\text{For Heat Pumps:}}{\Delta kW_{winter peak}} = \frac{\Delta kWh_{heat,HP}}{EFLH_{heat,HP}} \times PDSF \times CF_{winter}$

For Non-heat Pumps:

 $\Delta kW_{winter \ peak} = \frac{\Delta kWh_{heat, elecfurrn/fuelfurn}}{EFLH_{heat, non-HP}} \times PDSF \times CF_{winter}$

DEFINITION OF TERMS

Table 2-45: Residential Electric HVAC Calculation Assumptions

Term Unit		Value	Sources
CAPY _{cool} , Capacity of air conditioning unit	kBTU	EDC Data Gathering of Nameplate data	EDC Data Gathering
	h	Default = <u>3031.9</u> / unit	4 <u>3</u>
CAPY _{HP} , Normal heat capacity of Heat Pump	<u>kBTU</u> h	EDC Data Gathering of Nameplate Data	EDC Data Gathering
System.	n	Default = <u>32<u>31.9</u> / unit</u>	4 <u>3</u>
CAPY _{electurn} , Normal heat capacity of Electric	kBTU	EDC Data Gathering of Nameplate data	EDC Data Gathering
Furnace systems	h	Default = 60.249<u>78.1</u> / unit	4 <u>3</u>
SEERSEER2 Seasonal	BTU	EDC Data Gathering of	EDC Data
Energy Efficiency Ratio	$\overline{W \cdot h}$	Nameplate data	Gathering

Formatted Table

Formatted: Font: Italic

VOLUME Measures 2:

ENERGY STARResidential

HVAC

Term	Unit	Value	Sources
		Default: CAC = 12.1 Heat Pump = 13.5 <u>see</u> Table 2-10	4 <u>3</u>
	BTU	EDC Data Gathering of Nameplate data	EDC Data Gathering
EFREER2 Energy Efficiency Ratio	$\overline{W \cdot h}$	Default: CAC = 10.6 Heat Pump = 11.4 <u>see</u> Table 2-10	4 <u>3</u>
HSPF _{heat pump} HSPF2, HSPF, Heating Seasonal	BTU	EDC Data Gathering of Nameplate data	EDC Data Gathering
Performance Factor of Heat Pump	$\frac{BTU}{W \cdot h}$	Heat Pump-Default = 8.2 <u>see</u> Table 2-10	4 <u>3</u>
<i>Eff_{duct}</i> , Duct System Efficiency	None	0.8 <u>83</u>	3 <u>4</u>
<i>EFLH</i> _{cool} , Equivalent Full Load Hours for Cooling	hours yr	See <i>EFLH_{cool}</i> in Vol. 1, App. A	4 <u>5</u>
<i>EFLH_{heat,HP}</i> , Equivalent Full Load Hours for ASHP Systems	hours yr	See EFLH _{heat,HP} in Vol. 1, App. A	4 <u>5</u>
<i>EFLH_{heat,non-HP}</i> Equivalent Full Load Hours for Electric or Gas Furnaces	hours yr	See <i>EFLH_{heat.non-HP}</i> in Vol. 1, App. A	4 <u>5</u>
<i>HP_{motor}</i> , Gas furnace blower motor horsepower	Hp <u>HP</u>	EDC Data Gathering Default = ½	Average blower motor capacity for gas furnace (typical range = ¼ hp to ¾ hp)
		Nameplate	EDC Data Gathering
η_{motor} , Efficiency of furnace blower motor	%	EDC Data Gathering Default = 50%	Typical efficiency of ½ hp blower motor
% _{Programmable} , % central AC systems with a	None	EDC Data Gathering	EDC Data Gathering
programmable thermostat		Forced Air Default = <mark>58<u>68</u>%</mark>	4 <u>3</u>
% _{Manual} , % central AC systems with a manual	None	EDC Data Gathering	EDC Data Gathering
thermostat		Forced Air Default = 42 <u>32</u> %	4 <u>3</u>
<i>ESF_{cool}</i> , cooling energy saving factor	None	See Table 2-37See Table 2-46	Composite of multiple sources
ESF _{heat} , heating energy saving factor	None	See Table 2-38See Table 2-47	Composite of multiple sources
PDSF, peak demand savings factor relative to ESF _{cool}	None	EDC Data Gathering Default = 50%	13 <u>6</u>

Formatted: Font: Italic

VOLUME Measures

2:

ENERGY STARResidential

HVAC

Term	Unit	Value	Sources
<i>CFCF_{summer}</i> , Demand Coincidence Factor <u>during the summer</u> <u>months</u>	Proportion	See <i>CF</i> in Vol. 1, App. A	14 <u>4</u>
CF _{winter} . <u>Demand</u> Coincidence Factor during the winter months	Proportion	<u>See CF in Vol. 1, App. A</u>	<u>4</u>
<i>DF</i> , Derate Factor for Electric Resistance Heating Systems	None	0.85	Professional Judgement

Formatted Table

Table 2-37 and Table 2-38Note: Where appropriate, nameplate data collected for usage in savings calculations (i.e., SEER, EER, HSPF) should be converted to new efficiency metrics (i.e., SEER2, EER2, HSPF2) using conversion equations laid out in Vol. 1 App. A

Table 2-46 and Table 2-47 show ESF values for cooling and heating (percentage of heating or cooling consumption saved by thermostat type, installation type, and HVAC system type). Each value taken from a secondary literature study has a footnote with its corresponding reference. All other ESF values (without footnotes) were calculated from the referenced value to find ESF values for different baselines.

VOLUME 2: Measures ENERGY STARResidential

HVAC

Table 2-46: Cooling Energy Savings Factors (ESFcool)

Installation Type	Baseline	ASHP Cooling	CAC Cooling
Upstream buy-down (Customer Self-Installation)	Unknown Mix Default	4.8%ª	4.8%ª
Customer Self-Installation with Education	Unknown Mix Default	7. <u>54</u> % ^b	7. <u>54</u> % ^b
	Manual	11.3%°	11.3%°
Professional Installation	Conventional Programmable	9.3% ^d	9.3% ^d

^a Source 67

^b Cooling savings are based on average of savings from unknown mix default with customer self-installation and average of professional installation savings from manual and programmable thermostats. In this case, 7.54%=((11.3%×0.4232 + 9.3%×0.5868) + 4.8%) / 2

^c Average of cooling savings estimates from multiple studies. Sources: 2, 78, 9, 12, 10, 11

^d The ESF value is applied here subtracts the assumed savings value fromvalues are for programmable thermostats in the 2016 Pennsylvania TRM (2.0%) from the manual thermostat baseline ESF<u>based of DEER 2005's cooling savings for climate zone 16</u>.

Table 2-47: Heating Energy Savings Factors (ESFheat)

Program Type	Baseline	Air Source Heat Pump	Furnace/Boiler Heating (Electric or Fossil)
Upstream buy-down (Customer Self-Installation)	Unknown Mix Default	6.4% ^a	6.4% ^a
Customer Self-Installation with Education	Unknown Mix Default	7. 9 7% ^b	7. <mark>97</mark> % ^b
	Manual	11.5%°	11.5%°
Professional Installation	Conventional programmable	7.9% ^d	7.9% ^d

^a Average of heating estimates from two studies. Sources: 9, 1110, 12

^b Heating savings are based on average of savings from unknown mix default with customer self-installation and average of professional installation savings from manual and programmable thermostats. In this case, 7.97%=((11.5%×0.4232 + 7.9%×0.5868) + 6.4%) / 2

^c Average of four heating savings estimates from fourmultiple studies. Sources: 7, 10, 129, 11, 13

^d The ESF value <u>are</u> for a is applied here as an estimate until information becomes available showing different<u>programmable</u> thermostats based of DEER 2005's cooling savings incented through a direct install programfor <u>climate zone 16</u>.

DEFAULT SAVINGS

Table 2-39 through Table 2-41Table 2-48 through Table 2-50 provide deemed energy savings values by program type, HVAC system type, and baseline thermostat style using statewide average EFLH values. Table 2-42Table 2-51 provides deemed peak demand savings by program type, HVAC system type, and baseline thermostat style using statewide average CF values. If an EDC wishes to calculate default savings specific to their service territory, the climate region weights in Table 1-6 and the EFLH values in Table 1-8 can be used with the algorithms and assumptions in this protocol. The values in Table 1-6 and Table 1-8 are also included in the MS Excel Appendix A

VOLUME	2:	ENERGY	STARResidential	
Measures				

HVAC

Formatted: Not Superscript/ Subscript

Formatted: Not Superscript/ Subscript

State of Pennsylvania – Technical Reference Manual, Vol. 2: Residential Measures – Rev Date: Feb. 2021 May 2024

calculator (Climate Dependent Values). In an upstream program delivery model, an EDC may not be able to collect the HVAC system type for each participating household. Table 2-43 Table 2-52 Tab delivery.

Table 2-48: Default Statewide Cooling Savings (kWh/yr)

Program Type Baseline		ASHP Cooling	CAC Cooling
Upstream buy-down (Customer Self-Installation)	Unknown Mix Default	69<u>86</u>	77 <u>92</u>
Customer Self-Installation with Education	Unknown Mix Default	108<u>132</u>	120<u>141</u>
	Manual	163 202	182 215
Professional Installation	Conventional programmable	134<u>166</u>	150<u>177</u>

Table 2-49: Default Statewide Heating Savings (kWh/yr)

Program Type	Baseline		ASHP with Electric Auxiliary Heating	Electric Furnace	Fossil Fuel Furnace (Fan Only)
Upstream buy-down (Customer Self- Installation)	Unknown Default	Mix	4 <u>20440</u>	1, 213<u>476</u>	48 <u>44</u>
Customer Self-Installation with Education	Unknown Default	Mix	519<u>529</u>	1, 499<u>775</u>	60<u>53</u>
	Manual		756<u>791</u>	2, 180<u>651</u>	87<u>79</u>
Professional Installation	Conventional programmable		519<u>543</u>	1,4 <u>98821</u>	60<u>54</u>

Table 2-50: Default Statewide Total Heating and Cooling Savings (kWh/yr)

Program Type	Baseline	ASHP- with Electric Aux	CAC w/ Electric Furnace	CAC w/ Gas (Fan)
Upstream buy-down (Customer Self- Installation)	Unknown Mix Default	4 90<u>526</u>	1, 290<u>567</u>	125<u>136</u>
Customer Self-Installation with Education	Unknown Mix Default	627<u>661</u>	1, 619<u>916</u>	180<u>194</u>
Professional Installation	Manual	918 992	2, 362<u>867</u>	268 295

VOLUME 2: ENERGY STARResidential

Measures HVAC

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
May 2024				

Conventional programmable	<u>653709</u>	1, 647<u>999</u>	209 232	
---------------------------	---------------	-----------------------------	--------------------	--

Table 2-51: Default Statewide Peak Demand Savings (kW/yr)

Program Type	Baseline	ASHP	Cooling		oolingw/ Furnace		<u>v/ Gas</u> Fan Only)
		<u>Summer</u> <u>Peak</u>	<u>Winter</u> Peak	<u>Summer</u> <u>Peak</u>	<u>Winter</u> Peak	<u>Summer</u> <u>Peak</u>	<u>Winter</u> Peak
Upstream buy-down (Customer Self- Installation)	Unknown Mix Default	0. 0269 028	0. 0289 064	0.030	<u>0.301</u>	<u>0.030</u>	<u>0.009</u>
Customer Self- Installation with Education	Unknown Mix Default	0. <u>0418044</u>	0.0450077	<u>0.046</u>	0.362	0.046	<u>0.011</u>
Destactional	Manual	0.0633067	0.0680116	<u>0.070</u>	0.541	0.070	0.016
Professional Installation	Conventional programmable	0. 0521<u>055</u>	0.0560079	<u>0.058</u>	<u>0.372</u>	0.058	<u>0.011</u>

Inserted Cells Merged Cells

Inserted Cells	
Inserted Cells	
Inserted Cells	
Inserted Cells	
Formatted: Font color: Auto	

Table 2-52: HVAC System Type Shares by EDC for Upstream Program Delivery

EDC	ASHP- with Electric Aux	CAC w/ Electric Furnace	CAC w/ Gas
PECO	43.75%	0.00%	56.25%
PPL	50.00%	0.00%	50.00%
Duquesne	9.52%	4.76%	85.71%
FE: Met-Ed	19.05%	9.52%	71.43%
FE: Penelec	22.22%	0.00%	77.78%
FE: Penn Power	13.64%	4.55%	81.82%
FE: West Penn	29.41%	0.00%	70.59%

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. Evaluation contractors may choose to propose independent assessments of the ESF factors to the SWE in their EM&V plans. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES	
 Pennsylvania Act 129 2018 Residential Baseline Study, <u>http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-</u> <u>Phase3 Res Baseline Study Rpt021219.pdf</u>. 	
VOLUME 2: ENERGY STARResidential Measures	
HVAC	Page 79

- EnerNOC, Xcel Energy: In-Home Smart Device Pilot. Public Service Company of Colorado," March, 2014, <u>https://www.xcelenergy.com/staticfiles/xe/Regulatory/Regulatory%20PDFs/CO-DSM/CO-2014-IHSD-Pilot-Evaluation.pdf</u>
- 3) New York Standard Approach for Estimating Energy Savings from Energy Efficiency Measures in Commercial and Industrial Programs, September 1, 2009. http://www3.dps.ny.gov/W/PSCWeb.nsf/96f0fec0b45a3c6485257688006a701a/766a83dce56 eca35852576da006d79a7/\$FILE/90_day_CI_manual_final_9-1-09.pdf
- Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service, <u>https://www.ecobee.com/donateyourdata/.</u>
- California Public Utilities Commission Database for Energy Efficient Resources (DEER) EUL Support Table for 2020, http://www.deeresources.com/files/DEER2020/download/SupportTable-EUL2020.xlsx.
- 1) <u>Navigant Consulting, Inc., "California Electronic Technical Reference Manual. "Smart</u> Thermostat Residential". Accessed August 2023 Weblink

Accessed December 2018.

- 6) <u>ENERGY STARIllinois Smart Thermostat</u> <u>Annual and Seasonal kWh Savings</u> <u>Impact</u> <u>Findings," February 26, 2016.</u> <u>http://ilsagfiles.org/SAG_files/Technical_Reference_Manual/Version_5/Illinois_Smart_Therm</u> <u>ostat_Electric_Impact_Findings_2016-02-26.pdf</u>
- 7) The Cadmus Group, Inc., "Vectren: Evaluation of 2013–2014 Programmable and Smart Thermostat Program," January 2014, <u>http://www.cadmusgroup.com/wp-</u> <u>content/uploads/2015/06/Cadmus_Vectren_Nest_Report_Jan2015.pdf?submissionGuid=664</u> <u>af99c-7ff7-4afe-a8e6-b6c7acc4d9cb</u>
- 8)2)Energy Star Program Requirements for Connected Thermostat Products https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Program%20Requirem ents%20for%20Connected%20Thermostats%20Version%201.0.pdfWeblink V1.0 12/23/2016
- 9) Apex Analytics LLC, "Energy Trust of Oregon Nest Thermostat Smart Thermostat Pilot Evaluation," March 1, 2016, <u>https://www.energytrust.org/wp-</u> content/uploads/2016/12/Smart_Thermostat_Pilot_Evaluation-Final_wSR.pdf
- 10) Apex Analytics LLC, "Energy Trust of Oregon Nest Thermostat Heat Pump Control Pilot Evaluation," October 10, 2014, <u>https://nest.com/-downloads/press/documents/energy-trust-of-oregon-pilot-evaluation-whitepaper.pdf</u>
- 11) Navigant Consulting, Inc., "Residential Smart Thermostats: Impact Analysis Gas Preliminary Findings," December 16, 2015, <u>http://ilsagfiles.org/SAG_files/Meeting_Materials/2015/December_2015_Meetings/Presentations/Smart_Tstat_Preliminary_Gas_Impact_Findings_2015-12-08_to_IL_SAG.pdf</u>
- 12) The Cadmus Group, Inc., "Wi-Fi Programmable Controllable Thermostat Pilot Program Evaluation, September 2012, <u>http://ma-eeac.org/wordpress/wp-content/uploads/Wi-Fi-Programmable-Controllable-Thermostat-Pilot-Program-Evaluation_Part-of-the-Massachusetts-2011-Residential-Retrofit-Low-Income-Program-Area-Study.pdf</u>
- 13) Illinois TRM version 8.0 Volume 3: Residential Measures, effective January 1, 2020. https://ilsag.s3.amazonaws.com/IL-TRM_Effective_01-01-20_v8.0_Vol_3_Res_10-17-19_Final.pdf.
- 3) NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 Residential Baseline Study Weblink.
- 4) Better Duct Systems for Home Heating and Cooling, U.S. Department of Energy. Assuming for an improved duct system with insulation levels at R-8 and leakage at 5% of the system fan flow Weblink

VOLUME 2: ENERGY STARResidential Measures HVAC

- 14)5)
 Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service.

 Formatted: List Paragraph,TT Numbered List Paragraph,Bullet Styles para,TOC etc.,Bulleted List Paragraph,Bullet Styles para,TOC etc.,Bulleted List Paragraph,Space After: 0 pt

 annual climate Normals (2006–2020) (Weblink)

 Formatted: Default Paragraph Font
- 6) Engineering judgement with data referenced from Guidehouse's econometric analysis in optimizing Connected Thermostats placed in the Illinois Statewide Technical Reference Manual. (2023, version 11.0). Weblink
- 7) Navigant Consulting, Inc. for the Illinois Stakeholder Advisory Group. (2016). Illinois Smart Thermostat – Annual and Seasonal kWh Savings – Impact Findings
- 8) EnerNOC for Xcel Energy. (2014). In-Home Smart Devices Pilot Program Impact Evaluation Results, 2012-2013. Weblink
- 9) The Cadmus Group, Inc. for Vectren Corporation. (2015). Evaluation of the 2013–2014 Programmable and Smart Thermostat Program. Weblink
- 10) Apex Analytics LLC for Energy Trust of Oregon. (2016). Energy Trust of Oregon Smart Thermostat Pilot Evaluation. Weblink
- 11) The Cadmus Group, Inc. for The Electric and Gas Program Administrators of Massachusetts. (2012). Wi-Fi Programmable Controllable Thermostat Pilot Program Evaluation. Weblink
- 12) Navigant Consulting, Inc. for the Illinois Stakeholder Advisory Group. (2015). Residential Smart Thermostats: Impact Analysis – Gas Preliminary Findings. Weblink
- 13) Apex Analytics LLC for Energy Trust of Oregon. (2014). Energy Trust of Oregon Nest Thermostat Heat Pump Control Pilot Evaluation. Weblink

Formatted: Indent: Left: 0"

VOLUME Measures 2:

ENERGY STARResidential

HVAC

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
May 2024				

2.2.122.2.13 FURNACE MAINTENANCE

Target Sector	Residential-Establishments
Measure Unit	Per Furnace
Measure Life	23 years ^{Source 1}
Vintage	Retrofit

Regular preventative maintenance of residential furnaces provides numerous potential benefits including increased efficiency, increased comfort, reduced repairs and increased safety. This protocol covers the calculation of energy savings associated with preventative maintenance of a residential furnace.

ELIGIBILITY

The measure requires that an approved technician inspect, clean and adjust the furnace. This service must include the following:

- · Measure combustion efficiency and temperature rise with flue analyzer
- Check and replace filter if necessary
- · Clean burners, pilot and pilot tube, flame baffle, heat exchanger and blower
- Check and adjust gas pressure to manufacturer's recommendation
- Inspect the condition of the heat exchanger(s)
- Check that flue and venting are operating properly
- Check fan belt and replace if necessary
- Inspect wiring for loose connections
- Check for correct line and load voltage and amperage
- Check safety locks for proper operation

The algorithms and savings are valid for servicing once every two years. If serviced more frequently, the energy savings factor (ESF) will need to be re-evaluated.

ALGORITHMS

The annual energy savings are obtained through the following formula. There are no demand savings for this measure.

 $\Delta kWh = kW_{motor} \times EFLH_{heat,non-HP} \times ESF$

DEFINITION OF **T**ERMS

Table 2-53: Terms, Values, and References for Furnace Maintenance

Term	Unit	Values	Source
$kW_{ m motor}$, Average motor full load electric demand	kW	0.377	2
$\textit{EFLH}_{\textit{heat},\textit{non-HP}}$, Equivalent full load heating hours	Hours/year	See <i>EFLH_{heat,non-HP}</i> in Vol. 1, App. A	3
ESF, Energy savings factor	None	2%	4

Formatted: Justified

2: ENERGY STARResidential

Measures HVAC

VOLUME

	Default Savings per in	put kBTU/h for Furnace Mainter	Formatted: Justified
limate Region	Reference City	Energy Savings (kWh per 1 input kBTU/h)	Formatted Table
C	Allentown	6.822	
Α	Binghamton, NY	8.7 <u>82</u>	
G	Bradford	10.2<u>8.98</u>	
I	Erie	7.9 <u>13</u>	
E	Harrisburg	7. 5 <u>.90</u>	
D	Philadelphia	5.7 <u>14</u>	
Н	Pittsburgh	7.1<u>6.68</u>	
В	Scranton	7.5<u>6.84</u>	
F	Williamsport	7.0<u>6.85</u>	
ALUA	TION PROTO	COLS	• Formatted: Left, Don't add space between paragraphs of same style, Line spacing: Multiple 1.2 li
default aluation ificatior I requir	values. For projec protocol is to ver of open variables. ements for evaluati ES-		riate with ines
default aluation ificatior l requir URCI Act on	values. For projec protocol is to ver of open variables. ements for evaluati ES-	ts using customer specific (ify installation and proper The Pennsylvania Evaluatio	riate with ines
default iluation ificatior I requir U R C I Act on Furnad	values. For project protocol is to ver of open variables, ements for evaluati ES Energy Commerci	ts using customer specific - ify installation and proper The Pennsylvania Evaluatio on procedures. al Technical Reference Mar	riate with ines
Jefault Iuation ificatior Frequir Act on Furnad	values. For project protocol is to ver of open variables. ements for evaluati ES Energy Commerci ce Tune-up.	ts using customer specific - ify installation and proper The Pennsylvania Evaluatio on procedures. al Technical Reference Mar	ires Formatted: Normal
default iluation ification I requir D U R C I Act on Furnad	values. For project protocol is to ver of open variables. ements for evaluati ES Energy Commerci ce Tune-up. ATION PROTO projects, the approprivalues. For project	ts using customer specific - ify installation and proper The Pennsylvania Evaluatio on procedures. al Technical Reference Mar <u>COLS</u> priate evaluation protocol is ts using customer specific of	riate with lines Formatted: Normal Ction • Formatted: Normal
default aluation ification I requir OURCI Act on Furnad Act on Furnad	values. For project protocol is to ver of open variables. ements for evaluati ES Energy Commerci ce Tune-up. ATION PROTO projects, the approprivalues. For project protocol is to ver	ts using customer specific- ify installation and proper The Pennsylvania Evaluatio on procedures. al Technical Reference Mar COLS priate evaluation protocol is ts using customer specific of ify installation and proper	riate with ines Formatted: Normal Ction riate with
Act on Furnation Act on Furnation Act on Furnation Most p Jefault luation	values. For project protocol is to ver of open variables. ements for evaluati ES Energy Commerci ce Tune-up. ATION PROTO projects, the approprivalues. For project protocol is to ver	ts using customer specific - ify installation and proper The Pennsylvania Evaluatio on procedures. al Technical Reference Mar cols cols to using customer specific - ify installation and proper The Pennsylvania Evaluatio	riate with ines Formatted: Normal Ction Formatted: Normal riate with
lefault luation fication requir URCI Act on Furnad <u>ALUF</u> lefault luation fication requir	values. For project protocol is to ver of open variables, ements for evaluati ES Energy Commerci ce Tune-up. ATION PROTO projects, the approprivalues. For project protocol is to ver of open variables, ements for evaluati	ts using customer specific - ify installation and proper The Pennsylvania Evaluatio on procedures. al Technical Reference Mar cols cols to using customer specific - ify installation and proper The Pennsylvania Evaluatio	riate with ines Formatted: Normal Ction Formatted: Normal riate with
Act on Furnation Act on Furnation Act on Furnation default aluation ification I requir	values. For project protocol is to ver- of open variables, ements for evaluati ES Energy Commerci- ce Tune-up. ATION PROTO projects, the approp- values. For project protocol is to ver- n of open variables, ements for evaluati	ts using customer specific - ify installation and proper The Pennsylvania Evaluatio on procedures. al Technical Reference Mar cols cols to using customer specific - ify installation and proper The Pennsylvania Evaluatio	riate with ines Formatted: Normal Ction riate with
default aluation ification d requir D U R C I Act on Furnad / A L U A r most p default aluation ification d requir D U R C I Engine Average	values. For project protocol is to ver of open variables, ements for evaluati ES Energy Commerci ce Tune-up. ATION PROTO projects, the appropresent protocol is to ver of open variables, ements for evaluati ES eering judgement b	ts using customer specific - ify installation and proper The Pennsylvania Evaluatio on procedures. al Technical Reference Mar COLS viate evaluation protocol is ts using customer specific - ify installation and proper The Pennsylvania Evaluatio on procedures. ased off other HVAC Tune u pacity for gas furnace (typic	riate with ines Formatted: Normal Ction Formatted: Normal Formatted: Normal
default iluation ification l requir Act on Furnad Act on Furnad Mathematical Mathematical Content Mathematical Mathematica	values. For project protocol is to veri of open variables, ements for evaluati ES Energy Commerci ce Tune-up. ATION PROTO Trojects, the approprivalues. For project protocol is to veri of open variables, ements for evaluati ES eering judgement b ge blower motor ca th 1 HP = 0.7547 k ¹	ts using customer specific - ify installation and proper The Pennsylvania Evaluatio on procedures. al Technical Reference Mar COLS priate evaluation protocol is ts using customer specific - ify installation and proper The Pennsylvania Evaluatio on procedures. ased off other HVAC Tune u pacity for gas furnace (typic W.	to Formatted: Tab stops: 0.25", List tab + Not at 0.5"
Act on Furnace Act on	values. For project protocol is to ver of open variables, ements for evaluati es. Energy Commerci ce Tune-up. ATION PROTO projects, the approprese protocol is to ver of open variables, ements for evaluati Es eering judgement b ge blower motor ca th 1 HP = 0.7547 k ¹ I on the Phase III S e's Donate Your Da	ts using customer specific - ify installation and proper The Pennsylvania Evaluatio on procedures. al Technical Reference Mar <u>COLS</u> <u>priate evaluation protocol is</u> ts using customer specific - ify installation and proper The Pennsylvania Evaluatio on procedures. ased off other HVAC Tune u pacity for gas furnace (typic W. WE team's analysis of regio ata research service, <u>https://</u>	to Formatted: Tab stops: 0.25", List tab + Not at 0.5" Formatted: Tab stops: 0.25", List tab + Not at 0.5" M Formatted: List Paragraph,TT - Numbered List Paragraph,Bullet Styles para,TOC etc.,Bulleted List Paragraph
Act on Furnation Furnation Act on Furnation Act on Furnation Act on Furnation Act on Furnation Act on Furnation Call of Call of Call of Call of Call of Call of Call of Call of Call o	values. For project protocol is to ver of open variables, ements for evaluati ES Energy Commerci ce Tune-up. ATION PROTO projects, the approprivalues. For project protocol is to ver of open variables, ements for evaluati ES eering judgement b ge blower motor ca th 1 HP = 0.7547 k ¹ I on the Phase III S e's Donate Your Da ink) and updated ba	ts using customer specific- ify installation and proper The Pennsylvania Evaluatio on procedures. al Technical Reference Mar cols ts using customer specific of ify installation and proper The Pennsylvania Evaluatio on procedures. ased off other HVAC Tune u pacity for gas furnace (typic W. WE team's analysis of regio ata research service, https:// ased on the latest CDD and	to Formatted: Tab stops: 0.25", List tab + Not at 0.5"
Act on Furnace Act on	values. For project protocol is to veri of open variables, ements for evaluati es Energy Commerci ce Tune-up. ATION PROTO projects, the approprivalues. For project protocol is to veri of open variables, ements for evaluati es ge blower motor ca th 1 HP = 0.7547 k ¹ I on the Phase III S e's Donate Your Da ink) and updated ba I climate Normals (ts using customer specific - ify installation and proper The Pennsylvania Evaluatio on procedures. al Technical Reference Mar <u>COLS</u> <u>priate evaluation protocol is</u> ts using customer specific - ify installation and proper The Pennsylvania Evaluatio on procedures. ased off other HVAC Tune u pacity for gas furnace (typic W. WE team's analysis of regio ata research service, <u>https://</u>	to Formatted: Tab stops: 0.25", List tab + Not at 0.5" Formatted: Tab stops: 0.25", List tab + Not at 0.5" M Formatted: List Paragraph,TT - Numbered List Paragraph,Bullet Styles para,TOC etc.,Bulleted List Paragraph

2.2.14 ENERGY STAR BATHROOM EXHAUST FAN

Target Sector	Residential		
Measure Unit	Exhaust Fan Unit		
Measure Life	15 years ^{Source1}		
Vintage	Replace on Burnout, New Construction		

This measure is for the purchase and installation of a bathroom exhaust fan meeting ENERGY STAR eligibility criteria. The amount of energy savings depends on whether the fan is used for spot ventilation or for continuous mechanical ventilation due to reduced air-infiltration from a tighter building shell. This measure assumes fan capacities between 10 and 200 CFM rated at a sound level of less than 2.0 sones at 0.1 inches of water column static pressure. When claiming savings associated with continuous operation, eligible installations should be sized to provide the mechanical ventilation rate indicated by ASHRAE 62.2.

ELIGIBILITY

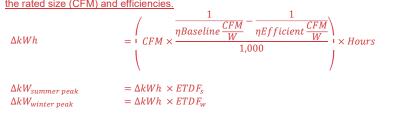

This protocol documents the energy savings attributed to purchasing an exhaust-only bathroom ventilation fan meeting ENERGY STAR eligibility criteria instead of a bathroom ventilation fan that does not meet ENERGY STAR criteria. For continuous ventilation, the fan shall be rated for and providing continuous ventilation in accordance with ASHRAE 62.2.³⁵ ENERGY STAR specifications are provided below. ^{Source 2}

Table 2-55: ENERGY STAR Eligibility Criteria for Bathroom Exhaust Fans

Fan Capacity (CFM)	Minimum Efficacy (CFM/Watt)	<u>Maximum Sound</u> Level (sones)
<u>10-89</u>	<u>2.8</u>	<u>2.0</u>
<u>90-200</u>	<u>3.5</u>	<u>2.0</u>

ALGORITHMS

The energy savings algorithms are shown below. The key variables affecting the energy savings are the rated size (CFM) and efficiencies.

I

VOLUME Measures	2:	ENERGY	STARResidential	
HVAC				Page 84

Formatted: Normal

DEFINITION OF TERMS

Table 2-56: Terms, Values, and References for ENERGY STAR Bathroom Exhaust Fan

Term	<u>Unit</u>	Values	<u>Source</u>
<u>CFM, Fan flow rate</u>	<u>CFM</u>	Table 2	<u>3, 4</u>
Hours, Hours of operation	<u>Hours/year</u>	<u>Continuous = 8.760</u> Spot = EDC Data Gathering or 840	<u>5</u>
<u>ŋBaseline, Baseline fan efficacy</u>	<u>CFM/W</u>	Table 2	<u>4</u>
<u>nEfficient, Efficient fan efficacy</u>	<u>CFM/W</u>	EDC Data Gathering or Table 2	EDC Data Gathering, <u>3, 4</u>
<i>ETDF_s</i> Summer energy to <u>Demand Factor</u>	kW kWh	<u>Continuous = 0.0001142</u> <u>Spot = 0.0001113</u>	<u>6</u>
ETDF _w , Winter energy to Demand Factor	kW kWh	<u>Continuous = 0.0001142</u> <u>Spot = 0.0001790</u>	<u>6</u>

Table 2-57: Assumptions for ENERGY STAR Bathroom Exhaust Fan

Usage Profile	CFM Range	<u>CFM</u>	<u>nBaseline</u>	<u>nEfficient</u>
<u>Spot</u>	<u>≤89</u>	<u>71.3</u>	<u>1.7</u>	<u>5.3</u>
<u>Spot</u>	<u>90-200</u>	<u>115.9</u>	<u>2.7</u>	<u>5.9</u>
<u>Continuous</u>	<u>n/a</u>	<u>43.8</u>	<u>1.8</u>	<u>9.5</u>

DEFAULT SAVINGS

Default savings are as follows, with unknown usage defaulting to spot usage based on fan capacity (CFM):

Table 2-58: Default Bathroom Exhaust Fan Energy Savings

Usage Profile	CFM Range	$\Delta kWh/yr$	$\Delta kW_{summer peak}$	$\Delta k W_{winter peak}$
<u>Spot or</u> <u>Unknown</u>	<u>≤89</u>	<u>23.9</u>	<u>0.0027</u>	<u>0.0043</u>
<u>Spot or</u> <u>Unknown</u>	<u>90-200</u>	<u>19.6</u>	<u>0.0022</u>	<u>0.0035</u>
<u>Continuous</u>	<u>n/a</u>	<u>172.8</u>	<u>0.0197</u>	<u>0.0197</u>

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer-specific data for open variables, the appropriate

VOLUME Measures	2:	ENERGY	STARResidential	
HVAC				

Page 85

.

Formatted: Left, Don't add space between paragraphs of the same style, Line spacing: Multiple 1.2 li

Formatted: Normal

evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures,

SOURCES

- 1) Estimate based on 25 years for whole-house fans and 19 for thermostatically-controlled attic fans from GDS Associates for The New England State Program Working Group. (2007, June). Residential and Commercial/Industrial Lighting and HVAC Measures. Weblink. Limited to PA Act 129 maximum of 15 years.
- 2) U.S. EPA. (2015). ENERGY STAR Program Requirements Product Specification for Residential Ventilating Fans Eligibility Criteria Version 4.2. Weblink
- 3) Guidehouse analysis reviewing average CFM and fan efficacy for ENERGY STAR-rated bathroom ventilation fans at the lowest setting in the 10-200 CFM range. Weblink accessed 2/9/22.
- 4) Guidehouse analysis reviewing average CFM and fan efficacy for units both eligible and ineligible for ENERGY STAR qualification. Weblink accessed 2/9/22.
- 5) Spot operation hours per year are assumed to coincide with lighting HOU for bathrooms (2.3 hours per day * 365.25 days per year). Statewide Evaluation Team for Pennsylvania Public Utilities Commission (2014, January). 2014 Commercial & Residential Light Metering Study. Weblink
- 6) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink

Formatted: Font: Bold, Small caps

VOLUME 2: Measures ENERGY STARResidential

HVAC

State of Pennsylvania <u>May 2024</u>	-	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021	
2.3 DOMESTI 2.3.1 HEAT PUN				4	Formatted: Indent: Left: 0", Hanging: 0.4", Tab stops: Not at 0.5"

VOLUME 2: ENERGY STARResidential Measures

HVAC

2.32.1 DOMESTIC HOT WATER

2.3.12.1.1 HEAT PUMP WATER HEATERS

Target Sector	Residential Establishments
Target Sector	Residential
Measure Unit	Water Heater
Measure Life	10 years ^{Source 1}
Vintage	Replace on Burnout

Heat Pump Water Heaters take heat from the surrounding air and transfer it to the water in the tank, unlike conventional water heaters, which use either gas (or sometimes other fuel) burners or electric resistance heating coils to heat the water.

ELIGIBILITY

This protocol documents the energy savings attributed to heat pump water heaters with Uniform Energy Factors meeting Energy Star Criteria Version 3.2.^{Source 2} The target sector primarily consists of single-family residences.

ALGORITHMS

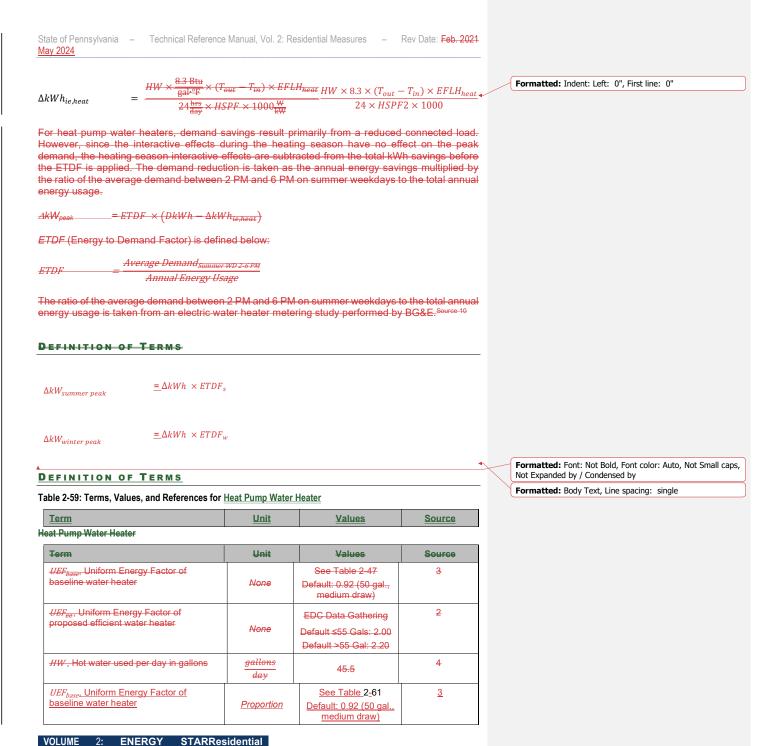
The energy savings calculation utilizes average performance data for available residential heat pump and standard electric resistance water heaters and typical water usage for residential homes. The algorithms take into account interactive effects between the water heater and HVAC system when installed inside conditioned space. The energy savings are obtained through the following formula:

$$\Delta kWh = \frac{\left(\frac{1}{UEF_{base}} - \frac{1}{UEF_{ee} \times F_{dorrate}}\right) \times HW \times 365\frac{days}{yr} \times 8.3\frac{BTU}{gal^{2}F} \times (T_{out} - T_{in})}{3412\frac{BTU}{kWh}} + \frac{1}{\Delta kWh_{ie,cool}} - \frac{1}{UEF_{base}} - \frac{1}{UEF_{ee} \times F_{derate}}\right) \times HW \times 365 \times 8.3 \times (T_{out} - T_{in})}{3412} + \frac{1}{\Delta kWh_{ie,cool}} - \frac{1}{\Delta kWh_{ie,cool}} - \frac{1}{2}$$

Include below interactive effects calculations <u>only when water heater is installed inside conditioned</u> <u>space with electric heating and cooling</u>.

- If either electric heating or electric cooling is absent, then the respective interactive effect will
 equal zero.
- When installed outside of conditioned space, both interactive effects will equal zero, and the
 appropriate F_{derate} in Table 2-48Table 2-62 will account for reduced performance due to cooler
 annual temperatures.
- If installation location is unknown (such as with midstream delivery programs), use the [']Default'<u>Unknown</u>' value for *f_{derate}* in Table 2-62 and both interactive effects will equal zero.

$$\Delta kWh_{ie,cool} = \frac{HW \times \frac{6.5 \text{ BUC}}{\text{gal}^2 F} \times (T_{out} - T_{in}) \times EFLH_{cool}}{24 \frac{\text{Hrs}}{\text{key}} \times SEER \times 1000 \frac{\text{W}}{\text{kW}}} \frac{HW \times 8.3 \times (T_{out} - T_{in}) \times EFLH_{cool}}{24 \times SEER2 \times 1000}$$


VOLUME Measures	2:	ENERGY	STARResidential	
Domestic H	ot Wa	ater		Page 88

Formatted: Indent: Left: 0", Hanging: 0.4", Tab stops: Not at 0.5"

Formatted: Body Text, Space After: 6 pt

Formatted: Body Text, Space After: 6 pt

Field Code Changed

Measures

Domestic Hot Water

<i>UEF_{ee}</i> . Uniform Energy Factor of proposed efficient water heater	<u>Proportion</u>	EDC Data Gathering <u>Default Integrated</u> <u>HPWH: 3.30</u> <u>Default Integrated</u> <u>HPWH. 120 Volt. 15</u> <u>Amp Circuit: 2.20</u> <u>Default Split-system</u> <u>HPWH: 2.20</u>	2	
F _{derate} . <u>COP De-rating factor</u>	<u>Proportion</u>	Table 2-62	<u>9, and</u> <u>discussion</u> <u>below</u>	
HW, Hot water used per day in gallons	gallons day	<u>45.5</u>	<u>5</u>	
V_r , Rated storage volume of baseline water heater	gallons	EDC Data Gathering	EDC Data Gathering	Formatted Table
Tout, Temperature of hot water	°F	119	5 <u>7</u>	
T_{in} , Temperature of cold water supply	°F	52<u>53</u>	<u>68</u>	
F _{derate} , COP De-rating factor EFLH _{cool}	hours Proportion	Table 2-48 <u>See</u> <u>EFLHcool</u> in Vol. 1,	7, and discussion	Formatted: Font: Not Italic
		<u>App. A</u>	below <u>10</u>	Formatted: Font: Arial
EFLH _{coot} EFLH _{heat} , Equivalent Full Load Hours for coolingheating	$\frac{hours}{yr}$	See <u>EFLH_{cool}EFLH_{heat}</u> in Vol. 1, App. A	8 <u>10</u>	
EFLH _{neat} , Equivalent Full Load Hours for heating <u>HSPF2</u> , <u>Heating Seasonal</u> <u>Performance Factor of heating</u> <u>equipment</u>	$\frac{BTU}{W \cdot h} \frac{hours}{yr}$	See EFLH _{heat} in Vol. 1, App. AEDC Data Gathering Default see Table 2-60	8 <u>6</u>	
		EDC Data Gathering	9 6	
HSPF, Heating <u>SEER2</u> , Seasonal Performance FactorEnergy Efficiency Ratio of heatingcooling equipment	$\frac{BTU}{W \cdot h}$	Default see Table 2-45Table 2-60	9 <u>0</u>	
Performance FactorEnergy Efficiency		Default see Table	9 <u>11</u>	
Performance FactorEnergy Efficiency <u>Ratio</u> of heatingcooling equipment <u>SEER</u> , Seasonal Energy Efficiency Ratio of cooling equipmentETDF _{s1} Summer	W · h	Default see Table 2-45Table 2-60 EDC Data Gathering Default see Table	_	Formatted: Font: Not Italic Formatted: Font: Cambria Math

Table 2-60: Default Cooling and Heating System Efficiencies

Туре	SEERSEER2	HSPF <u>HSPF2</u>
Central Air Conditioner	12.1<u>13.2</u>	N/A
Room Air Conditioner Room Air Conditioner	<u>10.6ª</u> 11.4	N/A

VOLUME Measures ENERGY STARResidential

Domestic Hot Water

2:

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
May 2024				

Air-Source Heat Pump	13.5<u>14.1</u>	8 <u>7</u> .2
Ground- Source Heat Pump	15.0<u>18.5</u>	10. <mark>98</mark>
Ductless Mini- Split	<u>14.917.6</u>	8. <u>96</u>
Electric Resistance	N/A	3.412

^aCEER

Table 2-61: Minimum Baseline Uniform Energy Factors Based on Rated Storage Volume and Draw Pattern

The current Federal Standards for electric water heater Uniform Energy Factors (UEF) vary based on rated storage volume and draw pattern. This standard, which went into effect at the end of 2016, replaces the old federal standard equal to 0.96-(0.0003×Rated Storage in Gallons) for tanks equal to or smaller than 55 gallons and 2.057 – (0.00113×Rated Storage) for tanks larger than 55 gallons. Table 2-47 shows the formulas to calculate the minimum UEF for various tanks sizes using both the new standard with draw patterns, and the pre-draw pattern standard, which will likely be more common in replacements through 2021. Pre-calculated UEF values are provided for common tank sizes. Draw patterns are defined in the Federal Standard test procedures for water heaters as illustrated in Table 2-46. Source 12

Formatted: Caption, Table Caption, Footnotes, No widow/orphan control

Table 2-48: Draw Pattern Definitions

Type <u>Rated</u> Storage Volume (gallons)	Draw Pattern		Max. Daily Hot Water Draw (gallons)UEF Calculation	First Hour Rating (FHR) (gallons)
Storage>=20 gal	Very Small	<mark>_10</mark>	0 <= FHR < 18<u>0.8808-(0.0008</u>×V_r)	
<u>and <=55 gal</u>	Low		38 <u>0.9254-</u> (0.0003×V _r)	<u>,18 <= FHR < 51</u> .
	Medium		<u>550.9307-</u> (0.0002×V _r)	51 <= FHR < 75
	High		84 <u>0.9349-</u> (0.0001×V _r)	FHR >= 75
<u>>55 gal and <=120</u>	Very Small		<u>1.9236-(0.0011×V_r)</u>	
gal	Low		<u>2.0440-(0.0011×Vr)</u>	
	Medium		<u>2.1171-(0.0011×V_r)</u>	
	High		<u>2.2418-(0.0011×Vr)</u>	

Deleted Cells

Deleted Cells Formatted Table

Deleted Cells
Formatted: TableCell, Space Before: 3 pt, After: 3 pt, No widow/orphan control
Formatted: TableCell, Centered, Space Before: 3 pt, After: 3 pt, No widow/orphan control
Formatted: TableCell, Space Before: 3 pt, After: 3 pt, No widow/orphan control
Deleted Cells
Formatted: TableCell, Centered, Space Before: 3 pt, After: 3 pt, No widow/orphan control
Formatted: TableCell, Space Before: 3 pt, After: 3 pt, No widow/orphan control
Formatted: TableCell, Centered, Space Before: 3 pt, After: 3 pt, No widow/orphan control
Formatted: TableCell, Space Before: 3 pt, After: 3 pt, No widow/orphan control
Formatted: TableCell, Centered, Space Before: 3 pt, After: 3 pt, No widow/orphan control
Formatted: TableCell, Space Before: 3 pt, After: 3 pt, No widow/orphan control

Table 2-49: Minimum Baseline Uniform Energy Factors Based on Rated Storage Volume and Draw Pattern

Rated Storage Volume (gallons)	Draw Pattern	UEF Calculation	Minimum UEF
>=20 gal and <=55 gal	Pre-2017	0.9600-(0.0003×V⊧)	
	Very Small	0.8808-(0.0008×V⊧)	
	Low	0.9254-(0.0003×V⊧)	

VOLUME 2: ENERGY **STARResidential**

Measures Domestic Hot Water

Rated Storage Volume (gallons)	Draw Pattern	UEF Calculation	Minimum UEF
	Medium	0.9307-(0.0002×V _F)	
	High	0.9349-(0.0001×V₁)	
≻ 55 gal and <=120 gal	Pre-2017	0.9600-(0.0003×V ⊧)	
	Very Small	0.8808-(0.0008×V _r)	
	Low	0.9254-(0.0003×V⊧)	
	Medium	0.9307-(0.0002×V⊧)	
	High	0.9349-(0.0001×V _r)	
40	Pre-2017	0.9600-(0.0003×V_r)	0.95
	Very Small	0.8808-(0.0008×V _r)	0.85
	Low	0.9254-(0.0003×V _F)	0.91
	Medium	0.9307-(0.0002×V_r)	0.92
	High	0.9349-(0.0001×V _F)	0.93
50	Pre-2017	0.9600-(0.0003×V⊧)	0.95
	Very Small	0.8808-(0.0008×V _F)	0.84
	Low	0.9254-(0.0003×V⊧)	0.91
	Medium	0.9307-(0.0002×V₁)	0.92
	High	0.9349-(0.0001×V⊧)	0.93
65	Pre-2017	2.057-(0.00113×V₁)	1.98
	Very Small	1.9236-(0.0011×V⊧)	1.85
	Low	2.0440-(0.0011×V_F)	1.97
	Medium	2.1171-(0.0011×V₁)	2.05
	High	2.2418-(0.0011×V⊧)	2.17
80	Pre-2017	2.057-(0.00113×V_r)	1.97
	Very Small	1.9236-(0.0011×V⊧)	1.84
	Low	2.0440-(0.0011×V_F)	1.96
	Medium	2.1171-(0.0011×V ⊧)	2.03
	High	2.2418-(0.0011×V⊧)	2.15
120	Pre-2017	2.057-(0.00113×V⊧)	1.92
	Very Small	1.9236-(0.0011×V⊧)	1.79
	Low	2.0440-(0.0011×V⊧)	1.91
	Medium	2.1171-(0.0011×V_F)	1.99
	High	2.2418-(0.0011×V⊧)	2.11

HEAT PUMP WATER HEATER UEF DE-RATING FACTOR

The Uniform Energy Factors (UEF) are determined from a DOE testing procedure that is carried out at 67.5°F dry bulb and 56°F wet bulb temperatures. However, the average dry and wet bulb

Domestic Hot Water

temperatures in PA are in the range of 50-56°F DB and 45-50 °F WB³⁶. The heat pump performance is temperature and humidity dependent, therefortherefore the location and type of installation is significant. To account for this, a UEF de-rating factor (*F_{derate}*) has been adapted from a 2013 NEEA HPWH field study.^{Source 74} The results used are for "Heating Zone 1", which is comprised of Olympia, WA and Portland, OR and have average dry and wet bulb temperatures (51°F DB, 47°F WB and 55°F DB, 49°F WB, respectively)³⁷ comparable to Pennsylvania. <u>Average temperatures are based on average weather data from weatherbase.com for the climate reference cities referenced elsewhere in this TRM.</u>

Table 2-62: UEF De-rating Factor for Various Installation Locations

Installation Location	F _{derate} ³⁸
Inside Conditioned Space	0.98
Unconditioned Garage	0.85
Unconditioned Basement	0.72
Default ³⁹ Unknown Source 4	0.87

DEFAULT SAVINGS

Default savings for the installation of heat pump water heaters not located inside conditioned space or for which installation location is unknown are calculated using the formulasprovided below.

$\Delta kWh =$	(-1)	1	V 2706 75	
	\ UEF_{base}	$\frac{UEF_{ee} \times F_{derate}}{VEF_{ee} \times F_{derate}}$	× 2700.75	₽₽
∧ <i>Ŀ</i> ₩ –	<u>∆k₩h</u>			
$\Delta kW_{peak} =$	12426.83-	:Wh kW		

³⁹ Weighted average of values for water heater locations for all space heating fuel types in Table 107 of Northwest Energy Efficiency Alliance 2011 Residential Building Stock Assessment: Single Family Characteristics and Energy Use. Published September 18, 2012. Online at https://neea.org/resources/2011-rbsa-single-family-characteristics-and-energy-use

Page 93

Domestic Hot Water

³⁶ Based on average weather data from weatherbase.com for the climate reference cities referenced elsewhere in this TRM

³⁷-Ibid

³⁸ Calculated by dividing the COP in each location from Figure 15 by the rated Energy Factor (2.35) of the unit tested in the study (AirGenerate ATI66).

Installation Location	Efficient Water Heater Type	<u>AkWh</u>	∆kW _{summer peak}	∆kWwinter peak
	Integrated HPWH	<u>1,948</u>	<u>0.2058652</u>	<u>0.3429788</u>
<u>Unconditioned</u> <u>Garage</u>	Integrated HPWH, 120 Volt 15 Amp Circuit	<u>1,472</u>	<u>0.1556275</u>	<u>0.2592811</u>
	Split-system HPWH	<u>1,472</u>	<u>0.1556275</u>	<u>0.2592811</u>
	Integrated HPWH	<u>1,776</u>	<u>0.1877238</u>	<u>0.3127546</u>
Unconditioned Basement	Integrated HPWH, 120 Volt 15 Amp Circuit	<u>1,215</u>	<u>0.1284155</u>	<u>0.2139448</u>
	Split-system HPWH	<u>1,215</u>	<u>0.1284155</u>	<u>0.2139448</u>
<u>Unknown</u>	Integrated HPWH	<u>1,969</u>	<u>0.2081750</u>	<u>0.3468270</u>
	Integrated HPWH, 120 Volt 15 Amp Circuit	<u>1,505</u>	<u>0.1590922</u>	<u>0.2650533</u>
	Split-system HPWH	<u>1,505</u>	<u>0.1590922</u>	<u>0.2650533</u>

Table 2-63: Default Savings for Heat Pump Water Heaters Located in Unconditioned or Unknown Space

EVALUATION PROTOCOLS

The most appropriate evaluation protocol for this measure is verification of installation coupled with calculation of energy and demand savings using above algorithms.

SOURCES

- California Public Utilities Commission Database for Energy Efficient Resources (DEER) EUL Support Table for 2020, http://www.deeresources.com/files/DEER2020/download/SupportTable-EUL2020.xlsx. Accessed December 2018.
- 1) California Electronic Technical Reference Manual. "Heat Pump Water Heater, Residential". Accessed January 2024. Weblink
- 2)—ENERGY STAR (2023). Program Requirements for Residential Water Heaters. <u>https://www.energystar.gov/sites/default/files/Water%20Heaters%20Final%20Version%203.2</u> <u>Program%20Requirements.pdf</u>
- 3)2) Version 5.0. U.S. Federal Standards for Residential Water Heaters. Effective April 16, 2015. https://www.ecfr.gov/cgi-bin/retrieveECFR?n=sp10.3.430.c&r=SUBPART-EPA. Weblink
- 3) <u>"Residential End Uses of Water, Version 2." Water Research Foundation. (Apr 2016), p. 5. 10</u> CFR 430.32(d). Weblink.
- 4) NEEA. (2019, April) "Residential Building Stock Assessment II: Single-Family Homes Report." Pg 73, table 113. Weblink
- 4) <u>Water Research Foundation. (https://www.circleofblue.org/wpcontent/uploads/2016/04/WRF_REU2016.pdf</u>
- 5) Pennsylvania Act 129 2018 Residential Baseline Study, http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3_Res_Baseline_Study_Rpt021219.pdf.
- 5) 2016). Residential End Uses of Water, Version 2. Pg 5. Weblink

Domestic Hot Water

Page 94

Formatted: Font: Not Italic

- 6) NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023
 Pennsylvania Statewide Act 129 Residential Baseline Study. Pg 115, table 97, pg, 120, table
 103. Weblink . Air source heat pump and ductless mini-split efficiencies calculated using
 2023 Pennsylvania Residential Baseline Study data. Federal minimum efficiencies for GSHP
 due to small sample size for GSHP in baseline study.
- 7) Pennsylvania Act 129 2014 Residential Baseline Study. Section 4.6.1, pg 60, Table 4-64. Weblink
- 6)8)Using Rock Spring, PA (Site 2036) as a proxy, the mean of-soil temperature at 40-inch depth is 51.86152.502. Calculated using Daily SCAN Standard - Period of Record data from April 1999December 2003 to December 20182023 from the Natural Resource Conservation Service Database.

https://wcc.sc.egov.usda.gov/nwcc/rgrpt?report=daily_scan_por&state=PAWeblink. Methodology follows Missouri TRM 2017 Volume 2: Commercial and Industrial Measures. p-(2017, March). "2.6.1 Water Heater". Pg 78. https://energy.mo.gov/sites/energy/files/MOTRM2017Volume2.pdfWeblink

7)9)NEEA Heat Pump Water Heater Field Study Report. Prepared by Fluid Market Strategies, 2013. https://rpsc.energy.gov/tech-

solutions/sites/default/files/attachments/NEEA_HPWH_Field-Study-Report_October-2013.pdfFluid Market Strategies for NEEA. (2013, October). NEEA Heat Pump Water Heater Field Study Report. Weblink Values for Fderate are calculated by dividing the COP in each location from Figure 15 by the rated Energy Factor (2.35) of the unit tested in the study (AirGenerate ATI66). (Note: when this source discusses "ducted" versus "non-ducted" systems it refers to the water heater's heat pump exhaust, not to the HVAC ducts.)

- 8)10) Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service. Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service. https://www.ecobee.com/donateyourdata/Weblink
- 9) Pennsylvania Act 129 2018 Residential Baseline Study, <u>http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-</u> <u>Phase3_Res_Baseline_Study_Rpt021219.pdf.</u> Due to small sample size for GSHP in Pennsylvania Act 129 2018 Residential Baseline Study this value is lowest efficiency value from BEopt v2.8.0.
- 10) Straub, Mary and Switzer, Sheldon. "Using Available Information for Efficient Evaluation of Demand Side Management Programs". Study by BG&E. The Electricity Journal, Aug/Sept. 2011. p. 95. http://www.sciencedirect.com/science/article/pii/S1040619011001941
- 11) ENERGY STAR Product Specifications for Residential Water Heaters Version 3.0. Effective April 15, 2016. http://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Water%20Heaters%20V ersion%203%200%20Program%20Requirements_0.pdf
- 12) U.S. Federal-Standard Uniform Test Method for Measuring the Energy Consumption of Water Heaters. Effective December 15, 2015. <u>https://www.ecfr.gov/cgi-bin/text-</u> idx?SID=80dfa785ea350ebeee184bb0ae03e7f0&mc=true&node=ap10.3.430_127.e&rgn=div 9
- 11) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink

ENERGY STARResidential

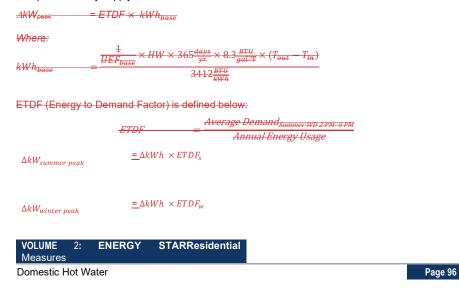
Domestic Hot Water

2.3.2 SOLAR WATER HEATERS

Target Sector Residential Establishments		
Target Sector	Residential	
Measure Unit	Water Heater	
Measure Life	15 years ^{Source 1}	
Vintage	Retrofit	

Solar water heaters utilize solar energy to heat water, which reduces electricity required to heat water.

ELIGIBILITY


This protocol documents the energy savings attributed to solar water in PA. The target sector is single-family residences with an existing <u>eletricelectric</u> water heater.

ALGORITHMS

The energy savings calculation utilizes average performance data for available residential solar and standard water heaters and typical water usage for residential homes. The energy savings are obtained through the following formula:

 $\Delta kWh = \frac{\left(\frac{1}{UEF_{base}} - \frac{1}{UEF_{ee}}\right) \times HW \times 365^{\frac{days}{yr}} \times 8.3^{\frac{BTU}{gal \simeq 1}} \times (T_{out} - T_{in})}{3412^{\frac{BTU}{EWh}}} \left(\frac{1}{UEF_{base}} - \frac{1}{UEF_{ee}}\right) \times HW \times 365 \times 8.3 \times (T_{out} - T_{in})}{3412}$

The demand reduction is taken as the annual energy usage of the *baseline* water heater multiplied by the ratio of the average demand between 2PM and 6PM on summer weekdays to the total annual energy usage. Note that this is a different formulation than the demand savings calculations for other water heaters. This modification of the formula reflects the fact that a solar water heater's capacity is subject to seasonal variation, and that during the peak summer season, the water heater is expected to fully supply all domestic hot water needs.

State of Pennsylvania – Technical Reference Manual, Vol. 2: Residential Measures – May 2024	– Rev Date: Feb. 2021	
<u>۸</u>	Formatted: Font: Arial, 10 pt, Italic	
The ratio of the average demand between 2 PM and 6 PM on summer weekda		: 1.5",

VOLUME 2: ENERGY STARResidential Measures

Domestic Hot Water

DEFINITION OF TERMS

Table 2-64: Terms, Values, and References for Solar Water Heater

Term	Unit	Values	Source	
UEFbase, Uniform Energy Factor of baseline		EDC Data Gathering	EDC	Formatted: Font: Cambria Math
electric water heater	Proportion		Data Gathering	
		Default = 0. 90<u>92</u>	4 <u>3</u>	
UEFee, Year-round average Uniform Energy		EDC Data Gathering	EDC	Formatted: Font: Cambria Math
Factor of proposed solar water heater	Proportion		Data Gathering	
		Default = 2.62	2	
HW, Hot water used per day in gallons	gallons	45.5	<u>54</u>	Formatted: Font: Cambria Math
	day			Formatted: Not Highlight
<i>Toute</i> Temperature of hot water	°F	119	<u>65</u>	Formatted: Font: Cambria Math
<i>T_{in}</i> , Temperature of cold water supply	°F	52 53	7 <u>6</u>	Formatted: Font: Cambria Math, Italic
ETDF, ETDFs, Summer Energy to Demand	₩ kW	0.000080470001057	3 <u>7</u>	Formatted: Font: Cambria Math
Factor (defined above)	kwh/yr kwh			Formatted Table
ETDF _w , Winter Energy to Demand Factor	$\frac{kW}{kWh}$	<u>0.0001761</u>	<u>7</u>	

DEFAULT SAVINGS

Default energy and demand savings are as follows:

∆kWh = 1,974.4<u>1880.5</u> kWh

 $\underline{AkW}\underline{AkWsummer peak} = 0.2420\underline{1988} \text{ kW}$

 $\Delta kW_{winter peak} = 0.3312 \text{ kW}$

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

1) California Electronic Technical Reference Manual. "Solar Thermal Water Heating System, Residential". Accessed Jan 2024. Weblink

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

Domestic Hot Water

Page	98
------	----

Formatted: Font: Cambria Math, Italic

Formatted: Caption, Table Caption, Footnotes

Formatted: Normal

Formatted: SubStyle

SOURCES

- 1) ENERGY STAR Solar Water Heater Benefits and Savings. Accessed 8/8/2014. http://www.energystar.gov/index.cfm?c=solar_wheat.pr_savings_benefits
- The average energy factor for all solar water heaters with collector areas of 50 ft² or smaller is from <u>https://secure.solar-</u>

rating.org/Certification/Ratings/RatingsSummaryPage.aspxWeblink

- Straub, Mary and Switzer, Sheldon. "Using Available Information for Efficient Evaluation of Demand Side Management Programs". Study by BG&E. The Electricity Journal, Aug/Sept. 2011. p. 95. <u>http://www.sciencedirect.com/science/article/pii/S1040619011001941</u>
- 4)3) Value is mean UEF for standard electric standalone water heaters from Pennsylvania Act 129 20182023 Residential Baseline Study, <u>http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3_Res_Baseline_Study_Rpt021219.pdfWeblink</u>.
- 5) Residential Energy Consumption Survey, EIA, 2009.
- 6) Pennsylvania Statewide Residential End-Use and Saturation Study, 2014, http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-2014 PA Statewide Act129 Residential Baseline Study.pdf.
- 4) Water Research Foundation. (2016). Residential End Uses of Water, Version 2. Pg 5. Weblink
- 5) Pennsylvania Act 129 2014 Residential Baseline Study. Section 4.6.1, pg 60, table 4-64. Weblink
- 7)—Using Rock Spring, PA (Site 2036) as a proxy, the mean of soil temperature at 40_inch depth is 51.86152.502. Calculated using Daily SCAN Standard - Period of Record data from April 1999December 2003 to December 20182023 from the Natural Resource Conservation Service Database.

https://wcc.sc.egov.usda.gov/nwcc/rgrpt?report=daily_scan_por&state=PAWeblink__ Methodology follows Missouri TRM 2017 Volume 2: Commercial and Industrial Measures. p. 78. https://energy.mo.gov/sites/energy/files/MOTRM2017Volume2.pdf

VOLUME 2: Measures ENERGY STARResidential

Domestic Hot Water

- 2.3.36)Fuel Switching: Electric Resistance to Fossil Fuel(2017, March). "2.6.1 Water Heater". Pg * 78. Weblink
- 7) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink

Formatted: source 1, Indent: Left: 0", Space After: 6 pt, Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Indent at: 0.5"

Formatted: Hyperlink

VOLUME 2: Measures ENERGY STARResidential

Domestic Hot Water

2.3.3 WATER HEATER TANK WRAP

Target Sector	Residential	
Measure Unit	Water HeaterTank	
Measure Life	Gas:117, years ^{Source †} Propane: 11 years ^{Source 18}	
Vintage	Replace on Burnout	

ELIGIBILITY

This protocol documents the energy savings attributed to converting from a standard electric resistance water heater to an ENERGY STAR Version 3.2 natural gas or propane water heater. If a customer submits a rebate for a product that has applied for ENERGY STAR Certification but has not yet been certified, the savings will be counted for that product contingent upon its eventual certification as an ENERGY STAR measure. If at any point the product is rejected by ENERGY STAR, the product is then ineligible for the program and savings will not be counted.

The target sector primarily consists of single-family residences.

ALGORITHMS

The energy savings calculation utilizes average performance data for available residential standard electric and fossil fuel-fired water heaters and typical water usage for residential homes. Because there is little electric energy associated with a fossil fuel-fired water heater, the energy savings are the full energy utilization of the electric water heater. The energy savings are obtained through the following formula:

$$\frac{1}{\text{DkWh}} = \frac{\frac{1}{\text{UEF}_{base,elec}} \times HW \times 365 \frac{\text{days}}{\text{yr}} \times 8.3 \frac{BTU}{gal^{2p}} \times (T_{out} - T_{m})}{3412 \frac{BTU}{\text{kWh}}}$$

Although there is a significant electric savings, there is an associated increase in fossil fuel energy consumption. While this fossil fuel consumption does not count against PA Act 129 energy savings, it is expected to be used in the program TRC test. The increased fossil fuel usage is obtained through the following formula:

$$DMMBTU = \frac{\frac{1}{UEF_{installed}} \times HW \times 365 \frac{\text{days}}{\text{yr}} \times 8.3 \frac{BTU}{\text{grave}} \times (T_{out} - T_{in})}{\frac{BTU}{1,000,000} \frac{BTU}{\text{MMBTU}}}$$

Demand savings result from the removal of the connected load of the electric water heater. The demand reduction is taken as the annual energy savings multiplied by the ratio of the average energy usage between 2 PM and 6 PM on summer weekdays to the total annual energy usage.

 $\underline{AkW_{peak}} = \underline{ETDF} \times \underline{AkWh}$

ETDF (Energy to Demand Factor) is defined below:

ETDF _____Average Demand_{Summer WD-2PM-6-PM} Annual Energy Usage

VOLUME 2: ENERGY STARResidential Measures

Domestic Hot Water

Formatted: Font color: Auto
Formatted: Font: 9 pt
Formatted: Font color: Auto
Formatted: Font: 9 pt, Not Italic
Formatted: Justified
Formatted Table
Formatted: Font color: Auto
Formatted: Font: 9 pt
Formatted: Font: 9 pt, Not Italic
Formatted: Justified
Formatted: Font color: Auto
Formatted: Font color: Auto
Formatted: Font: 9 pt
Formatted: Justified
Formatted: Font color: Auto
Formatted: Font: Not Bold, No underline
Formatted: Body Text, Space After: 0 pt
,

The ratio of the average energy usage between 2 PM and 6 PM on summer weekdays to the total annual energy usage is taken from an electric water heater metering study performed by BG&E.^{Source-7}

DEFINITION OF TERMS

Table 2-52: Terms, Values, and References for Fuel Switching: Electric Resistance to Fossil Fuel Water Heater

Term	Unit	Values	Source
UEF _{base,elec} , <u>Uniform Energy Factor of baseline</u> water heater	Proportion	EDC Data Gathering Default: Table 2-47 in the Heat Pump Water Heaters section	2
UEF _{installed, NG} , Uniform Energy Factor of installed natural gas water heater	Proportion	EDC-Data Gathering Default: ≤55 Gallons= 0.67 >55 Gallons= 0.77	3
UEF _{installed,Propane} , Uniform Energy Factor of installed propane water heater	Proportion	EDC-Data Gathering Default: ≤55 Gallons= 0.67 >55 Gallons= 0.77	3
UEFinstalled,Tankless-Water-Heater-, Uniform Energy Factor of installed tankless water heater	Proportion	EDC Data Gathering Default: 0.90	3
HW , Hot water used per day in gallons	gallons day	4 5.5	4
Fout, Temperature of hot water	÷F	119	5
Fin, Temperature of cold water supply	÷	52	6
ETDF , Energy to Demand Factor (defined above)	kW kWh/yr	0.00008047	7

UNIFORM ENERGY FACTORS BASED ON RATED STORAGE VOLUME AND Draw Pattern

The current Federal Standards for electric water heater Uniform Energy Factors (UEF) vary based on rated storage volume and draw pattern. This standard, which went into effect at the end of 2016, replaces the old federal standard equal to 0.96-(0.0003×Rated Storage in Gallons) for tanks equal to or smaller than 55 gallons and 2.057 – (0.00113×Rated Storage) for tanks larger than 55 gallons. Table 2-47 in the Heat Pump Water Heaters section shows the UEF for various tanks sizes using both the new standard with draw patterns, and the pre-draw pattern standard, which will likely be more common in replacements through 2021.

DEFAULT SAVINGS

The electric savings for the installation of a fossil fuel water heater should be calculated using the partially deemed algorithm below.

STARResidential

Domestic Hot Water

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Residential Measures	-	Rev Date: Feb. 2021
May 2024				

	$\frac{1}{UEF_{base-etec}} \times HW \times 365 \frac{\text{days}}{\text{yr}} \times 8.3 \frac{\text{BTU}}{\text{gal}^{\text{T}}} \times (T_{out} - T_{in})$
ΔkWh	UEF base, elec YT VIII galer (1 out 1 in)
urw n	3412 BTU
∆kW _{neak}	$=$ ETDF $\times \Delta kWh$

The default savings for the installation of a 50 gallon natural gas/propane water heater in place of a standard electric water heater are listed in Table 2-51, below.

Table 2-53: Energy Savings & Demand Reductions for Fuel Switching, Domestic Hot Water Electric to Fossil Fuel

Electric unit UEF	Energy Savings (kWh/yr)	Demand Reduction (kW)
0.92	2,938.9	0.2365

The default fossil fuel consumption for the installation of a standard efficiency natural gas/propane water heater in place of a standard electric water heater is listed in Table 2-52 below.

Table 2-54: Fuel Consumption for Fuel Switching, Domestic Hot Water Electric to Fossil Fuel

Fuel Type	UEF	Fossil Fuel Consumption (MMBTU/yr)
Gas	0.67	13.78
Propane	0.67	13.78

Note: 10.87 gallons of propane provide 1 MMBTU of heat.

EVALUATION PROTOCOLS

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings.

SOURCES

- 1) DEER Effective Useful Life values, accessed Oct. 2018. <u>http://www.deeresources.com/</u>
- 2) U.S. Federal Standards for Residential Water Heaters. Effective April 16, 2015. http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/27
- 3) Commission Order requires fuel switching to ENERGY STAR measures, not standard efficiency measures. The Energy Factor has therefore been updated to reflect the Energy Star 3.2 standard for Gas-Storage Water Heaters From Residential Water Heaters Key Product Criteria.

https://www.energystar.gov/sites/default/files/Water%20Heaters%20Final%20Version%203.2 <u>Program%20Requirements</u>1.pdf Accessed Oct. 2018. For the Commission Order see p. 42 of the TRC Final Test Order.

- 4) "Residential End Uses of Water, Version 2." *Water Research Foundation*. (Apr 2016), p. 5. https://www.circleofblue.org/wp-content/uploads/2016/04/WRF_REU2016.pdf
- 5) Pennsylvania Statewide Residential End-Use and Saturation Study, 2014, http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-2014_PA_Statewide_Act129_Residential_Baseline_Study.pdf.
- 6) Using Rock Spring, PA (Site 2036) as a proxy, the mean of soil temperature at 40 inch depth is 51.861. Calculated using Daily SCAN Standard Period of Record data from April 1999 to

Domestic Hot Water

P	ag	е	1	03	

December 2018 from the Natural Resource Conservation Service Database. <u>https://wcc.sc.egov.usda.gov/nwcc/rgrpt?report=daily_scan_por&state=PA</u>. Methodology follows Missouri TRM 2017 Volume 2: Commercial and Industrial Measures. p. 78. <u>https://energy.mo.gov/sites/energy/files/MOTRM2017Volume2.pdf</u>

7) Straub, Mary and Switzer, Sheldon. "Using Available Information for Efficient Evaluation of Demand Side Management Programs". Study by BG&E. The Electricity Journal. Aug/Sept, 2011. p. 95. <u>http://www.sciencedirect.com/science/article/pii/S1040619011001941</u>

VOLUME 2: Measures ENERGY STARResidential

Domestic Hot Water

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
May 2024				

2.3.4 WATER HEATER TANK WRAP

Target Sector	Residential
Measure Unit	Tank
Measure Life	7 years ^{Source 5}
Vintage	Retrofit

This measure applies to the installation of an insulated tank wrap or "blanket" to existing residential electric hot water heaters.

The base case for this measure is a standard residential, tank-style, electric water heater with no external insulation wrap.

ELIGIBILITY

This measure documents the energy savings attributed to installing an insulating tank wrap on an existing electric resistance water heater. The target sector is residential.

The U.S. Department of Energy recommends adding a water heater wrap of at least R-8 to any water heater with an existing R-value less than R-24. Source 67

ALGORITHMS

The annual energy savings for this measure are assumed to be dependent upon decreases in the overall heat transfer coefficient that are achieved by increasing the total R-value of the tank insulation.

 ft^2

$\Delta kWh = \frac{HOU}{3412\frac{BTU}{kWh} \times \eta_{Etec}} \frac{HOU}{3412 \times \eta_{etec}} \frac{3412 \times \eta_{etec}}{3412 \times \eta_{etec}}$	$\frac{A_{base}}{R_{base}} - \frac{A_{ins}}{R_{ins}}$	$\left(T_{setpoint} - T_{ambi} \right) \times \left(T_{setpoint} - T_{ambi} \right)$	ent)	Formatted: Font: 10 pt
$\frac{AkW_{peak}}{HOU} \approx CF$				
$\Delta kW_{summer \ peak} = \Delta kWh \times ETDF_s$				
$\Delta k W_{winter \ peak}$ = $\Delta k W h \times ETDF_{w}$				
DEFINITION OF TERMS				
Table 2-65: Terms, Values, and References for Wat	er Heater Tank Wra	p		
Term	Unit	Value	Source	
Term <u>HOU</u> , Annual hours of use for water heater tank	Unit hours year	Value <u>8,760</u>	Source	
HOU, Annual hours of use for water heater	hours		<u>Source</u> <u>-</u> <u>3</u>	
<u>HOU</u> , Annual hours of use for water heater tank η_{Elec} , Thermal efficiency of electric heater	hours year	<u>8,760</u>	-	Formatted: Font: Cambria Math

See Table 2-66

VOLUME 2: ENERGY STARResidential

Abase, Surface area of storage tank prior to

Measures Domestic Hot Water

adding tank wrap

Page 105

Formatted: Normal

Formatted: Normal

Formatted: Font: Cambria Math

Term	Unit	Value	Source
<i>A</i> _{<i>insul</i>} , Surface area of storage tank after addition of tank wrap	ft ²	See Table 2-66	=
η _{Elec-} , Thermal efficiency of electric heater element	Proportion	0.98	3
Tsetpoint, Temperature of hot water in tank	°F	119	4
Tambient, Temperature of ambient air	°F	70	4 <u>5</u>
HOU , Annual hours of use for water heater tank <u>ETDFs</u> , Summer Energy to Demand Factor	Hours/yr ^{kW} kWh	8 ,760 0.0001046	<u>8</u>
<i>CF</i> —, <u>ETDF</u> _W , <u>Winter Energy to</u> Demand Coincidence Factor	Proportion kW kWh	1. 0 <u>.0001755</u>	<u>8</u>

Table 2-66: Deemed savingsDefault Savings by water heater capacityWater Heater Capacity

Capacity (gal)	R _{base}	Rinsul	A _{base} (ft ²) ⁴⁹	A _{insul} (ft ²) ⁴¹	ΔkWh	<mark>AkW∆kW_{summer}</mark> peak	▲ <u> </u>
30	8	16	19.16	20.94	139.4	0. 0159<u>0145</u>	<u>0.0244</u>
30	10	18	19.16	20.94	96.6	0. 0110<u>0101</u>	<u>0.0170</u>
30	12	20	19.16	20.94	70.6	0. 0081<u>0074</u>	<u>0.0124</u>
30	8	18	19.16	20.94	158.1	0. 0180<u>0165</u>	<u>0.0277</u>
30	10	20	19.16	20.94	111.6	0. 0127<u>0117</u>	<u>0.0196</u>
30	12	22	19.16	20.94	82.8	0. 0094<u>0087</u>	<u>0.0145</u>
40	8	16	23.18	25.31	168.9	0. 0193<u>0177</u>	<u>0.0296</u>
40	10	18	23.18	25.31	117.1	0. 0134<u>0122</u>	<u>0.0205</u>
40	12	20	23.18	25.31	85.5	0. <u>00980089</u>	<u>0.0150</u>
40	8	18	23.18	25.31	191.5	0. 0219<u>0200</u>	<u>0.0336</u>
40	10	20	23.18	25.31	135.1	0. 0154<u>0141</u>	<u>0.0237</u>
40	12	22	23.18	25.31	100.3	0. 0114<u>0105</u>	<u>0.0176</u>
50	8	16	24.99	27.06	183.9	0. 0210<u>0192</u>	<u>0.0323</u>
50	10	18	24.99	27.06	127.8	0. 0146<u>0134</u>	<u>0.0224</u>
50	12	20	24.99	27.06	93.6	0. 0107<u>0098</u>	<u>0.0164</u>
50	8	18	24.99	27.06	208.0	0. 0237<u>0218</u>	<u>0.0365</u>
50	10	20	24.99	27.06	147.1	0. 0168<u>0154</u>	<u>0.0258</u>
50	12	22	24.99	27.06	109.4	0. 0125<u>0114</u>	<u>0.0192</u>
80	8	16	31.84	34.14	237.0	0. 0271<u>0248</u>	<u>0.0416</u>
80	10	18	31.84	34.14	165.3	0. 0189<u>0173</u>	<u>0.0290</u>
80	12	20	31.84	34.14	121.5	0. 013 9 <u>0127</u>	<u>0.0213</u>

Inserted Cells Formatted: Left

⁴⁰ Area values were calculated from average dimensions of several commercially available units, with radius values measured to the center of the insulation. Area includes tank sides and top to account for typical wrap coverage.
⁴¹ Ainsul was calculated by assuming that the water heater wrap is a 2" thick fiberglass material.

VOLUME 2: ENERGY STARResidential Measures

Domestic Hot Water

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
May 2024				

Capacity (gal)	R _{base}	Rinsul	A _{base} (ft ²) ⁴⁰	A _{insul} (ft ²) ⁴¹	ΔkWh	AkW <u>AkW</u> summer peak	▲ <u> A</u> kWwinter peak
80	8	18	31.84	34.14	267.4	0. 0305<u>0280</u>	<u>0.0469</u>
80	10	20	31.84	34.14	189.6	0. 0216 0198	<u>0.0333</u>
80	12	22	31.84	34.14	141.4	0. 0161<u>0148</u>	<u>0.0248</u>

Formatted: Normal

Inserted Cells Formatted: Left

VOLUME 2: Measures ENERGY STARResidential

Domestic Hot Water

Area values were calculated from average dimensions of several commercially available units, with radius values measured to the center of the insulation. Area includes tank sides and top to account for typical wrap coverage. A_{insul} was calculated by assuming that the water heater wrap is a 2" thick fiberglass material.

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

- 1) Conservative estimate of R-12.
- The water heater wrap is assumed to be a fiberglass blanket with R-8, increasing the total to R-20.
- AHRI Directory. All electric storage water heaters have a recovery efficiency of 0.98. <u>https://nextgen.ahridirectory.org/Search/QuickSearch?category=8&searchTypeId=3&productt</u> <u>ype=15Weblink</u>
- 4) Pennsylvania Act 129 2014 Residential Baseline Study. Section 4.6.1, pg 60, Table 4-64. Weblink
- 5) Pennsylvania Act 129 2014 Residential Baseline Study. Section 5.4.4, pg 104. Weblink
- 6) California Electronic Technical Reference Manual. "Water Heater Tank Wrap". Accessed December 2023. Weblink.
- 4) <u>U.S. Department of Energy.</u> <u>Pennsylvania Statewide Residential End-Use and Saturation</u> Study, 2014, <u>http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-</u> 2014_PA_Statewide_Act129_Residential_Baseline_Study.pdf.
- 5) California Public Utilities Commission Database for Energy Efficient Resources (DEER) EUL Support Table for 2020, http://www.deeresources.com/files/DEER2020/download/SupportTable-EUL2020.xlsx. Accessed December 2018.
- 6) "Energy Savers", U.S. Department of Energy, accessed June, 2018 https://www.energy.gov/energysaver/services/do-it-yourself-energy-savings-projects/savingsproject-insulate-your-water
- 7) (2018). Do-It-Yourself Savings Project: Insulate Water Heater Tank. Weblink
- 8) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink

Formatted: Indent: Left: 0", Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.5" + Indent at: 0.75"

Formatted: Font color: Custom Color(RGB(33,33,33)), Pattern: Clear (White)

Measures

VOLUME

ENERGY STARResidential

Domestic Hot Water

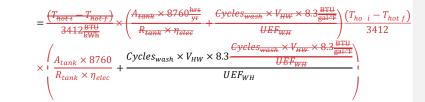
2:

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Residential Measures	-	Rev Date: Feb. 2021
May 2024				

2.3.52.3.4 WATER HEATER TEMPERATURE SETBACK

Target Sector	Residential Establishments
Measure Unit	Water Heater Temperature
Measure Life	2 years ^{Source 109}
Vintage	Retrofit

In homes where the water heater setpoint temperature is set high, savings can be achieved by lowering the setpoint temperature. The recommended lower setpoint is 120°F, but EDCs may substitute another if needed. Savings occur only when the lower temperature of the hot water does not require the use of more hot water. Savings do not occur in applications such as a shower or faucet where the user adjusts the hot water flow to make up for the lower temperature. Clothes washer hot water use and water heater tank losses are included in the savings calculation, but shower, faucet, and dishwasher use are -not included due to expected behavioral and automatic (dishwasher) adjustments in response to lower water temperature. It is expected that the net energy use for the dish washer hot water temperature to necessary levels using internal heating elements.


ELIGIBILITY

This protocol documents the energy savings attributed to reducing the electric or heat pump water heater temperature setpoint. The primary target sector is single-family residences.

ALGORITHMS

The annual energy savings calculation utilizes average performance data for available residential water heaters and typical water usage for residential homes. The energy savings are obtained through the following formula, where the first term in the parentheses corresponds to tank loss savings and the second to clothes washer savings:

 ΔkWh

Demand savings result from reduced hours of operation of the heating element, rather than a reduced connected load. The demand reduction is taken as the annual energy savings multiplied by the ratio of the average demand between 2 PM and 6 PM on summer weekdays to the total annual energy usage.

 $AkW_{peak} = ETDF \times \Delta kWh$ ETDF (Energy to Demand Factor) is defined below: $ETDF = \frac{Average Demand_{Summer WD 2PM-6PM}}{Annual Energy Usage}$ VOLUME 2: ENERGY STARResidential
Measures
Domestic Hot Water Page 109

Formatted: Body Text

Formatted: Body Text

The ratio of the average demand between 2 PM and 6 PM on summer weekdays to the total annual energy usage is taken from an electric water heater metering study performed by BG&E.^{Source 8}

 $\Delta kW_{summer \ peak} = ETDF_S \times \Delta kWh$

 $\Delta k W_{winter \ peak} = ETDF_W \times \Delta k W h$

DEFINITION OF TERMS

Table 2-67: Terms, Values, and References for Water Heater Temperature Setback

Term	Unit	Values	Source	
UEF _{WH} , Uniform Energy Factor That i , Temperature setpoint of water heater initially	Proportion <u>°F</u>	EDC data collection <u>Data</u> <u>Gathering</u> Default: Electric Storage= 0.90 HPWH= 2.00 130	4 <u>5</u>	Formatted: Space Before: 6 pt, After: 6 pt
R _{tank} , R value <u>That r</u> , Temperature setpoint of water heater tankafter setback	<u>hr∘F∙ft²</u> BTU	EDC <u>Data Gatheringdata</u> <u>collection</u> Default: 42 <u>119</u>	9 <u>10</u>	Formatted: Space Before: 3 pt, After: 3 pt Formatted: Justified
A_{tank} , Surface Area of water heater tank	ft ²	EDC Data Gathering Default: 24.99	50 gal. value in Table 2-54 Table 2-66	Formatted: Justified Formatted: Font: Italic
R _{tank} <u>, R value of water heater tank</u>	$\frac{hr \cdot {}^{\circ}\mathbf{F} \cdot ft^2}{BTU}$	EDC Data Gathering Default: 12	<u>8</u>	
$\eta_{\it elec}$, Thermal efficiency of electric heater element (equiv. to COP for HPWH)	Proportion	Electric Storage: 0.98 HPWH: 2.10<u>3.11</u>	<u>1,</u> 2 ,3	Formatted: Justified
V _{HW} , Volume of hot water used per cycle by clothes washer	gallons cycle	7	4	
<i>Cycles_{wash}</i> , Number of clothes washer cycles per year	cycles yr	Clothes washer present: 251 <u>178</u> No clothes washer: 0	5 <u>4</u>	Formatted: Justified
$T_{hot \neq -}$, Temperature setpoint V_{HW} , Volume of hot water heater initially used per cycle by clothes washer	<mark>∘F</mark> gallons cycle	EDC Data Gathering Default: 130 <u>25</u>	6 <u>3</u>	Formatted: Justified
<i>T_{hot_f}</i> , <u>Temperature setpoint</u> <i>UEF_{WH}</i> , <u>Uniform</u> <u>Energy Factor</u> of water heater- after setback	<u>Proportion</u> º F	EDC data collection Default: <u>-119</u> <u>Electric Storage= 0.92</u> <u>HPWH= 3.20</u>	7 <u>6</u>	Formatted: Justified Formatted Table
<i>ETDF₇ETDF₅</i> , Summer Energy To Demand Factor (defined above)	$\frac{kW}{kWh} kW h$	0.00008047 <u>0001057</u>	8 <u>7</u>	Formatted: Font: Italic Formatted: Justified
<u>ETDF_W</u> , Winter Energy To Demand Factor	$\frac{kW}{kWh}$	<u>0.0001761</u>	<u>7</u>	

VOLUME 2: Measures STARResidential

Domestic Hot Water

ENERGY

Page 110

Formatted: Equation, Tab stops: 1.5", Left

DEFAULT SAVINGS

The energy savings and demand reductions are prescriptive according to the above formulae. However, some values for common configurations are provided in Table 2-68, below.

Table 2-68: Default Energy Savings and Demand Reductions

Type Electric Storage	Cycles _{was} h	η _{elec}	UEF _{WH}	AkWhEnerg y Savings (AkWh) 60.0	Demand-Reduction (∆kWpeak) <u>∆kWsummer peak</u> 0.0048 <u>0063</u>		<u>AkWwinter peak</u>	nserted Cells
Electric Storage w/Clothes Washer	251 <u>200</u>	0.98	<u>1.03</u>	<u>,189.9</u>	0.900199	<u>,112.0</u>	0.0090033 1	eleted Cells ormatted Table nserted Cells
НРШН	0	<u>2.13.</u> <u>11</u>	2. <u>0080</u>	<u>18.9</u>	<u>28.0_</u>	0020		ormatted: Font color: Black ormatted: Font color: Black
HPWH w/Clothes Washer	251	<u>2.13.</u> <u>11</u>	2. <u>0080</u>	51.5 <u>67.0</u>	0. 004 1	4 <u>0070</u>	<u>0.0117</u> II	nserted Cells

EVALUATION PROTOCOLS

The most appropriate evaluation protocol for this measure is verification of water heater temperature setpoint coupled with assignment of stipulated energy savings.

SOURCES

- 1) Previous Federal Standards from 2004-2015 are 0.97 -0.00132 x Rated Storage in Gallons. For a 50-gallon tank this is 0.90. "Energy Conservation Program: Energy Conservation Standards for Residential Water Heaters, Direct Heating Equipment, and Pool Heaters" US Dept of Energy Docket Number: EE-2006-BT-STD-0129, p. 30. The previous, long-standing requirements are used since this is a Retrofit measure applied to existing equipment, not new equipment.
- 2)1)AHRI Directory. All electric storage water heaters have a recovery efficiency of 0.98. https://www.ahridirectory.org/Search/QuickSearch?category=8&searchTypeId=3&producttyp e=15Weblink

- 2) If HPWH UEF is known but COP of HPWH compressor is unknown, assume compressor efficiency is UEF/0.9. This yields a default COP of 3.11. Maryland EmPOWER Technical Reference Manual. (2023, version 11.0). "Water Heater Temperature Setback".
- 3) United States Department of Energy. Reduce Hot Water Use for Energy Savings. Weblink
- 3) U.S. Department of Energy. NEEA Heat Pump Water Heater Field Study Report. Prepared by Fluid Market Strategies. October 22, 2013. <u>http://neea.org/docs/default-source/reports/heat-pump-water-heater-field-study-report.pdf?sfvrsn=5</u>
- 4) Federal Energy Management Program Energy Cost Calculator, March 2010 (visited October 23, 2018) <u>https://www.energy.gov/node/789966</u>
- 5)4)(2023). 2020 Residential Energy Consumption Survey. Weblink Calculated using "Frequency of clothes washer use" and "Frequency of dryer use" data for the Mid-Atlantic region from U.S. Department of Energy. 2015 Residential Energy Consumption SurveyPennsylvania. (2015). https://www.eia.gov/consumption/residential/data/2015/index.php?view=microdata
- 6)5)Engineering assumption
- 7) Pennsylvania Statewide Residential End-Use and Saturation Study, 2014, http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-2014 PA Statewide Act129 Residential Baseline Study.pdf.
- Straub, Mary and Switzer, Sheldon. "Using Available Information for Efficient Evaluation of Demand Side Management Programs". Study by BG&E. The Electricity Journal. Aug/Sept, 2011. p. 95. <u>http://www.sciencedirect.com/science/article/pii/S1040619011001941</u>

9)1)Conservative estimate of R-12

- 6) Pennsylvania Act 129 2023 Residential Baseline Study. Section 8.3.5, pg 128, Table 110. Weblink
- 7) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and <u>Results of Model Calibration, Validation, and Uncertainty Quantification, NREL/TP-5500-80889. Weblink</u>
- 8) Conservative estimate of R-12
- 9) Illinois Statewide Technical reference Reference Manual for Energy Efficiency Version-7. (2023, version 11.0- Effective January-). "5.4.6 Water Heater Temperature Setback". Weblink
- 10) Pennsylvania Act 129 2014 Residential Baseline Study. Section 4.6.1, 2019-pg 60, Table 4-64. http://www.ilsag.info/technical-reference-manual.htmlWeblink

Formatted: Left, Space After: 5 pt, Line spacing: Multiple 1.2 li, Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Tab after: 0.5" + Indent at: 0.5"

VOLUME 2: Measures ENERGY STARResidential

Domestic Hot Water

2.3.62.3.5 WATER HEATER PIPE INSULATION

Target Sector	Residential Establishments
Target Sector	Residential
Measure Unit	Water Heater
Measure Life	13 years ^{Source-3}
Measure Life	11 years ^{Source 1}
Vintage	Retrofit

This measure relates to the installation of foam insulation on exposed pipe in unconditioned space. The baseline for this measure is a standard efficiency 50 gallon electric water heater (UEF=0.920792) with an annual energy usage of 2,939 kWh. ⁴²See 2.3.1 <u>Heat Pump Water Heaters</u> section for baseline water heater consumption formula and assumptions.

ELIGIBILITY

This protocol documents the energy savings for an electric water heater attributable to insulating exposed pipe in unconditioned space to R-3 or above. The target sector primarily consists of residential establishments.

ALGORITHMS

 $\Delta k W_{summer \ peak}$

The annual energy savings are assumed to be 3% of the annual energy use of an electric water heater (2,939 kWh), or 88.2 kWh based on 10 feet of 3⁄4" thick insulation (equal to R-3 on a 1⁄2" pipe). This estimate is based on a recent report prepared by the ACEEE for the State of Pennsylvania (Source 1). On a per foot basis, this is equivalent to 8.82 kWh.

ΔkWh = 8.82 kWh/yr per foot of installed insulation

The summer coincident peak kW savings are calculated as follows:

 $= \Delta kWh \times ETDF_s$

 $\Delta kW_{peak} = \Delta kWh \times ETDF$

The algorithms below calculate the total savings resulting from adding insulation to uninsulated pipes.

 $\Delta kWh = = \left(\frac{1}{R_{exist}} - \frac{1}{R_{new}}\right) \times C_{inside} \times L_{effective} \times (T_{setpoint} - T_{ambient}) \times \frac{1}{\eta_{elec}}$ $\times HOU \times \frac{1}{3412} \times ISR$ $L_{effective} = L_{horizontal} + (\alpha \times L_{vertical})$

 $\Delta k W_{winter \ peak} = \Delta k W h \times ETDF_w$

⁴²-See 2.3.1 Heat Pump Water Heaters section for baseline water heater consumption formula and assumptions.

VOLUME Measures		ENERGY	STARResidential	
Domestic H	lot Wa	ater		

DEFINITION OF TERMS

Table 2-69: Terms, Values, and References for Water Heater Pipe Insulation

Term	Unit	Value	Source	
R _{exist} . Pipe heat loss coefficient of existing uninsulated pipe	$\frac{hr \cdot {}^{\circ}\mathbf{F} \cdot ft^2}{BTU}$	See Table	2	
$R_{new} = R_{exist} + R$ value of new insulation. Pipe heat loss coefficient of new insulated pipe	$\frac{hr \cdot {}^{\circ}\mathbf{F} \cdot ft^2}{BTU}$	EDC Data Gathering	=	
AkWh, annual energy savings per foot of installed pipe insulationC _{inside} Inside Inside circumference of pipe insulationC _{inside} Inside	$\frac{\frac{kWh}{/yr}}{ft}ft$	8.82EDC Data Gathering	4 <u>7, 8</u>	Formatted Table Formatted: Font: 10 pt
L _{horizontal} , <u>Length of pipe from water heating</u> source which runs horizontally	ft	EDC Data Gathering	=	
L _{vertical} , Length of pipe from water heating source which runs horizontally	ft	EDC Data Gathering	=	
x, Horizontal to Vertical Adjustment Factor	<u>None</u>	See Table 2-70	<u>6</u>	
T _{setpoint} , Temperature of hot water in tank	°F	<u>119</u>	<u>10</u>	
T _{amblent} , Temperature of ambient air	<u>°F</u>	<u>70</u>	<u>3</u>	
η _{elec} , <u>Thermal</u> efficiency of electric heater element	<u>Proportion</u>	<u>0.98</u>	<u>4</u>	
HOU, Annual hours of use for water heater tank	hours yr	<u>8760</u>	Ξ	
ISR <u>, In-service rate</u>	<u>%</u>	EDC Data Gathering Direct Install Default: 100%	Ξ	
<u>ETDF,<i>ETDFs</i>, Summer</u> Energy <mark>to⊺o</mark> Demand Factor	$\frac{\frac{kW}{kWh}}{\frac{kWh}{yr}} \frac{kW}{kWh}$	0 . 00008047<u>0001046</u>	2 <u>5</u>	Formatted: Left Formatted Table
<i>∆kW_{peak},</i> Summer peak kW savings per foot of installed pipe insulation <u><i>ETDF</i>⊮, Winter Energy</u> To Demand Factor	$\frac{kW}{f^{\ddagger}}\frac{kW}{kWh}$	0. <u>000710001755</u>	- <u>5</u>	Formatted: Left

The demand reduction is taken as the annual energy savings multiplied by the ratio of the average energy usage during 2 PM to 6 PM on summer weekdays to the total annual energy usage. The Energy to Demand Factor is defined as:

Average Demand
 Annual Energy Usage

ł

Page 114

Formatted: Right: 0", Don't keep with next

The ratio of the average energy usage between 2 PM to 6 PM on summer weekdays to the total annual energy usage is taken from an electric water heater metering study performed by BG&E.^{Source-2}

Table 2-70: Existing R-Values, Inside Circumference, and Horizontal to Vertical Adjustment Factor of Common Water Pipe Sizes and Materials

Type and Size	Rexist	C inside	<u>a</u>
1/2" Copper Pipe	<u>0.444</u>	<u>0.1427</u>	<u>0.67</u>
3/4" Copper Pipe	<u>0.521</u>	<u>0.2055</u>	<u>0.72</u>
<u>1/2" PEX</u>	0.332	<u>0.1270</u>	<u>0.73</u>
<u>³/₄" PEX</u>	<u>0.374</u>	<u>0.1783</u>	<u>0.77</u>

EVALUATION PROTOCOLS

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings.

SOURCES

- American Council for an Energy Efficient Economy, Summit Blue Consulting, Vermont Energy Investment Corporation, ICF International, and Synapse Energy Economics, Potential for Energy Efficiency, Demand Response, and Onsite Solar Energy in Pennsylvania, Report Number E093, April 2009, p. 117.
- 2) Straub, Mary and Switzer, Sheldon. "Using Available Information for Efficient Evaluation of Demand Side Management Programs". Study by BG&E. The Electricity Journal. Aug/Sept, 2011. p. 95. http://www.sciencedirect.com/science/article/pii/S1040619011001941
- 3) California Public Utilities Commission Database for Energy Efficient Resources (DEER) EUL Support Table for 2020, http://www.deeresources.com/files/DEER2020/download/SupportTable-EUL2020.xlsx. Accessed November 13, 2018
- 1) California Electronic Technical Reference Manual. "Water Heater Pipe Wrap, Residential". Accessed December 2023. Weblink
- 2) Illinois Statewide Technical Reference Manual. (2023, version 11.0). "5.4.1 Domestic Hot Water Pipe Insulation". Weblink
- 3) Pennsylvania Act 129 2014 Residential Baseline Study. Section 5.4.4, pg 104. Weblink
- 4) AHRI Directory. All electric storage water heaters have a recovery efficiency of 0.98. Weblink
- 5) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink
- 6) In cases with zero wind, heat loss (and therefore) savings is larger from horizontal pipe configurations than vertical pipe configurations due, perhaps to the way in which convective losses are handled. Given that most DHW pipe insulation installations begin with a vertical orientation from the water heater, an adjustment to the engineering calculation is needed. An analysis performed by the IL-TRM Technical Advisory Committee of the 3E PLUS tool by NAIMA yielded adjustment factors for horizontal to vertical loss and savings values. Weblink
- 7) Thomas, Varkie C. Pipe Sizing Charts Tables. Energy Models. Weblink
- 8) The Engineering Toolbox. (2018). ASTM F876 PEX Tube Dimensions. Weblink

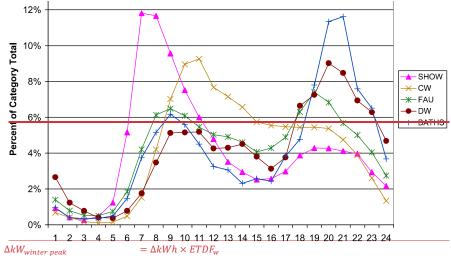
VOLUME 2: ENERGY STARResidential Measures Domestic Hot Water

Page 115

Formatted: Body Text

Formatted: Body Text

- 9) Cadmus for PPL Electric Utilities. (2022, September). PPL Electric Utilities Annual Report to the Pennsylvania Public Utility Commission Phase IV of Act 129 PY13 Annual Report (June 1, 2021 – May 31, 2022). Appendix I. Evaluation Detail – Energy Efficient Homes Component, pg I-6, Table I-5. Weblink
- 10) Pennsylvania Act 129 2014 Residential Baseline Study. Section 4.6.1, pg 60, Table 4-64. Weblink


VOLUME 2: Measures ENERGY STARResidential

Domestic Hot Water

	Residential Establishments	
Target Sector Measure Unit	Aerator	
Measure Life	10 years ^{Source 1}	
Vintage	Retrofit, New Construction	
		Formatted: Font: Arial
conservation. These efficient ae vater usage and save energy ussumptions, analysis, and savin itchens and bathrooms.	aerators is an inexpensive and lasting appro- rators reduce water consumption and consequen associated with heating the water. This protocol gs from replacing standard flow aerators with low-flow com aerators will save on the electric energy usa	ntly reduce hot of presents the flow aerators in
educed demand of hot water.	on actators will save on the cleans energy as	
LIGIBILITY		Formatted: Body Text
pplications. Laminar flow restr	rgy savings attributable to efficient low_flow aerator ictors are also eligible. The maximum flow rate ute. Homes with non-electric water heaters do not	e of qualifying t qualify for this
ALGORITHMS		Formatted: Body Text
$DF \times T_{person-day} \times N_{persons} \times$	$\frac{\frac{W}{E_{T}} \times (T_{out} - T_{in})}{K_{E}} \frac{(GPM_{base} - GPM_{low}) \times 8.3 \times (I)}{3412 \times RE}$ $\frac{3412 \times RE}{\frac{DF \times T_{person-day} \times N_{persons} \times 365 \frac{days}{yF}}{N_{faucets-home}} \times ISR$ $= \Delta - kWh \times ETDFETDF_{s}$	
Where: $TDF = \frac{GF}{HOU}$	$=\frac{\mathscr{W}_{faucet use,peak} \times 60^{\text{minutes}}_{\text{hour}}}{365\frac{\text{days}}{\text{yr}} \times 240\frac{\text{minutes}}{\text{daily-peak}}}$	
Vhere: CTDF = CF HOU Given:	$\frac{365 \frac{\text{days}}{\text{y}_{\text{F}}} \times 240 \frac{\text{minutes}}{\text{daily-peak}}}{\text{daily-peak}}$	
Where: $TDF = \frac{CF}{HOU}$ Siven: $TF = \frac{\%_{fauce}}{\%_{fauce}}$	$= \frac{\frac{96_{faucet use,peak} \times 60^{\frac{minutes}{hour}}}{365\frac{days}{yr} \times 240\frac{minutes}{daily-peak}}}{\frac{96}{365}}$	

Aquacraft, Inc study.^{Source 2} The average daily load shapes (percentages of daily energy usage that occur within each hour) are plotted in Figure 2-1 below (symbol FAU represents faucets).⁴³

DEFINITION OF TERMS

Table 2-71: Low-Flow Faucet Aerator Calculation Assumptions

Term	Unit	Value	Source
<i>GPM</i> _{base} , Average baseline <u>aerator</u> flow rate of aerator (GPM)	gallons minute	EDC Data Gathering or Default = 2.2	3 2
<i>GPM_{Iow}</i> , Average post measure efficient aerator flow rate of aerator (GPM)	gallons minute	EDC Data Gathering -or Default = 1.5	3 <u>-</u>
$T_{person-day}\underline{T_{out}}$, Average time of hotmixed water usage per person per day (minutestemperature flowing from the faucet (°F)	<u>minutes</u> °F	Kitchen=4 <u>-593.0</u> Bathroom=1 <u>-686.0</u> Unknown= <u>6-1 87.8</u>	4 <u>5</u> •
<i>N_{personsTin}</i> , Average <u>numbertemperature</u> of persons per household <u>water entering the house</u> (°F)	house	Default SF=2.5 53Default MF=1.7 Default Unknown=2.5 Or EDC Data Gathering	<u>416</u>
T_{out} , Average mixed water temperature flowing from the faucet (°F) <i>RE</i> , Recovery efficiency of electric water heater	Proportion [°] F	Kitchen=Default: Standard: 0.98 HPWH: 3.93 Bathroom=86	6 <u>7</u>

-{	Formatted: Font color: Black
1	Formatted Table
-{	Formatted: Font: Cambria Math, Italic
-{	Formatted: Font color: Black
-{	Formatted: Font: Cambria Math, Italic
-(Formatted: Font: Not Italic, Font color: Black

Formatted: Font: Cambria Math, Italic

⁴³ SHOW = showers, CW = clothes washers, FAU = Faucets, DW = dishwashers, BATHS = baths. FAU is the relevant curve for this measure.

VOLUME 2: ENERGY STARResidential Measures

Domestic Hot Water

Term	Unit	Value	Source		
		Unknown = 87.8<u>:</u> 1.22			
, Average temperature <u>DF</u> , Percentage of	<u>-'₽%</u>	52Kitchen=75%	7 <u>8</u>		Formatted: Font color: Black
ter entering the house (°F)flowing down drain,		Bathroom=90%			Formatted: Font: Not Italic, Font color: Black
		<u>Unknown=79.5%</u>			Formatted: Font: Cambria Math, Italic
E, Recovery efficiency <i>T_{person-day}</i> , Average time		Default:	8 <u>, 103</u>		Formatted: Font color: Auto
electrichot water heaterusage per person per	minutes	Standard: 0.98			Formatted: Font color: Auto
ay (minutes)	person day	HPWH: Kitchen=4.5			
	portion	Bathroom=1.6			Formatted: Font color: Auto
		<u>Unknown=</u> 2.4 <u>7</u>		٦	Formatted: Font: Not Italic
TDF, Energy To Demand Factor <u>Npersons</u> ,		Default SF=2.6	<u>29</u>		
verage number of persons per household	kW pers	Default MF=1.7		(Formatted: Font color: Auto
	$\frac{W}{kWh/yr}$ house	<u>Default Unknown=2.4</u>			
		Or EDC Data			
		Gathering0.000134			
faucets-home , Average number of faucets in	faucets fauce	EDC Data Gathering,	<u>54</u>		
ne home	house hor	Default see Table 2-59 Table 2-72			
F, Percentage of water flowing down drain <u>ISR</u> n-Service Rate	%	Kitchen=75%	9 <u>10</u>		
		Bathroom=90%			
		Unknown=79.5%EDC Data Gathering,			
		Kit Delivery Default: 26%			
		Direct Install Default:			
		<u>100%</u>			
LEC, Percentage of homes with electric water	%	Default: Unknown=47%	EDC Data		
eat ISR , In Service Rate		Or EDC Data Gathering;	Gathering,		
		Kit Delivery Default: 28%	124		Formatted: Font color: Black
		Direct Install			
		Default:Electric = 100%		(Formatted: Font color: Black
		Fossil Fuel = 0%		(Formatted: Font color: Black
TDFs, Summer Energy to Demand Factor		Default: <u>SF: 0.0001057</u>	5 <u>11</u> •	(Formatted Table
Percentage of homes with electric water heat		MF: 0.0001006		(Formatted: Font: Cambria Math, Italic
	or kW	Unknown= 35%: 0.0001046	•		Formatted: Font color: Auto
	$\frac{W}{kWh}$	Or EDC Data Gathering:		Y	Formatted: Keep with next
		Electric = 100%			Formatted: Font: Calibri, 11 pt, Bold
		Fossil Fuel = 0.0%			
· · · · · · · · · · · · · · · · · · ·			211		
b _{faucet use,peak} , percentage of daily faucet use uring PJM peak period <i>ETDFw</i> , Winter Energy	$\frac{\%}{kWh}$	19.5% <u>SF: 0.0001761</u> MF: 0.0001733	2 <u>11</u>		
Demand Factor	70 kWh	Unknown: 0.0001755			Formatted: Font: Cambria Math, Italic
		<u></u>			

Table 2-72: Average Number of Faucets per Home

Faucet Type	Single <u>-</u> Family		
Kitchen	1. <u>42</u>	1. <u>01</u>	1. <mark>02</mark>

Domestic Hot Water

Bathroom	2. <mark>2</mark> 6	1.2 <u>4</u>	2.0
Unknown	3.3<u>1.9</u>	<mark>2<u>1</u>.2</mark>	<u>3.01.7</u>

DEFAULT SAVINGS

Default savings assume an electric resistance storage water heater with RE = 0.98. Table 2-62: Default Savings for Low Flow Flow Faucet Aerators

Housing Type	Faucet Location	Water Heater Fuel (% electric)	Kit Delivery: Unit Energy Savings (kWh)	Kit Delivery: Unit Demand Savings (kW)	Direct Install: Unit Energy Savings (kWh)	Direct Install: Unit Demand Savings (kW)
	Kitchen	Unknown (35%)	19.5	0.0026	69.8	0.0094
Single Family	Bathroom	Unknown (35%)	3.5	0.0005	12.3	0.0017
	Unknown	Unknown (35%)	8.2	0.0011	29.2	0.0039
	Kitchen	Unknown (35%)	14.6	0.0020	52.2	0.0070
Multifamily	Bathroom	Unknown (35%)	4.3	0.0006	15.4	0.0021
	Unknown	Unknown (35%)	8.3	0.0011	29.8	0.0040
Statewide	Kitchen	Unknown (35%)	21.5	0.0029	76.8	0.0103
(Unknown Housing	Bathroom	Unknown (35%)	3.8	0.0005	13.6	0.0018
Type)	Unknown	Unknown (35%)	9.0	0.0012	32.1	0.0043
	Kitchen	Electric (100%)	55.8	0.0075	199.5	0.0267
Single Familv	Bathroom	Electric (100%)	9.9	0.0013	35.3	0.0047
T anniy	Unknown	Electric (100%)	23.4	0.0031	83.4	0.0112
	Kitchen	Electric (100%)	4 1.8	0.0056	149.2	0.0200
Multifamily	Bathroom	Electric (100%)	12.3	0.0017	44.0	0.0059
	Unknown	Electric (100%)	23.8	0.0032	85.1	0.0114
Statewide	Kitchen	Electric (100%)	61.4	0.0082	219.4	0.0294
(Unknown Housina	Bathroom	Electric (100%)	10.9	0.0015	38.8	0.0052
Type)	Unknown	Electric (100%)	25.7	0.0034	91.8	0.0123

EVALUATION PROTOCOLS

The most appropriate evaluation protocol for this measure is verification of installation coupled with EDC Data Gathering.

SOURCES

- California's Database of Energy Efficiency Resources (DEER), updated 2/5/2014. <u>http://www.deeresources.com/files/DEER2013codeUpdate/download/DEER2014-EUL-table-update_2014-02-05.xlsx</u>
 Aquacraft, Inc., Water Engineering and Management. The end use of hot water in single
- family homes from flow trace analysis. 2001. <u>http://s3.amazonaws.com/zanran_storage/www.aquacraft.com/ContentPages/47768067.pdf.</u> The statewide values were used for inputs in the ETDF. algorithm components. The CF for faucets is found to be 0.00413: [% faucet use during peak × (TPerson-Day × NPerson) / (Nfaucets-heme)]

/240 (minutes in peak period) = $[19.5\% \times (6.1 \times 2.5 / 3.0)] / 240 = 0.00413$. The Hours for VOLUME 2: ENERGY STARResidential

Measures

Domestic Hot Water

Technical Reference Manual, Vol. 2: Residential Measures - Rev Date: Feb. 2021 State of Pennsylvania -May 2024

faucets is found to be 30.9: (TPerson-Day \times NPersons \times 365) /(Nfaucets-home) / 60 = (6.1 x 2.5 x 365) / 3.0 / 60 = 30.9. The resulting FED is calculated to be 0.000134: CF / Hours = 0.00413 / 30.9 =0.000134.

- California Electronic Technical Reference Manual. "Faucet Aerator, Residential". Accessed November 2023. Weblink
- 10 CFR 430.32(o). Weblink
- 3) Cadmus and Opinion Dynamics Evaluation Team. for -Showerhead and Faucet Aerator Meter Study. For Michigan Evaluation Working Group. (2013, June 2013. Baseline GPM of replaced aerators is set to the federal minimum GPM of 2.2. The GPM of new aerators is set to the typical rated GPM value of 1.5 GPM. Discounted GPM flow rates were not applied because the "throttle factor" adjustment was found to have been already accounted for in the mixed water temperature variable. Additionally, the GPMBase was set to a default value of 2.2 due to the inability to verify what the GPM flow rate was of the replaced faucet.
- 4)3)Cadmus and Opinion Dynamics Evaluation Team.). Showerhead and Faucet Aerator Meter Study. For Michigan Evaluation Working Group. June 2013. If 2.7 min/person/day for unknown aerator location is known, use the corresponding kitchen/bathroom value. If unknown, use 6.1 min/person/day calculated as the weighted average length of use value, which is the total for the household: kitchen (4.5 and bathroom, min/person/day) + bathroom (1.6 min/person/day) = 6.1 min/person/day. by average kitchens and bathrooms per home from the 2023 PA residential baseline study.
- 5) Pennsylvania Act 129 2018 Residential Baseline Study, http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3 Res Baseline Study Rpt021219.pdf.
- 4) Table 7. NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 Residential Baseline Study. Pg 122, table 105 (ELEC). Pg 130, table 112 (Nfaucets-home). Weblink Single-family average faucets calculated as weighted average of single-family attached and single-family detached using 2023 Pennsylvania residential baseline study data.
- 6)5)Cadmus and Opinion Dynamics Evaluation Team. for Michigan Evaluation Working Group. (2013, June). Showerhead and Faucet Aerator Meter Study. For Michigan Evaluation Working Group. June 2013. Table 7. The study finds that the average mixed water temperature flowing from the kitchen and bathroom faucets is 93°F and 86°F, respectively. If the faucet location is unknown, 87.8°F is the corresponding value to be used, which was calculated by taking a weighted average of faucet type (using the statewide values): (1 * * $93++3\times \times 86$ /() / (1++3) = 87.8.
- 7)6)Using Rock Spring, PA (Site 2036) as a proxy, the mean of-soil temperature at 40-inch depth is 51.86152.502. Calculated using Daily SCAN Standard - Period of Record data from April 1999December 2003 to December 20182023 from the Natural Resource Conservation Service Database

https://wcc.sc.egov.usda.gov/nwcc/rgrpt?report=daily_scan_por&state=PAWeblink. Methodology follows Missouri TRM 2017 Volume 2: Commercial and Industrial Measures. p.(2017, March). "2.6.1 Water Heater". Pg 78.

- https://energy.mo.gov/sites/energy/files/MOTRM2017Volume2.pdfWeblink
- 8)7)AHRI Directory. All electric storage water heaters have a recovery efficiency of 0.98. https://www.ahridirectory.org/Search/SearchForm?programId=24&searchTypeId=2Average recovery efficiency for heat pump water heaters is 3.93. Accessed December 2023. Weblink 1.22 for unknown type calculated as the weighted average of electric resistance and HPWH recover efficiencies by the relative proportions of electric resistance and HPWHs from the 2023 PA residential baseline study.

STARResidential

Domestic Hot Water

Page 121

Formatted: Font: Arial

- 9)8)Illinois TRM Effective June 1, Statewide Technical Reference Manual. (2013-, version 11.0). "5.4.4 Low Flow Faucet Aerators". Weblink. Faucet usages are at times dictated by volume; and only "directly down the drain" usage will provide savings. Due to the lack of a metering study that has determined this specific factor, the Illinois Technical Advisory Group has deemed these values to be 75% for the kitchen and 90% for the bathroom. If the aerator location is unknown, an average of 79.5% should be used, which is based on the assumption that 70% of household water runs through the kitchen faucet and 30% through the bathroom (0.7×0.75+±0.3×0.)==.9)=0.795.
- 10) NEEA Heat Pump Water Heater Field Study Report. Prepared by Fluid Market Strategies. October 22, 2013. <u>https://neea.org/img/uploads/heat-pump-water-heater-field-study-report.pdf.</u>
- 11)9) U.S. Census Bureau, 2017-2021 American Community Survey 5-Year (2013-2017) Estimates for 2017. http://data.census.gov., Weblink
- 12) Average of PY9 values for kit delivery for FirstEnergy EDCs. <u>http://www.puc.pa.gov/filing_resources/issues_laws_regulations/act_129_information/electric_distribution_company_act_129_reporting_requirements.aspx</u>

Formatted: Font: Arial
Formatted: Font: Arial
Formatted: Font: Arial
Formatted: Font: Arial
Formatted: Hyperlink

Measures

VOLUME

ENERGY STARResidential

Domestic Hot Water

2:

10) Weighted average of ISRs from surveys of FirstEnergy customers that received aerators in kits in PY13 and PY14.

11) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink

VOLUME 2: Measures ENERGY STARResidential

Domestic Hot Water

2.3.82.3.7 Low-Flow Showerheads

Target Sector	Residential Establishments	Formatted: Font color: Text 1
Measure Unit	Water HeaterShowerhead	
Measure Life	9 <u>10</u> years ^{Source 1}	 Formatted: Font color: Text 1
Vintage	Retrofit, New Construction	

This measure relates to the installation of a low-_flow (generally 1.5 GPM) showerhead in bathrooms in homes with an electric water heater. The baseline is a standard showerhead using 2.5 GPM.

ELIGIBILITY

This protocol documents the energy savings attributable to replacing a standard showerhead with an energy-_efficient low-_flow showerhead for electric water heaters. The target sector primarily consists of residential establishments.

ALGORITHMS

The annual energy savings are obtained through the following formula:

ΔkWh

 $=\frac{\frac{(GPM_{base} - GPM_{low}) \times 8.3 \frac{BTU}{gal \times T} \times (T_{out} - T_{in})}{3412 \frac{BTU}{kWh} \times RE} \frac{(GPM_{base} - GPM_{low}) \times 8.3 \times (T_{out} - T_{in})}{3412 \times RE}$

$T_{person-day} \times N_{persons} \times N_{showers-day} \times 365$	$\frac{T_{\frac{perso-day}{N} \times N_{\frac{persons}{N} \times N_{showers-day} \times 365} \frac{days}{yr}}{N_{showerheads-home}}$
× N _{show}	erheads-h

 $\times ISR \times ELEC$

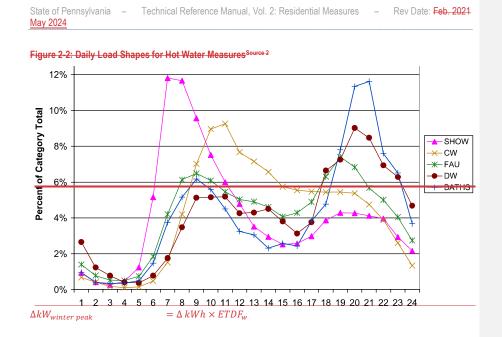
shower neuros-n

 $\Delta \frac{kW_{peak}}{kW_{summer peak}}$

 $= \Delta - kWh \times \frac{ETDF}{ETDF_s}$

Where:	
ETDF	$- CF_{hour} = \frac{\%_{showe-usc,peak}}{\%} \times 60 \frac{\text{minutes}}{\text{hour}}$
	$\frac{H0U}{365 \frac{days}{yr} \times 240 \frac{minutes}{daily peak}}$
Given:	
CF	$\underline{W}_{showe-use,peak} \times T_{person-day} \times N_{persons} \times N_{showers-day}$
01	$- N_{\underline{showerheads-home}} \times 240 \frac{\underline{minutes}}{\underline{daily peak}}$
	$T_{porson-aay} \times N_{porsons} \times N_{showers-aay} \times 365^{days}_{YF}$
HOU	= $N_{showerheads-home} \times 60^{\frac{minutes}{hour}}$

The ratio of the average energy usage during 2 PM and 6 PM on summer weekdays to the total annual energy usage is taken from average daily load shape data collected for showerheads from an Aquacraft, Inc study.^{Source,2} The average daily load shapes (percentages of daily energy usage that occur within each hour) during are plotted in Figure 2-2 below (symbol SHOW represents showerheads).⁴⁴


⁴⁴ SHOW - showers, CW - clothes washers, FAU - Faucets, DW - dishwashers, BATHS - baths. SHOW is the relevant curve for this measure.

SECTION 2: ENERGY STARResidential Measures

Domestic Hot Water

Page 124

Formatted: Subscript

DEFINITION OF TERMS

Table 2-73: Terms, Values, and References for Low-Flow Showerhead

Term Unit Value Source				
			Source	
<i>GPM</i> _{base} , Gallons per minute of baseline showerhead	gallons minute	EDC Data Gathering or Default = 2.5	<u>32</u>	
CBM College per minute of low flow	gallons	Delault - 2.0	EDC Data	
<i>GPM_{low}</i> , Gallons per minute of low-flow showerhead	minute	EDC Data Gathering	Gathering	
<i>T_{out}</i> , Assumed temperature of water used by showerhead <i>T_{person-day}</i> , Average time of shower usage per person (minutes)	minutes day	7.8 <u>101</u>	5 <u>7</u>	
<u><i>T</i>_{in}</u> , <u>Assumed temperature of water</u> <u>entering house</u> _{<i>N</i>_{persons}, <u>Average number</u>}		EDC Data Gathering or Default SF=2.5		
o f persons per household	persons • F	Default MF=1.7	6 <u>8</u>	
		Default unknown=2.5 <u>53</u>		
N _{showers-day} , Average number of showers per person per day <u>RE</u> , Recovery efficiency of electric water heater	showers person · day <u>Prop</u> ortion	0.6 <u>Default:</u> Electric resistance: 0.98 HPWH: 3.93 Unknown: 1.22	7 <u>9</u>	
$N_{showerheads-home}T_{person-day}$, Average numbertime of showers in the homeshower usage per person (minutes)	showers-minutes house day	EDC Data Gathering or Default SF=1.6 Default MF=1.1 Default unknown = 4.57.8	8 <u>3</u>	

SECTION 2: ENERGY STARResidential Measures

Domestic Hot Water

Term	Unit	Value	Source	
Vpersons, Average number of persons per		EDC Data Gathering or		Formatted: Font: Cambria Math
nousehold <i>T_{out}r</i> , Assumed temperature of vater used by showerhead	• F ^{_persons} household	<u>Default SF=2.6</u> <u>Default MF=1.7</u> Default	94	Formatted: TableCell
		<u>unknown=2.</u> 101 <u>4</u>		Formatteu: TableCell
N _{showers-day} , <u>Average number of</u> showers per person per day: <i>T_{in}</i> Assumed temperature of water entering house	_showers ≗ _ person · day	52<u>0.6</u>	10<u>5</u>	
RE, Recovery efficiency of electric water		EDC Data Gathering or		Formatted Table
heater $N_{showerheads-ho}$ Average number of showers in the home	showers -	Default÷ <u>SF=1.9</u>		Formatted: TableCell
	showers Proportio home	Standard: 0.98 HPWH: 2.1Default <u>MF=1.2</u>	11, 13<u>6</u>	
		<u>Default unknown = 1.7</u>		Formatted: TableCell
ETDF, Energy To Demand Factor <u>ISR, In-</u> Service Rate		0.00008014 <u>EDC Data</u> Gathering,		
	<u>*₩-</u> <u>k₩h/yr</u> %	Kit Default = 21%	12EDC Data Gathering,	
		Direct Install Default =	10	
		<u>100%</u>		
ELEC, Percentage of homes with electric		EDC Data Gathering <u>, or</u>		Formatted: TableCell
<u>water heat</u> -ISR , In Service Rate		Kit Default <u>- 35:</u> Unknown=47,%	EDC Data	Formatted: Font color: Black
	%	Direct Install	Gathering,	Formatted: Font color: Black
		DefaultElectric = 100%	<u>446</u>	Formatted: Font color: Black
		Fossil Fuel = 0%		Formatted: Font: 10 pt
ETDF _s , Summer Energy to Demand		EDC Data Gathering or		Formatted Table
Factor <i>ELEC</i> , Percentage of homes with electric water heat		Default: <u>SF: 0.0001057</u>		
	% kW	MF: 0.0001006	811,	Formatted: Font: Italic
	kWh	Unknown =35%	<u>e II</u>	Formatted: Font color: Black
		Fossil Fuel =;		Formatted: Font color: Auto
		0. 0% 0001046		Formatted: Font color: Auto
‰ _{shower-use,peak} , percentage of daily		11.7%SF: 0.0001761		Formatted: TableCell
shower use during PJM peak period <u>ETDF</u> _w , Winter Energy to Demand	$\frac{kW}{kWh}$	MF: 0.0001733	12 11	Formatted: Font: Calibri, 11 pt, Bold, Font color: Black
Factor	K VV Ta	<u>Unknown: 0.0001755</u>		Formatted: Font: 10 pt
	1	1		Formatted: Body Text

DEFAULT SAVINGS

Default savings assume an electric resistance storage water heater with RE = 0.98.

SECTION 2: ENERGY STARResidential Measures

Domestic Hot Water

Table 2-64: Default Savings for Low Flow Showerheads

Have been Trees	Low Flow	Water Heater	Energy Savings per Unit (kWh)		Demand Savings per Unit (kW)	
Housing Type	Rate (gpm)	Fuel (% electric)	Kit Delivery	Direct Install	Kit Delivery	Direct Install
	2.0	Unknown (35%)	19.9	56.8	0.0016	0.0046
Single Family	1.75	Unknown (35%)	<u>29.8</u>	<u>85.2</u>	0.0024	0.0068
	1.5	Unknown (35%)	39.8	113.6	0.0032	0.0091
	2.0	Unknown (35%)	19.7	56.2	0.0016	0.0045
Multifamily	1.75	Unknown (35%)	<u>29.5</u>	84. 3	0.0024	0.0068
	1.5	Unknown (35%)	39.3	112.4	0.0032	0.0090
Statewide	2.0	Unknown (35%)	21.2	60.6	0.0017	0.0049
(Unknown	1.75	Unknown (35%)	31.8	90.9	0.0025	0.0073
Housing Type)	1.5	Unknown (35%)	4 2.4	121.2	0.0034	0.0097
	<u>2.0</u>	Electric (100%)	56.8	162.3	0.0046	0.0130
Single Family	1.75	Electric (100%)	85.2	243.5	0.0068	0.0195
	1.5	Electric (100%)	113.6	324.6	0.0091	0.0260
	2.0	Electric (100%)	56.2	160.5	0.0045	0.0129
Multifamily	1.75	Electric (100%)	84.3	240.8	0.0068	0.0193
	1.5	Electric (100%)	112.4	321.1	0.0090	0.0257
Statewide	2.0	Electric (100%)	60.6	173.1	0.0049	0.0139
(Unknown	1.75	Electric (100%)	90.9	259.7	0.0073	0.0208
Housing Type)	1.5	Electric (100%)	121.2	346.3	0.0097	0.0278

EVALUATION PROTOCOLS

The most appropriate evaluation protocol for this measure is verification of installation coupled with EDC Data Gathering.

SOURCES

1) Efficiency Vermont, Technical Reference User Manual: Measure Savings California Electronic Technical Reference Manual. "Low-Flow Showerheads". Accessed December 2023. Weblink

2) 10 CFR 430.32(p). Weblink

- 1) Algorithms and Cost Assumptions, TRM User Manual No. 2008-53, 07/18/08, http://www.veic.org/docs/ResourceLibrary/TRM-User-Manual-Excerpts.pdf
- Aquacraft, Inc., Water Engineering and Management. The end use of hot water in single family homes from flow trace analysis. 2001. http://s3.amazonaws.com/zanran_storage/www.aquacraft.com/ContentPages/47768067.pdf
- 3)—Cadmus and Opinion Dynamics Evaluation Team-<u>for Michigan Evaluation Working Group.</u> (2013, June). Showerhead and Faucet Aerator Meter Study. For Michigan Evaluation Working Group. June 2013. Uses the federal minimum GPM allowed as the baseline for the replaced showerheads, corresponding to 2.5 GPM.

SECTION 2: ENERGY STARResidential Measures

Domestic Hot Water

4) Illinois TRM Effective June 1, 2013. Allows for varying flow rate of the low flow showerhead, most notably values of 2.0 GPM, <u>Table 6</u> 1.75 GPM and 1.5 GPM. Custom or actual values are also allowed for.	
(5)3)Table 6. Cadmus and Opinion Dynamics Evaluation Team. Showerhead and Faucet Aerator Meter Study. For Michigan Evaluation Working Group. June 2013. The study compared shower length by single-family and multifamily populations, finding no statistical difference in showering times. For the energy-saving analysis, the study used the combined single-family and multifamily average shower length of 7.8 minutes.	Formatted: Font Alignment: Baseline
 <u>U.S. Census Bureau, 2017-2021</u> American Community Survey 5-Year (2013-2017) Estimates. Weblink 	
5) Cadmus and Opinion Dynamics Evaluation Team for Michigan Evaluation Working Group. (2013, June). Showerhead and Faucet Aerator Meter Study. Table 8. For each shower fixture metered, the evaluation team knew the total number of showers taken, duration of time meters remained in each home, and total occupants reported to live in the home. From these values, the average showers taken per day, per person was calculated. The study compared showers per day, per person by single-family and multifamily populations, finding no statistical difference in the values. For the energy-saving analysis, the study used the combined single-family and multifamily average showers per day, per person of 0.6.	Formatted: source 1, Space After: 6 pt, Numbered + Level: 1 + Numbering Style: 1, 2, 3, + Start at: 1 + Alignment: Left + Aligned at: 0" + Indent at: 0.25"
6)1)2017. http://factfinder.census.gov.	Formatted: Source, Space After: 0 pt, No bullets or
7)1)Table 8. Cadmus and Opinion Dynamics Evaluation Team. Showerhead and Faucet Aerator Meter Study. For Michigan Evaluation Working Group. June 2013. For each shower fixture metered, the evaluation team knew the total number of showers taken, duration of time meters remained in each home, and total occupants reported to live in the home. From these values average showers taken per day, per person was calculated. The study compared showers per day, per person by single family and multifamily populations, finding no statistical difference in the values. For the energy-saving analysis, the study used the	numbering
combined single-family and multifamily average showers per day, per person of 0.6.	
	Formatted: Pattern: Clear
combined single-family and multifamily average showers per day, per person of 0.6. 8)6)NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 2018 Residential Baseline Study. Pg 122, table 105	Formatted: Pattern: Clear
combined single-family and multifamily average showers per day, per person of 0.6. 8)6)NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 2018-Residential Baseline Study;. Pg 122, table 105 (ELEC). Pg 130 table, 112 (N _{faucets-home}). <u>http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-</u>	
combined single-family and multifamily average showers per day, per person of 0.6. 8)6)NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 2018 Residential Baseline Study, Pg 122, table 105 (ELEC). Pg 130 table, 112 (N _{faucets-home}). <u>http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3_Res_Baseline_Study_Rpt021219.pdf</u> .Weblink	Formatted: Pattern: Clear
combined single-family and multifamily average showers per day, per person of 0.6. 8)6)NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 2018-Residential Baseline Study;. Pg 122, table 105 (ELEC). Pg 130 table, 112 (N _{faucets-home}). <u>http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-</u>	Formatted: Pattern: Clear
 combined single-family and multifamily average showers per day, per person of 0.6. 8)6)NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 2018 Residential Baseline Study, Pg 122, table 105 (ELEC). Pg 130 table, 112 (N_{faucets-home}). http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3_Res_Baseline_Study_Rpt021219.pdf. http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3_Res_Baseline_Study_Rpt021219.pdf. http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3_Res_Baseline_Study_Rpt021219.pdf. http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3_Res_Baseline_Study_Rpt021219.pdf. http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3_Res_Baseline_Study_Rpt021219.pdf. http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3_Res_Baseline_Study_Rpt021219.pdf. http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3_Res_Baseline_Study_Rpt021219.pdf. http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3_Res_Baseline_Study_Rpt021219.pdf">http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3_Res_Baseline_Study_Rpt021219.pdf. http://www.puc.state.pdf. http://www.puc.state.pdf. h	Formatted: Pattern: Clear Formatted: Pattern: Clear
 combined single-family and multifamily average showers per day, per person of 0.6. 8)6)NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 2018 Residential Baseline Study;. Pg 122, table 105 (ELEC). Pg 130 table, 112 (N_{faucets-home}). http://www.puc.state.pa.us/Electric/pdf/Act129/SWE- Phase3_Res_Baseline_Study_Rpt021219.pdf.Weblink 7) Cadmus and Opinion Dynamics Evaluation Team. for Michigan Evaluation Working Group. (2013, June). Showerhead and Faucet Aerator Meter Study_Temperature sensors provided the mixed water temperature readings resulting in an average of 101°F. 9)1)Using Rock Spring, PA (Site 2036) as a proxy, the mean_For Michigan Evaluation Working Group. June 2013, Temperature sensors provided the mixed water temperature readings 	Formatted: Pattern: Clear Formatted: Pattern: Clear
 combined single-family and multifamily average showers per day, per person of 0.6. 8)6)NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 2018 Residential Baseline Study_T. Pg 122, table 105 (ELEC). Pg 130 table, 112 (N_{faucets-home}). <u>http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3_Res_Baseline_Study_Rpt021219.pdf</u>.Weblink 7) Cadmus and Opinion Dynamics Evaluation Team. <u>for Michigan Evaluation Working Group.</u> (2013, June). Showerhead and Faucet Aerator Meter Study, <u>Temperature sensors provided</u> the mixed water temperature readings resulting in an average of 101°F. 9)1)<i>Using Rock Spring, PA (Site 2036) as a proxy, the mean</i> <u>-For Michigan Evaluation Working</u> Group. June 2013, <u>Temperature sensors provided</u> the mixed water temperature sensors provided the mixed water temperature readings resulting in an average of 101°F. 10)8) Using Rock Spring, PA (Site 2036) as a proxy, the mean of soil temperature at 40_inch depth is 51.86152.502. Calculated using Daily SCAN Standard - Period of Record data from April 1990December 2003 to December 20182023 from the Natural Resource Conservation Service Database. <u>https://wcc.sc.eqov.usda.gov/nwcc/rgrpt?report=daily_scan_por&state=PAWeblink</u>. Methodology follows Missouri TRM 2017 Volume 2: Commercial and Industrial Measures. 	Formatted: Pattern: Clear Formatted: Pattern: Clear Formatted: Font color: Custom Color(RGB(55,65,81))
 combined single-family and multifamily average showers per day, per person of 0.6. 8)6)NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 2018 Residential Baseline Study, Pg 122, table 105 (ELEC). Pg 130 table, 112 (Nfaucets-home). http://www.puc.state.pa.us/Electric/pdf/Act129/SWE- Phase3_Res_Baseline_Study_Rpt021219.pdf.Weblink 7) Cadmus and Opinion Dynamics Evaluation Team. for Michigan Evaluation Working Group. (2013, June). Showerhead and Faucet Aerator Meter Study, Temperature sensors provided the mixed water temperature readings resulting in an average of 101°F. 9)1) Using Rock Spring, PA (Site 2036) as a proxy, the mean -For Michigan Evaluation Working Group. June 2013, Temperature sensors provided the mixed water temperature readings resulting in an average of 101°F. 10)8) Using Rock Spring, PA (Site 2036) as a proxy, the mean of soil temperature at 40_inch depth is 51.86152.502. Calculated using Daily SCAN Standard - Period of Record data from April 1999December 2003 to December 20182023 from the Natural Resource Conservation Service Database. https://wcc.sc.eqov.usda.gov/nwcc/rgrpt?report=daily_scan_por&state=PAWeblink. 	Formatted: Pattern: Clear Formatted: Pattern: Clear Formatted: Font color: Custom Color(RGB(55,65,81))
 combined single-family and multifamily average showers per day, per person of 0.6. 8)6)NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 2018 Residential Baseline Study,. Pg 122, table 105 (ELEC). Pg 130 table, 112 (N_{faucets-home}). http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3_Res_Baseline_Study_Rpt021219.pdf.Weblink 7) Cadmus and Opinion Dynamics Evaluation Team. for Michigan Evaluation Working Group. (2013, June). Showerhead and Faucet Aerator Meter Study, Temperature sensors provided the mixed water temperature readings resulting in an average of 101°F. 9)1)Using Rock Spring, PA (Site 2036) as a proxy, the mean -For Michigan Evaluation Working Group. June 2013, Temperature sensors provided the mixed water temperature readings resulting in an average of 101°F. 10)8) Using Rock Spring, PA (Site 2036) as a proxy, the mean of soil temperature at 40-inch depth is 51.86152.502. Calculated using Daily SCAN Standard - Period of Record data from April 1999December 2003 to December 20182023 from the Natural Resource Conservation Service Database. https://wcc.sc.egov.usda.gov/nwcc/rgrpt?report=daily_scan_por&state=PAWeblink. Methodology follows Missouri TRM 2017 Volume 2: Commercial and Industrial Measures. p-(2017, March). "2.6.1 Water Heater". Pg 78. 	Formatted: Pattern: Clear Formatted: Pattern: Clear Formatted: Font color: Custom Color(RGB(55,65,81))
 combined single-family and multifamily average showers per day, per person of 0.6. 8)6)NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 2018 Residential Baseline Study;. Pg 122, table 105 (ELEC). Pg 130 table, 112 (N_{faucets-home}). http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3_Res_Baseline_Study_Rpt021219.pdf.Weblink 7) Cadmus and Opinion Dynamics Evaluation Team: for Michigan Evaluation Working Group. (2013, June). Showerhead and Faucet Aerator Meter Study. Temperature sensors provided the mixed water temperature readings resulting in an average of 101°F. 9)1)Using Rock Spring, PA (Site 2036) as a proxy, the mean_For Michigan Evaluation Working Group. June 2013, Temperature sensors provided the mixed water temperature readings resulting in an average of 101°F. 10)8) Using Rock Spring, PA (Site 2036) as a proxy, the mean of soil temperature at 40-inch depth is 51.86152.502. Calculated using Daily SCAN Standard - Period of Record data from April 1999December 2003 to December 20182023 from the Natural Resource Conservation Service Database. https://wcc.sc.egov.usda.gov/nwcc/rgrpt?report=daily_scan_por&state=PAWeblink. Methodology follows Missouri TRM 2017 Volume 2: Commercial and Industrial Measures. p.(2017, March). "2.6.1 Water Heater". Pg 78. https://energy.mo.gov/sites/energy/files/MOTRM2017Volume2.pdfWeblink 11) AHRI Directory. All electric storage water heaters have a recovery efficiency of 0.98. Average recovery efficiency for heat pump water heaters is 3.93. Accessed December 2023. 	Formatted: Pattern: Clear Formatted: Pattern: Clear Formatted: Font color: Custom Color(RGB(55,65,81))
 combined single family and multifamily average showers per day, per person of 0.6. 8)6)NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 2018 Residential Baseline Study, Pq 122, table 105 (ELEC). Pg 130 table, 112 (N_{faucets-home}). http://www.puc.state.pa.us/Electric/pdf/Act129/SWE- Phase3_Res_Baseline_Study_Rpt021219.pdf.Weblink 7) Cadmus and Opinion Dynamics Evaluation Team, for Michigan Evaluation Working Group. (2013, June). Showerhead and Faucet Aerator Meter Study, Temperature sensors provided the mixed water temperature readings resulting in an average of 101°F. 9)1)Using Rock Spring, PA (Site 2036) as a proxy, the mean_For Michigan Evaluation Working Group. June 2013, Temperature sensors provided the mixed water temperature readings resulting in an average of 101°F. 10)8) Using Rock Spring, PA (Site 2036) as a proxy, the mean-of soil temperature at 40-inch depth is 51.86152.502. Calculated using Daily SCAN Standard - Period of Record data from April 1999December 2003 to December 20182023 from the Natural Resource Conservation Service Database. https://wcc.sc.egov.usda.gov/nwcc/rgrpt?report=daily_scan_por&state=PAWeblink. 11) AHRI Directory. All electric storage water heaters have a recovery efficiency of 0.98. Average recovery efficiency for heat pump water heaters is 3.93. Accessed December 2023. https://www.ahridirectory.org/NewSearch?programId=24&searchTypeId=Weblink3 12)9) Aquacraft, Inc., Water Engineering 1.22 for unknown type calculated as the weighted 	Formatted: Pattern: Clear Formatted: Pattern: Clear Formatted: Font color: Custom Color(RGB(55,65,81))

Domestic Hot Water

the relative proportions of hot water in single family homeselectric resistance and HPWHs from flow trace analysis. 2001.

 $\begin{array}{l} \label{eq:http://s3.amazonaws.com/zanran_storage/www.aquacraft.com/ContentPages/47768067.pdf.\\ The statewide values were used for inputs in the ETDF algorithm components. The CF for showerheads is found to be 0.00380: [% showerhead use during peak × ($ *Tperson-day*×*Nperson*×*Nshowerheads-home*)] / 240 (minutes in peak period) = [11.7% < (7.8 × 2.5 × 0.6 / 1.5)] / 240 = 0.00371. The Hours for showerheads is found to be 47.5: (*Tperson-day*×*Nperson*×*Nshowerheads-home*) / 60 = (7.8 × 2.5 × 0.6 × 365) / 1.5 / 60 = 47.5. The resulting ETDF is calculated to be 0.0008014:*CF | Hours* $= 0.00380 / 47.5 = 0.0008014 the 2023 PA residential baseline study_$

- 13) NEEA Heat Pump Water Heater Field Study Report. Prepared by Fluid Market Strategies. October 22, 2013. <u>https://neea.org/img/uploads/heat-pump-water-heater-field-study-report.pdf</u>
- 14) Average of PY9 values for kit delivery for FirstEnergy EDCs. http://www.puc.pa.gov/filing_resources/issues_laws_regulations/act_129_information/electric_ __distribution_company_act_129_reporting_requirements.aspx

Formatted: Hyperlink

SECTION 2: ENERGY STARResidential Measures

Domestic Hot Water

- 10) Weighted average of ISRs from surveys of FirstEnergy customers that received showerheads in kits in PY13 and PY14.
- 11) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink

SECTION 2: ENERGY STARResidential Measures

Domestic Hot Water

2.3.92.3.8 THERMOSTATIC SHOWER RESTRICTION VALVES

Target Sector	Residential Establishments			
Target Sector	Residential			
Measure Unit	Water Heater			
Measure Life	15 years ^{Source 1}			
Vintage	Retrofit			

This measure relates to the installation of a device that reduces hot water usage during shower warm-up by way of a thermostatic shower restriction valve, reducing hot water waste during shower warm-up.

ELIGIBILITY

This protocol documents the energy savings attributable to installing a thermostatic restriction valve, device, or equivalent product on an existing showerhead. Only homes with electric water heaters are eligible. Savings associated with this measure may be combined with a low-_flow showerhead as the sum of the savings of the two measures. The target sector primarily consists of residences.

ALGORITHMS

ALGORITHMS

The annual energy savings are obtained through the following formula:

 $\Delta kWh = \frac{GPM_{base} \times 8.3 \times (T_{out} - T_{in})}{3412 \times RE} \times \frac{BehavioralWasteSeconds \times (N_{persons} \times N_{showers-day}) \times 365}{60 \times N_{showerheads-h}} \times ISR \times ELEC$ $\Delta kW_{summer peak} = \Delta kWh \times ETDF_{s}$ $\Delta kW_{winter peak} = \Delta kWh \times ETDF_{w}$

DEFINITION OF TERMS

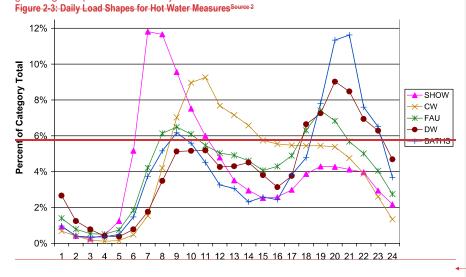
∆kWh	$= ISR \times ELEC \times \frac{-GPM_{base} \times 8.3 \frac{BTU}{gal^{2m}} \times (T_{out} - T_{in})}{3412 \frac{BTU}{kW} \times RE}$
	$\frac{BehavioralWasteSeconds \times (N_{persons} \times N_{showers=day}) \times 365 \frac{days}{yr}}{60 \frac{Sec}{min} \times N_{showerheads=home}}$

 $\Delta kW_{peak} = \Delta kWh \times ETDF$

The ratio of the average energy usage during 2 PM and 6 PM on summer weekdays to the total annual energy usage is taken from average daily load shape data collected for showerheads from an Aquacraft, Inc study.^{Source-2} The average daily load shapes (percentages of daily energy usage

SECTION	Ζ:	ENERGI	STARResidential	
Measures				

Domestic Hot Water


Formatted: Space After: 0 pt
Formatted: Font: Arial Black, Bold, Underline
Formatted: Normal, Space After: 6 pt

Formatted: Font: Arial, Not Bold, No underline

Formatted: Don't keep with next

that occur within each hour) during are plotted in Figure 2-3: Daily Load Shapes for Hot Water Measures below (symbol SHOW represents showerheads).⁴⁵

A default in-service rate (ISR) of 100% is permissible for direct-install programs, but EDC datagathering is required for kit delivery.

Formatted: SubStyle

DEFINITION OF TERMS

Default savings assume an electric resistance storage water heater with RE = 0.98.

Table 2-74: Terms, Values, and References for Thermostatic Shower Restriction Valve

Parameter	Unit	Value	Source
GPM _{Bdse} , Gallons per minute of baseline showerhead	gallons min	EDC Data Gathering or Default: Standard shower head=_2.5 Low Flow Shower Head=1.50	3 <u>5</u>
<u><i>T_{out}</i>, Assumed temperature of water used by</u> <u>showerhead</u>	<u>°</u> <i>F</i>	EDC Data Gathering or Default: 104	
<u><i>T_{in}</i> Assumed temperature of water entering</u> <u>house</u>	<u>°</u> <i>F</i>	<u>53</u>	<u>7</u>
<u>RE</u> , Recovery efficiency of electric water heater	<u>Proportion</u>	<u>Default:</u> <u>Electric resistance: 0.98</u> <u>HPWH: 3.93</u> <u>Unknown: 1.22</u>	<u>8</u>
BehavioralWasteSeconds, Time	<u>sec</u>	EDC Data Gathering or Default = 59	<u>6</u>

⁴⁵ SHOW = showers, CW = clothes washers, FAU = Faucets, DW = dishwashers, BATHS = baths. SHOW is the relevant curve for this measure.

SECTION 2: ENERGY STARResidential Measures

Domestic Hot Water

Parameter	Unit	Value	Source	
$N_{\it persons},$ Average number of persons per household	persons household	EDC Data Gathering or Default: SF=2. <u>56</u> MF=1.7 Unknown=2. <u>54</u>	4 <u>3</u>	
<i>N_{Showers-Day}</i> , Average number of showers per person per day	showers person · day	0.6	<u>54</u>	
<i>N_{showerheads-home}</i> , Average number of showerhead fixtures in the home	Noneunits	EDC Data Gathering or Default: SF=1. <u>69</u> MF=1.4 <u>2</u> Unknown = 1. <u>57</u>	6 <u>5</u>	
<i>T_{out}</i> , Assumed temperature of water used by showerhead	<u>∘</u> F	EDC Data Gathering or Default: 104	7	
<i>T_{in}</i> , Assumed temperature of water entering house	<u>∘</u> F	52	8	
<i>RE</i> , Recovery efficiency of electric water heater	Proportion	Default: 0.98 HPWH: 2.1	9, 11	
ETDF, Energy To Demand Factor	<u>k₩</u> <u>k₩h/yr</u>	0.00008014	10	
ISR, In-Service Rate	~	EDC Data Gathering	EDC Data	Formatted: Font: Cambria Math, Italic
	%	Default, direct install: 100%	Gathering <	Formatted: Space Before: 3 pt, After: 3 pt
<i>ELEC</i> , Percentage of homes with electric water heat	%	EDC Data Gathering or Default: Electric = 100% Fossil Fuel = 0.0% Unknown=3547%.	6 <u>5</u>	Formatted: Font color: Auto
<i>BehavioralWasteSeconds</i> , Time <u>ETDFs,</u> Summer Energy to Demand Factor	sec_kW kWh	EDC Data Gathering or Default = 59SF: 0.0001057 MF: 0.0001006 Unknown: 0.0001046	7 <u>9</u>	Formatted: Point Color: Auto Formatted: Normal Formatted: Left Formatted: Space Before: 3 pt, After: 3 pt
<u>ETDF₈₆</u> Winter Energy to Demand Factor	kW kWh	<u>SF: 0.0001761</u> <u>MF: 0.0001733</u> <u>Unknown: 0.0001755</u>	<u>9</u>	

DEFAULT SAVINGS

Default savings values should only be used for direct install delivery. <u>For other delivery methods</u>, <u>EDCs must estimate and apply an ISR appropriate to the delivery method</u>.

Table 2-75: Default Savings for Thermostatic Restriction Valve

	Baseline		Energy	Deals				Deleted Cells
	Flowrate (GPM)	Water Heate	Savings (kWh/yr)Wat	e Demand		A		Inserted Cells
Application <u>H</u> ousing Type		Fuel (% electric)	r Heater Typ	e Reduction (kW) ΔkWh	A 1-1A/	A 1/10/		Inserted Cells
Single Fa	amily	2,5 100%	Unknown (35%)Electric		ΔkW _{summer}			Formatted: Font: Arial, 9 pt, Bold, Not Italic, Font color: Black
3			Resistance					Formatted: Font: 9 pt
		2	Unknown (35%)	30.4	0.0024		$\langle \rangle$	Formatted: Font: 9 pt
		1.5	Unknown	22.8	0.0018			Formatted: Font: 9 pt
	ENERCY	STADD	(35%)					Inserted Cells
SECTION 2: Measures	ENERGY	STARRes	lidential					
omestic Hot W	ator					Page 133		

Domestic Hot Water

1	Г		Unknown				
Multifamily		2.5 100%	Unknown (35%)HPWH	37<u>18</u>,6	0.00300020	0.0033	Formatted: Font: 9 pt
		2 100%	Unknown	30.1 59.9	0.00240063	0.0106	Formatted: Font: 9 pt
A			(35%)				Inserted Cells
		1.5	(35%)	22.6	0.0018		Merged Cells
Unknown / Defa	ult Housing	2.547%	Unknown (35%)	40.528.2	0.00320030	0.0050	Formatted: Justified
Type			Unknown		0.0000		Formatted: Font: 9 pt
		2	(35%)	32.4	0.0026		Formatted: Font: 9 pt
		1.5	Unknown (35%)	24.3	0.0019		Split Cells
		2.5	Electric	108.6	0.0087		Formatted: Font color: Black
	-		(100%) Electric				Merged Cells
Single Family		2	(100%)	86.9	0.0070		Formatted: Justified
		1.5	Electric (100%)	65.1	0.0052		Formatted: Font: 9 pt
			Electric				Formatted: Font: 9 pt
Multifan	nily	2.5<u>100%</u>	(100%)Resista	107.4<u>77.2</u>	0.00860078	0.0134	Inserted Cells
	2	Electric	nce				Formatted: Font: 9 pt, Font color: Black
		(100 %) %	85.9 <u>HPWH</u>	<u>19.3</u>	0.00690019	0.0033	Formatted: Font: 9 pt
	1.5	Electric (100%)%	64.4 <u>Unknown</u>	<u>62.0</u>	0.00520062	0.0108	Formatted: Font: 9 pt, Font color: Black
		47%	Unknown	29.2	0.0029	0.0051	Inserted Cells
			Electric		0.0020		Formatted: Centered
Unknown – Housing		<u>2.547%</u>	(100%) <u>Unkno</u>	115.8 <u>29.1</u>	0.00930030	0.0051	Formatted: Font color: Auto
loconig			Electric				Deleted Cells
		2	(100%)	92.7	0.0074		Formatted: Font: 9 pt
		1.5	Electric (100%)	69.5	0.0056		Formatted: Font: 9 pt
			(10070)				Formatted: Font: 9 pt, Font color: Black
						188 111	K .

EVALUATION PROTOCOLS

The most appropriate evaluation protocol for this measure is verification of installation coupled with EDC Data Gathering.

SOURCES

- 1) Uniform Plumbing Code (UPC) certification under the International Association of Plumbing and Mechanical Officials standard IGC 244-2007a stipulates device must meet 10,000 cycles without failure. Measure life: $[10,000 \text{ cycles} / (N_{persons} x N_{showers-day} x 365)] = [10,000 / (2.5 x 0.6 x 365)] = 18 \text{ years}$. Note that measure life is calculated to be 18 years; however, PA Act 129 savings can be claimed for no more than 15 years.
- Aquacraft, Inc., Water Engineering and Management. The end use of hot water in single family homes from flow trace analysis. 2001. http://s3.amazonaws.com/zanran_storage/www.aquacraft.com/ContentPages/47768067.pdf.
- 3)2)Cadmus and Opinion Dynamics Evaluation Team. Showerhead and Faucet Aerator Meter Study. For Michigan Evaluation Working Group. June 2013. Uses the federal minimum GPM allowed as the baseline for the replaced showerheads, corresponding to 2.5 GPM.
- 3) U.S. Census Bureau, 2017-2021 American Community Survey 5-Year (2013-2017) Estimates. Weblink

SECTION Measures	2:	ENERGY	STARResidential

Domestic Hot Water

Inserted Cells

Split Cells

Formatted: Font: 9 pt

Formatted: Centered

Formatted: Font: 9 pt

Formatted: Font color: Auto

Inserted Cells

numbering

Formatted: Font: 9 pt, Font color: Black

Formatted: Source, Space After: 0 pt, No bullets or

4) Table 8. Cadmus and Opinion Dynamics Evaluation Team. Showerhead and Faucet Aerator Meter Study. For Michigan Evaluation Working Group. June 2013. For each shower fixture metered, the evaluation team knew the total number of showers taken, duration of time meters remained in each home, and total occupants reported to live in the home. From these values average showers taken per day, per person was calculated. The study compared showers per day, per person by single-family and multifamily populations, finding no statistical difference in the values. For the energy-saving analysis, the study used the combined single-family and multifamily average showers per day, per person of 0.6.

4) for 2017. http://factfinder.census.gov.

- 5)1)Table 8. Cadmus and Opinion Dynamics Evaluation Team. Showerhead and Faucet Aerator* Meter Study. For Michigan Evaluation Working Group. June 2013. For each shower fixture metered, the evaluation team knew the total number of showers taken, duration of time meters remained in each home, and total occupants reported to live in the home. From these values average showers taken per day, per person was calculated. The study compared showers per day, per person by single-family and multifamily populations, finding no statistical difference in the values. For the energy saving analysis, the study used the combined single-family and multifamily average showers per day, per person of 0.6.
- 6)5)NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 2018 Residential Baseline Study, http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3 Res_Baseline_Study_Rpt021219.pdf.-. Pg 122, table 105 (ELEC). Pg 130 table, 115 (GPMbase, Nshowerheads-home). Weblink
- 7)6)PPL Electric 2014 ShowerStart Pilot Study. Cadmus memo to PPL Electric in November 2014. The previous T_{out} value was based on the average water temperature of the entire shower, whereas this pilot study T_{out} value is based on the average water temperature of the period after the user resumed the water flow by pulling the ShowerStart cord. This pilot study T_{out} value is more accurate than the previous value because it excludes the warmup phase of the shower and thus reflects the temperature of the water saved by the ShowerStart device during the behavioral waste period more accurately. The BehavioralWasteSeconds value represents the average time the ShowerStart device is engaged during a shower. The BehavioralWasteSeconds value includes instances when the user did not engage the ShowerStart device (instances when BehavioralWasteSeconds = 0s).
- 8)7) Using Rock Spring, PA (Site 2036) as a proxy, the mean of soil temperature at 40-inch depth is 51.86152.502. Calculated using Daily SCAN Standard - Period of Record data from April 1999 December 2003 to December 20182023 from the Natural Resource Conservation Service Database.

https://wcc.sc.egov.usda.gov/nwcc/rgrpt?report=daily_scan_por&state=PAWeblink. Methodology follows Missouri TRM 2017 Volume 2: Commercial and Industrial Measures. p.(2017, March). "2.6.1 Water Heater". Pg 78. https://energy.mo.gov/sites/energy/files/MOTRM2017Volume2.pdfWeblink

- 9)—AHRI Directory. All electric storage water heaters have a recovery efficiency of 0.98. https://www.ahridirectory.org/Search/SearchForm?programId=24&searchTypeId=2
- 10) Aquacraft, Inc., Water Engineering and Management. The end use of hot<u>Average recovery efficiency for heat pump</u> water in single family homes from flow trace analysis. 2001. <u>http://s3.amazonaws.com/zanran_storage/www.aquacraft.com/ContentPages/47768067.pdf</u>. The statewide values were used for inputs in the ETDF algorithm components. The CF for showerheads<u>heaters</u> is found to be 0.00380: [% showerhead use during peak × (T_{Person-Day}× N_{Person} × N_{showers-day}) /(N_{showerheads-home})] / 240 (minutes in peak period) = [11.7% × (7.8 x 2.5 x 0.6-/3.93. Accessed December 2023. Weblink 1.5)] / 240 = 0.00380. The Hours for showerheads is found to be 47.5: (T_{Person-Day}× N_{Persons} × 365) /(N_{showerheads-home}) / 60 = (7.8 x 2.5 × 0.6 x 365) / 1.5 / 60 = 47.5. The resulting ETDF is22 for unknown type calculated to be 0.0008014: CF / Hours = 0.00380 / 47.5 = 0.00008014.

SECTION	2:	ENERGY	STARResidential
Measures			

Domestic Hot Water

Formatted: source 1, Space After: 6 pt, Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0" + Indent at: 0.25"

- 8)__NEEA Heat Pump Water Heater Field Study Report. Preparedas the weighted average of electric resistance and HPWH recover efficiencies by Fluid Market Strategies. October 22, 2013. <u>https://neea.org/img/uploads/heat-pump-water-heater-field-study-report.pdfthe relative</u> proportions of electric resistance and HPWHs from the 2023 PA residential baseline study.
- 9) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink

SECTION 2: E Measures

ENERGY STARResidential

Domestic Hot Water

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
May 2024				

2.3.102.3.9 DRAIN WATER HEAT RECOVERY UNITS

Target Sector	Residential Establishments		
Measure Unit	Drain Water Heat Recovery Unit		
Measure Life	15 years ^{Source 121}		
Vintage	Retrofit, New Construction		

This measure relates to the installation of a vertical drain water heat recovery unit in homes with electric water heaters. Drain water heat recovery units capture waste heat from shower greydrain water and use it to preheat cold water that is delivered to the showerfixture's mixing valve, the water heater, or both. Savings are calculated per drain water heat recovery unit. A term is included to accommodate multifamily buildings with multiple units' drains connected to a single drain water heat recovery unit.

ELIGIBILITY

ELIGIBILITY

This protocol documents the energy savings attributable to installing a vertical drain water heat recovery unit to a shower drain pipe. The target sector primarily consists of residences.

ALGORITHMS

ALGORITHMS

The algorithms for annual energy savings and peak demand savings are obtained through the following formulashown below:

 ΔkWh

 $=\frac{(T_{out} - T_{in}) \times 8.3 \frac{BTU}{gal \cong Y} \times GPM \times T_{perso-day} \times N_{persons} \times N_{showers-day} \times N_{units} \times 365 \frac{days}{yr} \times SF}{3412 \frac{BTU}{kW} \times RE}$

 $-= \Delta = \Delta kWh \times ETDF_s$

 $\Delta kWh = \frac{(T_{out} - T_{in}) \times 8.3 \times GPHD \times 365 \times SF}{3412 \times RE}$

 $\Delta k W_{peak} k W_{summer peak}$

 $\Delta k W_{winter \ peak}$ $= \Delta kWh \times \frac{ETDF}{ETDF}_{W}$

DEFINITION OF TERMS

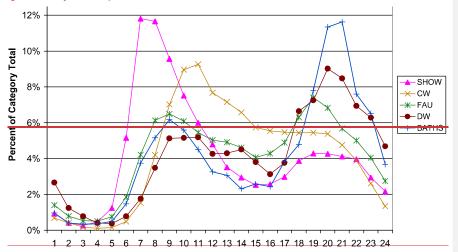
Where:	
	CF
ETDF	=
Given:	100
CF	$-\frac{W_{showe} - use, peak}{V_{person-day}} \times N_{persons} \times N_{showers-day}$
UP	240 minutes daily.peak

ENERGY SECTION 2: STARResidential Measures Domestic Hot Water

Formatted: Body Text

Formatted: Font: Not Bold, No underline Formatted: Body Text, Space After: 0 pt

Formatted: Normal


Formatted: Body Text

ноп –	$T_{\frac{person-day}{yr}} \times N_{\frac{persons}{yr}} \times N_{\frac{showers-day}{yr}} \times 365 \frac{days}{yr}$
	60 ^{minutes}

The ratio of the average energy usage during 2 PM and 6 PM on summer weekdays to the total annual energy usage is taken from average daily load shape data collected for showerheads from an Aquacraft, Inc study.^{Source_8}. The average daily load shapes (percentages of daily energy usage that occur within each hour) during are plotted in Figure 2-2 below (symbol SHOW represents showerheads).⁴⁶

Figure 2-4: Daily Load Shapes for Hot Water Measures Source 2

DEFINITION OF TERMS

Table 2-76: Terms, Values, and References for Drain Water Heat Recovery Units

Term	Unit	Value Sour	
<i>ATout,</i> Assumed temperature of water used by showerhead	° <i>F</i>	° <i>F</i> 101	
<i>[*]Tin,</i> Assumed temperature of water entering house	° <i>F</i> <u>5253</u>		<u>63</u>
GPM, Gallons per minute of showerhead	gallons minute	Default standard = 2.5 Low-flow = EDC Data Gathering ⁴⁷	1
<i>T_{person_day}</i> , Average time of shower usage per person (minutes)	minutes day	7.8	2

Formatted: Normal

Formatted: Font: Cambria Math

Formatted: Font: Cambria Math

⁴⁷ The low-flow showerhead GPM should be used where both a low-flow showerhead and a drain water heat recovery unit are installed in the same home. SECTION 2: ENERGY STARResidential

SECTION	2:	ENERGY	STARRe
Measures			

Domestic Hot Water

⁴⁶-SHOW = showers, CW = clothes washers, FAU = Faucets, DW = dishwashers, BATHS = baths. SHOW is the relevant curve for this measure.

Term	Unit	Value	Source	
N _{persons} , Average number of persons per household	persons- house	EDC Data Gathering or Default SF=2.5 Default MF=1.7 Default unknown=2.5	3	
N _{showers-aay} , Average number <u>GPHD.</u> Gallons of showershot water use per person <u>household</u> per day	showers gallon person · day day	0-6 <u>Shower only: 17.8</u> Whole house: 45.5	4	
N _{units} , Number of units in a multifamily building with drains connected to the drain water heat recovery unit.	Units	SF: 1 MF: 1 or EDC Data Gathering	-	
SF, Water heating energy savings factor	%	30%	10, 11<u>5</u>	Formatted: Font: Cambria Math
RE, Recovery efficiency of electric water		Default:		Formatted: Font: Cambria Math
heater	Proportion	<u>Resistance: 0</u> .98 HPWH: 2.<u>3</u>.93 <u>Unknown: 1.22</u>	7, 9<u>6</u>	Formatted: TableCell
<u>ETDF ,ETDFs, Summer, Energy Toto</u>		<u>SF:</u>		Formatted: Font color: Auto
Demand Factor	k₩_ k₩ k₩h/yr kWh	0.000080130001057 MF: 0.0001006 Unknown: 0.0001046	8 <u>7</u>	Formatted: Font color: Auto Formatted Table
‰ _{shower-use;peak, percentage of daily shower-use during PJM peak period<i>ETDF</i>_w, Winter Energy to Demand Factor}	$\frac{kW}{kWh}$	11.7% <u>SF: 0.0001761</u> <u>MF: 0.0001733</u> <u>Unknown: 0.0001755</u>	8 <u>7</u>	
	·			Formatted: Border: Bottom: (No border)

DEFAULT SAVINGS

DEFAULT SAVINGS

Housing	Flow	Energy Sav Unit (k		Demand Savings per Unit (kW)		
Type	Rate (gpm)	Electric Resistance	HPWH	Electric Resistance	HPWH	
	<u>2.5</u>	365.7	170.7	0.0293	0.0137	
Single Family/ Unknown	2.0	292.6	136.5	0.0234	0.0109	
	1.75	256.0	119.5	0.0205	0.0096	
	1.5	219.4	102.4	0.0176	0.0082	
	<u>2.5</u>	<u>248.7</u>	116.1	0.0199	0.0093	
Multifamily	<u>2.0</u>	198.9	92.8	0.0159	0.0074	
	1.75	174.1	81.2	0.0139	0.0065	
	1.5	149.2	69.6	0.0120	0.0056	

Table 2-77: Default Savings for Drain Water Heat Recovery Unit

SECTION Measures	2:	ENERGY	STARResidential	
Domontia LI	ot \//	ator		

Domestic Hot Water

Formatted: Border: Bottom: (No border)

		Shower Only			Whole House		
Housing Type	<u>Water</u> Heater	Peak Demand Energy Savings (kW)			Energy Energy		
	<u>Type</u>	<u>Savings</u> (<u>kWh)</u>	<u>Summer</u>	<u>Winter</u>	<u>Savings</u> (kWh)	<u>Summer</u>	<u>Winter</u>
	Resistance	<u>232.2</u>	<u>0.0245</u>	<u>0.0409</u>	<u>593.6</u>	0.0627	<u>0.1045</u>
<u>Single</u> Family	<u>HPWH</u>	<u>57.9</u>	<u>0.0061</u>	<u>0.0102</u>	<u>148.0</u>	<u>0.0156</u>	<u>0.0261</u>
	<u>Unknown</u> <u>Electric</u>	<u>186.5</u>	<u>0.0197</u>	<u>0.0329</u>	<u>476.8</u>	<u>0.0504</u>	<u>0.0840</u>
	Resistance	<u>232.2</u>	<u>0.0234</u>	<u>0.0402</u>	<u>593.6</u>	<u>0.0597</u>	<u>0.1029</u>
Multifamily	<u>HPWH</u>	<u>57.9</u>	<u>0.0058</u>	<u>0.0100</u>	<u>148.0</u>	<u>0.0149</u>	<u>0.0257</u>
	<u>Unknown</u> <u>Electric</u>	<u>186.5</u>	<u>0.0188</u>	<u>0.0323</u>	<u>476.8</u>	<u>0.0480</u>	<u>0.0826</u>
	Resistance	<u>232.2</u>	<u>0.0243</u>	<u>0.0408</u>	<u>593.6</u>	<u>0.0621</u>	<u>0.1042</u>
<u>Unknown</u>	<u>HPWH</u>	<u>57.9</u>	<u>0.0061</u>	<u>0.0102</u>	<u>148.0</u>	<u>0.0155</u>	<u>0.0260</u>
	Unknown Electric	<u>186.5</u>	<u>0.0195</u>	0.0327	<u>476.8</u>	<u>0.0499</u>	<u>0.0837</u>

EVALUATION PROTOCOLS

The most appropriate evaluation protocol for this measure is verification of installation coupled with EDC Data Gathering.

SOURCES

- 1) Sachs, H., Talbot J., Kaufman N. (2012, February) "Emerging Hot Water Technologies and Practices for Energy Efficiency as of 2011". Pg 69. ACEEE. Weblink. Note that measure life is defined as 30 years; however, PA Act 129 Legislation caps measure life at 15 years.
- 4) Cadmus and Opinion Dynamics for Michigan Evaluation Team.Working Group. (2013, June). Showerhead and Faucet Aerator Meter Study. For Michigan Evaluation Working Group. June 2013. Uses the federal minimum GPM allowed as the baseline for the replaced showerheads, corresponding to 2.5 GPM.
- 2) Table 6. Cadmus and Opinion Dynamics Evaluation Team. Showerhead and Faucet Aerator Meter Study. For Michigan Evaluation Working Group. June 2013. The study compared shower length by single-family and multifamily populations, finding no statistical difference in showering times. For the energy-saving analysis, the study used the combined single-family and multifamily average shower length of 7.8 minutes.
- 3) American Community Survey 5-Year (2013-2017) Estimates for 2017. http://factfinder.census.gov.
- 4) Table 8. Cadmus and Opinion Dynamics Evaluation Team. Showerhead and Faucet Aerator Meter Study. For Michigan Evaluation Working Group. June 2013. For each shower fixture metered, the evaluation team knew the total number of showers taken, duration of time meters remained in each home, and total occupants reported to live in the home. From these values average showers taken per day, per person was calculated. The study compared

Domestic Hot Water

Formatted: Left

Page 140

Formatted: Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0" + Indent at: 0.25"

Technical Reference Manual, Vol. 2: Residential Measures - Rev Date: Feb. 2021 State of Pennsylvania -May 2024

showers per day, per person by single-family and multifamily populations, finding no statistical difference in the values. For the energy-saving analysis, the study used the combined single-family and multifamily average showers per day, per person of 0.6.

- 5)2)Cadmus and Opinion Dynamics Evaluation Team. Showerhead and Faucet Aerator Meter Study. For Michigan Evaluation Working Group. June 2013. Memorandum. Temperature sensors provided the mixed water temperature readings resulting in an average of 101°F.
- 6)3)Using Rock Spring, PA (Site 2036) as a proxy, the mean of soil temperature at 40-inch depth is 51.86152.502. Calculated using Daily SCAN Standard - Period of Record data from April 1999 to December 20182003 to December 2023 from the Natural Resource Conservation Service Database.

https://wcc.sc.egov.usda.gov/nwcc/rgrpt?report=daily_scan_por&state=PAWeblink. Methodology follows Missouri TRM 2017 Volume 2: Commercial and Industrial Measures. p. 78. https://energy.mo.gov/sites/energy/files/MOTRM2017Volume2.pdf.

- 4) DeOreo, W., Mayer, P., Dziegielewski, B., Kiever, J. for Water Research Foundation. (2016, April). "Residential End Uses of Water, Version 2 Executive Report." Page 5, Table 1. Weblink
- 7) AHRI Directory. All electric storage water heaters have a recovery efficiency of .98. https://www.ahridirectory.org/Search/SearchForm?programId=24&searchTypeId=2
- 8) Aquacraft, Inc., Water Engineering and Management. The end use of hot water in single family homes from flow trace analysis. 2001. http://s3.amazonaws.com/zanran_storage/www.aquacraft.com/ContentPages/47768067.pdf. The statewide values were used for inputs in the ETDF algorithm components. The CF for showerheads is found to be 0.00380: [% showerhead use during peak × (TPerson-Day × NPerson × $N_{\text{showers-day}} / (N_{\text{showerheads-home}}) / 240 \text{ (minutes in peak period)} = [11.7\% \times (7.8 \times 2.5 \times 0.6 / 1.5)]$ /240 = 0.00380. The Hours for showerheads is found to be 47.5: (TPerson Day × NPersons × 365) /($N_{\text{showerheads-home}}$ / 60 = (7.8 x 2.5 x 0.6 x 365) / 1.5 / 60 = 47.5. The resulting ETDF is calculated to be 0.00008014: CF / Hours = 0.00380 / 47.5 = 0.00008014.
- 9) NEEA Heat Pump Water Heater Field Study Report. Prepared by Fluid Market Strategies. October 22, 2013. https://neea.org/img/uploads/heat-pump-water-heater-field-studyreport.pdf

10)5) Heat Recovery from Wastewater Using a Gravity-Film Heat Exchanger, Department of Energy Federal Energy Management Program. U.S. DOE Federal Energy Management Program report DOE/EE-0247 Revised. July, 2005. Lower end of 30 - 50% range estimated for different devices and installation configurations (equal, unequal to water heater, and unequal to shower).

https://www.fpl.fs.fed.us/documnts/informationalkits/infokit_0003_DrainwaterFact%20Sheet.p dfWeblink

- AHRI Directory. All electric storage water heaters have a recovery efficiency of 0.98. Average recovery efficiency for heat pump water heaters is 3.93. Accessed December 2023. Weblink 1.22 for unknown type calculated as the weighted average of electric resistance and HPWH recover efficiencies by the relative proportions of electric resistance and HPWHs from the 2023 PA residential baseline study.
- 7) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink

ENERGY SECTION 2: Measures

STARResidential

Domestic Hot Water

Formatted: Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0" + Indent at: 0.25'

Formatted: Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0" + Indent at: 0.25"

2.3.10 SMART WATER HEATER CONTROLS

Target Sector	Residential	
Measure Unit	Water Heater Controller	
Measure Life	11 years ^{Source 1}	
Vintage	Replace on Burnout, New Construction	Formatted Table

Smart water heater controls prevent the unnecessary heating of water. They use analytics to learn household water use patterns and heat water only at times of anticipated need. Smart controllers also have a user interface to allow manual control settings (i.e., scheduling) and help customers understand and act on water heating energy usage. The controllers reduce unnecessary reheat during periods of low demand while the water heater idles and the temperature drifts within an acceptable range.

Smart Water Heater Controls add a web-enabled control box that functions as a junction box to an electric tank's power source, so it turns on/off the power to the tank per the control algorithm or customer commands. Smart Water Heater Controls will have functions that are located in the home and on the Internet (the cloud). Homes with Wi-Fi can enable full operating capabilities or utilize a cellular option. While compatible with the device, gas water heaters are not eligible for savings for this measure.

ELIGIBILITY

This measure documents the energy savings resulting from Smart Water Heater Control with professional installation with electric resistance or heat pump storage water heaters. The primary target sector is single-family residences.

ALGORITHMS

The annual energy savings calculation utilizes average performance data for available residential water heaters and typical water usage for residential homes. The energy savings are obtained through the following formula, where the term in the parentheses corresponds to tank loss savings.

$$\Delta kWh \qquad \qquad = \frac{\Delta T}{3412} \times \left(\frac{A_{tank} \times 8760}{R_{tank} \times \eta_{elec}} + \frac{Cycles_{wash} \times V_{HW} \times 8.3}{UEF_{WH}}\right)$$

Clothes washers will draw the same amount of water for a load regardless of temperature, where, for example, with a shower, the user will just adjust the valve to get their desired temperature if the incoming hot water is cooler. Therefore, there are extra savings for clothes washers, but not other uses.

Demand savings result from reduced hours of operation of the heating element, rather than a reduced connected load.

$\Delta kW_{summer \ peak}$	$=$ ETDFs $\times \Delta kWh$
$\Delta k W_{winter \ peak}$	$= ETDFw \times \Delta kWh$

Alternatively, if an EDC configures the smart water heater to reduce demand savings by avoiding reheat during the peak demand period, peak demand savings will be calculated using the telemetry data from the devices via a SWE-approved estimation method.

SECTION	2:	ENERGY	STARResidential
Measures			

Domestic Hot Water

Formatted: Body Text

Formatted: Bottom: 1.1", Footer distance from edge: 0.5"

Formatted: No Spacing, paragraph 6pt space

DEFINITION OF TERMS

Formatted: Don't keep with next

Formatted: Normal

Table 2-78: Terms, Values, and References for Smart Water Heater Controls

Term	<u>Unit</u>	<u>Values</u>	Source
<i>∆T</i> , change in the average hot water weekly temperature draw using the smart water heater control compared to the baseline water heater	<u>۴</u>	<u>5.4</u>	<u>8</u>
R _{tank} <u>, R value of water heater tank</u>	$\frac{hr \cdot {}^{\circ}\mathbf{F} \cdot ft^2}{BTU}$	EDC Data Gathering Default: 12	<u>3</u>
A _{tank} Surface Area of water heater tank	ft ²	EDC Data Gathering Default: 24.99	<u>50 gal. value</u> <u>in</u> Table 2-66
η_{elec} , Thermal efficiency of electric heater element	Proportion	Electric Storage: 0.98 HPWH: 3.11	<u>4; 5</u>
<i>V_{HW}</i> , Volume of hot water used per cycle by clothes washer	gallons cycle	<u>20</u>	<u>6</u>
<u>Cycleswash</u> , Number of clothes washer cycles per year	cycles yr	<u>Clothes washer present:</u> <u>178</u> <u>No clothes washer: 0</u>	Z
UEF _{WH} , Uniform Energy Factor of water heater	<u>Proportion</u>	EDC data collection Default: Electric Storage= 0.92 HPWH= 3.20	<u>2</u>
<u><i>ETDFs</i></u> , Energy To Demand Factor (summer, defined above)	$\frac{kW}{kWh}$	<u>0.0001046</u>	<u>9</u>
<u>ETDFw</u> , Energy To Demand Factor (winter, defined above)	$\frac{kW}{kWh}$	0.0001755	<u>9</u>

DEFAULT SAVINGS

The energy savings and demand reductions are prescriptive according to the above formula. Table 2-79: Default Energy Savings and Demand Reductions

<u>Type</u>	<u> AkWh</u>	∆kW _{summer peak}	∆kW _{winter peak}
Electric Storage	<u>29.46</u>	<u>0.00308</u>	<u>0.00517</u>
Electric Storage w/ Clothes Washer	<u>47.65</u>	<u>0.00498</u>	<u>0.00836</u>
HPWH	<u>9.28</u>	<u>0.00097</u>	<u>0.00163</u>
HPWH w/ Clothes Washer	<u>23.90</u>	0.00250	<u>0.00419</u>

SOURCES

1) California Electronic Technical Reference Manual. "Storage Water Heater, Residential". Accessed March 2024. Weblink

Domestic Hot Water

State of Pennsylvania – Technical Reference Manual, Vol. 2: Residential Measures – Rev Date: Feb. 2021 May 2024	
2) NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 Residential Baseline Study. Section 8.3.5, Table 110, pg 128. Weblink	
 <u>3) Conservative estimate of R-12</u> <u>4</u> <u>5) Zaloum et al., Drain Water Heat Recovery Characterization and Modeling, Sustainable Buildings and Communities, Natural Resources Canada, Ottawa, June 29, 2007. <u>http://gfxtechnology.com/NRCAN-6_29_07.pdf</u></u> 	Formatted: Left, Space After: 5 pt, Line spacing: Multiple 1.2 li, Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, + Start at: 1 + Alignment: Left + Aligned at: 0.25" + Tab after: 0.5" + Indent at: 0.5"
12)1) Sachs, Talbot, Kaufman, "Emerging Hot Water Technologies and Practices for Energy Efficiency as of 2011," ACEEE, February 2012. Note that measure life is defined as 30 years; however, PA Act 129 Legislation caps measure life at 15 years.	Formatted: Numbered + Level: 1 + Numbering Style: 1, 2, 3, + Start at: 1 + Alignment: Left + Aligned at: 0" + Indent at: 0.25"
<u>AHRI Directory. All electric storage water heaters have a recovery efficiency of .98.</u> <u>4)</u> <u>Weblink</u>	
5) If HPWH UEF is known but COP of HPWH compressor is unknown, assume compressor efficiency is UEF/0.9. This yields a default COP of 3.11. Maryland EmPOWER Technical Reference Manual. (2023, version 11.0). "Water Heater Temperature Setback". Weblink	
6) ENERGY STAR. Clothes Washers. Accessed March 2024. Weblink	
7) U.S. Energy Information Administration. (2023). 2020 Residential Energy Consumption Survey. Weblink. Calculated using "Frequency of clothes washer use" and "Frequency of dryer use" data for Pennsylvania.	
8) Gunn, K., Kalensky, D., Schoenbauer, B., Haynor, A. (2018, April). "Field Study of an Intelligent, Networked, Retrofittable Water Heater Controller". Pg. 44. Gas Technology Institute for Minnesota Department of Commerce, Division of Energy Resources. Weblink	
9) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500- 80889. Weblink	

ENERGY STARResidential

Domestic Hot Water

SECTION 2: Measures

2.4 APPLIANCES

If a customer submits a rebate for a product that has applied for ENERGY STAR certification but has not yet been certified, the savings will be counted for that product contingent upon its eventual certification as an ENERGY STAR measure. If at any point the product is rejected by ENERGY STAR, the product is then ineligible for the program and savings will not be counted.48

2.4.1 ENERGY STAR REFRIGERATORS

Target Sector	Residential Establishments
Target Sector	Residential
Measure Unit	Refrigerator
Measure Life	14 years ^{Source 1}
Vintage	Replace on Burnout

ELIGIBILITY

This measure is for the purchase and installation of a new refrigerator meeting ENERGY STAR or ENERGY STAR Most Efficient criteria. An ENERGY STAR refrigerator is about 10-percent% more efficient than the minimum federal government standard. The ENERGY STAR Most Efficient is a new certification that identifies the most efficient products among those that qualify for ENERGY STAR. ENERGY STAR Most Efficient refrigerators must be at least 15 percent[%] more efficient than the minimum federal standard.

ALGORITHMS

To determine resource savings, the per-unit estimates in the algorithms will be multiplied by the number of refrigerators. The number of refrigerators will be determined using market assessments and market tracking.

If the volume and configuration of the refrigerator is known, the baseline model's annual energy consumption (kWh_{base}) may be determined using Table 2-68.

Table 2-81._The efficient model's annual energy consumption (kWhee, -or kWhme-) may be determined using manufacturers' test data for the given model. Where test data is not available the algorithms in Table 2-68 and Table 2-70 for "ENERGY STAR and ENERGY STAR Most Efficient maximum energy usage in kWh/year" may be used to determine, the efficient model's annual energy consumption for a conservative savings estimate.may be determined using Table 2-81.

LILLIOT OTAK Keingerator	ENERGY	STAR	Refrigerator
--------------------------	--------	------	--------------

$\Delta kWh = kWh_{base} - kWh_{ee_{a}}$	(Formatted: Not Superscript/ Subscript
$\Delta kW_{\text{peak}} \Delta kW_{\text{summer peak}} = (kWh_{\text{base}} - kWh_{ee}) \times \frac{ETDFETDF_s}{ETDFETDF_s}$		
$\underline{\Delta kW_{winter peak}} = (kWh_{base} - kWh_{ee}) \times ETDF_{w}$		
ENERGY STAR Most Efficient Refrigerator		
⁴⁸ The Pennsylvania SWE and PUC TUS staff added this condition relating to certification that has been applied for but not yet received at the request of several of the Pennsylvania EDCs. EDCs will be responsible for tracking whether certification is granted.		

VOLUME 2: Residential Measures

Appliances


Page 145

Formatted: Indent: Left: 0", Hanging: 0.4", Tab stops: Not at 0.5"

Formatted: Font: Not Italic

Formatted: Not Superscript/ Subscript

Formatted: Font: Not Italic

 $\Delta kWh = kWh_{base} - kWh_{me}$

 $\underline{AkW_{peak}\underline{AkW_{summer peak}}} = (kWh_{base} - kWh_{me}) \times \underline{ETDF} ETDF_{s}$

 $\Delta kW_{winter peak} = (kWh_{base} - kWh_{me}) \times ETDF_{w}$

DEFINITION OF TERMS

Table 2-69: Terms, Values, and References for ENERGY STAR Refrigerators

Term		Unit	ł	Value	Source
<i>kWh_{base},</i> Annual energy consumption of baseline unit	₩	Vh/yr		EDC Data Gathering Default = Table 2-68	2
<i>kWhee</i> , Annual energy consumption of ENERGY STAR qualified unit	k٧	Vh/yr		EDC Data Gathering Default = Table 2-68	3
<i>kWh_{me-},</i> Annual energy consumption of ENERGY STAR Most Efficient qualified unit	k٧	Vh/yr		EDC Data Gathering Default = Table 2-69	4
ETDF , Energy to Demand Factor		:W h/yr		0.0001614	5

80: Terms, Values, and References for ENERGY STAR Refrigerators

Term	<u>Unit</u>	Value	Source
<u><i>kWh_{base}</i></u> , Annual energy consumption of <u>baseline unit</u>	<u>kWh/yr</u>	EDC Data Gathering Default = Table 2-81	EDC Data Gathering, <u>2, 7</u>
<u>kWhee</u> . Annual energy consumption of ENERGY STAR qualified unit	<u>kWh/yr</u>	<u>EDC Data Gathering</u> <u>Default = Table 2-</u> 83	<u>EDC Data</u> <u>Gathering,</u> <u>3</u>
<u>kWhme</u> , Annual energy consumption of ENERGY STAR Most Efficient qualified unit	<u>kWh/yr</u>	<u>EDC Data Gathering</u> <u>Default = Table 2-</u> 83	<u>EDC Data</u> <u>Gathering,</u> <u>4</u>
ETDF _s , Summer peak Energy to Demand Factor	kW kWh	<u>0.0001354</u>	<u>5</u>
<u>ETDF_w, Winter peak Energy to Demand</u> Factor	kW kWh	<u>0.0001014</u>	<u>5</u>

Refrigerator energy use is characterized by configuration (top freezer, bottom freezer, etc.), volume, whether defrost is manual or automatic<u>, and whether there is an automatic icemaker</u>, and whether there is through-the-door ice. If this information is known, annual energy consumption (kWh_{base}) of the federal standard model may be determined using <u>Table 2-68</u>.Table 2-81, The efficient model's annual energy consumption (kWh_{ee} or <u>kWh_{me}</u>) may be determined using manufacturer's test data for the given model. Where test data is not available, the algorithms in <u>Table 2-68 and Table 2-69</u>Table 2-82 for <u>"ENERGY STAR and ENERGY STAR Most Efficient maximum energy usage in kWh/year"</u> may be used to determine efficient energy consumption for a conservative savings estimate.

VOLUME 2: Residential Measures

Appliances

The term "AV" in the equations refers to "Adjusted Volume" in $\mathrm{ft}^3.$ For Category 1 and 1A "All-refrigerators":

AV = Fresh Volume + Freezer Volume

For all other categories:

AV = Fresh Volume + 1.76 × Freezer Volume

<u>I = 1 for a product with an automatic icemaker and 0 for a product without an automatic icemaker.</u> See Table 2-82 for door coefficients.

Table 2-81: Federal Standard and ENERGY STAR Refrigerators Maximum Annual Energy Consumption if Configuration and Volume Known⁴⁹

Refrigerator Category	Federal Standard Maximum Usage in kWh/yr9/1 <u>5/14 -</u> <u>1/30/29</u>	ENERGY STAR Maximum Energy Usage in kWh/yr <u>1/31/</u> 29 - 1/30/30	<u>As of 1/31/30</u>
Ş	Standard Size	Models: 7.75	cubic feet or greater
1. Refrigerator- freezers and refrigerators other than all- refrigerators with manual defrost.	7.99 × A	.V + 225.0	<u>7.19 ×6.79 x</u> AV + 202.5191.3
1A. All- refrigerators— manual defrost.	6.79 × AV + 193.6		6 <u>.11 × AV +</u> 174.2<u>5</u>.77AV + 164.6
2. Refrigerator- freezers— partial automatic defrost	7.99 × AV + 225.0		<u>7.19 ×(6.79 x</u> AV + 202.5 <u>191.3) × K2</u>
3. Refrigerator- freezers— automatic defrost with top- mounted freezer without an automatic icemaker.	8.07 × A	.V + 233.7	<u>7.26 ×6.86 x</u> AV + 210.3 <u>198.6 + 28I</u>
3-BI. Built-in refrigerator- freezer— automatic defrost with top- mounted freezer without an	9.15 × AV + 264.9 8.24 × <u>x</u> AV + 238.4 <u>+ 281</u>		

⁴⁹ Lettering convention (1, 1A, etc).) of Federal standard and ENERGY STAR specifications included for clear reference to the standards as well as for correspondence to entries in the default savings table.

VOLUME 2: Residential Measures

Appliances

	Federal	ENERGY	
Refrigerator Category	Standard Maximum Usage in kWh/yr9/1 5/14 - 1/30/29	STAR Maximum Energy Usago in kWh/yr <u>1/31/</u> 29 - 1/30/30	<u>As of 1/31/30</u>
automatic icemaker.			
3I. Refrigerator- freezers automatic defrost with top- mounted freezer with an automatic icemaker without through- the-door ice service.	8.07 × AV + 317.7	7.26 × AV + 294.3	
3I-BI. Built-in refrigerator- freezers	9.15 × AV + 348.9	8.2 4	1 × AV + 322.4
3A. All- refrigerators—	7 07 x A	V + 201.6	<u>(6.36 ×01 x</u> AV +
automatic defrost.	1.01 ~ A	10 - 201.0	181<u>171</u>4) × K3A
3A-BI. Built-in All- refrigerators— automatic defrost.	8.02 × AV + 228.5	(7.22 ×<u>×</u> /	AV + 205.7 <u>) x K3ABI</u>
4. Refrigerator- freezers— automatic defrost with side-mounted freezer without an automatic icemaker.	8.51 × A	.V + 297.8	<u>(7.66-×28 x</u> AV + 268.0254.9) × K4 + 28I
4-BI. Built-In Refrigerator- freezers automatic defrost with side-mounted freezer without	10.22 × AV + 357.4	9.20 ×(8.79 x .	AV + <u>321.7307.4) × K4Bl</u> <u>+ 28l</u>

Appliances

Refrigerator Category	Federal Standard Maximum Usage in kWh/yr <u>9/1</u> <u>5/14 -</u> 1/30/29	ENERGY STAR Maximum Energy Usage in kWh/yr <u>1/31/</u> 29 - 1/30/30	<u>As of 1/31/30</u>
an automatic icemaker.			I
41. Refrigerator- freezers— automatic defrost with side-mounted freezer with an automatic icemaker without through- the-door ice service.	8.51 × AV + 381.8	7.66 × AV + 352.0	
41-BI. Built-In Refrigerator- freezers- automatic defrost with side-mounted freezer with an automatic icemaker without through- the-door ice service.	10.22 × AV + 441.4	9.20 × AV + 405.7	
5. Refrigerator- freezers— automatic defrost with bottom- mounted freezer without an automatic icemaker.	8.85 × A	× AV + 317.0 (7. 97 ×<u>61 ×</u> AV + 285.3272.6) × K5 + 281	
5-BI. Built-In Refrigerator- freezers automatic defrost with bottom mounted freezer without an automatic icemaker.	9.40 × AV + 336.9	(8.46 × 65 × AV + 303.2309.9) × K5BI + 28I	
51. Refrigerator- freezers— automatic defrost with bottom- mounted freezer	8.85 × AV + 401.0		

VOLUME 2: Residential Measures

Appliances

May 2024				
Refrigerator Category	Federal Standard Maximum Usage in kWh/yr <u>9/1</u> <u>5/14 -</u> <u>1/30/29</u>	ENERGY STAR Maximum Energy Usage in kWh/yr <u>1/31/</u> 29 - 1/30/30	<u>As of 1/31/30</u>	
with an automatic icemaker without through- the-door ice service.				
5I-BI. Built-In Refrigerator- freezers- automatic defrost with bottom- mounted freezer with an automatic icemaker without through- the-door ice service.	9.40 × AV + 420.9	8.46 × AV + 387.2		
5A. Refrigerator- freezer— automatic defrost with bottom- mounted freezer with through- the-door ice service.	9.25 × AV + 475.4	8.33 ×(7.76 x	<u>8.33 ×(7.76 x</u> AV + 4 <u>36.3351.9) × K5A</u>	
5A-BI. Built-in refrigerator- freezer	9.83 × AV + 499.9	<u>(</u> 8.85-× <u>21 x</u> AV + 4 <u>58-3370.7) × K5ABI</u>		
6. Refrigerator- freezers— automatic defrost with top- mounted freezer with through- the-door ice service.	8.40 × A	.V + 385.4	7. <u>56 ×14 x</u> AV + 355.3280.0	
7. Refrigerator- freezers— automatic	8.54 × AV + 432.8 (7.69 × <u>31 x</u> AV + <u>397.9322.5) × K7</u>			

VOLUME 2: Residential Measures

Appliances

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
May 2024				

Refrigerator Category defrost with side-mounted freezer with through-the- door ice service.	Federal Standard Maximum Usage in kWh/yr9/1 5/14 - 1/30/29	ENERG¥ STAR Maximum Energy Usage in kWh/yr1/31/ 29 - 1/30/30	<u>As of 1/31/30</u>	
7-BI. Built-In Refrigerator- freezers— automatic defrost with side-mounted freezer with through-the- door ice service.	10.25 × AV + 502.6		AV + 460.7 <u>384.1) × K7BI</u> than 7.75 cubic feet and	
11. Compact refrigerator- freezers and refrigerators other than all- refrigerators with manual defrost.	9.03 × AV + 252.3		8.13 <u>7.68</u> × AV + <u>227.1214.5</u>	
11A.Compact all- refrigerators— manual defrost.	7.84 × AV + 219.1	7.06<u>6.66</u> × AV + 197<u>186</u>.2		
12. Compact refrigerator- freezers— partial automatic defrost	5.91 × AV + 335.8	<u>(</u> 5.32 ×	AV + 302.2 <u>) × K12</u>	
13. Compact refrigerator- freezers— automatic defrost with top- mounted freezer.	11.80 × AV + 339.2	10.62 >	< AV + 305.3 <u>+ 281</u>	
13I. Compact refrigerator- freezers— automatic defrost with top- mounted freezer with an	11.80 × AV + 423.2	10.6	2 × AV + 389.3	

VOLUME 2: Residential Measures

Appliances

	Federal Standard Maximum Usage in	ENERGY STAR Maximum Energy	<u>As of 1/31/30</u>	
Refrigerator Category	kWh/yr <u>9/1</u> <u>5/14 -</u> <u>1/30/29</u>	Usage in kWh/yr <u>1/31/</u> 29 - 1/30/30		
automatic icemaker.				
13A. Compact all- refrigerators— automatic defrost.	9.17 × AV + 259.3	<u>(</u> 8.25 × A	W + 233.4 <u>) × K13A</u>	
14. Compact refrigerator- freezers— automatic defrost with side-mounted freezer.	6.82 × AV + 456.9	6.14 ×	6.14 × AV + 411.2 <u> + 28</u>	
141. Compact refrigerator- freezers— automatic defrost with side-mounted freezer with an automatic icemaker.	6.82 × AV + 540.9	6 .14 × AV + 495.2		
15. Compact refrigerator- freezers— automatic defrost with bottom- mounted freezer.	11.80 × AV + 339.2	10.62 × AV + 305.3 <u> + 281</u>		
151. Compact refrigerator- freezers— automatic defrost with bottom- mounted freezer with an automatic icemaker.	11.80 × AV + 423.2	40.6	<u>2 × AV + 389.3</u>	

VOLUME 2: Residential Measures

Appliances

Refrigerator CategoryDoor	Assumed Adjusted Volume of	Convention Energy Usa	ige in	ŧ	ENERGY STAR Energy Usage	AkWh/yr ⁵⁴	AkW _{peak}	
<u>Coefficient</u>	Unit (cubic feet) ^{Source} ⁶ Products with a Transparent Door	kWh/yrProducts without a Transparent Door with a Door-in-Door			in kWh/yzProducts without a Transparent Door or Door- in-Door with Added External Doors,			
1A. All- refrigerators— manual defrost.K2	45 <u>1.0</u>	<u>2961.0</u>	267	<u>,</u> 30				
2. Refrigerator- freezers partial automatic defrostK3A	45 <u>1,</u> 1	346 <u>1.0</u>	311	-35	1.	0 .0056		
3A. All- refrigerators— automatic defrost.K3ABI	15 <u>1,</u> 1	<u>3081.0</u>	278	31	<u>1</u> .	0 .0050		
31. Refrigerator- freezers- automatic defrost with top- mounted freezer with an automatic icemaker without through- the-door ice service.K4	<u>22.21.1</u>	4971.06	455	-41	<u>1 +</u> 0.00€	37 02 x (Nd – 2		
4. Refrigerator- freezers automatic defrost with side-mounted freezer with an automatic icemaker without through- the-door ice service. K4BL	28 <u>1,</u> 1	<u>6241.06</u>	567	-54	<u>1 + 0.008</u>	37 <u>02 x (Nd − 2</u>		
5A. Refrigerator- freezer— automatic defrost with bottom-mounted freezer with	31.5 <u>1.1</u>	766 <u>1.06</u>	698	68	<u>1 + 0.011</u>	10<u>02</u> x (N_d – 2		

Formatted	[[119]
Formatted	[[120]
Formatted	[122]
Deleted Cells	[126]
Deleted Cells	[127]
Formatted	[[121]
Formatted	[124]
Formatted	[123]
Formatted	[125]
Formatted	[131]
Formatted	[132]
Formatted	[[136]
Formatted	[128]
Formatted	[[135]
Formatted Table	[[129]
Deleted Cells	[133]
Deleted Cells	[134]
Formatted	[130]
Formatted	[[139]
Formatted	[[140]
Formatted	[[142]
Formatted	[[137]
Formatted	([141]
Formatted	[138]
Formatted	([145]
Formatted	([146]
Formatted	[148]
Formatted	[143]
Formatted	[147]
Formatted	[144]
Formatted	[[151]]
Formatted	([152]
Formatted	[[154]
Formatted	[[149]
Formatted	[[153]
Formatted	[[150]
Formatted	[155]
Formatted	[[157]
Formatted	[158]
Formatted	[159]
Formatted	[160]
Formatted	([156]
Formatted	([162]
Formatted	[163]
Formatted	[165]
Formatted	[165]
Formatted	([161]
<u></u>	[[104]

⁵⁰ Lettering convention (1A, 2, etc) of Federal standard and ENERGY STAR specifications included for clear reference to the standards as well as for correspondence to entries in the default savings table.
 ⁵¹ kWh/yr savings may differ from Conventional Usage — ENERGY STAR Usage by 1 kWh/yr due to rounding error.
 ⁵² Ng is the number of external doors. The maximum Ng values are 2 for K12 and K2, 3 for K9BI, and 5 for all other K values.

VOLUME 2: Residential Measures

Appliances

State of Pennsylvania	 Leconical 	Reference Ivian	uai voi	2' Resid	ential Measures – Rev Date: Feb.	-41/1	^	[100]
<u>/lay 2024</u>			,				Formatted	[169]
							Formatted	[170]
through-the-door						///	Formatted	[172]
ice service.K5						///	Formatted	[167]
51. Refrigerator-	24.8 <u>1.1</u>	<u>6201.06</u>	567	54	<u>1 + 0.008602 x (N_d - 2)</u>		Formatted	[171]
freezers— automatic							Formatted	[168]
defrost with						/	Formatted	[[175]
bottom-mounted freezer with an							Formatted	[[176]
automatic							Formatted	[178]
icemaker without through-							Formatted	[173]
the-door ice							Formatted	[177]
service.K5Bl							Formatted	[174]
7. Refrigerator-	<u>30.51.1</u>	<u>6931.06</u>	632	61	<u>1 + 0.009802 x (N_d - 3)</u>		Inserted Cells	[181]
freezers— automatic							Inserted Cells	[182]
defrost with							Inserted Cells	[183]
side-mounted freezer with							Formatted	[179]
through-the-door							Formatted	[180]
ice service.K5A						// /	Formatted	[186]
Compact Size	<u>,1.1</u>	1.0	<u>)6</u>		<u>1 + 0.02 x (N_d – 3)</u>		Formatted	[187]
Models: Less than 7.75 cubic							Formatted	([191])
feet and 36							Formatted	[[184]]
inches or less in heightK5ABI							Formatted	[190]
		0544.00	1				Deleted Cells	[188]
11A.Compact all-	4 <u>1,</u> 1	251 1.06	226	25	<u>1 + 0.004002 x (N_d - 2)</u>		Deleted Cells	[189]
refrigerators-							Formatted	[[185]
manual defrost.K7⊾							Formatted	[[194]
12. Compact	4 <u>1,</u> 1	3601.06			1 + 0.005802 x (N _d - 2)	\equiv	Formatted	([195]
refrigerator-	4 <u>1</u>	0001.00	324	36	$1 + 0.00002 \times (10 - 2)$	-	Formatted	([197]
freezers partial							Formatted	[[192]]
automatic defrostK7BL							Formatted	([196])
13. Compact	5.61.0	4051.0	0.05	40	1 + 0.006502 x (N _d − 1).		Formatted	[193]
refrigerator-			365	40			Formatted	[[200]
freezers— automatic						\mathbb{N}	Formatted	([201]
defrost with top-							Formatted	([203]
mounted freezer K12							Formatted	[198]
freezer.K12							Formatted	[202]
15. Compact refrigerator-	6.3 <u>1.1</u>	414 <u>1.0</u>	372	41	<u>1,0-0067</u>		Formatted	[199]
freezers-							Formatted	([199] ([206])
automatic defrost with							Formatted	[[207]
bottom-mounted							Formatted	
freezer.K13A						\'	Formatted	[[209]
							Formatted	[204]
NERGY STAR	Aost Efficient			sumptio	n (kWhme) may be determined i		Formatted	[[208]]

... [166]

... [205]

... [210]

... [211]

Formatted

Table 2-70 for "ENERGY STAR Most Efficient maximum energy usage in kWh/year" may be used

VOLUME 2: Residential Measures

Appliances

Page 154

Formatted

Formatted

Formatted

Inserted Cells

Formatted: Font: Font color: Auto

Formatted: Font: Font color: Auto

to determine efficient energy consumption for a conservative savings estimate. Baseline annual energy usage consumption (kWhbase) of the federal standard model may be determined using Table 2-68. Eann stands for Maximum Annual Energy Usage.

Table 2-72: ENERGY STAR Most Efficient Annual Energy Usage if Configuration and Volume Known Source 4 Table 2-83: ENERGY STAR and ENERGY STAR Most Efficient Maximum Annual Energy Consumption

Table 2-83: ENERGY ST	AR and ENERGY STAR Most Efficien		75		
		<u> /_</u>	4	Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt	
Refrigerator Category	ENERGY STAR Maximum Energy Usage in kWh/yr	ENERGY STAR Most Efficient Maximum And Energy Usage in kWh/yr	ual	-	Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
1. Refrigerator-		▲ ▲		-(Formatted: Font: Font color: Auto
freezers and		$AV \le 71.81.1, AEC_{MAX}^{53} \le 5, E_{ann} \le 6.39.83 \times 40^{10}$	(+	-(Formatted: Font: Font color: Auto
refrigerators other than all- refrigerators with	<u>7.19 × AV + 202.5</u>	180.0<u>164.3</u> AV > 71.5, Eann81.1, AEC_{MAX}≤ 637		$\left(\right)$	Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
manual defrost			\mathbb{N}	Y	Formatted Table
1A. All-			$\frac{1}{1}$	ł	Formatted: Font: Font color: Auto
refrigerators-	<u>6.11 × AV + 174.2</u>	_		Ň	Formatted: Font: Font color: Auto
manual defrost					Formatted: Font: Font color: Auto
2. Refrigerator-		AV ≤ 71.<u>81.1, AEC_{MAX} ≤</u> 5, E_{ann} ≤ 6.39.83 × AV ◀ 4	80.	þ (Formatted: Font: Font color: Auto
freezers—partial automatic defrost	<u>,7.19 × AV + 202.5</u>	<u>164.3</u> AV > 71.5, Eann <u>81.1, AECMAX</u> ≤637			Formatted: No Spacing, paragraph 6pt space, Space Before: 0 pt, After: 0 pt
3. Refrigerator-		4	11	ħΪ	Formatted: Font color: Auto
freezers— automatic defrost				ľ	Formatted: Font: Font color: Auto
with top-mounted	E _{ann} <u>≺637 kWh/yr7.26 × AV +</u> 210.3			\ľ	Formatted: Font color: Auto
freezer without an automatic	210.0				Formatted: No Spacing, paragraph 6pt space, Space Before: 0 pt, After: 0 pt
icemaker			111	L(Formatted: Font color: Auto
3BI. Built-in refrigerator-		()		I	Formatted Table
freezer—automatic defrost with top- mounted freezer without an					Inserted Cells
	E _{ann} <u>~637 kWh/yr8.24 × AV +</u> <u>238.4</u>	-			Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
automatic				N	Formatted: Font color: Auto
icemaker			$\left \right $	\mathbb{H}	Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
freezers—			11		Inserted Cells
automatic defrost with top-mounted			$\langle \rangle$		Formatted: Font color: Auto
freezer with an	<u>7.26 × AV + 294.3</u> E _{ann} <u><</u> 637 kWh/yr		$\ $	Y	Formatted: Font color: Auto
automatic icemaker without through-	«winyi »				Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
the-door ice service			$\left(\right)$	1r	Formatted: Font color: Auto
3I-BI. Built-in			1	₩	Formatted: Font color: Auto
refrigerator- freezers—	E _{ann_} ≤637 kWh/yr <u>8.24 × AV +</u>		$\langle \rangle$	Ì	Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
automatic defrost with top-mounted	322.4	-	11	1	Formatted: Font color: Auto
freezer with an			$\langle \rangle$	Y	Formatted: Font color: Auto
automatic icemaker			/	Y	Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
)	15	

53 Maximum annual energy consumption.

VOLUME 2: Residential Measures

Appliances

T

Page 155

Formatted: Font color: Auto

Refrigerator	ENERGY STAR Maximum	ENERGY STAR Most Efficient Maximum Annual	Inserted Cells
Category	Energy Usage in kWh/yr	Energy Usage in kWh/yr	Formatted: Font: Font color: Auto
without through-			Formatted: Font: Font color: Auto
the-door ice service			Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
<u>3A. All-</u> refrigerators—	6.36 × AV + 181.4		Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
automatic defrost	0.00 - 70 - 101.4	-	Formatted: Font: Font color: Auto
3A–BI. Built-in All-			Formatted: Font color: Auto
refrigerators— automatic defrost	<u>7.22 × AV + 205.7</u>	- /	Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
4. Refrigerator-			Formatted Table
freezers— automatic defrost		$AV \le \frac{5867.6}{5867.6}, E_{ann}AEC_{MAX} \le 6.8121 \times AV + \frac{322.2}{5867.6}$	Formatted: Font color: Auto
with side-mounted	7.66 × AV + 268.0	217.4	Inserted Cells
freezer without an automatic		$AV > 5867.6$, $E_{enn}AEC_{MAX} \le 637$	Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
icemaker			Formatted: Font color: Auto
4–BI. Built-In Refrigerator-		▲	Formatted: Font color: Auto
freezers— automatic defrost	9.20 × AV + 321.7	AV ≤ 58 <u>67</u> .6, E _{ann} AEC _{MAX} ≤ 6.81 <u>21,</u> × AV + <u>322-2</u>	Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
with side-mounted freezer without an	<u>3.20 ~ AV + 321.7</u>	$\frac{217.4}{\text{AV} > 5867.6, E_{ann}\text{AEC}_{MAX} \le 637.}$	Formatted: Font color: Auto
automatic		1.0 - 0001.0, Editor LOWAA - 001	Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
4I. Refrigerator-			Formatted: Font color: Auto
freezers-			Formatted: Font color: Auto
automatic defrost with side-mounted freezer with an	7.66 × AV + 352.0	$AV \le 46.2, E_{ann}54.0, AEC_{MAX} \le 6.8121 \times AV + 322.2$	Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
automatic icemaker	<u>1.00 ~ AV + 332.0</u>	$\frac{301.4}{\text{AV} > 46.2, \text{E}_{ann}54.0, \text{AEC}_{MAX} \le 637}$	Formatted: Font color: Auto
without through- the-door ice			Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
service			Formatted: Font: Subscript
4I-BI. Built-In Refrigerator-		▲ \ \	Formatted: Font color: Auto
freezers-			Formatted: Font color: Auto
automatic defrost with side-mounted freezer with an	9.20 × AV + 405.7	$AV \le 46.2, E_{ann}54.0, AEC_{MAX} \le 6.8421 \times AV + 322.2$ 301.4	Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
automatic icemaker		AV > 46.2 , $E_{ann}54.0$, $AEC_{MAX} \le 637$	Formatted: Font color: Auto
without through- the-door ice			Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
service			Formatted: Font color: Auto
5. Refrigerator- freezers—		▲ · · · · · · · · · · · · · · · · · · ·	Formatted: Font color: Auto
automatic defrost with bottom-	7.97 × AV + 285.3	$AV \le 54.2, E_{ann} \le 7.0862.8, AEC_{MAX} \le 6.46 \times AV + \frac{253.6}{2}$	Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
mounted freezer without an	<u>1.01 ··· AV ·· 200.0</u>	231.4	Formatted: Font color: Auto
automatic		AV > 54 <u>.2, Eann62.8. AECMAX</u> ≤ 637 <u></u>	Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
			Formatted: Font color: Auto
			Formatted: Font color: Auto

VOLUME 2: Residential Measures

Appliances

Refrigerator	ENERGY STAR Maximum	ENERGY STAR Most Efficient Maximum Amoual	Inserted Cells
Category	Energy Usage in kWh/yr	Energy Usage in kWh/yr	Formatted: Font: Font color: Auto
			Formatted: Font: Font color: Auto
5BI. Built-In Refrigerator- freezers—			Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
automatic defrost with bottom-	<u>8.46 × AV + 303.2</u>	$AV \le 54.2, E_{ann} \le 7.0862.8, AEC_{MAX} \le 6.46 \times AV + 253.6$	Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
mounted freezer without an		$\frac{231.4}{\text{AV} > 54.2, \text{ E}_{ann}62.8, \text{AEC}_{MAX} \le 637}$	Formatted: Font: Font color: Auto
automatic icemaker			Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
5I. Refrigerator-			Formatted: Font color: Auto
freezers— automatic defrost		AV ≤ 4 2.3, Eann ≤ 7.0849.8, AECMAX ≤ 6.46 × AV +	Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
with bottom- mounted freezer	7.97 × AV + 369.3	337.6	Formatted: Font color: Auto
with an automatic	1.01	315.4	Formatted: Font color: Auto
icemaker without through-the-door ice service		AV > 4 2.3, Eann<mark>49.8. AECMAX</mark> ≤ 637	Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
			Formatted: Font color: Auto
5I–BI. Built-In Refrigerator- freezers–			Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
automatic defrost		AV ≤ 4 2.3, E_{ann} ≤ 7.08<u>49.8, AEC_{MAX} ≤ 6.46</u> × AV +	Formatted: Font color: Auto
with bottom- mounted freezer	<u>8.46 × AV + 387.2</u>	337.6	Formatted: Font color: Auto
with an automatic		$\frac{315.4}{\text{AV}} > 42.3, \text{E}_{ann}49.8, \text{AEC}_{MAX} \le 637$	Formatted[212]
icemaker without through-the-door			Formatted: Font color: Auto
ice service			Formatted [213]
5A. Refrigerator-			Formatted: Font color: Auto
freezer-automatic		AV ≤ 32.4, E_{ann} ≤ 7.4039.6, AEC_{MAX} ≤ 6.75, × AV +	Formatted: Font color: Auto
defrost with bottom-mounted	8.33 × AV + 436.3	397.1	Formatted [214]
freezer with		AVA 00 0 E <u>369.7</u> ↓ E0 < 007 ◆	Formatted: Font color: Auto
through-the-door ice service		AV > 2 8.0, E_{ann}39.6, AEC_{MAX} ≤ 637	Formatted [215]
5A-BI. Built-in			Formatted: Font color: Auto
refrigerator-			Formatted: Font color: Auto
freezer—automatic defrost with		$AV \le \frac{32.4}{E_{ann}} \le \frac{7.4039.6}{397.1}, AEC_{MAX} \le 6.75 \times AV + \frac{397.1}{2}$	Formatted [216]
bottom-mounted	<u>8.85 × AV + 458.3</u>	369.7	Formatted: Font color: Auto
freezer with		AV > 28.0, E _{ann} 39.6, AEC _{MAX} ≤ 637	Formatted [217]
through-the-door ice service			Formatted: Font color: Auto
6. Refrigerator-		•	Formatted: Font color: Auto
freezers-			Formatted [218]
automatic defrost with top-mounted	E _{ann} <u>≺</u> 637 kWh/yr <u>7.56 × AV +</u> <u>355.3</u>		Inserted Cells
freezer with	355.3	A	Formatted: Font color: Auto
through-the-door ice service			Formatted: Font color: Auto
			Formatted [219]
 Refrigerator- freezers— 	7.69 × AV + 397.9		- Formatted Table
automatic defrost	<u>1.03 ^ AV + 031.3</u>	$AV \le 40.1, E_{ann}47.9, AEC_{MAX} \le 6.8323 \times AV + 363.0$	Inserted Cells
with side-mounted			Formatted: Font color: Auto

VOLUME 2: Residential Measures

Appliances

Refrigerator	ENERGY STAR Maximum	ENERGY STAR Most Efficient Maximum Annual	Inserted Cells
Category	Energy Usage in kWh/yr	Energy Usage in kWh/yr	Formatted: Font: Font color: Auto
freezer with		338.6	Formatted: Font: Font color: Auto
through-the-door ice service		AV > 35.3, Eann 47.9, AEC_MAX < 637	Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
7-BI. Built-In Refrigerator-		-	Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
freezers— automatic defrost		AV ≤ 4 0.1, E_{ann}47.9, AEC_{MAX} ≤ 6.8323 × AV + 363.0	Formatted: Font: Font color: Auto
with side-mounted freezer with	<u>9.23 × AV + 460.7</u>	<u>338.6</u> AV > 35.3, Eann 47.9, AEC _{MAX} ≤ 637	Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
through-the-door ice service			Formatted: Font color: Auto
11. Compact			Formatted: Font color: Auto
refrigerator- freezers and			Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
refrigerators other	8.13 × AV + 227.1	<u>AEC_{MAX} ≤ 6.32 × AV + 176.6</u>	Formatted: Font color: Auto
<u>than all-</u> <u>refrigerators with</u> manual defrost			Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
11A.Compact all-			Formatted: Font color: Auto
refrigerators— manual defrost	<u>7.06 × AV + 197.2</u>	$\underline{AEC_{MAX}} \le 5.49 \times AV + 153.4$	Formatted: Font color: Auto
<u>12. Compact</u> refrigerator- freezers—partial automatic defrost	5.32 × AV + 302.2	<u>AECmax ≤ 4.14 × AV + 235.1</u>	
13. Compact refrigerator- freezers automatic defrost with top-mounted freezer	<u>10.62 × AV + 305.3</u>	<u>AEC_{MAX} ≤ 8.26 × AV + 237.4</u>	
131. Compact refrigerator- freezers automatic defrost with top-mounted freezer with an automatic icemaker	<u>10.62 × AV + 389.3</u>	<u>AEC_{MAX} ≤ 8.26 × AV + 321.4</u>	
<u>13A. Compact all-</u> refrigerators— automatic defrost	<u>8.25 × AV + 233.4</u>	<u>AEC_{MAX} ≤ 6.42 × AV + 181.5</u>	_
14. Compact refrigerator- freezers automatic defrost with side-mounted freezer	<u>6.14 × AV + 411.2</u>	<u>AEC_{MAX} ≤ 4.77 × AV + 319.8</u>	
14I. Compact refrigerator- freezers automatic defrost with side-mounted	<u>6.14 × AV + 495.2</u>	<u>AEC_{MAX} ≤ 4.77 × AV + 403.8</u>	

VOLUME 2: Residential Measures

Appliances

Refrigerator	ENERGY STAR Maximum	ENERGY STAR Most Efficient Maximum Annual	Inserted Cells
Category	Energy Usage in kWh/yr	Energy Usage in kWh/yr	Formatted: Font: Font color: Auto
freezer with an			Formatted: Font: Font color: Auto
automatic icemaker 15. Compact			Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
<u>refrigerator-</u> freezers—	10.62 × AV + 305.3	AEC _{MAX} ≤ 8.26 × AV + 237.4	Formatted: No Spacing,paragraph 6pt space, Space Before: 0 pt, After: 0 pt
automatic defrost with bottom- mounted freezer	10.02 7.0 . 000.0		Formatted: Font: Font color: Auto
151. Compact refrigerator- freezers- automatic defrost with bottom- mounted freezer with an automatic icemaker	<u>10.62 × AV + 389.3</u>	<u>AEC_{MAX} ≤ 8.26 × AV + 321.4</u>	
		4	Formatted: Border: Bottom: (No border)

DEFAULT SAVINGS

DEFAULT SAVINGS

Table 2-84 displays the default savings for prevalent configurations of ENERGY STAR refrigerators. Default savings assume no special doors (i.e. door coefficient=1). Note that there are zero default savings for ENERGY STAR refrigerator categories 31, 51, 5A after 1/30/29, and there are zero default savings for ENERGY STAR refrigerator categories 3, 5, and 7 after 1/30/30. Table 2-85 displays the default savings for prevalent configurations of ENERGY STAR Most Efficient refrigerators.

Table 2-84: Default Savings Values for ENERGY STAR Most Efficient Refrigerators

Formatted: Not Superscript/ Subscript

Refrigerator Category	Assumed Adjusted Volume of Unit (ft ³)- ^{Source-7}	Conventional Unit Energy Usage in kWh/yr ⁵⁴	ENERGY STAR Most Efficient Consumption in kWh/yr Source 4	<u>AkWh</u>	AkW peak
 Refrigerator-freezers and refrigerators other than all- refrigerators with manual defrost. 	15.1	296	277	20	0.0032
2. Refrigerator-freezers partial automatic defrost	15.1	346	277	69	0.0112
31. Refrigerator-freezers—automatic defrost with top-mounted freezer with an automatic icemaker without through-the-door ice service.	22.2	4 97	397	99	0.0160
41. Refrigerator-freezers—automatic defrost with side-mounted freezer	28.1	621	514	107	0.0173

⁵⁴-Baseline consumption of unit based on category and assumed volume.

VOLUME 2: Residential Measures

Appliances

Refrigerator Category		Adju Volu of L	imed sted ime Jnit Source-7	Convent Unit En Usage kWh/y	ergy e in	ST/ El Cons in	NERGY AR Most ficient sumption kWh/yr Source 4	Δι	«Wh	<u>ΔkW</u> pe	ak
with an automatic icemaker with through-the-door ice service.	out										
5A. Refrigerator-freezer-auton defrost with bottom-mounted fre with through-the-door ice servic	ezer	31	.5	766	\$		630	4	37	0.022	0
51. Refrigerator freezers —autor defrost with bottom mounted fre with an automatic icemaker with through the door ice service.	ezer	24	-8	593	3		513	4	80	0.012	9
7. Refrigerator-freezers—autom defrost with side-mounted freez with through-the-door ice servic	er	30	1.5	693	}		571	4	22	0.019	7
<u>Refrigerator Category</u>	Assu Adju Volur Ur (cu feet)	<u>sted</u> ne of nit bic	Time	e Period	ΔkW	<u>/h/yr</u>	<u>AkWsumr</u> peak	<u>ner</u>		<u>Nwinter</u> beak	
3. Refrigerator-freezers— automatic defrost with top- mounted freezer without an automatic icemaker.	<u>18</u>	<u>.6</u>		<u>15/14 -</u> 30/30	3	<u>8</u>	<u>0.00520</u>	<u>85</u>	<u>0.00</u>	<u>38991</u>	
<u>3I. Refrigerator-freezers</u> <u>automatic defrost with top-</u> <u>mounted freezer with an</u> <u>automatic icemaker without</u> <u>through-the-door ice service.</u>	<u>21</u>	<u>.9</u>		1 <u>5/14 -</u> 30/29	4	<u>1</u>	<u>0.00556</u>	<u>80</u>	<u>0.00</u>	41698	
5. Refrigerator-freezers— automatic defrost with bottom- mounted freezer without an automatic ice maker	<u>29</u>	<u>.8</u>		<u>15/14 -</u> 30/30	<u>4</u>	<u>9</u>	<u>0.00663</u>	<u>35</u>	<u>0.00</u>	49677	
51. Refrigerator-freezers— automatic defrost with bottom- mounted freezer with an automatic icemaker without through-the-door ice service.	<u>18</u>	<u>.6</u>		1 <u>5/14 -</u> 30/29	5	<u>9</u>	<u>0.00799</u>	<u>79</u>	<u>0.00</u>	<u>59896</u>	
5A. Refrigerator-freezer— automatic defrost with bottom- mounted freezer with through- the-door ice service.	<u>21</u>	<u>.9</u>		<u>15/14 -</u> 30/29	6	<u>4</u>	<u>0.00861</u>	<u>18</u>	0.00	64493	
7. Refrigerator-freezers— automatic defrost with side- mounted freezer with through- the-door ice service.	<u>29</u>	.8		<u>15/14 -</u> 30/30	<u>6</u>	<u>0</u>	<u>0.00814</u>	<u>94</u>	<u>0.00</u>	<u>61030</u>	

VOLUME 2: Residential Measures

Appliances

Table 2-85: Default Savings Values for ENERGY STAR Most Efficient Refrigerators

Refrigerator Category	Assumed Adjusted Volume of Unit (cubic feet) Source <u>6</u>	Time Period	<u>AkWh/yr</u>	<u>ΔkWsummer</u> peak	<u>AkWwinter</u> peak
5. Refrigerator-freezers— automatic defrost with bottom- mounted freezer without an	<u>29.8</u>	<u>9/15/14 -</u> <u>1/30/30</u>	<u>133</u>	<u>0.0179489</u>	<u>0.0134418</u>
automatic ice maker		<u>As of 1/31/30</u>	<u>64</u>	<u>0.0086381</u>	<u>0.0064690</u>
51. Refrigerator-freezers— automatic defrost with bottom- mounted freezer with an	18.6	<u>9/15/14 -</u> <u>1/30/29</u>	<u>160</u>	<u>0.0216548</u>	<u>0.0162171</u>
automatic icemaker without through-the-door ice service.	10.0	<u>As of 1/31/29</u>	<u>21</u>	0.0028388	<u>0.0021260</u>
5A. Refrigerator-freezer— automatic defrost with bottom- mounted freezer with through-	<u>21.9</u>	<u>9/15/14 -</u> <u>1/30/29</u>	<u>172</u>	<u>0.0233271</u>	<u>0.0174695</u>
the-door ice service.		<u>As of 1/31/29</u>	<u>9</u>	<u>0.0012321</u>	<u>0.0009227</u>
7. Refrigerator-freezers— automatic defrost with side- mounted freezer with through	<u>29.8</u>	<u>9/15/14 -</u> <u>1/30/30</u>	<u>163</u>	<u>0.0220597</u>	<u>0.0165203</u>
mounted freezer with through- the-door ice service.		<u>As of 1/31/30</u>	<u>16</u>	<u>0.0021705</u>	<u>0.0016254</u>

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer-specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

- 1) California Public Utilities Commission Database for Energy Efficient Resources (DEER) EUL Support Table for 2020, http://www.deeresources.com/files/DEER2020/download/SupportTable-EUL2020.xlsx. Accessed December 2018.
- 1) Federal Standards for Residential Refrigerators and Freezers, Effective 9/14/California Electronic Technical Reference Manual. "Refrigerator or Freezer, Residential". Accessed December 2023. Weblink
- 2) 10 CFR 430.32 (a). Weblink
- 2) U.S. EPA. (2014http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/43
- <u>).</u> ENERGY STAR Program Requirements Product Specifications for <u>Residential</u> <u>Refrigerators and FreezersConsumer Refrigeration Products</u> Version 5.0. <u>Effective</u> <u>9/15/2014.1.</u>

VOLUME 2: Residential Measures

Appliances

State of Pennsylvania – Technical Reference Manual, Vol. 2: Residential Measures – Rev Date: Feb. 2021 May 2024	
https://www.energystar.gov/ia/partners/product_specs/program_reqs/Refrigerators_and_Free_ zers_Program_Requirements_V5.0.pdfWeblink	Field Code Changed
4) ENERGY STAR Most Efficient 2019 Recognition Criteria for Refrigerator-Freezers. Table 2. https://www.energystar.gov/sites/default/files/Refrigerator- Freezers%20ENERGY%20STAR%20Most%20Efficient%202019%20Final%20Criteria.pdf	
<u>4)</u> Consistent with the conversion factors in the Mid-Atlantic, Illinois, and Wisconsin TRMs. Derived from: (Temperature Adjustment Factor × Load Shape Adjustment Factor)/U.S. EPA. (2023). ENERGY STAR Most Efficient 2024 Consumer Refrigeration Products Recognition Criteria. Weblink	
5) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500- 80889. Weblink	
5) <u>Average adjusted volume of ENERGY STAR-certified refrigerators by configuration.</u> <u>Accessed December 2023. 8760 hours. The temperature adjustment factor is 1.23 and is based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 (p. 47) and assuming 78% of refrigerators are in cooled space (based on BGE Energy Use Survey, Report of Findings, December 2005; Mathew Greenwald & Associates) and 22% in un-cooled space. The load shape adjustment factor is 1.15, based on the same report.</u>	
6) ENERGY STAR Appliances Calculator. Accessed July 2018. <u>https://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx</u>	
7)6)ENERGY STAR Most Efficient volumes taken from average sizes of qualified units. Energy Star Qualified Models. Accessed July 25, 2018. https://www.energystar.gov/productfinder/product/certified-residential- refrigerators/resultsWeblink	
7) U.S. DOE. (2024, January). Direct final rule. Federal Register, 89 (11), pages 3,026-3,116. Weblink	

VOLUME 2: Residential Measures

2.4.2 ENERGY STAR FREEZERS

Target Sector	Residential- Establishments
Measure Unit	Freezer
Measure Life	11 years ^{Source} 4 <u>3</u>
Vintage	Replace on Burnout
Vintage	Replace on Burnout

Formatted: Font: Arial Black

Formatted: Body Text

Formatted: Body Text

Formatted: Don't keep with next

ELIGIBILITY

ELIGIBILITY

This measure is for the purchase and installation of a new freezer meeting ENERGY STAR criteria. An ENERGY STAR freezer must be at least 10-percent% more efficient than the minimum federal government standard.

ALGORITHMS

To determine resource savings, the per-unit estimates in the algorithms will be multiplied by the number of freezers. The number of freezers will be determined using market assessments and market tracking.

If the volume and configuration of the freezer is known, the baseline model's annual energy consumption (kWh_{base}) may be <u>are-determined using</u> Table 2-86Table 2-86. The efficient model's annual energy consumption (kWh_{ee}) may be determined using <u>Table 2-72</u>. The efficient model's annual energy consumption (kWh_{ee}) may be determined using <u>manufacturer's test</u> data for the given model. Where test data is not available the algorithms in <u>Table 2-73</u>Table 2-87Table 2-87 for "ENERGY STAR Maximum Energy Usage in kWh/year" may be used to determine the efficient energy consumption for a conservative savings estimate.

ENERGY STAR Freezer

 $\Delta kWh = kWh_{base} - kWh_{ee}$

 $\underline{AkW_{peak}}\underline{AkW_{summer_{peak}}} = (kWh_{base} - kWh_{ee}) \times \underline{ETDF}ETDF_{s}$

DEFINITION OF TERMS

 $\Delta kW_{winter \, peak} = (kWh_{base} - kWh_{ee}) \times ETDF_w$

VOLUME 2: Residential Measures

DEFINITION OF TERMS

Table 2-86: Terms, Values, and References for ENERGY STAR Freezers

Term	Unit	Value	Source
<i>kWh_{base}</i> , Annual energy consumption of baseline unit	kWh/yr	EDC Data Gathering Default = Table 2-87	<u>EDC Data</u> Gathering, 1
<i>kWhee</i> , Annual energy consumption of ENERGY STAR qualified unit	kWh/yr	EDC Data Gathering Default = <u>Table 2-73Table</u> 2 <u>-</u> 89	<u>EDC Data</u> <u>Gathering,</u> 2
<u>ETDF ,ETDF₅ , Summer</u> Energy to Demand Factor	k₩- k₩ k₩h/yr kWh	0. 0001614<u>0001387</u>	3 <u>6</u>
<u>ETDF_w , Winter Energy to Demand</u> Factor	kW kWh	<u>0.0000998</u>	<u>6</u>

Freezer energy use is characterized by configuration (upright, chest<u>or</u> compact), volume, and whether defrost is manual or automatic. If this information is known, annual energy consumption of the federal minimum efficiency standard model may be determined using Table 2-72Table 2-86. The efficient model's annual energy consumption (kWhee) may be determined using manufacturers' test data for the given model. Where test data is not available, the algorithms in Table 2-73Table 2-87 for "ENERGY STAR maximum energy usage in kWh/year" may be used to determine efficient energy consumption for a conservative savings estimate. The term "AV" in the equations refers to "Adjusted Volume," which is $AV = 1.76 \times$ Freezer Volume.

Table 2-87: Federal Standard and ENERGY STAR Freezers Maximum Annual Energy Consumption-if Configuration and Volume Known⁵⁵

ENERGY

Freezer Category	Heatrical Standard Maximum Usage (kWh/yr)9/15/14 - 1/30/29	Maximum Energy Usage (kWh/yr)1/31/2 9 - 1/30/30	<u>As of 1/31/30</u>		•
8. Upright freezers with manual defrost-		5.57 × A	/ + 193.7	5.01 × AV + 174. 3	 Image: A second s
9. Upright freezers with automatic defrost without an automatic icemaker .	8.62 × AV	+ 228.3	<u>(</u> 7.76 <u>33</u> × AV + 205.5 <u>194.1) × K9 + 2</u>	<u>281</u>	•

⁵⁵ Lettering convention (8, 9, 9I, etc) of Federal standard and ENERGY STAR specifications included for clear reference to the standards as well as for correspondence to entries in the default savings table.

VOLUME 2: Residential Measures

Appliances

Page 164

Formatted: Keep with next

Formatted: Font: Bold

 Inserted Cells

 Formatted: Font: 10 pt, Not Bold, Font color: Auto

 Formatted: Space Before: 4 pt, After: 4 pt

 Formatted: Font: Arial Bold

 Deleted Cells

 Formatted: Space Before: 4 pt, After: 4 pt

 Formatted Table

 Formatted: Space Before: 4 pt, After: 4 pt

reezer ategory	Federal Standard Maximum Usage (kWh/yr)9/15/14 - 1/30/29	ENERGY STAR Maximum Energy Usage (kWh/yr)1/31/2 9 - 1/30/30	<u>As of 1/31/30</u>			Inserted Cells Formatted: Font: 10 pt, Not Bold, Font color: Auto Formatted: Space Before: 4 pt, After: 4 pt
Upright ezers with omatic defrost an automatic naker-	8.62 × AV + 312.3		7.76 × AV + 289.5			Formatted: Space Before: 4 pt, After: 4 pt
-BI. Built-In right freezers th automatic frost without an tomatic emaker-	9.86 × AV + 260.9	8.87<u>(9.</u>	<u>37</u> × AV + 234.8247.9) × K9BI +	<u>281</u>	•(1	Formatted: Space Before: 4 pt, After: 4 pt
-BI. Built-in oright freezers th automatic ofrost with an utomatic emaker .	9.86 × AV + 344.9		8.87 × AV + 318.8		•(Formatted: Space Before: 4 pt, After: 4 pt
A-BI. NEW RODUCT LASS: Upright uilt-in freezer vith auto defrost nd through-door- 2e			<u>9.86 × AV + 288.9</u>			
reezers and all ther freezers except compact		7.29 × A\	/ + 107.8	<u>€.56</u> × AV ≠ 97.0		Deleted Cells Formatted: Space Before: 4 pt, After: 4 pt Formatted Table
eezers and all ther freezers xcept compact reezers. 0A. Chest reezers with		7.29 × A\ 10.24 × A		× A∨ +		Formatted: Space Before: 4 pt, After: 4 pt
eezers and all ther freezers xcept compact reezers. 0A. Chest reezers with utomatic defrost. 6. Compact pright freezers vith manual	8.65 × AV + 225.7			× AV + 97.0 9.22 × AV + 133.		Formatted: Space Before: 4 pt, After: 4 pt Formatted Table
reezers and all ther freezers except compact reezers. 0A. Chest reezers with automatic defrost. 66. Compact upright freezers	8.65 × AV + 225.7 10.17 × AV + 351.9		V + 148.1	× AV + 97.0 9.22 × AV + 133.		Formatted: Space Before: 4 pt, After: 4 pt Formatted Table Formatted: Space Before: 4 pt, After: 4 pt

The default values for each configuration are given in Table 2.74. Note that a compact freezer is defined as a freezer that has a volume less than 7.75 cubic feet and is 36 inches or less in height.

VOLUME 2: Residential Measures

Appliances

DEFAULT SAVINGS

Table 2-88: Default Savings Values for ENERGY STAR Freezers: Door Coefficients for Federal Standard Energy Consumption Algorithms

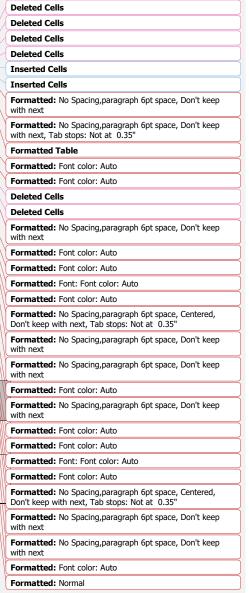

Freezer Categ	Average Conventional Unit Adj. Usage ^{Source-5} Volume (ft ³) (kWh/yr)		ENERGY STAR Usage ^{-Source-5} (kWh/yr)			<u>AkWh</u>	<u>AkWpe</u>	ak			
8. Upright fre defrost.	ezers with manual	12.6		1	264	2	37		27	0.0043	3
Door Coefficient	a Transparent Door	D. Upright fr with automa defrost with automatic cemaker. <u>Pr</u> without a Fransparent with a Door-	i tic out a oduc	in <u>ets</u> or	24.7 <u>Pro</u> without Transpa Door or in-Door Added Externa	441	39	7 44	0.0071		
10. Chest freezers and all other freezers except compact freezers.K9	<u> 18.51.0</u>	<u>2431.0</u>	218	3 25		<u>1 + </u> 0. 0	039<u>02</u>	<u>x (N</u>	I _d — 1)		
16. Compact upright freezers with manual defrost.K9BL	<u>3.71.0</u>	<u>2571.0</u>	231	- 26	6 <u>1 + 0.004202 x (Nd − 1)</u>						
17. Compact u automatic defr	upright freezers with ost.	7.7			130	3	87		43	0.0070	÷
18. Compact chest freezers.		8.9		-	219	4	97		22	0.003	ē

Table 2-89: ENERGY STAR and ENERGY STAR Most Efficient Maximum Annual Energy Consumption

Freezer Category	ENERGY STAR Maximum Energy Usage in kWh/yr	ENERGY STAR Most Efficient Maximum Energy <u>Usage in kWh/yr</u>
8. Upright freezers with manual defrost	<u>5.01 × AV + 174.3</u>	<u>AV ≤ 99.9, AEC_{MAX} ≤ 4.73 * AV + 164.6</u> <u>AV > 99.9, AEC_{MAX} ≤ 637</u>
9. Upright freezers with automatic defrost without an automatic icemaker	<u>7.76 × AV + 205.5</u>	<u>AV ≤ 65.9, AEC_{MAX} ≤ 6.90 * AV + 182.6</u> <u>AV > 65.9, AEC_{MAX} ≤ 637</u>

VOLUME 2: Residential Measures

Appliances

Freezer Category	ENERGY STAR Maximum Energy Usage in kWh/yr	ENERGY STAR Most Efficient Maximum Energy Usage in kWh/yr
9I. Upright freezers with automatic defrost with an automatic icemaker	<u>7.76 × AV + 289.5</u>	<u>AV ≤ 53.7, AEC_{MAX} ≤ 6.90 * AV + 266.6</u> <u>AV > 53.7, AEC_{MAX} ≤ 637</u>
<u>9–BI. Built-In</u> <u>Upright freezers</u> with automatic <u>defrost without an</u> <u>automatic icemaker</u>	<u>8.87 × AV + 234.8</u>	<u>AV ≤ 65.9, AEC_{MAX} ≤ 6.90 * AV + 182.6</u> <u>AV > 65.9, AEC_{MAX} ≤ 637</u>
<u>9I–BI. Built-in</u> upright freezers with automatic defrost with an automatic icemaker	<u>8.87 × AV + 318.8</u>	<u>AV ≤ 53.7, AEC_{MAX} ≤ 6.90 * AV + 266.6</u> <u>AV > 53.7, AEC_{MAX} ≤ 637</u>
<u>10. Chest freezers</u> <u>and all other</u> <u>freezers except</u> <u>compact freezers</u>	<u>6.56 × AV + 97.0</u>	<u>AV ≤ 88.0, AEC_{MAX} ≤ 6.20 * AV + 91.6</u> <u>AV > 88.0, AEC_{MAX} ≤ 637</u>
10A. Chest freezers with automatic defrost	<u>9.22 × AV + 133.3</u>	<u>AV ≤ 58.7, AEC_{MAX} ≤ 8.70 * AV + 125.9</u> <u>AV > 58.7, AEC_{MAX} ≤ 637</u>
16. Compact upright freezers with manual defrost	<u>7.79 × AV + 203.1</u>	<u>AEC_{MAX} ≤ 6.92 * AV + 180.6</u>
<u>17. Compact</u> <u>upright freezers</u> <u>with automatic</u> <u>defrost</u>	<u>9.15 × AV + 316.7</u>	<u>AEC_{MAX} ≤ 8.14 * AV + 281.5</u>
18. Compact chest freezers	<u>8.33 × AV + 123.1</u>	<u>AEC_{MAX} ≤ 7.4 * AV + 109.4</u>

DEFAULT SAVINGS

Table 2-90 displays the default savings for prevalent configurations of ENERGY STAR freezers. Default savings assume no special doors (i.e. door coefficient=1). Note that there are zero default savings for ENERGY STAR freezer category 16 after 1/30/29, and zero default savings for ENERGY STAR freezer category 9 after 1/30/30. Table 2-90 displays the default savings for prevalent configurations of ENERGY STAR Most Efficient refrigerators.

VOLUME 2: Residential Measures

Table 2-90: Default Savings Values for ENERGY STAR Freezers

Freezer Category	Assumed Adjusted Volume of Unit (cubic feet) Source 5	Time Period	<u>ΔkWh/yr</u>	<u>AkWsummer</u> peak	<u>AkWwinter</u> peak
<u>9. Upright freezers with</u> automatic defrost without an automatic icemaker	<u>28.6</u>	<u>9/15/14 -</u> <u>1/30/30</u>	<u>47</u>	<u>0.0065764</u>	<u>0.0047320</u>
16. Compact upright freezers with manual defrost	<u>5.5</u>	<u>9/15/14 -</u> <u>1/30/29</u>	<u>27</u>	<u>0.0037872</u>	<u>0.0027251</u>

Table 2-91: Default Savings Values for ENERGY STAR Most Efficient Freezers

Freezer Category	Assumed Adjusted Volume of Unit (cubic feet)	Time Period	<u>AkWh</u>	AkWsummer peak	<u>∆kWwinter</u> peak
9. Upright freezers with automatic defrost without an	<u>28.6</u>	<u>9/15/14 -</u> <u>1/30/30</u>	<u>95</u>	<u>0.0131667</u>	<u>0.0094740</u>
automatic icemaker		<u>As of 1/31/30</u>	<u>24</u>	<u>0.0033021</u>	<u>0.0023760</u>
16. Compact upright freezers with manual defrost	<u>5.5</u>	<u>9/15/14 -</u> <u>1/30/29</u>	<u>55</u>	<u>0.0075682</u>	<u>0.0054456</u>
		<u>As of 1/31/29</u>	<u>14</u>	<u>0.0018797</u>	0.0013526

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer-_specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

- 1) Federal Standards for Residential Refrigerators and Freezers, Effective 9/14/10 CFR 430.32 (a) Weblink
- 1) U.S. EPA. (2014. http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/43
- 2)—). ENERGY STAR Program Requirements Product Specifications for Residential Refrigerators and FreezersConsumer Refrigeration Products Version 5.0. Effective 9/15/2014. http://www.energystar.gov/products/specs/system/files/ENERGY%20STAR%20Final%20Ver

VOLUME 2: Residential Measures

Appliances

Page 168

Formatted: Normal

sion%205.0%20Residential%20Refrigerators%20and%20Freezers%20Program%20Require ments.pdf

3)2) Consistent with the conversion factors in the Mid-Atlantic, Illinois, and Wisconsin TRMs. Derived from: (Temperature Adjustment Factor × Load Shape Adjustment Factor)/8760 hours. The temperature adjustment factor is 1.23 and is based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003-2004 Metering Study", July 29, 2004 (p. 47) and assuming 78% of refrigerators are in cooled space (based on BGE Energy Use Survey, Report of Findings, December 2005; Mathew Greenwald & Associates) and 22% in un-cooled space. The load shape adjustment factor is 1.15, based on the same report. Weblink

- 4) California Public Utilities Commission Database for Energy Efficient Resources (DEER) EUL Support Table for 2020, <u>http://www.deeresources.com/files/DEER2020/download/SupportTable-EUL2020.xlsx</u>. Accessed December 2018.
- 5) ENERGY STAR Qualified Refrigerators and Freezers. Accessed October 2018. https://data.energystar.gov/Active-Specifications/ENERGY-STAR-Certified-Residential-Freezers/8t9c-g3tn/data
- 3) California Electronic Technical Reference Manual. "Refrigerator or Freezer, Residential". Accessed December 2023. Weblink
- 4) ENERGY STAR-Certified Freezers. Accessed December 2023. Weblink
- 5) Average adjusted volume of ENERGY STAR-certified freezers by configuration. Accessed March 2024. Weblink
- 6) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink

Formatted: Hyperlink

Formatted: Left, Space After: 6 pt

VOLUME 2: Residential Measures

2.4.3 REFRIGERATOR / FREEZER RECYCLING WITH AND WITHOUT REPLACEMENT

Target Sector	Residential-Establishments					
Measure Life	Without Replacement: Source 1					
	Refrigerator: 5 years					
	Freezer: 4 years					
	With Replacement (see Measure Life below)::					
	Refrigerator: 6 years					
	Freezer: 5 years					
Vintage	Early Retirement, Early Replacement					

ELIGIBILITY

Refrigerator recycling programs are designed to save energy through the removal of old-but-_ operable refrigerators from service. By offering free pickup, providing incentives, and disseminating information about the operating cost of old refrigerators, these programs are designed to encourage consumers to:

- Discontinue the use of secondary refrigerators
- Relinquish refrigerators previously used as primary units when they are replaced (rather than keeping the old refrigerator as a secondary unit)
- Prevent the continued use of old refrigerators in another household through a direct transfer (giving it away or selling it) or indirect transfer (resale on the used appliance market).

Commonly implemented by third-party contractors (who collect and decommission participating appliances), these programs generate energy savings through the retirement of inefficient appliances. The decommissioning process captures environmentally harmful refrigerants and foam and enables the recycling of the plastic, metal, and wiring components.

This protocol applies to both residential and non-residential sectors, as refrigerator and freezer usage and energy usage are assumed to be independent of customer rate class.⁵⁶ The savings algorithms are based on regression analysis of metered data on kWh consumption from other <u>Statesstates</u>. The savings algorithms for this measure can be applied to refrigerator and freezer retirements or early replacements meeting the following criteria:

- 1) Existing, working refrigerator or freezer 10-30 cubic feet in size (savings do not apply if unit is not working)
- 2) Unit is a primary or secondary unit

EDCs can use data gathering to calculate program savings using the savings algorithms, the Existing **Unit Energy Consumption (UEC)** regression equation coefficients, and actual program year recycled refrigerator/freezer data.

Formatted:	Normal

Formatted: Font: Bold

⁵⁶ For example, non-residential rate class usage cases include residential dwellings that are master-metered, usage in offices or any other applications that involve typical refrigerator usage.

VOLUME 2: Residential Measures

Appliances

ALGORITHMS

The total annual energy savings (kWh/yr) achieved from recycling old-but-operable refrigerators are calculated using the following general algorithms algorithm:

Energy Savings

 $\Delta kWh = N \times (UEC - kWh_{ee}) \times PART_{USE}$

Note that lifetime savings will be calculated with this same general algorithm but with an adjusted measure life.

Unit Energy Consumption^{Source 2}

To calculate the <u>Annual energy consumption (UEC)</u> of the existing refrigerator or freezer an <u>EDC</u> can <u>calculate program savingsbe calculated</u> using the <u>savings</u> algorithms, the <u>Existing UEC</u> regression <u>equation</u> <u>coefficients</u>, and <u>actual below</u>. <u>Actual</u> program year recycled refrigerator/freezer data. An EDC's use of actual program year data can provide provides a more accurate annual ex ante savings estimate than default values <u>would</u> due to the changing mix of recycled appliance models from year-to-year.

The kWhee of the efficient refrigerator/freezer may be determined using manufacturers' test data for the given model. If test data are not available, the algorithms in Table 2-68 or Table 2-70 may be used to determine the efficient energy consumption for ENERGY STAR and ENERGY STAR Most Efficient models, respectively.

The *kWh*ee of the efficient freezers may be determined using manufacturers' test data for the given model. If test data are not available, the algorithms in <u>Table 2-73Table 2-83 and Table 2-89</u> may be used to determine the efficient <u>unit'srefrigerator's or freezer's annual</u> energy consumption.

Note that if the unit is being recycled without replacement, the <u>kWhee</u> variable takes on the value of zero. <u>The kWhee</u> variable only applies to direct install replacement of the recycled refrigerator or <u>freezer unit</u>.

$UEC_{Refrigerator} = 365.25 days$

 $\times \left(0.582 + 0.027 \times AGE + 1.055 \times PRE1990 \right)$

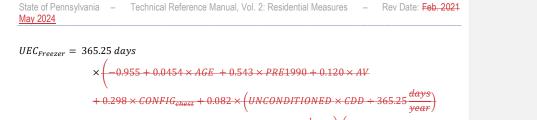
+ 0.067 × AV - 1.977 × CONFIG_{single-door} + 1.071 × CONFIG_{side by side}

+ 0.605 × PRIMARY + 0.02 × $\left(UNCONDITIONED × CDD \div 365.25 \frac{days}{year} \right)$

 $-\frac{0.045 \times \left(UNCONDITIONED \times HDD \div 365.25 \frac{days}{year}\right)}{(0.582 + 0.027 \times AGE)}$

- + $1.055 \times PRE1990 + 0.067 \times V 1.977 \times CONFIG_{single-door}$
- + $1.071 \times CONFIG_{side-by-side}$ + $0.605 \times PRIMARY$

$$+ 0.02 \times \left(UNCONDITIONED \times CDD \div 365.25 \frac{aays}{vear} \right)$$


$$-0.045 \times \left(UNCONDITIONED \times HDD \div 365.25 \frac{days}{year} \right) \right)$$

Formatted: Font: Not Italic

Formatted: normaltextrun

Formatted: Font: Not Italic

VOLUME 2: Residential Measures

 $\frac{-0.031 \times \left(UNCONDITIONED \times HDD \div 365.25 \frac{days}{year}\right)}{(-0.955 + 0.0454 \times AGE)} \left(-0.955 + 0.0454 \times AGE + 0.543 \times PRE1990 + 0.120 \times V + 0.298 \times CONFIG_{chest} + 0.082 \times \left(UNCONDITIONED \times CDD \div 365.25 \frac{days}{year}\right) - 0.031 \times \left(UNCONDITIONED \times HDD \div 365.25 \frac{days}{year}\right)\right)$

Adjusted Volume (AV)

The adjusted volume equations below account for the greater load of freezer compartments compared to compartments for fresh food. For Category 1 and 1A "All-refrigerators":

AV = Fresh Volume + Freezer Volume

For all other categories:

AV = *Fresh Volume* + 1.76 × *Freezer Volume*

Part-Use Factor

When calculating default per unit kWh savings for a removed refrigerator or freezer, it is necessary to calculate and apply a "Part-Use" factor. "Part-use" is an appliance recycling-specific adjustment factor used to convert the UEC (determined through the methods detailed above) into an average per-unit deemed savings value. The UEC itself is not equal to the default savings value, because: (1) the UEC model yields an estimate of annual consumption, and (2) not all recycled refrigerators and freezers would have operated year-round had they not been decommissioned through the program.

In Program Year <u>38</u>, the Commission determined that the average removed refrigerator was plugged in and used 72.8% of the year and the average freezer was plugged in and used 84.5% of the year. Source <u>42</u> These are the default values for the part-use factor. EDCs may elect to calculate an EDC-specific part-use factor for a specific program year. In the event an EDC desires to calculate an EDC-specific part-use factor, EDCs should use the methodology described in section 4.3<u>4</u> of the DOE, Uniform Methods Project protocol. Source <u>32</u>

Peak	Demand	Saving	6
reak	Demanu	Javing	

Use the below algorithm to calculate the peak demand savings. Multiply the annual kWh savings by an Energy to Demand Factor (ETDF), which is supplied below.

<i>∆k₩_{peak}</i> Peak Demand Savings		
Use the below algorithms to	calculate peak demand savings.	
<u>ΔkW_{summer_}peak</u>	$= \Delta kWh \times \frac{ETDF}{ETDF}_{S_{a}}$	 Formatted: Font: Arial
<u> AkWwinter_peak</u>	$\underline{} = \Delta kWh \times ETDF_{w}$	
DEFINITION OF TERI	N S	
Table 2-92: Terms, Values, and R	eferences for Refrigerator and Freezer Recycling	

VOLUME 2: Residential Measures

Appliances

Page 172

Formatted: Space Before: 0 pt

Formatted: Space Before: 6 pt

Term	Unit	Values	Source		
<i>N</i> , The number of refrigerators <u>or freezers</u> recycled through the program	None	EDC Data Gathering	EDC Data Gathering	•(Formatted Table
PART_USE, The portion of the year the average refrigerator or freezer would likely have operated if not recycled through the program	%	EDC Data Gathering According to Section 4.4 of UMP Protocol Default: Refrigerator = 72.8% Freezer = 84.5%	4 <u>EDC</u> <u>Data</u> <u>Gathering,</u> <u>3</u>		
ETDF <u>ETDF</u> , Summer Energy to Demand Factor	kW kWh/yr	0.0001614 <u>Refrigerator =</u> 0.0001354 Freezer = 0.0001387	<u>54</u>		
ETDF _w , Winter Energy to Demand Factor	$\frac{kW}{kWh/yr}$	<u>Refrigerator = 0.0001014</u> <u>Freezer = 0.0000998</u>	<u>4</u>		
AGE, age of appliance	years	EDC Data Gathering	EDC Data Gathering	•(Formatted Table
PRE1990, Fraction of appliances manufactured before 1990	%	EDC Data Gathering	EDC Data Gathering		
AV, Adjusted V, Total Volume/calculated as described above of recycled unit	ft ³	EDC Data Gathering	EDC Data Gathering		
CONFIG _{single-door} , Fraction of refrigerators with single-door configuration	%	EDC Data Gathering	EDC Data Gathering		
CONFIG _{side-by-side} , Fraction of refrigeraors <u>refrigerators</u> with side-by-side configuration	%	EDC Data Gathering	EDC Data Gathering		
CONFIG _{chest} , Fraction of freezers with chest configuration	%	EDC Data Gathering	EDC Data Gathering		
<i>PRIMARY</i> , Fraction of appliances in primary use (in absence of program)	%	EDC Data Gathering	EDC Data Gathering		
UNCONDITIONED, Fraction of appliances located in Unconditioned space	%	EDC Data Gathering Default: Refrigerator=8 <u>12</u> % Freezer=45 <u>52</u> %	9 <u>EDC</u> <u>Data</u> <u>Gathering,</u> <u>7</u>		
CDD, Cooling degree days	°F-day/year	See <u>CDDCDD65</u> in Vol. 1, App. A	<u> 108</u>		Formatted: Font: Italic
HDD, Heating degree days	_°F-day/year	See <u>HDDHDD65</u> in Vol. 1, App. A	10 8		Formatted: Font: Italic
<i>kWhee</i> , Annual energy consumption of ENERGY STAR qualified unit	kWh/yr	EDC Data Gathering Refrigerator Default: See Table 2-68 or Table 2-70 in Table 2-84 In Sec. 2.4.12.4.1 ENERGY STAR Refrigerators Freezer Default: See Table 2-73Table 2-90 in Sec. 2.4.22.4.2 ENERGY STAR Freezers	7, 8<u>EDC</u> <u>Data</u> <u>Gathering,</u> <u>6</u>		

Refrigerator energy use is characterized by configuration (top freezer, bottom freezer, etc.), volume, whether defrost is manual or automatic and whether there is through the door ice. The efficient model's annual energy consumption may be determined using manufacturer's test data for the given model. If test data are not available, the algorithms Table 2-68 or Table 2-70 in Sec. 2.4.1 ENERGY STAR Refrigerators in may be used to determine the efficient energy consumption for ENERGY STAR and ENERGY STAR Most Efficient models, respectively. The default values for each configuration are reported in Table 2-69 (ENERGY STAR) or Table 2-71 (ENERGY STAR Most Efficient) in Sec. 2.4.1, ENERGY STAR Refrigerators.

VOLUME 2: Residential Measures

Page 173

Freezer energy use is characterized by configuration (upright, chest or compact), volume and whether defrost is manual or automatic. The efficient model's annual energy consumption may be determined using manufacturers' test data for the given model. If test data are not available, the algorithms in Table 2-73 in Sec. 2.4.2, ENERGY STAR Freezers may be used to determine the efficient unit's energy consumption. The default values for each configuration are reported in Table 2-74 in the ENERGY STAR Freezers section. Note that a compact freezer is defined as a freezer that has a volume less than 7.75 cubic feet and is 36 inches or less in height.

MEASURE LIFE

The measure lives for refrigerators and freezers recycled without replacement are 5 years and 4 years, respectively, from the California DEER-EUA table. <u>Electronic Technical Reference Manual</u>. These values represent 1/3 of the EUL of a new refrigerator or freezer.

For refrigerators and freezers recycled with replacement, the adjusted measure life is 6 years for refrigerators and 5 years for freezers.

Adjusted Measure Life Rationale:

Refrigerator/freezer recycling with replacement programs commonly calculate savings over two periods, the RUL of the existing unit, and the remainder of the EUL of the efficient unit beyond the RUL of the existing unit. For the first period of savings (the RUL of the existing unit), the energy savings are equal to the savings difference between the existing baseline unit and the ENERGY STAR unit; the RUL can be assumed to be 1/3 of the efficient unit), the energy savings are equal to the assumed to be 1/3 of the measure EUL of the ENERGY STAR unit. For the second period of savings (the remaining EUL of the efficient unit), the energy savings are equal to the difference between a Federal Standard unit and the ENERGY STAR unit.

The EUL of a new ENERGY STAR refrigerator is <u>1214</u> years (see the <u>ENERGY STAR</u> RefrigeratorsENERGY STAR Refrigerators section). However, a study of a low-income refrigerator replacement program for SDG&E (2006) found that among the program's target population, refrigerators are likely to be replaced less frequently than among average customers. As a result, the report updating the California DEER database recommended an EUL of 18 years for such programs.^{Source 65}

To simplify the calculation of savings and remove the need to calculate two different savings, an adjusted value for measure life of 6 years for both low-income specific and non-low-income specific programs can be used with the savings difference between the existing baseline unit and the ENERGY STAR unit over the adjusted measure life. The 6-year adjusted measure life is derived by averaging the lifetime savings of a non-low-income replacement with a <u>1214</u>-year measure life and a low-income replacement with an 18-year measure life.

The derivation of the 6-year adjusted measure life can be demonstrated with an example of a typical refrigerator replacement with an ENERGY STAR unit. Assuming a refrigerator of type 5l in the ENERGY STAR Refrigerators SENERGY STAR Refrigerators section with an adjusted volume of 20 ft³, annual savings would be 578 kWh for the RUL of the existing baseline unit and annual savings of 49 kWh for the remaining EUL.⁵⁷

In the case of a non-low-income program there is an RUL of 45 years for the existing unit (1/3 * 12 = 414 = 5) and a remaining EUL of the efficient unit of 89 years (2/3 * 12 = 814 = 9). The lifetime savings are equal to 2,7063,331 kWh (578 kWh/yr * 45 yrs + 49 kWh / yr * 89 yrs), resulting in an adjusted measure life of 56 years: 2,7063,331 kWh / 578 kWh/yr = 56 years.

In the case of a low-income program there is an RUL of 6 years for the existing unit (1/3 * 18 = 6) and a remaining EUL of the efficient unit of 12 years (2/3 * 18 = 12). The lifetime savings are equal to

⁵⁷ A refrigerator with automatic defrost with bottom-mounted freezer with an automatic icemaker without through-the-door ice service.

VOLUME 2: Residential Measures

Appliances

Formatted: Font color: Auto, Pattern: Clear

Technical Reference Manual, Vol. 2: Residential Measures – State of Pennsylvania -May 2024

4,059056 kWh (578 kWh/yr * 6 yrs + 49 kWh / yr * 12 yrs), resulting in an adjusted measure life of 7 years: 4,059056 kWh / 578 kWh/yr = 7 years.

Averaging the two lifetime savings values results in an adjusted measure life of 6 years (3,383694 kWh / 578 kWh/yr = 6 years) that can be used for both low-income specific and non-low-income specific programs.

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer-_specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

1)-	California Public Utilities Commission Database for Energy Efficient Resources (DEER) EUL Support Table for 2020, http://www.deeresources.com/files/DEER2020/download/SupportTable-EUL2020.xlsx Accessed December 2018.
<u>1)</u>	US-DOE-Uniform Method Project, Savings Protocol for Refrigerator Retirement, April California Electronic Technical Reference Manual. "Refrigerator or Freezer, Residential". Accessed December 2023. Weblink
2)	-Keeling, J., Bruchs, D. (2017- https://www.nrel.gov/docs/fy17osti/68563.pdf
/_	<u>U.S. Department of Energy, Uniform Methods Project protocol titled "). "Chapter 7:</u> Refrigerator Recycling Evaluation Protocol", prepared by Doug Bruchs and Josh Keeling of the Cadmus Group, September 2013. <u>The Uniform Methods Project: Methods for</u> Determining Energy-Efficiency Savings for Specific Measures". Section 4.4. National Renewable Energy Laboratory. <u>https://www.nrel.gov/docs/fy17osti/68563.pdfWeblink</u>)Based on a Cadmus survey of 510 PPL participants in PY8.
	- · · ·
5) -	Consistent with the conversion factors in the Mid-Atlantic, Illinois, and Wisconsin TRMs. Derived from: (Temperature Adjustment Factor × Load Shape Adjustment Factor)/8760 hours. The temperature adjustment factor is 1.23 and is based on Blasnik, Michael, "Measurement and Verification of Residential Refrigerator Energy Use, Final Report, 2003- 2004 Metering Study", July 29, 2004 (p. 47) and assuming 78% of refrigerators are in cooled space (based on BGE Energy Use Survey, Report of Findings, December 2005; Mathew

1.15, based on the same report. Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink

Greenwald & Associates) and 22% in un-cooled space. The load shape adjustment factor is

- 6)5)Seiden, K., Bruchs, D., Peters, J., Moran, D., Burdick, M. (2006, July). "2004–2005 Final Report: A Measurement and Evaluation Study of the 2004-2005 Limited Income Refrigerator Replacement & Lighting Program, Prepared for: San Diego Gas & Electric, July 31, 2006". Weblink
- Federal Standards for Residential Refrigerators and Freezers, Effective 9/14/ 7)-U.S. EPA

http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/43

8)6)). ENERGY STAR Program Requirements Product Specifications for Residential Refrigerators and FreezersConsumer Refrigeration Products, Version 5.0. Effective 9/15/2014.1

VOLUME 2: Residential Measures

Appliances

Page 175

(2014-

Formatted: List Paragraph,TT - Numbered List Paragraph, Bullet Styles para, TOC etc., Bulleted List Paragraph

Formatted: List Paragraph,TT - Numbered List Paragraph, Bullet Styles para, TOC etc., Bulleted List Paragraph

Formatted: Font color: Black Formatted: Font color: Black Formatted: Justified Formatted: Font color: Black Formatted: Font color: Black

Rev Date: Feb. 2021

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Res	idential Measures –	Re	v Date: Feb. 2021
<u>May 2024</u>					

https://www.energystar.gov/ia/partners/product_specs/program_reqs/Refrigerators_and_Free zers_Program_Requirements_V5.0.pdf.Weblink

9)7)Statewide averageProportion of refrigerators and freezers calculated using data gathered for all housing types from 2023 Pennsylvania Act 129 2018 Residential Baseline Study; http://www.puc.state.pa.us/Electric/pdf/Act129/SWE_ Phase3_Res_Baseline_Study_Rpt021219.pdf._

10) PA SWE Team Calculations with data from the National Solar Radiation Database. 1991–2005 Update: Typical Meteorological Year 3. NREL. <u>http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/by_state_and_city.html.</u> Formatted: Hyperlink

VOLUME 2: Residential Measures

2.4.4 ENERGY STAR CLOTHES WASHERS

8) Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service (Weblink) and updated based on the latest CDD and HDD values from NOAA's 15-year annual climate Normals (2006–2020) (Weblink)

VOLUME 2: Residential Measures

2.4.4 LOW-CAPACITY REFRIGERATOR / FREEZER RECYCLING WITHOUT REPLACEMENT

Target Sector	Residential Establishments	•
Measure Unit	Clothes Washer	
Measure Life	11 years ^{Source 1} Without Replacement: Source 1	
	Refrigerator: 5 years	
	Freezer: 4 years	-
Vintage	Replace on BurnoutEarly Retirement	•

ELIGIBILITY

Refrigerator and freezer recycling programs are designed to save energy through the removal of old-but-operable compact refrigerators and freezers from service. This measure focuses on "mini-fridges" and small freezers, including those regulated as compact refrigerators and freezers (which are defined as having a total volume of 7.5 ft³ or less), specifically those units with an interior size (total volume) less than 10 cubic feet which are excluded from the Uniform Methods Project-based 2.4.3 Refrigerator / Freezer Recycling of the 2026 TRM.

By offering free pickup, providing incentives, and disseminating information about the operating cost of old compact refrigerators, these programs are designed to encourage consumers to:

- Discontinue the use of secondary compact refrigerators
- Relinquish compact refrigerators previously used as primary units when they are replaced (rather than keeping the old compact refrigerator as a secondary unit or on site of a large facility)
- Prevent the continued use of old compact refrigerators in another location through a direct transfer (giving it away or selling it) or indirect transfer (resale on the used appliance market).

This protocol applies to both residential and non-residential sectors, as refrigerator and freezer usage and energy usage are assumed to be independent of customer rate class. The savings algorithms are based on current and historic federal efficiency standards for refrigerators and freezers. The savings algorithms for this measure can be applied to refrigerator and freezer retirements meeting the following criteria:

1) Existing, working compact refrigerator or freezer less than 10 cubic feet in size (savings does not apply if unit is not working)

2) Unit is a primary, secondary, or abandoned

EDCs can use data gathering to calculate program savings using the federal efficiency standards, and actual program year recycled refrigerator/freezer data.

ALGORITHMS

The total annual energy savings (kWh/yr) achieved from recycling old-but-operable refrigerators are calculated using the following general algorithms:

Energy Savings

 $\Delta kWh = UEC \times PART_{USE}$

Note that lifetime savings will be calculated with this same general algorithm but with an adjusted measure life.

VOLUME 2: Residential Measures

Appliances

Formatted: Font color: Auto
Formatted: Font: 10 pt, Font color: Auto
Formatted: Font color: Auto
Formatted: Font color: Auto
Formatted: Left
Formatted Table
Formatted: Font color: Auto
Formatted: Font: 10 pt, Font color: Auto
Formatted: Left
Formatted Table
Formatted: Font color: Auto, Not Superscript/ Subscript
Formatted: Tab stops: 1.44", Centered + 2", Left
Formatted: Font color: Auto
Formatted: Font color: Auto
Formatted: Left
Formatted: SubStyle

Unit Energy Consumption (UEC)

Recognizing that determination of appliance characteristics via measurement or make/model lookup may be impractical in some cases, several options for determining the UEC of the existing refrigerator or freezer are permitted, listed below. Option 1 uses the product class average UECs provided in Table 2. The remaining options are more precise than Option 1 and are listed in descending order of precision (Options 2 through 5). EDCs may choose to forego the extra documentation required for the more precise calculation options but note that these options should allow for the capture of more savings.

- 1) The default class-dependent UEC from Table 2.
- The official label energy rating for the model such as from an EnergyGuide or historic ENERGY STAR records. Documentation should include the model number and information source.
- 3) Calculated from class-dependent formula in Table 3 with age verified by nameplate, compressor age, or model and serial number, and adjusted or total volume verified from (1) the nameplate, (2) similar sources as option 2, or (3) measured in the field.
- 4) Calculated from class-dependent formula in Table 3 with age verified by nameplate, compressor age, or model and serial number, using the age-appropriate default volume from Table 4.
- 5) Calculated from the "2015 to date" class-dependent formula in Table 3 with total volume verified from nameplate or measured Adjusted volume.

If both fresh and freezer compartment volumes are available, adjusted volume should be calculated as follows:

<u>All Refrigerator⁶⁸ AV</u> = Total Volume = Fresh Volume + Freezer Volume

<u>Refrigerator AV</u> = Fresh Volume + 1.63 × Freezer Volume

<u>Freezer AV</u> = $1.76 \times$ Freezer Volume

Otherwise, the class-dependent average adjusted volume to total volume ratio may be used from Table 4.

Part-Use Factor

When calculating per unit kWh savings for a removed refrigerator or freezer, it is necessary to calculate and apply a "Part-Use" factor. "Part-use" is an appliance recycling-specific adjustment factor used to convert the UEC (determined through the methods described above) into an average per-unit deemed savings value. The UEC itself is not equal to the default savings value, because: (1) the UEC model yields an estimate of annual consumption, and (2) not all recycled refrigerators and freezers would have operated year-round had they not been decommissioned through the program.

In Program Year 8, the Commission determined that the average removed standard size refrigerator was plugged in and used 72.8% of the year and the average freezer was plugged in and used 84.5% of the year. ^{Source 2} These are the default values for the part-use factor. EDCs may elect to calculate an EDC-specific part-use factor for a specific program year. In the event an EDC desires to calculate an EDC-specific part-use factor, EDCs should use the methodology described in section 4.4 of the DOE, Uniform Methods Project protocol. ^{Source 3}

⁵⁸ An all-refrigerator is an appliance in which the freezer compartment—generally the cooling coil as a U shape within the fresh volume—has a volume of 0.5 ft³ or less.

VOLUME 2: Residential Measures

Appliances

Formatted: Font: Bold

Peak Demand Savings

Use the below algorithm to calculate the peak demand savings. Multiply the annual kWh savings by an Energy to Demand Factor (ETDF), which is supplied below.

This measure is for the purchase and installation of a clothes washer meeting ENERGY STAR eligibility criteria. ENERGY STAR clothes washers use less energy and hot water than non-qualified models.

ELIGIBILITY

This protocol documents the energy savings attributed to purchasing an ENERGY STAR clothes washer instead of a standard one. If a customer submits a rebate for a product that has applied for ENERGY STAR Certification but has not yet been certified, the savings will be counted for that product contingent upon its eventual certification as an ENERGY STAR measure. If at any point the product is rejected by ENERGY STAR, the product is then ineligible for the program and savings will not be counted. The target sector is residential.

ALGORITHMS

The general form of the equation for the ENERGY STAR Clothes Washer measure savings algorithm is:

Total Savings = Number-of-Clothes-Washers- ×-Savings-per-Clothes-Washer

To determine resource savings, the per-unit estimates in the algorithms will be multiplied by the number of clothes washers.

Per unit energy and demand savings are given by the following algorithms:

$$\Delta kWh = Cycles \times \frac{\left(\frac{CAPY_{base}}{IMEF_{base}} \times \left(CW_{base} + DHW_{base} \times \%_{elecDWH} + Dryer_{base} \times \%_{elecDFyer} \times \%_{\frac{dry}{wash}}\right) - \frac{CAPY_{ee}}{IMEF_{ee}} \times \left(CW_{ee} + DHW_{ee} \times \%_{elecDWH} + Dryer_{ee} \times \%_{elecDFyer} \times \%_{\frac{dry}{wash}}\right) - \frac{CAPY_{ee}}{IMEF_{ee}} \times \left(CW_{ee} + DHW_{ee} \times \%_{elecDWH} + Dryer_{ee} \times \%_{elecDFyer} \times \%_{\frac{dry}{wash}}\right) - \frac{CAPY_{ee}}{IMEF_{ee}} \times CF$$

Where IMEF is the Integrated Modified Energy Factor, which is the energy performance metric for clothes washers. IMEF is defined as:

IMEF is the quotient of the cubic foot capacity of the clothes container, C, divided by the total clothes washer energy consumption per cycle, with such energy consumption expressed as the sum of the machine electrical energy consumption (M), the hot water energy consumption (E), the energy required for removal of the remaining moisture in the wash load (D), and the combined low power mode energy consumption (L). The higher the value, the more efficient the clothes washer is.^{Source 2}

$$IMEF = \frac{C}{(M+E+D+L)}$$

DEFINITION OF TERMS

<u>ΔkW</u> summer peak	$_= \Delta kWh \times ETDF_s$
<u> <u> </u></u>	$_= \Delta kWh \times ETDF_w$

VOLUME 2: Residential Measures

Appliances

Page 180

Formatted: Body Text

Formatted: Normal

DEFINITION OF TERMS

Table 2-93: Terms, Values, and References for ENERGY STAR Clothes WashersMini-Frig Recycling

Torm	Unit	Valuo	Source
CAPY _{base-,} Capacity of baseline clothes washer	ft ³	EDC Data Gathering	EDC Data Gathering
		Default: 3.5	4
CAPY _{EE} , Capacity of ENERGY STAR clothes washer	ft³	EDC Data Gathering	EDC Data Gathering
		Default: 3.5	4
IMEF _{base} , Integrated Modified Energy Factor of baseline clothes washer	ft³ (kWh/cycle)	Table 2-77	8
IMEFEE, Integrated Modified Energy Factor of ENERGY STAR clothes	$\frac{ft^3}{(hWh (male))}$	EDC Data Gathering	EDC Data Gathering
Washer	(kWh/cycle)	Default: Table 2-77	2
Cycles , Number of clothes washer cycles per year	eycles yr	25 1	5
CW _{base-7} % of total energy consumption for baseline clothes washer mechanical operation	%	8.1%	4
CW _{EE,} % of total energy consumption for ENERGY STAR clothes washer mechanical operation	%	5.8%	4
DHW _{base} , % of total energy consumption attributed to baseline clothes washer water heating	%	26.5%	4
DHW _{EE} , % of total energy consumption attributed to ENERGY STAR clothes washer water heating	%	31.2%	4
% _{Етеериин} , % of water heaters that are electric	%	EDC Data Gathering Default: 35%	EDC Data Gathering 3
Dryer _{base} , % of total energy consumption for baseline clothes washerdryer operation	%	65.4%	4

VOLUME 2: Residential Measures

Appliances

Term	Unit	Value	Source
Dryer _{EE-} , % of total energy consumption for ENERGY STAR clothes washer dryer operation	%	63.0%	4
% FLEEDFYFE , Percentage of dryers that are electric	%	EDC Data Gathering	EDC Data Gathering 3
% dry , Percentage of homes with a dryer wash that use the dryer every time clothes are washed	%	Default: 74% Default= 96% Or EDC data gathering	5
<i>Time_{eyete}</i> , average duration of a clothes washer cycle	hours	1.04	6
CF , Demand Coincidence Factor. The coincidence of average clothes washer demand to summer system peak	Proportion	0.029	7

The current federal standard for clothes washers went into effect on January 1, 2018, and is not scheduled to change until 2024. The efficiency standards are detailed in Table 2-77.

Note that the current standards are based on the Integrated Modified Energy Factor (IMEF) and Integrated Water Factor (IWF). The IMEF incorporates energy use in standby and off modes and includes updates to the provisions of per-cycle measurements. The IWF more accurately represents consumer usage patterns as compared to the current metric. Previous standards were based on MEF and WF.

Term	<u>Unit</u>	Values	Source
UEC, Unit Energy Consumption	<u>kWh/yr</u>	EDC Data Gathering Default in Table 2	<u>Varies</u>
Total Volume, Fresh plus Frozen Volume	<u>ft</u> ³	EDC Data Gathering	
Fresh Volume, volume of refrigerator	<u>ft</u> ³	EDC Data Gathering	
Frozen Volume, volume capable of maintaining 0°F	<u>ft</u> ³	EDC Data Gathering	
AV, Adjusted Volume/calculated as described above	<u>ft</u> ³	EDC Data Gathering, defaults in Table 4	<u>6–8</u>
PART USE, the portion of the year the average refrigerator or freezer would likely have operated if not recycled through the program	<u>%</u>	EDC Data Gathering According to Section 4.4 of UMP Protocol Default: Refrigerator= 72.8% Freezer= 84.5%	<u>2</u>
ETDF _{s.} Summer peak Energy to Demand Factor	kW kWh	<u>Refrigerator = 0.0001354</u> <u>Freezer = 0.0001387</u>	<u>4</u>
ETDF _w , Winter peak Energy to Demand Factor	$\frac{kW}{kWh}$	<u>Refrigerator = 0.0001014</u> <u>Freezer = 0.0000998</u>	<u>4</u>

VOLUME 2: Residential Measures

Appliances

Table 2-94: Federal Standards and ENERGY STAR Specifications for Clothes Washers^{Source 2, 8}: Product Class Descriptions and Default UEC

Configuration	Minimum IMEF	ENERGY STAR Minimum IMEF
Top-loading, Standard	1.57	2.06
Front-loading, Standard	1.84	2.76

DEFAULT SAVINGS

Product Class ⁵⁹	Average UEC (kWh/yr)
11 - Compact refrigerator and Refrigerator-Freezer other than All-Refrigerator - manual defrost	<u>288.3</u>
11A - Compact all-refrigerator - manual defrost ⁶⁰	<u>242.7</u>
12 - Compact refrigerator-freezer - partial automatic defrost	<u>361.7</u>
13 - Compact refrigerator-freezers - automatic defrost with top-mounted freezer	<u>405.2</u>
13I - Compact refrigerator-freezers - automatic defrost with top-mounted freezer and automatic icemaker	<u>298.2</u>
13A - Compact all-refrigerators - automatic defrost	<u>538.8</u>
14 - Compact refrigerator-freezer - automatic defrost with side-mounted freezer	<u>492.1</u>
14I - Compact refrigerator-freezer - automatic defrost with side-mounted freezer and automatic icemaker	<u>571.5</u>
15 - Compact refrigerator-freezer - automatic defrost with bottom-mounted freezer	<u>413.4</u>
15I - Compact refrigerator-freezer - automatic defrost with bottom-mounted freezer and automatic icemaker	<u>486.3</u>
16 - Compact upright freezers with manual defrost	<u>253.6</u>
17 - Compact upright freezers with automatic defrost	<u>394.5</u>
18 - Compact chest freezers	<u>180.1</u>

⁵⁹ This measure uses the federal efficiency standards for compact refrigerators and freezers, which are defined as having a total volume of 7.5 ft³ or less. However, this measure is also meant to cover equipment with a total volume of 10 ft³, which are excluded from section 2.4.3 Refrigerator/Freezer Recycling of the 2026 TRM.
⁶⁰ An all-refrigerator is an appliance in which the freezer compartment—(generally the exposed cooling coil as a U shape within the freezer within the freezer compartment). As a volume of 0.6 all colors.

fresh volume)—has a volume of 0.5 ft3 or less.

VOLUME 2: Residential Measures

<u>Class</u>	<u>1992 or earlier</u> (<u>1/1/1990)</u>	<u>1993 to 2000</u> (1/1/1993)	<u>2001 to 2014</u> (<u>1/1/2001)</u>	<u>2015 to date</u> (9/14/2014)
<u>11</u>	16.3 × AV/ ± 316	13.5 × AV + 299	10.70 × AV + 299.0	<u>9.03 × AV + 252.3</u>
<u>11A</u>	<u>16.3 × AV + 316</u>	<u>13.3 ^ AV + 299</u>	<u>10.70 × AV + 299.0</u>	<u>7.84 × AV + 219.1</u>
<u>12</u>	<u>21.8 × AV + 429</u>	<u>10.4 × AV + 398</u>	<u>7.00 × AV + 398.0</u>	<u>5.91 × AV + 335.8</u>
<u>13</u>				<u>11.80 × AV + 339.2</u>
<u>13I</u>	<u>23.5 × AV + 471</u>	<u> 16.0 × AV + 355</u>	<u>12.70 × AV + 355.0</u>	<u>11.80 × AV + 423.2</u>
<u>13A</u>				<u>9.17 × AV + 259.3</u>
<u>14</u>		11.0 × AV/ + 501	7.60 × 4)/ + 504.0	<u>6.82 × AV + 456.9</u>
<u>14I</u>	<u>27.7 × AV + 488</u>	<u>11.8 × AV + 501</u>	<u>7.60 × AV + 501.0</u>	<u>6.82 × AV + 540.9</u>
<u>15</u>	27.7 × 41/ + 499	16 E × AV/ + 267	12 10 × 41/ + 267 0	<u>11.80 × AV + 339.2</u>
<u>15I</u>	<u>27.7 × AV + 488</u>	<u>16.5 × AV + 367</u>	<u>13.10 × AV + 367.0</u>	<u>11.80 × AV + 423.2</u>
<u>16</u>	<u>10.9 × AV + 422</u>	<u>10.3 × AV + 264</u>	<u>9.78 × AV + 250.8</u>	<u>8.65 × AV + 225.7</u>
<u>17</u>	<u>16.0 × AV + 623</u>	<u>14.9 × AV + 391</u>	<u>11.40 × AV + 391.0</u>	<u>10.17 × AV + 351.9</u>
<u>18</u>	<u>14.8 × AV + 223</u>	<u>11.0 × AV + 160</u>	<u>10.45 × AV + 152.0</u>	<u>9.25 × AV + 136.8</u>
<u>17</u>	<u>16.0 × AV + 623</u>	<u>14.9 × AV + 391</u>	<u>11.40 × AV + 391.0</u>	8.65 × AV + 225.7 10.17 × AV + 351.9

Table 2-95: Default Clothes Washer Savings: Federal Standard-Based UEC by Product Class

The average adjusted volumes below were calculated by the SWE using a combined database of refrigerators and freezers from Sources 5–8. These were combined into a single data set, and readily identifiable duplicate entries were removed. In addition, low-voltage devices intended for use in cars and RVs were excluded. The number of models in each class is given, as are some historic class prevalence data based on AHAM sales information from 2008.

VOLUME 2: Residential Measures

Table 2-96: Average Adjusted Volume (AV) and AV to Total Volume ratio by Product Class

Class	Compact Products	Adjusted Volume Sources 6 - 8			
	Historic Share Source 5	Sample Size	2014 or earlier	2015 to date	<u>AV ÷ Total Vol.</u>
<u>11</u>	<u>69%</u>	<u>51</u>	<u>3.13</u>	<u>4.3</u>	<u>109%</u>
<u>11A</u>	<u></u>	<u>626</u>	0.10	<u>3.0</u>	<u>101%</u>
<u>12</u>	<u>4.9%</u>	<u>369</u>	<u>5.2</u>	<u>5.2</u>	<u>118%</u>
<u>13</u>	0.7%	<u>58</u>		<u>6.7</u>	<u>121%</u>
<u>13I</u>	<u>0.1730</u>	<u>1</u>	<u>4.4</u>	<u>11.7</u>	<u>119%</u>
<u>13A</u>	<u>6.6%</u>	<u>1.029</u>		<u>4.2</u>	<u>100%</u>
<u>14</u>	0.3%	<u>27</u>	<u>5.5</u>	<u>6.0</u>	<u>116%</u>
<u>14I</u>	<u></u>	<u>24</u>	<u></u>	<u>4.9</u>	<u>110%</u>
<u>15</u>	0.3%	<u>20</u>	7.4	<u>7.9</u>	<u>125%</u>
<u>15I</u>	<u></u>	<u>21</u>	<u></u>	<u>7.0</u>	<u>130%</u>
<u>16</u>	<u>9.1%</u>	<u>84</u>	<u>5.5</u>	<u>5.5</u>	=
<u>17</u>	<u>5.5%</u>	<u>44</u>	<u>6.9</u>	<u>6.9</u>	=
<u>18</u>	<u>3.6%</u>	<u>223</u>	<u>8.2</u>	<u>8.2</u>	=

<u>Measure Life</u>

Fuel Mix	Washer Type	DkWh	∆ kW_{peak}
	Top-Loading	129.2	0.0144
Electric DHW/Electric Dryer	Front-Loading	154.7	0.0172
	Top-Loading	35.8	0.0040
Electric DHW/Gas Dryer	Front-Loading	47.4	0.0053
	Top-Loading	114.0	0.0127
Gas DHW/Electric Dryer	Front-Loading	127.5	0.0142
Gas DHW/Gas Dryer	Top-Loading	20.6	0.0023
	Front-Loading	20.2	0.0022
	Top-Loading	95.0	0.0106
Default (35% Electric DHW, 75% Electric Dryer)	Front-Loading	109.1	0.0121

The measure lives for refrigerators and freezers recycled without replacement are 5 years and 4 years, respectively, from the California Electronic Technical Reference Manual. These values represent 1/3 of the EUL of a new refrigerator or freezer.

EVALUATION PROTOCOLS

VOLUME 2: Residential Measures

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer–specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

- Energy Star Calculator, EPA research on available models. Accessed August 2018. https://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx
- 2) ENERGY STAR Clothes Washers Product Specification Version 7.0. https://www.energystar.gov/products/appliances/clothes_washers/key_product_criteria
- 3) Statewide average for all housing types from Pennsylvania Act 129 2018 Residential Baseline Study, 2018, <u>http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-</u> <u>Phase3_Res_Baseline_Study_Rpt021219.pdf</u>.
- 4) The percentage of total consumption that is used for the machine, water heating and dryer varies with efficiency. Percentages were developed using the above parameters and using the U.S. Department of Energy's Life-Cycle Cost and Payback Period tool, available at: http://www1.eere.energy.gov/buildings/appliance_standards/residential/clothes_washers_sup port_stakeholder_negotiations.html
- 5) Calculated using "Frequency of clothes washer use" and "Frequency of dryer use" data for the Mid-Atlantic region from U.S. Department of Energy. 2015 Residential Energy Consumption Survey (2015). https://www.eia.gov/consumption/residential/data/2015/index.php?view=microdata
- Metered data from Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012–May 31, 2013) Appliance Rebate Program." March 21, 2014, p. 36. Same value as used in and 2018 Mid Atlantic TRM V-8.0. 1.04 hours/cycle derived from 254 cycles/yr and 265 hours/yr run time.
- Value from Clothes Washer Measure, Mid Atlantic TRM 2014. Metered data from Navigant Consulting "EmPOWER Maryland Draft Final Evaluation Report Evaluation Year 4 (June 1, 2012 – May 31, 2013) Appliance Rebate Program." March 21, 2014, p. 36California Electronic Technical Reference Manual. "Refrigerator or Freezer, Residential". Accessed December 2023. Weblink
- 2) Based on a Cadmus survey of 510 PPL participants in PY8.
- 3) Keeling, J., Bruchs, D. (2017). "Chapter 7: Refrigerator Recycling Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy-Efficiency Savings for Specific Measures". Section 4.4. National Renewable Energy Laboratory. Weblink
- 4) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink
- 5) Greenblatt, J., Hopkins, A., Letschert, V., and Blasnik, M. (2012, April). "Energy use of US residential refrigerators and freezers: function derivation based on household and climate characteristics". Lawrence Berkeley National Lab. Weblink
- 6) U.S. Department of Energy Compliance Certification Database. Accessed October 2021. Weblink
- 7) ENERGY STAR-certified refrigerators. Accessed November 2021. Weblink
- 8) ENERGY STAR-certified freezers. Accessed November 2011. Weblink

VOLUME 2: Residential Measures

2.4.5 ENERGY STAR COOLERS

7)1).

8) U.S. Department of Energy. 10 CFR Parts 429 and 430. Energy Conservation Program: Energy Conservation Standards for Residential Clothes Washers. Direct Final Rule. https://www.ecfr.gov/cgi-bin/text-

idx?SID=86e70cbc87e5af18caca2e5c205bd107&mc=true&node=se10.3.430_132&rgn=div8

Formatted: Font color: Custom Color(RGB(33,33,33)), Pattern: Clear (White)

Formatted: Indent: Left: 0", Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.5" + Indent at: 0.75"

VOLUME 2: Residential Measures

2.4.5 ENERGY STAR CLOTHES DRYERS

Target Sector	Residential	•
Measure Unit	Clothes DryerCooler	•
Measure Life	12 <u>14</u> years ^{Source 4} 1	•
Vintage	Replace on Burnout	
Vintage	Replace on Burnout	•

ENERGY STAR Clothes Dryers have a higher CEF (Combined Energy Factor) that standard dryers, and may incorporate a moisture sensor to reduce excessive drying of clothes and prolonged drying cycles.

ELIGIBILITY

THIS PROTOCOL DOCUMENTS THE ENERGY SAVINGS ATTRIBUTED TO PURCHASING AN ELECTRIC ENERGY STAR DRYER THAT MEETS OR EXCEEDS THE CEF_{ee} REQUIREMENT IN TABLE 2-80 INSTEAD OF A STANDARD DRYER. IF A CUSTOMER SUBMITS A REBATE FOR A PRODUCT THAT HAS APPLIED FOR ENERGY STAR CERTIFICATION BUT HAS NOT YET BEEN CERTIFIED ELIGIBILITY

This measure is for the purchase and installation of a new cooler meeting ENERGY STAR or ENERGY STAR Most Efficient criteria. An ENERGY STAR cooler is 10% - 30% more efficient than the minimum federal government standard. Coolers are sometimes called beverage coolers, beverage refrigerators, wine chillers or wine fridges. They typically have glass fronts and operate at higher temperatures than refrigerators. There is currently no ENERGY STAR standard for refrigerator or freezer combination coolers.

Formatted: Normal

Formatted: Font: Bold

Formatted: Font: Bold

Formatted: No Spacing, paragraph 6pt space

ALGORITHMS

, the To determine resource savings, the per-unit estimates in the algorithms will be countedmultiplied by the number of coolers. The number of coolers will be determined using market assessments and market tracking.

If the volume and configuration of a cooler is known, the baseline model's annual energy consumption (kWh_{base}) may be determined using Table 2-98.

The efficient model's annual energy consumption (kWhee) may be determined using manufacturers' test data for that product contingent upon its eventual certification as an the given model. Where test data is not available the algorithms in Table 2-98 for "ENERGY STAR measure. If at any point the product is rejected by maximum energy usage in kWh/year" may be used to determine the efficient energy consumption for a conservative savings estimate.

ENERGY STAR, the product is then ineligible for the program and savings will not be counted.⁶¹

ALGORITHMS

⁶¹ The Pennsylvania SWE and PUC TUS staff added this condition relating to certification that has been applied for but not yet received at the request of several of the Pennsylvania EDCs. EDCs will be responsible for tracking whether certification is granted.

VOLUME 2: Residential Measures

Appliances

Formatted: Font: 9 pt, Font color: Black
Formatted: Font color: Black
Formatted: Font: 9 pt, Not Italic, Font color: Black
Formatted: Justified
Formatted Table
Formatted: Font color: Black
Formatted: Font: 9 pt, Font color: Black
Formatted: Font: 9 pt, Not Italic, Font color: Black
Formatted: Justified
Formatted: Font color: Black
Formatted: Font: 9 pt, Font color: Black
Formatted: Justified
Formatted: Font color: Black
Formatted: Left, Space Before: 3 pt, After: 3 pt
Formatted: Space Before: 3 pt, After: 3 pt
Formatted: Normal
Formatted: Body Text

Formatted: Font color: Black

The energy savings are obtained through the following formulas:

$$\frac{D \ kWh/yr}{EEF_{base}} = \left(\frac{1}{CEF_{base}} - \frac{1}{CEF_{ee}}\right) \times Load_{avg} \times Cycles_{wash} \times \%_{\frac{dry}{wash}}$$

$$\Delta kW_{peak} = \left(\frac{\frac{1}{CEF_{base}}}{Time_{base}} - \frac{\frac{1}{CEF_{ee}}}{Time_{ee}}\right) \times Load_{avg} \times CF$$

 $\Delta kWh = kWh_{base} - kWh_{ee}$

 $\Delta kW_{summer peak} = \Delta kWh \times ETDF_s$

 $\Delta kW_{winter \, peak} = \Delta kWh \times ETDF_{w}$

DEFINITION OF TERMS

Table 2-97: Terms, Values, and References for ENERGY STAR Refrigerators

Term	<u>Unit</u>	Value	Source
<u>kWhbase</u> , Annual energy consumption of baseline unit	<u>kWh/yr</u>	EDC Data Gathering Default = Table 2-99	EDC Data Gathering, 2
<u>kWhee</u> , Annual energy consumption of ENERGY STAR qualified unit	<u>kWh/yr</u>	<u>EDC Data Gathering</u> <u>Default =</u> Table 2-99	EDC Data Gathering, <u>3</u>
ETDF _s , Summer peak Energy to Demand Factor	kW kWh	<u>0.0001354</u>	<u>4</u>
ETDF., Winter peak Energy to Demand Factor	kW kWh	<u>0.0001014</u>	<u>4</u>

Cooler energy consumption is characterized by volume, whether there are refrigerator or freezer compartments, and configuration (built-in, ice-maker). If this information is known, annual energy consumption (kWhbase) of the "Federal Standard" may be determined using Table 2-98. The efficient model's annual energy consumption (kWhee) may be determined using manufacturer's test data for the given model. 81: Terms, Values, and References for ENERGY STAR Clothes Dryers

Term	Ui	rit	Values	Source
Cycleswash , Number of washing machine cycles per year	cycles	/уг 25	1 cycles/year	4
<i>Load_{avg}</i> , Weight of average dryer load, in pounds per load	lbs/lo		ard: 8.45 lbs/load act: 3.00 lbs/load	2
$\frac{\mathscr{H}_{\frac{dey}{wash}}}{wash}$. Percentage of homes with a dryer the use the dryer for every load	uat %	Or ED	96% C data gathering	4
CEF _{base} -, Combined Energy Factor of basel dryer, in Ibs/kWh	ine Ibs/kl		e 2-80 or EDC ta Gathering	3
CEFee, Combined Energy Factor of ENERG	i¥ lbs/k₩		e 2-80 or EDC ta Gathering	2

VOLUME 2: Residential Measures

Appliances

Page 189

Formatted: Keep with next

$\frac{T_{\textit{ime}_{base}}}{\text{cycle}}$, Duration of baseline dryer drying cycle	Hours/ cycle	EDC Data Gathering Default = 1.0	Assumption
<i>Time_{ee}</i> , Duration of efficient dryer drying cycle	Hours/ cycle	EDC Data Gathering Default = 1.0	Assumption
CF , Coincidence Factor	Proportion	0.029	Based on CF assumption for Clothes Washers

Where test data is not available, the algorithm in Table 2-98 for "ENERGY STAR Maximum Energy Usage in kWh/year" may be used to determine efficient energy consumption for a conservative savings estimate.

The term "AV" in the equations refers to "Adjusted Volume" in ft³. For cooler-freezers, Categories beginning with C-9):

<u>AV</u> = Cooler Volume + Fresh Volume + 1.76 × Freezer Volume

For all other categories:

<u>AV</u> = Cooler Volume + Fresh Volume

 Table 2-98: Combined Energy Factor for Federal Minimum-Standard and ENERGY STAR Dryers
 Dryers
 Coolers

 Maximum Annual Energy Consumption for Known Configuration and Volume⁵²
 Star
 Dryers
 Coolers

Product Type	CEF_{base} (lbs/kWh)		CEF_{ee} (lbs/kWh)			
Vented Electric, Standard (4.4 ft ³ or greater capacity)	3.73		3.93			
Vented Electric, Compact (120V) (less than 4.4 ft ³ capacity)	3.61		3.80			
Vented Electric, Compact (240V) (less than 4.4 ft³ capacity)	3.:	3.27		45		
ooler Configuration Class		<u>Federal Standard</u> <u>Maximum Usage in</u> <u>kWh/yr</u>		ENERGY STAR <u>Maximum</u> Energy Usage in <u>kWh/yr</u>		
Standard: 7.75 cubic feet or greater						
2. Built-in	2. Built-in		<u>7.88 × AV + 155.8</u>		<u>5.52 × AV + 109.1</u>	
. Freestanding		<u>7.88 × AV + 155.8</u>		<u>7.09 × AV + 140.2</u>		
Compact: less than 7.75 cubic feet						
1. Built-in compact		<u>7.88 ×</u>	AV + 155.8	<u>5.52 × AV + 1</u>	<u>09.1</u>	
3. Freestanding compact		<u>7.88 ×</u>	AV + 155.8	<u>6.30 × AV + 1</u>	<u>24.6</u>	

Formatted: No Spacing, paragraph 6pt space

⁶² Numbering convention (1, C-3A, etc.) of Federal standard and ENERGY STAR specifications included for clear reference to the standards as well as for correspondence to entries in the default savings table.

VOLUME 2: Residential Measures

Appliances

DEFAULT SAVINGS

Table 2-99: Default Energy Savings and Demand Reductions for ENERGY STAR Clothes Dryers

Product Type	Energy Savings (kWh/yr)	Demand Reduction (kW)
Vented Electric, Standard (4.4 ft ³ or greater capacity)	27.8	0.0033
Vented Electric, Compact (120V) (less than 4.4 ft³ capacity)	10.0	0.0012
Vented Electric, Compact (240V) (less than 4.4 ft ³ capacity)	11.5	0.0014

VALUES

EVALUATION PROTOCOLS

The most appropriate evaluation protocol for this measure is verification of installation coupled with calculation of energy and demand savings using above algorithms.

SOURCES

4) Calculated using "Frequency of clothes washer use" and "Frequency of dryer use" data for the Mid-+ Atlantic region from ENERGY STAR Coolers⁶³U.S. Department of Energy. 2015 Residential Energy Consumption Survey (2015). https://www.eia.gov/consumption/residential/data/2015/index.php?view=microdata

Formatted: Caption, Table Caption, Footnotes, Space After: 0 pt, No bullets or numbering

Cooler Configuration Class	Assumed Adjusted Volume (cubic feet) Source 5.6	<u>Conventional</u> <u>Unit Energy</u> <u>Usage in</u> <u>kWh/yr</u>	ENERGY STAR Energy Usage in <u>kWh/yr</u>	<u>∆kWh/yr⁶⁴</u>	<mark>∆kW_{sum}</mark> mer peak	<u>∆kW_{winte} rpeak</u>	
Standard: 7.75 cubic feet or grea	Standard: 7.75 cubic feet or greater						
2. Built-in	<u>11.26</u>	<u>244.5</u>	<u>171.3</u>	<u>73</u>	<u>0.0099</u>	<u>0.0074</u>	
4. Freestanding	<u>14.63</u>	<u>271.1</u>	<u>243.9</u>	<u>27</u>	<u>0.0037</u>	<u>0.0027</u>	
Compact: less than 7.75 cubic feet							
1. Built-in compact	<u>3.97</u>	<u>187.1</u>	<u>131</u>	<u>56</u>	<u>0.0076</u>	<u>0.0057</u>	
3. Freestanding compact	<u>3.82</u>	<u>185.9</u>	<u>148.7</u>	<u>37</u>	<u>0.0050</u>	<u>0.0038</u>	

Formatted: No Spacing, paragraph 6pt space

Formatted: Keep with next, Keep lines together

1) For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. Energy Star. "Clothes Dryers Key Product Criteria. " ENERGY STAR Specification for Clothes Dryers Version 1.0, Effective January 1, 2015. https://www.energystar.gov/products/appliances/clothes_dryers/key_product_criteria

2) Federal Code of Regulations 10 CFR 430. https://www.gpo.gov/fdsys/pkg/CFR-2017-title10vol3/pdf/CFR-2017-title10-vol3-sec430-32.pdf

63 Lettering convention (1A, 2, etc) of Federal standard and ENERGY STAR specifications included for clear reference to the standards as well as for correspondence to entries in the default savings table. 64 kWh/yr savings may differ from Conventional Usage – ENERGY STAR Usage by 1 kWh/yr due to rounding.

VOLUME 2: Residential Measures

EVALUATION PROTOCOLS

Appliances

Page 191

Formatted: Keep with next

Formatted: SubStyle

 California Public Utilities Commission Database for Energy Efficient Resources (DEER) EUL Support Table for 2020, <u>http://www.deeresources.com/files/DEER2020/download/SupportTable-EUL2020.xlsx.</u> <u>Accessed December 2018</u>.

VOLUME 2: Residential Measures

2.4.6 HEAT PUMP CLOTHES DRYERS

Target Sector	Residential Establishments	
Measure Unit	Per Clothes Dryer	
Measure Life	12 years ^{Source 1}	
Vintage	Replace on Burnout, New Construction	

Heat pump clothes dryers are more energy-efficient than standard dryers. A conventional dryer heats air, passes it through the clothing drum, and exhausts the hot air. A heat pump dryer works by circulating hot air through the clothing drum, extracting moisture from the clothing that becomes condensation after passing over an evaporator coil, then reheating the air before it passes through the drum again. The heat pump dryer saves energy by recirculating the warm air, requiring less heat to reach the desired temperature, and because the process requires a lower air temperature overall to dry clothes.

ELIGIBILITY

This protocol documents the energy savings attributed to installing a heat pump clothes dryer that meets or exceeds the default CEFee requirements in Table 2-82. The target sector is residential.

ALGORITHMS

The following algorithms shall be used to calculate the annual energy savings and coincident peak demand savings for this measure:

DkWh

AkW_{veak}

$$= \left(\frac{1}{CEF_{base}} - \frac{1}{CEF_{ee}}\right) \times Load_{avg} \times Cycles_{wash} \times \%_{dry}$$

$$= \left(\frac{1}{CEF_{base}} - \frac{1}{CEF_{ee}}\right) \times Load_{avg} \times CF$$

DEFINITION OF TERMS

Table 2-84: Terms, Values, and References for Heat Pump Clothes Dryers

4

Term	Unit	Values	Source
AkWh , Annual Energy Savings	kWh/yr	Table 2-83	-
AkWpeak , Peak Demand Savings	₩	Table 2-83	-
<i>Cycles_{wash}</i> , Number of washing machine cycles per year	cycles/yr	EDC Data Gathering Default = 251	2
Loadavg , Weight of average dryer load	lbs/cycle	Standard = 8.45 Compact = 3.00	3
% day , Percentage of washed loads that get dried	%	Default = 96%	2
<i>CEF_{base}</i> , Combined Energy Factor of baseline dryer, in lbs/kWh	lbs/kWh	EDC Data Gathering See CEF _{base} of Table 2-80 in Sec. 0	4

VOLUME 2: Residential Measures

Appliances

Page 193

Formatted: No Spacing, paragraph 6pt space

Formatted: Font: Arial Black, Bold, Underline Formatted: Normal, Space After: 6 pt

CEFee , Combined Energy Factor of heat pump dryer, in lbs/kWh	lbs/kWh	EDC Data Gathering Default: ≥4.4 ft ³ (std) = 4.50 <4.4 ft ³ (empet) = 4.71	5
<i>Time_{base}</i> , Duration of baseline dryer drying cycle	Hours/ cycle	EDC Data Gathering Default = 1.0	Assumption
<i>Time_{ee}</i> , Duration of efficient dryer drying cycle	Hours/ cycle	EDC Data Gathering Heat Pump = 1.2	6
CF , Coincidence Factor	None	EDC Data Gathering Default = 0.029	Based on CF assumption for Clothes Washers

Default Savings

Table 2-85: Default Savings for Heat Pump Clothes Dryers

Heat Pump Type	Energy Savings (kWh/yr)	Peak Demand Reduction (kW)
4.4 ft ³ or greater capacity	93.4	0.0203
Less than 4.4 ft ³ capacity, 120 V	4 6.8	0.0087
Less than 4.4 ft ³ capacity, 240 V	67.6	0.0112

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer _specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

 California Public Utilities Commission Database for Energy Efficient Resources (DEER) EUL Support Table for 2020,

http://www.deeresources.com/files/DEER2020/download/SupportTable-EUL2020.xlsx

- 2) Calculated using "Frequency of clothes washer use" and "Frequency of dryer use" data for the Mid-Atlantic region from U.S. Department of Energy. 2015 Residential Energy Consumption Survey (2015). <u>https://www.eia.gov/consumption/residential/data/2015/index.php?view=microdata</u>
- 3) Energy Star. "Clothes Dryers Key Product Criteria. " ENERGY STAR Specification for Clothes Dryers Version 1.0, Effective January 1, 2015. https://www.energystar.gov/products/appliances/clothes_dryers/key_product_criteria
- 4) U.S. Code of Federal Regulations, Part 430, Subpart C, *Energy and Water Conservation Standards*. <u>http://www.ecfr.gov/cgi-bin/text-idx?rgn=div8&node=10:3.0.1.4.18.3.9.2</u>
- 5) ENERGY STAR, Certified Clothes Dryers.

https://www.energystar.gov/productfinder/product/certified-clothes-dryers/results (Examined the "ventless" dryers and removed dryers that were condensing and not heat pump. Then took the average CEF of the two different capacity bins.)

VOLUME 2: Residential Measures

Appliances

Formatted: Normal

Formatted: Font: Bold, Font color: Black, Small caps

Formatted: Body Text

Formatted: Body Text

Formatted: Font: Arial, Not Bold, Font color: Auto, Not Small caps, Not Expanded by / Condensed by

Formatted: No Spacing, paragraph 6pt space, Line spacing: single

6) CLASP, SEDI and Ecova, Analysis of Potential Energy Savings from Heat Pump Clothes Dryers in North America, March 2013. <u>http://www.ecosresearch.com/wp-</u> content/uploads/2015/12/2013_Analysis-of-Potential-Energy-Savings-from-Heat-Pump-Clothes-Dryers-in-North-America.pdf

VOLUME 2: Residential Measures

2.4.7 Fuel Switching: Electric Clothes Dryer to Gas Clothes Dryer

- 1) California Electronic Technical Reference Manual. "Refrigerator or Freezer, Residential". Accessed December 2023. Weblink
- 2) 10 CFR 430.32(aa) Weblink
- 3) U.S. EPA. (2014). ENERGY STAR Program Requirements Product Specifications for Consumer Refrigeration Products Version 5.1. Weblink
- 4) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink
- 5) DOE Compliance Certificate Database. Accessed July 2022. Weblink
- 6) ENERGY STAR-certified refrigerators. Accessed July 2022. Weblink

VOLUME 2: Residential Measures

2.4.6 COOLER RECYCLING WITH AND WITHOUT REPLACEMENT

Target Sector	Residential-Establishments		Formatt
			Formatt
Measure <mark>UnitLife</mark>	Fuel Switch: Electric Clothes Dryer to Gas Clothes DryerWithout Replacement: Source 1		Formatt
	<u>5 years</u>		Formatt
	With Replacement:		
	<u>9 years</u>	-	Formatt
Measure LifeVintage	12 years Source-1 Early Retirement, Early Replacement,	•	Formatt
			1.44", Ce

ELIGIBILITY

Vintage	
---------	--

Replace on Burnout

Coolers are sometimes called beverage coolers, beverage refrigerators, wine chillers or wine fridges. They typically have glass fronts and operate at higher temperatures than refrigerators. This protocol outlines for the recycling of a cooler manufactured prior to October 2019.

Consumer refrigeration appliance recycling programs are designed to save energy through the removal of old-but-operable appliances from service. By offering free pickup, providing incentives, and disseminating information about the operating cost of old appliances, these programs are designed to encourage consumers to:

- Discontinue the use of secondary refrigeration equipment
- <u>Relinquish units when they are replaced (rather than keeping the old appliance as a secondary unit)</u>
- Prevent the continued use of old refrigeration equipment in another household through a direct transfer (giving it away or selling it) or indirect transfer (resale on the used appliance market).

Commonly implemented by third-party contractors (who collect and decommission participating appliances), these programs generate energy savings associated to purchasing an through the retirement of inefficient appliances. The decommissioning process captures environmentally harmful refrigerants and foam and enables the recycling of the plastic, metal, and wiring components.

This protocol applies to both residential and non-residential sectors since consumer-grade cooler usage and energy consumption are assumed to be independent of customer rate class.⁶⁵

This measure may be combined with ENERGY STAR gas clothes dryer to replace an electric dryer. The measure characterization and Coolers if the cooler is replaced with qualifying equipment.

ALGORITHMS

The total annual energy savings estimates are based(kWh/yr) achieved from recycling old-butoperable coolers are calculated using the following general algorithms:

Energy Savings

⁶⁵ For example, non-residential rate class usage cases include residential dwellings that are master-metered, usage in offices or any other applications that involve typical cooler usage.

VOLUME 2: Residential Measures

Formatted: Left, Space Before: 3 pt, After: 3 pt
Formatted: Space Before: 3 pt, After: 3 pt
Formatted Table
Formatted: Left, Space Before: 3 pt, After: 3 pt
Formatted: Font: 9 pt, Not Italic
Formatted: Space Before: 3 pt, After: 3 pt, Tab stops: 1.44", Centered + 2", Left
Formatted: Font: 9 pt
Formatted: Font: 9 pt, Not Italic
Formatted: Left, Space Before: 3 pt, After: 3 pt
Formatted: Space Before: 3 pt, After: 3 pt
Formatted: Font color: Black
Formatted: Left, Space Before: 3 pt, After: 3 pt
Formatted: Space Before: 3 pt, After: 3 pt
Formatted: Normal

$\Delta kWh = N \times (UEC - kWh_{ee}) \times PART_{USE}$

Note that lifetime savings will be calculated with this same general algorithm but with an adjusted measure life.

Unit Energy Consumption

Coolers were not federally regulated until October 2019. However, California Energy Commission Title 20 regulations for this product class were introduced in 2002, Source 3 and remained unchanged and in effect until they were superseded by the federal standards.

Annual energy consumption (UEC) of the decommissioned cooler may be determined using manufacturers' test data for the given model. If test data are not available, annual unit energy consumption is equal to the derated maximum Title 20 annual energy consumption ($\eta \times \frac{Wh_{recycled}}{1000}$, ⁶⁶ The algorithms in Table 2-101 may be used to determine kWh_{recycled}.

Note that if the unit is being recycled without replacement, the kWhee variable takes on the value of zero. The kWhee variable only applies to direct install replacement of the recycled cooler.

Adjusted Volume (AV)

The adjusted volume equations below account for the greater load of freezer compartments compared to compartments for fresh food. For Category 1 and 1A "All-refrigerators", i.e; equipment with not more than 0.5 ft³ of freezer volume:

<u>AV</u> = Cooler Volume + Fresh Volume + Freezer Volume

For all other categories:

<u>AV</u> = Cooler Volume + Fresh Volume + 1.76 × Freezer Volume

Part-Use Factor

When calculating default per unit kWh savings for a removed cooler, it is necessary to calculate and apply a "Part-Use" factor. "Part-use" is an appliance recycling-specific adjustment factor used to convert the UEC into an average usage per person and per-unit deemed savings value. The UEC itself is not equal to the default savings value, because not all coolers would have operated year-round had they not been decommissioned through the program.

EDC's may use either a cooler-specific part-use, or that calculated for refrigerators. In Program-Year 8, the Commission determined that the average number of people per household. Therefore, this is a deemed measure with identical savings applied to all installation instances, applicable across all housing types-removed refrigerator was plugged in and used 72.8% of the year. Source 5 These are the default values for the part-use factor. EDCs may elect to calculate an EDC-specific part-use factor for a specific program year. In the event an EDC desires to calculate an EDCspecific part-use factor, EDCs should use the methodology described in section 4.4 of the DOE, Uniform Methods Project protocol.^{Source 4}

ELIGIBILITY

This measure is targeted to residential customers that purchase an ENERGY STAR gas clothes dryer rather than an electric dryer.

ALGORITHMS

 $\frac{DkWh}{kWh} = \frac{kWh_{base} - kWh_{aas}}{kWh_{base}} = 577 - 30 = 547$

⁶⁶ This is results in a conservative savings estimate since equipment sold outside of California could exceed Title 20 levels.

VOLUME 2: Residential Measures

Appliances

Formatted: Normal

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
<u>May 2024</u>				

DMMBtu = -1.99 ∆ kWh $- \times CF = 0.066$ $\frac{Cycles_{wash} \times \%_{\frac{wash}{dry}} \times Time_{cycle}}{\frac{dry}{dry}}$ *Dk₩*_{peak}

Peak Demand Savings

Use the below algorithm to calculate the peak demand savings. Multiply the annual kWh savings by an Energy to Demand Factor (ETDF), which is supplied below.

<u>∆kW</u>summer peak $= \Delta kWh \times ETDF_s$

 $\Delta kW_{winter peak} = \Delta kWh \times ETDF_w$

DEFINITION OF TERMS

Table 2-100: Terms, Values, and References for Fuel Switching: Electric Clothes Dryer to Gas Clothes DryerRefrigerator and Freezer Recycling

Term	Unit	Values	Source
<u>N</u> , The number of refrigerators recycled through the program	<u>None</u>	EDC Data Gathering	EDC Data Gathering
UEC, Annual energy consumption of the cooler being recycled	<u>kWh/yr</u>	$\frac{\text{EDC Data Gathering, or}}{\eta \times kWh_{recycled}}$	EDC Data Gathering, 2, 3
<u>n</u> .Average fraction of rated usage + Title 20 Annual Energy Consumption. This is a measure of how much more efficient equipment on the market was than what Title 20 permitted.	<u>%</u>	<u>89%</u>	<u>2</u>
<u>kWh_{recycled}</u> , Maximum annual energy consumption of California Title 20 standard for the recycled unit	<u>kWh/yr</u>	<u>Table</u> 2 <u>-</u> 101	<u>3</u>
<u><i>kWhee</i></u> , Maximum annual energy consumption of ENERGY STAR qualified unit	<u>kWh/yr</u>	EDC Data Gathering Table 2-98 <u>Default:</u> Table 2-99	EDC Data Gathering, <u>7</u>
<u>PART_USE</u> . The portion of the year the average cooler would likely have operated if not recycled through the program	<u>%</u>	EDC Data Gathering According to Section 4.4 of UMP Protocol Default: Refrigerator= 72.8%	<u>EDC Data</u> <u>Gathering.</u> <u>5</u>
ETDFs, Summer peak Energy to Demand Factor	$\frac{kW}{kWh}$	<u>0.0001354</u>	<u>6</u>
ETDF _w , Winter peak Energy to Demand Factor	$\frac{kW}{kWh}$	<u>0.0001014</u>	<u>6</u>
AV, Adjusted Volume/calculated as described above	<u>ft³</u>	EDC Data Gathering Default: Recycled Compact=4.3 Recycled Standard=14.6	<u>EDC Data</u> <u>Gathering,</u> <u>2</u>

Formatted: Keep with next

-{	Formatted: Font: Bold
-{	Formatted: Font: Bold
Ľ	Formatted: Font: Bold
Ň	Formatted: Font: Bold
ľ	Formatted: TableCell, Space Before: 3 pt, After: 3 pt

Cooler energy consumption is characterized by volume, whether there are refrigerator or freezer compartments, and configuration (built-in, ice-maker). Annual energy consumption may be

VOLUME 2: Residential Measures

Appliances

determined using manufacturer's test data for the given model, or if unavailable and the configuration details are known, using the algorithms in Table 2-101. Otherwise, the default values in Table 2-101 may be used.

Table 2-101: Pre-2019 California Title 20 Maximum Annual Energy Consumption67

Cooler Configuration	<u>kWh</u> recycled	<u>Default</u>
Standard: 7.75 cubic feet or greater		
2. Built-in	<u>13.7 × AV + 267</u>	<u>467</u>
4. Freestanding	<u>13.7 × AV + 267</u>	<u>467</u>
C-3A. Cooler with all-refrigerator - automatic defrost	<u>17.4 × AV + 344</u>	<u>598</u>
C-3A-BI. Built-in cooler with all-refrigerator - automatic defrost	<u>17.4 × AV + 344</u>	<u>598</u>
C-9. Cooler with upright freezers with automatic defrost without an automatic icemaker	<u>17.4 × AV + 344</u>	<u>598</u>
C-9-BI. Built-in cooler with upright freezer with automatic defrost without an automatic icemaker	<u>17.4 × AV + 344</u>	<u>598</u>
C-91. Cooler with upright freezer with automatic defrost with an automatic icemaker	<u>17.4 × AV + 344</u>	<u>598</u>
C-9I-BI. Built-in cooler with upright freezer with automatic defrost with an automatic icemaker	<u>17.4 × AV + 344</u>	<u>598</u>
Compact: less than 7.75 cubic feet		
1. Built-in compact	<u>13.7 × AV + 267</u>	<u>326</u>
3. Freestanding compact	<u>13.7 × AV + 267</u>	<u>326</u>
C-13A. Compact cooler with all-refrigerator - automatic defrost	<u>17.4 × AV + 344</u>	<u>419</u>
C-13A-BI. Built-in compact cooler with all-refrigerator - automatic defrost	<u>17.4 × AV + 344</u>	<u>419</u>
Unknown Configuration		
Standard	=	<u>467</u>
Compact	=	<u>326</u>
<u>Unknown</u>	=	<u>353</u>

MEASURE LIFE

Since coolers function similarly to refrigerators, the California Electronic Technical Reference Manual refrigerator EUL is used as a proxy. The measure life for refrigerators WITHOUT replacement is 5 years, representing ½ of the EUL of a new refrigerator and by extension cooler. The adjusted measure life of coolers recycled WITH replacement is 5 years for federal units and 9 years for ENERGY STAR units.

⁶⁷ Lettering convention (1, 1A, etc) of Federal standard and ENERGY STAR specifications included for clear reference to the standards as well as for correspondence to entries in the default savings table.

VOLUME 2: Residential Measures

Appliances

Page 200

Formatted: Normal, Space After: 0 pt, No bullets or numbering, Tab stops: Not at 0.38"

Adjusted Measure Life with Replacement Rationale:

Consumer refrigeration appliance recycling with replacement programs commonly calculate savings over two periods, the RUL of the existing unit, and the remainder of the EUL of the efficient unit beyond the RUL of the existing unit. For the first period of savings (the RUL of the existing unit), the energy savings are equal to the savings difference between the recycled unit and the replacement unit; the RUL can be assumed to be 1/3 of the measure EUL of an ENERGY STAR cooler. For the second period of savings (the remaining EUL of the replacement unit), the energy savings are equal to the difference between a Federal Standard unit and the replacement unit.

The EUL of a new ENERGY STAR refrigerator or cooler is 14 years. However, a study of a lowincome refrigerator replacement program for SDG&E (2006) found that among the program's target population, refrigerators are likely to be replaced less frequently than among average customers. As a result, the report updating the California DEER database recommended an EUL of 18 years for such programs. Source 8

To simplify the calculation of savings and remove the need to calculate different savings for each population, adjusted measure life values for the state can be used with the savings difference between the recycled baseline unit and the replacement unit over the adjusted measure life. These are provided in Table 2-102 below. The duration of each period (5.2 and 10.4) are based on weighting the aforementioned EULs of 14 and 18 years by the proportion of Pennsylvania's low-income population (40% at or below 150% of federal poverty level).^{Source 10}

Table 2-102: Adjusted Measure Life

Replacement	RUL Savings	+ EUL Remainder Savings	<u>= Total Savings</u>	Equivalent Years (Total ÷ RUL)
ENERGY STAR	<u>⅓ × 5.2 × (314-148)</u>	<u>⅔× 10.4 × (203-148)</u>	<u>1,437</u>	<u>9</u>

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer-specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

- 1) California Electronic Technical Reference Manual. "Refrigerator Recycling". Accessed December 2023. Weblink
- 2) SWE analysis of 143 wine chiller models in historic records (dated 2002–2013) of the California Energy Commission's Modernized Appliance Efficiency Database System, including 116 compact models and 27 standard models. Weblink
- 3) California Energy Commission 2015 Appliance Efficiency Regulations, Effective 2002. Accessed 7/7/2022. Weblink
- 4) Keeling, J., Bruchs, D. (2017). "Chapter 7: Refrigerator Recycling Evaluation Protocol. The Uniform Methods Project: Methods for Determining Energy-Efficiency Savings for Specific Measures". Section 4.4. National Renewable Energy Laboratory. Weblink
- 5) Based on a Cadmus survey of 510 PPL participants in PY8.
- 6) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink

VOLUME 2: Residential Measures

Appliances

Page 201

Formatted: Font: Bold, Font color: Black, Small caps
Formatted: Body Text

Formatted: Normal

7) 10 CFR 430.32(aa) Weblink

- 8) Seiden, K., Bruchs, D., Peters, J., Moran, D., Burdick, M. (2006, July). "2004–2005 Final Report: A Measurement and Evaluation Study of the 2004-2005 Limited Income Refrigerator Replacement & Lighting Program". Weblink
- 9) SWE analysis of 591 cooler models from EPA and DOE records, including 482 compact models (82% class 3, 9% class C-13A, 6% class 1) and 109 standard models (80% class 4, 17% class 2).
 - a. DOE Compliance Certificate Database. Accessed July 2022. Weblink
 - b. ENERGY STAR-certified refrigerators. Accessed July 2022. Weblink

10) U.S. Census Bureau, 2017-2021 American Community Survey 5-Year Estimates. Weblink

VOLUME 2: Residential Measures

Appliances

2.4.7 RESIDENTIAL INDUCTION COOKTOP

Target Sector	Residential
Measure Unit	Induction Cooktop
Measure Life	15 years Source 1
Vintage	Retrofit, Replace on Burnout, or New Construction

ELIGIBILITY

Electric induction cooktops are either a freestanding cooktop that heats cooking vessels using electrical induction or a range with an electric resistance oven and an electric induction cooktop. Electric induction cooktops save energy by heating the cookware directly as opposed to the surface of the range as seen in traditional electric resistance cooktops.

Electric induction cooktops may replace electric ovens with electric resistance cooktops or freestanding electric resistance cooktops.

ALGORITHMS

Total savings are calculated based on the increased cooking efficiency of an electric induction cooktop over an existing electric resistance cooktop. Cooking efficiency is defined as the ratio of energy absorbed by the object being heated (food, water, etc.) and the energy consumed by the appliance.

<u> AkWh</u> $\underline{\qquad} = (AEC_{base} - AEC_{ee}) \times \%_{elec}$

<u>AEC_base</u> = $AEC_{ee} \times \left(\frac{Eff_{ee}}{Eff_{base}}\right)$

 $\Delta kW_{summer peak} = \Delta kWh \times ETDF_{s}$

 $\underline{} = \Delta kWh \times ETDF_w$ <u> AkWwinter peak</u>

DEFINITION OF TERMS

Table 2-103: Terms, Values, and References for Electric Induction Cooktops

Term	<u>Unit</u>	Value	Sources 4
AEC _{base} , Annual Energy Consumption of a baseline		EDC Data Gathering of Nameplate data	EDC Data Gathering
electric cooktop	yr	Default = 209	Calculated
AECee, Annual Energy Consumption of efficient	<u>kWh</u>	EDC Data Gathering of Nameplate Data	EDC Data Gathering
induction cooktop	yr	<u>Default = 189</u>	<u>2</u>
<u>Effee, Efficiency of electric</u> induction cooktop	%	EDC Data Gathering of Nameplate data	EDC Data Gathering
<u>Induction cooktop</u>		Default = 85%	<u>3</u>
Effbase, Efficiency of baseline electric resistance cooktop	%	EDC Data Gathering of Nameplate data	EDC Data Gathering
		Default = 77%	<u>3</u>

VOLUME 2: Residential Measures

Page 203

Formatted: Body Text

Formatted: Equation

Formatted: Don't keep with next

<u>Term</u>	<u>Unit</u>	Value	Sources •
<i>ETDF_s</i> , summer peak	kW	EDC Data Gathering	EDC Data Gathering
energy to demand factor	kWh	<u>Default = 0.0002153</u>	<u>4</u>
$ETDF_{w}$, winter peak energy	kW	EDC Data Gathering	EDC Data Gathering
to demand factor	kWh	<u>Default = 0.0002237</u>	<u>4</u>
% _{elec} , electric cooktop	<u>%</u>	EDC Data Gathering	EDC Data Gathering
penetration		<u>61%</u>	<u>5</u>

Formatted: Font: Cambria Math

Formatted: Normal, Centered

Formatted: Equation, Tab stops: 1.5", Left Formatted: Font: 9 pt, Font color: Black

Formatted: Don't keep with next

Default <u>kWh_{base}</u> , Baseline annual electricity consumption of electric dryer, deemed	$\frac{kWh}{\gamma r}$	577	2, 3
<i>kWh_{gas}</i> , Annual electricity consumption of gas dryer, deemed	$\frac{kWh}{yr}$	30	4
DMMBtu, Weighted average gas fuel savings (negative indicates increase in consumption)	MMBTU	-1.99	5
<i>Cycles_{wash}</i> , Number of washing machine cycles per year	cycles/yr	251	6
% dryer, Percentage of homes with a dryer that use the dryer every time clothes are washed	%	96%	6
<i>Time_{cycle}</i> , Duration of average drying cycle in hours	hours	4	Assumption
CF, Coincidence Factor	Proportion	0.029	Based on CF assumption for Clothes Washers

Formatted: Font: 8 pt, Italic

Formatted: Justified, Space Before: 0 pt, After: 6 pt

DEFAULT SAVINGS

SAVINGS ESTIMATES

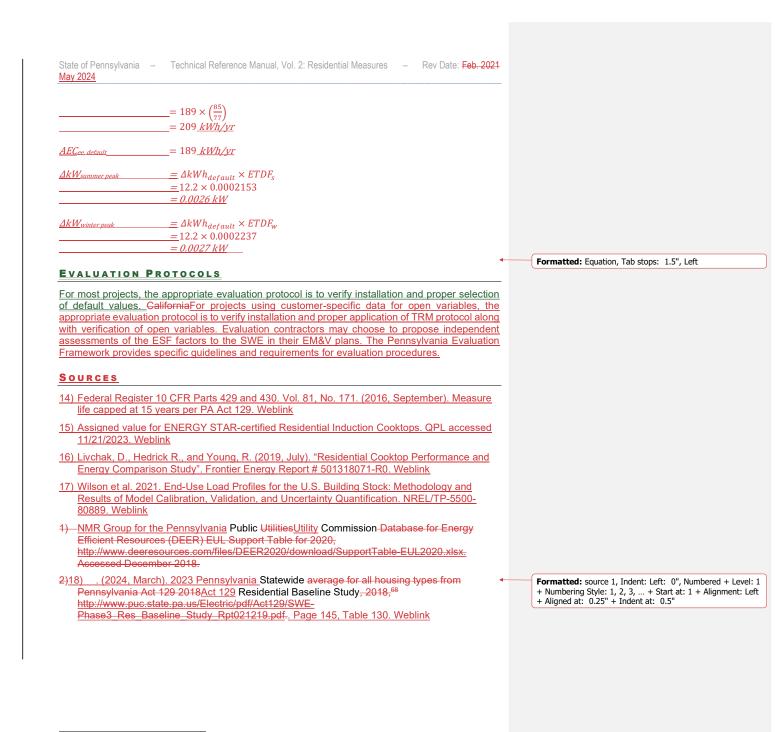
Default savings for this measure are fully deemed and may be claimed using the algorithms above and the deemed variable inputsbased on the default energy consumption and efficiencies for the efficient induction and baseline electric resistance measure.

<u> AkWh_{default}</u>	$\underline{} = (AEC_{base,default} - AEC_{ee,default}) \times \%_{elec}$
	$= (209 - 189) \times 61\%$
	$= 12.2 \frac{AkWh}{= 547} kWh/yr$
A k W = 0.066	

kИ 0.066

EVALUATION PROTOCOLS

The appropriate evaluation protocol is to verify installation and proper selection of deemed values.


SOURCES

AEC base, default

 $_= AEC_{ee,default} \times \left(\frac{Eff_{ee,default}}{Eff_{base,default}}\right)$

VOLUME 2: Residential Measures

Appliances

⁶⁸ Statewide average of 3.12 EF for electric dryers, comparable to 3.77 CEF; q.v. the federal standard of 3.73 CEF at Table 73 in the ENERGY STAR Clothes Dryers section.

VOLUME 2: Residential Measures

Appliances

Formatted: Left, Space After: 0 pt, No bullets or numbering

Formatted: Normal

Formatted: Normal

2.4.8 ENERGY STAR CLOTHES WASHERS

Target Sector	Residential
Measure Unit	Clothes Washer
Measure Life	14 years ^{Source 1}
Vintage	Replace on Burnout

This measure is for the purchase and installation of an ENERGY STAR clothes washer. ENERGY STAR clothes washers use less energy and hot water than non-qualified models.

ELIGIBILITY

This protocol documents the energy savings attributed to purchasing an ENERGY STAR clothes washer that exceeds federal minimum efficiency standards.

ALGORITHMS

The general form of the equation for the ENERGY STAR Clothes Washer measure savings algorithm is:

<u>Total Savings</u> = Number of Clothes Washers \times Savings per Clothes Washer

To determine resource savings, the per-unit estimates in the algorithms will be multiplied by the number of clothes washers.

Per unit energy and demand savings are given by the following algorithms:

$$\Delta kWh = Cycles \times \left(\frac{CAPY}{IMEF_{base}} \times \left(CW_{base} + DHW_{base} \times \mathscr{N}_{ElecDHW} + Dryer_{base} \times \mathscr{N}_{ElecDryer} \times \mathscr{N}_{dry} \right) - \frac{CAPY}{IMEF_{ee}} \times \left(CW_{ee} + DHW_{ee} \times \mathscr{N}_{ElecDHW} + Dryer_{ee} \times \mathscr{N}_{ElecDryer} \times \mathscr{N}_{dry} \right)$$

 $\Delta k W_{summer \ peak}$

 $\underline{=}\Delta kWh \times ETDF_s$

 $\Delta kW_{winter \ peak} = \Delta kWh \ \times ETDF_w$

Where IMEF is the integrated modified energy factor, which is the energy performance metric for clothes washers. IMEF is defined as:

IMEF is the quotient of the cubic foot capacity of the clothes container, C, divided by the total clothes washer energy consumption per cycle, with such energy consumption expressed as the sum of the machine electrical energy consumption (M), the hot water energy consumption (E), the energy required for removal of the remaining moisture in the wash load (D), and the combined low-power mode energy consumption (L). The higher the value, the more efficient the clothes washer is.^{Source 2}

$$IMEF = \frac{C}{(M+E+D+L)}$$

VOLUME 2: Residential Measures

Appliances

DEFINITION OF TERMS

Table 2-104: Terms, Values, and References for ENERGY STAR Clothes Washers

<u>Term</u>	<u>Unit</u>	<u>Value</u>	Source
CAPY, Clothes washer capacity	<u>ft³</u>	EDC Data Gathering Default: Table 2-105	EDC Data Gathering. 2
IMEFbase. Integrated Modified Energy Factor of baseline clothes washer	ft ³ (kWh/cycle)	<u>Table</u> 2 <u>-</u> 105	<u>7, 10</u>
IMEFee, Integrated Modified Energy Factor of ENERGY STAR clothes washer	ft ³ (kWh/cycle)	EDC Data Gathering Default: Table 2-105	EDC Data Gathering, <u>3</u>
<u>Cycles, Number of</u> clothes washer cycles per year	cycles yr	<u>178</u>	<u>6</u>
<u>CW_{base}, % of total</u> <u>energy consumption for</u> <u>baseline clothes washer</u> <u>mechanical operation</u>	<u>%</u>	<u>8.2%</u>	<u>5</u>
CWee, % of total energy consumption for ENERGY STAR clothes washer mechanical operation	<u>%</u>	<u>7.6%</u>	<u>5</u>
DHWbase, % of total energy consumption attributed to baseline clothes washer water beating	<u>%</u>	<u>10.8%</u>	<u>5</u>
DHWee, % of total energy consumption attributed to ENERGY STAR clothes washer	<u>%</u>	<u>10.8%</u>	<u>5</u>
% _{ElecDHW} , % of water heaters that are electric	<u>%</u>	EDC Data Gathering Default: 47%	EDC Data Gathering, <u>4</u>
Dryer _{base} , % of total energy consumption for baseline clothes washer dryer operation	%	<u>81.0%</u>	<u>5</u>

VOLUME 2: Residential Measures

Appliances

Term	Unit	Value	<u>Source</u>
Dryeree, % of total energy consumption for ENERGY STAR clothes washer dryer operation	<u>%</u>	<u>81.6%</u>	5
% _{ElecDryer} . Percentage of dryers that are electric	<u>%</u>	EDC Data Gathering Default: 82%	EDC Data Gathering, <u>4</u>
% dry, Percentageof homes with a dryer that use the dryer every time clothes are washed	<u>%</u>	<u>Default= 99%</u> <u>Or EDC data gathering</u>	<u>6</u>
<i>ETDF_s</i> , Summer energy to Demand Factor	$\frac{kW}{kWh}$	<u>0.0001475</u>	<u>8</u>
<i>ETDF_w</i> , Winter energy to Demand Factor	$\frac{kW}{kWh}$	<u>0.0001490</u>	<u>8</u>

Federal standards for clothes washers through 2/29/28 are based on IMEF (ft³/kWh/cycle). Starting 3/1/28 the federal standards will be based on energy efficiency ratio (EER, lb/kWh/cycle). Source 9 Table 2-105 converts the 3/1/28 federal minimum EERs to IMEFs for use in the savings algorithm.

Table 2-105: Federal Standards and ENERGY STAR Specifications for Clothes Washers through 2/29/28

Configuration ⁶⁹	<u>CAPY</u>	IMEF _{base} through <u>2/29/28</u>	<u>IMEF_{base} as of</u> <u>3/1/28</u>	IMEF ee
<u>Top-loading, > 2.5 ft³</u>	<u>5.0</u>	<u>1.57</u>	<u>2.06</u>	<u>2.06</u>
<u>Front-loading, 1.6 ft³ \leq 2.5 ft³</u>	<u>2.2</u>	<u>1.84</u>	<u>2.76</u>	<u>2.07</u>
Front-loading, > 2.5 ft ³	<u>4.5</u>	<u>1.84</u>	<u>2.76</u>	<u>2.76</u>

DEFAULT SAVINGS

Table 2-106 displays default savings from clothes washers through 2/29/28. There are no default savings as of 3/1/28 when federal minimum efficiency standards meet or exceed ENERGY STAR Version 8.1 minimums. However, EDCs can still calculate savings using EDC-gathered data for ENERGY STAR clothes washers that exceed federal minimum efficiency standards.

Table 2-106: Default Clothes Washer Savings through 2/29/28

Fuel Mix	Washer Type	ΔkWh	∆ kW summer peak	$\Delta kW_{winter peak}$
	Top-loading, > 2.5 ft3	<u>133.8</u>	<u>0.0197</u>	<u>0.0199</u>
Electric DHW/Electric	<u>Front-loading, 1.6 ft3 ≤ 2.5 ft3</u>	<u>23.5</u>	<u>0.0035</u>	<u>0.0035</u>
<u>Dryer</u>	Front-loading, > 2.5 ft3	<u>144.0</u>	<u>0.0212</u>	<u>0.0214</u>

 69 If configuration is front-loading and capacity is unknown, assume capacity > 2.5 ft $^3.$

VOLUME 2: Residential Measures

	Top-loading, > 2.5 ft3	<u>28.2</u>	<u>0.0042</u>	<u>0.0042</u>
<u>Electric</u> <u>DHW/Gas</u>	<u>Front-loading, 1.6 ft3 ≤ 2.5 ft3</u>	<u>5.6</u>	<u>0.0008</u>	<u>0.0008</u>
<u>Dryer</u>	Front-loading. > 2.5 ft3	<u>29.3</u>	<u>0.0043</u>	<u>0.0044</u>
	Top-loading, > 2.5 ft3	<u>119.2</u>	<u>0.0176</u>	<u>0.0178</u>
<u>Gas</u> DHW/Electric	Front-loading, 1.6 ft3 \leq 2.5 ft3	<u>20.9</u>	<u>0.0031</u>	<u>0.0031</u>
<u>Dryer</u>	Front-loading, > 2.5 ft3	<u>128.3</u>	<u>0.0189</u>	<u>0.0191</u>
	Top-loading, > 2.5 ft3	<u>13.6</u>	0.0020	<u>0.0020</u>
<u>Gas</u> DHW/Gas	Front-loading, 1.6 ft3 ≤ 2.5 ft3	<u>3.1</u>	<u>0.0005</u>	<u>0.0005</u>
<u>Dryer</u>	Front-loading, > 2.5 ft3	<u>13.6</u>	<u>0.0020</u>	<u>0.0020</u>
Default (47%	Top-loading, > 2.5 ft3	<u>107.1</u>	<u>0.0158</u>	<u>0.0159</u>
Electric DHW, 82%	<u>Front-loading, 1.6 ft3 ≤ 2.5 ft3</u>	<u>18.9</u>	<u>0.0028</u>	0.0028
<u>Electric</u> <u>Dryer)</u>	Front-loading, > 2.5 ft3	<u>115.0</u>	<u>0.0170</u>	<u>0.0171</u>

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer-specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

- 3) 2011-04 Technical Support Document: Energy Efficiency Program for Consumer Products and Commercial and Industrial Equipment. Residential Clothes Dryers and Room Air Conditioners, Chapter 7. Table 7.3.4: Electric Standard and Gas Clothes Dryer: Average Annual Energy Consumption Levels by Efficiency https://www.regulations.gov/document?D=EERE-2007-BT-STD-0010-0053.⁷⁰
- 4) Ibid. Median annual electricity consumption of gas dryers
- 5) Negative gas fuel savings indicate increase in fuel consumption. Average annual consumption for ENERGY STAR qualified gas units as of 6/22/2015: 685.3kWh/yr. Scaling from 283 cycles/yr (national 2005 RECS) to 251×96%=241 cycles/yr (Mid-Atlantic 2015 RECS): 583.5 kWh/yr. Converting to MMBTU: 583.5×0.003412 = 1.99 MMBTU/yr.
- 1) DOE (2021). Residential Clothes Washers Life-Cycle Cost Analysis (LCC) Spreadsheets. Weblink
- 2) Median capacity of ENERGY STAR-certified models by configuration. Accessed December 2023. Weblink
- 3) U.S. EPA. (2021). ENERGY STAR Program Requirements Product Specification for Clothes Washers, Eligibility Criteria Version 8.1. Weblink

⁷⁰ Average annual electricity consumption of 3.73 and 3.81 CEF dryers scaled from 283 cycles/yr (national 2005 RECS) to 251×96%=241 cycles/yr (Mid Atlantic 2015 RECS).

VOLUME 2: Residential Measures

Appliances

Page 209

Formatted: Font: 9 pt, Font color: Black

Formatted: Body Text

Formatted: Normal, Centered

- 4) NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 Residential Baseline Study. Page 122, Table 105 (%_{ElecDHW}). Page 158, Table 149 (%_{ElecDryer}). Weblink
- 5) The percentage of total energy consumption that is used for the machine, heating the hot water, or by the dryer varies depending on the efficiency of the unit. Values are based on a weighted average of top-loading and front-loading units by consumption data from source 1. Distribution of baseline top- and front-loading units from NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 Residential Baseline Study. Page 151, Table 139. Weblink. Distribution of ENERGY STAR top- and front-loading units from ENERGY STAR-certified models. Accessed December 2023. Weblink
- 6) Calculated using "Frequency of clothes washer use" and "Frequency of dryer use" data for the Mid-Atlantic regionPennsylvania from U.S. Department of Energy. 2015, 2020 Residential Energy Consumption Survey. Weblink
- 7) 10 CFR 430.32(g)(4) Weblink
- 8) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink
- 9) U.S. DOE. (2024, March 15). Direct final rule. Federal Register, 89 (52), pages 19,026-19,126. Weblink
- 10) U.S. DOE (2024). Life-Cycle Cost (LCC) Analysis RCW ECS Direct Final Rule Spreadsheet. Weblink

VOLUME 2: Residential Measures

2.4.9 ENERGY STAR CLOTHES DRYERS

Target Sector	Residential
Measure Unit	Clothes Dryer
Measure Life	14 years ^{Source 3}
Vintage	Replace on Burnout, New Construction

ENERGY STAR clothes dryers have a higher CEF (combined energy factor) than standard dryers. They save energy by using lower temperatures than standard dryers and incorporating a moisture sensor to reduce excessive drying of clothes and prolonged drying cycles.

ENERGY STAR clothes dryers that use heat pump technology have the highest CEFs. Whereas a conventional dryer heats air, passes it through the clothing drum, and exhausts the hot air, a heat pump dryer works by circulating hot air through the clothing drum, extracting moisture from the clothing that becomes condensation after passing over an evaporator coil, then reheating the air before it passes through the drum again. The heat pump dryer saves energy by recirculating the warm air, requiring less heat to reach the desired temperature, and because the process requires a lower air temperature overall to dry clothes.

ELIGIBILITY

This protocol documents the energy savings attributed to purchasing an electric dryer that meets ENERGY STAR criteria. Different default CEF_{ee} 's are provided for dryers that use heat pump technology (including hybrid heat pump dryers) and those that do not.

ALGORITHMS

The energy savings are obtained through the following formulas:

 ΔkWh

 $= \left(\frac{1}{CEF_{base}} - \frac{1}{CEF_{ee}}\right) \times Load_{avg} \times Cycles_{wash} \times \%_{\frac{dry}{wash}}$

 $\Delta k W_{summer \ peak}$

 $\underline{=}\Delta kWh \times ETDF_s$

 $\Delta k W_{winter \ peak} = \Delta k W h \ \times ETDF_w$

DEFINITION OF TERMS

Table 2-107: Terms, Values, and References for ENERGY STAR Clothes Dryers

Term	Unit	Values	Source
<i>Cycles_{wash}</i> , Number of washing machine cycles per year	<u>cycles/yr</u>	<u>178</u>	<u>5</u>
Load _{avg} , Weight of average dryer load, in pounds per load	<u>lbs/load</u>	<u>Standard: 8.45</u> <u>Compact: 3.00</u>	<u>6</u>
$%_{\frac{dry}{wash}}$. Percentage of homes with a dryer that use the dryer for every load	<u>%</u>	<u>99%</u> <u>Or EDC data</u> <u>gathering</u>	<u>5,</u> EDC data gathering

VOLUME 2: Residential Measures

Appliances

Page 211

Formatted: Body Text

Formatted: SubStyle

CEF _{base} , Combined Energy Factor of baseline dryer, in Ibs/kWh	<u>lbs/kWh</u>	Table 2-108_or EDC Data Gathering	<u>2, 7,</u> <u>EDC data</u> gathering
CEF _{ee.} , Combined Energy Factor of ENERGY STAR dryer, in lbs/kWh	<u>lbs/kWh</u>	Table 2-108 or EDC Data Gathering	<u>1.</u> EDC data gathering
ETDF _s <u>Summer energy to Demand</u> Factor	kW kWh	<u>0.0001346</u>	<u>4</u>
ETDF _w , Winter energy to Demand Factor	$\frac{kW}{kWh}$	<u>0.0001350</u>	<u>4</u>

Table 2-108: Combined Energy Factor for Federal Minimum Standard and ENERGY STAR Dryers

Product Type	CEF _{base} <u>through</u> <u>2/29/28</u>	<i>CEF</i> _{base} starting 3/1/28	CEF _{ee}
<u>Vented Electric, Standard</u> (4.4 ft ³ or greater capacity)	<u>3.73</u>	<u>3.93</u>	<u>No heat pump: 3.93</u> <u>Hybrid: 4.50</u>
Ventless Electric, Standard (4.4 ft ³ or greater capacity)	<u>3.73</u>	<u>3.93</u>	<u>No heat pump: 3.93</u> <u>Hybrid: 5.20</u> <u>Heat pump: 9.75</u>
<u>Vented or Ventless Electric.</u> <u>Compact (120V)</u> (less than 4.4 ft ³ capacity)	<u>3.61</u>	<u>4.33</u>	<u>No heat pump: 3.80</u> <u>Heat pump: 6.37</u>
Vented Electric, Compact (240V) (less than 4.4 ft ³ capacity)	<u>3.27</u>	<u>3.57</u>	No heat pump: 3.45
Ventless Electric, Compact (240V) (less than 4.4 ft ³ capacity)	<u>2.55</u>	<u>2.68</u>	<u>No heat pump: 2.68</u> <u>Heat pump: 5.60</u>

DEFAULT SAVINGS

Table 2-109 displays default energy savings for ENERGY STAR clothes dryers through 2/29/28. Table 2-110 displays default energy savings for ENERGY STAR clothes dryers starting 3/1/28 when new federal minimum CEFs go into effect, at which point only clothes dryers with heat pump technology will be efficient enough to generate energy savings.

 Table 2-109: Default Energy Savings and Demand Reductions for ENERGY STAR Clothes Dryers through 2/29/28

 Product Type
 ΔkWh
 ΔkWsummer peak
 ΔkWwinter peak

VOLUME 2: Residential Measures

Vented Electric, Standard Capacity	<u>20.3</u>	<u>0.0027345</u>	<u>0.0027435</u>
Vented Electric, Standard Capacity, Hybrid	<u>68.3</u>	<u>0.0091945</u>	<u>0.0092247</u>
<u>Ventless Electric, Standard</u> <u>Capacity</u>	<u>20.3</u>	<u>0.0027345</u>	<u>0.0027435</u>
Ventless Electric, Standard Capacity, Hybrid	<u>112.9</u>	<u>0.0151902</u>	<u>0.0152402</u>
Ventless Electric, Standard Capacity, Heat Pump	<u>246.5</u>	<u>0.0331772</u>	<u>0.0332864</u>
Vented or Ventless Electric, Compact Capacity, 120V, Heat Pump	<u>63.5</u>	<u>0.0085405</u>	<u>0.0085686</u>
Vented Electric, Compact Capacity, 240V	<u>8.4</u>	<u>0.0011353</u>	<u>0.0011391</u>
Ventless Electric, Compact Capacity, 240V	<u>10.1</u>	<u>0.0013536</u>	<u>0.0013581</u>
Ventless Electric, Compact Capacity, 240V, Heat Pump	<u>112.9</u>	<u>0.0151982</u>	<u>0.0152483</u>

Table 2-110: Default Energy Savings and Demand Reductions for ENERGY STAR Clothes Dryers as of 3/1/28

Product Type	ΔkWh	$\Delta kW_{summer peak}$	$\Delta k W_{winter peak}$
Vented Electric, Standard Capacity, Hybrid	<u>48.0</u>	<u>0.0064599</u>	<u>0.0064812</u>
Ventless Electric, Standard Capacity, Hybrid	<u>92.5</u>	<u>0.0124556</u>	0.0124966
Ventless Electric, Standard Capacity, Heat Pump	226.2	<u>0.0304427</u>	<u>0.0305429</u>
Vented or Ventless Electric, Compact Capacity, 120V, Heat Pump	<u>39.1</u>	<u>0.0052629</u>	<u>0.0052802</u>
Ventless Electric, Compact Capacity, 240V, Heat Pump	<u>102.9</u>	<u>0.0138446</u>	<u>0.0138902</u>

EVALUATION PROTOCOLS

The most appropriate evaluation protocol for this measure is verification of installation coupled with calculation of energy and demand savings using the above algorithms.

SOURCES

6)1)U.S. EPA. (2015).

https://www.eia.gov/consumption/residential/data/2015/index.php?view=microdataENERGY STAR Program Requirements Product Specification for Clothes Dryers Version 1.1. Weblink

2) 10 CFR 430.32(h) Weblink

3) Energy Efficiency and Renewable Energy Office (2021). National Impact Preliminary Analysis Spreadsheets. U.S DOE. Weblink

VOLUME 2: Residential Measures

Appliances

Page 213

Formatted: Indent: Left: 0", Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0.31" + Tab after: 0.56" + Indent at: 0.56", Font Alignment: Auto, Tab stops: Not at 0.56"

- 4) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink
- 5) Calculated using "Frequency of clothes washer use" and "Frequency of dryer use" data for Pennsylvania from U.S. Department of Energy, 2020 Residential Energy Consumption Survey. Weblink
- 6) 10 CFR Appendix-D1-to-Subpart-B-of-Part-430 2.7.1 Weblink
- 7) U.S. DOE. (2024, March 12). Direct final rule. Federal Register, 89 (49), pages 18,164-18,243. Weblink

VOLUME 2: Residential Measures

2.4.82.4.10 ENERGY STAR DISHWASHERS

Target Sector	Residential Establishments	
Target Sector	<u>Residential</u>	
Measure Unit	Dishwasher	
Measure Life	10 years ^{Source 1}	
Vintage	Replace on Burnout	

Formatted: Font: Arial Black

ELIGIBILITY

Vintage

Replace on Burnout

ELIGIBILITY

This measure is for the purchase and installation of <u>aan ENERGY STAR</u> dishwasher<u>meeting</u> <u>ENERGY STAR eligibility criteria.</u> ENERGY STAR dishwashers use less energy and hot water than non-qualified models.

ALGORITHMS

The general form of the measure savings equation for ENERGY STAR Dishwashers is:

Total Savings

= Number of Dishwashers \times Savings per Dishwasher

To determine resource savings, the per-unit estimates in the algorithms will be multiplied by the number of dishwashers. The number of dishwashers will be determined using market assessments and market tracking. EDC data gathering is permitted for kWh_{ee} provided that it is gathered from the ENERGY STAR qualified product list.

Per unit energy and demand savings algorithms for dishwashers utilizing electrically heated hot water:

 $\Delta - kWh$

 $= (kWh_{base} - kWh_{ee})$

 $\times \frac{(\% kWh_{OP} + \% kWh_{heat} \times \% Electric_{DHW})}{(\% kWh_{OP} + \% kWh_{heat} \times \% Elec_{DHW})}$

 $\Delta k W_{summer \ peak} = \Delta k W h \times ETDF_s$

 $\Delta k W_{winter \ peak} = \Delta k W h \times ETDF_w$

DEFINITION OF TERMS

∆kW_{peak}

 $= \frac{\Delta kWh/yr}{HOU} \times CF$

Formatted: Equation

DEFINITION OF TERMS

VOLUME 2: Residential Measures

Table 2-111: Terms, Values, and References for ENERGY STAR Dishwashers

Term	Unit	Value	Source	
Wh _{base} , Annual energy consumption of baseline lishwasher	kWh/yr	<u>Standard:</u> 307 Compact: 222	<u>1, 63</u>	Formatted: Font: Not Italic Formatted Table
<i>Whee</i> , <u>Annual energy consumption of ENERGY</u> STAR qualified unit	kWh/yr	270EDC data gathering Defaults: Standard: 240 Compact :155	1, 7 <u>EDC</u> data gathering, <u>4</u>	Formatted: Font: Not Italic Formatted: Subscript
%kWhop , Percentage of unit dishwasher energy consumption used for operation	%	44%	1	Formatted: Font: Not Italic
%kWh _{heat} , Percentage of dishwasher unit energy consumption used for water heating	%	56%		Formatted: Font: Not Italic
<i>Clectricow<u>Eleconw</u>,</i> Percentage of dishwashers issumed to utilize electrically heated hot water leaters that are electric	%	EDC Data Gathering Default = <u>31.747</u> %	2EDC data gathering, <u>3</u>	Formatted: Font: Not Italic Formatted: Font: Not Italic
HOU , Hours of use per yearETDF _s , Summer energy to Demand Factor	hours/yr ^{kW} kWh	234<u>0.0001699</u>	<u>35</u>	Formatted: Font: 10 pt Formatted: Font: Italic, Not Superscript/ Subs
CF, Demand Coincidence Factor. The coincidence of average dishwasher demand to summer system wakETDF _{w.} , Winter energy to Demand Factor,	$\frac{Proportion}{kWh}$	0. 026 0002640	4,-5	Formatted: Font: Italic
				Formatted: TableCell

ENERGY STAR qualified dishwashers must use less than or equal to the water and energy consumption values given in Table 2-86. Note, as of May 30, 2013, ENERGY STAR compact dishwashers have the same maximum water and energy consumption requirements as the foderal standard and therefore are not included in the TRM since there is not energy savings to be calculated for installation of an ENERGY STAR compact dishwasher.in_Table 2-112_and_Table 2-113_A standard sized dishwasher is defined as any dishwasher that can hold 8 or more place settings and at least six serving pieces.^{Source 6} while compact size dishwashers have a capacity less than eight place settings plus six serving pieces.

Table 2-112: Federal Standard and ENERGY STAR v 67.0 Residential Dishwasher Standard

	Federal Standard ^{Source 62}		ENERGY STAR v 67.0 ^{Source 74}	
Product Type	Water (gallons per cycle) Energy (kWh per year)		Water (gallons per cycle)	Energy (kWh per year)
Standard	≤ 5.0	≤ 307	≤ 3. <u>52</u>	≤ 270<u>240</u>
Compact	<u>≤ 3.5</u>	<u>≤ 222</u>	<u>≤2.0</u>	<u>≤ 155</u>

VOLUME 2: Residential Measures

Appliances

Formatted: Superscript

Formatted: Table

The default savings- values for electric and non-electric water heating and the default fuel mix from Table 2-87. Table 2-113. Note that default savings for standard and compact dishwashers are the same because the difference in consumption between the baseline and efficient models $(kWh_{base} - kWh_{ee})$ is the same (67 kwh).

Table 2-113: Default Dishwasher Energy Savings (Standard and Compact)

			A
Water Heating	$\Delta kWh/yr$	$\Delta kW_{peak} \Delta kW_{summer peak}$	$\Delta k W_{winter peak}$
Electric (%Electric _{DHW} = 100%)	37<u>67</u>.0	0. 00411<u>01138</u>	<u>0.01769</u>
Non-Electric (%Electric _{DHW} = 0%)	16.3 29.5	0. 00181<u>00501</u>	<u>0.00778</u>
Default Fuel Mix (%Electric _{DHW} = 4347%)	22.8<u>47.1</u>	0 . 0025 4 <u>00800</u>	<u>0.01244</u>

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer-specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

- 1) ENERGY STAR Appliances Calculator. Accessed July 2018. Energy Star Calculator, EPA research on available models. Accessed August 2018. https://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx
- 1) Statewide average for all housing types from ENERGY STAR (2016). Savings Calculator for ENERGY STAR Qualified Appliances, U.S. EPA. Weblink

2) 10 CFR 430.32(f) Weblink

- 2)3)NMR Group for the Pennsylvania StatewidePublic Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 Residential Baseline Study, 2018. Page 122, Table 105. Weblink
- 4) U.S. EPA. (2023). ENERGY STAR Program Requirements Product Specification for Residential Dishwashers Eligibility Criteria Version 7.0. Weblink
- 5) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink

https://www.energystar.gov/products/appliances/dishwashers/key_product_criteria

VOLUME 2: Residential Measures

Appliances

Page 217

Inserted Cells Formatted Table

Formatted: Normal

Formatted: Normal

Field Code Changed

Formatted: Body Text

Formatted: Line spacing: 1.5 lines Formatted: Line spacing: 1.5 lines

Formatted: Line spacing: 1.5 lines Formatted: Font: Bold, Small caps

Formatted: No Spacing, paragraph 6pt space

Formatted: Keep with next, Keep lines together

Formatted: Indent: Left: 0.25", No bullets or numbering

	te of Pennsylvania – Technical Reference Manual, Vol. 2: Residential Measures – Rev Date: Feb. 2021 <u>v 2024</u>	
3) -	2014 Pennsylvania Residential Baseline Study, <u>http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-</u> 2014_PA_Statewide_Act129_Residential_Baseline_Study.pdf. HOU=(3 loads/week)×(52 weeks/yr)×(1.5 hours/load). 3 load/week comes from 2014 Baseline study. 1.5 hours/load is assumption used by Efficiency Vermont and Illinois Statewide TRMs	
4)-	Calculated from Itron eShapes, 8760 hourly data by end use for Missouri, as provided by Ameren. This is the CF value for ENERGY STAR Dishwashers from Illinois Statewide TRM Version 7.0, June 2018.	
5)	Illinois Statewide Technical reference Manual for Energy Efficiency Version 7.0. Effective January 1, 2019. http://www.ilsag.info/technical-reference-manual.html	
6) -	US Department of ENERGY Website. Appliance and Equipment Standards. Accessed Aug. 2018. <u>https://www.ecfr.gov/cgi-bin/text-</u> idx?SID=86e70cbc87e5af18caca2e5c205bd107&mc=true&node=se10.3.430_132&rgn=div8	
	T)—Dishwashers Key product Criteria. Accessed Aug. 2018.	Formatted: Indent: Left: 0.25", No bullets or numbering
	https://www.energystar.gov/products/appliances/dishwashers/key_product_criteria	Field Code Changed

2.4.92.4.11 ENERGY STAR DEHUMIDIFIERS

Target Sector	Residential Establishments	
Target Sector	Residential	
Measure Unit	Dehumidifier	
Measure Life	12 years ^{Source 1}	
Vintage	Replace on Burnout	

Vintage Replace on Burnout

ENERGY STAR qualified dehumidifiers are <u>15 percent13%</u> more efficient than non-qualified models due to more efficient refrigeration coils, compressors and fans. <u>Source 2</u> ENERGY STAR Most Efficient <u>portable</u> dehumidifiers are <u>23 percentover 20%</u> more efficient than <u>standard</u> productsfederal minimum standards.

ELIGIBILITY

THIS PROTOCOL DOCUMENTS THE ENERGY AND DEMAND SAVINGS ATTRIBUTED TO PURCHASING AN ENERGY STAR OR ENERGY STAR MOST EFFICIENT DEHUMIDIFIER INSTEAD OF A STANDARD ONE. ELIGIBILITY

This protocol documents the energy and demand savings attributed to purchasing an ENERGY STAR or ENERGY STAR Most Efficient dehumidifier instead of a standard one. Dehumidifiers must meet ENERGY STAR Version 4<u>5</u>.0 Product Specifications to qualify.^{Source 3} The target sector is residential.

ALGORITHMS

The general form of the equation for the ENERGY STAR Dehumidifier savings algorithm is:

Total Savings = Number of Dehumidifiers \times Savings per Dehumidifier

To determine resource savings, the per-unit estimates in the algorithms will be multiplied by the number of dehumidifiers. The number of dehumidifiers will be determined using market assessments and market tracking.

Per unit energy and summer peak demand savings algorithms:

$$\Delta kWh = \left(\frac{CAPY \times 0.473\frac{\text{liters}}{\text{pint}}}{24\frac{\text{hours}}{\text{day}}}\right) \left(\frac{CAPY \times 0.473\frac{\text{liters}}{\text{pint}}}{24\frac{\text{hours}}{\text{day}}}\right) \times HOU-\times \left(\frac{1}{L/kWh_{base}} - \frac{1}{L/kWh_{ee}}\right) \left(\frac{1}{IEF_{base}} - \frac{1}{IEF_{ee}}\right)$$
$$\Delta kW_{peak}kW_{summer peak} = \frac{\Delta kWh/yr}{HOU} \times CF$$
$$\Delta kW_{winter peak} = 0$$

DEFINITION OF TERMS

VOLUME 2: Residential Measures

Appliances

Page 219

Formatted: Superscript

Formatted: No Spacing, paragraph 6pt space

Formatted Table

Formatted: Normal

Table 2-114: Terms, Values, and References for ENERGY STAR Dehumidifier

Term	Unit	Value	Sources
CAPY-, Average capacity of the unit	pints day	EDC Data Gathering	EDC Data Gathering
HOU-, Annual hours of operation	hours yr	1,632<u>2,160</u>	1
L/kWh _{base} ,IEF _{base} ,Baseline unit liters of watercondensate per kWh consumed	liters kWh	Table 2-89 2-115	<u>-24</u>
L/kWhee, IEFee, ENERGY STAR qualified unit liters of watercondensate per kWh consumed	liters kWh	EDC Data Gathering Default: Table 2-90 or Table 2-91Default: Table 2-115	EDC data gathering, 3, 56
CF , Demand Coincidence FactorSummer demand coincidence factor	Proportion	0.405	4 <u>5</u>

Formatted: Keep with next

Fo	ormatted: Font: Not Italic
Fo	ormatted: Keep with next
Fo	ormatted Table
Fo	ormatted: Font: Not Italic
Fo	ormatted: Keep with next
Fo	ormatted: Font: Not Italic
Fo	ormatted: Keep with next
Fo	ormatted: Font: Not Italic
Fo	ormatted: Font: Not Italic
Fo	ormatted: Keep with next
Fo	ormatted: Font: Not Italic
Fo	ormatted: Keep with next

Table 2-89

Table 2-115 shows the federal standard minimum efficiency standards. Federal standards are effective as of October 25, 201631, 2019. Table 2-90 Table 2-116 shows ENERGY STAR 45.0 standards are effective as of October 25, 201631, 2019. Table 2-91 Table 2-117 shows ENERGY STAR Most Efficient 20182024 criteria, effective January 2018.2024. Source 6 Federal standards and ENERGY STAR Most EfficientEfficient criteria distinguish between portable dehumidifiers (designed to dehumidify a confined living space and plugged into an electrical outlet) and whole-home dehumidifiers (incorporated into the home's HVAC system and designed to dehumidify all conditioned spaces).

Table 2-115: Dehumidifier Minimum Federal Efficiency Standards

Туре	Capacity (pints/day)	Federal Standard (<i>L/kWh_{base}</i>) <i>IEF_{base}</i>)	ENERGY STAR (IEF _{ee})	ENERGY STAR Most Efficient (<i>IEF_{ee}</i>)
D ())	≤ 25	≥ 1.30	<u>≥ 1.57</u>	<u>≥ 1.75</u>
Portable dehumidifier	> 25 to ≤ 50	≥ 1.60	<u>≥ 1.80</u>	<u>≥ 2.01</u>
denumumer	> 50	≥ 2.80	<u>≥ 3.30</u>	<u>≥ 3.40</u>
Whole-home	Product Case Volume (ft ³)	Federal Standard (L/kWh_{base}) IEF _{base})	ENERGY STAR (IEF _{ee})	ENERGY STAR Most Efficient (IEF _{ee})
dehumidifier	≤ 8	≥ 1.77	<u>≥ 2.09</u>	<u>≥ 2.22</u>
	> 8	≥ 2.41	<u>≥ 3.30</u>	<u>≥ 3.81</u>

Inserted Cells Inserted Cells

Formatted: Normal

DEFAULT SAVINGS

The annual energy usage and savings of an ENERGY STAR unit over the federal minimum standard are presented in Table 2-116 for each capacity range.

VOLUME 2: Residential Measures

May 2024

State of Pennsylvania – Technical Reference Manual, Vol. 2: Residential Measures – Rev Date: Feb. 2021

Table 2-116: Dehumidifier ENERGY STAR StandardsDefault Energy Savings Formatted: Left **Federal** Capacity **Default** Efficient Range **Capacity** Standard ENERGY $\Delta kW_{summer peak}$ ∆*kW* winter ped Formatted: Keep with next **Product**^a <u> AkWh/yr</u> Capacity (pints/day STAR (pints/da (IEF) (L/kWh or ft³) **Inserted Cells** y))(IEF) **Inserted Cells** <u>≤ 25</u> <u>1.30</u> 0.0160 0.0206 Portable <u>25</u> <u>1.57</u> <u>141</u> NERGY pints/day STAR > 25 to ≤ 50 1.60 0.0168 0.0216 1.80 <u>148</u> Portable 50 <u>pints/day</u> Whole <mark>≤8 ft</mark>³ <u>84</u>^b < 75 1.77 <mark>≥ 2.00<u>09</u></mark> <u>309</u> 0.0351 0.0453 house ≤ 25 Portable <u>25</u> 1.30 <u>1.75</u> <u>211</u> 0.0239 0.0308 pints/day ENERGY 7<u>5> 25</u> to ≤ <u>STAR</u> 18550 0.0308 0.0397 Portable <u>50</u> <u>1.60</u> <u>≥-2.8001</u> <u>271</u> Most pints/day Efficient <u>Whole</u> <u>≤8 ft</u>³ 0.0599 84^b 1.77 2.22 <u>410</u> 0.0465 house

Table 2-93: Dehumidifier ENERGY STAR Most Efficient Criteria

Туре	Capacity (pints/day)	ENERGY STAR (L/kWh_e)		
Portable	< 75	<u>≥ 2.20</u>		
Whole House	< 75	<u>≥ 2.30</u>		

a There are no default values for portable humidifiers >50 pints/day or whole house dehumidifiers >8ft3 because there were no ENERGY STAR qualified dehumidifiers with these capacities as of August 15, 2023.

Default SAVINGS

The annual energy usage and savings of an ENERGY STAR unit over the federal minimum standard are presented in Table 2-92 for each capacity range based on the average capacity of ENERGY STAR whole home models as listed on August 15, 2023.

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values.

Table 2-94: Dehumidifier Default Energy Savings

Efficient Product ⁷⁴	Capacity Range (pints/day)	Default Capacity (pints/day)	Federal Standard (kWh/yr)	Efficient Standard (kWh/yr)	<mark>∆kWh/yr</mark>	<mark>∆kW</mark> peak
ENERGY STAR	<u>≤ 25</u>	25	1.3	<u>2.0</u>	216	0.05372
	<u>> 25 to ≤ 50</u>	50	1.6	2.0	201	0.04989
ENERGY STAR Most Efficient - Portable	<u>≤ 25</u>	25	1.3	2.2	253	0.06279
	<u>> 25 to ≤ 50</u>	50	1.6	2.2	274	0.06803

⁷⁴ As of November 16, 2018, Federal standards equal or exceed ENERGY STAR standards for portable dehumidifiers with capacity of >50 pints/day and for whole home dehumidifiers with product case volume > 8 ft3-

VOLUME 2: Residential Measures

Appliances

Inserted Cells	
Inserted Cells	
Inserted Cells]
Inserted Cells	
Merged Cells	
Formatted: Left, Keep with next	
Formatted: Keep with next]
Formatted: Keep with next]
Inserted Cells	
Inserted Cells]
Formatted: Keep with next]
Formatted: Font: 9 pt	
Formatted: Font: 9 pt]
Formatted: Font: 9 pt	

Efficient Product ⁷⁴	Capacity Range (pints/day)	Default Capacity (pints/day)	Federal Standard (kWh/yr)	Efficient Standard (kWh/yr)	<mark>∆kWh/yr</mark>	<mark>∆kW</mark> peak
ENERGY STAR Most Efficient — Whole House with product case volume ≤ 8 ft ³	< 75	63⁷²	1.77	2.3	26 4	0.06547

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer_specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

 ENERGY STAR Appliance Savings Calculator. Accessedd August, 2018. https://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx 	
 US Department of ENERGY Website. Appliance and Equipment Standards. Accessed June 2014. <u>http://www1.eere.energy.gov/buildings/appliance_standards/product.aspx/productid/55</u> 	
 Mattison, Lauren et al. (2012). "Dehumidifiers: A Major Consumer of Residential Electricity". Pages 9-208. The Cadmus Group. Weblink 	
2) U.S. EPA. (2019). ENERGY STAR Dehumidifiers Version 5.0 Cover letter. Weblink	
3) U.S. EPA. (2019). ENERGY STAR Program Requirements Product Specification for Dehumidifiers, Eligibility Criteria Version 4.0. Accessed November 2, 2018. <u>https://www.energystar.gov/products/appliances/dehumidifiers/key_efficiency_criteria5.0.</u> <u>Weblink</u>	
4) 10 CFR 430.32(v) Weblink	
4)5)Dehumidifier Metering in PA and Ohio by ADM from 7/17/2013 to 9/22/2013. 31 UnitsThirty- one units metered. Assumes all non-coincident peaks occur within window and that the average load during this window is representative of the June PJM days as well.	Formatted: Left
5) ENERGY STAR Most Efficient 2018 Recognition Criteria: Dehumidifiers. Accessed November 2, 2018. https://www.energystar.gov/ia/partners/downloads/most_efficient/2018/Dehumidifiers%20EN ERGY%20STAR%20Most%20Efficient%202018%20Final%20Criteria.pdf?cddb-3642	
6) ENERGY STAR Most Efficient 2019 memo. Accessed November 2, 2018. https://www.energystar.gov/sites/default/files/ENERGY%20STAR%20Most%20Efficient%202 019%20Memo_0.pdf	
6) U.S. EPA. (2024). ENERGY STAR Most Efficient 2024 Dehumidifiers Recognition Criteria. Weblink	
7) U.S. EPA. (2023). ENERGY STAR Most Efficient 2024 Final Criteria Recognition Letter. Weblink	
⁷² Average of products listed on ENERGY STAR Most Efficient 2018 – Dehumidifiers. <u>https://www.energystar.gov/most-efficient/me-certified-dehumidifiers/</u> Accessed November 16, 2018.	
VOLUME 2: Residential Measures	
Appliances Page 222	

Appliances

Page 222

Formatted: Equation, Tab stops: 1.5", Left

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
May 2024				

2.4.102.4.12 DEHUMIDIFIER RETIREMENT

Target Sector	Residential-Establishments
Measure Unit	Dehumidifier
Measure Life	4 years⁷³years^{Source 7}
Vintage	Early Retirement

This measure is defined as retirement and recycling <u>without direct EDC replacement</u> of an *operable* but older and inefficient room dehumidifier unit that would not have otherwise been recycled. The assumption is that these units will be permanently removed from the grid rather than handed down or sold for use in another location by another EDC customer, and furthermore that they would not have been recycled without this program. This measure is quite different from other energy-efficiency measures in that the energy/demand savings is not the difference between a pre- and post- configuration, but is instead the result of complete elimination of the existing dehumidifier.

ELIGIBILITY

The savings are not attributable to the customer that owned the dehumidifier, but instead are attributed to a *hypothetical user* of the equipment had it not been recycled. Energy and demand savings is the estimated energy consumption of the retired unit over its remaining useful life (RUL).

ALGORITHMS

Impacts are based only on the existing unit, and savings apply only for the remaining useful life (RUL) of the unit.

The energy savings and demand reduction of this measure were established using actual metered residential dehumidifier usage data.

The metered data was best fit with a polynomial which is second order in temperature humidity index and first order in capacity:^{Source 1}

 $kWh = -8.36 \cdot 10^{-3} \times THI_{PIM}^{2} + 1.19 \times THI_{PIM} + 4.07 \cdot 10^{-2} \times CAPY + -38.37$

where:

 $THI_{PJM} = DB - 0.55 \times (1 - RH) \times (DB - 58)$ = DB

Similarly, summer peak demand was modeled with the following capacity-dependent linear regression: $^{\rm Source\,2}$

for DB \ge 58°F for DB < 58°F

<u>kW</u> $\Delta kW_{summer peak} = 1.3 \cdot 10^{-3} \times CAPY + 1.07 \cdot 10^{-1}$

Formatted: Left

 $\Delta k W_{winter \; peak} = 0$

⁷³ CA DEER gives the following rule-of-thumb for remaining useful life: RUL = (1/3) X EUL. As the Energy Star Dehumidifier [replacement] uses an EUL of 12 years, we have a suggested RUL of (1/3) X 12 years = 4 years.

VOLUME 2: Residential Measures

DEFINITION OF TERMS

Table 2-117: Terms, Values, and References for Dehumidifier Retirement

Term	Unit	Value	Sources	
CAPY, Average capacity of the unit	pints	EDC Data Gathering	EDC Data Gathering <u>.</u>	Formatted: Font: Not Italic
	day	Default: 51 pt/day	3	
THI , Temperature Humidity Index	-	Calculated	4	
DB , Dry bulb temperature	°F	See Source	5	Formatted: Font: Not Italic
RH , Relative humidity	%	See Source	5	Formatted: Font: Not Italic

The results of the kWh calculation for typical dehumidifier capacities in each of the Climate Regions are presented in the following table. For capacity values not listed in the table, it is acceptable to calculate a value by linear interpolation of the savings values for the adjacent capacities.

Formatted: Space After: 0 pt

Table 2-118: Dehumidifier Retirement Annual Energy Savings (kWh)

	Annual kWh Savings by Climate Region												
Climate	Reference	Capacity (pints per day)											
Region	City	25	30	35	40	45	50	60	65	70	110		
С	Allentown	628	656	684	712	740	768	824	852	881	1105		
A	Bradford	386	404	422	440	458	476	512	530	547	691		
G	Binghamton	470	492	513	534	556	577	620	641	663	834		
I	Erie	557	582	607	632	656	681	731	756	781	979		
E	Harrisburg	656	686	715	745	774	804	863	892	922	1158		
D	Philadelphia	726	758	791	823	856	888	954	986	1019	1280		
н	Pittsburgh	605	632	659	686	713	740	795	822	849	1066		
В	Scranton	577	603	628	654	680	706	758	784	810	1016		
F	Williamsport	651	680	709	738	767	797	855	884	913	1146		

The summer peak kW reduction for recycling a dehumidifier was taken to be equal to the peak demand of the existing unit. These results are presented in the following table:

Table 2-119: Dehumidifier Retirement Peak Demand Reduction (kW)

Cap	acity	25	30	35	40	45	50	60	65	70	110
	kW	0.1393	0.1458	0.1523	0.1588	0.1653	0.1718	0.1848	0.1913	0.1979	0.2499

DEFAULT SAVINGS

For programs that do not track capacity, an "unknown" category has been provided based on the weighted average capacity of dehumidifier sales data:

VOLUME 2: Residential Measures

Appliances

Table 2-120: Default Dehumidifier Retirement Annual Energy Savings (kWh)

Annual kWh Savings by Climate Region		
Region	Reference City	Default
С	Allentown	774
Α	Bradford	479
G	Binghamton, NY	581
I	Erie	686
E	Harrisburg	810
D	Philadelphia	895
н	Pittsburgh	746
В	Scranton	711
F	Williamsport	802

Table 2-121: Default Dehumidifier Retirement Summer Peak Demand Reduction (kW)

Default
0.1731

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify retirement and proper selection of default values. For projects using customer-_specific data for open variables, the appropriate evaluation protocol is to verify retirement and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

- 1) Dehumidifier Metering in PA and Ohio by ADM from 7/17/2013 to 9/22/2013. 31 Units metered; five-minute interval power data was recorded. 58% of the units were Energy Star rated.
- 2) Ibid., by Act 129 Peak Demand window
- 3) Statewide average NMR Group for all housing types from the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 2018 Residential Baseline Study, 2018, http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3 Res Baseline Study Rpt021219.pdf. Page 164, Table 156. Weblink
- 4) "Resource Adequacy Planning for PJM. (2017, December). PJM Manual 19: Load Forecasting and Analysis Revision: 32". p. Page 14. https://www.pjm.com/~/media/documents/manuals/m19.ashx Accessed January 2019. Weblink
- 5) National Solar Radiation Database. 1991–2005 Update: Typical Meteorological Year 3. NREL, http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/by state and city.html.Weblink
- Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and 6) Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink

VOLUME 2: Residential Measures

Appliances

Page 225

Formatted Table

Formatted: Default Paragraph Font, English (United States)

7) CA DEER gives the following rule-of-thumb for remaining useful life: RUL = (1/3) X EUL. As the Energy Star Dehumidifier [replacement] uses an EUL of 12 years, we have a suggested RUL of (1/3) X 12 years = 4 years.

VOLUME 2: Residential Measures

State of Pennsylvania – Technical	Reference Manual, Vol. 2: Residential Measures – Rev Date: Feb. 2	14	
<u>lay 2024</u>			
2.4.112.4.13 ENERGY STA	R Ceiling Fans		
Target Sector	Residential Establishments		
Measure Unit	Ceiling Fan Unit		
Measure Life	1510 years for fan, Source 1 See 2.1.1 for lighting	Formatted Table	
Vintage	Replace on Burnout		
Vintage	Replace on Burnout	Formatted: Font color: I	Black
	ire a more efficient CFM/Watt rating than standard ceiling fans lighting for those with light kits included. Both of these featu rd ceiling fans		
LIGIBILITY		_	
LIGIBILITY		_	
eiling	gy savings attributed to installing an ENERGY STAR Version		
vill be counted for that product on neasure. If at any point the prod	RGY STAR Certification but has not yet been certified, the savi contingent upon its eventual certification as an ENERGY ST uct is rejected by ENERGY STAR, the product is then inelig not be counted. ⁷⁴ The target sector primarily consists of sing	R 0	
of the lighting, if applicable. I hen D <i>kWh</i> tighting = 0. <u>The energy</u>	to the savings contribution of the fan plus the savings contribut f the ENERGY STAR fan does not include a lighting and peak demand savings are obtained through the follow	t, g	paragraph 6pt space
<u>ormulas.</u> These algorithms do no of a ceiling fan vs.<u>v</u>ersus a lower	ot seek to estimate the behavioral change attributable to the AC setting.	e	
The energy savings are obtained	through the following formula:		
DkWh = DkWh_{fan} + DkWh_{lig}	hting		
D kWh_{fan} = D₩_{fan}∆kWh	$= \Delta W_{fan} \times \frac{\frac{1 kW}{1,000 - W}}{\frac{1}{1,000}} \times HOU_{fan} \times 365 \frac{days}{yr}$		
$\Delta kW_{summer \ peak} = \Delta kWh \ \times ET$	DF _s		
$\Delta k W_{winter \ peak} = \Delta k W h \ \times ET$	"DF _w		
	f added this condition relating to certification that has been applied for but not yet sylvania EDCs. EDCs will be responsible for tracking whether certification is grant		
VOLUME 2. Desidential Measures			
VOLUME 2: Residential Measures	Page		

DEFINITION OF TERMS

*DkWh*_{tighting} = *DkWh* from the *ENERGY STAR Lighting* section Demand savings result from the lower connected load of the ENERGY STAR fan and ENERGY STAR lighting. Peak demand savings are estimated using a Coincidence Factor (CF).

 $\Delta k W_{peak,total} = \Delta k W_{peak,fan} + \Delta k W_{peak,lighting}$

 $DkW_{peak,fan} = DW_{fan} \times \frac{1 kW}{1,000 W} \times CF_{fan}$

 $\Delta kW_{peak, tighting} = \Delta kW_{peak}$ from the ENERGY STAR Lighting section

Formatted: Font: 10 pt, Bold, Font color: Text 2, Small caps Formatted: Keep with next

VOLUME 2: Residential Measures

Appliances

DEFINITION OF TERMS

Table 2-122: Terms, Values, and References for ENERGY STAR Ceiling Fans

Component	Unit	Values	Source	
DW_{fan} ΔW _{fan} , Weighted average wattage reduction from ENERGY STAR ceiling fan	Watts	Default: -See Table 2-99 Table 2-123	2, 3, 5, 6<u>4</u>	Formatted Table
HOU_{fan} , fan daily hours of use	hours day	EDC Data Gathering Default: 3 .0 hours/day⁷⁵	4 <u>EDC</u> <u>data</u> gathering, <u>1</u>	
<i>CF_{jan 1}ETDF</i>_s, <u>Summer energy to</u> Demand Coincidence Factor	kw kwh	EDC Data Gathering DefaultSF Only: 0.091 ⁷⁶ 0001114	7 <u>5</u>	
<i>CF_{ttgnting}</i> , <i>ETDF_w</i> , <u>Winter energy to</u> Demand <u>Coincidence</u> Factor	kw kwh	See Section 2.1 <u>SF Only:</u> 0.0001788	7 <u>5</u>	Formatted: Font: Italic

Table 2-123: Assumed Wattage of ENERGY STAR Ceiling Fans on High Setting

Ceiling Fan Type	Diameter, D (inches)	DW_{fan} ∆W _{fan} (Watts)
	D ≤ 36	0
Standard and Low-Mount High Speed Small Diameter (HSSD) Ceiling Fans	36 < D < 78	23
	D ≥ 78"	31
Hugger Ceiling Fan ⁷⁷	36 < D < 78	33

DEFAULT SAVINGS

Table 2-124: Energy Savings and Peak Demand Reductions for ENERGY STAR Ceiling Fans

Product Type (Fan Only)	Diameter, D (inches)	<mark>Energy</mark> Savings (kWh)∆kWh	Demand Reduction (kW) ∆kW _{summer peak}	$\Delta kW_{winter peak}$
Standard and	D ≤ 36	<u>0.</u> 0	0.000000	<u>0.0000</u>
Low-Mount High Speed Small	36 < D < 78	25 <u>.2</u>	0. <u>0020028</u>	<u>0.0045</u>
Diameter (HSSD) Ceiling Fans	D ≥ 78	3 4 <u>33.9</u>	0. 002<u>0038</u>	<u>0.0061</u>
Hugger Ceiling Fan	36 < D < 78	36 <u>.1</u>	0. 003<u>0040</u>	<u>0.0065</u>

EVALUATION PROTOCOLS

⁷⁶ The 3 hour/day for a ceiling fan is assumed here to be the same hours of use as a typical residential lightbulb, in absence of better data. EDCs are allowed to do research on hours of use for ceiling fans in lieu of using the 3 hours/day figure. It is likely that

the hours of use for ceiling fans is different than that of residential lighting. ⁷⁶ Assumed same usage characteristics as lighting. EDCs are allowed to do research on Coincidence Factor for ceiling fans in lieu of using the 3 hours/day figure. It is likely that the hours of use for ceiling fans is different than that of residential lighting. ⁷⁷ The ENERGY STAR 4.01 specifications allow for hugger ceiling fans with blade spans of \leq 36" and \geq 78", however, as of December 2018 November 2023, there are no ENERGY STAR qualified products meeting those criteria. They were therefore omitted from this

characterization.

VOLUME 2: Residential Measures

Appliances

Formatted Table

Inserted Cells

The most appropriate evaluation protocol for this measure is verification of installation coupled with calculation of energy and demand savings using above algorithms.

SOURCES

- 1) Residential and C&I Lighting and HVAC Report Prepared for SPWG, 2007. p. C-2.
- 2) Energy and water conservation standards and their compliance dates. 10 C.F.R. § 430.32.
- 3) See ENERGY STAR Ceiling Fans Work Paper 2018.12.5.xlsx for calculations and description of methodology.
- 4) ENERGY STAR Lighting Fixture and Ceiling Fan Calculator. Updated September 2013.
- 1) ENERGY STAR (2013). Savings Calculator for ENERGY STAR Qualified Light Fixtures & Ceiling Fans U.S. EPA. Weblink
- 5)2)U.S. EPA. (2018). ENERGY STAR® Program Requirements Product Specification for Residential Ceiling Fans and Ceiling Fan Light Kits Eligibility Criteria Version 4.01. Weblink

- 6)4)SWE analysis of ENERGY STAR_Certified Ceiling Fans | EPA ENERGY STAR. https://www.energystar.gov/productfinder/product/certified-ceiling-fans/results.. Accessed 12/5/2018.18. Weblink
- 7) EmPOWER Maryland 2012 Final Evaluation Report: Residential Lighting Program, Prepared by Navigant Consulting and the Cadmus Group, Inc., March 2013, Table 50.
- 5) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink

VOLUME 2: Residential Measures

Appliances

^{3) 10} CFR 430.32(s) Weblink

2.4.122.4.14 ENERGY STAR AIR PURIFIERS

Target Sector	Residential-Establishments
Measure Unit	Number of Air Purifiers installed Purifier
Measure Life	9 years ^{Source} 1
Vintage	Replace on Burnout, Early Replacement, Retrofit, New Construction

An air purifier (cleaner) is a portable electric appliance that removes dust and fine particles from indoor air. This measure characterizes the purchase and installation of a unit meeting the efficiency specifications of ENERGY STAR in place of or instead of a baseline modelan ENERGY STAR unit that is more energy-efficient than a non-ENERGY STAR unit.

ELIGIBILITY

ELIGIBILITY

This measure targets residential customers who purchase and install an air purifier that meets ENERGY STAR specifications rather than installing a non-ENERGY STAR unit. In order to qualify, installed air purifiers must meet the following efficiency specifications of be ENERGY STAR:

Must produce a-certified and exceed federal minimum 50 ft3/min Clean Air Delivery Rate (CADR) for Dust to be considered under this specificationintegrated energy factor (IEF) standards, Minimum Performance Requirement: 2.0 CADR/Watt (Dust)

 Standby Power Requirement: 2.0 Watts or less. Qualifying models that perform secondary consumer functions (e.g. clock, remote control) must meet the standby power requirement.

UL Safety Requirement: Models that emit ozone as a byproduct of air cleaning must meet UL Standard 867 (ozone production must not exceed 50ppb)78 ALGORITHMS

The following algorithms shall be used to calculate the annual energy savings and coincident peak demand savings for this measure:

$\Delta kWh = \frac{CADR \times Hours \times \left(\frac{1}{CADR/W_{base}} - \frac{1}{CADR/W_{eff}}\right) + \left(POW_{base} - POW_{eff}\right) \times POHours}{1000}$		
$\Delta k W_{summer \ peak} = \Delta k W h \times ETDF_s$		
$\Delta k W_{winter \ peak} = \Delta k W h \times ETDF_{w}$		
DEFINITION OF TERMS	-	Formatted: Don't keep with next
$\frac{\partial kWh}{\partial h} = \frac{kWh_{Base} - kWh_{EStar}}{h}$		
$\frac{\Delta kW_{peak}}{HOURS} = -CF \times \frac{\Delta kWh}{HOURS}$		
DEFINITION OF TERMS	•	Formatted: Font: Not Bold, Font color: Auto, Not Small caps, Not Expanded by / Condensed by
	-	Formatted: Body Text, Line spacing: single
78-ENERGY_STAR-cortification is sufficient to establish that an air purifier meets this requirement. No additional UL safety listing certification is required.		
VOLUME 2: Residential Measures		
Appliances Page 231		

Formatted: Font: Not Bold
Formatted: Font: 9 pt
Formatted: Font: Not Bold
Formatted: Font: 9 pt, Not Bold
Formatted: Font: 9 pt
Formatted: Font: Not Bold
Formatted: Font: 9 pt, Not Bold
Formatted: Font: 9 pt
Formatted: Font: Not Bold
Formatted: Body Text

Formatted: Justified, Space After: 0 pt, Line spacing: single, No bullets or numbering Formatted: Font: 9 pt

Formatted: Justified, Space After: 0 pt, Line spacing: single, No bullets or numbering

Formatted: Font: 9 pt

Table 2-125: Terms, Values, and References for ENERGY STAR Air Purifier

Term	Unit	Values	Source
<i>kWh_{Base},</i> Baseline kWh consumption per year	kWh/year	EDC Data Gathering Default = See Table 2-102	4
kWh _{ESiar} , ENERGY STAR kWh consumption per year	kWh/year	EDC Data Gathering Default = See Table 2-102	4
HOURS, Average hours of use per year	Hours/year	EDC Data Gathering Default = 5,840	4
CF, Summer Peak Coincidence Factor	None	EDC Data Gathering Default = 0.67	1, 2

Formatted: Font: Not Bold Formatted: Centered

DEFAULT SAVINGS

Table 2-104: Energy Savings Calculation Default Values

Clean Air Delivery Rate (CADR) (ft ³ /min)	CADR Used in Calculation	Baseline Unit Energy Consumption (kWh/yr)	ENERGY_STAR_Unit Energy_Consumption (kWh/yr)	∆kWh
CADR 51-100	75	4 41	148	293
CADR 101-150	125	733	245	488
CADR 151-200	175	1,025	342	683
CADR 201-250	225	1,317	44 0	877
CADR Over 250	275	1,609	537	1,072

CADR, Clean Air Delivery Rate	<u>CFM</u>	EDC Data Gathering	EDC data gathering
Hours, Average hours of use per year	<u>Hours/year</u>	EDC Data Gathering Default = 5,840	EDC data gathering, <u>1</u>
CADR/W _{base} _Clean Air Delivery Rate per watt for baseline unit	<u>CFM/W</u>	EDC Data Gathering Default = Table 2-126	<u>2</u>
<i>CADR/W_{eff}_Clean</i> Air Delivery Rate per watt for efficient unit	<u>CFM/W</u>	EDC Data Gathering	EDC data gathering
POW _{base} , Partial on mode power of baseline unit	<u>watts</u>	<u>1.0</u>	1
<i>POW_{eff}</i> , <u>Partial on mode power of efficient unit</u>	<u>watts</u>	EDC Data Gathering	EDC data gathering

VOLUME 2: Residential Measures

Appliances

POHours, Partial on mode hours per year	<u>Hours/year</u>	EDC Data Gathering Default = 2,920	EDC data gathering. <u>3</u>
ETDF _s , Summer energy to Demand Factor	kW kWh	<u>0.0001136</u>	<u>4</u>
ETDF _w , Winter energy to Demand Factor	kW kWh	<u>0.0001463</u>	<u>4</u>

Table 2-126 shows the federal minimum integrated energy factors.

Table 2-126: Demand Savings Calculation Default Values: Air Purifier Federal Efficiency Standards

Clean Air Delivery Rate (CADR) (ft ³ /min)	CADR Used in Calculation	<mark>∆kW</mark> peak
CADR 51-100	75	0.0336
CADR 101-150	125	0.0560
CADR 151-200	175	0.0784
CADR 201-250	225	0.1006
CADR Over 250	275	0.1230

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

1) ENERGY STAR, ENERGY STAR Appliance Calculator, last updated October 2016. https://www.energystar.gov/sites/default/files/asset/document/appliance_calculator.xlsx

2) Assumes appliance use is equally likely at any hour of the day or night.

VOLUME 2: Residential Measures

Appliances

Formatted: Font: Bold, Small caps

offiatted. Normal

Formatted: Normal

Formatted: Body Text

Product Capacity (CADR)	Integrated Energy Factor (PM _{2.5} CADR/W)
<u>10 ≤PM_{2.5} CADR <100</u>	<u>1.9</u>
<u>100 ≤PM₂.₅ CADR <150</u>	<u>2.4</u>
<u>PM₂.₅ CADR ≥150</u>	<u>2.9</u>

SOURCES

1) 16 hours per day * 365 days per year. ENERGY STAR (2016). Savings Calculator for ENERGY STAR Qualified Appliances. U.S. EPA. Weblink

2) 10 CFR 430.32(ee) Weblink

3) (24 hours per day * 365 days per year) - 5,840 run hours per year

4) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink

VOLUME 2: ENERGY STARResidential Measures

2.5 CONSUMER ELECTRONICS

2.5.1 ENERGY STAR OFFICE EQUIPMENT

Target Sector	Residential Establishments	
Measure Unit	Office Equipment Device	
	Computer: 4 years	
	Monitor: 4 years	
Measure Life Source 1	Fax: 4 years	
measure Life	Printer: 5 years	
	Copier: 6 years	
	Multifunction Device: 6 years	
Vintage	Replace on Burnout	

ELIGIBILITY

This protocol estimates savings for installing ENERGY STAR office equipment compared to standard efficiency equipment in residential applications. The measurement of energy and demand savings is based on a deemed savings value multiplied by the quantity of the measure. The target sector is primarily residential.

ALGORITHMS

The general form of the equation for the ENERGY STAR Office Equipment measure annual savings is:

Total Savings = Number of Units × Savings per Unit

To determine resource savings, the per-unit estimates in the algorithms will be multiplied by the number of units. Per unit savings are primarily derived from the ENERGY STAR calculator for office equipment.

ENERGY STAR Computer

AkWh = ESav_{COM} AkW_{peak} = DSav_{COM}

ENERGY STAR Fax Machine

 AkWh
 = ESav_{FAX}

 AkWpeak
 = DSav_{FAX}

ENERGY STAR Copier

AkWh	= ESav _{COP}
AkW _{peak}	= DSav _{COP}
ENERGY STAR Printer	F

 AkWh
 = ESav_{PRI}

 AkW_{peak}
 = DSav_{PRI}

VOLUME 2: ENERGY STARResidential Measures

Consumer Electronics

Formatted: No Spacing, paragraph 6pt space

Formatted: Indent: Left: 0", Hanging: 0.4", Tab stops:

0.63", Left

ENERGY STAR Multifunction Device

AkWh	= ESav _{MUL}
AkW _{peak}	= DSav _{MUL}

ENERGY STAR Monitor

 AkWh
 = ESav_{MON}

 AkWpeak
 = DSav_{MON}

DEFINITION OF TERMS

Table 2-106: Terms, Values, and References for ENERGY STAR Office Equipment

Term	Unit	Value		Sources
ESavcom, Electricity savings purchased ENERGY STAR			See Table	4
ESav _{EAX} , Electricity savings purchased ENERGY STAR Machine			2-105	
ESavcop, Electricity savings purchased ENERGY STAR				
ESav _{PRI} , Electricity savings purchased ENERGY STAR				
ESav _{MUL} , Electricity savings purchased ENERGY STAR Multifunction Device	-per			
ESav _{MON} , Electricity savings purchased ENERGY STAR				
DSav _{COM} , Summer demand per purchased ENERGY ST computer.		kW/yr	See Table 2-105	4
DSaveax, Summer demand purchased ENERGY STAR Machine				
DSavcop, Summer demand purchased ENERGY STAR				
DSav _{PRI} , Summer demand purchased ENERGY STAR				
DSav _{MUL} , Summer demand purchased ENERGY STAR Multifunction Device	savings per			
DSav _{MON} , Monitor				

Formatted: Keep with next

VOLUME 2: ENERGY STARResidential Measures

DEFAULT SAVINGS

Table 2-107: ENERGY STAR Office Equipment Energy and Demand Savings Values

Computer (Desktop)14190.016144Computer (Laptop)220.00394Fax Machine (laser)160.00221Fax Machine (laser)15260.0035515260.00351515260.006720100.00140.00142020500.006840500.00680.005220233720.0502823720.0502823720.0502823720.0050515260.003515260.0035515260.0035515260.003515260.003515260.00351515260.00351520240.00571630303020151810.0244651810.0244651810.0244651810.0244651810.0244651810.0244651810.0244651810.0244651810.0244651810.0244651810.0244651810.0244651810.024410180.005011160.0006812160.000714	M	easure	Energy Savings (ESav, kWh)	Demand Savings (DSav, kW)	Source
Fax. Machine (laser) 16 0.0022 1 Fax. Machine (laser) 16 0.0022 1	Computer (Desktor)	119	0.0161	4
Copier (monochrome) Simages/min 37 0.0050 5. 5. 15. 26 0.0035 15. inages/min. 20. 10 0.0060 20. inages/min. 20. 10 0.0067 30. inages/min. 20. 0.0068 1 40. inages/min. 20. 0.0050 82. inages/min. 20. 0.0008 82. inages/min. 20. 0.0050 82. inages/min. 20. 0.0050 5. inages/min. 37 0.0050 5. inages/min. 37 0.0050 5. inages/min. 20. 0.00050 15. inages/min. 37 0.0050 5. inages/min. 37 0.0050 5. inages/min. 37 0.0050 15. inages/min. 37 0.0050 16. 0.00068 14 0.00041 20.	Computer (Laptop)		22	0.0030	4
Copier (monochrome) 5 < images/min ≤ 15	Fax Machine (laser)	16	0.0022	4
Keepier (monochrome) 15 10 0.0011 12 15 10 0.0011 20 130 10 0.00657 0.00668 30 10 0.00068 0.00068 0.00068 40 10 10 0.00068 0.00068 0.00020 82 10 0.00000 0.00000 0.00000 0.00000 82 10 0.00000 0.00000 0.00000 0.00000 82 10 0.00000 0.00000 0.00000 0.00000 82 10 0.00000 0.00000 0.00000 0.00000 15 16 0.00000 0.00000 0.00000 0.00000 16 10 10 10 10 0.00000 10 14 0.00000 0.00000 0.00000 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10		≤ 5images/min	37	0.0050	
Copier (monochrome) 20 < images/min ≤ 30 42 0.0067 1 30 < images/min ≤ 40		5 < images/min ≤ 15	26	0.0035	
Copier (monochrome) 30 < images/min ≤ 40 50 0.0068 1 40 < images/min ≤ 65		15 < images/min ≤ 20	10	0.0011	
(monochrome) 30 < images/min ≤ 40 50 0.0068 1 40 < images/min ≤ 65		20 < images/min ≤ 30	4 2	0.0057	
40 40<		30 < images/min ≤ 40	50	0.0068	4
B2- <images 90<="" min="" th="" ≤=""> 469 0.0633 > 90 images/min 686 0.0926 ≤ 5 images/min 37 0.0050 5 < images/min ≤ 15</images>	(monochronic)	40 < images/min ≤ 65	181	0.0244	
>00 images/min 686 0.00926 ≤ 5 images/min 37 0.0050 6 < images/min ≤ 15		65 < images/min ≤ 82	372	0.0502	
Solution Solution		8 <mark>2 < images/min ≤ 90</mark>	4 69	0.0633	
Printer 0.00000000000000000000000000000000000		<mark>> 90 images/min</mark>	686	0.0926	
Printer (laser monochrome) 15 < images/min ≤ 20 24 0.0031 44 44 44 20 < images/min ≤ 30		<mark>≤ 5 images/min</mark>	37	0.0050	
Printer (laser monochrome) $20 < images/min \le 30$ 42 0.0057 $30 < images/min \le 40$ 50 0.0068 $40 < images/min \le 65$ 181 0.0244 $65 < images/min \le 82$ 372 0.0502 $82 < images/min \le 90$ 542 0.0732 $2 > 90$ 90 images/min 686 0.0926 $10 < images/min \le 90$ 542 0.0732 $2 > 90$ images/min 686 0.0926 $10 < images/min \le 90$ 542 0.00732 $2 > 90$ images/min 686 0.00926 $10 < images/min \le 90$ 542 0.0077 $6 < images/min \le 90$ 686 0.00077 $6 < images/min \le 26$ $62 < 0.0070$ $26 < images/min \le 30$ 93 0.0126 $30 < images/min \le 50$ 248 0.0335 $60 < images/min \le 68$ 420 0.0567 $68 < images/min \le 80$ $507 < 0.0806$ $2 < 0.00567$ $68 < images/min \le 80$ $507 < 0.0806$ $2 < 0.00567$ $68 < images/min \le 80$ $507 < 0.0806$ $2 < 0.00567$ $68 < images/min \le 80$ $507 < 0.0806$ $2 < 0.00567$ $68 < images/min \le 80$ $507 < 0.0806$ $2 < 0.0806$ $2 < 0.0806$ $2 < 0.0806$ </td <td></td> <td>5 < images/min ≤ 15</td> <td>26</td> <td>0.0035</td> <td></td>		5 < images/min ≤ 15	26	0.0035	
Printer (laser, monochrome) $30 < \text{images/min} \le 40$ 50 0.0068 4 $40 < \text{images/min} \le 65$ 181 0.0244 $65 < \text{images/min} \le 82$ 372 0.0502 $82 < \text{images/min} \le 90$ 542 0.0732 $82 < \text{images/min} \le 90$ 542 0.0732 90		15 < images/min ≤ 20	2 4	0.0031	- - - - - -
Monochrome) 30 < images/min ≤ 40 50 0.0008 4 40 < images/min ≤ 65			4 2	0.0057	
$40 < images/min \le 65$ 181 0.0244 $65 < images/min \le 82$ 372 0.0502 $82 < images/min \le 90$ 542 0.0732 >90 images/min \le 90 542 0.0926 Printer (Ink Jet) 6 0.0008 1 $5 < images/min \le 10$ 48 0.0065 1 $5 < images/min \le 26$ 52 0.0070 1 $10 < images/min \le 26$ 52 0.0070 1 $26 < images/min \le 50$ 248 0.0335 1 $30 < images/min \le 50$ 248 0.0356 1 $68 < images/min \le 80$ 597 0.0806 1 80 images/min ≤ 80 597 0.0806 1 80 images/min ≤ 80 597 0.0806 1 80 images/min ≤ 80 597 0.0806 1 Multifunction Device (Ink Jet) 6 0.00098 1		30 < images/min ≤ 40	50	0.0068	
82 < images/min ≤ 90 542 0.0732 >90 images/min 686 0.0926 Printer (Ink Jet) 6 0.0008 4 §5 images/min 57 0.0077 5 5 5 7 0.0077 5 5 5 10 < images/min ≤ 26	monochromey	40 < images/min ≤ 65	181	0.0244	
Nullifunction Solution Solution		65 < images/min ≤ 82	372	0.0502	
Printer (Ink Jet) 6 0.0008 1		8 <mark>2 < images/min ≤ 90</mark>	542	0.0732	
Multifunction Device (laser, monochrome) \$5\$-images/min \$57 0.0077 5 <images 10<="" min="" td="" ≤=""> 48 0.0065 10 10 48 0.0065 10 26 52 0.0070 26 30 93 0.0126 30 -images/min ≤ 50 248 0.0335 50 -images/min ≤ 68 420 0.0567 68<</images>		> 90 images/min	686	0.0926	
Multifunction Device (laser, monochrome) 5 < images/min ≤ 10 48 0.0065 10 < images/min ≤ 26	Printer (Ink Jet)		6	0.0008	4
Multifunction Device (laser, monochrome) 10 < images/min ≤ 26 52 0.0070 26 < images/min ≤ 30		<mark>≤ 5 images/min</mark>	57	0.0077	
Multifunction Device (laser, monochrome) 26 <- images/min ≤ 30 93 0.0126 30 <- images/min ≤ 50		5 < images/min ≤ 10	48	0.0065	
Device (laser, monochrome) 20 < iiiidges/min ≤ 50 93 0.0126 30 < images/min ≤ 50	Device (laser,	10 < images/min ≤ 26	52	0.0070	1
monochrome) 30 < images/min ≤ 50 248 0.0335 50 < images/min ≤ 68		26 < images/min ≤ 30	93	0.0126	4
68 < images/min ≤ 80 597 0.0806 >80 images/min 764 0.1031 Multifunction Device (Ink Jet) 6 0.0008 4		30 < images/min ≤ 50	248	0.0335	+
>80 images/min 764 0.1031 Multifunction Device (Ink Jet) 6 0.0008 4		50 < images/min ≤ 68	4 20	0.0567	1
Multifunction Device (Ink Jet) 6 0.0008 4		68 < images/min ≤ 80	597	0.0806	_
		> 80 images/min	764	0.1031	
Monitor 24 0.0032 4	Multifunction Device	e (Ink Jet)	6	0.0008	4
	Monitor		2 4	0.0032	4

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

Formatted: Normal

Formatted: Font: Bold, Small caps

VOLUME 2: ENERGY STARResidential Measures

SOURCES

1) ENERGY STAR Office Equipment Calculator

http://www.energystar.gov/sites/default/files/asset/document/Office%20Equipment%20Calcul ator.xlsx (Referenced latest version released in October 2016). Default values were used. Using a commercial office equipment load shape, the percentage of total savings that occur during the PJM peak demand period was calculated and multiplied by the energy savings. As of December 1, 2018, the published ENERGY STAR Office Equipment Calculator does not reflect the current specification for computers (ENERGY STAR® Program Requirements Product Specification for Computers Eligibility Criteria Version 7.1). V7.1 introduced modest improvements to both desktop and laptop computer efficiency. As a result, the savings values for computers presented in this measure entry reflect savings for V6-compliant models. This characterization should be updated when an updated ENERGY STAR Office Equipment Calculator becomes available.

VOLUME 2: ENERGY STARResidential Measures

2.5.22.5.1 Advanced Power Strips

Target Sector	Residential Establishments		
Target Sector	Residential		
Measure Unit	Per Advanced Power Strip		
Measure Life	5 years ^{Source 4}		
Measure Life	<u>5 years¹</u>		
Vintage	Retrofit		

Advanced Power Strips (APS) are surge protectors that contain a number of power-saver sockets. There are two types of APS: Tier 1 and Tier 2This measure develops equipment savings for both Tier 1 and Tier 2 APS installed for residential home entertainment centers (HEC) or home office applications.

Tier 1 APS have a master control socket arrangement and will shut off the items plugged into the controlled power-saver sockets when they <u>sense thatidentify</u> the appliance plugged into the master socket has been turned off. Conversely, the appliance plugged into the master control socket has to be turned on and left on for the devices plugged into the power-saver sockets to function.

Tier 2 APS deliver additional functionality beyond that of a Tier 1 unit, as Tier 2 units manage both standby and active power consumption. The Tier 2 APS manage standby power consumption by turning off devices from a control event; this could be a TV or other item powering off, which then powers off the controlled outlets to save energy. Active power consumption is managed by the Tier 2 unit by monitoring a user's engagement or presence in a room by either or both infrared remote signals sensing or motion sensing. If after<u>After</u> a period of user absence or inactivity, The Tier 2 unit will shut off all items plugged into the controlled outlets, thus saving energy. There are two types of Tier 2 APS available on the market. Tier 2 Infrared (IR) detect signals sent by remote controls to identify activity, while Tier 2 Infrared-Occupancy Sensing (IR-OS) use remote signals as well as an occupancy sensing component to detect activity and sense for times to shut down. Due to uncertainty surrounding the differences in savings for each technology, the Tier 2 savings are blended into a single number.

ELIGIBILITY

This protocol documents the energy savings attributed to the installation of Advanced Power Strips.<u>APS.</u> The most likely area of application is in residential spaces, i.e. single-family and multifamily homes. However, commercial applications are also appropriate for Advanced Power Strips (see Volume 3, Section 3.9.31 Advanced Power Strip Plug Outlets-

<u>http://www.puc.pa.gov/filing_resources/issues_laws_regulations/act_120_information/technical_r</u> <u>eference_manual.aspx.).</u> The protocol considers usage of Advanced Power Strips with home office systems<u>for HEC</u> and home <u>entertainment systemsoffices</u>.

ALGORITHMS

The energy savings and demand reduction for Tier 1 and Tier 2 APS outlets are obtained from several recently conducted field studies, with the savings estimates applied to measured in-service rates (ISR) and realization rates (RR) to determine final savings.

The energy savings and demand reduction are calculated for both <u>home_office_HEC</u> and home <u>entertainment_office_use</u> for Tier 1 strips, and only for home entertainment use for Tier 2 strips.⁷⁹ For Tier 1 strips, if <u>When possible</u>, identify the <u>equipment connected</u> to the APS and apply the

⁷⁹ Tier 2 strips are typically installed only in home entertainment center applications.

VOLUME 2: ENERGY STARResidential Measures

associated energy reduction percentage (ERP). If the intended use of the power strip<u>for</u> a Tier 1 <u>APS</u> is not <u>specifiedidentified</u>, or if multiple power strips are purchased, the algorithm for "unspecified use" should be applied. If it is known that the power strip is intended to be used for an entertainment center, the "entertainment center" algorithm should be applied, while the "home office" algorithm should be applied if it is being used in a home office setting. For Tier 2 strips, the end use is assumed to be a home entertainment center and the savings varyValues for "unspecified use" are based on the type of Tier 2 strip, IR, IR-OS, or unspecified<u>69% HEC and 31% home office</u> use.² Tier 2 APS savings are only identified for HEC as this is where they are typically installed for residential use.

Tier 1 Advanced Pow		Formatted: Font: Bold
AkWh _{t1_unspecified}	= Annual_Usage_{unspecified} x ERP_{t1_unspecified} × ISR x RR	
AkWh t1_entertainment	= Annual_Usage _{entertainment}	
AkWh _{t1_office}	= Annual_Usage _{office}	
AKWpeak, t1_unspecified	= Load _{unspecified} X ERP _{peak, 11_unspecified} X ISR	
AKWpeak, t1_entertainment	= Load _{entertainment} × ERP _{peak, t1_entertainment} × ISR	
AkWpeak, t1_home office	-= Loadoffice X ERPpeak, 11_office X ISR	
ΔkWh	$\underline{=}Annual_Usage \ x \ ERP_{T1} \ x \ ISR \ x \ RR$	
$\Delta kW_{summer \ peak}$	$= \Delta kWh \ x \ ETDF_s$	
$\Delta k W_{winter \ peak}$	$= \Delta kWh \ x \ ETDF_w$	
		Formatted: Border: : (No border)
Tier 2 Advanced Pow	er Strips:	
AkWh _{t2}	= Annual_Usage _{entertainment} x ERP _{t2} × ISR x RR	
AkW _{peak,} -t2	= Load _{entertainment} X ERP _{peak, t2} X ISR	

 $\Delta kWh = Annual_Usage \ x \ ERP_{T2} \ x \ ISR \ x \ RR$

 $\Delta kW_{summer \ peak} = \Delta kWh \ x \ ETDF_s$

 $\Delta kW_{winter \ peak} = \Delta kWh \ x \ ETDF_w$

DEFINITION OF TERMS

Table 2-127: Terms, Values, and References for Advanced Power Strips

Parameter	Unit	Value	Source
Annual_Usage _{entertainment} ,Annual usage of home entertainment system <u>Annual_Usage</u>	kWh	471 <u>See</u> Table 2-128	4 <u>3</u>
Annual_Usage _{office} ,Annual usage of home office system	kWh	399	4

VOLUME 2: ENERGY STARResidential Measures

Consumer Electronics

Page 240

Formatted: Font: 10 pt, Bold, Font color: Text 2, Small caps

Formatted: Normal, Pattern: Clear (Background 1), Tab

Formatted: Font: 12 pt, Not Bold, Font color: Custom

Formatted: Keep with next

Formatted: Font color: Black

Color(RGB(31,73,125)), Not Small caps

stops: Not at 1"

Annual_Usageunspecified, Annual usage of unspecified end-use ⁸⁰	kWh	449	4
Loadentertainment, Demand of home enertainment system	₩	0.058	3
Loadoffice, Demand of home office system	₩₩	0.044	3
Load _{unspecified} , Demand of unspecified end- use	₩	0.052	3
ERP, energy reduction percentage	%	See Table 2-107	4
ERP _{peak} , energy reduction percentage during peak period	%	See Table 2-107	4
ISR, In-service Rate	%	EDC Data Collection or see Table 2-107 Default = 72%	<u>24</u>
RR, Realization Rate	kWh%	0. 92 <u>%</u>	2 3
ERP, energy reduction percentage	<u>%</u>	See Table 2-129	<u>3</u>
ETDF _s , Summer energy to demand factor	$\frac{kW}{kWh}$	<u>0.0001136</u>	<u>5</u>
ETDF _{w1} Winter energy to demand factor	$\frac{kW}{kWh}$	<u>0.0001463</u>	<u>5</u>

 Formatted: Font: Italic, Font color: Black, Border: : (No border)
 Formatted: Border: : (No border)

 Formatted: Font: Italic, Font color: Black, Border: : (No border)

Formatted: Border: : (No border)

The following table shows the Energy Reduction Percentage (ERP) and In-Service Rate (ISR) for each strip type and end use.

Table 2-128: Impact Factors for Advanced Power Strip Types: Annual Usage by End-use

Strip Type	End-Use	ERPAnnual Usage	ERPpeak	ISR
		<u>(</u> kWh <u>)</u>		
Tier 1	Home Entertainment Center	27%<u>4</u>71	20%	86%
Tier 1	Home Office	21%<u>399</u>	18%	86%
Tier 1	Unspecified	25%<u>4</u>49	19%	86%
Tier 2	Home Entertainment Center	44%	41%	74%

DEFAULT SAVINGS

Table 2-129: Default SavingsImpact Factors for Advanced Power StripsStrip Types

APSStrip Type	End- <u>-</u> Use	Energy Savings (kWh)ERP	Poak Domand Reduction (kW)	4
Tier 1	Home Entertainment Center	100.6<u>27%</u>	0.010	+
Tier 1	Home Office	66.3 <u>21%</u>	0.007	•
Tier 1	Unspecified use or multiple purchased	88.8 <u>25%</u>	0.009	4
Tier 2	Home Entertainment Center	<u>141.144%</u>	0.018	•

DEFAULT SAVINGS

⁸⁰ Note that this was based on the MA RPLNC 173 APS Metering Study that determined Tier 1 APS to be used in home entertainment settings 69% of the time, and 31% in home office environments.

VOLUME 2: ENERGY STARResidential Measures

Consumer Electronics

Deleted Cells	
Deleted Cells	
Deleted Cells	
Formatted Table	

Formatted: Font: 9 pt

Deleted Cells

Formatted: Justified, Indent: Left: 0", Right: 0", Space Before: 2 pt, After: 2 pt, Keep with next

- Formatted: Font: 9 pt, Bold
- Formatted: Font: 9 pt

Formatted: Justified, Indent: Left: 0", Right: 0", Space Before: 2 pt, After: 2 pt, Keep with next

Formatted Table

Formatted: Font: 9 pt

Formatted: Justified, Indent: Left: 0", Right: 0", Space Before: 2 pt, After: 2 pt, Keep with next

Formatted: Justified, Indent: Left: 0", Right: 0", Space

Before: 2 pt, After: 2 pt, Keep with next

Formatted: Font: 9 pt Formatted: Font: 9 pt

Tornacced. Fond: 5 pc

Formatted: Justified, Indent: Left: 0", Right: 0", Space Before: 2 pt, After: 2 pt, Keep with next

Table 2-130: Default Savings for Advanced Power Strips

APS Type	End Use	<u>Enerqy</u> <u>Savings</u> (∆kWh)	<u>Summer Peak</u> <u>Demand</u> <u>Reduction</u> (∆kW _{summer peak})	$\frac{\text{Winter Peak}}{\text{Demand}}$ $\frac{\text{Reduction}}{(\Delta k W_{winter peak})}$
Tier 1	Home Entertainment Center (HEC)	<u>84.2</u>	<u>0.010</u>	<u>0.012</u>
Tier 1	Home Office	<u>55.5</u>	<u>0.006</u>	<u>0.008</u>
Tier 1	Unspecified use or multiple purchased	<u>74.4</u>	<u>0.008</u>	<u>0.011</u>
Tier 2	Home Entertainment Center (HEC)	<u>137.3</u>	<u>0.016</u>	<u>0.020</u>

EVALUATION PROTOCOLS

The most appropriate evaluation protocol for this measure is verification of installation coupled with assignment of stipulated energy savings.

SOURCES

- 1) <u>"RLPNC 17-3: AdvancedCalifornia Electronic Technical Reference Manual. "Smart</u> Connected Power Strip Metering Study,"". SWAP010-10. Accessed January 2024. Weblink
- 1) <u>NMR Group for Massachusetts ProgramsProgram Administrators and EEAC, (Mar. 2019), http://ma-eeac.org/wordpress/wpcontent/uploads/RLPNC_173_APSMeteringReport_Revised_18March2019.pdf</u>
- .(2018, October). "RLPNC 17-4 and 17-5: Products Impact Evaluation of In-service and Short-Term Retention Rates Study," *Massachusetts Programs Administrators and EEAC*, (Oct. 2018),". http://ma-eeac.org/wordpress/wpcontent/uploads/RLPNC_1745_APSProductsSurveys_5Oct2018_Final.pdfWeblink_
- 3) As reported in correspondence with authors of Source 1 and Source 2.

4) California Public Utilities Commission Database for Energy Efficient Resources (DEER) EUL Support Table for 2020, http://www.deeresources.com/files/DEER2020/download/SupportTable-EUL2020.xlsx. Accessed December 2018. Formatted: Font: Not Italic

Field Code Changed
Formatted: Default Paragraph Font

VOLUME 2: ENERGY STARResidential Measures

- 3) NMR Group for Massachusetts Program Administrators and EEAC. (2019, March). "RLPNC 17-3: Advanced Power Strip Metering Study," pg. 3, Table 1. Weblink
- 4) Survey and on-site analysis of 17,718 APS installed in Pennsylvania PY13 and PY14 kit and direct install programs.
- 5) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Residential, plug-loads Weblink

Consumer Electronics

State of Pennsylvania -May 2024

Technical Reference Manual, Vol. 2: Residential Measures - Rev Date: Feb. 2021

2.6 BUILDING SHELL

2.6.1 RESIDENTIAL AIR SEALING

Target Sector	Residential Establishments, limited to single family detached houses
Measure Unit	Residential Air Sealing
Measure Life	15 years ^{Source 51}
Vintage	Retrofit

Thermal shell air leaks are sealed through strategic use and installation of air-tight materials. Leaks are detected and leakage rates measured with the assistance of a blower-door test. This measure applies to the sealing of thermal shell air leaks in existing residential homes with a primary electric heating and/or cooling source.

ELIGIBILITY

1

This measure is applicable to single family detached (including manufactured and mobile homes) houses only.

The baseline for this measure is the existing air leakage as determined through approved and appropriate test methods using a blower door testing methods. The baseline condition of a building upon first inspection significantly impacts the opportunity for cost-effective energy savings through air-sealing.

Air sealing materials and diagnostic testing should meet all qualification criteria for program eligibility. The initial and final tested leakage rates should be performed in such a manner that the identified reductions can be properly discerned, particularly in situations where multiple building envelope measures may be implemented simultaneously.

For example, if air sealing, duct sealing and insulation are all installed as a whole home retrofit, efforts should be made to isolate the CFM reductions from of each measure individually. This may require performance of a blower door test between each measure installation. Alternatively, the baseline blower door test may be performed after the duct sealing is completed, then air sealing measures installed and the retrofit blower door test completed prior to installation of the new insulation.

In addition, seasonal savings are capped at 40% of the building's heating/cooling load. Source

 $\Delta kWh_{cool} \leq 40\% \times CAPY_{cool} \times EFLH_{cool} \times \eta_{base}$

 $\Delta kWh_{heat} \leq 40\% \times CAPY_{heat} \times EFLH_{heat} \times \eta_{base}$

Furthermore, if:

$$CFM50_{ee} < \frac{3 \ ACH50 \times CondVol}{60 \ min/hr}$$

additional testing and intervention is necessary to ensure adequate ventilation for occupants and combustion equipment. Source 3 Lower rates can increase savings, but may require the introduction of new mechanical ventilation. The operating energy of this new equipment, as well as the energy loss from the induced ventilation should be deducted from the savings of this measure. In other

VOLUME Measures	2:	ENERGY	STARResidential	
Building She	ell			Page 244

Formatted: Indent: Left: 0", Hanging: 0.4", Tab stops: 0.63", Left

Technical Reference Manual, Vol. 2: Residential Measures – State of Pennsylvania -Rev Date: Feb. 2021 May 2024

words, CFM50ee has an effective minimum equivalent to 3 ACH50 unless energy recovery ventilation is employed.

Finally, to ensure that the alterations do not result in a backdraft, post air-sealing combustion appliance zone (CAZ) testing should be considered for any homes with Category I (gravity-draft) exhaust equipment that undergo a significant reduction in infiltration.

ALGORITHMS

To calculate $\frac{DkWh\Delta kWh}{\Delta kWh}$ add together the cooling and heating savings calculated using the appropriate coefficients from Table 2-111 and Table 2-112 Table 2-132 and Table 2-133 for the matching equipment type and climate region in the algorithm below. For example, if a residence has gas heat with Central AC, there is no heating component to the savings calculations. If a residence has Electric Resistance heating and no AC, calculate the savings for "Baseboard" heating. Ductless installations such as baseboards and mini-split heat pumps should substitute 100% for $\frac{Duct_{proto}}{Duct_{base}}$. Values for $Duct_{base}$ may be generated through measurement or by selecting an appropriate value from Table 2-31 Table 2-40 in Sec. 2.2.10.

The prototype variables in the savings equations for this measure do not refer to the baseline or efficient conditions of the home undergoing improvement. Instead, expressions of the form $\frac{proto}{base}$ are used to scale the savings of the home being improved (*base*) to those of the prototype home which was based on statewide averages from the 20182022 Residential Baseline Study and used to derive the regressions below. This scaling accounts for differences in energy consumption resulting in deviations in HVAC equipment and distribution system efficiencies from those of the Baseline.

$$\Delta kWh_{cool} = \frac{\eta_{proto}}{\eta_{base}} \times \frac{Duct_{proto}}{Duct_{base}} \times \left(\frac{a_{cool}}{100,000} \times (CFM50_{base}^2 - CFM50_{ee}^2) + b_{cool} \times (CFM50_{base} - CFM50_{ee})\right)$$

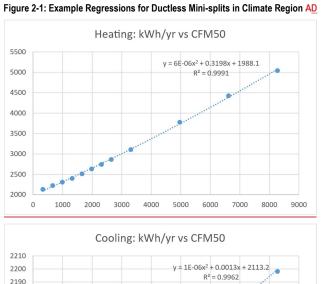
$$\Delta kWh_{breat} = \frac{\eta_{proto}}{\Delta kWh_{breat}} \times \frac{Duct_{proto}}{\Delta kWh_{breat}} \times \frac{Duct_{pr$$

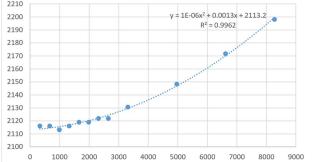
$$Wh_{heat} = \frac{\eta_{phate}}{\eta_{base}} \times \frac{\omega_{phate}}{Duct_{base}} \times \left(\frac{a_{heat}}{100,000} \times (CFM50_{base}^2 - CFM50_{ee}^2) + b_{heat} \times (CFM50_{base} - CFM50_{ee}) \right)$$

 $\Delta kWh = \Delta kWh_{cool} + \Delta kWh_{heat}$

 $\Delta \frac{kW_{peak}}{kW_{summer peak}} = \Delta kWh_{cool} \div EFLH_{cool} \times \frac{CFCF_{cool}}{kW_{summer peak}}$

$\Delta kW_{winter \ peak} = \Delta kWh_{heat} \div EFLH_{heat} \times CF_{heat}$

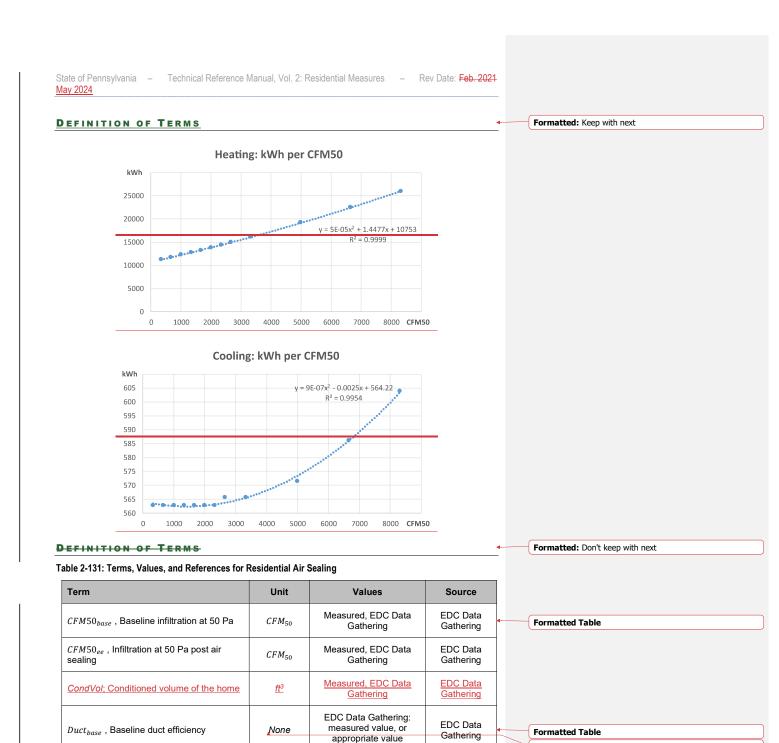

Note: The savings equations above are based on quadratic regressions because coolingthe change in energy savings fall off quickly with changesfor the same reduction in infiltration in heating dominated climates, whereas some heating technologies exhibit escalating savings varies with the initial condition, as in thewell as climate and HVAC technology. In general, there is a larger benefit for an equivalent reduction of CFM50 in a home when tightening very loose building shells compared to homes with a lower initial infiltration rate. For example plot below. This, when starting from 6600 CFM50 in Figure 2-1, a 1650 CFM50 reduction yields 24 kWh/yr savings whereas starting from 2300 CFM50 results in small9 kWh/yr savings. Since the coefficients forof the squared infiltration reduction term, which are thereforeso small, they are multiplied by 10⁵ to simplify Table 2-111 and Table 2-112. Table 2-132 and Table 2-133. This scaling is later reversed in the savings calculations


VOLUME Measures		ENERGY	STARResidential	
Buildina Sh	ell			Page

Field Code Changed

Formatted: Font: Cambria Math, Italic Formatted: Tab stops: Not at 2"

245



VOLUME 2: EN Measures

ENERGY STARResidential

Building Shell

selected from Table

Formatted: Font: Italic

VOLUME 2: ENERGY STARResidential

Measures **Building Shell**

		<mark>2-31</mark> Table 2-40 in Sec. 2.2.9 2.2.10		
$Duct_{proto}$, Prototype duct efficiency	None	Default: See Table 2-31 Table 2-40 in Sec. 2-2-92.2.10 for "R-2	1 <u>4</u>	Formatted: Font: Italic
		Average Basement + 50% Conditioned"		
η_{base} , Baseline equipment efficiency	varies	Measured, EDC Data Gathering	EDC Data Gathering	Formatted: Font: Italic
		Default: η_{proto}	Gathering	
η_{proto} , Prototype equipment efficiency	varies	See Table 2-110 <u>See</u> <u>Table 2-</u> 151 <u>in 2.6.5</u>	<u>25</u>	Formatted: Font: Italic
a_{system} , Unit Energy Savings per CFM50 ² of air leakage reduction	$\frac{kWh/yr}{CFM_{50}^{2}}$	See Table 2-132	<u>36</u>	
b _{system} , Unit Energy Savings per CFM50 of air leakage reduction	$\frac{kWh/yr}{CFM_{50}}$	See Table 2-133	3 <u>6</u>	
<i>EFLH_{cool}</i> Equivalent Full Load Hours of operation during the cooling season for the average unit	hours yr	See <i>EFLH_{cool}</i> in Vol. 1, App. A	4 <u>7</u>	
EFLH _{coot} EFLH _{heat} , Equivalent Full Load Cooling hoursHours of operation during the heating season for the average unit	hours hours year yr	See <u>EFLH_{cool}EFLH_{heat} in</u> Vol.1, App. A	4 <u>7</u>	
CF, DemandCF _{summer peak} , Summer demand Coincidence Factor	Proportion	See <u>Summer</u> CF in Vol. 1, App. A	4 <u>7</u>	Formatted: Font: Italic
CF _{winter peak} , Winter demand Coincidence Factor	Proportion	<u>See Winter CF in Vol. 1,</u> <u>App. A</u>	Z	
CAPY _{cool} , The cooling capacity of the equipment being installed ⁸⁴	kBTU/hr	EDC Data Gathering	AEPS Application; EDC Data Gathering	Formatted Table Formatted: Space Before: 3 pt, After: 3 pt
CAPY _{heat} , The heating capacity of the heat pump being installed ^{e2}	kBTU/hr	EDC Data Gathering	AEPS Application; EDC Data Gathering	Formatted: TableCell

DEFAULT UNIT ENERGY SAVINGS COEFFICIENT & EQUIPMENT EFFICIENCY TABLES

Savings may be claimed using the algorithms above and the algorithm's input default values below, in conjunction with customer-specific blower door test data. Site specific data from blower door

⁸¹ This data is obtained from the AEPS Application Form or EDC's data gathering based on the model number.
⁸² Ibid. This refers to the capacity of the heat pump and not any auxiliary electric resistance heat.

VOLUME 2: ENERGY STARResidential Measures

Building Shell

State of Pennsylvania – May 2024

Technical Reference Manual, Vol. 2: Residential Measures – Rev Date: Feb. 2021

testing is required to be used in conjunction with these default energy savings values, as outlined in the algorithms. Table 2-132: Default Residential Equipment Efficiency

		Coolii	ng				Heating		
	ASHP	Central AC	Mini- split	GSHP	ASHP	Base- board	Electric Furnace	Mini- split	GSHP
Efficiency	15	12.1	14.9	16.6	8.5	4	4	8.9	3.6
Units	SEER	SEER	SEER	EER	HSPF	COP	COP	HSPF	COP

Table 2-113: Default Unit Energy Savings per Reduced CFM50² for Air Sealing

			a	ool				a _{heat}		
	Climate Region Reference City		Central AC	<u>GSHP</u> Mini- split	GSHP <u>Mi</u> <u>ni-split</u>	ASHP	Base- board	Electric Furnac e	<u>GSHP</u> M ini-split	Mini- split <mark>GS</mark> HP
с	Allentown	0. 042 062	0. 076<u>02</u> 1	0.09 <u>02</u> <u>8</u>	0.0230 97	<u>5.064-</u> <u>1.445</u>	<u>-</u> 1.1667 <u>90</u>	<u>3.4853</u> <u>17</u>	0.944 <u>-</u> <u>1.396</u>	<u>-</u> 0.4139 09
A	Binghamton	0.028 000	0.01808 6	0. <u>0870</u> <u>61</u>	<u>-</u> <u>1.648</u> 0. 046	3.335_ <u>1.159</u>	<u>1.2710.</u> <u>103</u>	<u>4.653-</u> <u>0.287</u>	0.9867 89	<u>0.293-</u> <u>1.232</u>
G	Bradford	0.043 <u>-</u> 2.255	0.02<u>-</u> 2.660	0.067 <u>-</u> 1.547	0.06_ <u>4.326</u>	0.112_ <u>1.828</u>	1.515_ <u>5.151</u>	<u>4.5455</u> <u>40</u>	<u>-</u> 1. <u>1738</u> <u>31</u>	0. <u>2837</u> 09
Т	Erie	0.022 062	0.00406 7	0. <u>0580</u> <u>21</u>	0.0270 <u>59</u>	<u>5.67-</u> <u>0.952</u>	<u>-</u> 1.3188 03	4.309 <u>-</u> <u>1.467</u>	<u>1.066-</u> <u>0.706</u>	0.367 <u>-</u> <u>1.314</u>
Е	Harrisburg	0. 079 067	0.125<u>1.</u> 906	0. <u>1260</u> <u>13</u>	0.066 <u>6</u> 41	<u>4.488-</u> <u>1.722</u>	<u>1.242</u> <u>3.238</u>	3.488_ <u>4.584</u>	<u>0.886-</u> <u>2.131</u>	<u>0.112-</u> <u>1.141</u>
D	Philadelphia	0. <u>081</u> <u>48</u>	0. <u>12116</u> 2	0. 0962 02	<u>0.0021</u> <u>11</u>	<u>3.0780.</u> <u>830</u>	<u>1.0043.</u> <u>626</u>	<u>2.2088</u> <u>06</u>	0.792 <u>6</u> 47	0. <u>2866</u> <u>49</u>
н	Pittsburgh	0.014 000	0.05302 6	0.075	0.0790 <u>68</u>	4.657 <u>-</u> <u>1.264</u>	<u>1.185-</u> <u>2.548</u>	<u>-</u> 2.7782 77	0.9394 0	0.497 <u>-</u> <u>1.405</u>
в	Scranton	 0.004 	0.0 <u>2902</u> <u>3</u>	0. <u>0860</u> <u>49</u>	0.0580 68	<u>4.845-</u> <u>1.42</u>	<u>1.21</u> 2.354	<u>4.073-</u> <u>2.606</u>	<u>-</u> 0.9589 90	<u>0.411-</u> <u>1.316</u>
F	Williamsport	0. 037 <u>03</u>	0. 032 02 0	0.1040 70	0.0520 67	<u>5.175-</u> <u>1.921</u>	<u>1.181-</u> <u>4.028</u>	3.477_ <u>4.553</u>	<u>0.925-</u> <u>1.740</u>	0.392_ <u>1.662</u>

Table 2-133: Default Unit Energy Savings per Reduced CFM50 for Air Sealing

			b _{cc}	b _{heat}						
	nate Region Reference City	ASHP	Central AC	<u>GSHP</u> M ini-split	<u>Mini-</u> split <mark>GS</mark> HP	ASHP	Base- board	Mini- split <u>Ele</u> <u>ctric</u> Furnace	Electric Furnace <u>GSHP</u>	<u>Mini-</u> split G SHP
с	Allentown	0.0250 21	0.03302 0	0.00400 7	0.00701 4	0. <u>95183</u> <u>3</u>	1.966 943	<u>0.8642</u> <u>.179</u>	<u>2.1380</u> <u>.684</u>	0.616 553
A	Binghamton	0.0010 00	0.00101 0	0.00201	- 0.00722 2	1. <u>94814</u> <u>1</u>	2. 393 <u>527</u>	<u>1.4482</u> <u>.702</u>	<u>2.5990</u> .875	0.788 795

VOLUME 2: ENERGY STARResidential

Measures **Building Shell**

Formatted	[[220]
Formatted	[221]
Formatted	[222]
Formatted	[223]
Formatted	[224]
Formatted	[[225]
Formatted	[[226]
Formatted	[[227]
Formatted	[[228]
Formatted	[229]
Formatted	
Formatted	[230]
Formatted	[[231]
Formatted	[[232]
Formatted	[[233]
	[[236]
Formatted	[[237]
Formatted	[[234]
Formatted	[235]
Formatted	[238]
Formatted	[239]
Formatted	[[240]
Formatted	[242]
Formatted	[241]
Formatted	[243]
Formatted	[244]
Formatted	[246]
Formatted	[247]
Formatted	[248]
Formatted	[249]
Formatted	[245]
Formatted	[[253]
Formatted	[250]
Formatted	[251]
Formatted	[[252]
Formatted	[252]
Formatted	[255]
Formatted	
Formatted	[[256]
Formatted	[257]
<u>></u>	[258]
Formatted Formatted	[259]
	[[260]
Formatted	[261]
Formatted	[262]
Formatted	[263]
Formatted	[264]
Formatted	[265]
Formatted	[268]
Formatted	[269]
Formatted	[270]
Formatted	[266]
Formatted	[267]
Formatted	[273]
Formatted	[[275]
Formatted	[276]
Formatted	[[277]
Formatted	[277]
>	,
Formatted	
Formatted	[272 [274

		-	-	-	-	2.703 1.2	2.803	2.001 3	3.0321	0. 951
G	Bradford	0. 0073	0.005 <u>38</u>	0.00724	0.01147		2.003 	<u>-233</u>	.166	777
		21	<u>0</u>	<u>0</u>	8	<u>41</u>	<u>3.137</u>	.235	.100	<u></u>
	Erie	0.0040	0.00100	0.00301	0.00402	<u>1.2790.9</u>	2.238	<u> 1.0982</u>	<u>2.4230</u>	0.726
	LUG	<u>01</u>	<u>4</u>	<u>7</u>	<u>1</u>	77	<u>431</u>	<u>.518</u>	<u>.749</u>	<u>712</u>
Е	Horrichurg	0.0550	0.06622	0.02500	0.03312	<u>1.0920.8</u>	2. 194	<u>1.0322</u>	<u>2.3780</u>	0.709
E	Harrisburg	33	8	2	6	27	010	.226	<u>.713</u>	<u>565</u>
D	Philadelphia	0.0506	0.06107	0. <u>01707</u>	0. 023 00	0. 58948	1. 604	<u>0.5731</u>	<u>1.7520</u>	0. 498
U	Filladelpilla	4	<u>1</u>	1	1	<u>7</u>	<u>130</u>	.305	<u>.466</u>	320
н	Pittsburgh	0.0190	0.02600	<u>-</u> 0.00501	0.00201	1.051 <u>0.9</u>	1.958	0.99 <u>2.</u>	<u>2.1250</u>	0.612
п	Fillsburgh	<u>00</u>	<u>1</u>	<u>7</u>	<u>8</u>	<u>17</u>	<u>2.271</u>	<u>340</u>	<u>.711</u>	<u>664</u>
в	Coronton	0.0090	0.01300	0.00001	0.00401	1.250.89	2.056	1.0042	2.240 .	0.659
P	Scranton	04	<u>5</u>	0.002 <u>01</u> <u>6</u>	<u>0.00401</u> <u>9</u>	<u>9</u>	<u>161</u>	<u>.273</u>	<u>691</u>	<u>627</u>
_	\A/:!!!	0. 02 00	0. 023 00	=		1.0480.9	1.981	0.9322	2.1580	0.627
F	Williamsport	8	<u>9</u>	0.001 <u>01</u> <u>5</u>	0.001 <u>01</u> <u>7</u>	<u>29</u>	<u>2.278</u>	<u>.410</u>	<u>.750</u>	<u>657</u>

EVALUATION PROTOCOLS

The appropriate evaluation protocol for this measure is desk audit verification that the pre and post blower door tests were performed in accordance with industry standards. Verification through desk audits requirerequires confirmation of the proper application of the TRM protocol using default unit energy and demand savings values in coordination with blower door test results. Field verification of each test or re-test is not required.

SOURCES

- 1) GDS Associates, Inc. (2007). Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures. Table 1 – Residential Measures. Weblink
- 2) Lawrence Berkley National Laboratory (1999). Residential Heating and Cooling Loads Component Analysis. Weblink
- 3) Estimate by Statewide Evaluator informed by the following construction standards:
 - a. 3 ACH50 maximum. International Code Council. (2017). 2018 International Energy Conservation Code. Weblink
 - b. 0.93 ACH50 maximum. Passive House Institute US. (2003). Phius 2021: Passive Building Standard Certification Guidebook. Retrieved January 3, 2024 from Weblink
 - c. 3.6 ACH50 maximum. ASHRAE (2023). Standards Actions (Vol. 13, Issue 17). Retrieved January 5, 2024 from Weblink
- 1)4)NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 2018 Residential Baseline, http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3_Res_Baseline_Study_Rpt021219.pdf. Study. Weblink
- 2)5) Equipment efficiencies were chosen based on weighted single-family detached results from the 20172023 Pennsylvania Residential Baseline, standardized equipment library entries (ASHP), and expertise (GSHP).
- 3)6)Based on modelling using BEopt v2.8.0 performed by NMR Group, Inc. Unit energy savings were calculated by modeling a prototypical Pennsylvania single family detached house with statewide-average characteristics determined through the Pennsylvania Act 129 20182023 Residential Baseline. Simulations for each equipment-climate region combination were performed at multiple levels of air leakage (1, 2, 3, 4, 5, 6, 7, 8, 10, 15, 20, and 25 ACH50).

VOLUME	2:	ENERGY	STARResidential
Measures			

Building Shell

Formatted:Formatted:Formatted:Font color:AutoFormatted:Font color:AutoFormatted:Font color:AutoFormatted:Font color:AutoFormatted:Font color:AutoFormatted:Font color:AutoFormatted:Font color:Formatted:Font color:AutoFormatted:Font color:<	
Formatted:Fort color: AutoFormatted:Font color: AutoFormatted:<	Formatted: Font color: Auto
Formatted: Font color: AutoFormatted: Font color: AutoForma	Formatted: Font color: Auto
Formatted: Font color: AutoFormatted: Font color: AutoForma	Formatted: Font color: Auto
Formatted: Font color: AutoFormatted: Font color: AutoForma	Formatted: Font color: Auto
Formatted: Font color: AutoFormatted: Font color: AutoForma	Formatted: Font color: Auto
Formatted: Font color: AutoFormatted: Font color: AutoForma	Formatted: Font color: Auto
Formatted: Font color: AutoFormatted: Font color: AutoForma	Formatted: Font color: Auto
Formatted: Font color: AutoFormatted: Font color: AutoForma	Formatted: Font color: Auto
Formatted: Font color: AutoFormatted: Font color: AutoForma	Formatted: Font color: Auto
Formatted: Font color: AutoFormatted: Font color: AutoForma	Formatted: Font color: Auto
Formatted: Font color: AutoFormatted: Font color: AutoForma	Formatted: Font color: Auto
Formatted: Font color: AutoFormatted: Font color: AutoForma	Formatted: Font color: Auto
Formatted: Font color: AutoFormatted: Font color: AutoForma	Formatted: Font color: Auto
Formatted: Font color: AutoFormatted: Font color: AutoForma	Formatted: Font color: Auto
Formatted: Font color: AutoFormatted: Font color: AutoForma	Formatted: Font color: Auto
Formatted: Font color: AutoFormatted: Font color: AutoForma	Formatted: Font color: Auto
Formatted: Font color: AutoFormatted: Font color: AutoForma	Formatted: Font color: Auto
Formatted: Font color: AutoFormatted: Font color: Auto	Formatted: Font color: Auto
Formatted: Font color: AutoFormatted: Font color: Auto	Formatted: Font color: Auto
Formatted: Font color: AutoFormatted: Font color: Auto	Formatted: Font color: Auto
Formatted: Font color: AutoFormatted: Font color: Auto	Formatted: Font color: Auto
Formatted: Font color: AutoFormatted: Font color: Auto	Formatted: Font color: Auto
Formatted: Font color: AutoFormatted: Font color: Auto	Formatted: Font color: Auto
Formatted: Font color: Auto Formatted: Font color: Auto	Formatted: Font color: Auto
Formatted: Font color: Auto	
Formatted: Font color: Auto	
Formatted: Font color: Auto Formatted: Font color: Auto	Formatted: Font color: Auto
Formatted: Font color: Auto Formatted: Font color: Auto	
Formatted: Font color: Auto Formatted: Font color: Auto	<u>}</u>
Formatted: Font color: Auto Formatted: Font color: Auto	Formatted: Font color: Auto
Formatted: Font color: Auto Formatted: Font color: Auto	Formatted: Font color: Auto
Formatted: Font color: Auto Formatted: Font color: Auto	Formatted: Font color: Auto
Formatted: Font color: Auto Formatted: Font color: Auto	Formatted: Font color: Auto
Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto	
Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto	
Formatted: Font color: Auto Formatted: Font color: Auto Formatted: Font color: Auto	
Formatted: Font color: Auto Formatted: Font color: Auto	
Formatted: Font color: Auto	
	<u>}</u>
Formatted: Normal, Border: Bottom: (No border)	
	Formatted: Normal, Border: Bottom: (No border)

State of Pennsylvania	_	Technical Reference Manual,	Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
May 2024					

The heating or cooling loads for each system combination were then fitted with separate quadratic regressions, the coefficients of which are the UES values. Supporting files can be found at http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3_Res_Baseline_Study_Rpt021219.pdf. used to calculate energy savings.

- 7) Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service. Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service, https://www.ecobee.com/donateyourdata/Weblink-
- 5) Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures, GDS Associates, 2007

Formatted: Normal, Space After: 0 pt, No bullets or numbering, Tab stops: Not at 0.38"

6) "Residential Heating and Cooling Loads Component Analysis", Lawrence Berkley National Laboratory Building Technologies Department, 1999, https://simulationresearch.lbl.gov/dirpubs/44636.pdf

VOLUME Measures

4)

ENERGY STARResidential

Building Shell

2:

2.6.2 WEATHER STRIPPING, CAULKING, AND OUTLET GASKETS

Target Sector	Residential Establishments			
Target Sector	Residential			
Measure Unit	Per Project			
Measure Life	15 years			
Measure Life	15 years ^{Source 1}			
Vintage	Retrofit			

Residential structures can lose significant amounts of heat through the infiltration of unconditioned outside air into the conditioned space. Infiltration enters conditioned spaces in a variety of ways: building joints, gaps in door and window frames, basement and attic penetrations (electrical and plumbing) and recessed light fixtures. Air sealing measures like adding weather stripping, caulking and installing outlet gaskets can reduce the amount of infiltration and the related heating and cooling for a building.

ELIGIBILITY

To be eligible:

- Weather stripping must be installed on doors, windows, or attic hatches/doors.
- Caulking and/or spray foam sealant must be applied to window frames, door frames or plumbing/electrical penetrations.
- Gaskets must be installed on electrical outlets.

In addition, **this measure is limited to projects with less than 400 kWh of savings**. Projects with 400 kWh or more of savings should follow the Residential Air SealingResidential Air Sealing section.

ALGORITHMS

There are two approaches that can be utilized to estimate savings due to air sealing, one using algorithms requiring EDC data gathering, and a default savings method when data are unavailable. The annual energy and peak demand savings are obtained through the following formulas:

Dk₩ ∆kWh _{cool}	$= \frac{\frac{1.08 \times DCFM_{su} \times CDD \times 24 \frac{hr}{day} \times ISR}{N \times SEER \times 1,000 \frac{W}{kW}}}{\frac{1.08 \times \Delta CFM_{50} \times CDD \times 24 \times ISR}{N \times SEER2 \times 1,000} \times LM \times DUA \times F_{RAC} \times \%_{elec}}$ Formatted Table	
Dk₩ ∆kW h _{heat}	$= \frac{1.08 \times DCFM_{50} \times HDD \times 24 \frac{hr}{day} \times ISR}{N \times HSPF \times 1,000 \frac{W}{kW}}$ $= \frac{1.08 \times \Delta CFM_{50} \times HDD \times 24 \times ISR}{N \times HSPF2 \times 1,000} \times \%_{elec}$	
DkWh ∆kWh	$= \frac{(DkWh_{cool} + DkWh_{heat})(\Delta kWh_{cool} + \Delta kWh_{heat}) < 400 kWh}{400 kWh use Sec. 2.6.1}$	
<u>AkW_{peak}</u> ∆kW _{summer} peak	$= DkW = \Delta kWh_{cool} \times PCFETDF_{summer}$	
∆kW _{winter peak}	$= \Delta kWh_{heat} \times ETDF_{winter}$	
VOLUME 2: ENERG Measures	GY STARResidential	
Building Shell	Page 252	

Ground Source Heat Pumps (GSHP)

GSHP efficiencies are typically calculated differently than air-source units Ground Source Heat Pumps (GSHP)

<u>GSHP efficiencies are typically calculated differently than air-source units</u>, baseline and qualifying unit efficiencies should be converted as follows-should be converted as follows:

SEER= $EER_g \times GSHPDF \times GSER$ HSPF= $COP_g \times GSHPDF \times 3.412 \frac{BTU}{Wh}$

VOLUME Measures ENERGY STARResidential

Building Shell

2:

tate of Pennsylvania – Technical Reference Ma lay 2024	nual, Vol. 2: Resi	dential Measures – Rev E	ate: Feb. 2021		
PTAC and PTHP EER			-	(Formatted: Tab stops: 1.5", Left
EFINITION OF TERMS			•	(Formatted: Keep with next
$\frac{1}{1} = COP_g \times GSHPDF \times 3.412^{BTU}$				_	Formatted: Font: Not Bold
*****			•	(Formatted: Normal, Tab stops: Not at 1.5"
PTAC and PTHP EER				_	Formatted: Not Superscript/ Subscript
			4		Formatted: Font: Cambria Math, Italic, Subscript
EFINITION OF TERMS			•		Formatted: Tab stops: 1", Left
able 2-134: Terms, Values, and References for We	ather Stripping				Formatted: Don't keep with next
Term	Unit	Values	Source		
∆kWh _{cool} , Annual cooling energy savings	<u>kWh/year</u>	Calculated	=		
⊿kWh _{heat} , Annual heating energy savings	<u>kWh/year</u>	Calculated	=		
1.08, Conversion factor that converts CFM air (at 70°F) to BTU/hr-°F	$\frac{BTU \times min}{hr \times {}^\circ F \times ft^3}$	1.08	-	(Formatted Table
$\frac{DCF\Delta CFM_{50}}{DCF}$, Reduction in air leakage at a test pressure of 50 Pascals	CFM	See Table 2-137	1, 4<u>2, 3</u>		
CDD, Cooling degree-days	°F-day/year	See CDD values in Vol. 1, App. A	<u> 104</u>		
HDD, Heating degree-days	°F-day/year	See HDD values in Vol. 1, App. A	<u> 104</u>		
ISR, In-service rate	None	Kit delivery: EDC Data Gathering <u>Default:</u> Direct install = 1 <u>Kit delivery = 0.16</u>	EDC Data Gathering5		Formatted: Font: Italic Formatted: Font: 10 pt
<i>LM</i> , Latent multiplier to convert the calculated sensible load to the total (sensible and latent) load	None	See Table 2-136	5 <u>6</u>	(Formatted: Font: Italic
DUA, Discretionary use adjustment to account for uncertainty in predicting cooling system usage patterns of occupants	None	0.75	3 <u>7</u>	(Formatted: Font: Italic
F_{RAC} , Adjustment factor to relate sealed area to area served by room air conditioners	<u>None</u>	<u>If Room AC = 0.24</u> If non-Room AC = 1.0	<u>8</u>		
% _{cool} , <u>percent of homes with comfort</u> <u>cooling</u> .	<u>None</u>	<u>EDC Data Gathering</u> <u>Default = 67%</u>	<u>9</u>		
N, Correlation factor. This factor accounts for four environmental characteristics that may influence infiltration, which include climate,	None	See Table 2-135 Default = 16.7	2 10	(Formatted Table Formatted: Font: Italic

ENERGY STARResidential

VOLUME2:MeasuresBuilding Shell

building height, wind shielding and building				
building height, wind shielding and building leakiness				
<i>SEER, —<mark>SEER2,</mark> Cooling system seasonal efficiency</i>	$\frac{Btu}{W \cdot h}$	EDC Data Gathering Default: GatheringDefault:13.9, or See Early Replacement values in Table 2-10 inof Sec. 2.2.12.2.1	7 <u>11, 15</u>	Formatted: Keep with next
% _{elec} , <u>percent of homes with electric primary</u> heating fuel	<u>None</u>	<u>EDC Data Gathering</u> <u>Default = 36%</u>	<u>9</u>	
<i>HSPF,<mark>HSPF2,</mark> Heating system seasonal efficiency</i>	Btu W · h	EDC Data Gathering Default: 7.75, or See Early Replacement values in Table 2-10 in Sec. 2.2.12.2.1	7 <u>11, 15</u>	Formatted Table
ETDF _{summer} . Summer energy to demand factor	<u>kW/kWh</u>	<u>0.0005272</u>	<u>12</u>	
ETDF _{winter} . Winter energy to demand factor	<u>kW/kWh</u>	<u>0.0003398</u>	<u>12</u>	
EER <u>EER</u> , Energy Efficiency Ratio of a GSHP, this is measured differently than EER of an air source heat pump and must be converted	$\frac{BTU}{W \cdot h}$	EDC Data Gathering Default = 17.1	- <u>13</u>	Formatted Table
<i>COPCOP</i> _s , Coefficient of Performance. This is a measure of the efficiency of a <u>ground source</u> heat pump	None	EDC Data Gathering <u>Default = 3.6</u>	- <u>13</u>	
GSER , Factor used to determine the SEER of a GSHP based on its EERg	BTU ₩ • h	1.02	8	
<i>GSPK</i> , Factor to convert <i>EERg</i> to the equivalent EER of an air conditioner to enable comparisons to the baseline unit	Proportion	0.8416	8	
<i>GSHPDF</i> , Ground Source Heat Pump De-rate Factor	Proportion	0.885	<u>914</u>	Formatted Table
PCF, Peak demand savings conversion factor	kW/kWh	0.000017 (1.7 × 10⁻⁵)	6	

Table 2-135: Correlation Factor Source 210

Shielding/Stories	1	1.5	2	3
Well-shielded	22.2	20.0	17.8	15.5
Normal	18.5	16.7	14.8	13.0
Exposed	16.7	15.0	13.3	11.7

VOLUME 2: Measures ENERGY STARResidential

Building Shell

Table 2-136: Latent Multiplier Values by Climate Reference City Source 6

Climate Region	Reference City	LM
С	Allentown	9.0
Α	Binghamton, NY	6.75
G	Bradford	16.0
I	Erie	13.0
Е	Harrisburg	5.6
D	Philadelphia	7.8
н	Pittsburgh	7.3
В	Scranton	9.3
F	Williamsport	9.5

Table 2-137: Typical Reductions in Leakage Source-1Sources 2,3

Technology	Application	ΔCFM50 Source 45
	Single Door	25.5 CFM/door
	Double Door	0.73 CFM/ft ²
	Casement Window	0.036 CFM/If of crack
Weather Stripping	Double Horizontal Slider, Wood	0.473 CFM/lf of crack
Calpping	Double-Hung	1.618 CFM/If of crack
	Double-Hung, with Storm Window	0.164 CFM/If of crack
	Average Weatherstripping	0.639 CFM/If of crack
	Piping/Plumbing/Wiring Penetrations	10.9 CFM each
	Window Framing, Masonry	1.364 CFM/ft ²
Coulking	Window Framing, Wood	0.382 CFM/ft ²
Caulking	Door Frame, Masonry	1.018 CFM/ft ²
	Door Frame, Wood	0.364 CFM/ft ²
	Average Window/Door Caulking	0.689 CFM/If of crack
Average Wind	ow/Door Caulking and Weather Stripping	0.664 CFM/If of crack
Gasket	Electrical Outlets	6.491 CFM each

DEFAULT SAVINGS

2:

If the information needed to utilize the algorithms is unavailable, the default savings listed below may be used. The default savings are based on a home with a <u>12.113.9</u> SEER CAC and electric resistance heat (COP=1). The default savings assume direct install heating HSPF of measures. To

VOLUME Measures ENERGY STARResidential

Building Shell

use default savings for kit delivery measures, EDCs must determine an ISR multiplier through independent research.7.75. Source 15

Table 2-138, Table 2-139, Table 2-140 present default savings for direct install measures. These savings assume an ISR of 1.0. Cooling savings assume the home has comfort cooling and heating savings assume the home has electric heating.

Table 2-141, Table 2-142, and Table 2-143 present default savings for measures delivered via kit. These savings assume an ISR of 0.16, %ccol of 0.67 and %elec of 0.36. Source 5, Source 9 Table 2-138: Default Annual Energy Savings – Direct Installation

		Cooling Savings (kWh)			Heating Savings (kWh)			
<u>Climate</u> <u>Region</u>	Reference City	<u>Caulked</u> <u>Penetrations</u> <u>(per pen.)</u>	<u>Weather</u> <u>Stripping,</u> <u>Caulking</u> <u>and Sealing</u> (per 10 lf)	<u>Outlet</u> <u>Gaskets</u> (per gasket)	<u>Caulked</u> Penetrations (per pen.)	<u>Weather</u> <u>Stripping,</u> <u>Caulking</u> <u>and Sealing</u> (per 10 lf)	<u>Outlet</u> <u>Gaskets</u> (per outlet)	
<u>C</u>	<u>Allentown</u>	<u>8.618</u>	<u>5.250</u>	<u>5.132</u>	<u>11.199</u>	<u>6.822</u>	<u>6.669</u>	
A	Binghamton, NY	<u>2.471</u>	<u>1.505</u>	<u>1.471</u>	<u>15.300</u>	<u>9.321</u>	<u>9.111</u>	
G	Bradford	<u>4.148</u>	<u>2.527</u>	<u>2.470</u>	<u>15.667</u>	<u>9.544</u>	<u>9.330</u>	
1	<u>Erie</u>	<u>9.529</u>	<u>5.805</u>	<u>5.675</u>	<u>12.596</u>	<u>7.673</u>	<u>7.501</u>	
E	<u>Harrisburg</u>	<u>6.349</u>	<u>3.868</u>	<u>3.781</u>	<u>10.666</u>	<u>6.497</u>	<u>6.352</u>	
D	Philadelphia	<u>10.324</u>	<u>6.289</u>	<u>6.148</u>	<u>9.489</u>	<u>5.781</u>	<u>5.651</u>	
H	Pittsburgh	<u>5.731</u>	<u>3.491</u>	<u>3.413</u>	<u>11.869</u>	<u>7.230</u>	7.068	
B	<u>Scranton</u>	<u>7.190</u>	<u>4.380</u>	<u>4.282</u>	<u>12.166</u>	<u>7.411</u>	<u>7.245</u>	
<u> </u>	<u>Williamsport</u>	<u>7.519</u>	<u>4.580</u>	<u>4.477</u>	<u>12.176</u>	<u>7.418</u>	<u>7.251</u>	

Table 2-139: Default Summer Peak Demand Savings – Direct Installation

<u>Climate</u> <u>Region</u>	<u>Reference</u> <u>City</u>	<u>Caulked</u> Penetrations (ΔkW/ <u>pen.)</u>	<u>Weather Stripping,</u> <u>Caulking and</u> <u>Sealing (ΔkW/10 If)</u>	<u>Outlet Gaskets</u> (ΔkW/gasket)
<u>C</u>	<u>Allentown</u>	<u>0.0045676</u>	<u>0.0027824</u>	<u>0.0027200</u>
A	<u>Binghamton,</u> <u>NY</u>	<u>0.0013095</u>	<u>0.0007977</u>	<u>0.0007798</u>
G	Bradford	<u>0.0021984</u>	<u>0.0013392</u>	0.0013092
1	<u>Erie</u>	<u>0.0050504</u>	<u>0.0030766</u>	0.0030075
E	<u>Harrisburg</u>	<u>0.0033649</u>	<u>0.0020498</u>	<u>0.0020038</u>
D	Philadelphia	<u>0.0054718</u>	<u>0.0033333</u>	0.0032585
H	Pittsburgh	<u>0.0030373</u>	<u>0.0018502</u>	0.0018087
B	Scranton	<u>0.0038110</u>	<u>0.0023215</u>	0.0022694
E	Williamsport	0.0039848	0.0024275	0.0023730

VOLUME 2: Measures ENERGY STARResidential

Building Shell

Page 257

Formatted: Keep with next

Table 2-140: Default Winter Peak Demand Savings – Direct Installation

<u>Climate</u> <u>Region</u>	Reference City	<u>Caulked</u> <u>Penetrations</u> (ΔkW/ pen.)	<u>Weather Stripping,</u> <u>Caulking and</u> Sealing (ΔkW/10 If)	<u>Outlet Gaskets</u> (ΔkW/gasket)
<u>c</u>	<u>Allentown</u>	0.0038075	<u>0.0023194</u>	<u>0.0022674</u>
A	Binghamton, NY	<u>0.0052021</u>	<u>0.0031690</u>	<u>0.0030979</u>
<u>G</u>	Bradford	0.0053268	<u>0.0032449</u>	<u>0.0031721</u>
<u>1</u>	<u>Erie</u>	0.0042825	<u>0.0026088</u>	<u>0.0025503</u>
E	<u>Harrisburg</u>	<u>0.0036264</u>	<u>0.0022091</u>	<u>0.0021595</u>
D	Philadelphia	0.0032264	<u>0.0019654</u>	<u>0.0019213</u>
<u>H</u>	Pittsburgh	0.0040354	<u>0.0024582</u>	<u>0.0024031</u>
<u>B</u>	<u>Scranton</u>	0.0041363	<u>0.0025197</u>	<u>0.0024632</u>
E	<u>Williamsport</u>	0.0041400	0.0025220	<u>0.0024654</u>

Table 2-141: Default Annual Energy Savings – Kit Delivery

		Cooling Savings (kWh)			Heating Savings (kWh)		
Climate Region	Reference City	Caulked Penetrations (per pen.)	Weather Stripping, Caulking and Sealing (per 10 lf)	Outlet Gaskets (per gasket)	Caulked Penetrations (per pen.)	Weather Stripping, Caulking and Sealing (per 10 lf)	Outlet Gaskets (per outlet)
С	Allentown	7.317<u>0.924</u>	4.4 5 7 <u>0.563</u>	4 <u>.3570.550</u>	<u>28.1780.64</u> <u>5</u>	17.165<u>0.39</u> <u>3</u>	16.780 <u>0.3</u> <u>84</u>
Α	Binghamton, NY	2.875 0.265	1.752<u>0.161</u>	1.712<u>0.158</u>	34.997 <u>0.88</u> <u>1</u>	2 <u>1.3190.53</u> <u>7</u>	20.841 <u>0.5</u> 25
G	Bradford	3.433<u>0.445</u>	2.091<u>0.271</u>	2.0 44 <u>0.265</u>	4 <u>0.9300.90</u> <u>2</u>	24.933 <u>0.55</u> <u>0</u>	24.374 <u>0.5</u> <u>37</u>
I	Erie	7.917<u>1.022</u>	4 <u>.8230.622</u>	4.714 <u>0.608</u>	32.207<u>0.72</u> <u>6</u>	19.619 <u>0.44</u> <u>2</u>	19.179<u>0.4</u> <u>32</u>
E	Harrisburg	6.603 0.681	4 <u>.022</u> 0.415	3.932<u>0.405</u>	30.466<u>0.61</u> <u>4</u>	1 <u>8.5590.37</u> <u>4</u>	18.143<u>0.3</u> <u>66</u>
D	Philadelphia	9.426<u>1.107</u>	<u>5.7420.674</u>	<u>5.6130.659</u>	2 <u>3.9710.54</u> <u>7</u>	14.602 <u>0.33</u> <u>3</u>	14.275 <u>0.3</u> 25
н	Pittsburgh	5.666 0.614	<u>3.4520.374</u>	3.374<u>0.366</u>	29.014<u>0.68</u> <u>4</u>	17.674<u>0.41</u> <u>6</u>	17.278<u>0.4</u> <u>07</u>
В	Scranton	<u>5.9280.771</u>	<u>3.6110.470</u>	<u>3.5300.459</u>	30.556 <u>0.70</u> <u>1</u>	18.614 <u>0.42</u> <u>7</u>	18.196 <u>0.4</u> <u>17</u>
F	Williamsport	7.284<u>0.806</u>	4 <u>.4370.491</u>	4 <u>.3380.480</u>	<u>28.5810.70</u> <u>1</u>	17.411 <u>0.42</u> <u>7</u>	<u>17.0200.4</u> <u>18</u>

```
Formatted Table
```

VOLUME 2: Measures ENERGY STARResidential

Building Shell

Table 2-142: Default Summer Peak Demand Savings - Kit Delivery

<u>Climate</u> <u>Region</u>	Reference City	<u>Caulked</u> <u>Penetrations</u> (ΔkW/ pen.)	<u>Weather Stripping,</u> <u>Caulking and</u> Sealing (ΔkW/10 lf)	<u>Outlet Gaskets</u> (ΔkW/gasket)
<u>C</u>	<u>Allentown</u>	<u>0.0004896</u>	<u>0.0002983</u>	<u>0.0002916</u>
A	Binghamton, NY	<u>0.0001404</u>	<u>0.0000855</u>	<u>0.0000836</u>
G	Bradford	0.0002357	<u>0.0001436</u>	<u>0.0001403</u>
1	<u>Erie</u>	<u>0.0005414</u>	<u>0.0003298</u>	<u>0.0003224</u>
E	<u>Harrisburg</u>	<u>0.0003607</u>	<u>0.0002197</u>	<u>0.0002148</u>
D	Philadelphia	0.0005866	<u>0.0003573</u>	<u>0.0003493</u>
H	Pittsburgh	<u>0.0003256</u>	<u>0.0001983</u>	<u>0.0001939</u>
B	<u>Scranton</u>	0.0004085	<u>0.0002489</u>	<u>0.0002433</u>
E	<u>Williamsport</u>	0.0004272	0.0002602	0.0002544

Table 2-143: Default Winter Peak Demand Savings – Kit Delivery

Climate Region	Reference City	Caulked Penetrations (ΔkW/ pen.)	Weather Stripping, Caulking and Sealing (ΔkW/10 lf)	Outlet Gaskets (ΔkW/gasket)
С	Allentown	0.00012440002193	0.0000758 <u>0001336</u>	0.00007410001306
A	Binghamton, NY	0. 0000489<u>0002996</u>	0. 0000298 <u>0001825</u>	0. 0000291<u>0001784</u>
G	Bradford	0.00005840003068	0. 0000356 0001869	0. 0000348<u>0001827</u>
I	Erie	0.0001346 <u>0002467</u>	0. 0000820<u>0001503</u>	0.00008010001469
E	Harrisburg	0.00011220002089	0. 0000684 <u>0001272</u>	0.00006680001244
D	Philadelphia	0.00016020001858	0. 0000976<u>0001132</u>	0.00009540001107
н	Pittsburgh	0.00009630002324	0. 0000587<u>0001416</u>	0.0000574 <u>0001384</u>
В	Scranton	0.00010080002383	0. 0000614<u>0001451</u>	0. 0000600<u>0</u>001419
F	Williamsport	0.00012380002385	0.00007540001453	0. 0000737<u>0</u>001420

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures. For kit delivery, EDCs should estimate in-service rate through customer surveys.

SOURCES

1) GDS Associates, Inc. (2007). Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures. Table 1 – Residential Measures. Weblink

1)—ASHRAE, (2001) AHSRAE Handbook – Fundamentals, Table 1.

State of Pennsylvania – Technical Reference Manual, Vol. 2: Residential Measures – Rev Date: Feb. 2021	
/lay 2024	
2) ENERGY STAR Home Sealing Specification, VersionChapter 26: Ventilation and Infiltration, Table 1.0. October 2001. https://www.energystar.gov/ia/home_improvement/home_sealing/ES_HS_Spec_v1_0b.pdf	Formatted: Hyperlink, Font color: Text 1
 Energy Center of Wisconsin, "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research," May 2008. https://focusonenergy.com/sites/default/files/centralairconditioning_report.pdf 	
<u>3)</u> ΔCFM50 is estimated by dividing the ELA by 0.055. See p. 83, The Energy Conservatory, (2012, August). Minneapolis Blower Door Operation Manual, Pg 83,	Formatted: French (France)
http://energyconservatory.com/wp-content/uploads/2014/07/Blower-Door-model-3-and- 4.pdfWeblink	Formatted: French (France)
Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service (Weblink) and updated based on the latest CDD and HDD values from NOAA's 15-year annual climate Normals (2006–2020) (Weblink)	
 Weighted average of ISRs from surveys of FirstEnergy customers that received outlet gaskets in kits in PY13 and PY14. 	
b) LM values calculated as total load (sensible + latent) divided by sensible load, from sensible and latent values in Harriman et al. (<u>1997, November</u>). <u>ASHRAE Journal</u> "Dehumidification and Cooling Loads from Ventilation Air." <u>ASHRAE Journal</u> . <u>November 1997</u> . <u>https://energy.mo.gov/sites/energy/files/harriman-dehumidification-and-cooling-loads-from- ventilation-air.pdfWeblink</u>	
 KEMA, Evaluation of the Weatherization Residential Assistance Partnership (WRAP) and Helps Programs, September 2010. http://www.energizect.com/sites/default/files/Final%20WRAP%20%20Helps%20Report.pdf 	
<u>For all systems excluding ground source heat pumps: Energy Center of Wisconsin. (2008, May). Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research.</u> <u>Weblink</u>	
NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 2018Residential Baseline Study. Weblink. Average home conditioned floor area = 2,019 ft ² ; average number of room AC units per home = 1.74; average Room AC capacity = 7,161 BTU/hr. Per ENERGY STAR Room AC sizing chart (Weblink). 7,161 BTU/hr of cooling serves approximately 283 ft ² . <i>F_{RAC}</i> = (283 ft ² × 1.74)/(2,019 ft ²) = 0.24.	
NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 Residential Baseline Study ₇ http://www.puc.state.pa.us/Electric/pdf/Act129/SWE_ Phase3 Res Baseline Study ₇	
0) The N factor methodology was developed by Lawrence Berkeley Lab to convert air flow measurements taken at 50 pascal pressure (from blower door tests) to natural air changes. The N factors presented here are taken from Krigger, J. and Dorsi, C. (2004), "Residential Energy: Cost Savings and Comfort for Existing Buildings", pg 284.	
 <u>NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023</u> <u>Pennsylvania Statewide Act 129 Residential Baseline Study. Pg 115, table 97, pg, 120, table</u> 103. Weblink. Air source heat pump efficiencies calculated using 2023 Pennsylvania 	
Residential Baseline Study data. Federal minimum efficiencies for GSHP due to small sample	Formatted: Font color: Text 1
size <u>for GSHP in residential joaseline, study.</u>	Formatted: Font color: Text 1
	Formatted: Font color: Text 1
VOLUME 2: ENERGY STARResidential	
Measures Building Shell Page 260	
Page 200	

- 12) Wilson et al. 2021. End-Use Load Profiles for the lowestU.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink
- 13) Federal minimum efficiency options available in BEopt were chosen as defaults for ground sourcestandards, based on ASHRAE 90.1-2019. Weblink
- 14) McQuay. (2002). Application Guide 31-008, Geothermal Heat Pump Design Manual. Engineering Estimate - See System Performance of Ground Source Heat Pumps
- 7)15) NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 Residential Baseline Study. Weblink. 7.75 HSPF value is an average performance efficiency of all electric heating systems, including both resistance and heat pumpspump technologies.

8) VEIC estimate. Extrapolation of manufacturer data.

- 9)1)McQuay Application Guide 31-008, Geothermal Heat Pump Design Manual, 2002. Engineering Estimate - See System Performance of Ground Source Heat Pumps
- 10) PA SWE Team Calculations with data from the National Solar Radiation Database. 1991–2005 Update: Typical Meteorological Year 3. NREL. <u>http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/by_state_and_city.html</u>

Formatted: List Paragraph,TT - Numbered List Paragraph,Bullet Styles para,TOC etc.,Bulleted List Paragraph, Line spacing: single

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Indent: Left: 0", Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 1.31" + Indent at: 1.56"

Formatted: Font: ArialMT, Font color: Black

VOLUME Measures ENERGY STARResidential

Building Shell

2:

2.6.3 CEILING/ATTIC, WALL, FLOOR AND RIM JOIST INSULATION

Target Sector	Residential Establishments	
Target Sector	Residential	
Measure Unit	Per Project	
Measure Life	-15 years-Sources 1, 2	
Vintage	Retrofit	
Measure Life	15 years Source 1	
Vintage	Retrofit, New Construction	

This protocol covers the calculation of energy and demand savings associated with insulating ceilings/attics, walls, floors above vented crawlspaces, and rim joists in residential buildings with a primary electric heating and/or cooling source.

ELIGIBILITY

Ceiling/Attic or Wall Insulation

This measure applies to installation/retrofit of new or additional insulation in a ceiling/attic, or walls of existing residential homes or apartment units in multifamily complexes with a primary electric heating and/or cooling source. The installation must achieve a finished ceiling/attic insulation rating of R-49 or higher, and/or must add wall insulation of at least an R-6 or greater rating.

Floor Insulation

This measure requires<u>applies to</u> the installation of new insulation to the floors of existing residential buildings with vented (unconditioned) crawlspaces and a primary electric heating and/or cooling source. The installation must achieve a finished floor insulation R-value of R-30 or higher, except for homes in IECC Climate Zone 4, where R-19 is permissible.^{Source 12}.

Rim Joist Insulation

This measure protocol applies to the installation of <u>new</u> insulation in the rim joists of residential homes. This includes the rim joists of unvented crawlspaces and the rim joists between the first and second floor of a residence. The insulation should have either a minimum R-10 continuous insulated sheathing on the interior or exterior of the home, or R-13 cavity insulation at the interior of the rim joist. Because of the difficulty of a proper air-sealed installation, using fiberglass batts between the joists is not usually recommended. The insulation should be sprayed foam or rigid foam.^{Source-3}

Required R-values

For retrofit applications, the new insulation must achieve R-values that meet or exceed ENERGY STAR recommendations. Source 2 ENERGY STAR guidance is based on the 2021 IECC. Source 3

For new construction applications, the insulation must achieve R-values exceeding the 2021 IECC.

ALGORITHMS

The annual energy and peak demand savings are obtained through the following formulas. Note that these equations are applied separately for each ceiling / attic, wall, floor, and rim joist component upgraded.

$$\frac{DkWh_{cool,component}}{DkWh_{cool}} = \left(\frac{1}{R_{base}} - \frac{1}{R_{ee}}\right) \times A_{component} \times (1 - FF) \times (1 - FF) \times \frac{24 \frac{hr}{day} \times CDD \times DUA}{SEER \times 1,000 \frac{W}{kW}} \times \frac{24 \times CDD \times DUA}{SEER \times 1,000 \frac{W}{kW}} \times F_{RAC}$$
VOLUME 2: ENERGY STARResidential

Measures

Building Shell

Page 262

Formatted: Not Superscript/ Subscript

	$\times F_{RAC} \times AHF$	Formatted: Indent: Left: 0.98"
DkWh _{heat,component} ∆kWh _{heat}	$= \left(\frac{1}{R_{base}} - \frac{1}{R_{ee}}\right) \times \frac{A_{eomponent} \times (1 - FF)}{4 \times (1 - FF)} \times (1 - FF) \times \frac{24 \frac{hr}{day} \times HDD}{HSPF \times 1,000 \frac{W}{kW}} \frac{24 \times HDD}{HSPF \times 1,000}$	
\kWh	$= \Delta kW h_{cool} + \Delta kW h_{heat}$	Formatted: Font: Not Italic
DLWL ALW		Formatted: Equation
₩₩₩₩Summer peak	$= \sum_{\substack{box b cool}{components}} \frac{DkWh_{cool} + DkWh_{hoat}}{\Delta kWh_{cool} \times ETDF_{summer}}$	Formatted: Font: Italic
<u>акW_{peak}</u> ДkW _{winter peak}	$= \frac{AkWh_{eool}}{EFLH_{eoot}} \times CF = \Delta kWh_{heat} \times ETDF_{winter}$	Formatted: Font: Not Italic
	EFLH _{coot} - <i>DKW I</i> heat × <i>E I DF</i> winter	Formatted: Line spacing: single
		Formatted Table

ENERGY STARResidential

VOLUME2:MeasuresBuilding Shell

State of Pennsylvania – <u>May 2024</u>	Technical Reference Manual, Vol. 2: Residential Measures – Rev Date: Feb. 2(121	
	umps (GSHP) typically calculated differently than air-source units, baseline and qualifyi be converted as follows should be converted as follows:	ng	Formatted: Normal
SEER	$= EER_g \times GSHPDF \times GSER$		
HSPF	$=COP_g \times GSHPDF \times 3.412 \frac{BTU}{Wh}$		
PTAC and PTHP		4	Formatted: Tab stops: Not at 1"
PTAC and PTHP			
SEER	= EER		
DEFINITION OF	Terms	4	Formatted: Don't keep with next, Don't keep lines together
		_	
DEFINITION OF	TERMS	4	Formatted: Keep with next

Table 2-144: Terms, Values, and References for Basement Wall Insulation

Term		Unit		Values		Source
⊿kWh _{cool} , Annual cooling energy savings	kWh/ye			Calculated		
ΔkWh_{heat} , Annual heating energy savings		kWh/year	-	Calculated		-
R _{base} , R-value of existing insulation	₽	.ft².hr/BTU		EDC Data Gathering Default: Table 2-120	ļ	9, 10
R _{ee} , R-value of insulation added	₽₽	.ft².hr/BTU		EDC Data Gathering Default: Table 2-120	:	9, 10
A, Area of component being insulated		Ft ²		EDC Data Gathering		-
<i>FF</i> , Framing factor, designed to account for space that is occupied by framing	None			If externally applied or on-floor component = 0%		4
<i>CDD</i> , Annual cooling degree-days, base 65°F	≗ F-day/year			ee CDD in Vol 1., App. A		15
HDD , Annual heating degree-days, base 65°F	4	-day/year	Ş	ee HDD in Vol 1., App. A		15
EFLH _{cool} , Equivalent full load cooling hours	ħ	lours/year		See EFLH _{cool} -in Vol 1., App. A		44
DUA, Discretionary use adjustment to account for uncertainty in predicting cooling system usage patterns of occupants		None		0.75		5
SEER, Cooling system seasonal efficiency		Btu ₩•h		EDC Data Gathering Default: See Early Replacement values in Table 2-8 in Sec. 2.2.1		6

Formatted: Centered

ENERGY STARResidential

VOLUME 2: Measures Building Shell

Term	Unit	Values	Source
HSPF, Heating system seasonal efficiency	BTU W•h	EDC Data Gathering Default: See Early Replacement values in Table 2-8 in Sec. 2.2.1	6
F _{RAC} , Adjustment factor to relate insulated area to area served by room air conditioners	None	I f Room AC = 0.38 I f non-Room AC = 1.0	7
$COP_{\mathcal{S}_{\mathcal{T}}}$. Coefficient of Performance. This is a measure of the efficiency of a heat pump	None	EDC Data Gathering	-
<i>EERs</i> , Energy Efficiency Ratio of a GSHP, this is measured differently than EER of an air source heat pump and must be converted	BTU ₩・h	EDC Data Gathering Default = 16.6	-
GSER , Factor used to determine the SEER of a GSHP based on its EERg	BTU ₩・h	1.02	12
<i>GSPK</i> , Factor to convert <i>EERg</i> to the equivalent EER of an air conditioner to enable comparisons to the baseline unit	Proportion	0.8416	12
GSHPDF, Ground Source Heat Pump De- rate Factor	Proportion	0.885	13
CF, Coincidence factor	None	See CF in Vol. 1, App. A	-14
AHE, Adjustment for cooling-savings to account for inaccuracies in engineering algorithms.	None	1.21 if adding attic ins., 1.0 if not	8

VOLUME 2: Measures ENERGY STARResidential

Building Shell

Page 265

Formatted: Centered

<i>R</i> _{base} , <u>R-value of existing insulation</u>		Retrofit: EDC Data Gathering or	EDC Data
	$\frac{{}^{\circ}\mathbf{F}\cdot ft^{3}\cdot hr}{BTH}$	Default: Table 12	<u>Gathering</u> <u>, Various</u>
	BIU	New Construction: Table 2-146	<u>3</u>
R _{ee} , <u>R-value after adding new insulation</u>		Retrofit: EDC Data Gathering or	EDC Data
	$\frac{{}^{\mathrm{o}}\mathrm{F}\cdot ft^{3}\cdot hr}{BTU}$	Default: Table 2-145	<u>Gathering</u>
	BTU	New Construction: EDC Data Gathering	
A, Area of component being insulated	<u>ft²</u>	EDC Data Gathering	1
FF, Framing factor, designed to account for	None	If continuous = 0%	<u>11</u>
space that is occupied by framing		If stud-cavity = 25%	
CDD, Annual cooling degree-days, base 65°F	<u>°F-day/year</u>	See CDD in Vol 1., App. A	<u>12</u>
HDD, Annual heating degree-days, base 65°F	<u>°F-day/year</u>	See HDD in Vol 1., App. A	<u>12</u>
DUA, <u>Discretionary use adjustment to</u> account for uncertainty in predicting cooling system usage patterns of occupants	<u>None</u>	<u>0.75</u>	<u>13</u>
SEER, <u>Cooling system seasonal efficiency</u>	$\frac{BTU}{W \cdot h}$	EDC Data Gathering Default: See Early Replacement or New	<u>14</u>
		<u>Construction values (as</u> appropriate) in Table 2-10 in <u>Sec.</u> 2.2.1	
HSPF, Heating system seasonal efficiency	$\frac{BTU}{W \cdot h}$	EDC Data Gathering	<u>14</u>
	VV · N	Default: See Early Replacement or New	
		Construction values (as	
		appropriate) in Table 2-10 in Sec. 2.2.1	
F _{RAC} , Adjustment factor to relate insulated	None	If Room AC = 0.24	<u>15</u>
area to area served by room air conditioners		If non-Room AC = 1.0	
<u>COP_g</u> , Coefficient of Performance. This is a	None	EDC Data Gathering	<u>16</u>
measure of the efficiency of a ground source heat pump		<u>Default = 3.6</u>	
EERg, Energy Efficiency Ratio of a GSHP,	BTU	EDC Data Gathering	<u>16</u>
this is measured differently than EER of an air source heat pump and must be converted	$\overline{W \cdot h}$	<u>Default = 17.1</u>	
GSHPDF, Ground Source Heat Pump De-rate Factor	Proportion	<u>0.885</u>	<u>17</u>
ETDF _{summer} , Summer energy to demand factor	<u>kW/kWh</u>	0.0005272	<u>18</u>
	kW/kWh	0.0003398	18

VOLUME 2: Measures ENERGY STARResidential

Building Shell

Table 2-145: <u>Retrofit</u> Default Base and Energy Efficient (Insulated) R-R-Values

Component	Existing Condition	<mark>Value</mark> (^{°F∙ft[±]∙hr) Btu}
	Un-insulated attic	5
Reeil, base, Assembly R-value of ceiling/attic before	4.5" (R-13) of existing attic insulation	16
retrofit	6" (R-19) of existing attic insulation	<u>22</u>
	10" (R-30) of existing attic insulation	30
R _{cell,ee} ,Assembly R-value of ceiling/attic after retrofit	Retrofit to R-49 total attic insulation	4 9
Rwall.base, Assembly R-value of wall before retrofit	Assumes existing, un-insulated wall with 2x4 stude @ 16" o.c., w/ wood/vinyl siding	5
R _{wall,ee} , Assembly R-value of wall after retrofit	Assumes adding R-6 per DOE recommendations	11
R _{floor,base} , R-value of floor before retrofit	Thermal resistance of existing floor insulation above crawlspace	3.96
R _{floor,ee} , R-value of floor after retrofit	Thermal resistance of insulation added to floor above crawlspace	EDC Data Gathering
R _{FImjotstbase} , R-value of rim joist before retrofit	Baseline R-value of rim joist	2.5
R _{rtmjotstee} , R-value of rim joist after retrofit	R-value of installed spray foam or rigid foam insulation applied to rim joist	EDC Data Gathering

DEFAULT SAVINGS

There are no default savings for this measure.					
Component	Description	$\underbrace{\frac{\text{Value}}{(\frac{\circ F \cdot ft^2 \cdot hr}{Btu})}$	<u>Source</u>		
	Un-insulated attic	<u>5</u>	<u>4, 5</u>		
	4.5" (R-13) of existing attic insulation	<u>16</u>	<u>4, 5</u>		
D. Assembly Divelue	6" (R-19) of existing attic insulation	<u>22</u>	<u>4, 5</u>		
<u><i>R_{ceil,base}</i></u> Assembly R-value of ceiling/attic before	10" (R-30) of existing attic insulation	<u>30</u>	<u>4, 5</u>		
<u>retrofit</u>	Vaulted ceiling insulation, primarily consisting of fiberglass batts	<u>22.9</u>	<u>6</u>		
	Default unknown: flat ceiling insulation, typically consisting of fiberglass batts	<u>27.3</u>	<u>7</u>		
<u>Rceil.ee</u> . Assembly R-value of ceiling/attic after retrofit	Retrofit to R-60 total attic insulation	<u>60</u>	<u>2</u>		
Rwall,base, Assembly R- value of wall before retrofit	Un-insulated wall with 2x4 studs @ 16" o.c., w/ wood/vinyl siding	<u>5</u>	<u>4, 5</u>		
	Default unknown: primarily batt insulated 2x4 stud cavity	<u>13</u>	<u>8</u>		

VOLUME 2: ENERGY STAN Measures

STARResidential

Building Shell

<u><i>R_{wall.ee}</i>, Assembly R-value</u> of wall after retrofit	Add R10 insulative wall sheathing beneath the new siding	<u>15</u>	<u>2</u>
Riloor,base, R-value of floor	Thermal resistance of existing floor above crawlspace	<u>4</u>	<u>4, 5</u>
before retrofit	Default unknown: primarily uninsulated floors with some homes having fiberglass batts installed	<u>6.9</u>	<u>9</u>
Rfloor,ee, R-value of floor	IECC climate zone 4	<u>19</u>	2
after retrofit	IECC climate zone 5	<u>30</u>	<u>2</u>
P Pychus of	Thermal resistance of existing rim joist	<u>2.5</u>	<u>4, 5</u>
<i>R_{rimjoist,base}</i> . R-value of rim joist before retrofit	Default unknown: mix of uninsulated and insulated homes. Insulation primarily fiberglass batt type.	<u>7.4</u>	<u>10</u>
<i>R_{rim joist,ee}</i> , R-value of rim	IECC climate zone 4: Add R10 insulative wall sheathing or R13 batt	<u>12.5</u>	2
joist after retrofit	IECC climate zone 5: Add R15 insulative wall sheathing or R19 batt	<u>17.5</u>	<u>2</u>

Table 2-146: New Construction Baseline R-Values (2021 IECC)

IECC Climate Zone	<u>Ceiling R-</u> <u>Value</u>	<u>Wood Frame Wall R-</u> <u>Value</u>	Floor R-Value	<u>Rim Joist R-</u> <u>Value</u>
4		<u>30 or</u>	<u>19</u>	<u>10ci or 13</u>
<u>5</u>	<u>60</u>	<u>20&5ci or</u> <u>13&10ci or</u> <u>0&20ci</u>	<u>30</u>	<u>15ci or</u> <u>19 or</u> <u>13&5ci</u>

Notes on reading values in Table 2-146:

- Wood Frame Wall R-value: The first value is cavity insulation; the second value is continuous insulation. Therefore, as an example, "20 & 5ci" means R-20 cavity insulation plus R-5 continuous insulation.
- <u>Rim Joist R-Value, Climate Zone 4: "10ci or 13" means R-10 continuous insulation on the interior or exterior surface of the wall or R-13 cavity insulation on the interior side of the wall.</u>
- Rim Joist R-Value, Climate Zone 5: "15ci or 19 or 13 13&5ci" means R-15 continuous insulation on the interior or exterior surface of the wall; or R-19 cavity insulation on the interior side of the wall; or R-13 cavity insulation on the interior of the wall in addition to R-5 continuous insulation on the interior or exterior surface of the wall.

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

- GDS Associates, Inc., (2007). Measure Life Report, <u>Residential and Commercial/Industrial</u> Lighting and HVAC Measures, 2007. <u>https://library.cee1.org/system/files/library/8842/CEE_Eval_MeasureLifeStudyLights%2526H</u> <u>VACGDS_1Jun2007.pdfWeblink. Measure life for insulation is 25 years. Note that PA Act 129</u> savings can be claimed for no more than 15 years, thus the 15 year measure life.
 State of Ohio Energy Efficiency Technical Reference Manual, prepared for the Public Utilities Commission of Ohio by Vermont Energy Investment Corporation. August 6, 2010.
- Minnesota Department of Commerce, Home Envelope, An Energy Guide to Help You Keep the Outside Out and the Inside In. <u>http://mn.gov/commerce/energy/topics/resources/Consumer-Guides/homeenvelope/basement.jsp</u>
- 4) CEC 2001A. "Characterization of Framing Factors for Low-Rise Residential Building Envelopes in California" - Public Interest Energy Research Program: Final Report, Publication Number: 500-02-002, Dec 2001. <u>http://www.energy.ca.gov/reports/2002-09-06_500-02-002.PDF_</u>.
- 5) Energy Center of Wisconsin, "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research,"

https://focusonenergy.com/sites/default/files/centralairconditioning_report.pdf

- 7) From PECO baseline study, average home size = 2,323 ft², average number of room AC units per home = 2.1. Average Room AC capacity = 10,000 BTU/hr per ENERGY STAR Room AC Calculator, which serves 425 ft² (average between 400 and 450 ft² for 10,000 BTU/hr unit per ENERGY STAR Room AC sizing chart). F_{RAC} = (425 ft² × 2.1)/(2,323 ft²) = 0.38.
- 8) Illinois Statewide Technical Reference Manual, Version 7.0. September 28, 2018. http://www.ilsag.info/technical-reference-manual.html.
- 2) ENERGY STAR Recommended Home Insulation R-Values. Accessed February 2023. Weblink.
- 3) 2021 International Energy Conservation Code, Table R402.1.3: Insulation Minimum R-values and Fenestration Requirements by Component. Weblink
- 9)4)Used eQuest 3.64 to derive roof assembly R-values. When insulation is added between the joists as in most insulation up to R-30 (10"), the assembly R-value is based on a parallel heat transfer calculation of the insulation and joists, rather than a series heat transfer.
- 10)5) 2009 ASHRAE. (2009). Fundamentals, Chapter 25 and 26. Method from "Total Thermal Resistance of a Flat Building Assembly" in Chapter 25. Values from Chapter 26: interior air film = 0.68, 1.5" wooden rim joist = 1.65, exterior air film = 0.17. Total= 2.50 °F-ft²h/BTUThermal resistance values from Chapter 26.

VOLUME Measures		ENERGY	STARResidential
Building Sh	ell		

Formatted: Font: Not Italic

Formatted: Default Paragraph Font, Font color: Auto Formatted: Default Paragraph Font, Font: Arial, Not Bold, Font color: Auto, Not Small caps, Not Expanded by / Condensed by

- 11) 2015 International Energy Conservation Code, Table R402.1.2: Insulation and Fenestration Requirements by Component. <u>https://codes.iccsafe.org/content/IECC2015/chapter-4-re-</u> residential-energy-efficiency
- 12) VEIC estimate. Extrapolation of manufacturer data.
- 13) McQuay Application Guide 31-008, Geothermal Heat Pump Design Manual, 2002. Engineering Estimate - See System Performance of Ground Source Heat Pumps
- 6) NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 Residential Baseline Study. Section 6.3.6: Vaulted Ceiling R-value. Weblink
- 7) NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 Residential Baseline Study. Section 6.3.3: Flat Ceiling R-value. Weblink
- 8) NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 Residential Baseline Study. Section 6.2.3: Conditioned to Ambient Walls Average R-value. Weblink
- 9) NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 Residential Baseline Study. Section 6.4.3: Frame Floor R-value. Weblink
- 10) NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 Residential Baseline Study. Section 6.5.3: Foundation Wall R-value. Weblink. Results in the referenced study are presented for foundation walls, which are applied in this TRM as the best proxy for rim joist insulation.
- 11) ASHRAE. (2021). Fundamentals. Chapter 27, pg 27.3.
- 12) Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service (Weblink) and updated based on the latest CDD and HDD values from NOAA's 15-year annual climate Normals (2006–2020) (Weblink)
- 13) Energy Center of Wisconsin, (2008, May). "Central Air Conditioning in Wisconsin, A Compilation of Recent Field Research." Pg 31. Weblink
- 14) NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 Residential Baseline Study. Weblink. Air source heat pump efficiencies calculated using 2023 Pennsylvania Residential Baseline Study data. Federal minimum efficiencies for GSHP due to small sample size for GSHP in baseline study.
- 15) NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 Residential Baseline Study. Weblink. Average home conditioned floor area = 2,019 ft²; average number of room AC units per home = 1.74; average Room AC capacity = 7.161 BTU/hr. Per ENERGY STAR Room AC sizing chart (Weblink). 7.161 BTU/hr of cooling serves approximately 283 ft². *F_{RAC}* = (283 ft² × 1.74)/(2,019 ft²) = 0.24.
- 16) Federal minimum efficiency standards, based on ASHRAE 90.1-2019. Weblink.
- <u>17) McQuay Application Guide 31-008, Geothermal Heat Pump Design Manual, 2002. Engineering</u> <u>Estimate - See System Performance of Ground Source Heat Pumps</u>
- 18) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink

Formatted: Indent: Left: 0", Outline numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 1.31" + Indent at: 1.56"

Formatted: Font: ArialMT, Font color: Black

VOLUME Measures

2:

ENERGY STARResidential

Building Shell

14) Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service. https://www.ecobee.com/donateyourdata/

15) PA SWE Team Calculations with data from the National Solar Radiation Database. 1991–2005 Update: Typical Meteorological Year 3. NREL. <u>http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/by_state_and_city.html</u>

VOLUME 2: ENERGY STARResidential Measures

Building Shell

2.6.4 BASEMENT OR CRAWL SPACE WALL INSULATION

Target Sector	Residential-Establishments	
Measure Unit	Insulation Addition	
Measure Life	15 years Source 1	
Vintage	Retrofit, New Construction	

This protocol covers the calculation of energy and demand savings associated with insulating foundation walls in basements and crawl spaces in residential homes. Cooling savings are only produced from insulation improvements to above-grade portions of the wall, since_ the below-grade portions are expected to be cooler than the temperature set point of the building. Heating savings will be produced from the entire insulation improvement, though in varying quantities depending on whether above or below grade.

ELIGIBILITY

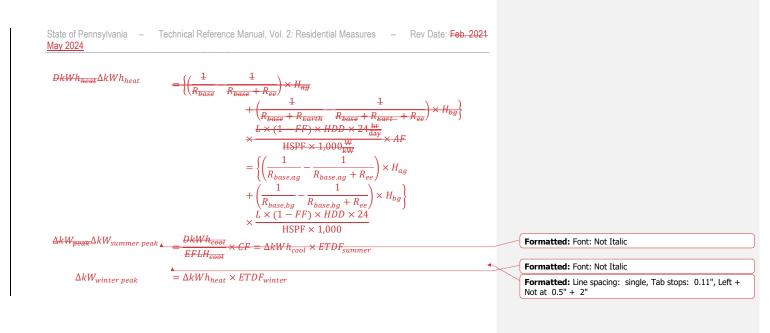
This measure protocol applies to the installation of insulation to the walls of basements or unvented crawl space walls in existing residential buildings.

Research has shown that vented crawlspaces that are sealed and insulated operate similarly to basements in providing benefits such as energy savings, comfort, moisture control, long-term durability, and healthier air quality.^{Source 2} Sealing the crawl space must follow the required PA building codes, including covering the earth with a Class I vapor retarder and providing ventilation of at least 1cfm per 50 ft² of crawlspace. In addition, sealing of the crawlspace must not block access to the space.

BasementIn 2021 IECC Climate Zone 4, basement or crawl space insulation should have either a minimum R-10 continuous insulated sheathing insulation on the interior or exterior of the home, or R-13 cavity insulation aton the interior of the home. In IECC Climate Zone 5, basement or crawl space wall in IECC Climate Zone 4, and R-insulation should have either a minimum of R-15 continuous insulation on the interior of the home, or R-19 cavity insulation in zones 5 or 6-on the interior of the home, or R-13 cavity insulation. Source 3

ALGORITHMS

Savings are due to a reduction in cooling and heating requirements due to insulation.


DkWh ∆kWh	$= DkWh_{cool} + DkWh_{heat}$ $= \Delta kWh_{cool} + \Delta kWh_{heat}$	For
DkWh_{coot}∆kWh_{cool}	$= \left(\frac{1}{R_{base}} - \frac{1}{R_{base} + R_{ee}}\right) \left(\frac{1}{R_{base,ag}} - \frac{1}{R_{base,ag} + R_{ee}}\right) \\ \times \frac{L \times H_{ag} \times (1 - FF) \times CDD \times 24_{day}}{\frac{SEER \times 1,000 \frac{W}{KW}}{KW}} \\ \times \frac{L \times H_{ag} \times (1 - FF) \times CDD \times 24}{SEER \times 1,000} \times DUA \times F_{RAC}$	

VOLUME 2: ENERGY STARResidential Measures

Building Shell

Page 272

Formatted Table

VOLUME 2: ENERGY STARResidential Measures

Building Shell

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
May 2024				

Ground Source Heat Pumps (GSHP)

GSHP efficiencies are typically calculated differently than air-source units, baseline and qualifying unit efficiencies should be converted as follows-should be converted as follows:

SEER	$= EER_g \times GSHPDF \times GSER$			
<u>HSPF</u>	$=COP_{g} \times GSHPDF \times 3.412 \frac{BTU}{Wh}$			Formatted: Font: Not Bold
PTAC and PTH	iP	-	(Formatted: Normal, Tab stops: Not at 1.5"
SEER	<u></u>		-(Formatted: Not Superscript/ Subscript
•		-	-(Formatted: Font: Cambria Math, Italic, Subscript
DEFINITIO	N OF TERMS	-	\searrow	Formatted: Tab stops: 1", Left
HSPF	$= - COP_{g} \times GSHPDF \times 3.412 \frac{BTU}{Wh}$		X	Formatted: Don't keep with next

PTAC and PTH		•	(Formatted: Tab stops: 1.5", Left
SEER.	- <i>EER</i>			

Formatted: Keep with next

DEFINITION OF TERMS

Table 2-147: Terms, Values, and References for Basement or Crawl Space Insulation

Term	Unit		Values	Source 🔸	Formatted: Centered
<i>∆kWh_{cool}</i> , Annual cooling energy savings	<u>kWh/year</u>		<u>Calculated</u>	=	
<i>∆kWh_{heat},</i> Annual heating energy savings	<u>kWh/year</u>		<u>Calculated</u>	=	
			EDC Data Gathering		
R _{base} ,R _{base,ag1} baseline R-value of	$^{\circ}F \cdot ft^2 \cdot h$		Default = existing	4 <u>EDC Data</u>	Merged Cells
foundation wall <u>above grade</u>	▲ BTU		1; Minimum = 1.	Gathering	Merged Cells
		Retrofit:	(An uninsulated wall is assumed to be R-1.)		Inserted Cells
			Uninsulated: R- <u>1.47</u>	<u>4</u>	
			<u>Default/unknown:</u> <u>R-8.9</u>	<u>14</u>	
		New	IECC climate zone <u>4: 10ci or 13</u>		
		Constru ction:	<u>IECC climate zone</u> <u>5: 15ci or 19 or</u> <u>13&5ci</u>	<u>3</u>	
$\frac{R_{Earth}}{R_{base,bg}}$, the combined average R- value for the thermal resistance of the wall and Earth at the height of insulated foundation wall below grade (H_{bg})	$\frac{{}^{\circ}\mathbf{F}\cdot ft^2\cdot h}{BTU}$		Table 2-148	∢ 5 <u>3, 4</u>	Formatted Table
R_{ee} , R-value of installed spray foam, rigid foam, or cavity insulation applied to foundation wall	$\frac{{}^{\mathrm{o}}\mathbf{F}\cdot ft^2\cdot h}{BTU}$	EDC	C Data Gathering	EDC Data Gathering	
L, total length of all perimeter foundation wall around the entire insulated perimeterwalls receiving new insulation	ft	EDC	Data Gathering	EDC Data Gathering	
${\cal H}_{ag},$ height of insulated foundation wall above grade	ft	EDC	Data Gathering	EDC Data Gathering	

VOLUME 2: ENERGY STARResidential Measures

Building Shell

-		· · ·		
Term	Unit	Values	Source 🔸	Formatted: Centered
H_{bg} , height of insulated foundation wall below grade	ft	EDC Data Gathering	EDC Data Gathering	
<i>FF</i> , framing factor, adjustment to account for area of framing when cavity insulation is used	Proportion	If externally applied<u>continued</u> = 0% If studs and cavity<u>stud-</u> <u>baycavity</u> = 25%	<u>65</u>	
CDD, cooling degree days matched to basement or crawlspace condition (conditioned/unconditioned). Insulation in unconditioned spaces is modeled by reducing the degree days to reflect the smaller but non-zero contribution to heating and cooling load.	°F-day	See CDD in Vol. 1 App. A	13<u>6</u>	
HDD, heating degree days matched to basement or crawlspace condition (conditioned/unconditioned). Insulation in unconditioned spaces is modeled by reducing the degree days to reflect the smaller but non-zero contribution to heating and cooling load.	°F-day	See HDD in Vol. 1 App. A	43 <u>6</u>	
<i>DUA</i> , Discretionary Use Adjustment, adjustment for times when AC is not operating even though conditions may call for it	Proportion	0.75	7	
F_{RAC} , Adjustment factor to relate insulated area to area served by room air	None	If Room AC = 0. <mark>38<u>24</u></mark>	<u>148</u>	Formatted: Font: Italic
conditioners		If non-Room AC = 1.0		
SEER, Cooling system seasonal efficiency	$\frac{BTU}{W \cdot h}$	EDC Data Gathering Default: See Early Replacement <u>or New</u> <u>Construction</u> values (as <u>appropriate</u>) in Table 2-10 in Sec. 2.2.1	8 <u>9</u>	
HSPF, Heating system seasonal efficiency	Proportion	EDC Data Gathering Default: See Early Replacement <u>or New</u> <u>Construction</u> values (as <u>appropriate)</u> in Table 2-10 in Sec. 2.2.1	8 <u>9</u>	
AF, adjustment factor, accounts for prescriptive engineering algorithms overestimating savings	Proportion	0.88	9	
<i>COPCOP_s</i> , Coefficient of Performance. This is a measure of the efficiency of a <u>ground</u> source heat pump	None	EDC Data Gathering Default = 13.6	- <u>10</u>	Formatted Table
<u>EEREER</u> , Energy Efficiency Ratio of a GSHP, this is measured differently than EER of an air source heat pump and must be converted	$\frac{BTU}{W \cdot h}$	EDC Data Gathering Default = 17.1	- <u>10</u>	

VOLUME 2: ENERGY STARResidential Measures

Building Shell

Term	Unit	Values	Source ◄
GSER, Factor used to determine the SEER of a GSHP based on its EERg	BTU W·h	1.02	41
<i>GSPK</i> , Factor to convert EERg to the equivalent EER of an air conditioner to enable comparisons to the baseline unit	Proportion	0.8416	41
<i>GSHPDF</i> , Ground Source Heat Pump Derate Factor	Proportion	0.885	<u>4211</u> ◀
EFLH _{cool} , equivalent full-load hours of air conditioningETDF _{summer} . Summer energy to demand factor	hours <u>kW/k</u> <u>Wh</u>	0.0005272 <mark>EDC Data</mark> Gathering or See <i>EFLH</i> ccorin Vol. 1 App. A	12EDC Data Gathering 10
<i>CF</i> , coincidence factor <i>ETDF</i> _{winter} , Winter energy to demand factor	Proportion <u>k</u> <u>W/kWh</u>	See CF in Vol. 1 App. A <u>0.0003398</u>	40 <u>12</u>

Table 2-122Table 2-148 should be used to determine the average thermal resistance of the combined wall and Earth ($R_{Earth}R_{base,bg}$) at the height of foundation wall below grade (H_{bg}). Use a crawl space wall that is 5 ft in height as an example of proper use of the table. If the crawl space wall is 5 ft in height and 1 ft is above grade ($H_{ag} = 1$ ft), then the remaining 4 ft are below grade ($H_{bg} = 4$ ft). To determine the $R_{Earth}R_{base,bg}$ for that below-grade wall height, look for the column for $H_{bg} = 4$ ft in Table 2-122. R_{Earth} Table 2-148. $R_{base,bg}$ in this example is therefore 6.424.26 °F-ft²-h/BTU.

Table 2-148: Below-grade R-values (°F-ft2-h/BTU) for combined Earth and basement wall

				Re	etrofit			New (Construction	on ^{Se}	ource	13	
H _{bg} (ft)	1		Existi		4 <u>Unknown</u>	Z	3	4IECC	5IECC	6	7	8	•
		Insula	tion ^{so}	urce 4	Existing			Climate	Climate				
					Insulation ^{Sour}			Zone 4	Zone 5				
					<u>ce 15</u>								\Box
1			2.31		<u>9.71</u>			<u>12.31</u>	-	17.31	1		
REarth	2.44		4.4	5.4				7.46 13.0	8.46 18.02	2).5	10.6	
(°F- ∉²-	<u>6</u>	3.47 <u>0</u>	4	4	<u>610,</u> 42			2			3	9	
h/BTU)		<u>2</u>											
3	5		3.66		11.06			13.66	-	18.66	6		1
4		4	4.26		11.66			14.26		19.26	6		
45	5	4	4.81		12.21			14.81		19.8	1		1
6	ò		5.35		12.75			15.35	2	20.3	5		
7			5.88		13.28			15.88	2	20.88	3		1
8		(6.37		13.77			16.37	2	21.37	7		

DEFAULT SAVINGS

There are no default savings for this measure.

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values. For projects using customer specific data for open variables, the appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with

VOLUME 2: ENERGY STARResidential Measures

Building Shell

Deleted Cells
Deleted Cells
Deleted Cells
Deleted Cells
Deleted Cells
Formatted: Font: Bold, Not Italic
Formatted: Font: Bold
Formatted: Normal, Left, Keep with next
Formatted: Tab stops: Not at 0.5"
Formatted: Tab stops: Not at 0.5"
Formatted: Font: 10 pt, Superscript
Formatted: Font: 10 pt
Formatted: Font: 10 pt
Formatted: Font: 10 pt, Superscript
Deleted Cells
Formatted: Normal
Formatted Table
Formatted: Font color: Black
Formatted: Normal

verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

1) Measure Life Report, Residential and Commercial/Industrial Lighting and HVAC Measures Prepared for The New England State Program Working Group, http://library.cee1.org/content/measure-life-report-residential-and-commercialindustriallighting-and-hvac-measures. Weblink. Measure life for insulation is 25 years. Note that PA Act 129 savings can be claimed for no more than 15 years, thus the 15 year measure life. 2) USDOE, Guide to Closing and Conditioning Ventilated Crawlspaces, http://www.nrel.gov/docs/fy13osti/54859.pdfWeblink Formatted: Hyperlink, No underline 3) 20152021 International Energy Conservation Code, Table R402.1.23: Insulation Minimum R- < Formatted values and Fenestration Requirements by Component. https://codes.iccsafe.org/content/IECC2015/chapter-4-re-residential-energyefficiencyWeblink. 20ci or 13" means R-10 continuous insulation (ci) on the interior or exterior surface of the wall or R-13 cavity insulation on the interior side of the wall. "15ci or 19 or 13&5ci" means R-15 continuous insulation (ci) on the interior or exterior surface of the wall; or R-19 cavity insulation on the interior side of the wall; or R-13 cavity insulation on the interior of the wall in addition to R-5 continuous insulation on the interior or exterior surface of the wall. 4) 2017 ASHRAE. (2021). Fundamentals, Table 16 - Wall Conduction Time Series; total R = 0.95 for aChapter 18, pg 18.44. ASHRAE assumes an uninsulated concrete wall builthas an R-value of 1.47. Rbg values are calculated from 200mm LW CMU with fill insulation. Illinois Statewide Technical Reference Manual, Version 7.0. September 28, 2018. http://www.ilsag.info/technical-reference-manual.html 6)4)CEC 2001A. "Characterization of Framing Factors for Low Rise Residential Building EnvelopesUavg,bw values in California" - Public Interest Energy Research Program: Final Formatted: Font color: Auto Report, Publication Number: 500-02-002, Dec 2001. http://www.energy.ca.gov/reports/2002-09-06 500-02-002.PDFTable 22 on page 18.44. Formatted: Font color: Auto ASHRAE. (2021). Fundamentals. Chapter 27, p 27.3. 6) Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service (Weblink) and updated based on the latest CDD and HDD values from NOAA's 15-vear annual climate Normals (2006–2020) (Weblink) 7) Energy Center of Wisconsin, May-(2008-metering study;, May). "Central Air Conditioning in Formatted: No underline, Font color: Auto Wisconsin, A Compilation of Recent Field Research", p31. http://cleanefficientenergy.org/resource/central-air-conditioning-wisconsin-compilation-recentfield-research." Pg 31. Weblink, Formatted: French (France) 8) For all systems excluding ground source heat pumps: <u>NMR Group for the Pennsylvania Public</u> Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 2018 Residential Baseline Study, http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3_Res_Baseline_Study_Rpt021219.pdf. Due. Weblink. Average home conditioned floor area = 2,019 ft²; average number of room AC units per home = 1.74; average Room AC capacity = 7,161 BTU/hr. Per ENERGY STAR Room AC sizing chart (Weblink), 7,161 BTU/hr of cooling serves approximately 283 ft². $F_{RAC} = (283 \text{ ft}^2 \times 1.74)/(2,019 \text{ ft}^2) = 0.24$ NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 Residential Baseline Study. Pg 115, table 97, pg, 120, table 103. Weblink. Air source heat pump efficiencies calculated using 2023 Pennsylvania Residential Baseline Study data. Federal minimum efficiencies for GSHP due to small sample size for GSHP in residential baseline, the lowest study.

VOLUME 2: ENERGY STARResidential Measures

Building Shell

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
May 2024				

- 8)10) Federal minimum efficiency options available in BEopt were chosen as defaults for ground source heat pumps.standards, based on ASHRAE 90.1-2019. Weblink
- 9) "Home Energy Services Impact Evaluation", August 2012. Based on comparing algorithm derived savings estimate and evaluated bill analysis estimate. <u>http://ma-</u> <u>eeac.org/wordpress/wp-content/uploads/Home-Energy-Services-Impact-Evaluation-</u> <u>Report_Part-of-the-Massachusetts-2011-Residential-Retrofit-and-Low-Income-Program-Area-Evaluation.pdf</u>
- 10) Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service. <u>https://www.ecobee.com/donateyourdata/</u>

11) VEIC estimate. Extrapolation of manufacturer data.

- 12)11) McQuay. (2002). Application Guide 31-008, Geothermal Heat Pump Design Manual, 2002. Engineering Estimate - See System Performance of Ground Source Heat Pumps
- 13) PA SWE Team Calculations with data from the National Solar Radiation Database. 1991–2005 Update: Typical Meteorological Year 3. NREL. <u>http://rredc.nrel.gov/solar/old_data/nsrdb/1991-2005/tmy3/by_state_and_city.html</u>
- 14) From PECO baseline study, average home size = 2,323 ft², average number of room AC units per home = 2.1. Average Room AC capacity = 10,000 BTU/hr per ENERGY STAR Room AC Calculator, which serves 425 ft² (average between 400 and 450 ft² for 10,000 BTU/hr unit per ENERGY STAR Room AC sizing chart). F_{RAC} = (425 ft² × 2.1)/(2,323 ft²) = 0.38.
- 12) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink
- 13) Default new construction below grade R-values are the sum of the uninsulated wall assembly in the retrofit case and the code minimum continuous insulation R-value.
- 14) NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 Residential Baseline Study. Section 6.5.3: Foundation Wall R-value. Weblink. The R-8.9 value is the sum of the wall materials (R-1.47) and average added insulation presented in the residential baseline study (R-7.4).
- 15) NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 Residential Baseline Study. Section 6.5.3: Foundation Wall R-value. Weblink. In retrofit cases where it is unknown whether there is existing insulation present on the basement wall, add R-7.4 to the below-grade uninsulated retrofit R-value.

Formatted: Font color: Auto

Formatted: Font color: Auto

VOLUME 2: ENERGY STARResidential Measures

Building Shell

2.6.5 ENERGY STAR WINDOWS

Target Sector	Residential Establishments
Measure Unit	Window Area
Measure Life	(15 max, but 20 for TRC) years ^{Source 1}
Vintage	Retrofit

ELIGIBILITY

This protocol documents the energy savings for replacing existing windows in a residence with ENERGY STAR <u>version 7</u> certified windows. Source 2

ALGORITHMS

∆kWh	$= \frac{DkWh_{cool}}{\Delta kWh_{cool}} + \frac{DkWh_{heat}}{\Delta kWh_{heat}} \Delta kWh_{heat}$		
			Formatted: Font: Arial, Italic
ΔkWh_{cool}	$= Area of Window ft^{2} \times \frac{\eta_{proto}}{\eta_{base}} \times \frac{UES_{region,system}}{a_{cool}} \times overlap$		Formatted: Space After: 0 pt
\[\Lambda kWh_heat \]	= Area of Window $ft^2 \times \frac{\eta_{proto}}{\eta_{base}} \times \frac{UES_{region,system}}{a_{heat}} \times overlap$		
AkW	$=\frac{\frac{DkWh_{coot}}{EFLH_{coot}} \times CF}{EFLH_{coot}}$		
<u>AkWsummer</u>	$\underline{} = \frac{\Delta kWh_{cool}}{EFLH_{cool}} \times CF_{summer}$		Formatted: Font: Arial, Not Bold, Font color: Auto, Not Small caps, Not Expanded by / Condensed by
ΔkW_{winter}	$\underline{=} \frac{\Delta kWh_{heat}}{EFLH_{hea}} \times CF_{winter}$	//	Formatted: SubStyle
	ee components: a unit energy savings value (UES) <u>coefficient (a cont</u>	\vee	Formatted: Font: Arial, Not Bold, Font color: Auto, Not Small caps, Not Expanded by / Condensed by
	the components, a unit energy savings value (OES) <u>coefficiency</u> of the scaling		Formatted: Font: Arial, Not Bold, Font color: Auto, Not Small

Energy savings depend on three components: a unit energy savings value (UES) coefficient (a_{col}) or a_{heat} developed from prototype home energy models, the ratio of the efficiency of the cooling and heating equipment in the home to the values in the prototype home ($\frac{\eta_{proto}}{\eta_{base}}$), and

THEeligible window area. To calculate energy savings, look up the efficiency value for the applicable equipment type in **THE EARLY REPLACEMENT VALUES IN TABLE 2-8 IN SEC. 2.2.** Table 2-151, This is η_{proto} , For $\eta_{base}\eta_{base}$, use the corresponding value for the equipment in the home, or the default value of η_{proto} (i.e., a ratio of 1). Calculate the ratio. Then look up the **VALUE FOR** UES **IN TABLE 2-124** (a) for the correct equipment type and climate **REFERENCE CITY.** region in Table 2-150, Multiply these values by the window area to get cooling or heating savings.

DEFINITION OF TERMS

Non-centralized cooling systems such as room air conditioners and mini-splits include an additional factor representing the overlap between the fraction of a home's conditioned floor area (CFA) served by these systems that also receive upgraded windows. For instance, if two bedrooms each representing 15% of CFA are cooled with room ACs, but only one of the room's windows are

VOLUME 2: ENERGY STARResidential Measures

Building Shell

Page 279

caps, Not Expanded by / Condensed by

Formatted: Font: Arial, Not Bold, Font color: Auto, Not Small

Formatted: Font: Arial, Not Bold, Font color: Auto, Not Small

Formatted: Font: Arial, Not Bold, Font color: Auto, Not Small

Formatted: Font: Arial, Not Bold, Font color: Auto, Not Small

Formatted: Font: Arial, Not Bold, Font color: Auto, Not Small

Formatted: Font: Arial, Not Bold, Font color: Auto, Not Small

Formatted: Font: Arial, Not Bold, Font color: Auto, Not Small

Formatted: Font: Arial, Not Bold, Font color: Auto, Not Small

Formatted: Don't keep with next, Don't keep lines together

upgraded, then overlap is 15%. If both bedrooms receive new windows, then overlap is 30%. (Upgraded windows in other parts of the home also reduce cooling load however, calculating their contributions is non-trivial. Consequently, these effects are omitted for simplicity and to allow for conservative results when an imprecise overlap is used.)

DEFINITION OF TERMS

Table 2-149: Terms, Values, and References for ENERGY STAR Windows

Term	Unit	Value	Sources
UES _{region,system} , Climate region dependent electricity savings for efficient glazing	$\frac{kWh}{ft^2}$	See Table 2-124	2
η_{base} , Baseline heating or cooling equipment officiency	varies	Measured, EDC Data Gathering Default: η_{proto}	
η _{proto} , Prototype heating or cooling equipment efficiency	varies	See Early Replacement values in Table 2-8 in Sec. 2.2.1	æ
<i>BFLH_{cool}</i> , Equivalent Full Load Cooling hours	hours year	See EFLH _{cool} in Vol. 1, App. A	4
CF, Demand Coincidence Factor	Proportion	See CF in Vol. 1, App. A	4

VOLUME 2: ENERGY STARResidential Measures

Building Shell

Term	<u>Unit</u>	Value	Sources
a _{cool} . <u>Climate region dependent electricity</u> savings for efficient glazing	$\frac{kWh}{ft^2}$	See Default Unit Energy Savings Coefficient & Equipment Efficiency Tables Table 2-150	<u>3</u>
<i>a_{heat}</i> . Climate region dependent heating electricity savings for efficient glazing	$\frac{kWh}{ft^2}$	See Default Unit Energy Savings Coefficient & Equipment Efficiency Tables Table 2-150	<u>3</u>
η_{base} . Baseline heating or cooling equipment efficiency	<u>varies</u>	<u>Measured, EDC Data Gathering</u> <u>Default: η_{proto}</u>	=
η_{proto} , Prototype heating or cooling equipment efficiency	<u>varies</u>	See Table 2-151	<u>4</u>
overlap, Fraction of conditioned floor area served by HVAC with upgraded windows	Proportion	Measured, EDC Data Gathering Default: 100% for ASHP, CAC, GSHP, baseboard & electric furnace 0% for Mini-split, Room AC	=
<i>EFLH_{cool}</i> . Equivalent Full Load Hours of operation during the cooling season for the average unit	hours year	See EFLH _{cool} in Vol. 1, App. A	<u>5</u>
EFLH _{heat} . Equivalent Full Load Hours of operation during the heating season for the average unit	hours yr	See EFLH _{cool} in Vol. 1, App. A	<u>5</u>
CF _{summer} . Summer demand Coincidence Factor	<u>Proportion</u>	See Summer CF in Vol. 1, App. A	<u>5</u>
CFwinter . Winter demand Coincidence Factor	Proportion	See Winter CF in Vol. 1, App. A	<u>5</u>

DEFAULT UNIT ENERGY SAVINGS COEFFICIENT & EQUIPMENT EFFICIENCY TABLES

VOLUME 2: ENERGY STARResidential Measures

Building Shell

Table 2-150: Default UES region, system , unit energy savings - kWh per Square Foot of Replaced Window

Formatted: Font: 10 pt

					Cooli	ng		Heating					
Reference City		ASHP		Central AC		Mini- split GSHP		ASHP		Electric Furnace	Base- board	Mini- split	GSHP
Allentown	h	θ.	66	4.	50	0.59	0.57	2	2.86	3.40	3.12	2.10	0.95
Bingham	ton	θ.	4 6	0.	65	0.47	0.36	4	1.50	4 <u>.60</u>	4 <u>.28</u>	3.56	1.27
Bradford		θ.	35	4.	10	0.34	0.25	Ę	5.57	5.51	7.86	4.63	1.58
Erie		θ.	51	0.	51	0.46	0.41	4	1.07	4.81	4.07	3.12	1.35
Harrisbur	rg	0.	75	θ.	82	0.73	0.66	- 2	2.84	3.91	3.17	2.40	1.06
Philadelp	hia	θ.	86	θ.	83	0.76	0.86	- 4	1.68	2.53	5.85	1.31	0.68
Pittsburg	h	θ.	66	θ.	66	0.64	0.60	ą	3.06	3.82	3.06	2.28	1.07
Scranton	ł.	θ.	59	θ.	.68 0.57		0.50	0.50 3		3.83	3.55	2.58	1.06
Williamsp	oort	θ.	65	θ.	46 0.61		0.58		2.99	3.47	5.08	2.19	0.96
Climate					acool		a _{heat}						
Region	<u>AS</u>	HP	_	<u>ntral</u>	<u>GSH</u>	P Mini- split	Roon AC	<u>n</u>	<u>ASHP</u>	Base- board	Electric Furnace	GSHP	Min spli
<u>A</u>	0.2	<u>23</u>	0.	18	0.12	0.13	0.13 0.26		2.52	6.39	6.80	2.00	2.2
B	0.3	31	0.	38	0.20 0.27 0.52			1.93	4.96	5.25	1.43	1.3	
<u>C</u>	0.4	11	0.	49	19 0.30 0.30 0.66		0.66	1.75		<u>4.59</u>	4.80	<u>1.29</u>	1.24
D	0.7	70	0.76 0.60 0.51 1.05 0.83 2		2.59	2.35	0.76	0.5					
E	0.6	60	<u> </u>		0.38	<u>0.42</u>	<u>0.90</u>		1.00	2.76	<u>2.71</u>	<u>0.68</u>	0.7
<u>E</u>	0.3	34	<u>4 0.39</u>		0.24	0.27	<u>0.56</u>		<u>1.89</u>	<u>5.00</u>	<u>5.15</u>	<u>1.39</u>	1.3
<u>G</u>	0.1	13	<u>0</u> .	<u>15</u>	<u>0.08</u>	<u>0.06</u>	<u>0.19</u>		<u>2.64</u>	<u>6.74</u>	<u>7.22</u>	<u>2.51</u>	2.4
<u>H</u>	0.3	33	<u>0.</u>	37	0.22	<u>0.27</u>	<u>0.52</u>		<u>1.97</u>	<u>5.12</u>	<u>5.38</u>	<u>1.49</u>	1.44
<u> </u>	0.3	31	<u>0</u> .	<u>36</u>	0.19	0.26	<u>0.49</u>		<u>2.15</u>	<u>5.43</u>	<u>5.90</u>	<u>1.61</u>	<u>1.5</u>

Table 2-151: Prototype Residential Equipment Efficiency (nproto)

	<u>ASHP</u>	<u>Baseboard</u>	Central AC	<u>Electric</u> <u>Furnace</u>	<u>GSHP</u>	<u>Mini-split</u>	Room AC
Cooling	15 SEER/ 14.3 SEER2	=	<u>13.2 SEER/</u> 12.9 SEER2	=	<u>23.9 EER</u>	18.9 SEER/ 17.5 SEER2	<u>10.7 EER/</u> 10.6 CEER
<u>Heating</u>	8.5 HSPF/ 7.3 HSPF2	<u>1.0 COP</u>	П	<u>1.0 COP</u>	<u>4.2 COP</u>	10.0 HSPF/ 8.6 HSPF2	Ξ

EVALUATION PROTOCOLS

The appropriate evaluation protocol is to verify installation and proper application of TRM protocol along with verification of open variables. The Pennsylvania Evaluation Framework provides specific guidelines and requirements for evaluation procedures.

SOURCES

- California Public Utilities Commission Database for Energy Efficient Resources (DEER) EUL Support Table for 2020, <u>http://www.deeresources.com/files/DEER2020/download/SupportTable-EUL2020.xlsx</u>. Accessed December 2018.
- 1) California Electronic Technical Reference Manual. "Effective Useful Life and Remaining Useful Life". Accessed December 2023. Weblink
- 2) U.S. EPA. (2022). ENERGY STAR Program Requirements for Residential Windows, Doors, and Skylights Version 7.0 Specification. Weblink
- 2)3)Based on modelling using BEopt v2.8.0 performed by NMR Group, Inc. Unit energy savings were calculated by modeling a prototypical Pennsylvania single family detached house with statewide average characteristics determined through the Pennsylvania Act 129 20182023 Residential Baseline Study, 0.44 U / 0.52 SHGC. Simulations for each equipment-climate

VOLUME 2: ENERGY STARResidential Measures

Building Shell

Page 282

Formatted: Justified

region combination were performed for plain double-plane (0.49 U, 0.56 SHGC) and triple-pane ENERGY STAR (version 7 windows using 0.2725 U_{τ} / 0.2630 SHGC) windows, as representative specifications for climate regions D & E, and 0.21 / 0.32 SHGC for the remaining regions. The difference in heating and cooling loads were consumption was then apportioned evenly among the 322305 square feet of windows in the prototype home yielding the UES values.

3)4)NMR Group for the Pennsylvania Public Utility Commission. (2024, March). 2023 Pennsylvania Statewide Act 129 2018 Residential Baseline, Study. http://www.puc.state.pa.us/Electric/pdf/Act129/SWE-Phase3_Res_Baseline_Study_Rpt021219.pdf, Weblink

4)5)Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service. Based on the Phase III SWE team's analysis of regional HVAC runtime data collected from ecobee's Donate Your Data research service. https://www.ecobee.com/donateyourdata/Weblink

VOLUME 2: ENERGY STARResidential Measures

Building Shell

2.7 WHOLE HOME

2.7.1 RESIDENTIAL NEW CONSTRUCTION

Target Sector	Residential Establishments		
Target Sector	Residential		
Measure Unit	Multiple		
Measure Life	Varies		
Vintage	New Construction		

ELIGIBILITY

This protocol documents the energy savings attributed to improvements to the construction of residential buildings compared to the baseline of a minimally code-compliant building, as calculated by the appropriate energy modeling software. This measure may be applied to attached or detached single-family homes and to multifamily residential buildings that meet the following requirements:

- All units must be individually metered.
- Each unit must have its own residential-grade heating, cooling, and water heating equipment.
- The building must be under 6 stories.

Dwelling units must comprise at least 80% of the occupiable⁸³-space of the building,⁸⁴ Mixed-use buildings are also eligible where the dwelling units and residential use common space combined exceed 50% of the building's square footage. Parking garage square footage is excluded from this calculation. ^{Source 1}

•

Multifamily buildings of 4 stories and higher are subject to the commercial building code and hence have different baseline specifications than buildings subject to residential building code requirements. Savings for multifamily buildings may be claimed only for savings generated in the residential spaces of the building.

ALGORITHMS

Energy and peak demand savings for Residential New Construction programsmeasures will be calculated by comparing outputs of energy models of the as-designed unit or building to a minimally code-compliant baseline unit or building. The characteristics of the baseline unit or building thermal envelope and/or system characteristics shall be based on the current state-adopted 2021 International Energy Conservation Code (IECC)-2015.⁸⁵). Source 2

ModeledFor single-family homes and individual dwelling units, modeled energy and peak demand savings shall be produced by with a RESNET accredited software program⁸⁶ software^{Source 3} or the Passive House accreditationaccredited software packages (Passive House Planning)

⁸³ Per ASHRAE 62.2-2010, occupiable space is any enclosed space inside the pressure boundary and intended for human activities or continual human occupancy, including, but not limited to, areas for living, sleeping, dining, and cooking, toilets, closets, halls, storage and utility areas, and laundry areas.

⁸⁴ For mixed use buildings, exclude the retail/commercial area when determining the square footage of the building.

 ⁸⁵ International Code Council, Inc. (2015). 2015 International Energy Conservation Code. Retrieved from International Code Council: <u>https://codes.iccsafe.org/content/IECC2015?site_type=public</u>
 ⁸⁶ See the RESNET National Registry of Accredited Rating Software Programs for a complete listing:

http://www.resnet.us/professional/programs/energy_rating_software

VOLUME 2: ENERGY STARResidential Measures

Whole Home

Page 284

Formatted: Normal, No bullets or numbering

Formatted: Superscript

Package⁸⁷Package^{Source 4} and WUFI Pacsive⁸⁸Passive^{Source 5}), though both Passive House tools_require the user to separately model the code baseline reference design to calculate energy and demand savings.

For multifamily buildings, savings may be calculated by modeling the building's individual units using any approved software. Savings may also be calculated for the entire building using Passive House accreditation software, or under RESNET multifamily sampling protocols.⁸⁹

For multifamily buildings, modeled energy savings shall be produced at the building level with whole building modeling tools as designated by the ENERGY STAR Multifamily New Construction Program (eQUEST, DOE2.1, Energy Plus, Carrier HAP, Open Studio, and Trane Trace 700).^{Source} ⁶ Alternatively, RESNET accredited software^{Source 3} or the Passive House accreditation software packages (Passive House Planning Package^{Source 4} and WUFI Passive^{Source 5}) may be used to model energy savings for each residential dwelling unit archetype, where dwelling archetype can be defined by one or more key metrics such as bedroom/bathroom counts or square footage ranges.

Energy savings will be calculated from the software output using the following algorithm:

Energy savings of the qualified unit/building (kWh/yr)

 $\Delta kWh = kWh_{base} - kWh_{ee}$

Peak demand savings are based on reduction in peak cooling loads. Neither the RESNET accredited software nor Passive House accreditation software allow calculations of peak demand savings for end uses other than cooling equipment, which is assumed to be active during the peak period. Additional demand savings may be claimed under this measure, but these additional demand savings must be calculated using the algorithms from the applicable measure elsewhere in the TRM. For example, to claim demand savings algorithms in Sec. 2.4.1 ENERGY STAR Refrigerators. Claiming additional demand savings may require additional EDC data collection than required to generate the energy model.

The If the modeling software provides building-level outputs of hourly energy consumption (an 8760 load profile), then coincident peak demand savings may be calculated by averaging the hourly energy savings during the TRM defined peak demand time period. The TRM peak demand time period is defined in Volume 1.

If the modeling software does not provide building-level outputs of hourly energy consumption, the system peak electric demand savings for will beshall be calculated from the software's calculated from the software output withannual energy savings and the following algorithm:

Coincident system peak electric demand savings (kW)

Peak demand of the baseline home/unit = PLbase EERbase

VOLUME 2: ENERGY STARResidential Measures

Whole Home

Page 285

Formatted: Superscript

⁸⁷⁻http://www.passivehouseacademy.com/index.php/shop-us

⁸⁸⁻http://www.phius.org/software-resources/wufi-passive-and-other-modeling-tools/wufi-passive-3-0

⁸⁹ At the time of publication, RESNET standards for multifamily inspection and sampling were still under development, though they are expected to be adopted before this TRM takes effect. See

http://conference2018.resnet.us/data/energymeetings/presentations/How%20Standards%20are%20Evolving%20to%20Better%20Address%20Multifamily%20Ratings%20.pdf

 $\begin{array}{l} \textit{Peak demand of the qualifying home/unit} \\ \underline{=}_{\underline{EER_{ee}}}^{\underline{PL_{ee}}} \end{array}$

Coincident system peak electric demand savings (kW)

 $\Delta k W_{\text{peak}} = (Peak demand of the baseline home/unit - Peak demand of the qualifying home/unit)$

 $\Delta kW_{peak,summer} = \Delta kWh \times ETDF_{summer}$

 $\Delta kW_{peak,winter} = \Delta kWh \times ETDF_{winter}$

DEFINITION OF TERMS

A summary of the input values and their data sources follows:

Table 2-152: Terms, Values, and References for Residential New Construction

Term	Unit	Value	Sources
<i>kWh</i> _{base} , Annual energy consumption of the baseline home/unit/building.	kWh	Software Calculated	47
<i>kWhee</i> , Annual energy consumption of the qualifying home/unit/building.	kWh	Software Calculated	2 <u>8</u>
PL _{base} , Estimated peak cooling load of the baseline home/unit. <u>ETDF_s. Summer energy</u> to demand factor	kBTU/hr<u>kW/kWh</u>	Software Calculated0.0001376	<u>39</u>
PLee, Estimated peak cooling load for the qualifying home/unit. <u>ETDF</u> w, Winter energy to demand factor	kBTU/hrkW/kWh	Software Calculated0.0001967	<u>59</u>
EER _{base} , Energy Efficiency Ratio of the baseline unit.	BTU ₩•h	EDC Data Gathering Dofault: $-0.0228 \times$ SEER _{base} ² + 1.1522 × SEER _{base}	4
<i>EER</i> ee <mark>, Energy Efficiency Ratio of the qualifying unit.</mark>	BTU ₩•h	EDC Data Gathering Default:	4
SEERbase, Seasonal Energy Efficiency Ratio of the baseline unit.	$\frac{BTU}{W \cdot h}$	1 3 14 (ASHP)	8
SEERee, SEER associated with the HVAC system in the qualifying home.	<u>BTU</u> ₩ • h	EDC Data Gathering	6
V_r , Rated storage volume of baseline water heater	gallons	EDC Data Gathering	EDC Data Gathering
Model inputs for baseline home	Varies	Less than 4 stories: See Table 2-128 Table 2-153 and Table 2-154 4 stories and higher: See Table 2-130Table 2-156 and Table 2-157	

VOLUME 2: ENERGY STARResidential Measures

Whole Home

Page 286

Formatted: Font: Italic Formatted: Space After: 6 pt

The following table lists the building envelope characteristics of the baseline reference home based on 20152021 IECC for the threetwo climate zones in Pennsylvania.

Table 2-153: Baseline Insulation and Fenestration Requirements by Component for Buildings Less Than 4 Stories (Equivalent U-Factors)^{Source 10}

IEC C Cli mat e Zon e	Fenest ration	Ŭ- Fact		g U- Facto		U- Facto	Floor U-	U-	R- Valu e 8 Dep	Crawl u Space Wall
4A <u>4</u>	0. 35<u>30</u>	0.55	0. <u>02640</u>	0. <u>060</u> <u>024</u>	0.045	0.098	0.047	0.059	10,	
5A <u>5</u>	0. <u>3230</u>	0.55	0.026 <u>40</u>	0. 060 <u>024</u>	0.045	0.082	0.033	0.050	2 <u>10</u>	
6A	0.32		2.55 D and York County are C744. Climate Region A and			0.060			10. #	Formatted: Font: 9 pt, Not Italic Formatted: Font: 10 pt, Italic

Climate Region D and York County are CZ4A, Climate Region A and G are CZ6A, everything else is CZ5 Deleted Cells

Data Point	Value	Source
Air Infiltration Rate	53.0 ACH ₅₀ for the whole house	7 <u>11</u>
Duct Leakage	4 CFM ₂₅ (4 cubic feet per minute per 100 square feet of conditioned space when tested at 25 pascals)	7 <u>11</u>
Duct Insulation	Supply and return ducts in attics shall be insulated to a minimum ofWithin ceiling insulation: R-8 Other locations not completely inside thermal envelope: R-8 where ≥3" in diameter and a minimum of R-6 where <3" in diameter. All other ducts not located completely inside the building thermal envelope shall be insulated to a minimum of R- 6 where ≥3" in diameter and a minimum of R-4.2 where <3" in diameter.	7 <u>11</u>
Duct Location	50% in conditioned space, 50% unconditioned space	Program Design
Mechanical Ventilation	A continuous whole house ventilation system with efficiency of 2.8 CFMAWatt and airflow defined by Table M1507.3.3(1) of 2015-IRCHRV/ERV/Air handler = 1.2 CFM/Watt In-line supply or exhaust = 3.8 CFM/Watt Other (< 90 CFM) = 2.8 CFM/Watt Other (≥ 90 CFM) = 3.5 CFM/Watt	44 <u>12</u>
Lighting	Use baseline wattage as defined in the ENERGY STAR Lighting sectionUse baseline wattage as defined in the Residential LED Lighting section of the TRM (2.1.1), Table 2-2 for the residential units, and Lighting Improvement section (3.1.1) and New Construction Lighting section (3.1.2) of the TRM for common spaces	
Appliances	Use baseline values as defined in applicable TRM measure for each appliance.	

Table 2-154: Residential New Construction Baseline Building Values for Buildings Less Than 4 Stories

	Deleted Cells
	Deleted Cells
	Deleted Cells
	Formatted: Font: 10 pt
	Formatted: Footnote, Left
C	Formatted Table
ľ	Formatted: Font: 10 pt
C	Formatted Table

Formatted Table

Deleted Cells Deleted Cells

Deleted Cells Deleted Cells

VOLUME 2: ENERGY STARResidential Measures

Whole Home

Data Point	Value	Source
hermostat Setback<u>Type</u>	MaintainProgrammable, with ability to maintain zone temperature down to 55 °F (13 °C) or up to 85 °F (29 °C)	7 <u>11</u>
Femperature Set Points	Heating: 70°F Cooling: 78°F	7 <u>11</u>
Heating Efficiency		I
Furnace	80% AFUE	8 <u>13</u>
Gas Fired Steam Boiler	82% AFUE	8 <u>13</u>
Gas Fired Hot Water Boiler	84% AFUE	8 <u>13</u>
Oil Fired Steam Boiler	85% AFUE	<u>813</u>
Oil Fired Hot Water Boiler	86% AFUE	8 <u>13</u>
Combo Water Heater	76% AFUE (recovery efficiency)	8
ASHP, GSHP, PTHP	SeeFor residential units, see New Construction values in Table 2-8Table 2-10 in Sec. 2-2-1-2.2.1_For ductless heat pumps, use value for ASHP. For common areas, see New Construction values in Table 3-24 in Sec. 3.2.1. For ductless heat pumps, use value for ASHP.	
Cooling Efficiency		
	See <u>For residential units, see</u> New Construction values in Table 2-10 in Sec. <u>2.2.1.2.2.1</u> . For ductless heat pumps, use value for ASHP.	
All types	For common areas, see New Construction values in Table 3-24 in Sec. 3.2.1. For ductless heat pumps, use value for ASHP. For Chillers, see values in Table 3-29 in Sec. 3.2.3.	
Domestic WH Efficiency		
Electric	See volume and load dependent values in Table 2-47in Table 2-61 in Sec. 2.3.12.3.1	ð
	See volume and load dependent values in Table 2-132	9 <u>13</u>
Natural Gas		
	155	
Additional Water Heater Tank Insulation	None	

Formatted: Caption, Table Caption, Footnotes, No widow/orphan control

VOLUME 2: ENERGY STARResidential Measures

Whole Home

 Table 2-132: Baseline Insulation and Fenestration Requirements by Component for Buildings 4 Stories or Higher (Equivalent U-Factors)^{Source-13}

	IECC Climate Zone				
Building Element	4 A	5A	6A		
Fixed Fenestration U-Factor	0.38	0.38	0.36		
Operable Fenestration U-Factor	0.45	0.45	0.43		
Skylight U-Factor	0.50	0.50	0.50		
Roof U-Factor, Insulation entirely above roof deck	0.032	0.032	0.032		
Roof U-Factor, Metal building	0.035	0.035	0.035		
Roof U-Factor, Attic and other	0.027	0.027	0.027		
Above Grade Wall U-Factor, Mass	0.090	0.080	0.071		
Above Grade Wall U-Factor, Metal building	0.052	0.052	0.052		
Above Grade Wall U-Factor, Metal framed	0.064	0.064	0.057		
Above Grade Wall U-Factor, Wood framed and other	0.064	0.064	0.051		
Below Grade Wall C-Factor	0.119	0.119	0.119		
Floor U-Factor, Mass	0.074	0.064	0.057		
Floor U-Factor, Joist/framing	0.033	0.033	0.033		
Slab-on-grade Floors, F-Factor, Unheated	0.54	0.54	0.52		
Slab-on-grade Floors, F-Factor, Heated	0.65	0.65	0.58		

Table 2-133: Residential New Construction Baseline Building Values for Buildings 4 Stories or Higher

Data Point	Value	Source
Air Infiltration Rate	0.4 cfm/ft²	-14
Duct Insulation	Supply and return ducts and plenums shall be insulated with a minimum of R-6 insulation where located in unconditioned spaces and where located outside the building with a minimum of R-8 insulation in Climate Zone 4A and a minimum of R-12 insulation in Zones 5A and 6A. Where located within the building envelope assembly, the duct or plenum shall be separated from the building exterior or unconditioned or exempt spaces by a minimum of R-8 insulation in Climate Zone 4A and a minimum of R-8 insulation in Climate Zone 4A and a minimum of R-12 insulation in Climate Zone 4A and a minimum of R-12 insulation in Climate Zone 4A and a minimum of R-13 insulation in Climate Zone 4A and a minimum of R-14 insulation in Climate Zone 4A and a minimum of R-14 insulation in Climate Zone 4A.	15
Mechanical Ventilation	0.35 ACH but not less than 15 cfm/person	-16
Lighting	Use baseline wattage as defined in the ENERGY STAR Lighting section.	
Appliances	Use baseline values as defined in applicable TRM measure for each appliance.	
Thermostat Setback	Maintain zone-temperature down to 55-°F (13-°C) or up to 85 °F (29.°C)	7

VOLUME 2: ENERGY STARResidential Measures

Whole Home

Data Point	Value	Source			
Temperature Set Points	Heating: 70°F	7			
	Cooling: 78°F				
Heating Efficiency					
Furnace	Furnace 80% AFUE				
Gas Fired Steam Boiler	82% AFUE	8			
Gas Fired Hot Water Boiler	84%-AFUE	8			
Oil Fired Steam Boiler	85% AFUE	8			
Oil Fired Hot Water Boiler	86% AFUE	8			
Combo Water Heater	Combo Water Heater 76% AFUE (recovery efficiency)				
ASHP, GSHP, PTHP	See New Construction values in Table 2-8 in Sec. 2.2.1. For ductless heat pumps, use value for ASHP.				
Cooling Efficiency					
All types	See New Construction values in Table 2-8 in Sec. 2.2.1. For ductless heat pumps, use value for ASHP.				
Domestic WH Efficiency		•			
Electric See volume and load dependent values in Table 2-47 in Sec. 2-3-1					
Natural Gas See volume and load dependent values in Table 2-132					
Additional Water Heater None None					

Formatted Table
Formatted: Normal

Table 2-134155: Minimum Residential Baseline Gas-Fired Uniform Energy Factors Based on Storage Volume and Draw Pattern

Vr: Rated Storage Volume (gallons)	Draw Pattern	Max. Daily Hot Water Draw (gallons)	First Hour Rating (FHR) (gallons)	UEF Calculation
≥20 gal and ≤55 gal	Very Small	10	0 ≤ FHR < 18	0.3456 -(0.0020×V _r)
	Low	38	18 ≤ FHR < 51	0.5982-(0.0019×V _r)
	Medium	55	51 ≤ FHR < 75	0.6483-(0.0017×V _r)
	High	84	FHR ≥ 75	0.6920-(0.0013×V _r)
>55 gal and ≤120 gal	Very Small	10	0 ≤ FHR < 18	0.6470-(0.0006×Vr)
	Low	38	18 ≤ FHR < 51	0.7689-(0.0005×V _r)
	Medium	55	51 ≤ FHR < 75	0.7897-(0.0004×Vr)
	High	84	FHR ≥ 75	0.8072-(0.0003×V _r)
Instantaneous	Very Small	10	0 ≤ FHR < 18	0.80
≤2 gal and >50 kBTU/h	Low	38	18 ≤ FHR < 51	0.81
	Medium	55	51 ≤ FHR < 75	0.81
	High	84	FHR ≥ 75	0.81

VOLUME 2: ENERGY STARResidential Measures

Whole Home

Formatted: Caption, Table Caption, Footnotes, Keep lines together

Table 2-156: Baseline Insulation and Fenestration Requirements by Component for Buildings 4 Stories or Higher (Equivalent U-Factors)^{Source 14}

	IECC Climate Zone	
Building Element	<u>4</u>	<u>5</u>
Fixed Fenestration U-Factor	<u>0.36</u>	<u>0.36</u>
Operable Fenestration U-Factor	<u>0.45</u>	<u>0.45</u>
Skylight U-Factor	<u>0.50</u>	<u>0.50</u>
Roof U-Factor, Insulation entirely above roof deck	0.032	<u>0.032</u>
Roof U-Factor, Metal building	<u>0.035</u>	<u>0.035</u>
Roof U-Factor, Attic and other	<u>0.021</u>	<u>0.021</u>
Above Grade Wall U-Factor, Mass	<u>0.104</u>	<u>0.090</u>
Above Grade Wall U-Factor, Metal building	<u>0.052</u>	<u>0.050</u>
Above Grade Wall U-Factor, Metal framed	0.064	<u>0.055</u>
Above Grade Wall U-Factor, Wood framed and other	<u>0.064</u>	<u>0.051</u>
Below Grade Wall C-Factor	<u>0.119</u>	<u>0.119</u>
Floor U-Factor, Mass	0.057	<u>0.057</u>
Floor U-Factor, Joist/framing	0.033	<u>0.033</u>
<u>Slab-on-grade Floors, F-Factor,</u> <u>Unheated</u>	<u>0.52</u>	<u>0.52</u>
Slab-on-grade Floors, F-Factor, Heated	<u>0.62</u>	<u>0.62</u>

Table 2-157: Residential New Construction Baseline Building Values for Buildings 4 Stories or Higher

Data Point	Value	Source
Air Infiltration Rate	<u>0.3 cfm/ft²</u>	<u>15</u>
Duct Insulation	<u>Unconditioned spaces = R-6</u> Outside building = R-8 (zone 4) R-12 (zone 5)	<u>16</u>
Mechanical Ventilation	0.35 ACH but not less than 15 cfm/person	<u>17</u>
<u>Lighting</u>	Use baseline wattage as defined in the Residential LED Lighting section of the TRM (2.1.1), Table 2-2 for the residential units, and Lighting Improvement section (3.1.1) and New Construction Lighting section (3.1.2) of the TRM for common spaces	
Appliances	Use baseline values as defined in applicable TRM measure for each appliance.	
Thermostat Setback	Maintain zone temperature down to 55 °F (13 °C) or up to 85 °F (29 °C)	<u>11</u>
Temperature Set Points	Heating: 70°F Cooling: 78°F	<u>11</u>
Heating Efficiency	·	

VOLUME 2: ENERGY STARResidential Measures

Whole Home

Data Point	Value	Sourc
<u>Warm air furnace, gas</u> <u>fired</u>	<u>81% E</u> t	<u>18</u>
Warm air furnace, oil fired	<u>82% Et</u>	<u>18</u>
Boiler, hot water, gas fired	<u>82% AFUE (< 300,000 Btu/h)</u> 80% <u>Et (≥ 300,000 Btu/h and ≤ 2,500,000 Btu/h)</u> 82% E _c (>2,500,000 Btu/h)	<u>18</u>
Boiler, hot water, oil fired	<u>84% AFUE (< 300,000 Btu/h)</u> 82% Et (≥ 300,000 Btu/h and ≤ 2,500,000 Btu/h) 84% E _c (>2,500,000 Btu/h)	<u>18</u>
<u>Boiler, steam, gas fired</u>	80% AFUE (< 300,000 Btu/h) 79% Et (≥ 300,000 Btu/h)	<u>18</u>
Boiler, steam, oil fired	<u>82% AFUE (< 300,000 Btu/h)</u> <u>81% Ει (≥ 300,000 Btu/h)</u>	<u>18</u>
<u>ASHP, GSHP, PTHP</u>	For residential units, see New Construction values in Table 2-10 in Sec. 2.2.1. For ductless heat pumps, use value for ASHP. For common areas, see New Construction values in Table 3-24 in Sec. 3.2.1. For ductless heat pumps, use value for ASHP.	
Cooling Efficiency		
<u>All types</u>	For residential units, see New Construction values in Table 2-10 in Sec. 2.2.1. For ductless heat pumps, use value for ASHP. For common areas, see New Construction values in Table 3-24 in Sec. 3.2.1. For ductless heat pumps, use value for ASHP. For Chillers, see values in Table 3-29 in Sec. 3.2.3.	
Domestic WH Efficiency		
Electric	See volume and load dependent values in in Table 2-61 in Sec. 2.3.1	
<u>Natural Gas</u>	See volume and load dependent values in	<u>19</u>
	155	
Additional Water Heater	None	

Table 2-158: Minimum Commercial Baseline Gas- and Oil-Fired Uniform Energy Factors Based Fuel Type and Draw Pattern

				UEF Calculation*		
Equipment (specifications)	<u>Draw</u> <u>Pattern</u>	<u>Max. Daily</u> <u>Hot Water</u> <u>Draw</u> (gallons)	<u>First Hour</u> <u>Rating (FHR)</u> (gallons)	Equipment Manufactured Before October 6, <u>2026</u>	Equipment Manufactured After October 6, 2026	
Gas-fired storage	Very Small	<u>10</u>	<u>0 ≤ FHR < 18</u>	<u>0.2674 –(0.0009×Vr)</u>	<u>0.5374–(0.0009 × Vr)</u>	

VOLUME 2: ENERGY STARResidential Measures

Whole Home

Technical Reference Manual, Vol. 2: Residential Measures - Rev Date: Feb. 2021 State of Pennsylvania -May 2024

					UEF Calculation*	
Equipment (specifications)		<u>Draw</u> <u>Pattern</u>	<u>Max. Daily</u> <u>Hot Water</u> <u>Draw</u> (gallons)	<u>First Hour</u> <u>Rating (FHR)</u> (gallons)	Equipment Manufactured Before October 6, 2026	Equipment Manufactured After October 6, 2026
(>75 kBtu/h and		Low	<u>38</u>	<u>18 ≤ FHR < 51</u>	<u>0.5362-(0.0012×Vr)</u>	<u>0.8062-(0.0012 × Vr)</u>
<u>≤105 kBtu/h and</u> ≤ 120 gal)		Medium	<u>55</u>	<u>51 ≤ FHR < 75</u>	<u>0.6002-(0.0011×V_r)</u>	<u>0.8702–(0.0011 × V_r)</u>
	<u>3 120 gal)</u>	<u>High</u>	<u>84</u>	<u>FHR ≥ 75</u>	<u>0.6597-(0.0009×V_r)</u>	<u>0.9297–(0.0009 × V_r)</u>
OI-fired storage		Very Small	<u>10</u>	<u>0 ≤ FHR < 18</u>	<u>0.2932-(0.0015×V_r)</u>	<u>0.2932–(0.0015 × Vr)</u>
(>105 kBtu/h and		Low	<u>38</u>	<u>18 ≤ FHR < 51</u>	<u>0.5596-(0.0018×V_r)</u>	<u>0.5596-(0.0018 × Vr)</u>
<u>≤140 kBtu/h and</u> ≤ 120 gal)		<u>Medium</u>	<u>55</u>	<u>51 ≤ FHR < 75</u>	<u>0.6194-(0.0016×V_r)</u>	<u>0.6194–(0.0016 × Vr)</u>
		<u>High</u>	<u>84</u>	<u>FHR ≥ 75</u>	<u>0.6470-(0.0013×V_r)</u>	<u>0.6470–(0.0013 × Vr)</u>
Electric		Very Small	<u>10</u>	<u>0 ≤ FHR < 18</u>	<u>0.80</u>	<u>0.80</u>
instantaneous (>12 kW and	instantaneous	Low	<u>38</u>	<u>18 ≤ FHR < 51</u>	<u>0.80</u>	<u>0.80</u>
≤ 58.6 kW and	<u>Medium</u>	<u>55</u>	<u>51 ≤ FHR < 75</u>	<u>0.80</u>	<u>0.80</u>	
<u>≤2 gal)</u>		<u>High</u>	<u>84</u>	<u>FHR ≥ 75</u>	<u>0.80</u>	<u>0.80</u>
<u>* Vr is t</u>	* Vr is the rated storage volume (in gallons)					

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify installation and proper selection of default values.

SOURCES

- 1) ENERGY STAR Multifamily New Construction Program Decision Tree. (2021, May). Weblink
- 2) International Code Council. (2021). 2021 International Energy Conservation Code, Effective Use of the International Energy Conservation Code, Introduction. Weblink
- See the RESNET National Registry of Accredited Rating Software Programs for a complete 3) listing: Weblink
- Passive House Planning Package. Weblink 4)

5) WUFI Passive. Weblink

- See the ENERGY STAR Multifamily New Construction Simulation Guidelines for guidance on <u>6)</u> gualifying software: Weblink
- 4)7)Calculation of annual energy consumption of a baseline home from the home energy rating tool based on the reference home energy characteristics.
- 2) Calculation of annual energy consumption of an energy efficient home from the home energy rating tool based on the qualifying home energy characteristics
- 3) Calculation of peak load of baseline home from the home energy rating tool based on the reference home energy characteristics.
- 4) "Methodology for Calculating Cooling and Heating Energy Input-Ratio (EIR) from the Rated Seasonal Performance Efficiency (SEER OR HSPF)" (Kim, Baltazar, Haberl). April 2013 Accessed December 2018. http://oaktrust.library.tamu.edu/bitstream/handle/1969.1/152118/ESL-TR-13-04-01.pdf

VOLUME 2: ENERGY STARResidential Measures

Whole Home

Page 293

Formatted: Body Text

Formatted: Body Text

- 5)8)Calculation of peak load of energy efficient home from the home energy rating tool based on the qualifying home energy characteristics.
- 6) SEER of HVAC unit in energy efficient qualifying home.
- 9) 2015Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink
- 10) 2021 International Energy Conservation Code Table R402.1.2 Maximum Assembly U-Factors and Fenestration Requirements presents the R-Value requirements of Table R402.1.3 in an equivalent U-Factor format. Users may choose to follow Table R402.1.2 instead. 2021 IECC supersedes this table in case of discrepancy. Additional requirements per §R402 of 2021 IECC must be followed even if not listed here. Weblink
- 7)11) 2021 International Energy Conservation Code §R401-R404. <u>https://codes.iccsafe.org/content/IECC2015/chapter-4-re-residential-energy-efficiency</u> Weblink
- 12) 2021 International Residential Code, Table N1103.6.2(R403.6.2): Whole-Dwelling Mechanical Ventilation System Fan Efficacy. Weblink
- 13) Electronic Code of Federal Regulations, 10 CFR Part 430, Subpart C, §430.32, "Energy and water conservation standards and their compliance dates." Weblink.
- 8) <u>2021 International Energy Conservation Program for Consumer Products: Energy and Water Conservation Standards." <u>https://www.ecfr.gov/cgi-bin/retrieveECFR?&n=pt10.3.430#se10.3.430_132</u>. Current asCode Tables C402.4 and C402.1.4. Users may choose to follow Table C402.1.3 instead of November 13, 2018.</u>
- 9) US Federal Standards for Residential Water Heaters. Effective April 16, 2015. https://www.ecfr.gov/cgi-bin/retrieveECFR?n=sp10.3.430.c&r=SUBPART
- 10)14) 2015 International Energy Conservation Code Table R402.1.4 Equivalent U-Factors presents the R-Value requirements of Table R402.1.2 in an equivalent U-Factor format. Users may choose to follow-Table R402C402.1.2 instead. 20154. 20121 IECC supersedes this table in case of discrepancy. Additional requirements per §R402C402 of 201520121 IECC must be followed even if not listed here. https://codes.iccsafe.org/content/IECC2015/chapter-4-re-residential-energy-efficiencyWeblink
- 11) 2015 International Residential Code, Table M1507.3.3(1): Continuous Whole-House Mechanical Ventilation System Airflow Rate Requirements. https://codes.iccsafe.org/content/IRC2015/chapter-15-exhaust-systems
- 12) EPA ENERGY STAR Multifamily New Construction Program Decision Tree, Version 1.4. <u>https://www.energystar.gov/sites/default/files/asset/document/MFHR%20Flowchart_v1%204_</u> <u>Mar2020.pdf</u>
- 13) 2015 International Energy Conservation Code Table C402.1.4 Equivalent U-Factors presents the R-Value requirements of Table C402.1.3 in an equivalent U-Factor format. Users may choose to follow Table C402.1.3 instead. 2015 IECC supersedes this table in case of discrepancy. Additional requirements per §C402 of 2015 IECC must be followed even if not listed here. <u>https://codes.iccsafe.org/content/IECC2015/chapter-4-ce-commercial-energyefficiency.</u>
- 14) 2015 International Energy Conservation Code §C403.2.9. https://codes.iccsafe.org/content/IECC2015/chapter-4-ce-commercial-energy-efficiency.
- 15) <u>20152021</u> International Energy Conservation Code §C402.5. <u>https://codes.iccsafe.org/content/IECC2015/chapter-4-ce-commercial-energy-efficiency-2</u> Weblink

VOLUME 2: ENERGY STARResidential Measures

Whole Home

Page 294

Formatted: Don't allow hanging punctuation, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers, Font Alignment: Baseline

16) 20152021 International Energy Conservation Code §C403.12.1. Weblink

16)17) 2021 International Mechanical Code, Table 403.3.1.1: Minimum Ventilation Rates. https://codes.iccsafe.org/content/IMC2015/chapter-4-ventilation.Weblink

18) 2021 International Energy Conservation Code §C403.3.2. Weblink

19) Electronic Code of Federal Regulations, 10 CFR Part 431, Subpart G, §431.110. Weblink

VOLUME 2: ENERGY STARResidential Measures

Whole Home

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
May 2024				

2.7.2 ENERGY STAR MANUFACTURED HOMES

Target Sector	Manufactured homes			
Measure Unit	Variable			
Measure Life	15 Years ^{Source 131}			
Vintage	New Construction			

ELIGIBILITY

T

ELIGIBILITY

This measure applies to manufactured homes compliant to and certified by EPA's ENERGY STAR Manufactured Home'Homes program standard, Version 3.

ALGORITHMS

Energy and peak demand savings in the ENERGY STAR Manufactured Homes programsprogram will be calculated by comparing outputs of energy models of the as-designed home to a minimally code-compliant baseline home.

Modeled energy and peak demand savings shall be produced by a RESNET accredited software program.⁶⁹ Source 2

For ENERGY STAR Manufactured Homes, the baseline building thermal envelope and/or system characteristics shall be based on the current Manufactured Homes Construction and Safety Standards (HUD Code). <u>Source 3</u> For this measure, a <u>"manufactured home "means a structure, transportable in one or more sections, which in the traveling mode, is eight body feet or more in width or forty body feet or more in length, or, when erected on site, is three hundred twenty or more square feet, and which is built on a permanent chassis and designed to be used as a dwelling with or without a permanent foundation when connected to the required utilities, and includes the plumbing, heating, air conditioning, and electrical systems contained therein." <u>Source 443</u></u>

Energy savings will be calculated from the software output using the following algorithm:

Energy savings of the qualified home (kWh/yr)

 $\Delta kWh = kWh_{base} - kWh_{q}$

Whole Home

Peak-If the modeling software provides building-level outputs of hourly energy consumption (an 8760 load profile), then coincident peak demand savings are based on reduction in peak cooling loads. The RESNET accreditedmay be calculated by averaging the hourly energy savings during the TRM defined peak demand time period.

If the modeling software does not effer output to allow calculationsprovide building-level outputs of hourly energy consumption, the system peak electric demand savings for end uses other than cooling equipment, which is assumed to be active during the peak period. shall be calculated from the software's calculated annual energy savings and the following algorithm:

⁹⁰ See the RESNET National Registry of Accredited Rating Software Programs for a complete listing: http://www.resnet.us/professional/programs/energy_rating_software

VOLUME 2: ENERGY STARResidential Measures

Page 296

Formatted: Body Text

Formatted: Body Text

Coincident system peak electric demand savings (kW)

 $\Delta kW_{summer peak} = \Delta kWh \times ETDF_{summer}$

 $\Delta kW_{winter peak} = \Delta kWh \times ETDF_{winter}$

Additional demand savings may be claimed under this measure, but these additional demand savings must be calculated using the algorithms from the applicable measure elsewhere in the TRM. For example, to claim demand savings from a refrigerator, demand savings for that end use must be calculated using the demand savings algorithms in Sec. <u>2.4.1 ENERGY STAR</u> Refrigerators.<u>2.4.1 ENERGY STAR</u> Refrigerators.<u>2.4.1 ENERGY STAR</u> Refrigerators.<u>2.4.1 ENERGY STAR</u> require additional demand savings may require additional EDC data collection than required to generate the energy model.

DEFINITION OF TERMS

The system peak electric demand savings for will be calculated from the software output with the following algorithm:

Peak demand of the baseline home

EER_{base}

Peak demand of the qualifying home $= \frac{PL_q}{EER_q}$

Coincident system peak electric demand savings (kW)

<u>AKW_{peak} = (Peak demand of the baseline home - Peak demand of the qualifying home)</u>

DEFINITION OF TERMS

VOLUME 2: ENERGY STARResidential Measures

Whole Home

Formatted: Normal

Term	Unit	Value	Sources
<i>kWh_{base}</i> , Estimated annual energy consumption of the baseline home	₩₩	Software Calculated	4
<i>kWhq</i> , Estimated annual energy consumption of the qualifying home	k₩h	Software Calculated	4
PL _{br} Estimated peak cooling load of the baseline home	kBTU/h	Software Calculated	4
PL _{qr} Estimated peak cooling load for the qualifying home.	kBTU/h	Software Calculated	4
<i>EER</i> _{b7} Energy Efficiency Ratio of the baseline unit.	BTU ₩•h	EDC Data Gathering Default: 0.0228 × <u>SEER_{base}² +</u> 1.1522 × SEER _{base}	2
EERq, Energy Efficiency Ratio of the qualifying unit.	BTU ₩•h	EDC Data Gathering Default: $-0.0228 \times \frac{5EER_{ee}^2}{+1.1522} \times \frac{5EER_{ee}}{+1.1522}$	2
SEER _b , Seasonal Energy Efficiency Ratio of the baseline unit.	BTU ₩・h	13 14 (ASHP)	3
SEER _q , SEER associated with the HVAC system in the qualifying home.	BTU W · h	EDC Data Gathering	4
V_{μ} , Rated storage volume of baseline water heater	gallons	EDC Data Gathering	EDC Data Gathering
Model inputs for baseline home	Varies	See Table 2-134133	

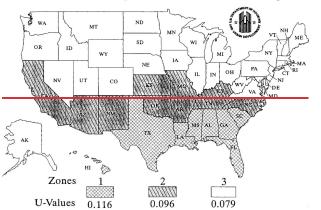
Table 2-159: ENERGY STAR : Terms, Values, and References for Manufactured Homes-References

The HUD Code defines required insulation levels as an average envelope U₀ factor per zone. In Pennsylvania zone 3 requirements apply with a required U₀ factor of 0.079. This value cannot be directly used to define a baseline envelope R-values because the U₀-factor is dependent on both the size of the manufactured homes and insulating levels together. However, because manufactured homes are typically built to standard dimensions baseline U-factors can be estimated with reasonable accuracy.

Figure <u>kWhbase</u> , Estimated annual energy consumption of the baseline home	<u>kWh</u>	Software Calculated	
<u><i>kWh</i>_q</u> , Estimated annual energy consumption of the gualifying home	<u>kWh</u>	Software Calculated	
ETDFpeek, summer, Summer energy to demand factor	<u>kW/kWh</u>	<u>0.0001376</u>	<u>4</u>
ETDF _{peak.winter} , Winter energy to demand factor	<u>kW/kWh</u>	<u>0.0001967</u>	<u>4</u>
Model inputs for baseline home	<u>Varies</u>	See Table 2-160 and Table 2-161	
Model inputs for ENERGY STAR home	<u>Varies</u>	See Table 2-162 and Table 2-163	

Federal energy code for manufactured homes provides both a prescriptive and a performancebased path to meet required insulation levels. Table 2-160 and presents the minimum requirements

VOLUME 2: ENERGY STARResidential Measures


Whole Home

for manufactured homes that are manufactured on or after July 1, 2025. Additional federal energy code requirements and TRM assumed baseline values are presented in Table 2-161.

 Table
 2-6:
 Ue160:
 Building
 Thermal
 Envelope
 Requirements
 for
 Code-Compliant
 Baseline

 Requirements⁹¹Home^{Source 5}

U/O Value Zone Map for Manufactured Housing

The HUD Code-required insulation levels can be expressed as a set of estimated envelope parameters. Using typical manufactured home sizes, these values are included below along with federal standard baseline parameters below in Table 2-134133.

Single-section home	Multi-section home			
<u>19</u>	<u>21</u>			
<u>22</u>	<u>38</u>			
<u>22</u>	<u>30</u>			
<u>0.35</u>	<u>0.30</u>			
<u>0.55</u>	<u>0.55</u>			
<u>0.40</u>	<u>0.40</u>			
Prescriptive Requirements – Alternatives to R-Value Requirements				
<u>0.061</u>	<u>0.037</u>			
<u>0.068</u>	<u>0.063</u>			
<u>0.049</u>	0.032			
OR Performance Requirements				
<u>0.074</u>	<u>0.055</u>			
	22 22 0.35 0.55 0.40 ves to R-Value Requirements 0.061 0.068 0.049			

Formatted: Centered

Formatted: Font: Not Bold

⁹¹–24 CFR Part 3280-MANUFACTURED HOMES CONSTRUCTION AND SAFETY STANDARD (http://www.gpo.gov/fdsys/pkg/CFR-2013-title24-vol5/pdf/CFR-2013-title24-vol5-part3280.pdf)

VOLUME 2: ENERGY STARResidential Measures

Whole Home

Table 2-161: ENERGY STAR Manufactured Homes -	User Defined Reference:	Values a	and References for	or Code-
Compliant Baseline Home				

Data Point	Value ⁹²	Source
Walls	U-factor 0.090	6, 7
Ceilings	U-factor 0.045	6, 7
Floor	U-factor 0.045	6, 7
Windows	U-factor 0.59	6, 7
Doors	U-factor 0.33	6, 7
Air Infiltration Rate	10 ACH50	6
Duct Leakage	Approved model package default	6
Duct Insulation	Approved model package default	6
Duct Location	Supply 100% manufactured home belly, Return 100% conditioned space	8
Data Point	Value	Source
Air Infiltration Rate	<u>5 ACH50</u>	<u>6</u>
Mechanical Ventilation	0.035 CFM/ft ² Exhaust	7
Lighting	Use baseline wattage as defined in the ENERGY STAR Lighting section.	
Mechanical Ventilation Fan Efficacy	HRV or ERV = 1.2 CFM/W Inline supply/exhaust: 3.8 CFM/W Other exhaust < 90 CFM = 2.8 CFM/W Other exhaust ≥90 CFM = 3.5 CFM/W Air-handler that is integrated to tested and listed HVAC equipment = 1.2 CFM/W	<u>8</u>
Duct Leakage	4 CFM25 / 100 ft ² conditioned floor area	<u>8</u>
Lighting	Use baseline wattage as defined in the Residential LED Lighting section of the TRM (2.1.1), Table 2-2.	
Appliances	Use baseline values as defined in applicable TRM measure for each appliance.	
Thermostat Setback	Non-Programmable thermostat	6
Temperature Set Points	H eating: 70°F Cooling: 78°F	10
Thermostat Type	Programmable, with ability to maintain zone temperature down to 55 °F (13 °C) or up to 85 °F (29 °C)	<u>9</u>
Temperature Set Points	<u>Heating: 70°F</u> <u>Cooling: 78°F</u>	<u>9</u>
Heating Efficiency		
Furnace	80% AFUE	3

92-Single and multiple family as noted.

VOLUME 2: ENERGY STARResidential Measures

Whole Home

I

Data Point	Value ⁹²	Source
Gas Fired Hot Water Boiler	84 % AFUE	3
Oil Fired Steam Boiler	85% AFUE	3
Oil Fired Hot Water Boiler	86% AFUE	3
Combo Water Heater	76% AFUE (recovery efficiency)	3
Electric Resistance	3.412 HSPF	7
ASHP, GSHP, PTHP, Ductless heat pump	See New Construction values in Table 2-8 in Sec. 2.2.1. For ductless heat pumps, use value for ASHP.	
Furnace	<u>80% AFUE</u>	<u>10</u>
Gas Fired Steam Boiler	<u>82% AFUE</u>	<u>10</u>
<u>Gas Fired Hot Water</u> Boiler	84% AFUE	<u>10</u>
Oil Fired Steam Boiler	<u>85% AFUE</u>	<u>10</u>
Oil Fired Hot Water Boiler	<u>86% AFUE</u>	<u>10</u>
Combo Water Heater	76% AFUE (recovery efficiency)	<u>10</u>
Electric Resistance	<u>3.412 HSPF</u>	
ASHP, GSHP, PTHP, Ductless heat pump	See New Construction values in Table 2-10 in Sec. 2.2.1	<u>AEPS</u> Application; EDC Data Gathering
Cooling Efficiency		
All types	See New Construction values in Table 2-8 in Sec. 2.2.1. For ductless heat pumps, use value for ASHP.	
<u>All types</u>	See New Construction values in Table 2-10 in Sec. 2.2.1	AEPS Application: EDC Data Gathering
Domestic WH Efficiency		
Electric	See volume and load dependent values in <u>Table 2-47Table</u> 2 <u>-</u> 61 in Sec. 2.3.1 2.3.1	41
	See volume and load dependent values in Table 2-132	44
Natural Gas		
	155 in Sec. 2.7.1 2.7.1	
Additional Water Heater Tank Insulation	None	12
Additional Water Heater Tank Insulation	None	

Formatted Table
Formatted: Normal

The ENERGY STAR Manufactured Homes program provides a list of requirements for certified homes to meet. Below is a summary of those requirements. Source 11

VOLUME 2: ENERGY STARResidential Measures

Whole Home

Table 2-162: Building Thermal Envelope Requirements for ENERGY STAR Manufactured Home Source 11

	Single-section home	Multi-section home	
Prescriptive Requirements			
Exterior wall insulation R-value	<u>R-21</u>		
Exterior ceiling insulation R-value	<u>R-38</u>		
Exterior floor insulation R-value	<u>R-33</u>		
Window U-factor	0.30		
Door U-factor	0.30		
OR Performance Requirements			
Single-section overall thermal transmittance (U ₀)	<u>0.057</u> <u>0.054</u>		

Additionally, the ENERGY STAR Manufactured Homes program requires that ducts in floor cavities shall be enclosed by floor insulation and that crossover ducts, ducts in unconditioned attics, and other ducts in unconditioned space shall have at least R-8 duct insulation.

For only multi-section manufactured homes, ENERGY STAR requires additional energy efficiency measures to the required measures listed above. These additional measures are each assigned a point value. The points must sum to at least the program minimum total of 10 points. Table 2-163 presents the point values for climate zone 3.

Table 2-163: ENERGY STAR Manufactured Homes Program Optional Measure Point Values for Multi-Section Homes

Energy Efficiency Measure		Point Value		
Mandatory requirements				
All requirements in Table 2-162		2.0		
Optional Envelope Improvements				
Coefficient of heat transmission $(U_0) \leq 0$	<u>).049</u>	<u>4.5</u>		
Optional Heating and Cooling Equip	ment			
Heat pump ≥ 7.5 HSPF2 / 14.3 SEER2		<u>17.0</u>		
Gas / propane Furnace ≥ 90 AFUE		5.5		
Gas / propane Furnace ≥ 95 AFUE		7.5		
Gas / propane Furnace ≥ 96 AFUE		<u>8.5</u>		
Optional Water Heater Equipment				
Gas / Propane Water Heater ≥ 0.93 UE	<u>F</u>	<u>0.5</u>		
Heat pump water heater ≥ 2.20 UEF	With electric furnace, electric strip, or	<u>1.5</u>		
Heat pump water heater ≥ 3.30 UEF	electric baseboard primary heating	<u>1.5</u>		
Heat pump water heater ≥ 2.20 UEF With all other primary space heating		<u>7.5</u>		
Heat pump water heater ≥ 3.30 UEF systems		<u>9.0</u>		
Optional Lighting, Appliances, and Water Fixtures				
LED lighting installed in all permanently installed fixtures		<u>0.5</u>		
Bathroom faucets \leq 1.5 gallons per minute (gpm) and showerheads \leq 2.0 gpm		<u>0.5</u>		
ENERGY STAR certified refrigerator and dishwasher		<u>0.5</u>		
ENERGY STAR certified clothes washer		0.5		

EVALUATION PROTOCOLS

VOLUME 2: ENERGY STARResidential Measures

Whole Home

Formatted: Normal

The most appropriate evaluation protocol for this measure is verification of installation coupled with EDC data gathering.

SOURCES

- Calculation of annual energy and peak load consumption of a baseline home from the home energy rating tool based on the reference home energy characteristics.
- 2) "Methodology for Calculating Cooling and Heating Energy Input-Ratio (EIR) from the Rated Seasonal Performance Efficiency (SEER OR HSPF)" (Kim, Baltazar, Haberl). April 2013 Accessed December 2018. <u>http://oaktrust.library.tamu.edu/bitstream/handle/1969.1/152118/ESL-TR-13-04-01.pdf</u>
- 1) Hewes, T. and Peeks, B. (2013, February). "Northwest Energy Efficient Manufactured Housing Program Specification Development". NREL. Weblink. Note: this reference provides measure lives of major home components and not a single home-wide measure life. The ENERGY STAR Manufactured Home program's requirements and optional measures focus on the building's envelope and HVAC system, which have measure lives of 45 years and 20 years, respectively. Therefore, the aggregate life for this measure is considered to be 30 years. Note that PA Act 129 savings can be claimed for no more than 15 years, thus the 15 year measure life.
- 2) See the RESNET National Registry of Accredited Rating Software Programs for a complete listing: Weblink.
- 3) Electronic Code of Federal Regulations, 24 CFR Part 3280, "Manufactured Home Construction and Safety Standards." Weblink
- 4) Wilson et al. 2021. End-Use Load Profiles for the U.S. Building Stock: Methodology and Results of Model Calibration, Validation, and Uncertainty Quantification. NREL/TP-5500-80889. Weblink
- 5) Electronic Code of Federal Regulations, 10 CFR Part 460, §460.102. "Building Thermal envelope requirements." All values shown are applicable to climate zone 3, which includes all of Pennsylvania. Weblink.
- 6) U.S. Department of Energy. Energy Conservation Program. Energy Conservation Standards for Manufactured Housing. Effective August 1, 2022. Weblink
- 7) Electronic Code of Federal Regulations, 24 CFR Part 3280, Subpart B, §3280.103(b). Weblink.
- 8) 2021 International Residential Code, Table N1103.6.2(R403.6.2): Whole-Dwelling Mechanical Ventilation System Fan Efficacy. Weblink
- 9) Electronic Code of Federal Regulations, 10 CFR Part 460, §460.202. "Thermostats and controls." Weblink.
- 3)10) Electronic Code of Federal Regulations, 10 CFR Part 430, Subpart C, §430.32, "Energy Conservation Program for Consumer Products: Energy and Water Conservation Standards." <u>https://www.ecfr.gov/cgi-bin/retrieveECFR?&n=pt10.3.430#se10.3.430_132Weblink</u>. Current as of November 13, 2018.
- 4) SEER of HVAC unit in energy efficient qualifying home.
- Straub, Mary and Switzer, Sheldon. "Using Available Information for Efficient Evaluation of Demand Side Management Programs". Study by BG&E. The Electricity Journal. Aug/Sept, 2011. p. 95. <u>http://www.sciencedirect.com/science/article/pii/S1040619011001941</u>
- 6) ENERGY STAR QUALIFIED MANUFACTURED HOMES-Guide for Retailers with instructions for installers and HVAC contractors / June 2007 / (<u>http://www.research-alliance.org/pages/es_retail.htm</u>)

VOLUME 2: ENERGY STARResidential Measures

Whole Home

- 7) Electronic Code of Federal Regulations, 24 CFR Part 3280, Manufactured Home Construction and Safety Standards. <u>https://www.ecfr.gov/cgi-bin/retrieveECFR?&n=pt24.5.3280</u> Accessed November 16, 2018.
- 8) Standard manufactured home construction
- 9) Not a requirement of the HUD Code.
- 10) 2015 International Energy Conservation Code §R401-R404.
- 11) US Federal Standards for Residential Water Heaters. Effective April 16, 2015. https://www.ecfr.gov/cgi-bin/retrieveECFR?n=sp10.3.430.c&r=SUBPART
- 12) No requirement in code or federal regulation.
- 13) NREL, Northwest Energy Efficient Manufactured Housing Program Specification Development, T.Huges, B. Peeks February 2013. http://www.nrel.gov/docs/fy13osti/56761.pdf

VOLUME 2: ENERGY STARResidential Measures

Whole Home

11) ENERGY STAR Manufactured New Homes National Program Requirements. Version 3 (Rev. 01). Weblink

VOLUME 2: ENERGY STARResidential Measures

Whole Home

2.7.3 HOME ENERGY REPORTS

Target Sector	Residential-Establishments	
Measure Unit	Household	
Measure Life	Specified in protocol	
Vintage	Retrofit	

Home Energy Report (HER) programs encourage conservation through greater awareness of consumption patterns and engagement with EDC resources to help reduce usage and lower bills. HER program vendors provide participants with account-specific information that allows customers to view various aspects of their energy use over time. Behavioral reports compare energy use of recipient homes with clusters of similar homes and provide comparisons with other efficient and average homes. This so-called "neighbor" comparison is believed to create cognitive dissonance in participants and spur them to modify their behavior to be more efficient. Reports also include a variety of seasonally appropriate energy-saving tips that are tailored for the home and are often used to promote other EDC program offerings. Historically, HERs have been largely issued on paper via the USPS, but EDCs and their vendors are increasingly moving toward email reports and digital portals to promote increased engagement and conserve resources. This protocol applies to residential HER programs regardless of delivery mode.

A growing list of evaluation studies, including analyses of HER persistence by the Phase II and Phase III Pennsylvania Statewide Evaluation team, have observed energy savings among HER recipient households for two years after HER exposure was discontinued. The persistence of HER savings has implications for calculation of first-year energy savings and cost-effectiveness. This protocol provides guidance to EDCs and their evaluation contractors for calculating first-year incremental savings and lifetime savings from HER programs using a multi-year measure life with "decay" perspective. This multi-year measure life for HER programs.

Because Act 129 goals are based on first-year incremental savings, accounting for persistence will yield reducedreduces first-year compliance savings from EDC programs that continue to expose the same homes to HER messaging year after year.

The core assumption in this protocol is an annual decay rate of 31.3%. To illustrate the <u>decay</u> concept-of decay, consider a hypothetical cohort of 20,000 treatment group homes that have been receiving HERs for two years. Table 2-135134 Table 2-164 shows the average kWh savings per treatment group home by year as measured through a billing analysis of the randomized control trial design.

Table 2-164: Home Energy Report Persistence Example

Year	Avg. kWh Savings per Home
1	150
2	250

Formatted Table

For Year 3, the EDC can choose to either continue issuing HERs to the treatment group homes or stop treating them. If the EDC stops issuing HERs to the treatment group in Year 3, little or no cost will be incurred. If the EDC continues issuing HERs to the treatment group in Year 3, a full year of

VOLUME 2: ENERGY 3	STARResidential Measures	
--------------------	--------------------------	--

Whole Home

Page 306

Formatted Table

program delivery costs will be incurred. The key question is "what are the incremental energy savings associated with the decision to mail HERs in Year 3?" <u>Table 2-165 shows the components</u> of this calculation.

Table 2-165: Calculation of Avoided Decay and Incremental Annual Compliance Savings

Year	Avg. kWh Savings per Home	Avg. kWh Savings Absent Year 3 Treatment	Avg. kWh Savings with Year 3 Treatment
1	150		
2	250		
3		250×(1-0.313/2) = 210.9	260

In this hypothetical example the incremental first-year savings achieved by the HER program in Year 3 is 49.1 kWh (260 - 210.9). This is the sum of two separate factors.

- Avoided Decay = 39.1 kWh. The avoided decay is the difference between the Year 2 savings
 and the assumed annual rate of decay. Because the decay rate is assumed to be linear the
 average amount of decay over the year is equal to half of the decay at the end of the year. The
 210.9 kWh value in Table 2-136135 Table 2-165 is an estimate of what would have happened
 absent any further program effort. Some kWh savings persist, but at a lower rate than observed
 in Year 2, when households were actively receiving HER messaging. By continuing to issue
 HERs in Year 3, the EDC avoids this savings decay.
- Change in the Average Treatment Effect = 10 kWh. The "Avg. kWh Savings with Year 3 Treatment" column of Table 2-136135 Table 2-165 shows an average kWh savings value of 260 kWh per household. This is an increase of 10 kWh over the Year 2 measurement of 250 kWh per household. Many HER programs show growth in the average rate of savings over time as participants continue to respond to the messaging. This component of the calculation of the calculation could also be negative if the Year 3 savings measurement was smaller than the Year 2 measurement. HER savings can fluctuate based on weather and the measurement is inherently noisy because of the small effect size.

The following algorithms and default assumptions provide guidance on calculating and reporting compliance savings from HER programs in Phase $\frac{1442}{2}$ of Act 129. Several assumptions that straddle technical and policy considerations are listed below.

- 1) The change in perspective from a 1-year EUL to a multi-year with decay approach creates an issue of unaccounted for lifetime savings from Phase III HER programs. Specifically, HER cohorts that were active in PY12 will be assumed to have persistent savings in PY13 even though persistent savings were not accounted for in Phase III TRC calculations. This is unavoidable with a change in accounting methods and best handled at the beginning of a Phase IV. It has no bearing on Phase III compliance savings.
- 2)1) The assumed annual rate of decay for Act 129 HER programs is based on an analysis of mature programs where treatment group homes received HER messaging for multiple years. Studies have also consistently shown that it takes time for HER savings to mature. For Phase ↓√ of Act 129, new HER cohorts will continue to assume a 1-year EUL during the first year of HER exposure. The persistence and decay assumptions outlined in this protocol will take effect for Year 2 of exposure. Years of exposure are mapped to Act 129 program years. If a cohort begins receiving HER messaging in December (halfway through the program year), that program year is still Year 1, and the following program year is Year 2 with regard to application of persistence assumptions.

VOLUME 2: ENERGY STARResidential Measures

Whole Home

Page 307

Field Code Changed

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
May 2024				

- 3)2)Act 129 HER programs should always be delivered as a randomized control trial (RCT), but EDCs have significant flexibility in designing new HER cohorts. New cohorts can be composed of a mix of past HER recipients and control group homes or non-recipients. Randomization should ensure a balanced mix across the new treatment and control group and the billing analysis will capture the savings associated with exposing the new treatment group to HERs, but not the control group. When a new cohort is created, accounting always begins at Year 1, even if some of the treatment and control group homes have received HER messaging previously.
- 4)3)Over time, households close their EDC accounts. The most common reason is because the occupant is moving, but other possibilities exist. This account "churn" happens at a fairly predictable rate for an EDC service territory and can be forecasted with some degree of certainty. Calculating persistent HER savings in future program years requires both an assumption of the savings decay rate and an assumption of the churn rate.
- 5)4)Home Energy Reports are expected to generate <u>summer and winter</u> peak demand savings. The Behavioral Conservation Programs protocol of the Pennsylvania Evaluation Framework provides detailed guidance regarding measurement techniques for peak demand savings. Peak demand (kW) savings are presumed to follow the same persistence logic as energy (kWh) savings with respect to first-year incremental compliance and lifetime impacts.

ALGORITHMS

The equations for incremental first-year savings from HER programs are:

Year 1 and 2 of	HER Exposure:	Formatted: Font: Not Bold
∆ <i>kWh</i> ¥	$= ATE_{y} * Treatment Accounts_{y} * Days_{y}$	
FYSATE _y	$= ATE_{y}$	
ΔkWh_Y	= ATE _y * Treatment Accounts _y * Days _y	
FYSATE _y	$= ATE_y$	

Where ATE_y is the average daily savings determined through a billing regression analysis, minus the average daily uplift (kWh/day). The uplift of the HER program is determined by examining the cumulative difference in other EE program savings between the treated population and the control group since the inception of the HER cohort. In years 1 and 2 of HER exposure the ATE_y and FYSATE_y terms are identical.

If an EDC elects to treat an HER cohort for a 3rdthird year or beyond the equation for incremental first-year savings is:

Year 3 of HER Exposure:		 Formatted: Font: Not Bold
FYSATE _y	$= ATE_{y} - \sum_{x=1}^{x=1} FYSATE_{y-x} - FYSATE_{y-x} * Decay * (X-0.5)$	
∆ <i>kWh</i> ¥	— = FYSATE_y * Treatment Accounts_y * Days_y	
FYSATE _y	$= ATE_y - \sum_{x=1}^{x=1} FYSATE_{y-x} - FYSATE_{y-x} * Decay * (X - 0.5)$	
ΔkWh_Y	= FYSATE _y * Treatment Accounts _y * Days _y	

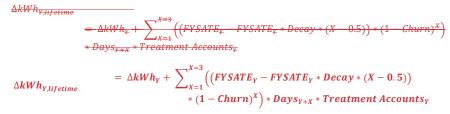
VOLUME 2: ENERGY STARResidential Measures

Whole Home

Year 4 of HER Exposure:

FYSATE _y	$= ATE_{y} - \sum_{x=1}^{x=2} FYSATE_{y=x} - FYSATE_{y=x} * Decay * (X - 0.5)$
∆ <i>kWh</i> ⊻	= FYSATE _y * Treatment Accounts _y * Days _y
FYSATE _y	$= ATE_{y} - \sum_{x=1}^{x=2} FYSATE_{y-x} - FYSATE_{y-x} * Decay * (X - 0.5)$
ΔkWh_Y	= FYSATE _y * Treatment Accounts _y * Days _y

Year 5 and Beyo	ond of HER Exposure:
FYSATE _y	$= ATE_{y} - \sum_{x=1}^{x=3} FYSATE_{y=x} - FYSATE_{y=x} * Decay * (X - 0.5)$
∆ <i>kWh</i> ¥	
FYSATE _y	$= ATE_{y} - \sum_{x=1}^{x=3} FYSATE_{y-x} - FYSATE_{y-x} * Decay * (X - 0.5)$
ΔkWh_Y	$= FYSATE_y * Treatment Accounts_y * Days_y$


Where $FYSATE_y$ is the average daily savings attributable to HERs delivered in year Y and $FYSATE_{y-x}$ is the average daily savings attributable to HERs delivered in year Y-X.

The equations for calculating lifetime savings from a program year of HER exposure are given below. For Year 1, the lifetime savings are equal to the first-year savings. For the Year 2 and beyond of HER exposure the lifetime savings include both the savings measured at the meter via billing analysis and persistent savings from future program years. The equations below do not include the discount rate, but EDC evaluation contractors should use an approved discount rate to calculate the net present value of future savings when performing the TRC test.

Year 1 of HER Exposure (where Y = 1):

∆ kWh_{Y,lifetime}	= ATE _Y * Treatment Accounts _Y * Days _Y -
$\Delta kWh_{Y,lifetime}$	$= ATE_{Y} * Treatment Accounts_{Y} * Days_{Y}$

Year 2 and Beyond of HER Exposure (where Y >= 2):

For year two and onwards, the lifetime savings are simply a function of the decay rate and customer churn assumption, accounted for the current year and across the three future years where savings persist. In this case, it may be helpful to consider the sum in the formula above a scalar that adjusts

VOLUME 2: ENERGY STARResidential Measures

Whole Home

Page 309

Formatted: Font: Not Bold

that program year's savings. For example, in a hypothetical program with 200 kWh of total incremental annual savings in its second year of program delivery, the lifetime savings associated with the second year of program year delivery would be 200 * 2.44 = 488kWh488 kWh, where the 2.44 factor is the ratio of the lifetime savings to the incremental first-year savings. The 2.44 approximation factor is valid for programs that rely on the default decay and churn assumptions. EDCs that use the 'EDC Data Gathering' option for one or both of these parameters would need to calculate the appropriate lifetime:first-year ratio for the parameter values selected.

DEFINITION OF TERMS

Table 2-166: Terms, Values, and References for HER Persistence Protocol

Parameter	Unit	Value	Source
ΔkWh_{Y} , First-year compliance kWh savings for the cohort being evaluated in the program year being analyzed	Total Incremental Annual kWh Savings of an HER cohort	EDC Data Gathering	EDC Data Gathering
$\Delta kWh_{Y,lifetime}$ Lifetime kWh savings for the cohort being evaluated attributable to the program year being analyzed. Inclusive of ΔkWh_Y	Total Lifetime kWh Savings of an HER cohort	EDC Data Gathering	EDC Data Gathering
ATE _Y Average Treatment Effect determined via regression analysis of billed consumption, net of Daily Uplift	kWh/day per household	EDC Data Gathering	EDC Data Gathering
$FYSATE_Y$ First-Year Savings Average Treatment Effect attributable to HERs delivered in year Y	kWh/day per household	EDC Data Gathering	EDC Data Gathering
Treatment Accounts _Y , number of active homes in the treatment group in year Y.	Households (EDC account number)	EDC Data Gathering	EDC Data Gathering
$Days_{Y}$, average number of post- treatment days in the analysis period per household	Days	EDC Data Gathering	EDC Data Gathering
Decay, Annual rate of decay of the HER		Default: 31.3%	1
effect when exposure is discontinued	-	EDC Data Gathering	
<i>Churn,</i> Average annual reduction in		Default: 6%	0
participating households due to account closures, move-out etc.	-	EDC Data Gathering	2

Formatted Table

EVALUATION PROTOCOLS

This protocol deals with the measure life and persistence aspects of HER programs. Chapter 6.1 of the Pennsylvania Evaluation Framework provides detailed guidance on other aspects of HER evaluation protocols.

SOURCES

- 1) Pennsylvania Statewide Evaluation Team. Residential Behavioral Program Persistence Study. <u>http://www.puc.state.pa.us/Electric/pdf/Act129/SWE_Res_Behavioral_Program-Persistence_Study_Addendum2018.pdfWeblink</u>
- 2)—SWE Analysis of average annual churn rate among Phase III EDC cohorts.

VOLUME 2: ENERGY STARResidential Measures

Whole Home

<u>cohort</u>

VOLUME 2: ENERGY STARResidential Measures

Whole Home

2.8 MISCELLANEOUS

2.8.1 VARIABLE SPEEDENERGY STAR POOL PUMPS

Target Sector	Residential Establishments	
Measure Unit	Pool Pumps	
Measure Life	<u>10 years^{Source 1}</u>	
Vintage	Replace on Burnout, New Construction	

High efficiency pump installations typically employ variable frequency drives and are generally configured to run 24 hours per day at low speed. To achieve adequate filtering the pump must run for longer to compensate for a lower speed/flow. However, this still saves energy since pump power consumption increases with the cube of speed. Consequently, load-shifting of continuous VFD's to reduce demand is not recommended since energy consumption nearly doubles with two turnovers in 20 hours versus 24.

ELIGIBILITY

This measure is for the purchase and installation of an ENERGY STAR v3.1 pool pump. The target sector primarily consists of single-family residences.

ALGORITHMS

This protocol documents the energy savings attributed to various configurations of ENERGY STAR pool pumps

 $= \frac{Volume \times Turnover \times Days}{1,000} \times \left(\frac{1}{WEF_{base}} - \frac{1}{WEF_{ee}}\right)$ ΔkWh

$$\Delta kW_{summer peak} = \left(\frac{\Delta kWh}{(HOU \times Days)} \right) \times CF_{summer}$$

 $\Delta kW_{winter peak} = 0$

DEFINITION OF TERMS

Table 2-167: Terms, Values, and References for Variable Speed Pool Pumps

Term	<u>Unit</u>	<u>Values</u>	Source
Days . Pool pump days of operation per year	days yr	EDC Data Gathering Default: Table 2-169	2
WEF _{base} Baseline weighted energy factor of pool pump for Curve C flow.	gallons W · h	EDC Data Gathering Default: Table 2-168 or Table 2-169	<u>3</u>
WEFee, Weighted energy factor of ENERGY STAR pool pump for Curve C flow.	$\frac{gallons}{W \cdot h}$	EDC Data Gathering Default: Table 2-168 or Table 2-169	<u>4</u>
<u>hhp</u> , hydraulic horsepower is a measure of pump output rather than pump input	<u>745.7 W</u>	EDC Data Gathering Default: Table 2-168 or Table 2-169	2
VOLUME 2: ENERGY STARResidential Measures	5		
Miscellaneous			Page 312

Formatted: Normal, Space After: 2 pt, Tab stops: 6", Right

Formatted: Font: Arial Narrow, 1 pt

Formatted: Font: Arial, Not Bold, No underline

Miscellaneous

Formatted

Term	<u>Unit</u>	<u>Values</u>	Source
Volume, pool capacity	<u>Gallons</u>	EDC Data Gathering Default: Table 2-169	<u>5</u>
Turnover, number of times the full volume of the pool is filtered each day	Pool volumes day	EDC Data Gathering Default: Table 2-169	<u>6,9</u>
HOU, Hours of operation per day	hours day	EDC Data Gathering Default=24	<u>2</u>
CF _{summer} , Coincidence factor	<u>None</u>	EDC Data Gathering Default: Table 2-169	<u>7</u>

Table 2-168 shows the federal standard minimum efficiency (effective as of July 19, 2021), alongside the ENERGY STAR v3.1 specifications (effective July 19, 2021).

Table 2-168: Pool Pump Weighted Energy Factor Requirements and Specifications

Pump Type	<u>Nameplate</u> Power (hhp)	Federal Minimum (WEF _{base}) ^{Source 3}	ENERGY STAR (WEFee) ^{Source 4}
	<u>≤0.130</u>	<u>5.55</u>	<u>13.40</u>
<u>Self-Priming</u> (In-ground)	<u>0.130–0.711</u>	-1.30×In(hhp)+2.90	-2.45×ln(hhp)+8.40
	0.712-2.500	-2.30×In(hhp)+6.59	-2.45×In(hhp)+8.40
Non-Self-Priming	<u>≤0.130</u>	<u>4.60</u>	<u>4.92</u>
(Above-ground)	<u>>0.130</u>	-0.85×In(hhp)+2.87	-1.00×ln(hhp)+3.85
Pressure Cleaner Booster	Any	<u>0.42</u>	<u>0.51</u>

Table 2-169: Default Inputs

Pool/ Pump Type	<u>hhp</u>	<u>WEF_{base}</u>	<u>WEFee</u>	<u>Days</u>	<u>Volume</u>	<u>Turnover</u>	<u>CF</u>
In-ground Pool	0.72	7.35	<u>9.20</u>	<u>122</u>	<u>15,750</u>	<u>2</u>	<u>1</u>
	Source 2	Source 3	Source 4	Source 2	Source 5	Source 6	Source 7
Above-ground Pool	<u>0.72</u>	<u>3.15</u>	<u>4.18</u>	<u>122</u>	7,540	<u>2</u>	<u>1</u>
	Source 2	Source 3	Source 4	Source 2	Source 8	Source 9	Source 7
Pressure Cleaner Booster	<u>N/A</u>	0.42 Source 3	0.51 Source 4	<u>Sam</u>	e as pool	0.08 Source 10	0.31 Source 11

DEFAULT SAVINGS

Default energy and demand savings follow however, many ENERGY STAR pool pumps exceed program specifications; some by as much as 190%. Therefore, EDC's are encouraged to collect records of pool volume, WEF and hhp for installed equipment to calculate the full project savings due. Federal regulations require that equipment ratings be printed on the pump.

VOLUME 2: ENERGY STARResidential Measures

Miscellaneous

Page 313

Table 2-170: Default ENERGY STAR Pool Pump Savings

Pump Type	<u>∆kWh</u>	<u>∆kW_{summer}</u> <u>peak</u>
In-ground Pool	<u>106</u>	<u>0.0361</u>
Above-ground Pool	<u>144</u>	<u>0.0493</u>
Pressure Cleaner Booster, In-ground Pool	<u>67</u>	<u>0.0071</u>
Pressure Cleaner Booster, Above-ground Pool	<u>32</u>	<u>0.0034</u>

EVALUATION PROTOCOL

The most appropriate evaluation protocol for this measure is verification of installation coupled with survey on run time and speed settings. It may be helpful to work with pool service professionals in addition to surveying customers to obtain pump settings, as some customers may not be comfortable operating their pump controls. Working with a pool service professional may enable the evaluator to obtain more data points and more accurate data.

SOURCES

- 1) California Electronic Technical Reference Manual: (2019). "VSD for Pool & Spa Pump". California Technical Forum. Retrieved February 4, 2022 from https://www.caetrm.com/measure/SWRE002/01/
- U.S. EPA. (2020). ENERGY STAR Pool Pump Calculator. Retrieved July 31, 2020 from 2) https://www.energystar.gov/productfinder/downloads/Pool Pump Calculator 2020.05.05 FI NAL.xlsx
- U.S. DOE. (2017). 10 CFR 431.465(f). Retrieved February 4, 2022 from https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431/subpart-Y/section-431.465#p-431.465(f)
- 4) U.S. EPA. (2021). ENERGY STAR Program Requirements for Pool Pumps Version 3.1.Retrieved February 4, 2022 from https://www.energystar.gov/sites/default/files/ENERGY %20STAR%20Version%203.1%20Pool%20Pumps%20Final%20Specification 0.pdf
- 5) Engineering judgement. Source 1 Gives 15,700 gallons (15,754 in reference R802), source 2 gives 22,000 gallons, and Source 8 gives 15,147 gallons.
- International Swimming Pool and Spa Code. (2015). Section 810.1. Retrieved February 4. 2022 from https://codes.iccsafe.org/content/ISPSC2018/chapter-8-permanent-ingroundresidential-swimming-pools#ISPSC2018 Ch08 Sec810.1
- 7) To maximize energy savings it is assumed that the pump runs 24 hours per day, which includes 100% of peak.
- Koeller, J., Hoffman, H.W., et al. (2010). "Evaluation of Potential Best Management Practices - Pools, Spas, and Fountains." Retrieved on February 21, 2022 from https://calwep.org/wpcontent/uploads/2021/03/Pools-Spas-and-Fountains-PBMP-2010.pdf
- International Swimming Pool and Spa Code. (2015). Section 704.4. Accessed February 4, 2022. https://codes.iccsafe.org/content/ISPSC2018/chapter-7-onground-storable-residentialswimming-pools#ISPSC2018 Ch07 Sec704.4
- 10) U.S. EPA. (2013). ENERGY STAR Pool Pump Calculator. Retrieved July 31, 2020 from https://web.archive.org/web/20170427214700/https://www.energystar.gov/sites/default/files/a sset/document/Pool%20Pump%20Calculator.xlsx

VOLUME 2: ENERGY STARResidential Measures

Miscellaneous

Page 314

11) Southern California Edison. (2008). Pool Pump Demand Response Potential: Demand and Run-time Monitored Data. Retrieved February 4, 2022 from https://www.etcc-ca.com/sites/ default/files/reports/dr07_01_pool_pump_demand_response_potential_report.pdf Average percentage of all pumps operating during peak hours in Table 16.

VOLUME 2: ENERGY STARResidential Measures

Miscellaneous

Page 315

2.8.2 SINGLE SPEED POOL PUMP REPLACEMENT

Target Sector	Residential
Measure Unit	VFD Pool Pumps
Measure Life	10 <u>3.3</u> years ^{Source 21}
Vintage	Early Replacement
Vintage	Replace on Burnout

In this measure a variable speed pool pump must be purchased and installed on a residential pool to replace an existing constant single-speed pool pump. Residential variable frequency drive (VFD) pool pumps can be adjusted to match the minimal flow required for each application. This typically involves running all-day long at the flow rate necessary to achieve the desired number of turnovers per day. Reducing the flow rate results in significant energy savings because pump power and pump energy usage scale with the cubic and quadratic powers of the flow rate resetively. Additional savings are achieved because VFD pool pumps typically employ premium efficiency motors.even though the run time is extended proportional to the reduction in flow rate, pump power scales with the cube of the flow rate. For example, halving the flow doubles the time required to process the same volume of water, but the flow power consumption is reduced by 87.5%.

If the replacement pump is ENERGY STAR qualified, measure 2.8.1 ENERGY STAR Pool Pumps may also be applied for the same equipment.

ELIGIBILITY

To qualify for this rebate a variable speed pool pump must be purchased and installed on a residential pool to replace an existing single speed pool pump. <u>The target sector primarily consists</u> of single-family residences.

Most VFD pool pumps can display instantaneous flow and power.

ALGORITHMS

This protocol documents the energy savings attributed to variable frequency drive pool pumps in various pool sizes. The target sector primarily consists of single-family residences. There are no demand savings for this measureThese pumps are generally configured to run 24 hours per day at low speed because a pump's power requirements increase with the cube of its speed. Most VFD pool pumps can display instantaneous flow and power.

 $AkWh = -kWh_{base} - kWh_{VFD}$

 $kWh_{base} = kW_{ss} \times HOU_{ss} \times Days$

$$\begin{split} &= \frac{Volume \times Turnover}{EF_{VED, Weighted} \times 1,000 \frac{W}{RW} \times Days} \\ &= \frac{Volume \times Turnover \times Days}{1,000} \times \left(\frac{1}{EF_{base}} - \frac{1}{WEF_{CFR}}\right) \end{split}$$

 $AkW = \frac{kW_{ss} - \frac{kWh_{VFD}}{(HOU_{VFD} \times Days)} \times CF$

VOLUME 2: ENERGY STARResidential Measures

Miscellaneous

Formatted: Font color: Black

Formatted Table

Formatted: Font: Arial Narrow, 1 pt

Formatted: Normal, Space After: 6 pt, Tab stops: Not at 1"

Formatted: Normal, Space After: 2 pt, Tab stops: 6", Right

HOU_{SS} = Volume × Turnover ÷ (Flow_{ss} × 60 $\frac{min}{hr}$)

VFD pump sizing algorithm to determine $EF_{VFD,Weighted}$ using Table 2-140. Select the pump with the smallest $Flow_{VFD,Low}$ that satisfies calculated flow requirements:

 $Flow_{VFD,Low} = Volume \div \left(\frac{HOU_{VFD}}{Turnover} \times 60 \frac{min}{hr}\right)$

VOLUME 2: ENERGY STARResidential Measures

Miscellaneous

.

Page 317

DEFINITION OF TERMS

Table 2-138: Terms, Values, and References for Variable Speed Pool Pumps

$\frac{Volume \times Turnover}{kW_{summer}} \times \left(\frac{Volume \times Turnover}{1,000} \times \left(\frac{CF_{base}}{EF_{base} \times HOU_{base}}\right)\right)$	Values	Source	
$\frac{e_{F_{CFR}}}{WEF_{CFR} \times HOU_{CFR}}$			
HOU _{SS} , Hours of operation per day for Single speed pump. This quantity should be recorded by the applicant.	hours day	EDC Data Gathering Default = 9.7 or Calculated	4
kW _{ss} -Electric demand of single-speed pump for Curve C flow rate. This quantity should be recorded by the applicant or looked up in Table 2-139 by horsepower.	Kilowatts	EDC Data Gathering Default =1.803 kW or See Table 2-139	4
Days , Pool pump days of operation per year.	days yr	122 (4 months)	4
EF _{VFD,Weighted} , Weighted energy factor of variable frequency drive pump for Curve C flow. This quantity should be recorded by the applicant or looked up in Table 2-140 by horsepower.	gallons ₩×h	EDC Data Gathering or See Table 2-140, selecting smallest pump that meets FlowvFD,Low	4
Volume, pool capacity	Gallons	EDC Data Gathering Default = 22,000	4
<i>Turnover</i> , number of times the full volume of the pool is filtered each day	Pool volumes day	EDC Data Gathering Default = 2	4
Flow _{SS} , Single speed pump flow rate	gallons minute	Table 2-139 Default=78	4
Flow _{VFD,Low} , Variable frequency drive pump low flow rate	gallons minute	EDC Data Gathering Default= Calculated	4
HOU _{VFD} , Hours of operation per day for variable frequency drive pool pump	hours day	EDC Data Gathering Default=24	1
F, None E	DC Data Gather	ing	З

VOLUME 2: ENERGY STARResidential Measures

Miscellaneous

Formatted: Font color: Black

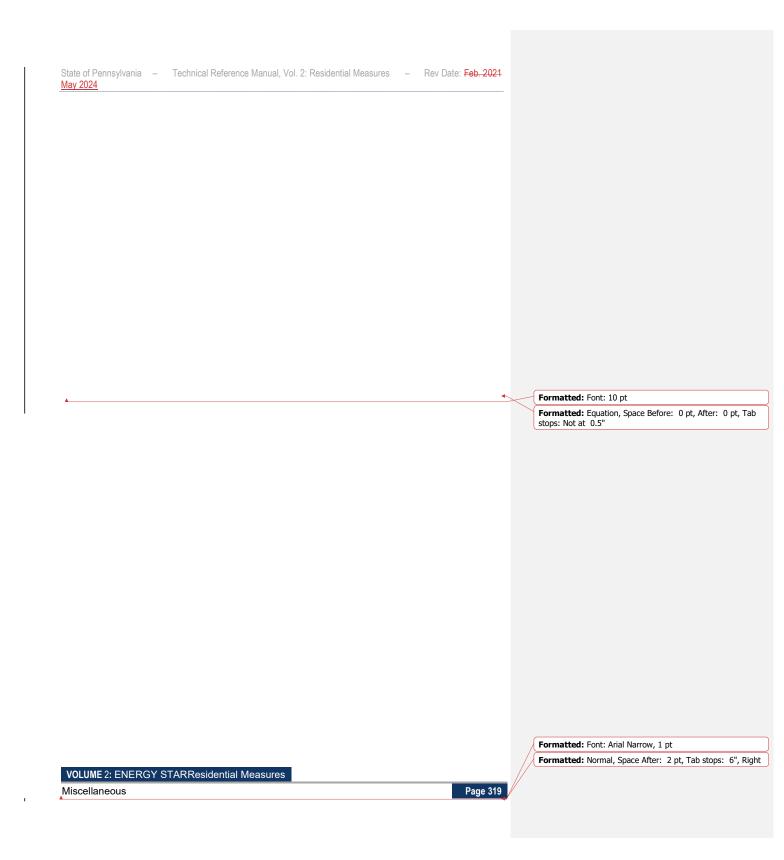
Formatted: Normal, Pattern: Clear (Background 1), Tab stops: Not at 1"

Formatted: Font: 12 pt, Not Bold, Font color: Custom Color(RGB(31,73,125)), Not Small caps

Formatted: Equation, Space Before: 0 pt, After: 0 pt, Tab stops: Not at 0.5"

Formatted Table

Deleted Cells


Deleted Cells

Formatted: Font: 10 pt, Not Bold

Formatted: Font: 8.5 pt, Not Bold

Formatted: Equation, Left, Space Before: 0 pt, After: 0 pt, Tab stops: Not at 0.5"

/	Formatted Table					
	Deleted Cells					
//	Deleted Cells					
/	Formatted: Font: 10 pt, Not Italic					
λ	Formatted: Font: 10 pt					
λ	Formatted: Font: 10 pt					
-	Formatted: Equation, Left, Space Before: 0 pt, After: 0 pt, Tab stops: Not at 0.5"					
J	Formatted: Font: Arial Narrow, 1 pt					
/	Formatted: Normal, Space After: 2 pt, Tab stops: 6", Right					

Average Single Speed Pump Electric Demand

Since this measure involves functional pool pumps, actual measurements of pump demand are encouraged. If this is not possible, then the pool pump power can be inferred from the nameplate horsepower. Table 2-1392-139 shows the average electrical power demand per pump size in the Savings Calculator for an ENERGY STAR Certified Inground Pool Pump.^{Source-1} Note that kW_{ss} = $Flow_{ss} \times 60 \ min/hr \div (EF_{ss} \times 1,000 \ W/kWh)$.

<u>HOU_{base}</u> = Volume × Turnover ÷ (Flow_{base} × $60 \frac{min}{hr}$)

VOLUME 2: ENERGY STARResidential Measures

Miscellaneous

Page 320

DEFINITION OF TERMS

Table 2-171: Single Terms, Values, and References for Variable Speed Curve C Pool Pump Specification⁹³Pumps

Nameplate Power (HP) <u>Term</u>	EF _{ss} (Gal/Wh) <u>Unit</u>	Flow ss (GPM) <u>Values</u>	kWssSource	ľ
0.50 <i>Days</i> , Pool pump days of operation per <u>year.</u>	$\frac{3.4^{days}}{yr}$	62.00EDC Data <u>Gathering</u> <u>Default: Table 2-</u> 174	<u>1.1012</u>	
<i>EF</i> _{base} , Baseline weighted energy factor of single-speed pool pump for Curve C flow.	$\frac{gallons}{W \cdot h}$	EDC Data Gathering Default: Table 2-172	<u>2</u>	
0-75 <u>WEF_{CFR}, Weighted energy factor of</u> federal minimum compliant variable frequency drive pump for Curve C flow	3.3 ^{gallons} W·h	65.00EDC Data Gathering Default: Table 2_173 or Table 2_174	<u>1.1853</u>	
<i>hhp,</i> hydraulic horsepower is a measure of pump output rather than pump input.	<u>745.7 W</u>	EDC Data Gathering Default: Table 2-173 or Table 2-174	2	
Volume, pool capacity	<u>Gallons</u>	EDC Data Gathering Default: Table 2-174	<u>4</u>	
Turnover, number of times the full volume of the pool is filtered each day	Pool volumes day	EDC Data Gathering Default: Table 2-174	<u>5.8</u>	
1.00 <i>Days</i> , Pool pump days of operation per year.	2.5 <u>Days</u>	75.50<u>122</u> (4 months)	1 .803	
1.50 <i>Flow_{base}</i> , Single speed pump flow rate	2.3 ^{gallons} minute	Table 2-172 Default=78.14	2 .068	
2-00HOU _{base} , Hours of operation per day for base case single-speed frequency drive pool pump	2.3 ^{hours} day	89.67 <u>EDC Data</u> <u>Gathering</u> <u>Default: Table 2-</u> 174	2 .314	
2.50 <i>HOU_{CFR}</i> , Hours of operation per day for variable frequency drive pool pump	2.2 ^{hours} day ⊾	93.09EDC Data Gathering Default: 24	<u>2:561</u>	
3.00 <i>CF_{base}</i> , Coincidence factor of existing pool pump	2.0None	<u>Default 24</u> <u>101.67EDC Data</u> <u>Gathering</u> <u>Default: Table</u> 2 <u>-</u> 174	<u>3.0529</u>	
<u>CF_{CFR}, Coincidence factor of federal minimum</u> compliant variable speed pool pump in continuous use	<u>None</u>	EDC Data Gathering Default: Table 2 <u>-</u> 174	<u>6</u>	

Average Single Speed Pump Efficiency

Since this measure involves functional pool pumps, actual measurements of pump flow and wattage are encouraged. If this is not possible, then the pool pump efficiency can be inferred from

⁶³ Averaged for all listed single-speed pumps in the last available version of the CEC appliance efficiency database. The powers are for 'CEC Curve A,' which represents hydraulic properties of 2" PVC pipes rather than older, 1.5" copper pipes.

VOLUME 2: ENERGY STARResidential Measures

Miscellaneous

Formatted: Normal, Tab stops: 0.5", Left
Formatted: Font: Not Italic
Formatted: Normal, Left, Tab stops: 0.5", Left
Formatted: Font: Not Italic
Formatted: Normal, Left, Tab stops: 0.5", Left
Formatted: Normal, Tab stops: 0.5", Left
Formatted Table
Formatted: Normal, Tab stops: 0.5", Left
Formatted: Font: Italic
Formatted: Normal, Left, Tab stops: 0.5", Left
Formatted: Normal, Tab stops: 0.5", Left
Formatted Table
Formatted: Font: Italic
Formatted: Normal, Tab stops: 0.5", Left
Formatted: Normal, Left, Tab stops: 0.5", Left
Formatted: Normal, Tab stops: 0.5", Left
Formatted Table
Formatted: Font: 9 pt
Formatted: Normal, Tab stops: 0.5", Left
Formatted: Normal, Left, Tab stops: 0.5", Left
Formatted: Font: Italic
Formatted: Font: 9 pt
Formatted: Normal, Tab stops: 0.5", Left
Formatted: Normal, Tab stops: 0.5", Left
Formatted: Font: Italic
Formatted: Font: 9 pt
Formatted: Normal, Left, Tab stops: 0.5", Left
Formatted: Normal, Tab stops: 0.5", Left
Formatted: Normal, Tab stops: 0.5", Left
Formatted: Font: Italic
Formatted: Font: Italic
Formatted: Font: 9 pt
Formatted: Normal, Left, Tab stops: 0.5", Left
Formatted: Normal, Tab stops: 0.5", Left
Formatted: Normal, Tab stops: 0.5", Left
Formatted: Font: Italic
Formatted: Font: Italic
Formatted: Normal, Left, Tab stops: 0.5", Left
Formatted: Normal, Tab stops: 0.5", Left
Formatted: Normal, Tab stops: 0.5", Left
Formatted: Font: Arial Narrow, 1 pt
Formatted: Normal, Space After: 2 pt, Tab stops: 6", Right

the nameplate horsepower. Table 2-172 shows the average efficiency factor by pump size. Note that $EF_{base} = (Flow_{base} \times 60 \text{ minutes}/_{hour}) \div (Watts)$.

Table 2-172: VariableSingle Speed Curve C Pool Pump Specification94 Efficiency FactorsSource 2

Hydraulic Hor (Nameplate F High Spo		FlowvrD,Low (GPM) (GPM) (GPM) (Gal/Wh)								
0.72 hhp (1-	0.72 hhp (1-1.4 HP)		3		70.00		8.7			
0.95 hhp (1.65 Nameplate Power (HP) 0.50		41 <mark>0</mark> .75	78 <u>1</u> .00)	8.9 1.50	2.00	<u>2.50</u>	<u>3.(</u>	<u>)0</u>	
1.18 hhp (2	2 HP)	44.75			89.71		9.3			_
EFbase			1.25 hh	P					7.4	
(Gal/Wh)			(2. 5							
	<u>3.38</u>	<u>3.29</u>	HP) <u>51</u>		4 <u>5.67</u> 2.27	<u>2.3</u>	<u>2.18</u>	90<u>2</u>.00		
1.65 hhp (3 HP)Flow	51 62,00	10265 .00	7.1 75.5	0	78.14	89.67	93.09	.101	67	
(Gal/min)	9+ <u>02</u> .00	102<u>05</u>.00	+.+ <u>/5.5</u>	U,	<u>70.14</u>	<u>89.07</u>	95.09	101	.07	

Table 2-173: Replacement Pool Pump Weighted Energy FactorSource 3

Pump Type	hhp Range	<u>Federal Minimum</u> (WEF _{CFR)}
	<u>≤0.130</u>	<u>5.55</u>
<u>Self-Priming</u> (In-ground)	<u>0.130–0.711</u>	<u>-1.30×ln(hhp)+2.90</u>
	0.712-2.500	<u>-2.30×ln(hhp)+6.59</u>
Non-Self-Priming	<u>≤0.130</u>	<u>4.60</u>
(Above-ground)	<u>>0.130</u>	-0.85×ln(hhp)+2.87

Table 2-174: Default Inputs

<u>Pool/</u> <u>Pump Type</u>	<u>hhp</u>	<u>WEF_{CFR}</u>	<u>Days</u>	<u>Volume</u>	<u>Turn-</u> over	HOU _{base}	<u>CF_{base}</u>	<u>CF_{CFR}</u>
In-ground Pool	0.72	7.35	122	<u>15,750</u>	2	<u>6.3</u>	0.31	<u>1</u>
	Source 2	Source 3	Source 2	Source 4	Source 5	Source 2	Source 9	Source 6
Above-ground Pool	0.72	3.15	<u>122</u>	7,540	<u>2</u>	<u>4.0</u>	0.31	<u>1</u>
	Source 2	Source 3	Source 2	Source 7	Source 8	Source 2	Source 9	Source 6

DEFAULT SAVINGS

Default energy and demand savings for a 1 HP motor are as follows:

 $\Delta kWh = 1,517 \ kWh$

 $\Delta kW = 0.4936 kW$

⁶⁴ Averaged for all listed single-speed pumps in the last available version of the CEC appliance efficiency database. The powers are for 'CEC Curve A,' which represents hydraulic properties of 2" PVC pipes rather than older, 1.5" copper pipes.

VOLUME 2: ENERGY STARResidential Measures

Miscellaneous

Inserted Cells
Inserted Cells
Inserted Cells
Inserted Cells
Formatted: Font: Calibri, 11 pt, Bold, Font color: Black
Formatted: Font: Bold
Formatted: Font: Calibri, 11 pt, Bold, Font color: Black
Formatted: Font: Bold
Formatted: Font: Bold
Formatted: Tab stops: Not at 0.5"
Formatted: Font: Bold
Formatted: Font: Calibri, 11 pt, Font color: Black
Deleted Cells
Inserted Cells
Formatted: Tab stops: Not at 0.5"
Formatted Table
Formatted: Font: Calibri, 11 pt, Font color: Black
Inserted Cells
Inserted Cells
Inserted Cells
Inserted Cells
Formatted: Font: Calibri, 11 pt, Font color: Black
Formatted: Tab stops: Not at 0.5"
Inserted Cells
Inserted Cells
Formatted: Font: Calibri, 11 pt, Font color: Black
Formatted: Font: Calibri, 11 pt, Font color: Black
Formatted: Font: Calibri, 11 pt, Font color: Black
Formatted: Tab stops: Not at 0.5"
Formatted: Font: Bold

Formatted: Font: Arial Narrow, 1 pt Formatted: Normal, Space After: 2 pt, Tab stops: 6", Right

Default energy and demand savings for a 0.72 hhp (1–1.4 HP equivalent)^{Source 2} motor are shown in Table 2-175, including those for the installation of a default ENERGY STAR pool pump from 2.8.1. However, you are encouraged to complete your own calculations for an ENERGY STAR installation to capture the full savings of higher efficiency pumps. Also note that the savings from 2.8.1 ENERGY STAR Pool Pumps extend for another 6.7 years beyond the life of this measure.

Table 2-175: Default Variable Speed Pool Pump Savings

Pump Type	<u>∆kWh</u>	<u>∆kW_{summer}</u> peak
Non-ENERGY STAR In-ground Pool	<u>1,170</u>	<u>0.5041</u>
Non-ENERGY STAR Above-ground Pool	<u>226</u>	<u>0.3153</u>
ENERGY STAR In-ground Pool	<u>1,275</u>	0.5402
ENERGY STAR Above-ground Pool	<u>371</u>	<u>0.3646</u>

EVALUATION PROTOCOL

The most appropriate evaluation protocol for this measure is verification of installation coupled with survey on run time and speed settings. It may be helpful to work with pool service professionals in addition to surveying customers to obtain pump settings, as some customers may not be comfortable operating their pump controls. Working with a pool service professional may enable the evaluator to obtain more data points and more accurate data.

VOLUME 2: ENERGY STARResidential Measures

Formatted: Font: Arial Narrow, 1 pt Formatted: Normal, Space After: 2 pt, Tab stops: 6", Right

Miscellaneous

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
May 2024				

SOURCES

- 1) California Electronic Technical Reference Manual: (2019). "VSD for Pool & Spa Pump". California Technical Forum. Retrieved February 4, 2022 from https://www.caetrm.com/measure/SWRE002/01/
- 1)2)U.S. EPA. (2020). ENERGY STAR Pool Pump Calculator. May 5, 2020. HOU_{SS} is for a 22,000 gallon pool with a 15 HP pump and 2 turnovers per day.<u>Retrieved July 31, 2020 from</u> https://www.energystar.gov/productfinder/downloads/Pool Pump Calculator 2020.05.05 FI NAL.xlsx
- 3) U.S. DOE. (2017). 10 CFR 431.465(f). Retrieved February 4, 2022 from https://www.ecfr.gov/current/title-10/chapter-II/subchapter-D/part-431/subpart-Y/section-431.465#p-431.465(f)
- 4) Engineering judgement. Source 1 Gives 15,700 gallons (15,754 in reference R802), source 2 gives 22,000 gallons, and Source 8 gives 15,147 gallons.
- 2)—International Swimming Pool and Spa Code. (2015). California Public Utilities Commission Database for Energy Efficient Resources (DEER) EUL Support Table for 2020, http://www.deeresources.com/files/DEER2020/download/SupportTable-EUL2020.xlsx.
- 3) Derived from values for 2pm-6pm for all pool pumps in Pool Pump and Demand Response Potential, DR 07.01 Report, SCE Design and Engineering, Table 16. <u>https://www.etcc-</u> ca.com/sites/default/files/reports/dr07_01_pool_pump_demand_response_potential_report.p <u>df</u>
- 5) Section 810.1. Retrieved February 4, 2022 from https://codes.iccsafe.org/content/ISPSC2018/chapter-8-permanent-inground-residentialswimming-pools#ISPSC2018 Ch08 Sec810.1
- 6) To maximize energy savings it is assumed that the pump runs 24 hours per day, which includes 100% of peak.
- 7) Koeller, J., Hoffman, H.W., et al. (2010). "Evaluation of Potential Best Management Practices - Pools, Spas, and Fountains." Retrieved on February 21, 2022 from https://calwep.org/wpcontent/uploads/2021/03/Pools-Spas-and-Fountains-PBMP-2010.pdf
- 8) International Swimming Pool and Spa Code. (2015). Section 704.4. Accessed February 4, 2022. https://codes.iccsafe.org/content/ISPSC2018/chapter-7-onground-storable-residentialswimming-pools#ISPSC2018 Ch07 Sec704.4
- 9) Southern California Edison. (2008). Pool Pump Demand Response Potential: Demand and Run-time Monitored Data. Retrieved February 4, 2022 from https://www.etcc-ca.com/sites/ default/files/reports/dr07 01 pool pump demand response potential report.pdf Average percentage of all pumps operating during peak hours in Table 16.

Formatted: Indent: Left: 0", Hanging: 0.25", Numbered + Level: 1 + Numbering Style: 1, 2, 3, ... + Start at: 1 + Alignment: Left + Aligned at: 0" + Indent at: 1.1"

VOLUME 2: ENERGY STARResidential Measures

Miscellaneous

Page 324

Formatted: Font: Arial Narrow, 1 pt

2.8.3 PHOTOVOLTAIC (PV) SOLAR GENERATION

Target Sector	Residential			
Measure Unit	Photovoltaic (PV) array			
Measure Life	15 years Source 1			
Vintage	Retrofit or New Construction			

ELIGIBILITY

Photovoltaic (PV) solar systems consist of an array of panels or thin-film substrates that generate direct current (DC) power when exposed to sunlight. These surfaces are tied together into a single circuit to expand generation levels. The DC power output is converted to alternating current (AC) power through inverter(s) that transform the electricity into the type of power used in residential homes. Generated power must be used to offset concurrent building loads and feed onto the local power grid through net metering to meet the needs of other customers. Charging of on-site battery systems is permitted, however peak demand savings as defined by this measure assumes non-tracking arrays without battery backup. This measure covers residential PV systems up to 30 kW DC.

The goals of Pennsylvania Act 129 are to reduce consumption and congestion on the state's power grid. Projects that generate savings for Act 129 programs must offset existing facility loads. Virtual metering of multiple sites, within the guidelines provided by 52 Pa. Code § 75.14.(e) ^{Source 2}, will be permitted to define existing loads. Annual generated AC power from the PV array must not exceed 110% of the annual electric energy load of the customer's utility metered consumption.

Default values for project generation estimates can be developed using the National Renewable Energy Laboratory PV Watts[®] calculator ^{Source 3}. Additional details on required inputs for the PV Watts[®] model are included in the *Algorithms* section below. Demand savings estimated in this measure assume no tracking, panel tilt of 20°, and instantaneous fulfillment of on-site loads or back feeding to the grid.

ALGORITHMS

All energy savings will be determined by the PV Watts[®] model and installed system specifications. System losses defined below will be the sum of PV Watts[®] deemed losses (14.08%) and an estimated in-situ loss factor to align model capacity factors with a Pennsylvania statewide analysis of PV system production and expected PV Watts[®] estimates ^{Source 4}. If the array contains nontracking panels at varying azimuths or tilts, a new PV Watts[®] model must be completed for each array with the results combined to estimate project savings. There are no default savings for this <u>measure</u>.

<u>System Losses</u>	<u>= Default Model Losses + In-situ Losses</u>
<u>AkWh</u>	= Provided by PV Watts
<u> AKW peak summer</u>	$_= \Delta kWh \times ETDF_{summer}$
ETDF _{summer}	$= ETDF_{summer, ordinal} + (\Delta Azimuth * ETDF_{summer, incremental})$
∆Azimuth	<i>= Difference between PV array azimuth and closest, smaller ordinal direction</i> (90, 135, 180, or 225)
<u> AKW peak, winter</u>	$_= \Delta kWh \times ETDF_{winter} _$

VOLUME 2: ENERGY STARResidential Measures

Miscellaneous

Formatted: Font: Arial Narrow, 1 pt Formatted: Normal, Space After: 2 pt, Tab stops: 6", Right

$ETDF_{winter} = ETDF_{winter, ordinal} + (\Delta Azimuth * ETDF_{winter, incremental})$ **DEFINITION OF TERMS**

Table 2-176 Terms, Values, and References for Solar PV

Term	<u>Unit</u>	<u>Value</u>		<u>Sources</u>		
Location	<u>n/a</u>	EDC Data Gathering		<u>EDC Data</u> <u>Gathering</u>		
DC System Size	<u>kW</u>	EDC Data Gathering		EDC Data Gathering		
Module Type	<u>n/a</u>	Standard	<u>1</u>	<u>Default</u>		
<u>Array Type</u>	<u>n/a</u>	EDC Data Gat	<u>hering</u>	<u>EDC Data</u> <u>Gathering</u>		
<u>System Losses</u>	<u>%</u>	<u>Default Model Loss</u> Losses	<u>es + In-situ</u>	Calculated		
Default Model Losses	<u>%</u>	<u>14.08%</u>		PV Watts Model		
In-situ Losses	<u>%</u>	Up to 30 kW _{DC}	<u>15%</u>	<u>4</u>		
<u>Array Tilt</u>	<u>degrees</u>	EDC Data Gat	<u>hering</u>	EDC Data Gathering		
Array Azimuth	<u>degrees</u>	EDC Data Gat	<u>hering</u>	<u>EDC Data</u> <u>Gathering</u>		
<u>∆Aziumth</u>	<u>degrees</u>	Calculated		Calculation		
Advanced Parameters	<u>n/a</u>	As defined by PV Watts		PV Watts Model		
DC to AC Size Ratio	<u>n/a</u>	<u>1.2</u>		<u>Default</u>		
Inverter Efficiency	<u>%</u>	<u>96</u>		<u>Default</u>		
Ground Coverage Ratio	<u>n/a</u>	<u>0.4</u>		<u>Default</u>		
<u>Albedo</u>	<u>n/a</u>	Varies by loc	ation	<u>Default</u>		
<u>Bifacial</u>	<u>n/a</u>	No		<u>Default</u>		
Monthly Irradiance Loss	<u>%</u>	<u>0 for all mor</u>	<u>nths</u>	<u>Default</u>		
ETDF _{summer,ordinal}	$\frac{kW}{kWh}$	See Table 2-177		<u>5</u>		
ETDE _{summer,increments}	$\frac{kW}{kWh}$	See Table 2-178		Calculated		
ETDF winter, ordinal	$\frac{kW}{kWh}$	See Table 2-179		See Table 2-179		<u>6</u>
ETDFwinter,increments	$\frac{kW}{kWh}$	See Table 2-180 Calcula		<u>Calculated</u>		

VOLUME 2: ENERGY STARResidential Measures

Miscellaneous

Formatted: Font: Arial Narrow, 1 pt Formatted: Normal, Space After: 2 pt, Tab stops: 6", Right

		Array Azimuth				
Climate Region	Reference <u>City</u>	<u>90°</u>	<u>135°</u>	<u>180°</u>	<u>225°</u>	<u>270°</u>
<u>C</u>	<u>Allentown</u>	0.0624265	<u>0.0651860</u>	<u>0.0817416</u>	<u>0.1044553</u>	<u>0.1245200</u>
A	Binghamton	<u>0.0678131</u>	<u>0.0719111</u>	<u>0.0907818</u>	<u>0.1150982</u>	<u>0.1357120</u>
G	Bradford	0.0699694	<u>0.0740833</u>	0.0928029	<u>0.1162379</u>	<u>0.1357924</u>
<u>1</u>	<u>Erie</u>	<u>0.0788975</u>	<u>0.0851381</u>	<u>0.1067952</u>	<u>0.1320825</u>	<u>0.1520063</u>
E	<u>Harrisburg</u>	0.0647908	<u>0.0680365</u>	0.0857973	<u>0.1096607</u>	<u>0.1307424</u>
D	Philadelphia	0.0600152	<u>0.0620246</u>	<u>0.0772186</u>	0.0988952	<u>0.1185881</u>
H	Pittsburgh	0.0722741	<u>0.0765022</u>	0.0948878	<u>0.1179122</u>	<u>0.1370800</u>
B	Scranton	0.0630191	0.0664687	0.0836893	0.1063465	<u>0.1257134</u>
E	<u>Williamsport</u>	<u>0.0679989</u>	0.0712337	<u>0.0883588</u>	<u>0.1107460</u>	<u>0.1301680</u>

Table 2-177: Summer Energy to Demand Factor, East to West facing Ordinal Numbers (ETDF summer, ordinal)

Table 2-178: Summer Energy to Demand Factor Increments, (ETDFsummer,increments)

		Array Azimuth Range			
Climate Region	Reference <u>City</u>	<u>90 to 135</u>	<u>135 to 180</u>	<u>180 to 225</u>	<u>225 to 270</u>
<u>C</u>	Allentown	<u>0.0000613</u>	<u>0.0003679</u>	<u>0.0005047</u>	<u>0.0004459</u>
A	Binghamton	<u>0.0000911</u>	<u>0.0004193</u>	<u>0.0005404</u>	<u>0.0004581</u>
G	Bradford	0.0000914	0.0004160	0.0005208	0.0004345
1	Erie	<u>0.0001387</u>	<u>0.0004813</u>	<u>0.0005619</u>	0.0004428
E	<u>Harrisburg</u>	<u>0.0000721</u>	<u>0.0003947</u>	<u>0.0005303</u>	<u>0.0004685</u>
D	Philadelphia	0.0000447	<u>0.0003376</u>	<u>0.0004817</u>	0.0004376
H	Pittsburgh	0.0000940	0.0004086	0.0005117	0.0004260
B	Scranton	0.0000767	0.0003827	0.0005035	0.0004304
Ē	Williamsport	<u>0.0000719</u>	<u>0.0003806</u>	<u>0.0004975</u>	<u>0.0004316</u>

VOLUME 2: ENERGY STARResidential Measures

Miscellaneous

Formatted: Font: Arial Narrow, 1 pt Formatted: Normal, Space After: 2 pt, Tab stops: 6", Right

			Array Azimuth				
Climate Region	Reference <u>City</u>	<u>90°</u>	<u>135°</u>	<u>180°</u>	<u>225°</u>	<u>270°</u>	
<u>C</u>	Allentown	<u>0.0121198</u>	<u>0.0113890</u>	<u>0.0085075</u>	<u>0.0035736</u>	<u>0.0019462</u>	
A	Binghamton	<u>0.0099532</u>	<u>0.0092431</u>	<u>0.0070935</u>	<u>0.0033193</u>	<u>0.0022980</u>	
<u>G</u>	Bradford	<u>0.0074126</u>	<u>0.0068730</u>	<u>0.0052236</u>	<u>0.0022748</u>	<u>0.0017657</u>	
<u>1</u>	<u>Erie</u>	<u>0.0045040</u>	<u>0.0041701</u>	<u>0.0030910</u>	<u>0.0013280</u>	<u>0.0011115</u>	
E	<u>Harrisburg</u>	<u>0.0099236</u>	<u>0.0092490</u>	<u>0.0068901</u>	<u>0.0029286</u>	<u>0.0018332</u>	
D	Philadelphia	<u>0.0125401</u>	<u>0.0118317</u>	<u>0.0088548</u>	<u>0.0037608</u>	<u>0.0020548</u>	
<u>H</u>	Pittsburgh	0.0060367	<u>0.0056171</u>	<u>0.0043588</u>	<u>0.0019083</u>	<u>0.0015966</u>	
B	Scranton	0.0106358	<u>0.0100137</u>	<u>0.0076209</u>	<u>0.0034986</u>	<u>0.0021796</u>	
E	<u>Williamsport</u>	0.0096529	<u>0.0089461</u>	<u>0.0067885</u>	<u>0.0030166</u>	<u>0.0020645</u>	

Table 2-179: Winter Energy to Demand Factor Ordinal, East to West facing Ordinal Numbers (ETDF winter, ordinal)

Table 2-180: Winter Energy to Demand Factor Increments, (ETDFwinter,increments)

		Array Azimuth Range			
Climate Region	Reference <u>City</u>	<u>90° to 135°</u>	<u>135° to 180°</u>	<u>180° to 225°</u>	<u>225° to 270°</u>
<u>C</u>	Allentown	<u>(0.0000162)</u>	<u>(0.0000640)</u>	<u>(0.0001096)</u>	<u>(0.0000362)</u>
A	Binghamton	<u>(0.0000158)</u>	<u>(0.0000478)</u>	<u>(0.0000839)</u>	<u>(0.0000227)</u>
G	Bradford	<u>(0.0000120)</u>	<u>(0.0000367)</u>	<u>(0.0000655)</u>	<u>(0.0000113)</u>
<u>1</u>	Erie	<u>(0.0000074)</u>	<u>(0.0000240)</u>	<u>(0.0000392)</u>	<u>(0.0000048)</u>
E	Harrisburg	<u>(0.0000150)</u>	<u>(0.0000524)</u>	<u>(0.0000880)</u>	<u>(0.0000243)</u>
D	Philadelphia	<u>(0.0000157)</u>	<u>(0.0000662)</u>	<u>(0.0001132)</u>	<u>(0.0000379)</u>
H	Pittsburgh	<u>(0.0000093)</u>	<u>(0.0000280)</u>	<u>(0.0000545)</u>	<u>(0.0000069)</u>
B	Scranton	<u>(0.0000138)</u>	<u>(0.0000532)</u>	<u>(0.0000916)</u>	<u>(0.0000293)</u>
E	Williamsport	<u>(0.0000157)</u>	<u>(0.0000479)</u>	<u>(0.000838)</u>	<u>(0.0000212)</u>

EVALUATION PROTOCOLS

For most projects, the appropriate evaluation protocol is to verify system specifications (array size, azimuth, tilt, etc.) through document or on-site review and ensure PV Watts[®] model inputs align with the design parameters used for system generation estimates.

SOURCES

 19) Wisler, R. Bolinger, M. Seel, J. (2020, June). "Benchmarking Utility-Scale PV Operational

 Expenses and Project Lifetimes: Results from a Survey of U.S. Solar Industry Professionals".

 Current EUL assumptions are 25-35 years with an average of 32.5 years. Act 129 caps

 lifetime at 15 years. Weblink

20) 52 Pa. Code § 75.14.(e). Weblink

VOLUME 2: ENERGY STARResidential Measures

Miscellaneous

Page 328

State of Pennsylvania	_	Technical Reference Manual, Vol. 2: Residential Measures	_	Rev Date: Feb. 2021
May 2024				

21) PV Watts® Calculator. National Renewable Energy Lab (NREL). Weblink

- 22) InClime for PA PUC. (2024, February). "Capacity Factor Analysis EY2014-EY2023". Analysis of Pennsylvania Alternative Energy Portfolio Standards (AEPS) Program and additional losses needed to align PV Watts capacity factor output with AEPS Program DC capacity factor analysis.
- 23) Calculated through the ratio of PV Array total summer peak demand savings (aligned with PA Ph V peak demand definitions) and the annual electric generation for a given array azimuth installed at 20° tilt. Incremental ETDF_{summer} calculated assuming linear changes between two ordinal values.
- 24) Calculated through the ratio of PV Array total winter peak demand savings (aligned with PA Ph V peak demand definitions) and the annual electric generation for a given array azimuth installed at 20° tilt. Incremental ETDF_{winter} calculated assuming linear changes between two ordinal values.

Formatted: source 1, Space After: 6 pt

VOLUME 2: ENERGY STARResidential Measures

Miscellaneous

Page 329

Formatted: Font: Arial Narrow, 1 pt

2.9 DEMAND RESPONSE

The primary focus of this section of the TRM is to provide technical guidance for estimating the load impacts of demand response programs. The methods discussed are aimed at providing accurate estimates of the true load impacts at the program level. EDCs and CSPs may use alternate methods for quarterly reporting of ex ante impacts or to calculate financial settlements with participating customers, but the methods detailed in the TRM should be used to verify achievement of Phase $\frac{WV}{2}$ demand reduction targets. In some instances, the analysis may be carried out at the individual customer level, however, the outcome of interest is the aggregate load reduction (MW) that is caused by the program.

2.9.1 DIRECT LOAD CONTROL AND BEHAVIOR-BASED DEMAND RESPONSE PROGRAMS

Target Sector	Residential-Establishments	(Formatted: Not Highlight
Measure Unit	N/A	(Formatted: Not Highlight
Measure Life	Direct Load Control: 11 years Behavioral DR: 1 year	(Formatted: Not Highlight
Measure Vintage	N/A	(Formatted: Not Highlight

The protocols for Act 129 covering Direct Load Control (DLC) and Behavior-Based demand response programs are intended to give guidance to the EDCs when dispatching and evaluating the load impacts of an event over the course of Phase $\frac{1}{VV}$. In these programs, residential and small commercial customers either allow EDCs to remotely reduce equipment run time during peak hours (DLC programs) or reduce their loads voluntarily in response to a combination of incentive payments, messaging and/or other behavioral stimuli.

Behavior-based demand response programs are ones that have a goal of reducing electric load during peak load hours. Examples of behavior-based demand response programs include utility programs that request customers to reduce electric loads during peak load hours voluntarily, programs where customers are provided with real-time information on the cost of electricity and can then take action voluntarily to reduce electric loads during high-_cost hours and other similar information programs. For purposes of the Pennsylvania TRM, behavior-based demand response programs do not include utility information programs that are based on consumer education or marketing and have a goal of reducing electricity use on a year_round basis, including non-peak load hours.

For DLC programs, the participants may elect to receive incentive payments for allowing a signaled device to control or limit the power draw of certain HVAC, electric water heating, or swimming pool pump equipment at a participant's home, contributing to the reduction of peak demand. For measurement purposes, peak demand reductions are defined as the difference between a customer's actual (measured) electricity demand, and an estimate of the amount of electricity the customer would have demanded in the absence of the program incentive. The estimate of this counterfactual outcome is referred to as the reference load throughout this protocol.

EDCs must use one of the evaluation approaches below when estimating peak period load reductions that result from DLC and behavior-based programs. The approaches are not equivalent in terms of their ability to produce accurate and robust results and are therefore listed in descending order of desirability. Because of these differences in performance, EDCs shall use Option 2 only under circumstances when Option 1 is infeasible and shall similarly use Option 3 only under circumstances where both Option 1 and Option 2 are infeasible. In situations where Option 1 and/or

VOLUME 2: ENERGY STARResidential Measures

Demand Response

2 are not utilized, justification(s) must be provided by the EDC. EDCs with interval meter data available should use it to estimate load impacts. For DLC and behavior-based programs where advanced metering infrastructure (AMI) data is not available for all participants, estimates based on a sample of metered homes is permissible at the discretion of the SWE.

- 1) An analysis based on an experimental design that makes appropriate use of random assignment so that the reference load is estimated using a representative control group of program participants.⁴⁶ The most common type of design satisfying this criteriacriterion is a randomized control trial (RCT), but other designs may also be used. The specific design used can be selected by the EDC evaluation contractor based on their professional experience. It is important to note that experimental approaches to evaluation generally require the ability to call events at the individual device level. An operations strategy must be determined ahead of time in order to ensure that an appropriate control group is available for the analysis.
- 2) A comparison group analysis where the loads of a group of non-participating customers that are similar-tolike participating homes with respect to observable characteristics (e.g. electricity consumption) are used to estimate the reference load. A variety of matching techniques are available, and the EDC evaluation contractor can choose the technique used to select the comparison group based on their professional judgment. If <u>summer</u> events are most likely to be called on hot days, hot non-event days should be used for statistical matching and very cool days should be excluded.⁹⁶ Similarly, if winter events are most likely to be fall on very cold days. cold non-event days should be used for matching and mild days should be excluded. A good match will result in the loads of treatment and comparison group being virtually identical on non-event days. Difference-in-differences estimators should be used in the analysis to control for any remaining non-event day differences after matching.
- 3) A 'within-subjects' analysis where the loads of participating customers on non-event days⁹⁷ (Act 129 or PJM) are used to estimate the reference load. This can be accomplished via a regression equation that relates loads to temperature and other variables that influence usage. The regression model should be estimated using hot or cold days that would be similar to an event. Including eoolermild days in the model can degrade accuracy because it puts more pressure on accurately modeling the relationship between weather and load across a broad temperature spectrum, which is hard because the relationship is not linear. Reducing the estimatingestimation sample to relevant days reduces that modeling challenge, or a 'day-matching' technique with a day-of or weather adjustment to account for the more extreme conditions in place on event days...

3) The weather conditions in place at the time of the event are always used to claim savings.⁴ Weather-normalized or extrapolation of impacts to other weather conditions is not permitted.

Formatted: No bullets or numbering

ELIGIBILITY

In order toTo be eligible for thea direct load control program, a customer must have a signaled device used to control the operability of the equipment specified to be called upon during an event.

⁹⁶ For discussion on the rationale of random assignment, see Shadish, et al. (*Experimental and quasi-experimental designs for generalized causal inforence*, 2002), Khandker, et al. (*Handbook on impact evaluation: quantitative methods and practices*. World Bank Publications, 2010) and Todd, et al. (Evaluation, measurement and verification (EM&V) of residential behavior-based energy efficiency programs: issues and recommendations, 2012). More detailed technical discussions of the core evaluation issues and Options 1-3 are provided in the Phase III Evaluation Framework.

⁹⁶ Though including some amount of variability in temperatures is necessary for identifying the relationship between temperature and load, including too broad a spectrum of temperatures can reduce modeling accuracy due to the non-linear relationship between the variables. Focusing on hot, event-like days helps to isolate a linear piece of the relationship and enhances the ability of the model to predict accurately.

STARResidential

Fither Act 129 or PJM VOLUME 2: Measures

ENERGY

Demand Response

All residential and small commercial customers are eligible to participate in the behavior-based program.

ALGORITHMS

The specific algorithms(s) used to estimate the demand impacts caused by DLC and behaviorbased programs will depend on the specific method of evaluation used. In general, regressionbased estimates are most preferred, due to their ability to produce more precise impact estimates and quantitative measures of uncertainty. Details on specific types of equations that can be used for each evaluation approach are provided in the Pennsylvania Evaluation Framework.

Annual peak demand savings must be estimated using individual customer data (e.g. account, meter, or site as defined by program rules) regardless of which evaluation method is used. Program savings are the sum of the load impacts across all participants. Equations 1 and 2The following equations provide mathematical definitions of the average peak period load impact estimate that would be calculated using an approved method.

	$\sum_{i=1}^{\frac{n}{i-1}} \Delta k W_i - \sum_{i=1}^{n_summer} \Delta k W_i$	(1) Deleted Cells
∆kW_{peak} ∆kW _{summer} peak	$=\frac{\Delta t=1}{n} = \frac{\Delta t=1}{n_summer}$	Formatted: Left
	-n winter	Formatted Table
$\Delta k W_{winter \ peak}$	$=\frac{\sum_{i=1}^{n.winter}\Delta kW_i}{n_winter}$	
	1	(2) Deleted Cells
ΔkW_i	$= kW_{Reference_{i}} - kW_{Metered_{i}}$	Formatted: Left
		Formatted Table

DEFINITION OF TERMS

Table 2-181 Definition of Terms for Estimating DLC and Behavior-based Load Impacts

Term	Unit	Values	Source
n <u>summer</u> , Number of <u>summer</u> DR hours during a program year for the EDC	Hours	EDC Data Gathering	EDC Data Gathering
<u><i>n winter</i></u> , Number of winter DR hours during a program year for the EDC	<u>Hours</u>	EDC Data Gathering	EDC Data Gathering
ΔkW_i , Estimated load impact achieved by an LC participant in hour i. This term can be positive (a load reduction) or negative (a load increase).	kW	EDC Data Gathering	EDC Data Gathering
$kW_{Reference_{i}}$, Estimated customer load absent DR during hour i	kW	EDC Data Gathering	EDC Data Gathering
$kW_{Metered_i}$, Measured customer load during hour i	kW	EDC Data Gathering	EDC Data Gathering

DEFAULT SAVINGS

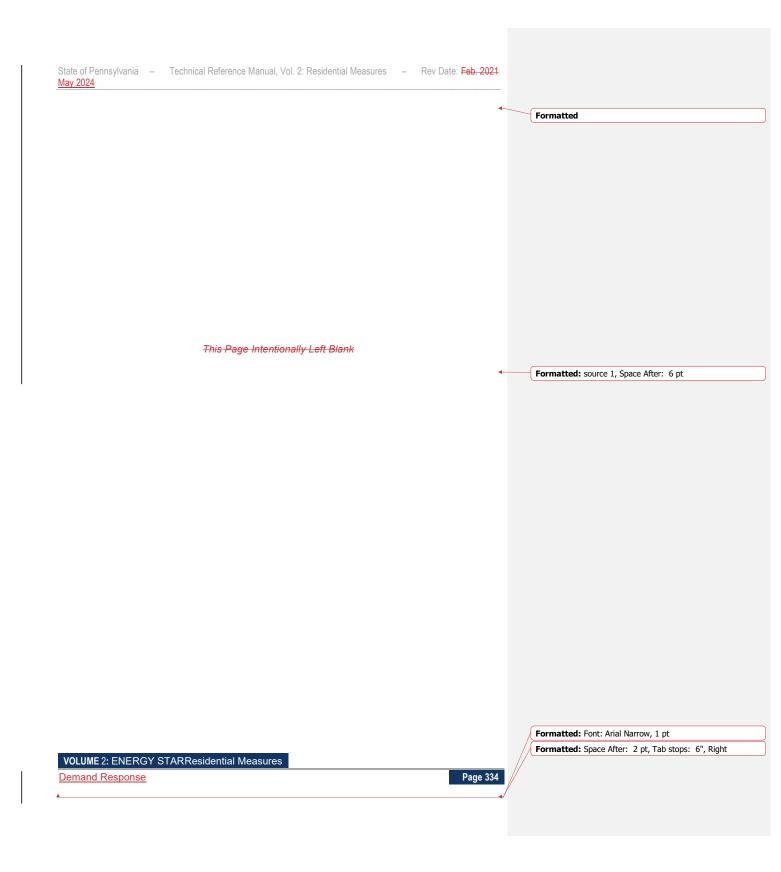
Default savings are not available for DLC or behavior-based programs.

VOLUME	2:	ENERGY	STARResidential
Measures			

Demand Response

Formatted: Space Before: 6 pt

EVALUATION PROTOCOLS AND REQUIRED REPORTING


Technical details of the evaluation protocols for Direct Load Control measures and Behavior-based DR programs are described in the Pennsylvania Evaluation Framework. The end result of following the protocols will be a common set of outputs that allow for an "apples-to-apples" comparison of load impacts across different DR resource options, event conditions and time. -These outputs are designed to ensure that the documentation of methods and results allows knowledgeable reviewers to judge the quality and validity of the impact estimates.

Measures

ENERGY STARResidential

Demand Response

VOLUME

Page 12: [1] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black		
Page 12: [2] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Left, Don't keep with next		
Page 12: [3] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Don't keep with next		
Page 12: [4] Inserted Cells	Greg Clendenning	4/16/2024 4:42:00 PM
Inserted Cells		
Page 12: [5] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black		
Page 12: [6] Inserted Cells	Greg Clendenning	4/16/2024 4:42:00 PM
Inserted Cells		
Page 12: [7] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black		
Page 12: [8] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Left, Don't keep with next		.,,
Page 12: [9] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black		1,20,2021
Page 12: [10] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Don't keep with next, Tab stops: No		4, 10, 2021 112100 111
Page 12: [11] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Aptos Narrow, 11 pt, Font col		., _0, _0
Page 12: [12] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Tab stops: Not at 0.36"		.,,
Page 12: [13] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Aptos Narrow, 11 pt, Font col		1,20,2021
Page 12: [14] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black	Greg cicildenning	4/10/2024 4.42.00 114
Page 12: [15] Inserted Cells	Greg Clendenning	4/16/2024 4:42:00 PM
Inserted Cells	Greg Clendenning	4/10/2024 4.42.00 PM
Page 12: [16] Inserted Cells	Greg Clendenning	4/16/2024 4:42:00 PM
Inserted Cells	Greg Clendenning	4/10/2024 4.42.00 PM
Page 12: [17] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black	Grey Clendenning	7/10/2024 4:42:00 PM
Page 12: [18] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Left, Don't keep with next	Grey Clendenning	7/10/2024 4:42:00 PM
· •	Greg Clendenning	4/16/2024 4:42:00 PM
Page 12: [19] Formatted Font color: Black	Grey Clendenning	4/10/2024 4:42:00 PM
		4/16/2024 4:42:00 PM
Page 12: [20] Formatted Don't keep with next, Tab stops: No	Greg Clendenning	4/16/2024 4:42:00 PM
• •		
Page 12: [21] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Aptos Narrow, 11 pt. Font col	or: Black	

Font: Aptos Narrow, 11 pt, Font color: Black

Page 12: [22] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Tab stops: Not at 0.36"		
Page 12: [23] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Aptos Narrow, 11 pt, Font co	lor: Black, Superscript	
Page 12: [24] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black		
Page 12: [25] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black		
Page 12: [26] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Left, Don't keep with next		
Page 12: [27] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black		
Page 12: [28] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Don't keep with next, Tab stops: No	ot at 0.36"	
Page 12: [29] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Aptos Narrow, 11 pt, Font co	lor: Black	
Page 12: [30] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Tab stops: Not at 0.36"		
Page 12: [31] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Aptos Narrow, 11 pt, Font co	lor: Black, Superscript	
Page 12: [32] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black		
Page 12: [33] Merged Cells	Greg Clendenning	4/16/2024 4:42:00 PM
Merged Cells		
Page 12: [34] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Centered, Don't keep with next		
Page 12: [35] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black		
Page 12: [36] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Left, Tab stops: Not at 0.36"		
Page 12: [37] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: 8 pt, Font color: Black		
Page 12: [38] Merged Cells	Greg Clendenning	4/16/2024 4:42:00 PM
Merged Cells		
Page 12: [39] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Tab stops: Not at 0.36"		
Page 12: [40] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black		
Page 12: [41] Merged Cells	Greg Clendenning	4/16/2024 4:42:00 PM
Merged Cells		
Page 12: [42] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Centered, Tab stops: Not at 0.36"		

Centered, Tab stops: Not at 0.36'

Page 12: [43] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black		
Page 12: [44] Merged Cells	Greg Clendenning	4/16/2024 4:42:00 PM
Merged Cells		
Page 12: [45] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Tab stops: Not at 0.36"		
Page 12: [46] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black		
Page 12: [47] Inserted Cells	Greg Clendenning	4/16/2024 4:42:00 PM
Inserted Cells		
Page 12: [48] Inserted Cells	Greg Clendenning	4/16/2024 4:42:00 PM
Inserted Cells		
Page 12: [49] Inserted Cells	Greg Clendenning	4/16/2024 4:42:00 PM
Inserted Cells		
Page 12: [50] Inserted Cells	Greg Clendenning	4/16/2024 4:42:00 PM
Inserted Cells		.,,
Page 12: [51] Inserted Cells	Greg Clendenning	4/16/2024 4:42:00 PM
Inserted Cells		4, 10, 2021 112100 111
Page 12: [52] Inserted Cells	Greg Clendenning	4/16/2024 4:42:00 PM
Inserted Cells	Grey Clendenning	4/10/2024 4.42.00 PM
Page 12: [53] Inserted Cells	Greg Clendenning	4/16/2024 4:42:00 PM
Inserted Cells	Grey Clendenning	4/10/2024 4:42:00 PM
-	Crea Clandonning	4/16/2024 4-42-00 DM
Page 12: [54] Inserted Cells Inserted Cells	Greg Clendenning	4/16/2024 4:42:00 PM
-		
Page 12: [55] Formatted Centered, Don't keep with next	Greg Clendenning	4/16/2024 4:42:00 PM
· •		
Page 12: [56] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black, Not Superscript/ Su	•	
Page 12: [56] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black, Not Superscript/ Su	ibscript	
Page 12: [57] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Normal, Centered, Tab stops: Not at	2"	
Page 12: [58] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black		
Page 12: [59] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Tab stops: Not at 0.36"		
Page 12: [60] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black		
Page 12: [61] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Normal, Centered		
Page 12: [62] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black	<u> </u>	
I ONL COIOL DIACK		

Deleted Cells Greg Clendenning 4/16/2024 Page 12: [64] Formatted Greg Clendenning 4/16/2024 Normal, Space Before: 0 pt Greg Clendenning 4/16/2024 Page 12: [65] Inserted Cells Greg Clendenning 4/16/2024 Inserted Cells Greg Clendenning 4/16/2024 Page 12: [66] Inserted Cells Greg Clendenning 4/16/2024 Inserted Cells Greg Clendenning 4/16/2024	4:42:00 PM 4:42:00 PM 4:42:00 PM 4:42:00 PM 4:42:00 PM 4:42:00 PM
Page 12: [64] Formatted Greg Clendenning 4/16/2024 Normal, Space Before: 0 pt 9 Page 12: [65] Inserted Cells Greg Clendenning 4/16/2024 Inserted Cells Greg Clendenning 4/16/2024 Page 12: [66] Inserted Cells Greg Clendenning 4/16/2024 Inserted Cells Greg Clendenning 4/16/2024 Page 12: [67] Inserted Cells Greg Clendenning 4/16/2024	4:42:00 PM 4:42:00 PM 4:42:00 PM 4:42:00 PM
Normal, Space Before: 0 pt Page 12: [65] Inserted Cells Inserted Cells Page 12: [66] Inserted Cells Greg Clendenning 4/16/2024 Inserted Cells Page 12: [66] Inserted Cells Greg Clendenning 4/16/2024 Inserted Cells Page 12: [67] Inserted Cells Greg Clendenning 4/16/2024	4:42:00 PM 4:42:00 PM 4:42:00 PM 4:42:00 PM
Page 12: [65] Inserted Cells Greg Clendenning 4/16/2024 Inserted Cells Greg Clendenning 4/16/2024 Page 12: [66] Inserted Cells Greg Clendenning 4/16/2024 Page 12: [67] Inserted Cells Greg Clendenning 4/16/2024	4:42:00 PM 4:42:00 PM 4:42:00 PM
Inserted Cells Page 12: [66] Inserted Cells Inserted Cells Page 12: [67] Inserted Cells Greg Clendenning 4/16/2024	4:42:00 PM 4:42:00 PM 4:42:00 PM
Page 12: [66] Inserted Cells Greg Clendenning 4/16/2024 Inserted Cells 4/16/2024 Page 12: [67] Inserted Cells Greg Clendenning 4/16/2024	4:42:00 PM 4:42:00 PM
Inserted Cells Page 12: [67] Inserted Cells Greg Clendenning 4/16/2024	4:42:00 PM 4:42:00 PM
Page 12: [67] Inserted Cells Greg Clendenning 4/16/2024	4:42:00 PM
	4:42:00 PM
Inserted Cells	
Page 12: [68] Inserted Cells Greg Clendenning 4/16/2024	4:42:00 PM
Inserted Cells	4:42:00 PM
Page 30: [69] Formatted Greg Clendenning 4/16/2024	
Not Superscript/ Subscript	
Page 30: [69] Formatted Greg Clendenning 4/16/2024	4:42:00 PM
Not Superscript/ Subscript	
Page 30: [70] Formatted Greg Clendenning 4/16/2024	4:42:00 PM
Not Superscript/ Subscript	
Page 30: [70] Formatted Greg Clendenning 4/16/2024	4:42:00 PM
Not Superscript/ Subscript	
Page 30: [71] Formatted Greg Clendenning 4/16/2024	4:42:00 PM
Font: 6 pt, Not Superscript/ Subscript	
Page 30: [72] Formatted Greg Clendenning 4/16/2024	4:42:00 PM
Font: 6 pt, Not Superscript/ Subscript	
Page 30: [73] Formatted Greg Clendenning 4/16/2024	4:42:00 PM
Left	
Page 30: [74] Formatted Greg Clendenning 4/16/2024	4:42:00 PM
Font: Bold	
Page 30: [75] Formatted Greg Clendenning 4/16/2024	4:42:00 PM
Font color: Black	
Page 30: [76] Formatted Greg Clendenning 4/16/2024	4:42:00 PM
Font: Calibri, Font color: Auto	
Page 30: [77] Formatted Greg Clendenning 4/16/2024	4:42:00 PM
Font: Calibri, Font color: Auto	
Page 30: [78] Formatted Greg Clendenning 4/16/2024	4:42:00 PM
Left	
Page 30: [79] Formatted Greg Clendenning 4/16/2024	4:42:00 PM
Font: Bold	
Page 30: [80] Formatted Greg Clendenning 4/16/2024	4:42:00 PM
Font color: Black	
	4:42:00 PM
Font: Calibri, Font color: Auto	TITEIOU FIII

Page 30: [82] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Calibri, Font color: Auto		
Page 30: [83] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Left		
Page 30: [84] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Bold		
Page 30: [85] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black		
Page 30: [86] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Calibri, Font color: Auto		
Page 30: [87] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Calibri, Font color: Auto		
Page 30: [88] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Left		
Page 30: [89] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Bold		.,,
Page 30: [90] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black		4/10/2024 4.42.00 1 11
Page 30: [91] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Calibri, Font color: Auto	Greg Clendenning	4/10/2024 4.42.00 PM
Page 30: [92] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Calibri, Font color: Auto	Greg Ciendenning	4/16/2024 4:42:00 PM
	Greg Clendenning	4/16/2024 4:42:00 PM
Page 30: [93] Formatted Left	Greg Clendenning	4/16/2024 4:42:00 PM
		4/46/2024 4-42-00 DM
Page 30: [94] Formatted Font: Bold	Greg Clendenning	4/16/2024 4:42:00 PM
Page 30: [95] Formatted Font color: Black	Greg Clendenning	4/16/2024 4:42:00 PM
Page 30: [96] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Calibri, Font color: Auto		
Page 30: [97] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Calibri, Font color: Auto		
Page 30: [98] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Left		
Page 30: [99] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Bold		
Page 30: [100] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black		
Page 30: [101] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Calibri, Font color: Auto		
Page 30: [102] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Calibri, Font color: Auto		

Page 30: [103] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Left		
Page 30: [104] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Bold		
Page 30: [105] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black		
Page 30: [106] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Calibri, Font color: Auto		
Page 30: [107] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Calibri, Font color: Auto		
Page 30: [108] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Left		
Page 30: [109] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Bold		
Page 30: [110] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black		
Page 30: [111] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Calibri, Font color: Auto		
Page 30: [112] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Calibri, Font color: Auto	<u> </u>	
Page 30: [113] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Left		
Page 30: [114] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Bold	<u> </u>	
Page 30: [115] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Black		
Page 30: [116] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Calibri, Font color: Auto		
Page 30: [117] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Calibri, Font color: Auto		1, 20, 2021 11 2100 111
Page 30: [118] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
SubStyle		1, 20, 2021 112100 111
Page 153: [119] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Bold		7/ 20/ 2027 7.72.00 FM
Page 153: [120] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing, paragraph 6pt space, S		7/ 20/ 2027 7:72:00 FM
Page 153: [121] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		7/ 10/ 2027 4.42.00 FM
Page 153: [122] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing, paragraph 6pt space, Lu		7/ 10/ 2024 4:42:00 PM
		4/16/2024 4.42.00 PM
Page 153: [123] Formatted Font color: Auto	Greg Clendenning	4/16/2024 4:42:00 PM

Font color: Auto

Page 153: [124] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 153: [125] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 153: [126] Deleted Cells	Greg Clendenning	4/16/2024 4:42:00 PM
Deleted Cells		
Page 153: [127] Deleted Cells	Greg Clendenning	4/16/2024 4:42:00 PM
Deleted Cells		
Page 153: [128] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing,paragraph 6pt space, Sp	ace Before: 0 pt, After: 0 pt	
Page 153: [129] Formatted Table	Greg Clendenning	4/16/2024 4:42:00 PM
Formatted Table		
Page 153: [130] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 153: [131] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		
Page 153: [131] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		
Page 153: [132] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 153: [133] Deleted Cells	Greg Clendenning	4/16/2024 4:42:00 PM
Deleted Cells		
Page 153: [134] Deleted Cells	Greg Clendenning	4/16/2024 4:42:00 PM
Deleted Cells		
Page 153: [135] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing,paragraph 6pt space, Sp		
Page 153: [136] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 153: [137] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing,paragraph 6pt space, Sp	ace Before: 0 pt, After: 0 pt	
Page 153: [138] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 153: [139] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		
Page 153: [140] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 153: [141] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing,paragraph 6pt space, Sp		
Page 153: [142] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		
Page 153: [142] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		,,

Page 153: [143] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing,paragraph 6pt space, S		
Page 153: [144] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 153: [145] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		
Page 153: [146] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 153: [147] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing, paragraph 6pt space, S	pace Before: 0 pt, After: 0 pt	
Page 153: [148] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		
Page 153: [148] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		
Page 153: [149] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing,paragraph 6pt space, S		
Page 153: [150] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		.,,
Page 153: [151] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		4, 10, 2021 112100 111
Page 153: [152] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto	Greg Clendenning	4/ 10/ 2024 4.42.00 FM
Page 153: [153] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing, paragraph 6pt space, S		4/10/2024 4.42.00 PM
	· · · ·	4/16/2024 4-42-00 DM
Page 153: [154] Formatted Font: Font color: Auto	Greg Clendenning	4/16/2024 4:42:00 PM
Page 153: [154] Formatted Font: Font color: Auto	Greg Clendenning	4/16/2024 4:42:00 PM
Page 153: [155] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing,paragraph 6pt space, S	pace Before: 0 pt, After: 0 pt	
Page 153: [156] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 153: [157] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		
Page 153: [158] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 153: [159] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing,paragraph 6pt space, S	pace Before: 0 pt, After: 0 pt	
Page 153: [160] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		
Page 153: [160] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto	.	

Page 153: [161] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing, paragraph 6pt space, S		4, 10, 2024 4.42.00 1 14
Page 153: [162] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		.,,
Page 153: [163] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		.,,
Page 153: [164] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing,paragraph 6pt space, S		
Page 153: [165] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		
Page 153: [165] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		
Page 154: [166] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto	g	, ,
Page 154: [167] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing,paragraph 6pt space, S		, ,
Page 154: [168] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 154: [169] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 154: [170] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 154: [171] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing,paragraph 6pt space, S	Space Before: 0 pt, After: 0 pt	
Page 154: [172] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		
Page 154: [172] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		
Page 154: [173] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing,paragraph 6pt space, S	Space Before: 0 pt, After: 0 pt	
Page 154: [174] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 154: [175] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 154: [176] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 154: [177] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing,paragraph 6pt space, S	Space Before: 0 pt, After: 0 pt	
Page 154: [178] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		
Page 154: [178] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		

Page 154: [179] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
	eft, Space Before: 0 pt, After: 0 pt	
Page 154: [180] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Not Bold, Font color: Auto		
Page 154: [181] Inserted Cells	Greg Clendenning	4/16/2024 4:42:00 PM
Inserted Cells		
Page 154: [182] Inserted Cells	Greg Clendenning	4/16/2024 4:42:00 PM
Inserted Cells		
Page 154: [183] Inserted Cells	Greg Clendenning	4/16/2024 4:42:00 PM
Inserted Cells		
Page 154: [184] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing,paragraph 6pt space, S	Space Before: 0 pt, After: 0 pt	
Page 154: [185] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 154: [186] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		
Page 154: [187] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 154: [188] Deleted Cells	Greg Clendenning	4/16/2024 4:42:00 PM
Deleted Cells		
Page 154: [189] Deleted Cells	Greg Clendenning	4/16/2024 4:42:00 PM
Deleted Cells		
Page 154: [190] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing,paragraph 6pt space, S	Space Before: 0 pt, After: 0 pt	
Page 154: [191] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		
Page 154: [191] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		
Page 154: [192] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing,paragraph 6pt space, S	Space Before: 0 pt, After: 0 pt	
Page 154: [193] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 154: [194] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		
Page 154: [195] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 154: [196] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing,paragraph 6pt space, S	Space Before: 0 pt, After: 0 pt	
Page 154: [197] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		
Page 154: [197] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		

Page 154: [198] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing, paragraph 6pt space, S		4/16/2024 4:42:00 PM
Page 154: [199] Formatted		4/16/2024 4:42:00 PM
Font color: Auto	Greg Clendenning	4/16/2024 4:42:00 PM
Page 154: [200] Formatted	Cros Clandonning	4/16/2024 4-42-00 DM
Font color: Auto	Greg Clendenning	4/16/2024 4:42:00 PM
Page 154: [201] Formatted Font color: Auto	Greg Clendenning	4/16/2024 4:42:00 PM
Page 154: [202] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing,paragraph 6pt space, S	pace Before: 0 pt, After: 0 pt	
Page 154: [203] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		
Page 154: [203] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		
Page 154: [204] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing,paragraph 6pt space, S	Space Before: 0 pt, After: 0 pt	
Page 154: [205] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 154: [206] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 154: [207] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 154: [208] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing,paragraph 6pt space, S	Space Before: 0 pt, After: 0 pt	
Page 154: [209] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		
Page 154: [209] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Font color: Auto		
Page 154: [210] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font: Bold		4, 10, 2021 112100 111
Page 154: [211] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing, paragraph 6pt space	Greg cicildenning	4, 10, 2024 4.42.00 1 14
Page 157: [212] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing, paragraph 6pt space, S		4/10/2024 4:42:00 PM
	• • •	
Page 157: [213] Formatted No Spacing,paragraph 6pt space, S	Greg Clendenning	4/16/2024 4:42:00 PM
Page 157: [214] Formatted No Spacing, paragraph 6pt space, S	Greg Clendenning	4/16/2024 4:42:00 PM
Page 157: [215] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing,paragraph 6pt space, S Page 157: [216] Formatted	Space Before: 0 pt, After: 0 pt	

Page 157: [217] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing,paragraph 6pt space, S	Space Before: 0 pt, After: 0 pt	
Page 157: [218] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing, paragraph 6pt space, S	Space Before: 0 pt, After: 0 pt	
Page 157: [219] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
No Spacing,paragraph 6pt space, S	Space Before: 0 pt, After: 0 pt	
Page 249: [220] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [221] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [222] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [223] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [224] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [225] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto	<u> </u>	
Page 249: [226] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [227] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [228] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		.,,
Page 249: [229] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		4, 10, 2021 112100 111
Page 249: [230] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto	Greg Clendenning	4/10/2024 4.42.00 PM
Page 249: [231] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto	Greg Clendenning	4/10/2024 4:42:00 PM
	Cros Clandonning	4/16/2024 4:42:00 PM
Page 249: [232] Formatted Font color: Auto	Greg Clendenning	4/16/2024 4:42:00 PM
		4/1C/2024 4-42-00 PM
Page 249: [233] Formatted Font color: Auto	Greg Clendenning	4/16/2024 4:42:00 PM
Page 249: [234] Formatted Font color: Auto	Greg Clendenning	4/16/2024 4:42:00 PM
Page 249: [235] Formatted Font color: Auto	Greg Clendenning	4/16/2024 4:42:00 PM
Page 249: [236] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [237] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		

Page 249: [238] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [239] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [240] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [241] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [242] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [243] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [244] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [245] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [246] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [247] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [248] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [249] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [250] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [251] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [252] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [253] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [254] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [255] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [256] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [257] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [258] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		

Page 249: [259] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [260] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [261] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [262] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [263] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [264] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [265] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [266] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [267] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [268] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [269] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [270] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [271] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [272] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [273] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [274] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [275] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [276] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		
Page 249: [277] Formatted	Greg Clendenning	4/16/2024 4:42:00 PM
Font color: Auto		